/*
- * Copyright (c) 2000-2003 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2005 Apple Computer, Inc. All rights reserved.
*
- * @APPLE_LICENSE_HEADER_START@
+ * @APPLE_LICENSE_OSREFERENCE_HEADER_START@
*
- * The contents of this file constitute Original Code as defined in and
- * are subject to the Apple Public Source License Version 1.1 (the
- * "License"). You may not use this file except in compliance with the
- * License. Please obtain a copy of the License at
- * http://www.apple.com/publicsource and read it before using this file.
- *
- * This Original Code and all software distributed under the License are
- * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
- * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
- * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
- * License for the specific language governing rights and limitations
- * under the License.
- *
- * @APPLE_LICENSE_HEADER_END@
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the
+ * License may not be used to create, or enable the creation or
+ * redistribution of, unlawful or unlicensed copies of an Apple operating
+ * system, or to circumvent, violate, or enable the circumvention or
+ * violation of, any terms of an Apple operating system software license
+ * agreement.
+ *
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this
+ * file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
+ * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
+ *
+ * @APPLE_LICENSE_OSREFERENCE_HEADER_END@
*/
/*
* @OSF_FREE_COPYRIGHT@
#include <mach_host.h>
#include <mach_prof.h>
#include <fast_tas.h>
-#include <task_swapper.h>
#include <platforms.h>
+#include <mach/mach_types.h>
#include <mach/boolean.h>
+#include <mach/host_priv.h>
#include <mach/machine/vm_types.h>
#include <mach/vm_param.h>
#include <mach/semaphore.h>
#include <mach/task_info.h>
#include <mach/task_special_ports.h>
-#include <mach/mach_types.h>
+
+#include <ipc/ipc_types.h>
#include <ipc/ipc_space.h>
#include <ipc/ipc_entry.h>
+
+#include <kern/kern_types.h>
#include <kern/mach_param.h>
#include <kern/misc_protos.h>
#include <kern/task.h>
#include <kern/ipc_tt.h>
#include <kern/ledger.h>
#include <kern/host.h>
-#include <vm/vm_kern.h> /* for kernel_map, ipc_kernel_map */
+#include <kern/clock.h>
+#include <kern/timer.h>
#include <kern/profile.h>
#include <kern/assert.h>
#include <kern/sync_lock.h>
+
+#include <vm/pmap.h>
+#include <vm/vm_map.h>
+#include <vm/vm_kern.h> /* for kernel_map, ipc_kernel_map */
+#include <vm/vm_pageout.h>
+#include <vm/vm_protos.h> /* for vm_map_remove_commpage64 */
+
#if MACH_KDB
#include <ddb/db_sym.h>
#endif /* MACH_KDB */
-#if TASK_SWAPPER
-#include <kern/task_swap.h>
-#endif /* TASK_SWAPPER */
-
#ifdef __ppc__
#include <ppc/exception.h>
#include <ppc/hw_perfmon.h>
#include <mach/task_server.h>
#include <mach/mach_host_server.h>
#include <mach/host_security_server.h>
+#include <mach/mach_port_server.h>
+
#include <vm/task_working_set.h>
+#include <vm/vm_shared_memory_server.h>
task_t kernel_task;
zone_t task_zone;
task_t task);
void task_release_locked(
task_t task);
-void task_collect_scan(void);
void task_free(
task_t task );
void task_synchronizer_destroy_all(
return;
}
+void
+task_working_set_disable(task_t task)
+{
+ struct tws_hash *ws;
+
+ task_lock(task);
+ ws = task->dynamic_working_set;
+ task->dynamic_working_set = NULL;
+ task_unlock(task);
+ if (ws) {
+ tws_hash_ws_flush(ws);
+ tws_hash_destroy(ws);
+ }
+}
+
+void
+task_set_64bit(
+ task_t task,
+ boolean_t is64bit)
+{
+ if(is64bit) {
+ /* LP64todo - no task working set for 64-bit */
+ task_set_64BitAddr(task);
+ task_working_set_disable(task);
+ task->map->max_offset = MACH_VM_MAX_ADDRESS;
+ } else {
+ /*
+ * Deallocate all memory previously allocated
+ * above the 32-bit address space, since it won't
+ * be accessible anymore.
+ */
+ /* LP64todo - make this clean */
+#ifdef __ppc__
+ vm_map_remove_commpage64(task->map);
+ pmap_unmap_sharedpage(task->map->pmap); /* Unmap commpage */
+#endif
+ (void) vm_map_remove(task->map,
+ (vm_map_offset_t) VM_MAX_ADDRESS,
+ MACH_VM_MAX_ADDRESS,
+ VM_MAP_NO_FLAGS);
+ task_clear_64BitAddr(task);
+ task->map->max_offset = (vm_map_offset_t)VM_MAX_ADDRESS;
+ }
+}
+
void
task_init(void)
{
TASK_CHUNK * sizeof(struct task),
"tasks");
- eml_init();
-
/*
* Create the kernel task as the first task.
