/*
- * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
*
- * @APPLE_LICENSE_HEADER_START@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
- * The contents of this file constitute Original Code as defined in and
- * are subject to the Apple Public Source License Version 1.1 (the
- * "License"). You may not use this file except in compliance with the
- * License. Please obtain a copy of the License at
- * http://www.apple.com/publicsource and read it before using this file.
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
*
- * This Original Code and all software distributed under the License are
- * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
- * License for the specific language governing rights and limitations
- * under the License.
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
*
- * @APPLE_LICENSE_HEADER_END@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_COPYRIGHT@
* Kernel memory management.
*/
-#include <cpus.h>
#include <mach/kern_return.h>
#include <mach/vm_param.h>
#include <kern/assert.h>
#include <vm/cpm.h>
#include <string.h>
+
+#include <libkern/OSDebug.h>
+#include <sys/kdebug.h>
+
/*
* Variables exported by this module.
*/
vm_map_t kernel_map;
vm_map_t kernel_pageable_map;
+extern boolean_t vm_kernel_ready;
+
/*
* Forward declarations for internal functions.
*/
extern kern_return_t kmem_alloc_pages(
register vm_object_t object,
register vm_object_offset_t offset,
- register vm_size_t size);
+ register vm_object_size_t size);
extern void kmem_remap_pages(
register vm_object_t object,
kern_return_t
kmem_alloc_contig(
- vm_map_t map,
- vm_offset_t *addrp,
- vm_size_t size,
- vm_offset_t mask,
- int flags)
+ vm_map_t map,
+ vm_offset_t *addrp,
+ vm_size_t size,
+ vm_offset_t mask,
+ ppnum_t max_pnum,
+ int flags)
{
vm_object_t object;
- vm_page_t m, pages;
- kern_return_t kr;
- vm_offset_t addr, i;
vm_object_offset_t offset;
+ vm_map_offset_t map_addr;
+ vm_map_offset_t map_mask;
+ vm_map_size_t map_size, i;
vm_map_entry_t entry;
+ vm_page_t m, pages;
+ kern_return_t kr;
if (map == VM_MAP_NULL || (flags && (flags ^ KMA_KOBJECT)))
return KERN_INVALID_ARGUMENT;
return KERN_INVALID_ARGUMENT;
}
- size = round_page_32(size);
- if ((flags & KMA_KOBJECT) == 0) {
- object = vm_object_allocate(size);
- kr = vm_map_find_space(map, &addr, size, mask, &entry);
- }
- else {
- object = kernel_object;
- kr = vm_map_find_space(map, &addr, size, mask, &entry);
- }
+ map_size = vm_map_round_page(size);
+ map_mask = (vm_map_offset_t)mask;
- if ((flags & KMA_KOBJECT) == 0) {
- entry->object.vm_object = object;
- entry->offset = offset = 0;
+ /*
+ * Allocate a new object (if necessary) and the reference we
+ * will be donating to the map entry. We must do this before
+ * locking the map, or risk deadlock with the default pager.
+ */
+ if ((flags & KMA_KOBJECT) != 0) {
+ object = kernel_object;
+ vm_object_reference(object);
} else {
- offset = addr - VM_MIN_KERNEL_ADDRESS;
-
- if (entry->object.vm_object == VM_OBJECT_NULL) {
- vm_object_reference(object);
- entry->object.vm_object = object;
- entry->offset = offset;
- }
+ object = vm_object_allocate(map_size);
}
- if (kr != KERN_SUCCESS) {
- if ((flags & KMA_KOBJECT) == 0)
- vm_object_deallocate(object);
+ kr = vm_map_find_space(map, &map_addr, map_size, map_mask, 0, &entry);
+ if (KERN_SUCCESS != kr) {
+ vm_object_deallocate(object);
return kr;
}
+ entry->object.vm_object = object;
+ entry->offset = offset = (object == kernel_object) ?
