/*
- * Copyright (c) 1998-2000 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 1998-2016 Apple Inc. All rights reserved.
*
- * @APPLE_LICENSE_HEADER_START@
- *
- * The contents of this file constitute Original Code as defined in and
- * are subject to the Apple Public Source License Version 1.1 (the
- * "License"). You may not use this file except in compliance with the
- * License. Please obtain a copy of the License at
- * http://www.apple.com/publicsource and read it before using this file.
- *
- * This Original Code and all software distributed under the License are
- * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
+ *
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
+ *
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
- * License for the specific language governing rights and limitations
- * under the License.
- *
- * @APPLE_LICENSE_HEADER_END@
- */
-/*
- * Copyright (c) 1998 Apple Computer, Inc. All rights reserved.
- *
- * HISTORY
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
*
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
+
+#include <sys/cdefs.h>
+
#include <IOKit/assert.h>
#include <IOKit/system.h>
#include <IOKit/IOLib.h>
#include <IOKit/IOMemoryDescriptor.h>
+#include <IOKit/IOMapper.h>
+#include <IOKit/IODMACommand.h>
+#include <IOKit/IOKitKeysPrivate.h>
+
+#include <IOKit/IOSubMemoryDescriptor.h>
+#include <IOKit/IOMultiMemoryDescriptor.h>
#include <IOKit/IOKitDebug.h>
+#include <libkern/OSDebug.h>
+#include <libkern/OSKextLibPrivate.h>
+
+#include "IOKitKernelInternal.h"
#include <libkern/c++/OSContainers.h>
-#include <sys/cdefs.h>
+#include <libkern/c++/OSDictionary.h>
+#include <libkern/c++/OSArray.h>
+#include <libkern/c++/OSSymbol.h>
+#include <libkern/c++/OSNumber.h>
+#include <os/overflow.h>
+
+#include <sys/uio.h>
__BEGIN_DECLS
#include <vm/pmap.h>
-void pmap_enter(pmap_t pmap, vm_offset_t va, vm_offset_t pa,
- vm_prot_t prot, boolean_t wired);
-void ipc_port_release_send(ipc_port_t port);
-vm_offset_t vm_map_get_phys_page(vm_map_t map, vm_offset_t offset);
+#include <vm/vm_pageout.h>
+#include <mach/memory_object_types.h>
+#include <device/device_port.h>
+
+#include <mach/vm_prot.h>
+#include <mach/mach_vm.h>
+#include <mach/memory_entry.h>
+#include <vm/vm_fault.h>
+#include <vm/vm_protos.h>
+
+extern ppnum_t pmap_find_phys(pmap_t pmap, addr64_t va);
+extern void ipc_port_release_send(ipc_port_t port);
+
__END_DECLS
+#define kIOMapperWaitSystem ((IOMapper *) 1)
+
+static IOMapper * gIOSystemMapper = NULL;
+
+ppnum_t gIOLastPage;
+
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
-OSDefineMetaClass( IOMemoryDescriptor, OSObject )
-OSDefineAbstractStructors( IOMemoryDescriptor, OSObject )
+OSDefineMetaClassAndAbstractStructors( IOMemoryDescriptor, OSObject )
#define super IOMemoryDescriptor
OSDefineMetaClassAndStructors(IOGeneralMemoryDescriptor, IOMemoryDescriptor)
-extern "C" vm_map_t IOPageableMapForAddress( vm_address_t address );
+/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
+
+static IORecursiveLock * gIOMemoryLock;
+
+#define LOCK IORecursiveLockLock( gIOMemoryLock)
+#define UNLOCK IORecursiveLockUnlock( gIOMemoryLock)
+#define SLEEP IORecursiveLockSleep( gIOMemoryLock, (void *)this, THREAD_UNINT)
+#define WAKEUP \
+ IORecursiveLockWakeup( gIOMemoryLock, (void *)this, /* one-thread */ false)
+
+#if 0
+#define DEBG(fmt, args...) { kprintf(fmt, ## args); }
+#else
+#define DEBG(fmt, args...) {}
+#endif
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
-inline vm_map_t IOGeneralMemoryDescriptor::getMapForTask( task_t task, vm_address_t address )
-{
- if( (task == kernel_task) && (kIOMemoryRequiresWire & _flags))
- return( IOPageableMapForAddress( address ) );
- else
- return( get_task_map( task ));
-}
+// Some data structures and accessor macros used by the initWithOptions
+// Function
+
+enum ioPLBlockFlags {
+ kIOPLOnDevice = 0x00000001,
+ kIOPLExternUPL = 0x00000002,
+};
+
+struct IOMDPersistentInitData {
+ const IOGeneralMemoryDescriptor * fMD;
+ IOMemoryReference * fMemRef;
+};
+
+struct ioPLBlock {
+ upl_t fIOPL;
+ vm_address_t fPageInfo; // Pointer to page list or index into it
+ uint32_t fIOMDOffset; // The offset of this iopl in descriptor
+ ppnum_t fMappedPage; // Page number of first page in this iopl
+ unsigned int fPageOffset; // Offset within first page of iopl
+ unsigned int fFlags; // Flags
+};
+
+enum { kMaxWireTags = 6 };
+
+struct ioGMDData {
+ IOMapper * fMapper;
+ uint64_t fDMAMapAlignment;
+ uint64_t fMappedBase;
+ uint64_t fMappedLength;
+ uint64_t fPreparationID;
+#if IOTRACKING
+ IOTracking fWireTracking;
+#endif /* IOTRACKING */
+ unsigned int fPageCnt;
+ uint8_t fDMAMapNumAddressBits;
+ unsigned char fDiscontig:1;
+ unsigned char fCompletionError:1;
+ unsigned char fMappedBaseValid:1;
+ unsigned char _resv:3;
+ unsigned char fDMAAccess:2;
+
+ /* variable length arrays */
+ upl_page_info_t fPageList[1]
+#if __LP64__
+ // align fPageList as for ioPLBlock
+ __attribute__((aligned(sizeof(upl_t))))
+#endif
+ ;
+ //ioPLBlock fBlocks[1];
+};
+
+#define getDataP(osd) ((ioGMDData *) (osd)->getBytesNoCopy())
+#define getIOPLList(d) ((ioPLBlock *) (void *)&(d->fPageList[d->fPageCnt]))
+#define getNumIOPL(osd, d) \
+ (((osd)->getLength() - ((char *) getIOPLList(d) - (char *) d)) / sizeof(ioPLBlock))
+#define getPageList(d) (&(d->fPageList[0]))
+#define computeDataSize(p, u) \
+ (offsetof(ioGMDData, fPageList) + p * sizeof(upl_page_info_t) + u * sizeof(ioPLBlock))
+
+enum { kIOMemoryHostOrRemote = kIOMemoryHostOnly | kIOMemoryRemote };
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
-/*
- * withAddress:
- *
- * Create a new IOMemoryDescriptor. The buffer is a virtual address
- * relative to the specified task. If no task is supplied, the kernel
- * task is implied.
- */
-IOMemoryDescriptor *
-IOMemoryDescriptor::withAddress(void * address,
- IOByteCount withLength,
- IODirection withDirection)
+#define next_page(a) ( trunc_page(a) + PAGE_SIZE )
+
+extern "C" {
+kern_return_t
+device_data_action(
+ uintptr_t device_handle,
+ ipc_port_t device_pager,
+ vm_prot_t protection,
+ vm_object_offset_t offset,
+ vm_size_t size)
{
- IOGeneralMemoryDescriptor * that = new IOGeneralMemoryDescriptor;
- if (that)
- {
- if (that->initWithAddress(address, withLength, withDirection))
- return that;
+ kern_return_t kr;
+ IOMemoryDescriptorReserved * ref = (IOMemoryDescriptorReserved *) device_handle;
+ IOMemoryDescriptor * memDesc;
+
+ LOCK;
+ memDesc = ref->dp.memory;
+ if (memDesc) {
+ memDesc->retain();
+ kr = memDesc->handleFault(device_pager, offset, size);
+ memDesc->release();
+ } else {
+ kr = KERN_ABORTED;
+ }
+ UNLOCK;
- that->release();
- }
- return 0;
+ return kr;
}
-IOMemoryDescriptor *
-IOMemoryDescriptor::withAddress(vm_address_t address,
- IOByteCount withLength,
- IODirection withDirection,
- task_t withTask)
+kern_return_t
+device_close(
+ uintptr_t device_handle)
{
- IOGeneralMemoryDescriptor * that = new IOGeneralMemoryDescriptor;
- if (that)
- {
- if (that->initWithAddress(address, withLength, withDirection, withTask))
- return that;
+ IOMemoryDescriptorReserved * ref = (IOMemoryDescriptorReserved *) device_handle;
- that->release();
- }
- return 0;
+ IODelete( ref, IOMemoryDescriptorReserved, 1 );
+
+ return kIOReturnSuccess;
}
+}; // end extern "C"
-IOMemoryDescriptor *
-IOMemoryDescriptor::withPhysicalAddress(
- IOPhysicalAddress address,
- IOByteCount withLength,
- IODirection withDirection )
+/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
+
+// Note this inline function uses C++ reference arguments to return values
+// This means that pointers are not passed and NULLs don't have to be
+// checked for as a NULL reference is illegal.