*/
*/
kern_return_t
kernel_task_create(
- task_t parent_task,
- vm_offset_t map_base,
- vm_size_t map_size,
- task_t *child_task)
+ __unused task_t parent_task,
+ __unused vm_offset_t map_base,
+ __unused vm_size_t map_size,
+ __unused task_t *child_task)
{
return (KERN_INVALID_ARGUMENT);
}
kern_return_t
task_create(
- task_t parent_task,
- ledger_port_array_t ledger_ports,
- mach_msg_type_number_t num_ledger_ports,
- boolean_t inherit_memory,
- task_t *child_task) /* OUT */
+ task_t parent_task,
+ __unused ledger_port_array_t ledger_ports,
+ __unused mach_msg_type_number_t num_ledger_ports,
+ boolean_t inherit_memory,
+ task_t *child_task) /* OUT */
{
if (parent_task == TASK_NULL)
return(KERN_INVALID_ARGUMENT);
kern_return_t
host_security_create_task_token(
- host_security_t host_security,
- task_t parent_task,
- security_token_t sec_token,
- audit_token_t audit_token,
- host_priv_t host_priv,
- ledger_port_array_t ledger_ports,
- mach_msg_type_number_t num_ledger_ports,
- boolean_t inherit_memory,
- task_t *child_task) /* OUT */
+ host_security_t host_security,
+ task_t parent_task,
+ security_token_t sec_token,
+ audit_token_t audit_token,
+ host_priv_t host_priv,
+ __unused ledger_port_array_t ledger_ports,
+ __unused mach_msg_type_number_t num_ledger_ports,
+ boolean_t inherit_memory,
+ task_t *child_task) /* OUT */
{
kern_return_t result;
new_task->map = vm_map_fork(parent_task->map);
else
new_task->map = vm_map_create(pmap_create(0),
- round_page_32(VM_MIN_ADDRESS),
- trunc_page_32(VM_MAX_ADDRESS), TRUE);
+ (vm_map_offset_t)(VM_MIN_ADDRESS),
+ (vm_map_offset_t)(VM_MAX_ADDRESS), TRUE);
- mutex_init(&new_task->lock, ETAP_THREAD_TASK_NEW);
+ mutex_init(&new_task->lock, 0);
queue_init(&new_task->threads);
new_task->suspend_count = 0;
new_task->thread_count = 0;
- new_task->res_thread_count = 0;
new_task->active_thread_count = 0;
new_task->user_stop_count = 0;
new_task->role = TASK_UNSPECIFIED;
new_task->taskFeatures[0] = 0; /* Init task features */
new_task->taskFeatures[1] = 0; /* Init task features */
new_task->dynamic_working_set = 0;
-
+
task_working_set_create(new_task, TWS_SMALL_HASH_LINE_COUNT,
- 0, TWS_HASH_STYLE_DEFAULT);
+ 0, TWS_HASH_STYLE_DEFAULT);
#ifdef MACH_BSD
new_task->bsd_info = 0;
#endif /* MACH_BSD */
#ifdef __ppc__
- if(per_proc_info[0].pf.Available & pf64Bit) new_task->taskFeatures[0] |= tf64BitData; /* If 64-bit machine, show we have 64-bit registers at least */
+ if(BootProcInfo.pf.Available & pf64Bit) new_task->taskFeatures[0] |= tf64BitData; /* If 64-bit machine, show we have 64-bit registers at least */
#endif
-#if TASK_SWAPPER
- new_task->swap_state = TASK_SW_IN;
- new_task->swap_flags = 0;
- new_task->swap_ast_waiting = 0;
- new_task->swap_stamp = sched_tick;
- new_task->swap_rss = 0;
- new_task->swap_nswap = 0;
-#endif /* TASK_SWAPPER */
-
queue_init(&new_task->semaphore_list);
queue_init(&new_task->lock_set_list);
new_task->semaphores_owned = 0;
new_task->may_assign = TRUE;
new_task->assign_active = FALSE;
#endif /* MACH_HOST */
- eml_task_reference(new_task, parent_task);
ipc_task_init(new_task, parent_task);
- new_task->total_user_time.seconds = 0;
- new_task->total_user_time.microseconds = 0;
- new_task->total_system_time.seconds = 0;
- new_task->total_system_time.microseconds = 0;
+ new_task->total_user_time = 0;
+ new_task->total_system_time = 0;
task_prof_init(new_task);
convert_port_to_ledger(parent_task->wired_ledger_port));
new_task->paged_ledger_port = ledger_copy(
convert_port_to_ledger(parent_task->paged_ledger_port));
+ if(task_has_64BitAddr(parent_task))
+ task_set_64BitAddr(new_task);
}
else {
pset = &default_pset;
}
/*
- * task_deallocate
+ * task_deallocate:
*
- * Drop a reference on a task
- * Task is locked.
+ * Drop a reference on a task.
*/
void
task_deallocate(
task_t task)
{
- processor_set_t pset;
- int refs;
+ processor_set_t pset;
if (task == TASK_NULL)
return;
- task_lock(task);
- refs = --task->ref_count;
- task_unlock(task);
-
- if (refs > 0)
+ if (task_deallocate_internal(task) > 0)
return;
-#if TASK_SWAPPER
- /* task_terminate guarantees that this task is off the list */
- assert((task->swap_state & TASK_SW_ELIGIBLE) == 0);
-#endif /* TASK_SWAPPER */
+ pset = task->processor_set;
+ pset_deallocate(pset);
if(task->dynamic_working_set)
- tws_hash_destroy((tws_hash_t)task->dynamic_working_set);
-
- eml_task_deallocate(task);
+ tws_hash_destroy(task->dynamic_working_set);
ipc_task_terminate(task);
-#if MACH_HOST
- task_freeze(task);
-#endif
-
- pset = task->processor_set;
- pset_lock(pset);
- pset_remove_task(pset,task);
- pset_unlock(pset);
- pset_deallocate(pset);
-
-#if MACH_HOST
- task_unfreeze(task);
-#endif
-
vm_map_deallocate(task->map);
is_release(task->itk_space);
- task_prof_deallocate(task);
- zfree(task_zone, (vm_offset_t) task);
-}
-
-void
-task_reference(
- task_t task)
-{
- if (task != TASK_NULL) {
- task_lock(task);
- task->ref_count++;
- task_unlock(task);
- }
-}
-
-boolean_t
-task_reference_try(
- task_t task)
-{
- if (task != TASK_NULL) {
- if (task_lock_try(task)) {
- task->ref_count++;
- task_unlock(task);
- return TRUE;
- }
- }
- return FALSE;
+ task_prof_deallocate(task);
+ zfree(task_zone, task);
}
/*
task_t task)
{
if (task == TASK_NULL)
- return(KERN_INVALID_ARGUMENT);
+ return (KERN_INVALID_ARGUMENT);
+
if (task->bsd_info)
- return(KERN_FAILURE);
+ return (KERN_FAILURE);
+
return (task_terminate_internal(task));
}
kern_return_t
task_terminate_internal(
- task_t task)
+ task_t task)
{
- thread_act_t thr_act, cur_thr_act;
- task_t cur_task;
- boolean_t interrupt_save;
+ processor_set_t pset;
+ thread_t thread, self;
+ task_t self_task;
+ boolean_t interrupt_save;
assert(task != kernel_task);
- cur_thr_act = current_act();
- cur_task = cur_thr_act->task;
-
-#if TASK_SWAPPER
- /*
- * If task is not resident (swapped out, or being swapped
- * out), we want to bring it back in (this can block).