+ map_addr - VM_MIN_KERNEL_ADDRESS : 0;
+
+ /* Take an extra object ref in case the map entry gets deleted */
+ vm_object_reference(object);
vm_map_unlock(map);
- kr = cpm_allocate(size, &pages, FALSE);
+ kr = cpm_allocate(CAST_DOWN(vm_size_t, map_size), &pages, max_pnum, FALSE);
if (kr != KERN_SUCCESS) {
- vm_map_remove(map, addr, addr + size, 0);
+ vm_map_remove(map, vm_map_trunc_page(map_addr),
+ vm_map_round_page(map_addr + map_size), 0);
+ vm_object_deallocate(object);
*addrp = 0;
return kr;
}
vm_object_lock(object);
- for (i = 0; i < size; i += PAGE_SIZE) {
+ for (i = 0; i < map_size; i += PAGE_SIZE) {
m = pages;
pages = NEXT_PAGE(m);
+ *(NEXT_PAGE_PTR(m)) = VM_PAGE_NULL;
m->busy = FALSE;
vm_page_insert(m, object, offset + i);
}
vm_object_unlock(object);
- if ((kr = vm_map_wire(map, addr, addr + size, VM_PROT_DEFAULT, FALSE))
+ if ((kr = vm_map_wire(map, vm_map_trunc_page(map_addr),
+ vm_map_round_page(map_addr + map_size), VM_PROT_DEFAULT, FALSE))
!= KERN_SUCCESS) {
if (object == kernel_object) {
vm_object_lock(object);
- vm_object_page_remove(object, offset, offset + size);
+ vm_object_page_remove(object, offset, offset + map_size);
vm_object_unlock(object);
}
- vm_map_remove(map, addr, addr + size, 0);
+ vm_map_remove(map, vm_map_trunc_page(map_addr),
+ vm_map_round_page(map_addr + map_size), 0);
+ vm_object_deallocate(object);
return kr;
}
+ vm_object_deallocate(object);
+
if (object == kernel_object)
- vm_map_simplify(map, addr);
+ vm_map_simplify(map, map_addr);
- *addrp = addr;
+ *addrp = map_addr;
return KERN_SUCCESS;
}
* KMA_HERE *addrp is base address, else "anywhere"
* KMA_NOPAGEWAIT don't wait for pages if unavailable
* KMA_KOBJECT use kernel_object
+ * KMA_LOMEM support for 32 bit devices in a 64 bit world
+ * if set and a lomemory pool is available
+ * grab pages from it... this also implies
+ * KMA_NOPAGEWAIT
*/
kern_return_t
register vm_offset_t mask,
int flags)
{
- vm_object_t object = VM_OBJECT_NULL;
+ vm_object_t object;
+ vm_object_offset_t offset;
vm_map_entry_t entry;
- vm_object_offset_t offset;
- vm_offset_t addr;
- vm_offset_t i;
+ vm_map_offset_t map_addr, fill_start;
+ vm_map_offset_t map_mask;
+ vm_map_size_t map_size, fill_size;
+ vm_map_size_t i;
kern_return_t kr;
+ vm_page_t mem;
+ int vm_alloc_flags;
- size = round_page_32(size);
- if ((flags & KMA_KOBJECT) == 0) {
- /*
- * Allocate a new object. We must do this before locking
- * the map, or risk deadlock with the default pager:
- * device_read_alloc uses kmem_alloc,
- * which tries to allocate an object,
- * which uses kmem_alloc_wired to get memory,
- * which blocks for pages.
- * then the default pager needs to read a block
- * to process a memory_object_data_write,
- * and device_read_alloc calls kmem_alloc
- * and deadlocks on the map lock.
- */
- object = vm_object_allocate(size);
- kr = vm_map_find_space(map, &addr, size, mask, &entry);
+ if (! vm_kernel_ready) {
+ panic("kernel_memory_allocate: VM is not ready");
}
- else {
- object = kernel_object;
- kr = vm_map_find_space(map, &addr, size, mask, &entry);
+
+ if (size == 0) {
+ *addrp = 0;
+ return KERN_INVALID_ARGUMENT;
}
- if (kr != KERN_SUCCESS) {
- if ((flags & KMA_KOBJECT) == 0)
- vm_object_deallocate(object);
- return kr;
+ if (flags & KMA_LOMEM) {
+ if ( !(flags & KMA_NOPAGEWAIT) ) {
+ *addrp = 0;
+ return KERN_INVALID_ARGUMENT;
+ }
}
- if ((flags & KMA_KOBJECT) == 0) {
- entry->object.vm_object = object;
- entry->offset = offset = 0;
- } else {
- offset = addr - VM_MIN_KERNEL_ADDRESS;
+ map_size = vm_map_round_page(size);
+ map_mask = (vm_map_offset_t) mask;
+ vm_alloc_flags = 0;
- if (entry->object.vm_object == VM_OBJECT_NULL) {
- vm_object_reference(object);
- entry->object.vm_object = object;
- entry->offset = offset;
+ /*
+ * Guard pages:
+ *
+ * Guard pages are implemented as ficticious pages. By placing guard pages
+ * on either end of a stack, they can help detect cases where a thread walks
+ * off either end of its stack. They are allocated and set up here and attempts
+ * to access those pages are trapped in vm_fault_page().