+static inline void
+getAddrLenForInd(mach_vm_address_t &addr, mach_vm_size_t &len, // Output variables
+ UInt32 type, IOGeneralMemoryDescriptor::Ranges r, UInt32 ind)
{
- return( IOMemoryDescriptor::withAddress( address, withLength,
- withDirection, (task_t) 0 ));
+ assert(kIOMemoryTypeUIO == type
+ || kIOMemoryTypeVirtual == type || kIOMemoryTypeVirtual64 == type
+ || kIOMemoryTypePhysical == type || kIOMemoryTypePhysical64 == type);
+ if (kIOMemoryTypeUIO == type) {
+ user_size_t us;
+ user_addr_t ad;
+ uio_getiov((uio_t) r.uio, ind, &ad, &us); addr = ad; len = us;
+ }
+#ifndef __LP64__
+ else if ((kIOMemoryTypeVirtual64 == type) || (kIOMemoryTypePhysical64 == type)) {
+ IOAddressRange cur = r.v64[ind];
+ addr = cur.address;
+ len = cur.length;
+ }
+#endif /* !__LP64__ */
+ else {
+ IOVirtualRange cur = r.v[ind];
+ addr = cur.address;
+ len = cur.length;
+ }
}
+/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
-/*
- * withRanges:
- *
- * Create a new IOMemoryDescriptor. The buffer is made up of several
- * virtual address ranges, from a given task.
- *
- * Passing the ranges as a reference will avoid an extra allocation.
- */
-IOMemoryDescriptor *
-IOMemoryDescriptor::withRanges( IOVirtualRange * ranges,
- UInt32 withCount,
- IODirection withDirection,
- task_t withTask,
- bool asReference = false)
+static IOReturn
+purgeableControlBits(IOOptionBits newState, vm_purgable_t * control, int * state)
{
- IOGeneralMemoryDescriptor * that = new IOGeneralMemoryDescriptor;
- if (that)
- {
- if (that->initWithRanges(ranges, withCount, withDirection, withTask, asReference))
- return that;
+ IOReturn err = kIOReturnSuccess;
+
+ *control = VM_PURGABLE_SET_STATE;
+
+ enum { kIOMemoryPurgeableControlMask = 15 };
+
+ switch (kIOMemoryPurgeableControlMask & newState) {
+ case kIOMemoryPurgeableKeepCurrent:
+ *control = VM_PURGABLE_GET_STATE;
+ break;
+
+ case kIOMemoryPurgeableNonVolatile:
+ *state = VM_PURGABLE_NONVOLATILE;
+ break;
+ case kIOMemoryPurgeableVolatile:
+ *state = VM_PURGABLE_VOLATILE | (newState & ~kIOMemoryPurgeableControlMask);
+ break;
+ case kIOMemoryPurgeableEmpty:
+ *state = VM_PURGABLE_EMPTY | (newState & ~kIOMemoryPurgeableControlMask);
+ break;
+ default:
+ err = kIOReturnBadArgument;
+ break;
+ }
- that->release();
- }
- return 0;
+ if (*control == VM_PURGABLE_SET_STATE) {
+ // let VM know this call is from the kernel and is allowed to alter
+ // the volatility of the memory entry even if it was created with
+ // MAP_MEM_PURGABLE_KERNEL_ONLY
+ *control = VM_PURGABLE_SET_STATE_FROM_KERNEL;
+ }
+
+ return err;
}
-IOMemoryDescriptor *
-IOMemoryDescriptor::withPhysicalRanges( IOPhysicalRange * ranges,
- UInt32 withCount,
- IODirection withDirection,
- bool asReference = false)
+static IOReturn
+purgeableStateBits(int * state)
{
- IOGeneralMemoryDescriptor * that = new IOGeneralMemoryDescriptor;
- if (that)
- {
- if (that->initWithPhysicalRanges(ranges, withCount, withDirection, asReference))
- return that;
-
- that->release();
- }
- return 0;
+ IOReturn err = kIOReturnSuccess;
+
+ switch (VM_PURGABLE_STATE_MASK & *state) {
+ case VM_PURGABLE_NONVOLATILE:
+ *state = kIOMemoryPurgeableNonVolatile;
+ break;
+ case VM_PURGABLE_VOLATILE:
+ *state = kIOMemoryPurgeableVolatile;
+ break;
+ case VM_PURGABLE_EMPTY:
+ *state = kIOMemoryPurgeableEmpty;
+ break;
+ default:
+ *state = kIOMemoryPurgeableNonVolatile;
+ err = kIOReturnNotReady;
+ break;
+ }
+ return err;
}
-IOMemoryDescriptor *
-IOMemoryDescriptor::withSubRange(IOMemoryDescriptor * of,
- IOByteCount offset,
- IOByteCount length,
- IODirection withDirection)
-{
- IOSubMemoryDescriptor * that = new IOSubMemoryDescriptor;
+typedef struct {
+ unsigned int wimg;
+ unsigned int object_type;
+} iokit_memtype_entry;
+
+static const iokit_memtype_entry iomd_mem_types[] = {
+ [kIODefaultCache] = {VM_WIMG_DEFAULT, MAP_MEM_NOOP},
+ [kIOInhibitCache] = {VM_WIMG_IO, MAP_MEM_IO},
+ [kIOWriteThruCache] = {VM_WIMG_WTHRU, MAP_MEM_WTHRU},
+ [kIOWriteCombineCache] = {VM_WIMG_WCOMB, MAP_MEM_WCOMB},
+ [kIOCopybackCache] = {VM_WIMG_COPYBACK, MAP_MEM_COPYBACK},
+ [kIOCopybackInnerCache] = {VM_WIMG_INNERWBACK, MAP_MEM_INNERWBACK},
+ [kIOPostedWrite] = {VM_WIMG_POSTED, MAP_MEM_POSTED},
+ [kIORealTimeCache] = {VM_WIMG_RT, MAP_MEM_RT},
+ [kIOPostedReordered] = {VM_WIMG_POSTED_REORDERED, MAP_MEM_POSTED_REORDERED},
+ [kIOPostedCombinedReordered] = {VM_WIMG_POSTED_COMBINED_REORDERED, MAP_MEM_POSTED_COMBINED_REORDERED},
+};
- if (that && !that->initSubRange(of, offset, length, withDirection)) {
- that->release();
- that = 0;
- }
- return that;
+static vm_prot_t
+vmProtForCacheMode(IOOptionBits cacheMode)
+{
+ assert(cacheMode < (sizeof(iomd_mem_types) / sizeof(iomd_mem_types[0])));
+ vm_prot_t prot = 0;
+ SET_MAP_MEM(iomd_mem_types[cacheMode].object_type, prot);
+ return prot;
}
-/*
- * initWithAddress:
- *
- * Initialize an IOMemoryDescriptor. The buffer is a virtual address
- * relative to the specified task. If no task is supplied, the kernel
- * task is implied.
- *
- * An IOMemoryDescriptor can be re-used by calling initWithAddress or
- * initWithRanges again on an existing instance -- note this behavior
- * is not commonly supported in other I/O Kit classes, although it is
- * supported here.
- */
-bool
-IOGeneralMemoryDescriptor::initWithAddress(void * address,
- IOByteCount withLength,
- IODirection withDirection)
+static unsigned int
+pagerFlagsForCacheMode(IOOptionBits cacheMode)
{
- _singleRange.v.address = (vm_address_t) address;
- _singleRange.v.length = withLength;
-
- return initWithRanges(&_singleRange.v, 1, withDirection, kernel_task, true);
+ assert(cacheMode < (sizeof(iomd_mem_types) / sizeof(iomd_mem_types[0])));
+ if (cacheMode == kIODefaultCache) {
+ return -1U;
+ }
+ return iomd_mem_types[cacheMode].wimg;
}
-bool
-IOGeneralMemoryDescriptor::initWithAddress(vm_address_t address,
- IOByteCount withLength,
- IODirection withDirection,
- task_t withTask)
+static IOOptionBits
+cacheModeForPagerFlags(unsigned int pagerFlags)
{
- _singleRange.v.address = address;
- _singleRange.v.length = withLength;
-
- return initWithRanges(&_singleRange.v, 1, withDirection, withTask, true);
+ pagerFlags &= VM_WIMG_MASK;
+ IOOptionBits cacheMode = kIODefaultCache;
+ for (IOOptionBits i = 0; i < (sizeof(iomd_mem_types) / sizeof(iomd_mem_types[0])); ++i) {
+ if (iomd_mem_types[i].wimg == pagerFlags) {
+ cacheMode = i;
+ break;
+ }
+ }
+ return (cacheMode == kIODefaultCache) ? kIOCopybackCache : cacheMode;
}
-bool
-IOGeneralMemoryDescriptor::initWithPhysicalAddress(
- IOPhysicalAddress address,
- IOByteCount withLength,
- IODirection withDirection )
-{
- _singleRange.p.address = address;
- _singleRange.p.length = withLength;
+/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
+/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
- return initWithPhysicalRanges( &_singleRange.p, 1, withDirection, true);
-}
+struct IOMemoryEntry {
+ ipc_port_t entry;
+ int64_t offset;
+ uint64_t size;
+};
-/*
- * initWithRanges:
- *
- * Initialize an IOMemoryDescriptor. The buffer is made up of several
- * virtual address ranges, from a given task
- *
- * Passing the ranges as a reference will avoid an extra allocation.
- *
- * An IOMemoryDescriptor can be re-used by calling initWithAddress or
- * initWithRanges again on an existing instance -- note this behavior
- * is not commonly supported in other I/O Kit classes, although it is
- * supported here.
- */
-bool
-IOGeneralMemoryDescriptor::initWithRanges(
- IOVirtualRange * ranges,
- UInt32 withCount,
- IODirection withDirection,
- task_t withTask,
- bool asReference = false)
-{
- assert(ranges);
- assert(withCount);
-
- /*
- * We can check the _initialized instance variable before having ever set
- * it to an initial value because I/O Kit guarantees that all our instance
- * variables are zeroed on an object's allocation.
- */
-
- if (_initialized == false)
- {
- if (super::init() == false) return false;
- _initialized = true;
- }
- else
- {
- /*
- * An existing memory descriptor is being retargeted to point to
- * somewhere else. Clean up our present state.