- * NOTE: The only way that this can happen in the current
- * system is if the task is swapped while it has a thread
- * in exit(), and the thread does not hit a clean point
- * to swap itself before getting here.
- * Terminating other tasks is another way to this code, but
- * it is not yet fully supported.
- * The task_swapin is unconditional. It used to be done
- * only if the task is not resident. Swapping in a
- * resident task will prevent it from being swapped out
- * while it terminates.
- */
- task_swapin(task, TRUE); /* TRUE means make it unswappable */
-#endif /* TASK_SWAPPER */
+ self = current_thread();
+ self_task = self->task;
/*
* Get the task locked and make sure that we are not racing
* with someone else trying to terminate us.
*/
- if (task == cur_task) {
+ if (task == self_task)
task_lock(task);
- } else if (task < cur_task) {
+ else
+ if (task < self_task) {
task_lock(task);
- task_lock(cur_task);
- } else {
- task_lock(cur_task);
+ task_lock(self_task);
+ }
+ else {
+ task_lock(self_task);
task_lock(task);
}
- if (!task->active || !cur_thr_act->active) {
+ if (!task->active || !self->active) {
/*
* Task or current act is already being terminated.
* Just return an error. If we are dying, this will
* will get us to finalize the termination of ourselves.
*/
task_unlock(task);
- if (cur_task != task)
- task_unlock(cur_task);
- return(KERN_FAILURE);
+ if (self_task != task)
+ task_unlock(self_task);
+
+ return (KERN_FAILURE);
}
- if (cur_task != task)
- task_unlock(cur_task);
+
+ if (self_task != task)
+ task_unlock(self_task);
/*
* Make sure the current thread does not get aborted out of
ipc_task_disable(task);
/*
- * Terminate each activation in the task.
- *
- * Each terminated activation will run it's special handler
- * when its current kernel context is unwound. That will
- * clean up most of the thread resources. Then it will be
- * handed over to the reaper, who will finally remove the
- * thread from the task list and free the structures.
- */
- queue_iterate(&task->threads, thr_act, thread_act_t, task_threads) {
- thread_terminate_internal(thr_act);
+ * Terminate each thread in the task.
+ */
+ queue_iterate(&task->threads, thread, thread_t, task_threads) {
+ thread_terminate_internal(thread);
}
/*
* to perform cleanup before ripping apart
* the task.
*/
- if (cur_thr_act->task == task)
+ if (self_task == task)
machine_thread_terminate_self();
task_unlock(task);
*/
ipc_space_destroy(task->itk_space);
+/* LP64todo - make this clean */
+#ifdef __ppc__
+ vm_map_remove_commpage64(task->map);
+ pmap_unmap_sharedpage(task->map->pmap); /* Unmap commpage */
+#endif
+
/*
* If the current thread is a member of the task
* being terminated, then the last reference to
* expense of removing the address space regions
* at reap time, we do it explictly here.
*/
- (void) vm_map_remove(task->map,
- task->map->min_offset,
- task->map->max_offset, VM_MAP_NO_FLAGS);
+ vm_map_remove(task->map, task->map->min_offset,
+ task->map->max_offset, VM_MAP_NO_FLAGS);
shared_region_mapping_dealloc(task->system_shared_region);
/*
* Flush working set here to avoid I/O in reaper thread
*/
- if(task->dynamic_working_set)
- tws_hash_ws_flush((tws_hash_t)
- task->dynamic_working_set);
+ if (task->dynamic_working_set)
+ tws_hash_ws_flush(task->dynamic_working_set);
+
+ pset = task->processor_set;
+ pset_lock(pset);
+ pset_remove_task(pset,task);
+ pset_unlock(pset);
/*
* We no longer need to guard against being aborted, so restore
*/
task_deallocate(task);
- return(KERN_SUCCESS);
+ return (KERN_SUCCESS);
}
/*
- * task_halt - Shut the current task down (except for the current thread) in
- * preparation for dramatic changes to the task (probably exec).
- * We hold the task, terminate all other threads in the task and
- * wait for them to terminate, clean up the portspace, and when
- * all done, let the current thread go.
+ * task_halt:
+ *
+ * Shut the current task down (except for the current thread) in
+ * preparation for dramatic changes to the task (probably exec).
+ * We hold the task, terminate all other threads in the task and
+ * wait for them to terminate, clean up the portspace, and when
+ * all done, let the current thread go.