+ *
+ * The map_size we were passed may include extra space for
+ * guard pages. If those were requested, then back it out of fill_size
+ * since vm_map_find_space() takes just the actual size not including
+ * guard pages. Similarly, fill_start indicates where the actual pages
+ * will begin in the range.
+ */
+
+ fill_start = 0;
+ fill_size = map_size;
+ if (flags & KMA_GUARD_FIRST) {
+ vm_alloc_flags |= VM_FLAGS_GUARD_BEFORE;
+ fill_start += PAGE_SIZE_64;
+ fill_size -= PAGE_SIZE_64;
+ if (map_size < fill_start + fill_size) {
+ /* no space for a guard page */
+ *addrp = 0;
+ return KERN_INVALID_ARGUMENT;
+ }
+ }
+ if (flags & KMA_GUARD_LAST) {
+ vm_alloc_flags |= VM_FLAGS_GUARD_AFTER;
+ fill_size -= PAGE_SIZE_64;
+ if (map_size <= fill_start + fill_size) {
+ /* no space for a guard page */
+ *addrp = 0;
+ return KERN_INVALID_ARGUMENT;
}
}
/*
- * Since we have not given out this address yet,
- * it is safe to unlock the map. Except of course
- * we must make certain no one coalesces our address
- * or does a blind vm_deallocate and removes the object
- * an extra object reference will suffice to protect
- * against both contingencies.
+ * Allocate a new object (if necessary). We must do this before
+ * locking the map, or risk deadlock with the default pager.
*/
+ if ((flags & KMA_KOBJECT) != 0) {
+ object = kernel_object;
+ vm_object_reference(object);
+ } else {
+ object = vm_object_allocate(map_size);
+ }
+
+ kr = vm_map_find_space(map, &map_addr,
+ fill_size, map_mask,
+ vm_alloc_flags, &entry);
+ if (KERN_SUCCESS != kr) {
+ vm_object_deallocate(object);
+ return kr;
+ }
+
+ entry->object.vm_object = object;
+ entry->offset = offset = (object == kernel_object) ?
+ map_addr - VM_MIN_KERNEL_ADDRESS : 0;
+
vm_object_reference(object);
vm_map_unlock(map);
vm_object_lock(object);
- for (i = 0; i < size; i += PAGE_SIZE) {
- vm_page_t mem;
- while ((mem = vm_page_alloc(object,
- offset + (vm_object_offset_t)i))
- == VM_PAGE_NULL) {
+ /*
+ * Allocate the lower guard page if one was requested. The guard
+ * page extends up to fill_start which is where the real memory
+ * begins.
+ */
+
+ for (i = 0; i < fill_start; i += PAGE_SIZE) {
+ for (;;) {
+ mem = vm_page_alloc_guard(object, offset + i);
+ if (mem != VM_PAGE_NULL)
+ break;
if (flags & KMA_NOPAGEWAIT) {
- if (object == kernel_object)
- vm_object_page_remove(object, offset,
- offset + (vm_object_offset_t)i);
- vm_object_unlock(object);
- vm_map_remove(map, addr, addr + size, 0);
- vm_object_deallocate(object);
- return KERN_RESOURCE_SHORTAGE;
+ kr = KERN_RESOURCE_SHORTAGE;
+ goto nopage;
}
vm_object_unlock(object);
- VM_PAGE_WAIT();
+ vm_page_more_fictitious();
vm_object_lock(object);
}
mem->busy = FALSE;
}
- vm_object_unlock(object);
- if ((kr = vm_map_wire(map, addr, addr + size, VM_PROT_DEFAULT, FALSE))
- != KERN_SUCCESS) {
- if (object == kernel_object) {
+ /*
+ * Allocate the real memory here. This extends from offset fill_start
+ * for fill_size bytes.