- */
-
- assert(_wireCount == 0);
-
- while (_wireCount)
- complete();
- if (_kernPtrAligned)
- unmapFromKernel();
- if (_ranges.v && _rangesIsAllocated)
- IODelete(_ranges.v, IOVirtualRange, _rangesCount);
- }
-
- /*
- * Initialize the memory descriptor.
- */
-
- _ranges.v = 0;
- _rangesCount = withCount;
- _rangesIsAllocated = asReference ? false : true;
- _direction = withDirection;
- _length = 0;
- _task = withTask;
- _position = 0;
- _positionAtIndex = 0;
- _positionAtOffset = 0;
- _kernPtrAligned = 0;
- _cachedPhysicalAddress = 0;
- _cachedVirtualAddress = 0;
- _flags = 0;
-
- if (withTask && (withTask != kernel_task))
- _flags |= kIOMemoryRequiresWire;
-
- if (asReference)
- _ranges.v = ranges;
- else
- {
- _ranges.v = IONew(IOVirtualRange, withCount);
- if (_ranges.v == 0) return false;
- bcopy(/* from */ ranges, _ranges.v, withCount * sizeof(IOVirtualRange));
- }
-
- for (unsigned index = 0; index < _rangesCount; index++)
- {
- _length += _ranges.v[index].length;
- }
-
- return true;
-}
+struct IOMemoryReference {
+ volatile SInt32 refCount;
+ vm_prot_t prot;
+ uint32_t capacity;
+ uint32_t count;
+ struct IOMemoryReference * mapRef;
+ IOMemoryEntry entries[0];
+};
-bool
-IOGeneralMemoryDescriptor::initWithPhysicalRanges( IOPhysicalRange * ranges,
- UInt32 withCount,
- IODirection withDirection,
- bool asReference = false)
+enum{
+ kIOMemoryReferenceReuse = 0x00000001,
+ kIOMemoryReferenceWrite = 0x00000002,
+ kIOMemoryReferenceCOW = 0x00000004,
+};
+
+SInt32 gIOMemoryReferenceCount;
+
+IOMemoryReference *
+IOGeneralMemoryDescriptor::memoryReferenceAlloc(uint32_t capacity, IOMemoryReference * realloc)
{
-#warning assuming virtual, physical addresses same size
- return( initWithRanges( (IOVirtualRange *) ranges,
- withCount, withDirection, (task_t) 0, asReference ));
+ IOMemoryReference * ref;
+ size_t newSize, oldSize, copySize;
+
+ newSize = (sizeof(IOMemoryReference)
+ - sizeof(ref->entries)
+ + capacity * sizeof(ref->entries[0]));
+ ref = (typeof(ref))IOMalloc(newSize);
+ if (realloc) {
+ oldSize = (sizeof(IOMemoryReference)
+ - sizeof(realloc->entries)
+ + realloc->capacity * sizeof(realloc->entries[0]));
+ copySize = oldSize;
+ if (copySize > newSize) {
+ copySize = newSize;
+ }
+ if (ref) {
+ bcopy(realloc, ref, copySize);
+ }
+ IOFree(realloc, oldSize);
+ } else if (ref) {
+ bzero(ref, sizeof(*ref));
+ ref->refCount = 1;
+ OSIncrementAtomic(&gIOMemoryReferenceCount);
+ }
+ if (!ref) {
+ return NULL;
+ }
+ ref->capacity = capacity;
+ return ref;
}
-/*
- * free
- *
- * Free resources.
- */
-void IOGeneralMemoryDescriptor::free()
-{
- while (_wireCount)
- complete();
- if (_kernPtrAligned)
- unmapFromKernel();
- if (_ranges.v && _rangesIsAllocated)
- IODelete(_ranges.v, IOVirtualRange, _rangesCount);
- if( _memEntry)
- ipc_port_release_send( (ipc_port_t) _memEntry );
- super::free();
-}
-
-void IOGeneralMemoryDescriptor::unmapFromKernel()
-{
- kern_return_t krtn;
- vm_offset_t off;
- // Pull the shared pages out of the task map
- // Do we need to unwire it first?
- for ( off = 0; off < _kernSize; off += page_size )
- {
- pmap_change_wiring(
- kernel_pmap,
- _kernPtrAligned + off,
- FALSE);
-
- pmap_remove(
- kernel_pmap,
- _kernPtrAligned + off,
- _kernPtrAligned + off + page_size);
- }
- // Free the former shmem area in the task
- krtn = vm_deallocate(kernel_map,
- _kernPtrAligned,
- _kernSize );
- assert(krtn == KERN_SUCCESS);
- _kernPtrAligned = 0;
-}
-
-void IOGeneralMemoryDescriptor::mapIntoKernel(unsigned rangeIndex)
-{
- kern_return_t krtn;
- vm_offset_t off;
-
- if (_kernPtrAligned)
- {
- if (_kernPtrAtIndex == rangeIndex) return;
- unmapFromKernel();
- assert(_kernPtrAligned == 0);
- }
-
- vm_offset_t srcAlign = trunc_page(_ranges.v[rangeIndex].address);
-
- _kernSize = trunc_page(_ranges.v[rangeIndex].address +
- _ranges.v[rangeIndex].length +
- page_size - 1) - srcAlign;
-
- /* Find some memory of the same size in kernel task. We use vm_allocate()
- to do this. vm_allocate inserts the found memory object in the
- target task's map as a side effect. */
- krtn = vm_allocate( kernel_map,
- &_kernPtrAligned,
- _kernSize,
- VM_FLAGS_ANYWHERE|VM_MAKE_TAG(VM_MEMORY_IOKIT) ); // Find first fit
- assert(krtn == KERN_SUCCESS);
- if(krtn) return;
-
- /* For each page in the area allocated from the kernel map,
- find the physical address of the page.
- Enter the page in the target task's pmap, at the
- appropriate target task virtual address. */
- for ( off = 0; off < _kernSize; off += page_size )
- {
- vm_offset_t kern_phys_addr, phys_addr;
- if( _task)
- phys_addr = pmap_extract( get_task_pmap(_task), srcAlign + off );
- else
- phys_addr = srcAlign + off;
- assert(phys_addr);
- if(phys_addr == 0) return;
-
- // Check original state.
- kern_phys_addr = pmap_extract( kernel_pmap, _kernPtrAligned + off );
- // Set virtual page to point to the right physical one
- pmap_enter(
- kernel_pmap,
- _kernPtrAligned + off,
- phys_addr,
- VM_PROT_READ|VM_PROT_WRITE,
- TRUE);
- }
- _kernPtrAtIndex = rangeIndex;
+void
+IOGeneralMemoryDescriptor::memoryReferenceFree(IOMemoryReference * ref)
+{
+ IOMemoryEntry * entries;
+ size_t size;
+
+ if (ref->mapRef) {
+ memoryReferenceFree(ref->mapRef);
+ ref->mapRef = NULL;
+ }
+
+ entries = ref->entries + ref->count;
+ while (entries > &ref->entries[0]) {
+ entries--;
+ ipc_port_release_send(entries->entry);
+ }
+ size = (sizeof(IOMemoryReference)
+ - sizeof(ref->entries)
+ + ref->capacity * sizeof(ref->entries[0]));
+ IOFree(ref, size);
+
+ OSDecrementAtomic(&gIOMemoryReferenceCount);
}
-/*
- * getDirection:
- *
- * Get the direction of the transfer.
- */
-IODirection IOMemoryDescriptor::getDirection() const
+void
+IOGeneralMemoryDescriptor::memoryReferenceRelease(IOMemoryReference * ref)
{
- return _direction;
+ if (1 == OSDecrementAtomic(&ref->refCount)) {
+ memoryReferenceFree(ref);
+ }
}
-/*
- * getLength:
- *
- * Get the length of the transfer (over all ranges).