*/
kern_return_t
task_halt(
task_t task)
{
- thread_act_t thr_act, cur_thr_act;
- task_t cur_task;
+ thread_t thread, self;
assert(task != kernel_task);
- cur_thr_act = current_act();
- cur_task = cur_thr_act->task;
+ self = current_thread();
- if (task != cur_task) {
- return(KERN_INVALID_ARGUMENT);
- }
-
-#if TASK_SWAPPER
- /*
- * If task is not resident (swapped out, or being swapped
- * out), we want to bring it back in and make it unswappable.
- * This can block, so do it early.
- */
- task_swapin(task, TRUE); /* TRUE means make it unswappable */
-#endif /* TASK_SWAPPER */
+ if (task != self->task)
+ return (KERN_INVALID_ARGUMENT);
task_lock(task);
- if (!task->active || !cur_thr_act->active) {
+ if (!task->active || !self->active) {
/*
* Task or current thread is already being terminated.
* Hurry up and return out of the current kernel context
* ourselves.
*/
task_unlock(task);
- return(KERN_FAILURE);
+
+ return (KERN_FAILURE);
}
if (task->thread_count > 1) {
task_hold_locked(task);
/*
- * Terminate all the other activations in the task.
- *
- * Each terminated activation will run it's special handler
- * when its current kernel context is unwound. That will
- * clean up most of the thread resources. Then it will be
- * handed over to the reaper, who will finally remove the
- * thread from the task list and free the structures.
+ * Terminate all the other threads in the task.
*/
- queue_iterate(&task->threads, thr_act, thread_act_t, task_threads) {
- if (thr_act != cur_thr_act)
- thread_terminate_internal(thr_act);
+ queue_iterate(&task->threads, thread, thread_t, task_threads) {
+ if (thread != self)
+ thread_terminate_internal(thread);
}
+
task_release_locked(task);
}
* Clean out the address space, as we are going to be
* getting a new one.
*/
- (void) vm_map_remove(task->map,
- task->map->min_offset,
- task->map->max_offset, VM_MAP_NO_FLAGS);
+ vm_map_remove(task->map, task->map->min_offset,
+ task->map->max_offset, VM_MAP_NO_FLAGS);
- return KERN_SUCCESS;
+ return (KERN_SUCCESS);
}
/*
*/
void
task_hold_locked(
- register task_t task)
+ register task_t task)
{
- register thread_act_t thr_act;
+ register thread_t thread;
assert(task->active);
return;
/*
- * Iterate through all the thread_act's and hold them.
+ * Iterate through all the threads and hold them.
*/
- queue_iterate(&task->threads, thr_act, thread_act_t, task_threads) {
- act_lock_thread(thr_act);
- thread_hold(thr_act);
- act_unlock_thread(thr_act);
+ queue_iterate(&task->threads, thread, thread_t, task_threads) {
+ thread_mtx_lock(thread);
+ thread_hold(thread);
+ thread_mtx_unlock(thread);
}
}
* CONDITIONS: the caller holds a reference on the task
*/
kern_return_t
-task_hold(task_t task)
+task_hold(
+ register task_t task)
{
- kern_return_t kret;
-
if (task == TASK_NULL)
return (KERN_INVALID_ARGUMENT);
+
task_lock(task);
+
if (!task->active) {
task_unlock(task);
+
return (KERN_FAILURE);
}
- task_hold_locked(task);
- task_unlock(task);
- return(KERN_SUCCESS);
+ task_hold_locked(task);
+ task_unlock(task);
+
+ return (KERN_SUCCESS);
}
/*
- * Routine: task_wait_locked
+ * task_wait_locked:
+ *
* Wait for all threads in task to stop.
*
* Conditions:
task_wait_locked(
register task_t task)
{
- register thread_act_t thr_act, cur_thr_act;
+ register thread_t thread, self;
assert(task->active);
assert(task->suspend_count > 0);
- cur_thr_act = current_act();
+ self = current_thread();
+
/*
- * Iterate through all the thread's and wait for them to
+ * Iterate through all the threads and wait for them to
* stop. Do not wait for the current thread if it is within
* the task.
*/
- queue_iterate(&task->threads, thr_act, thread_act_t, task_threads) {
- if (thr_act != cur_thr_act) {
- thread_t thread;
-
- thread = act_lock_thread(thr_act);
+ queue_iterate(&task->threads, thread, thread_t, task_threads) {
+ if (thread != self)
thread_wait(thread);
- act_unlock_thread(thr_act);
- }
}
}
*/
void
task_release_locked(
- register task_t task)
+ register task_t task)
{
- register thread_act_t thr_act;
+ register thread_t thread;
assert(task->active);
assert(task->suspend_count > 0);
if (--task->suspend_count > 0)
return;
- /*
- * Iterate through all the thread_act's and hold them.
- * Do not hold the current thread_act if it is within the
- * task.