+ */
+
+ for (i = fill_start; i < fill_start + fill_size; i += PAGE_SIZE) {
+ for (;;) {
+ if (flags & KMA_LOMEM)
+ mem = vm_page_alloclo(object, offset + i);
+ else
+ mem = vm_page_alloc(object, offset + i);
+
+ if (mem != VM_PAGE_NULL)
+ break;
+
+ if (flags & KMA_NOPAGEWAIT) {
+ kr = KERN_RESOURCE_SHORTAGE;
+ goto nopage;
+ }
+ vm_object_unlock(object);
+ VM_PAGE_WAIT();
vm_object_lock(object);
- vm_object_page_remove(object, offset, offset + size);
+ }
+ mem->busy = FALSE;
+ }
+
+ /*
+ * Lastly, allocate the ending guard page if requested. This starts at the ending
+ * address from the loop above up to the map_size that was originaly
+ * requested.
+ */
+
+ for (i = fill_start + fill_size; i < map_size; i += PAGE_SIZE) {
+ for (;;) {
+ mem = vm_page_alloc_guard(object, offset + i);
+ if (mem != VM_PAGE_NULL)
+ break;
+ if (flags & KMA_NOPAGEWAIT) {
+ kr = KERN_RESOURCE_SHORTAGE;
+ goto nopage;
+ }
vm_object_unlock(object);
+ vm_page_more_fictitious();
+ vm_object_lock(object);
}
- vm_map_remove(map, addr, addr + size, 0);
- vm_object_deallocate(object);
- return (kr);
+ mem->busy = FALSE;
+ }
+ vm_object_unlock(object);
+
+ kr = vm_map_wire(map, map_addr, map_addr + map_size,
+ VM_PROT_DEFAULT, FALSE);
+ if (kr != KERN_SUCCESS) {
+ vm_object_lock(object);
+ goto nopage;
}
+
/* now that the page is wired, we no longer have to fear coalesce */
vm_object_deallocate(object);
if (object == kernel_object)
- vm_map_simplify(map, addr);
+ vm_map_simplify(map, map_addr);
/*
* Return the memory, not zeroed.
*/
-#if (NCPUS > 1) && i860
- bzero( addr, size );
-#endif /* #if (NCPUS > 1) && i860 */
- *addrp = addr;
+ *addrp = CAST_DOWN(vm_offset_t, map_addr);
return KERN_SUCCESS;
+
+nopage:
+ if (object == kernel_object)
+ vm_object_page_remove(object, offset, offset + i);
+ vm_object_unlock(object);
+ vm_map_remove(map, map_addr, map_addr + map_size, 0);
+ vm_object_deallocate(object);
+ return KERN_RESOURCE_SHORTAGE;
}
/*
vm_offset_t *addrp,
vm_size_t size)
{
- return kernel_memory_allocate(map, addrp, size, 0, 0);
+ kern_return_t kr = kernel_memory_allocate(map, addrp, size, 0, 0);
+ TRACE_MACHLEAKS(KMEM_ALLOC_CODE, KMEM_ALLOC_CODE_2, size, *addrp);
+ return kr;
}
/*
*/
kern_return_t
kmem_realloc(
- vm_map_t map,
- vm_offset_t oldaddr,
- vm_size_t oldsize,
- vm_offset_t *newaddrp,
- vm_size_t newsize)
+ vm_map_t map,
+ vm_offset_t oldaddr,
+ vm_size_t oldsize,
+ vm_offset_t *newaddrp,
+ vm_size_t newsize)
{
- vm_offset_t oldmin, oldmax;
- vm_offset_t newaddr;
- vm_offset_t offset;
- vm_object_t object;
- vm_map_entry_t oldentry, newentry;
- vm_page_t mem;
- kern_return_t kr;
+ vm_object_t object;
+ vm_object_offset_t offset;
+ vm_map_offset_t oldmapmin;
+ vm_map_offset_t oldmapmax;
+ vm_map_offset_t newmapaddr;
+ vm_map_size_t oldmapsize;
+ vm_map_size_t newmapsize;
+ vm_map_entry_t oldentry;
+ vm_map_entry_t newentry;
+ vm_page_t mem;
+ kern_return_t kr;
- oldmin = trunc_page_32(oldaddr);
- oldmax = round_page_32(oldaddr + oldsize);
- oldsize = oldmax - oldmin;
- newsize = round_page_32(newsize);
+ oldmapmin = vm_map_trunc_page(oldaddr);
+ oldmapmax = vm_map_round_page(oldaddr + oldsize);
+ oldmapsize = oldmapmax - oldmapmin;
+ newmapsize = vm_map_round_page(newsize);
/*
vm_map_lock(map);
- if (!vm_map_lookup_entry(map, oldmin, &oldentry))
+ if (!vm_map_lookup_entry(map, oldmapmin, &oldentry))
panic("kmem_realloc");
object = oldentry->object.vm_object;
/* attempt is made to realloc a kmem_alloc'd area */
vm_object_lock(object);
vm_map_unlock(map);
- if (object->size != oldsize)
+ if (object->size != oldmapsize)
panic("kmem_realloc");
- object->size = newsize;
+ object->size = newmapsize;
vm_object_unlock(object);
/* allocate the new pages while expanded portion of the */
/* object is still not mapped */
- kmem_alloc_pages(object, oldsize, newsize-oldsize);
-
+ kmem_alloc_pages(object, vm_object_round_page(oldmapsize),
+ vm_object_round_page(newmapsize-oldmapsize));
/*
* Find space for the new region.