- */
-IOByteCount IOMemoryDescriptor::getLength() const
+
+IOReturn
+IOGeneralMemoryDescriptor::memoryReferenceCreate(
+ IOOptionBits options,
+ IOMemoryReference ** reference)
{
- return _length;
+ enum { kCapacity = 4, kCapacityInc = 4 };
+
+ kern_return_t err;
+ IOMemoryReference * ref;
+ IOMemoryEntry * entries;
+ IOMemoryEntry * cloneEntries;
+ vm_map_t map;
+ ipc_port_t entry, cloneEntry;
+ vm_prot_t prot;
+ memory_object_size_t actualSize;
+ uint32_t rangeIdx;
+ uint32_t count;
+ mach_vm_address_t entryAddr, endAddr, entrySize;
+ mach_vm_size_t srcAddr, srcLen;
+ mach_vm_size_t nextAddr, nextLen;
+ mach_vm_size_t offset, remain;
+ IOByteCount physLen;
+ IOOptionBits type = (_flags & kIOMemoryTypeMask);
+ IOOptionBits cacheMode;
+ unsigned int pagerFlags;
+ vm_tag_t tag;
+ vm_named_entry_kernel_flags_t vmne_kflags;
+
+ ref = memoryReferenceAlloc(kCapacity, NULL);
+ if (!ref) {
+ return kIOReturnNoMemory;
+ }
+
+ tag = getVMTag(kernel_map);
+ vmne_kflags = VM_NAMED_ENTRY_KERNEL_FLAGS_NONE;
+ entries = &ref->entries[0];
+ count = 0;
+ err = KERN_SUCCESS;
+
+ offset = 0;
+ rangeIdx = 0;
+ if (_task) {
+ getAddrLenForInd(nextAddr, nextLen, type, _ranges, rangeIdx);
+ } else {
+ nextAddr = getPhysicalSegment(offset, &physLen, kIOMemoryMapperNone);
+ nextLen = physLen;
+
+ // default cache mode for physical
+ if (kIODefaultCache == ((_flags & kIOMemoryBufferCacheMask) >> kIOMemoryBufferCacheShift)) {
+ IOOptionBits mode = cacheModeForPagerFlags(IODefaultCacheBits(nextAddr));
+ _flags |= (mode << kIOMemoryBufferCacheShift);
+ }
+ }
+
+ // cache mode & vm_prot
+ prot = VM_PROT_READ;
+ cacheMode = ((_flags & kIOMemoryBufferCacheMask) >> kIOMemoryBufferCacheShift);
+ prot |= vmProtForCacheMode(cacheMode);
+ // VM system requires write access to change cache mode
+ if (kIODefaultCache != cacheMode) {
+ prot |= VM_PROT_WRITE;
+ }
+ if (kIODirectionOut != (kIODirectionOutIn & _flags)) {
+ prot |= VM_PROT_WRITE;
+ }
+ if (kIOMemoryReferenceWrite & options) {
+ prot |= VM_PROT_WRITE;
+ }
+ if (kIOMemoryReferenceCOW & options) {
+ prot |= MAP_MEM_VM_COPY;
+ }
+
+ if (kIOMemoryUseReserve & _flags) {
+ prot |= MAP_MEM_GRAB_SECLUDED;
+ }
+
+ if ((kIOMemoryReferenceReuse & options) && _memRef) {
+ cloneEntries = &_memRef->entries[0];
+ prot |= MAP_MEM_NAMED_REUSE;
+ }
+
+ if (_task) {
+ // virtual ranges
+
+ if (kIOMemoryBufferPageable & _flags) {
+ int ledger_tag, ledger_no_footprint;
+
+ // IOBufferMemoryDescriptor alloc - set flags for entry + object create
+ prot |= MAP_MEM_NAMED_CREATE;
+
+ // default accounting settings:
+ // + "none" ledger tag
+ // + include in footprint
+ // can be changed later with ::setOwnership()
+ ledger_tag = VM_LEDGER_TAG_NONE;
+ ledger_no_footprint = 0;
+
+ if (kIOMemoryBufferPurgeable & _flags) {
+ prot |= (MAP_MEM_PURGABLE | MAP_MEM_PURGABLE_KERNEL_ONLY);
+ if (VM_KERN_MEMORY_SKYWALK == tag) {
+ // Skywalk purgeable memory accounting:
+ // + "network" ledger tag
+ // + not included in footprint
+ ledger_tag = VM_LEDGER_TAG_NETWORK;
+ ledger_no_footprint = 1;
+ } else {
+ // regular purgeable memory accounting:
+ // + no ledger tag
+ // + included in footprint
+ ledger_tag = VM_LEDGER_TAG_NONE;
+ ledger_no_footprint = 0;
+ }
+ }
+ vmne_kflags.vmnekf_ledger_tag = ledger_tag;
+ vmne_kflags.vmnekf_ledger_no_footprint = ledger_no_footprint;
+ if (kIOMemoryUseReserve & _flags) {
+ prot |= MAP_MEM_GRAB_SECLUDED;
+ }
+
+ prot |= VM_PROT_WRITE;
+ map = NULL;
+ } else {
+ map = get_task_map(_task);
+ }
+
+ remain = _length;
+ while (remain) {
+ srcAddr = nextAddr;
+ srcLen = nextLen;
+ nextAddr = 0;
+ nextLen = 0;
+ // coalesce addr range
+ for (++rangeIdx; rangeIdx < _rangesCount; rangeIdx++) {
+ getAddrLenForInd(nextAddr, nextLen, type, _ranges, rangeIdx);
+ if ((srcAddr + srcLen) != nextAddr) {
+ break;
+ }
+ srcLen += nextLen;
+ }
+ entryAddr = trunc_page_64(srcAddr);
+ endAddr = round_page_64(srcAddr + srcLen);
+ do{
+ entrySize = (endAddr - entryAddr);
+ if (!entrySize) {
+ break;
+ }
+ actualSize = entrySize;
+
+ cloneEntry = MACH_PORT_NULL;
+ if (MAP_MEM_NAMED_REUSE & prot) {
+ if (cloneEntries < &_memRef->entries[_memRef->count]) {
+ cloneEntry = cloneEntries->entry;
+ } else {
+ prot &= ~MAP_MEM_NAMED_REUSE;
+ }
+ }
+
+ err = mach_make_memory_entry_internal(map,
+ &actualSize, entryAddr, prot, vmne_kflags, &entry, cloneEntry);
+
+ if (KERN_SUCCESS != err) {
+ break;
+ }
+ if (actualSize > entrySize) {
+ panic("mach_make_memory_entry_64 actualSize");
+ }
+
+ if (count >= ref->capacity) {
+ ref = memoryReferenceAlloc(ref->capacity + kCapacityInc, ref);
+ entries = &ref->entries[count];
+ }
+ entries->entry = entry;
+ entries->size = actualSize;
+ entries->offset = offset + (entryAddr - srcAddr);
+ entryAddr += actualSize;
+ if (MAP_MEM_NAMED_REUSE & prot) {
+ if ((cloneEntries->entry == entries->entry)
+ && (cloneEntries->size == entries->size)
+ && (cloneEntries->offset == entries->offset)) {
+ cloneEntries++;
+ } else {
+ prot &= ~MAP_MEM_NAMED_REUSE;
+ }
+ }
+ entries++;
+ count++;
+ }while (true);
+ offset += srcLen;
+ remain -= srcLen;
+ }
+ } else {
+ // _task == 0, physical or kIOMemoryTypeUPL
+ memory_object_t pager;
+ vm_size_t size = ptoa_64(_pages);
+
+ if (!getKernelReserved()) {
+ panic("getKernelReserved");
+ }
+
+ reserved->dp.pagerContig = (1 == _rangesCount);
+ reserved->dp.memory = this;
+
+ pagerFlags = pagerFlagsForCacheMode(cacheMode);
+ if (-1U == pagerFlags) {
+ panic("phys is kIODefaultCache");
+ }
+ if (reserved->dp.pagerContig) {
+ pagerFlags |= DEVICE_PAGER_CONTIGUOUS;
+ }
+
+ pager = device_pager_setup((memory_object_t) NULL, (uintptr_t) reserved,
+ size, pagerFlags);
+ assert(pager);
+ if (!pager) {
+ err = kIOReturnVMError;
+ } else {
+ srcAddr = nextAddr;
+ entryAddr = trunc_page_64(srcAddr);
+ err = mach_memory_object_memory_entry_64((host_t) 1, false /*internal*/,
+ size, VM_PROT_READ | VM_PROT_WRITE, pager, &entry);
+ assert(KERN_SUCCESS == err);
+ if (KERN_SUCCESS != err) {
+ device_pager_deallocate(pager);
+ } else {
+ reserved->dp.devicePager = pager;
+ entries->entry = entry;
+ entries->size = size;
+ entries->offset = offset + (entryAddr - srcAddr);
+ entries++;
+ count++;
+ }
+ }
+ }
+
+ ref->count = count;
+ ref->prot = prot;
+
+ if (_task && (KERN_SUCCESS == err)
+ && (kIOMemoryMapCopyOnWrite & _flags)
+ && !(kIOMemoryReferenceCOW & options)) {
+ err = memoryReferenceCreate(options | kIOMemoryReferenceCOW, &ref->mapRef);
+ }
+
+ if (KERN_SUCCESS == err) {
+ if (MAP_MEM_NAMED_REUSE & prot) {
+ memoryReferenceFree(ref);
+ OSIncrementAtomic(&_memRef->refCount);
+ ref = _memRef;
+ }
+ } else {
+ memoryReferenceFree(ref);
+ ref = NULL;
+ }
+
+ *reference = ref;
+
+ return err;
}
-void IOMemoryDescriptor::setTag(
- IOOptionBits tag )
+kern_return_t
+IOMemoryDescriptorMapAlloc(vm_map_t map, void * _ref)
{
- _tag = tag;
+ IOMemoryDescriptorMapAllocRef * ref = (typeof(ref))_ref;
+ IOReturn err;
+ vm_map_offset_t addr;
+
+ addr = ref->mapped;
+
+ err = vm_map_enter_mem_object(map, &addr, ref->size,
+ (vm_map_offset_t) 0,
+ (((ref->options & kIOMapAnywhere)
+ ? VM_FLAGS_ANYWHERE
+ : VM_FLAGS_FIXED)),
+ VM_MAP_KERNEL_FLAGS_NONE,
+ ref->tag,
+ IPC_PORT_NULL,
+ (memory_object_offset_t) 0,
+ false, /* copy */
+ ref->prot,
+ ref->prot,
+ VM_INHERIT_NONE);
+ if (KERN_SUCCESS == err) {
+ ref->mapped = (mach_vm_address_t) addr;
+ ref->map = map;
+ }
+
+ return err;
}
-IOOptionBits IOMemoryDescriptor::getTag( void )
+IOReturn
+IOGeneralMemoryDescriptor::memoryReferenceMap(
+ IOMemoryReference * ref,
+ vm_map_t map,
+ mach_vm_size_t inoffset,
+ mach_vm_size_t size,
+ IOOptionBits options,
+ mach_vm_address_t * inaddr)
{
- return( _tag);
-}
+ IOReturn err;
+ int64_t offset = inoffset;
+ uint32_t rangeIdx, entryIdx;
+ vm_map_offset_t addr, mapAddr;
+ vm_map_offset_t pageOffset, entryOffset, remain, chunk;
+
+ mach_vm_address_t nextAddr;
+ mach_vm_size_t nextLen;
+ IOByteCount physLen;
+ IOMemoryEntry * entry;
+ vm_prot_t prot, memEntryCacheMode;
+ IOOptionBits type;
+ IOOptionBits cacheMode;
+ vm_tag_t tag;
+ // for the kIOMapPrefault option.