- */
- queue_iterate(&task->threads, thr_act, thread_act_t, task_threads) {
- act_lock_thread(thr_act);
- thread_release(thr_act);
- act_unlock_thread(thr_act);
+ queue_iterate(&task->threads, thread, thread_t, task_threads) {
+ thread_mtx_lock(thread);
+ thread_release(thread);
+ thread_mtx_unlock(thread);
}
}
* CONDITIONS: The caller holds a reference to the task
*/
kern_return_t
-task_release(task_t task)
+task_release(
+ task_t task)
{
- kern_return_t kret;
-
if (task == TASK_NULL)
return (KERN_INVALID_ARGUMENT);
+
task_lock(task);
+
if (!task->active) {
task_unlock(task);
+
return (KERN_FAILURE);
}
- task_release_locked(task);
- task_unlock(task);
- return(KERN_SUCCESS);
+ task_release_locked(task);
+ task_unlock(task);
+
+ return (KERN_SUCCESS);
}
kern_return_t
task_threads(
- task_t task,
- thread_act_array_t *thr_act_list,
+ task_t task,
+ thread_act_array_t *threads_out,
mach_msg_type_number_t *count)
{
- unsigned int actual; /* this many thr_acts */
- thread_act_t thr_act;
- thread_act_t *thr_acts;
- thread_t thread;
- int i, j;
-
- vm_size_t size, size_needed;
- vm_offset_t addr;
+ mach_msg_type_number_t actual;
+ thread_t *threads;
+ thread_t thread;
+ vm_size_t size, size_needed;
+ void *addr;
+ unsigned int i, j;
if (task == TASK_NULL)
- return KERN_INVALID_ARGUMENT;
+ return (KERN_INVALID_ARGUMENT);
size = 0; addr = 0;
task_lock(task);
if (!task->active) {
task_unlock(task);
+
if (size != 0)
kfree(addr, size);
- return KERN_FAILURE;
+
+ return (KERN_FAILURE);
}
actual = task->thread_count;
/* do we have the memory we need? */
- size_needed = actual * sizeof(mach_port_t);
+ size_needed = actual * sizeof (mach_port_t);
if (size_needed <= size)
break;
addr = kalloc(size);
if (addr == 0)
- return KERN_RESOURCE_SHORTAGE;
+ return (KERN_RESOURCE_SHORTAGE);
}
/* OK, have memory and the task is locked & active */
- thr_acts = (thread_act_t *) addr;
-
- for (i = j = 0, thr_act = (thread_act_t) queue_first(&task->threads);
- i < actual;
- i++, thr_act = (thread_act_t) queue_next(&thr_act->task_threads)) {
- act_lock(thr_act);
- if (thr_act->act_ref_count > 0) {
- act_reference_locked(thr_act);
- thr_acts[j++] = thr_act;
- }
- act_unlock(thr_act);
+ threads = (thread_t *)addr;
+
+ i = j = 0;
+
+ for (thread = (thread_t)queue_first(&task->threads); i < actual;
+ ++i, thread = (thread_t)queue_next(&thread->task_threads)) {
+ thread_reference_internal(thread);
+ threads[j++] = thread;
}
- assert(queue_end(&task->threads, (queue_entry_t) thr_act));
+
+ assert(queue_end(&task->threads, (queue_entry_t)thread));
actual = j;
- size_needed = actual * sizeof(mach_port_t);
+ size_needed = actual * sizeof (mach_port_t);
- /* can unlock task now that we've got the thr_act refs */
+ /* can unlock task now that we've got the thread refs */
task_unlock(task);
if (actual == 0) {
- /* no thr_acts, so return null pointer and deallocate memory */
+ /* no threads, so return null pointer and deallocate memory */
- *thr_act_list = 0;
+ *threads_out = 0;
*count = 0;
if (size != 0)
kfree(addr, size);
- } else {
+ }
+ else {
/* if we allocated too much, must copy */
if (size_needed < size) {
- vm_offset_t newaddr;
+ void *newaddr;
newaddr = kalloc(size_needed);
if (newaddr == 0) {
- for (i = 0; i < actual; i++)
- act_deallocate(thr_acts[i]);
+ for (i = 0; i < actual; ++i)
+ thread_deallocate(threads[i]);
kfree(addr, size);
- return KERN_RESOURCE_SHORTAGE;
+ return (KERN_RESOURCE_SHORTAGE);
}
- bcopy((char *) addr, (char *) newaddr, size_needed);
+ bcopy(addr, newaddr, size_needed);
kfree(addr, size);
- thr_acts = (thread_act_t *) newaddr;
+ threads = (thread_t *)newaddr;
}
- *thr_act_list = thr_acts;
+ *threads_out = threads;
*count = actual;
/* do the conversion that Mig should handle */
- for (i = 0; i < actual; i++)
- ((ipc_port_t *) thr_acts)[i] =
- convert_act_to_port(thr_acts[i]);
+ for (i = 0; i < actual; ++i)
+ ((ipc_port_t *) threads)[i] = convert_thread_to_port(threads[i]);
}
- return KERN_SUCCESS;
+ return (KERN_SUCCESS);
}
/*
- * Routine: task_suspend
+ * task_suspend:
+ *
* Implement a user-level suspension on a task.
*
* Conditions:
task_suspend(
register task_t task)
{
- if (task == TASK_NULL)
+ if (task == TASK_NULL || task == kernel_task)
return (KERN_INVALID_ARGUMENT);
task_lock(task);
+
if (!task->active) {
task_unlock(task);
+
return (KERN_FAILURE);
}
- if ((task->user_stop_count)++ > 0) {
+
+ if (task->user_stop_count++ > 0) {
/*
* If the stop count was positive, the task is
* already stopped and we can exit.
*/
task_unlock(task);
+
return (KERN_SUCCESS);
}
*/
task_hold_locked(task);
task_wait_locked(task);
+
task_unlock(task);
+
return (KERN_SUCCESS);
}
/*
- * Routine: task_resume
+ * task_resume:
* Release a kernel hold on a task.