*/
- kr = vm_map_find_space(map, &newaddr, newsize, (vm_offset_t) 0,
- &newentry);
+ kr = vm_map_find_space(map, &newmapaddr, newmapsize,
+ (vm_map_offset_t) 0, 0, &newentry);
if (kr != KERN_SUCCESS) {
vm_object_lock(object);
- for(offset = oldsize;
- offset<newsize; offset+=PAGE_SIZE) {
+ for(offset = oldmapsize;
+ offset < newmapsize; offset += PAGE_SIZE) {
if ((mem = vm_page_lookup(object, offset)) != VM_PAGE_NULL) {
vm_page_lock_queues();
vm_page_free(mem);
vm_page_unlock_queues();
}
}
- object->size = oldsize;
+ object->size = oldmapsize;
vm_object_unlock(object);
vm_object_deallocate(object);
return kr;
vm_object_reference(object);
vm_map_unlock(map);
- if ((kr = vm_map_wire(map, newaddr, newaddr + newsize,
- VM_PROT_DEFAULT, FALSE)) != KERN_SUCCESS) {
- vm_map_remove(map, newaddr, newaddr + newsize, 0);
+ kr = vm_map_wire(map, newmapaddr, newmapaddr + newmapsize, VM_PROT_DEFAULT, FALSE);
+ if (KERN_SUCCESS != kr) {
+ vm_map_remove(map, newmapaddr, newmapaddr + newmapsize, 0);
vm_object_lock(object);
- for(offset = oldsize;
- offset<newsize; offset+=PAGE_SIZE) {
+ for(offset = oldsize; offset < newmapsize; offset += PAGE_SIZE) {
if ((mem = vm_page_lookup(object, offset)) != VM_PAGE_NULL) {
vm_page_lock_queues();
vm_page_free(mem);
vm_page_unlock_queues();
}
}
- object->size = oldsize;
+ object->size = oldmapsize;
vm_object_unlock(object);
vm_object_deallocate(object);
return (kr);
}
vm_object_deallocate(object);
-
- *newaddrp = newaddr;
+ *newaddrp = CAST_DOWN(vm_offset_t, newmapaddr);
return KERN_SUCCESS;
}
vm_offset_t *addrp,
vm_size_t size)
{
- vm_offset_t addr;
+ vm_map_offset_t map_addr;
+ vm_map_size_t map_size;
kern_return_t kr;
#ifndef normal
- addr = (vm_map_min(map)) + 0x1000;
+ map_addr = (vm_map_min(map)) + 0x1000;
#else
- addr = vm_map_min(map);
+ map_addr = vm_map_min(map);
#endif
- kr = vm_map_enter(map, &addr, round_page_32(size),
- (vm_offset_t) 0, TRUE,
+ map_size = vm_map_round_page(size);
+
+ kr = vm_map_enter(map, &map_addr, map_size,
+ (vm_map_offset_t) 0, VM_FLAGS_ANYWHERE,
VM_OBJECT_NULL, (vm_object_offset_t) 0, FALSE,
VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT);
+
if (kr != KERN_SUCCESS)
return kr;
- *addrp = addr;
+ *addrp = CAST_DOWN(vm_offset_t, map_addr);
return KERN_SUCCESS;
}
{
kern_return_t kr;
- kr = vm_map_remove(map, trunc_page_32(addr),
- round_page_32(addr + size),
+ TRACE_MACHLEAKS(KMEM_FREE_CODE, KMEM_FREE_CODE_2, size, addr);
+
+ kr = vm_map_remove(map, vm_map_trunc_page(addr),
+ vm_map_round_page(addr + size),
VM_MAP_REMOVE_KUNWIRE);
if (kr != KERN_SUCCESS)
panic("kmem_free");
kmem_alloc_pages(
register vm_object_t object,
register vm_object_offset_t offset,
- register vm_size_t size)
+ register vm_object_size_t size)
{
+ vm_object_size_t alloc_size;
- size = round_page_32(size);
+ alloc_size = vm_object_round_page(size);
vm_object_lock(object);
- while (size) {
+ while (alloc_size) {
register vm_page_t mem;