+ upl_page_info_t * pageList = NULL;
+ UInt currentPageIndex = 0;
+ bool didAlloc;
+
+ if (ref->mapRef) {
+ err = memoryReferenceMap(ref->mapRef, map, inoffset, size, options, inaddr);
+ return err;
+ }
-/*
- * setPosition
- *
- * Set the logical start position inside the client buffer.
- *
- * It is convention that the position reflect the actual byte count that
- * is successfully transferred into or out of the buffer, before the I/O
- * request is "completed" (ie. sent back to its originator).
- */
+ type = _flags & kIOMemoryTypeMask;
-void IOGeneralMemoryDescriptor::setPosition(IOByteCount position)
-{
- assert(position <= _length);
+ prot = VM_PROT_READ;
+ if (!(kIOMapReadOnly & options)) {
+ prot |= VM_PROT_WRITE;
+ }
+ prot &= ref->prot;
- if (position >= _length)
- {
- _position = _length;
- _positionAtIndex = _rangesCount; /* careful: out-of-bounds */
- _positionAtOffset = 0;
- return;
- }
+ cacheMode = ((options & kIOMapCacheMask) >> kIOMapCacheShift);
+ if (kIODefaultCache != cacheMode) {
+ // VM system requires write access to update named entry cache mode
+ memEntryCacheMode = (MAP_MEM_ONLY | VM_PROT_WRITE | prot | vmProtForCacheMode(cacheMode));
+ }
- if (position < _position)
- {
- _positionAtOffset = position;
- _positionAtIndex = 0;
- }
- else
- {
- _positionAtOffset += (position - _position);
- }
- _position = position;
+ tag = getVMTag(map);
- while (_positionAtOffset >= _ranges.v[_positionAtIndex].length)
- {
- _positionAtOffset -= _ranges.v[_positionAtIndex].length;
- _positionAtIndex++;
- }
-}
+ if (_task) {
+ // Find first range for offset
+ if (!_rangesCount) {
+ return kIOReturnBadArgument;
+ }
+ for (remain = offset, rangeIdx = 0; rangeIdx < _rangesCount; rangeIdx++) {
+ getAddrLenForInd(nextAddr, nextLen, type, _ranges, rangeIdx);
+ if (remain < nextLen) {
+ break;
+ }
+ remain -= nextLen;
+ }
+ } else {
+ rangeIdx = 0;
+ remain = 0;
+ nextAddr = getPhysicalSegment(offset, &physLen, kIOMemoryMapperNone);
+ nextLen = size;
+ }
-/*
- * readBytes:
- *
- * Copy data from the memory descriptor's buffer into the specified buffer,
- * relative to the current position. The memory descriptor's position is
- * advanced based on the number of bytes copied.
- */
+ assert(remain < nextLen);
+ if (remain >= nextLen) {
+ return kIOReturnBadArgument;
+ }
-IOByteCount IOGeneralMemoryDescriptor::readBytes(IOByteCount offset,
- void * bytes, IOByteCount withLength)
-{
- IOByteCount bytesLeft;
- void * segment;
- IOByteCount segmentLength;
+ nextAddr += remain;
+ nextLen -= remain;
+ pageOffset = (page_mask & nextAddr);
+ addr = 0;
+ didAlloc = false;
- if( offset != _position)
- setPosition( offset );
+ if (!(options & kIOMapAnywhere)) {
+ addr = *inaddr;
+ if (pageOffset != (page_mask & addr)) {
+ return kIOReturnNotAligned;
+ }
+ addr -= pageOffset;
+ }
- withLength = min(withLength, _length - _position);
- bytesLeft = withLength;
+ // find first entry for offset
+ for (entryIdx = 0;
+ (entryIdx < ref->count) && (offset >= ref->entries[entryIdx].offset);
+ entryIdx++) {
+ }
+ entryIdx--;
+ entry = &ref->entries[entryIdx];
+
+ // allocate VM
+ size = round_page_64(size + pageOffset);
+ if (kIOMapOverwrite & options) {
+ if ((map == kernel_map) && (kIOMemoryBufferPageable & _flags)) {
+ map = IOPageableMapForAddress(addr);
+ }
+ err = KERN_SUCCESS;
+ } else {
+ IOMemoryDescriptorMapAllocRef ref;
+ ref.map = map;
+ ref.tag = tag;
+ ref.options = options;
+ ref.size = size;
+ ref.prot = prot;
+ if (options & kIOMapAnywhere) {
+ // vm_map looks for addresses above here, even when VM_FLAGS_ANYWHERE
+ ref.mapped = 0;
+ } else {
+ ref.mapped = addr;
+ }
+ if ((ref.map == kernel_map) && (kIOMemoryBufferPageable & _flags)) {
+ err = IOIteratePageableMaps( ref.size, &IOMemoryDescriptorMapAlloc, &ref );
+ } else {
+ err = IOMemoryDescriptorMapAlloc(ref.map, &ref);
+ }
+ if (KERN_SUCCESS == err) {
+ addr = ref.mapped;
+ map = ref.map;
+ didAlloc = true;
+ }
+ }
-#if 0
- while (bytesLeft && (_position < _length))
- {
- /* Compute the relative length to the end of this virtual segment. */
- segmentLength = min(_ranges.v[_positionAtIndex].length - _positionAtOffset, bytesLeft);
+ /*
+ * If the memory is associated with a device pager but doesn't have a UPL,
+ * it will be immediately faulted in through the pager via populateDevicePager().
+ * kIOMapPrefault is redundant in that case, so don't try to use it for UPL
+ * operations.
+ */
+ if ((reserved != NULL) && (reserved->dp.devicePager) && (_wireCount != 0)) {
+ options &= ~kIOMapPrefault;
+ }
- /* Compute the relative address of this virtual segment. */
- segment = (void *)(_ranges.v[_positionAtIndex].address + _positionAtOffset);
+ /*
+ * Prefaulting is only possible if we wired the memory earlier. Check the
+ * memory type, and the underlying data.
+ */
+ if (options & kIOMapPrefault) {
+ /*
+ * The memory must have been wired by calling ::prepare(), otherwise
+ * we don't have the UPL. Without UPLs, pages cannot be pre-faulted
+ */
+ assert(_wireCount != 0);
+ assert(_memoryEntries != NULL);
+ if ((_wireCount == 0) ||
+ (_memoryEntries == NULL)) {
+ return kIOReturnBadArgument;
+ }
- if (KERN_SUCCESS != vm_map_read_user(getMapForTask(_task, segment),
- /* from */ (vm_offset_t) segment, /* to */ (vm_offset_t) bytes,
- /* size */ segmentLength))
- {
- assert( false );
- bytesLeft = withLength;
- break;
- }
- bytesLeft -= segmentLength;
- offset += segmentLength;
- setPosition(offset);
- }
-#else
- while (bytesLeft && (segment = getVirtualSegment(offset, &segmentLength)))
- {
- segmentLength = min(segmentLength, bytesLeft);
- bcopy(/* from */ segment, /* to */ bytes, /* size */ segmentLength);
- bytesLeft -= segmentLength;
- offset += segmentLength;
- bytes = (void *) (((UInt32) bytes) + segmentLength);
- }
-#endif
+ // Get the page list.
+ ioGMDData* dataP = getDataP(_memoryEntries);
+ ioPLBlock const* ioplList = getIOPLList(dataP);
+ pageList = getPageList(dataP);
+
+ // Get the number of IOPLs.
+ UInt numIOPLs = getNumIOPL(_memoryEntries, dataP);
+
+ /*
+ * Scan through the IOPL Info Blocks, looking for the first block containing
+ * the offset. The research will go past it, so we'll need to go back to the
+ * right range at the end.
+ */
+ UInt ioplIndex = 0;
+ while (ioplIndex < numIOPLs && offset >= ioplList[ioplIndex].fIOMDOffset) {
+ ioplIndex++;
+ }
+ ioplIndex--;
+
+ // Retrieve the IOPL info block.
+ ioPLBlock ioplInfo = ioplList[ioplIndex];
+
+ /*
+ * For external UPLs, the fPageInfo points directly to the UPL's page_info_t
+ * array.
+ */
+ if (ioplInfo.fFlags & kIOPLExternUPL) {
+ pageList = (upl_page_info_t*) ioplInfo.fPageInfo;
+ } else {
+ pageList = &pageList[ioplInfo.fPageInfo];
+ }
- return withLength - bytesLeft;
-}
+ // Rebase [offset] into the IOPL in order to looks for the first page index.
+ mach_vm_size_t offsetInIOPL = offset - ioplInfo.fIOMDOffset + ioplInfo.fPageOffset;
-/*
- * writeBytes:
- *
- * Copy data to the memory descriptor's buffer from the specified buffer,
- * relative to the current position. The memory descriptor's position is
- * advanced based on the number of bytes copied.
- */
-IOByteCount IOGeneralMemoryDescriptor::writeBytes(IOByteCount offset,
- const void* bytes,IOByteCount withLength)
-{
- IOByteCount bytesLeft;
- void * segment;
- IOByteCount segmentLength;
+ // Retrieve the index of the first page corresponding to the offset.