*
* Conditions:
* The caller holds a reference to the task
*/
kern_return_t
-task_resume(register task_t task)
+task_resume(
+ register task_t task)
{
- register boolean_t release;
+ register boolean_t release = FALSE;
- if (task == TASK_NULL)
- return(KERN_INVALID_ARGUMENT);
+ if (task == TASK_NULL || task == kernel_task)
+ return (KERN_INVALID_ARGUMENT);
- release = FALSE;
task_lock(task);
+
if (!task->active) {
task_unlock(task);
- return(KERN_FAILURE);
+
+ return (KERN_FAILURE);
}
+
if (task->user_stop_count > 0) {
- if (--(task->user_stop_count) == 0)
- release = TRUE;
+ if (--task->user_stop_count == 0)
+ release = TRUE;
}
else {
task_unlock(task);
- return(KERN_FAILURE);
+
+ return (KERN_FAILURE);
}
/*
task_release_locked(task);
task_unlock(task);
- return(KERN_SUCCESS);
+
+ return (KERN_SUCCESS);
}
kern_return_t
task_set_info(
task_t task,
task_flavor_t flavor,
- task_info_t task_info_in, /* pointer to IN array */
- mach_msg_type_number_t task_info_count)
+ __unused task_info_t task_info_in, /* pointer to IN array */
+ __unused mach_msg_type_number_t task_info_count)
{
- vm_map_t map;
-
if (task == TASK_NULL)
return(KERN_INVALID_ARGUMENT);
kern_return_t
task_info(
- task_t task,
- task_flavor_t flavor,
- task_info_t task_info_out,
+ task_t task,
+ task_flavor_t flavor,
+ task_info_t task_info_out,
mach_msg_type_number_t *task_info_count)
{
- thread_t thread;
- vm_map_t map;
-
if (task == TASK_NULL)
- return(KERN_INVALID_ARGUMENT);
+ return (KERN_INVALID_ARGUMENT);
switch (flavor) {
- case TASK_BASIC_INFO:
- {
- register task_basic_info_t basic_info;
-
- if (*task_info_count < TASK_BASIC_INFO_COUNT) {
- return(KERN_INVALID_ARGUMENT);
- }
+ case TASK_BASIC_INFO_32:
+ {
+ task_basic_info_32_t basic_info;
+ vm_map_t map;
- basic_info = (task_basic_info_t) task_info_out;
+ if (*task_info_count < TASK_BASIC_INFO_32_COUNT)
+ return (KERN_INVALID_ARGUMENT);
- map = (task == kernel_task) ? kernel_map : task->map;
+ basic_info = (task_basic_info_32_t)task_info_out;
- basic_info->virtual_size = map->size;
+ map = (task == kernel_task)? kernel_map: task->map;
+ basic_info->virtual_size = CAST_DOWN(vm_offset_t,map->size);
basic_info->resident_size = pmap_resident_count(map->pmap)
* PAGE_SIZE;
basic_info->policy = ((task != kernel_task)?
POLICY_TIMESHARE: POLICY_RR);
basic_info->suspend_count = task->user_stop_count;
- basic_info->user_time.seconds
- = task->total_user_time.seconds;
- basic_info->user_time.microseconds
- = task->total_user_time.microseconds;
- basic_info->system_time.seconds
- = task->total_system_time.seconds;
- basic_info->system_time.microseconds
- = task->total_system_time.microseconds;
+
+ absolutetime_to_microtime(
+ task->total_user_time,
+ &basic_info->user_time.seconds,
+ &basic_info->user_time.microseconds);
+ absolutetime_to_microtime(
+ task->total_system_time,
+ &basic_info->system_time.seconds,
+ &basic_info->system_time.microseconds);
task_unlock(task);
- *task_info_count = TASK_BASIC_INFO_COUNT;
+ *task_info_count = TASK_BASIC_INFO_32_COUNT;
break;
- }
+ }
- case TASK_THREAD_TIMES_INFO:
- {
- register task_thread_times_info_t times_info;
- register thread_t thread;
- register thread_act_t thr_act;
+ case TASK_BASIC_INFO_64:
+ {
+ task_basic_info_64_t basic_info;
+ vm_map_t map;
- if (*task_info_count < TASK_THREAD_TIMES_INFO_COUNT) {
+ if (*task_info_count < TASK_BASIC_INFO_64_COUNT)
+ return (KERN_INVALID_ARGUMENT);
+
+ basic_info = (task_basic_info_64_t)task_info_out;
+
+ map = (task == kernel_task)? kernel_map: task->map;
+ basic_info->virtual_size = map->size;
+ basic_info->resident_size = (mach_vm_size_t)(pmap_resident_count(map->pmap)
+ * PAGE_SIZE);
+
+ task_lock(task);
+ basic_info->policy = ((task != kernel_task)?
+ POLICY_TIMESHARE: POLICY_RR);
+ basic_info->suspend_count = task->user_stop_count;
+
+ absolutetime_to_microtime(
+ task->total_user_time,
+ &basic_info->user_time.seconds,
+ &basic_info->user_time.microseconds);
+ absolutetime_to_microtime(
+ task->total_system_time,
+ &basic_info->system_time.seconds,
+ &basic_info->system_time.microseconds);
+ task_unlock(task);
+
+ *task_info_count = TASK_BASIC_INFO_64_COUNT;
+ break;
+ }
+
+ case TASK_THREAD_TIMES_INFO:
+ {
+ register task_thread_times_info_t times_info;
+ register thread_t thread;
+
+ if (*task_info_count < TASK_THREAD_TIMES_INFO_COUNT)
return (KERN_INVALID_ARGUMENT);
- }
times_info = (task_thread_times_info_t) task_info_out;
times_info->user_time.seconds = 0;
times_info->system_time.microseconds = 0;
task_lock(task);
- queue_iterate(&task->threads, thr_act,
- thread_act_t, task_threads)
- {
- time_value_t user_time, system_time;
- spl_t s;
- thread = act_lock_thread(thr_act);
-
- /* JMM - add logic to skip threads that have migrated
- * into this task?