/*
* Allocate a page
*/
- while ((mem = vm_page_alloc(object, offset))
- == VM_PAGE_NULL) {
+ while (VM_PAGE_NULL ==
+ (mem = vm_page_alloc(object, offset))) {
vm_object_unlock(object);
VM_PAGE_WAIT();
vm_object_lock(object);
}
+ mem->busy = FALSE;
-
+ alloc_size -= PAGE_SIZE;
offset += PAGE_SIZE;
- size -= PAGE_SIZE;
- mem->busy = FALSE;
}
vm_object_unlock(object);
return KERN_SUCCESS;
register vm_offset_t end,
vm_prot_t protection)
{
+
+ vm_map_offset_t map_start;
+ vm_map_offset_t map_end;
+
/*
* Mark the pmap region as not pageable.
*/
- pmap_pageable(kernel_pmap, start, end, FALSE);
+ map_start = vm_map_trunc_page(start);
+ map_end = vm_map_round_page(end);
+
+ pmap_pageable(kernel_pmap, map_start, map_end, FALSE);
- while (start < end) {
+ while (map_start < map_end) {
register vm_page_t mem;
vm_object_lock(object);
/*
* Wire it down (again)
*/
- vm_page_lock_queues();
+ vm_page_lockspin_queues();
vm_page_wire(mem);
vm_page_unlock_queues();
vm_object_unlock(object);
+ /*
+ * ENCRYPTED SWAP:
+ * The page is supposed to be wired now, so it
+ * shouldn't be encrypted at this point. It can
+ * safely be entered in the page table.
+ */
+ ASSERT_PAGE_DECRYPTED(mem);
+
/*
* Enter it in the kernel pmap. The page isn't busy,
* but this shouldn't be a problem because it is wired.
*/
- PMAP_ENTER(kernel_pmap, start, mem, protection,
+ PMAP_ENTER(kernel_pmap, map_start, mem, protection,
((unsigned int)(mem->object->wimg_bits))
& VM_WIMG_MASK,
TRUE);
- start += PAGE_SIZE;
+ map_start += PAGE_SIZE;
offset += PAGE_SIZE;
}
}
vm_offset_t *addr,
vm_size_t size,
boolean_t pageable,
- boolean_t anywhere,
+ int flags,
vm_map_t *new_map)
{
- vm_map_t map;
- kern_return_t kr;
+ vm_map_t map;
+ vm_map_offset_t map_addr;
+ vm_map_size_t map_size;
+ kern_return_t kr;
- size = round_page_32(size);
+ map_size = vm_map_round_page(size);
/*
* Need reference on submap object because it is internal
*/
vm_object_reference(vm_submap_object);
- if (anywhere == TRUE)
- *addr = (vm_offset_t)vm_map_min(parent);
- kr = vm_map_enter(parent, addr, size,
- (vm_offset_t) 0, anywhere,
+ map_addr = (flags & VM_FLAGS_ANYWHERE) ?
+ vm_map_min(parent) : vm_map_trunc_page(*addr);
+
+ kr = vm_map_enter(parent, &map_addr, map_size,
+ (vm_map_offset_t) 0, flags,
vm_submap_object, (vm_object_offset_t) 0, FALSE,
VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT);
if (kr != KERN_SUCCESS) {
}
pmap_reference(vm_map_pmap(parent));
- map = vm_map_create(vm_map_pmap(parent), *addr, *addr + size, pageable);
+ map = vm_map_create(vm_map_pmap(parent), map_addr, map_addr + map_size, pageable);
if (map == VM_MAP_NULL)
panic("kmem_suballoc: vm_map_create failed"); /* "can't happen" */
- kr = vm_map_submap(parent, *addr, *addr + size, map, *addr, FALSE);
+ kr = vm_map_submap(parent, map_addr, map_addr + map_size, map, map_addr, FALSE);
if (kr != KERN_SUCCESS) {
/*
* See comment preceding vm_map_submap().