+ currentPageIndex = atop_32(offsetInIOPL);
+ }
- if( offset != _position)
- setPosition( offset );
+ // enter mappings
+ remain = size;
+ mapAddr = addr;
+ addr += pageOffset;
- withLength = min(withLength, _length - _position);
- bytesLeft = withLength;
+ while (remain && (KERN_SUCCESS == err)) {
+ entryOffset = offset - entry->offset;
+ if ((page_mask & entryOffset) != pageOffset) {
+ err = kIOReturnNotAligned;
+ break;
+ }
-#if 0
- while (bytesLeft && (_position < _length))
- {
- assert(_position <= _length);
+ if (kIODefaultCache != cacheMode) {
+ vm_size_t unused = 0;
+ err = mach_make_memory_entry(NULL /*unused*/, &unused, 0 /*unused*/,
+ memEntryCacheMode, NULL, entry->entry);
+ assert(KERN_SUCCESS == err);
+ }
- /* Compute the relative length to the end of this virtual segment. */
- segmentLength = min(_ranges.v[_positionAtIndex].length - _positionAtOffset, bytesLeft);
+ entryOffset -= pageOffset;
+ if (entryOffset >= entry->size) {
+ panic("entryOffset");
+ }
+ chunk = entry->size - entryOffset;
+ if (chunk) {
+ vm_map_kernel_flags_t vmk_flags;
- /* Compute the relative address of this virtual segment. */
- segment = (void *)(_ranges.v[_positionAtIndex].address + _positionAtOffset);
+ vmk_flags = VM_MAP_KERNEL_FLAGS_NONE;
+ vmk_flags.vmkf_iokit_acct = TRUE; /* iokit accounting */
- if (KERN_SUCCESS != vm_map_write_user(getMapForTask(_task, segment),
- /* from */ (vm_offset_t) bytes,
- /* to */ (vm_offset_t) segment,
- /* size */ segmentLength))
- {
- assert( false );
- bytesLeft = withLength;
- break;
- }
- bytesLeft -= segmentLength;
- offset += segmentLength;
- setPosition(offset);
- }
-#else
- while (bytesLeft && (segment = getVirtualSegment(offset, &segmentLength)))
- {
- segmentLength = min(segmentLength, bytesLeft);
- bcopy(/* from */ bytes, /* to */ segment, /* size */ segmentLength);
- // Flush cache in case we're copying code around, eg. handling a code page fault
- IOFlushProcessorCache(kernel_task, (vm_offset_t) segment, segmentLength );
-
- bytesLeft -= segmentLength;
- offset += segmentLength;
- bytes = (void *) (((UInt32) bytes) + segmentLength);
- }
-#endif
+ if (chunk > remain) {
+ chunk = remain;
+ }
+ if (options & kIOMapPrefault) {
+ UInt nb_pages = round_page(chunk) / PAGE_SIZE;
+
+ err = vm_map_enter_mem_object_prefault(map,
+ &mapAddr,
+ chunk, 0 /* mask */,
+ (VM_FLAGS_FIXED
+ | VM_FLAGS_OVERWRITE),
+ vmk_flags,
+ tag,
+ entry->entry,
+ entryOffset,
+ prot, // cur
+ prot, // max
+ &pageList[currentPageIndex],
+ nb_pages);
+
+ // Compute the next index in the page list.
+ currentPageIndex += nb_pages;
+ assert(currentPageIndex <= _pages);
+ } else {
+ err = vm_map_enter_mem_object(map,
+ &mapAddr,
+ chunk, 0 /* mask */,
+ (VM_FLAGS_FIXED
+ | VM_FLAGS_OVERWRITE),
+ vmk_flags,
+ tag,
+ entry->entry,
+ entryOffset,
+ false, // copy
+ prot, // cur
+ prot, // max
+ VM_INHERIT_NONE);
+ }
+ if (KERN_SUCCESS != err) {
+ break;
+ }
+ remain -= chunk;
+ if (!remain) {
+ break;
+ }
+ mapAddr += chunk;
+ offset += chunk - pageOffset;
+ }
+ pageOffset = 0;
+ entry++;
+ entryIdx++;
+ if (entryIdx >= ref->count) {
+ err = kIOReturnOverrun;
+ break;
+ }
+ }
+
+ if ((KERN_SUCCESS != err) && didAlloc) {
+ (void) mach_vm_deallocate(map, trunc_page_64(addr), size);
+ addr = 0;
+ }
+ *inaddr = addr;
- return withLength - bytesLeft;
+ return err;
}
-/*
- * getPhysicalSegment:
- *
- * Get the physical address of the buffer, relative to the current position.
- * If the current position is at the end of the buffer, a zero is returned.
- */
-IOPhysicalAddress
-IOGeneralMemoryDescriptor::getPhysicalSegment(IOByteCount offset,
- IOByteCount * lengthOfSegment)
+IOReturn
+IOGeneralMemoryDescriptor::memoryReferenceGetPageCounts(
+ IOMemoryReference * ref,
+ IOByteCount * residentPageCount,
+ IOByteCount * dirtyPageCount)
{
- vm_address_t virtualAddress;
- IOByteCount virtualLength;
- pmap_t virtualPMap;
- IOPhysicalAddress physicalAddress;
- IOPhysicalLength physicalLength;
+ IOReturn err;
+ IOMemoryEntry * entries;
+ unsigned int resident, dirty;
+ unsigned int totalResident, totalDirty;
- if( kIOMemoryRequiresWire & _flags)
- assert( _wireCount );
+ totalResident = totalDirty = 0;
+ err = kIOReturnSuccess;
+ entries = ref->entries + ref->count;
+ while (entries > &ref->entries[0]) {
+ entries--;
+ err = mach_memory_entry_get_page_counts(entries->entry, &resident, &dirty);
+ if (KERN_SUCCESS != err) {
+ break;
+ }
+ totalResident += resident;
+ totalDirty += dirty;
+ }
- if ((0 == _task) && (1 == _rangesCount))
- {
- assert(offset <= _length);
- if (offset >= _length)
- {
- physicalAddress = 0;
- physicalLength = 0;
+ if (residentPageCount) {
+ *residentPageCount = totalResident;
}
- else
- {
- physicalLength = _length - offset;
- physicalAddress = offset + _ranges.v[0].address;
- }
-
- if (lengthOfSegment)
- *lengthOfSegment = physicalLength;
- return physicalAddress;
- }
-
- if( offset != _position)
- setPosition( offset );
-
- assert(_position <= _length);
-
- /* Fail gracefully if the position is at (or past) the end-of-buffer. */
- if (_position >= _length)
- {
- *lengthOfSegment = 0;
- return 0;
- }
-
- /* Prepare to compute the largest contiguous physical length possible. */
-
- virtualAddress = _ranges.v[_positionAtIndex].address + _positionAtOffset;
- virtualLength = _ranges.v[_positionAtIndex].length - _positionAtOffset;
- vm_address_t virtualPage = trunc_page(virtualAddress);
- if( _task)
- virtualPMap = get_task_pmap(_task);
- else
- virtualPMap = 0;
-
- physicalAddress = (virtualAddress == _cachedVirtualAddress) ?
- _cachedPhysicalAddress : /* optimization */
- virtualPMap ?
- pmap_extract(virtualPMap, virtualAddress) :
- virtualAddress;
- physicalLength = trunc_page(physicalAddress) + page_size - physicalAddress;
-
- if (!physicalAddress && _task)
- {
- physicalAddress =
- vm_map_get_phys_page(get_task_map(_task), virtualPage);
- physicalAddress += virtualAddress - virtualPage;
- }
-
- if (physicalAddress == 0) /* memory must be wired in order to proceed */
- {
- assert(physicalAddress);
- *lengthOfSegment = 0;
- return 0;
- }
-
- /* Compute the largest contiguous physical length possible, within range. */
- IOPhysicalAddress physicalPage = trunc_page(physicalAddress);
-
- while (physicalLength < virtualLength)
- {
- physicalPage += page_size;
- virtualPage += page_size;
- _cachedVirtualAddress = virtualPage;
- _cachedPhysicalAddress = virtualPMap ?