- */
-
- assert(thread); /* Must have thread */
- s = splsched();
- thread_lock(thread);
+ queue_iterate(&task->threads, thread, thread_t, task_threads) {
+ time_value_t user_time, system_time;
thread_read_times(thread, &user_time, &system_time);
- thread_unlock(thread);
- splx(s);
- act_unlock_thread(thr_act);
-
time_value_add(×_info->user_time, &user_time);
time_value_add(×_info->system_time, &system_time);
}
+
task_unlock(task);
*task_info_count = TASK_THREAD_TIMES_INFO_COUNT;
break;
- }
+ }
- case TASK_SCHED_FIFO_INFO:
- {
+ case TASK_ABSOLUTETIME_INFO:
+ {
+ task_absolutetime_info_t info;
+ register thread_t thread;
+
+ if (*task_info_count < TASK_ABSOLUTETIME_INFO_COUNT)
+ return (KERN_INVALID_ARGUMENT);
+
+ info = (task_absolutetime_info_t)task_info_out;
+ info->threads_user = info->threads_system = 0;
+
+ task_lock(task);
+
+ info->total_user = task->total_user_time;
+ info->total_system = task->total_system_time;
+
+ queue_iterate(&task->threads, thread, thread_t, task_threads) {
+ uint64_t tval;
+
+ tval = timer_grab(&thread->user_timer);
+ info->threads_user += tval;
+ info->total_user += tval;
+
+ tval = timer_grab(&thread->system_timer);
+ info->threads_system += tval;
+ info->total_system += tval;
+ }
+
+ task_unlock(task);
+
+ *task_info_count = TASK_ABSOLUTETIME_INFO_COUNT;
+ break;
+ }
+
+ /* OBSOLETE */
+ case TASK_SCHED_FIFO_INFO:
+ {
if (*task_info_count < POLICY_FIFO_BASE_COUNT)
- return(KERN_INVALID_ARGUMENT);
+ return (KERN_INVALID_ARGUMENT);
- return(KERN_INVALID_POLICY);
- }
+ return (KERN_INVALID_POLICY);
+ }
- case TASK_SCHED_RR_INFO:
- {
+ /* OBSOLETE */
+ case TASK_SCHED_RR_INFO:
+ {
register policy_rr_base_t rr_base;
if (*task_info_count < POLICY_RR_BASE_COUNT)
- return(KERN_INVALID_ARGUMENT);
+ return (KERN_INVALID_ARGUMENT);
rr_base = (policy_rr_base_t) task_info_out;
task_lock(task);
if (task != kernel_task) {
task_unlock(task);
- return(KERN_INVALID_POLICY);
+ return (KERN_INVALID_POLICY);
}
rr_base->base_priority = task->priority;
task_unlock(task);
- rr_base->quantum = tick / 1000;
+ rr_base->quantum = std_quantum_us / 1000;
*task_info_count = POLICY_RR_BASE_COUNT;
break;
- }
+ }
- case TASK_SCHED_TIMESHARE_INFO:
- {
+ /* OBSOLETE */
+ case TASK_SCHED_TIMESHARE_INFO:
+ {
register policy_timeshare_base_t ts_base;
if (*task_info_count < POLICY_TIMESHARE_BASE_COUNT)
- return(KERN_INVALID_ARGUMENT);
+ return (KERN_INVALID_ARGUMENT);
ts_base = (policy_timeshare_base_t) task_info_out;
task_lock(task);
if (task == kernel_task) {
task_unlock(task);
- return(KERN_INVALID_POLICY);
+ return (KERN_INVALID_POLICY);
}
ts_base->base_priority = task->priority;
*task_info_count = POLICY_TIMESHARE_BASE_COUNT;
break;
- }
+ }
- case TASK_SECURITY_TOKEN:
- {
- register security_token_t *sec_token_p;
+ case TASK_SECURITY_TOKEN:
+ {
+ register security_token_t *sec_token_p;
- if (*task_info_count < TASK_SECURITY_TOKEN_COUNT) {
- return(KERN_INVALID_ARGUMENT);
- }
+ if (*task_info_count < TASK_SECURITY_TOKEN_COUNT)
+ return (KERN_INVALID_ARGUMENT);
sec_token_p = (security_token_t *) task_info_out;
task_unlock(task);
*task_info_count = TASK_SECURITY_TOKEN_COUNT;
- break;
- }
+ break;
+ }
- case TASK_AUDIT_TOKEN:
- {
- register audit_token_t *audit_token_p;
+ case TASK_AUDIT_TOKEN:
+ {
+ register audit_token_t *audit_token_p;
- if (*task_info_count < TASK_AUDIT_TOKEN_COUNT) {
- return(KERN_INVALID_ARGUMENT);
- }
+ if (*task_info_count < TASK_AUDIT_TOKEN_COUNT)
+ return (KERN_INVALID_ARGUMENT);
audit_token_p = (audit_token_t *) task_info_out;
task_unlock(task);
*task_info_count = TASK_AUDIT_TOKEN_COUNT;
- break;
- }
+ break;
+ }
- case TASK_SCHED_INFO:
- return(KERN_INVALID_ARGUMENT);
+ case TASK_SCHED_INFO:
+ return (KERN_INVALID_ARGUMENT);
- case TASK_EVENTS_INFO:
- {
+ case TASK_EVENTS_INFO:
+ {
register task_events_info_t events_info;
- if (*task_info_count < TASK_EVENTS_INFO_COUNT) {
- return(KERN_INVALID_ARGUMENT);
- }
+ if (*task_info_count < TASK_EVENTS_INFO_COUNT)
+ return (KERN_INVALID_ARGUMENT);
events_info = (task_events_info_t) task_info_out;
*task_info_count = TASK_EVENTS_INFO_COUNT;
break;
- }
+ }
- default:
+ default:
return (KERN_INVALID_ARGUMENT);
}
- return(KERN_SUCCESS);
+ return (KERN_SUCCESS);
}
/*
*/
kern_return_t
task_assign(
- task_t task,
- processor_set_t new_pset,
- boolean_t assign_threads)
+ __unused task_t task,
+ __unused processor_set_t new_pset,
+ __unused boolean_t assign_threads)
{
-#ifdef lint
- task++; new_pset++; assign_threads++;
-#endif /* lint */
return(KERN_FAILURE);
}
*/
kern_return_t
task_policy(
- task_t task,
- policy_t policy_id,
- policy_base_t base,
- mach_msg_type_number_t count,
- boolean_t set_limit,
- boolean_t change)
+ __unused task_t task,
+ __unused policy_t policy_id,
+ __unused policy_base_t base,
+ __unused mach_msg_type_number_t count,
+ __unused boolean_t set_limit,
+ __unused boolean_t change)
{
return(KERN_FAILURE);
}
*/
kern_return_t
task_set_policy(
- task_t task,
- processor_set_t pset,
- policy_t policy_id,
- policy_base_t base,
- mach_msg_type_number_t base_count,
- policy_limit_t limit,
- mach_msg_type_number_t limit_count,
- boolean_t change)
+ __unused task_t task,
+ __unused processor_set_t pset,
+ __unused policy_t policy_id,
+ __unused policy_base_t base,
+ __unused mach_msg_type_number_t base_count,
+ __unused policy_limit_t limit,
+ __unused mach_msg_type_number_t limit_count,
+ __unused boolean_t change)
{
return(KERN_FAILURE);
}
-/*
- * task_collect_scan:
- *
- * Attempt to free resources owned by tasks.