*/
- vm_map_remove(parent, *addr, *addr + size, VM_MAP_NO_FLAGS);
+ vm_map_remove(parent, map_addr, map_addr + map_size, VM_MAP_NO_FLAGS);
vm_map_deallocate(map); /* also removes ref to pmap */
vm_object_deallocate(vm_submap_object);
return (kr);
}
+ *addr = CAST_DOWN(vm_offset_t, map_addr);
*new_map = map;
return (KERN_SUCCESS);
}
vm_offset_t start,
vm_offset_t end)
{
- kernel_map = vm_map_create(pmap_kernel(),
- VM_MIN_KERNEL_ADDRESS, end,
- FALSE);
+ vm_map_offset_t map_start;
+ vm_map_offset_t map_end;
+
+ map_start = vm_map_trunc_page(start);
+ map_end = vm_map_round_page(end);
+ kernel_map = vm_map_create(pmap_kernel(),VM_MIN_KERNEL_ADDRESS,
+ map_end, FALSE);
/*
* Reserve virtual memory allocated up to this time.
*/
-
if (start != VM_MIN_KERNEL_ADDRESS) {
- vm_offset_t addr = VM_MIN_KERNEL_ADDRESS;
+ vm_map_offset_t map_addr;
+
+ map_addr = VM_MIN_KERNEL_ADDRESS;
(void) vm_map_enter(kernel_map,
- &addr, start - VM_MIN_KERNEL_ADDRESS,
- (vm_offset_t) 0, TRUE,
- VM_OBJECT_NULL,
- (vm_object_offset_t) 0, FALSE,
- VM_PROT_DEFAULT, VM_PROT_ALL,
- VM_INHERIT_DEFAULT);
+ &map_addr,
+ (vm_map_size_t)(map_start - VM_MIN_KERNEL_ADDRESS),
+ (vm_map_offset_t) 0,
+ VM_FLAGS_ANYWHERE | VM_FLAGS_NO_PMAP_CHECK,
+ VM_OBJECT_NULL,
+ (vm_object_offset_t) 0, FALSE,
+ VM_PROT_NONE, VM_PROT_NONE,
+ VM_INHERIT_DEFAULT);
}
+
/*
* Account for kernel memory (text, data, bss, vm shenanigans).
* This may include inaccessible "holes" as determined by what
vm_page_wire_count = (atop_64(max_mem) - (vm_page_free_count
+ vm_page_active_count
+ vm_page_inactive_count));
-}
-
-
-/*
- * kmem_io_object_trunc:
- *
- * Truncate an object vm_map_copy_t.
- * Called by the scatter/gather list network code to remove pages from
- * the tail end of a packet. Also unwires the objects pages.
- */
-
-kern_return_t
-kmem_io_object_trunc(copy, new_size)
- vm_map_copy_t copy; /* IN/OUT copy object */
- register vm_size_t new_size; /* IN new object size */
-{
- register vm_size_t offset, old_size;
- assert(copy->type == VM_MAP_COPY_OBJECT);
-
- old_size = (vm_size_t)round_page_64(copy->size);
- copy->size = new_size;
- new_size = round_page_32(new_size);
-
- vm_object_lock(copy->cpy_object);
- vm_object_page_remove(copy->cpy_object,
- (vm_object_offset_t)new_size, (vm_object_offset_t)old_size);
- for (offset = 0; offset < new_size; offset += PAGE_SIZE) {
- register vm_page_t mem;
-
- if ((mem = vm_page_lookup(copy->cpy_object,
- (vm_object_offset_t)offset)) == VM_PAGE_NULL)
- panic("kmem_io_object_trunc: unable to find object page");
-
- /*
- * Make sure these pages are marked dirty
- */
- mem->dirty = TRUE;
- vm_page_lock_queues();
- vm_page_unwire(mem);
- vm_page_unlock_queues();
- }
- copy->cpy_object->size = new_size; /* adjust size of object */
- vm_object_unlock(copy->cpy_object);
- return(KERN_SUCCESS);
-}
-
-/*
- * kmem_io_object_deallocate:
- *
- * Free an vm_map_copy_t.
- * Called by the scatter/gather list network code to free a packet.