- pmap_extract(virtualPMap, virtualPage) :
- virtualPage;
- if (!_cachedPhysicalAddress && _task)
- {
- _cachedPhysicalAddress =
- vm_map_get_phys_page(get_task_map(_task), virtualPage);
+ if (dirtyPageCount) {
+ *dirtyPageCount = totalDirty;
}
+ return err;
+}
+
+IOReturn
+IOGeneralMemoryDescriptor::memoryReferenceSetPurgeable(
+ IOMemoryReference * ref,
+ IOOptionBits newState,
+ IOOptionBits * oldState)
+{
+ IOReturn err;
+ IOMemoryEntry * entries;
+ vm_purgable_t control;
+ int totalState, state;
+
+ totalState = kIOMemoryPurgeableNonVolatile;
+ err = kIOReturnSuccess;
+ entries = ref->entries + ref->count;
+ while (entries > &ref->entries[0]) {
+ entries--;
+
+ err = purgeableControlBits(newState, &control, &state);
+ if (KERN_SUCCESS != err) {
+ break;
+ }
+ err = memory_entry_purgeable_control_internal(entries->entry, control, &state);
+ if (KERN_SUCCESS != err) {
+ break;
+ }
+ err = purgeableStateBits(&state);
+ if (KERN_SUCCESS != err) {
+ break;
+ }
+
+ if (kIOMemoryPurgeableEmpty == state) {
+ totalState = kIOMemoryPurgeableEmpty;
+ } else if (kIOMemoryPurgeableEmpty == totalState) {
+ continue;
+ } else if (kIOMemoryPurgeableVolatile == totalState) {
+ continue;
+ } else if (kIOMemoryPurgeableVolatile == state) {
+ totalState = kIOMemoryPurgeableVolatile;
+ } else {
+ totalState = kIOMemoryPurgeableNonVolatile;
+ }
+ }
+
+ if (oldState) {
+ *oldState = totalState;
+ }
+ return err;
+}
+
+IOReturn
+IOGeneralMemoryDescriptor::memoryReferenceSetOwnership(
+ IOMemoryReference * ref,
+ task_t newOwner,
+ int newLedgerTag,
+ IOOptionBits newLedgerOptions)
+{
+ IOReturn err, totalErr;
+ IOMemoryEntry * entries;
+
+ totalErr = kIOReturnSuccess;
+ entries = ref->entries + ref->count;
+ while (entries > &ref->entries[0]) {
+ entries--;
+
+ err = mach_memory_entry_ownership(entries->entry, newOwner, newLedgerTag, newLedgerOptions);
+ if (KERN_SUCCESS != err) {
+ totalErr = err;
+ }
+ }
+
+ return totalErr;
+}
+
+/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
+
+IOMemoryDescriptor *
+IOMemoryDescriptor::withAddress(void * address,
+ IOByteCount length,
+ IODirection direction)
+{
+ return IOMemoryDescriptor::
+ withAddressRange((IOVirtualAddress) address, length, direction | kIOMemoryAutoPrepare, kernel_task);
+}
+
+#ifndef __LP64__
+IOMemoryDescriptor *
+IOMemoryDescriptor::withAddress(IOVirtualAddress address,
+ IOByteCount length,
+ IODirection direction,
+ task_t task)
+{
+ IOGeneralMemoryDescriptor * that = new IOGeneralMemoryDescriptor;
+ if (that) {
+ if (that->initWithAddress(address, length, direction, task)) {
+ return that;
+ }
+
+ that->release();
+ }
+ return NULL;
+}
+#endif /* !__LP64__ */
+
+IOMemoryDescriptor *
+IOMemoryDescriptor::withPhysicalAddress(
+ IOPhysicalAddress address,
+ IOByteCount length,
+ IODirection direction )
+{
+ return IOMemoryDescriptor::withAddressRange(address, length, direction, TASK_NULL);
+}
+
+#ifndef __LP64__
+IOMemoryDescriptor *
+IOMemoryDescriptor::withRanges( IOVirtualRange * ranges,
+ UInt32 withCount,
+ IODirection direction,
+ task_t task,
+ bool asReference)
+{
+ IOGeneralMemoryDescriptor * that = new IOGeneralMemoryDescriptor;
+ if (that) {
+ if (that->initWithRanges(ranges, withCount, direction, task, asReference)) {
+ return that;
+ }
+
+ that->release();
+ }
+ return NULL;
+}
+#endif /* !__LP64__ */
+
+IOMemoryDescriptor *
+IOMemoryDescriptor::withAddressRange(mach_vm_address_t address,
+ mach_vm_size_t length,
+ IOOptionBits options,
+ task_t task)
+{
+ IOAddressRange range = { address, length };
+ return IOMemoryDescriptor::withAddressRanges(&range, 1, options, task);
+}
+
+IOMemoryDescriptor *
+IOMemoryDescriptor::withAddressRanges(IOAddressRange * ranges,
+ UInt32 rangeCount,
+ IOOptionBits options,
+ task_t task)
+{
+ IOGeneralMemoryDescriptor * that = new IOGeneralMemoryDescriptor;
+ if (that) {
+ if (task) {
+ options |= kIOMemoryTypeVirtual64;
+ } else {
+ options |= kIOMemoryTypePhysical64;
+ }
+
+ if (that->initWithOptions(ranges, rangeCount, 0, task, options, /* mapper */ NULL)) {
+ return that;
+ }
+
+ that->release();
+ }
+
+ return NULL;
+}
+
+
+/*
+ * withOptions:
+ *
+ * Create a new IOMemoryDescriptor. The buffer is made up of several
+ * virtual address ranges, from a given task.
+ *
+ * Passing the ranges as a reference will avoid an extra allocation.
+ */
+IOMemoryDescriptor *
+IOMemoryDescriptor::withOptions(void * buffers,
+ UInt32 count,
+ UInt32 offset,
+ task_t task,
+ IOOptionBits opts,
+ IOMapper * mapper)
+{
+ IOGeneralMemoryDescriptor *self = new IOGeneralMemoryDescriptor;
+
+ if (self
+ && !self->initWithOptions(buffers, count, offset, task, opts, mapper)) {
+ self->release();
+ return NULL;
+ }
+
+ return self;
+}
+
+bool
+IOMemoryDescriptor::initWithOptions(void * buffers,
+ UInt32 count,
+ UInt32 offset,
+ task_t task,
+ IOOptionBits options,
+ IOMapper * mapper)
+{
+ return false;
+}
+
+#ifndef __LP64__
+IOMemoryDescriptor *
+IOMemoryDescriptor::withPhysicalRanges( IOPhysicalRange * ranges,
+ UInt32 withCount,
+ IODirection direction,
+ bool asReference)
+{
+ IOGeneralMemoryDescriptor * that = new IOGeneralMemoryDescriptor;
+ if (that) {
+ if (that->initWithPhysicalRanges(ranges, withCount, direction, asReference)) {
+ return that;
+ }
+
+ that->release();
+ }
+ return NULL;
+}
+
+IOMemoryDescriptor *
+IOMemoryDescriptor::withSubRange(IOMemoryDescriptor * of,
+ IOByteCount offset,
+ IOByteCount length,
+ IODirection direction)
+{
+ return IOSubMemoryDescriptor::withSubRange(of, offset, length, direction);
+}
+#endif /* !__LP64__ */
+
+IOMemoryDescriptor *
+IOMemoryDescriptor::withPersistentMemoryDescriptor(IOMemoryDescriptor *originalMD)
+{
+ IOGeneralMemoryDescriptor *origGenMD =
+ OSDynamicCast(IOGeneralMemoryDescriptor, originalMD);
+
+ if (origGenMD) {
+ return IOGeneralMemoryDescriptor::
+ withPersistentMemoryDescriptor(origGenMD);
+ } else {
+ return NULL;
+ }
+}
+
+IOMemoryDescriptor *
+IOGeneralMemoryDescriptor::withPersistentMemoryDescriptor(IOGeneralMemoryDescriptor *originalMD)
+{
+ IOMemoryReference * memRef;
+
+ if (kIOReturnSuccess != originalMD->memoryReferenceCreate(kIOMemoryReferenceReuse, &memRef)) {
+ return NULL;
+ }
+
+ if (memRef == originalMD->_memRef) {
+ originalMD->retain(); // Add a new reference to ourselves
+ originalMD->memoryReferenceRelease(memRef);
+ return originalMD;
+ }
+
+ IOGeneralMemoryDescriptor * self = new IOGeneralMemoryDescriptor;
+ IOMDPersistentInitData initData = { originalMD, memRef };
+
+ if (self
+ && !self->initWithOptions(&initData, 1, 0, NULL, kIOMemoryTypePersistentMD, NULL)) {
+ self->release();
+ self = NULL;
+ }
+ return self;
+}
+
+#ifndef __LP64__
+bool
+IOGeneralMemoryDescriptor::initWithAddress(void * address,
+ IOByteCount withLength,
+ IODirection withDirection)
+{
+ _singleRange.v.address = (vm_offset_t) address;
+ _singleRange.v.length = withLength;
+
+ return initWithRanges(&_singleRange.v, 1, withDirection, kernel_task, true);
+}
+
+bool
+IOGeneralMemoryDescriptor::initWithAddress(IOVirtualAddress address,
+ IOByteCount withLength,
+ IODirection withDirection,
+ task_t withTask)
+{
+ _singleRange.v.address = address;
+ _singleRange.v.length = withLength;
+
+ return initWithRanges(&_singleRange.v, 1, withDirection, withTask, true);
+}
+
+bool
+IOGeneralMemoryDescriptor::initWithPhysicalAddress(
+ IOPhysicalAddress address,
+ IOByteCount withLength,
+ IODirection withDirection )
+{
+ _singleRange.p.address = address;
+ _singleRange.p.length = withLength;
+
+ return initWithPhysicalRanges( &_singleRange.p, 1, withDirection, true);
+}
+
+bool
+IOGeneralMemoryDescriptor::initWithPhysicalRanges(
+ IOPhysicalRange * ranges,
+ UInt32 count,
+ IODirection direction,
+ bool reference)
+{
+ IOOptionBits mdOpts = direction | kIOMemoryTypePhysical;
+
+ if (reference) {
+ mdOpts |= kIOMemoryAsReference;
+ }
+
+ return initWithOptions(ranges, count, 0, NULL, mdOpts, /* mapper */ NULL);
+}
+
+bool
+IOGeneralMemoryDescriptor::initWithRanges(
+ IOVirtualRange * ranges,
+ UInt32 count,
+ IODirection direction,
+ task_t task,
+ bool reference)
+{
+ IOOptionBits mdOpts = direction;
+
+ if (reference) {
+ mdOpts |= kIOMemoryAsReference;
+ }
+
+ if (task) {
+ mdOpts |= kIOMemoryTypeVirtual;
+
+ // Auto-prepare if this is a kernel memory descriptor as very few
+ // clients bother to prepare() kernel memory.
+ // But it was not enforced so what are you going to do?
+ if (task == kernel_task) {
+ mdOpts |= kIOMemoryAutoPrepare;
+ }
+ } else {
+ mdOpts |= kIOMemoryTypePhysical;
+ }
+
+ return initWithOptions(ranges, count, 0, task, mdOpts, /* mapper */ NULL);
+}
+#endif /* !__LP64__ */
+
+/*
+ * initWithOptions:
+ *
+ * IOMemoryDescriptor. The buffer is made up of several virtual address ranges,
+ * from a given task, several physical ranges, an UPL from the ubc
+ * system or a uio (may be 64bit) from the BSD subsystem.
+ *
+ * Passing the ranges as a reference will avoid an extra allocation.
+ *
+ * An IOMemoryDescriptor can be re-used by calling initWithOptions again on an
+ * existing instance -- note this behavior is not commonly supported in other
+ * I/O Kit classes, although it is supported here.
+ */
+
+bool
+IOGeneralMemoryDescriptor::initWithOptions(void * buffers,
+ UInt32 count,
+ UInt32 offset,
+ task_t task,
+ IOOptionBits options,
+ IOMapper * mapper)
+{
+ IOOptionBits type = options & kIOMemoryTypeMask;
+
+#ifndef __LP64__
+ if (task
+ && (kIOMemoryTypeVirtual == type)
+ && vm_map_is_64bit(get_task_map(task))
+ && ((IOVirtualRange *) buffers)->address) {
+ OSReportWithBacktrace("IOMemoryDescriptor: attempt to create 32b virtual in 64b task, use ::withAddressRange()");
+ return false;
+ }
+#endif /* !__LP64__ */
+
+ // Grab the original MD's configuation data to initialse the
+ // arguments to this function.