- */
-
-void
-task_collect_scan(void)
-{
- register task_t task, prev_task;
- processor_set_t pset = &default_pset;
-
- pset_lock(pset);
- pset->ref_count++;
- task = (task_t) queue_first(&pset->tasks);
- while (!queue_end(&pset->tasks, (queue_entry_t) task)) {
- task_lock(task);
- if (task->ref_count > 0) {
-
- task_reference_locked(task);
- task_unlock(task);
-
-#if MACH_HOST
- /*
- * While we still have the pset locked, freeze the task in
- * this pset. That way, when we get back from collecting
- * it, we can dereference the pset_tasks chain for the task
- * and be assured that we are still in this chain.
- */
- task_freeze(task);
-#endif
-
- pset_unlock(pset);
-
- pmap_collect(task->map->pmap);
-
- pset_lock(pset);
- prev_task = task;
- task = (task_t) queue_next(&task->pset_tasks);
-
-#if MACH_HOST
- task_unfreeze(prev_task);
-#endif
-
- task_deallocate(prev_task);
- } else {
- task_unlock(task);
- task = (task_t) queue_next(&task->pset_tasks);
- }
- }
-
- pset_unlock(pset);
-
- pset_deallocate(pset);
-}
-
-/* Also disabled in vm/vm_pageout.c */
-boolean_t task_collect_allowed = FALSE;
-unsigned task_collect_last_tick = 0;
-unsigned task_collect_max_rate = 0; /* in ticks */
-
-/*
- * consider_task_collect:
- *
- * Called by the pageout daemon when the system needs more free pages.
- */
-
-void
-consider_task_collect(void)
-{
- /*
- * By default, don't attempt task collection more frequently
- * than once per second.
- */
-
- if (task_collect_max_rate == 0)
- task_collect_max_rate = (1 << SCHED_TICK_SHIFT) + 1;
-
- if (task_collect_allowed &&
- (sched_tick > (task_collect_last_tick + task_collect_max_rate))) {
- task_collect_last_tick = sched_tick;
- task_collect_scan();
- }
-}
-
+#if FAST_TAS
kern_return_t
task_set_ras_pc(
task_t task,
vm_offset_t pc,
vm_offset_t endpc)
{
-#if FAST_TAS
extern int fast_tas_debug;
if (fast_tas_debug) {
task->fast_tas_end = endpc;
task_unlock(task);
return KERN_SUCCESS;
-
+}
#else /* FAST_TAS */
-#ifdef lint
- task++;
- pc++;
- endpc++;
-#endif /* lint */
-
+kern_return_t
+task_set_ras_pc(
+ __unused task_t task,
+ __unused vm_offset_t pc,
+ __unused vm_offset_t endpc)
+{
return KERN_FAILURE;
-
-#endif /* FAST_TAS */
}
+#endif /* FAST_TAS */
void
task_synchronizer_destroy_all(task_t task)
}
}
-/*
- * task_set_port_space:
- *
- * Set port name space of task to specified size.
- */
-
-kern_return_t
-task_set_port_space(
- task_t task,
- int table_entries)
-{
- kern_return_t kr;
-
- is_write_lock(task->itk_space);
- kr = ipc_entry_grow_table(task->itk_space, table_entries);
- if (kr == KERN_SUCCESS)
- is_write_unlock(task->itk_space);
- return kr;
-}
-
-/*
- * Routine:
- * task_is_classic
- * Purpose:
- * Returns true if the task is a P_CLASSIC task.
- */
-boolean_t
-task_is_classic(
- task_t task)
-{
- boolean_t result = FALSE;
-
- if (task) {
- struct proc *p = get_bsdtask_info(task);
- result = proc_is_classic(p) ? TRUE : FALSE;
- }
- return result;
-}
-
/*
* We need to export some functions to other components that
* are currently implemented in macros within the osfmk
}
#undef current_task
-task_t current_task()
+task_t current_task(void);
+task_t current_task(void)
{
return (current_task_fast());
}
+
+#undef task_reference
+void task_reference(task_t task);
+void
+task_reference(
+ task_t task)
+{
+ if (task != TASK_NULL)
+ task_reference_internal(task);
+}