- */
-
-void
-kmem_io_object_deallocate(
- vm_map_copy_t copy) /* IN/OUT copy object */
-{
- kern_return_t ret;
-
- /*
- * Clear out all the object pages (this will leave an empty object).
- */
- ret = kmem_io_object_trunc(copy, 0);
- if (ret != KERN_SUCCESS)
- panic("kmem_io_object_deallocate: unable to truncate object");
/*
- * ...and discard the copy object.
+ * Set the default global user wire limit which limits the amount of
+ * memory that can be locked via mlock(). We set this to the total number of
+ * pages that are potentially usable by a user app (max_mem) minus
+ * 1000 pages. This keeps 4MB in reserve for the kernel which will hopefully be
+ * enough to avoid memory deadlocks. If for some reason the system has less than
+ * 2000 pages of memory at this point, then we'll allow users to lock up to 80%
+ * of that. This can be overridden via a sysctl.
*/
- vm_map_copy_discard(copy);
+
+ if (max_mem > 2000)
+ vm_global_user_wire_limit = max_mem - 1000;
+ else
+ vm_global_user_wire_limit = max_mem * 100 / 80;
+
+ vm_user_wire_limit = vm_global_user_wire_limit; /* the default per user limit is the same as the global limit */
}
+
/*
* Routine: copyinmap
* Purpose:
* is incomplete; it handles the current user map
* and the kernel map/submaps.
*/
-boolean_t
+kern_return_t
copyinmap(
- vm_map_t map,
- vm_offset_t fromaddr,
- vm_offset_t toaddr,
- vm_size_t length)
+ vm_map_t map,
+ vm_map_offset_t fromaddr,
+ void *todata,
+ vm_size_t length)
{
- if (vm_map_pmap(map) == pmap_kernel()) {
+ kern_return_t kr = KERN_SUCCESS;
+ vm_map_t oldmap;
+
+ if (vm_map_pmap(map) == pmap_kernel())
+ {
/* assume a correct copy */
- memcpy((void *)toaddr, (void *)fromaddr, length);
- return FALSE;
+ memcpy(todata, CAST_DOWN(void *, fromaddr), length);
+ }
+ else if (current_map() == map)
+ {
+ if (copyin(fromaddr, todata, length) != 0)
+ kr = KERN_INVALID_ADDRESS;
}
-
- if (current_map() == map)
- return copyin((char *)fromaddr, (char *)toaddr, length);
-
- return TRUE;
+ else
+ {
+ vm_map_reference(map);
+ oldmap = vm_map_switch(map);
+ if (copyin(fromaddr, todata, length) != 0)
+ kr = KERN_INVALID_ADDRESS;
+ vm_map_switch(oldmap);
+ vm_map_deallocate(map);
+ }
+ return kr;
}
/*
* is incomplete; it handles the current user map
* and the kernel map/submaps.
*/
-boolean_t
+kern_return_t
copyoutmap(
- vm_map_t map,
- vm_offset_t fromaddr,
- vm_offset_t toaddr,
- vm_size_t length)
+ vm_map_t map,
+ void *fromdata,
+ vm_map_address_t toaddr,
+ vm_size_t length)
{
if (vm_map_pmap(map) == pmap_kernel()) {
/* assume a correct copy */
- memcpy((void *)toaddr, (void *)fromaddr, length);
- return FALSE;
+ memcpy(CAST_DOWN(void *, toaddr), fromdata, length);
+ return KERN_SUCCESS;
}
- if (current_map() == map)
- return copyout((char *)fromaddr, (char *)toaddr, length);
+ if (current_map() != map)
+ return KERN_NOT_SUPPORTED;
- return TRUE;
+ if (copyout(fromdata, toaddr, length) != 0)
+ return KERN_INVALID_ADDRESS;
+
+ return KERN_SUCCESS;
}
kern_return_t
vm_conflict_check(
vm_map_t map,
- vm_offset_t off,
- vm_size_t len,
- memory_object_t pager,
+ vm_map_offset_t off,
+ vm_map_size_t len,
+ memory_object_t pager,
vm_object_offset_t file_off)
{
vm_map_entry_t entry;
vm_object_t obj;
vm_object_offset_t obj_off;
vm_map_t base_map;
- vm_offset_t base_offset;
- vm_offset_t original_offset;
+ vm_map_offset_t base_offset;
+ vm_map_offset_t original_offset;
kern_return_t kr;
- vm_size_t local_len;
+ vm_map_size_t local_len;
base_map = map;
base_offset = off;