+ if (kIOMemoryTypePersistentMD == type) {
+ IOMDPersistentInitData *initData = (typeof(initData))buffers;
+ const IOGeneralMemoryDescriptor *orig = initData->fMD;
+ ioGMDData *dataP = getDataP(orig->_memoryEntries);
+
+ // Only accept persistent memory descriptors with valid dataP data.
+ assert(orig->_rangesCount == 1);
+ if (!(orig->_flags & kIOMemoryPersistent) || !dataP) {
+ return false;
+ }
+
+ _memRef = initData->fMemRef; // Grab the new named entry
+ options = orig->_flags & ~kIOMemoryAsReference;
+ type = options & kIOMemoryTypeMask;
+ buffers = orig->_ranges.v;
+ count = orig->_rangesCount;
+
+ // Now grab the original task and whatever mapper was previously used
+ task = orig->_task;
+ mapper = dataP->fMapper;
+
+ // We are ready to go through the original initialisation now
+ }
+
+ switch (type) {
+ case kIOMemoryTypeUIO:
+ case kIOMemoryTypeVirtual:
+#ifndef __LP64__
+ case kIOMemoryTypeVirtual64:
+#endif /* !__LP64__ */
+ assert(task);
+ if (!task) {
+ return false;
+ }
+ break;
+
+ case kIOMemoryTypePhysical: // Neither Physical nor UPL should have a task
+#ifndef __LP64__
+ case kIOMemoryTypePhysical64:
+#endif /* !__LP64__ */
+ case kIOMemoryTypeUPL:
+ assert(!task);
+ break;
+ default:
+ return false; /* bad argument */
+ }
+
+ assert(buffers);
+ assert(count);
+
+ /*
+ * We can check the _initialized instance variable before having ever set
+ * it to an initial value because I/O Kit guarantees that all our instance
+ * variables are zeroed on an object's allocation.
+ */
+
+ if (_initialized) {
+ /*
+ * An existing memory descriptor is being retargeted to point to
+ * somewhere else. Clean up our present state.
+ */
+ IOOptionBits type = _flags & kIOMemoryTypeMask;
+ if ((kIOMemoryTypePhysical != type) && (kIOMemoryTypePhysical64 != type)) {
+ while (_wireCount) {
+ complete();
+ }
+ }
+ if (_ranges.v && !(kIOMemoryAsReference & _flags)) {
+ if (kIOMemoryTypeUIO == type) {
+ uio_free((uio_t) _ranges.v);
+ }
+#ifndef __LP64__
+ else if ((kIOMemoryTypeVirtual64 == type) || (kIOMemoryTypePhysical64 == type)) {
+ IODelete(_ranges.v64, IOAddressRange, _rangesCount);
+ }
+#endif /* !__LP64__ */
+ else {
+ IODelete(_ranges.v, IOVirtualRange, _rangesCount);
+ }
+ }
+
+ options |= (kIOMemoryRedirected & _flags);
+ if (!(kIOMemoryRedirected & options)) {
+ if (_memRef) {
+ memoryReferenceRelease(_memRef);
+ _memRef = NULL;
+ }
+ if (_mappings) {
+ _mappings->flushCollection();
+ }
+ }
+ } else {
+ if (!super::init()) {
+ return false;
+ }
+ _initialized = true;
+ }
+
+ // Grab the appropriate mapper
+ if (kIOMemoryHostOrRemote & options) {
+ options |= kIOMemoryMapperNone;
+ }
+ if (kIOMemoryMapperNone & options) {
+ mapper = NULL; // No Mapper
+ } else if (mapper == kIOMapperSystem) {
+ IOMapper::checkForSystemMapper();
+ gIOSystemMapper = mapper = IOMapper::gSystem;
+ }
+
+ // Remove the dynamic internal use flags from the initial setting
+ options &= ~(kIOMemoryPreparedReadOnly);
+ _flags = options;
+ _task = task;
+
+#ifndef __LP64__
+ _direction = (IODirection) (_flags & kIOMemoryDirectionMask);
+#endif /* !__LP64__ */
+
+ _dmaReferences = 0;
+ __iomd_reservedA = 0;
+ __iomd_reservedB = 0;
+ _highestPage = 0;
+
+ if (kIOMemoryThreadSafe & options) {
+ if (!_prepareLock) {
+ _prepareLock = IOLockAlloc();
+ }
+ } else if (_prepareLock) {
+ IOLockFree(_prepareLock);
+ _prepareLock = NULL;
+ }
+
+ if (kIOMemoryTypeUPL == type) {
+ ioGMDData *dataP;
+ unsigned int dataSize = computeDataSize(/* pages */ 0, /* upls */ 1);
+
+ if (!initMemoryEntries(dataSize, mapper)) {
+ return false;
+ }
+ dataP = getDataP(_memoryEntries);
+ dataP->fPageCnt = 0;
+ switch (kIOMemoryDirectionMask & options) {
+ case kIODirectionOut:
+ dataP->fDMAAccess = kIODMAMapReadAccess;
+ break;
+ case kIODirectionIn:
+ dataP->fDMAAccess = kIODMAMapWriteAccess;
+ break;
+ case kIODirectionNone:
+ case kIODirectionOutIn:
+ default:
+ panic("bad dir for upl 0x%x\n", (int) options);
+ break;
+ }
+ // _wireCount++; // UPLs start out life wired
+
+ _length = count;
+ _pages += atop_32(offset + count + PAGE_MASK) - atop_32(offset);
+
+ ioPLBlock iopl;
+ iopl.fIOPL = (upl_t) buffers;
+ upl_set_referenced(iopl.fIOPL, true);
+ upl_page_info_t *pageList = UPL_GET_INTERNAL_PAGE_LIST(iopl.fIOPL);
+
+ if (upl_get_size(iopl.fIOPL) < (count + offset)) {
+ panic("short external upl");
+ }
+
+ _highestPage = upl_get_highest_page(iopl.fIOPL);
+
+ // Set the flag kIOPLOnDevice convieniently equal to 1
+ iopl.fFlags = pageList->device | kIOPLExternUPL;
+ if (!pageList->device) {
+ // Pre-compute the offset into the UPL's page list
+ pageList = &pageList[atop_32(offset)];
+ offset &= PAGE_MASK;
+ }
+ iopl.fIOMDOffset = 0;
+ iopl.fMappedPage = 0;
+ iopl.fPageInfo = (vm_address_t) pageList;
+ iopl.fPageOffset = offset;
+ _memoryEntries->appendBytes(&iopl, sizeof(iopl));
+ } else {
+ // kIOMemoryTypeVirtual | kIOMemoryTypeVirtual64 | kIOMemoryTypeUIO
+ // kIOMemoryTypePhysical | kIOMemoryTypePhysical64
+
+ // Initialize the memory descriptor
+ if (options & kIOMemoryAsReference) {
+#ifndef __LP64__
+ _rangesIsAllocated = false;
+#endif /* !__LP64__ */
+
+ // Hack assignment to get the buffer arg into _ranges.
+ // I'd prefer to do _ranges = (Ranges) buffers, but that doesn't
+ // work, C++ sigh.
+ // This also initialises the uio & physical ranges.
+ _ranges.v = (IOVirtualRange *) buffers;
+ } else {
+#ifndef __LP64__
+ _rangesIsAllocated = true;
+#endif /* !__LP64__ */
+ switch (type) {
+ case kIOMemoryTypeUIO:
+ _ranges.v = (IOVirtualRange *) uio_duplicate((uio_t) buffers);
+ break;
+
+#ifndef __LP64__
+ case kIOMemoryTypeVirtual64:
+ case kIOMemoryTypePhysical64:
+ if (count == 1
+#ifndef __arm__
+ && (((IOAddressRange *) buffers)->address + ((IOAddressRange *) buffers)->length) <= 0x100000000ULL
+#endif
+ ) {
+ if (kIOMemoryTypeVirtual64 == type) {
+ type = kIOMemoryTypeVirtual;
+ } else {
+ type = kIOMemoryTypePhysical;
+ }
+ _flags = (_flags & ~kIOMemoryTypeMask) | type | kIOMemoryAsReference;
+ _rangesIsAllocated = false;
+ _ranges.v = &_singleRange.v;
+ _singleRange.v.address = ((IOAddressRange *) buffers)->address;
+ _singleRange.v.length = ((IOAddressRange *) buffers)->length;
+ break;
+ }
+ _ranges.v64 = IONew(IOAddressRange, count);
+ if (!_ranges.v64) {
+ return false;
+ }
+ bcopy(buffers, _ranges.v, count * sizeof(IOAddressRange));
+ break;
+#endif /* !__LP64__ */
+ case kIOMemoryTypeVirtual:
+ case kIOMemoryTypePhysical:
+ if (count == 1) {
+ _flags |= kIOMemoryAsReference;
+#ifndef __LP64__
+ _rangesIsAllocated = false;
+#endif /* !__LP64__ */
+ _ranges.v = &_singleRange.v;
+ } else {
+ _ranges.v = IONew(IOVirtualRange, count);
+ if (!_ranges.v) {
+ return false;
+ }
+ }
+ bcopy(buffers, _ranges.v, count * sizeof(IOVirtualRange));
+ break;
+ }
+ }
+ _rangesCount = count;
+
+ // Find starting address within the vector of ranges
+ Ranges vec = _ranges;
+ mach_vm_size_t totalLength = 0;
+ unsigned int ind, pages = 0;
+ for (ind = 0; ind < count; ind++) {
+ mach_vm_address_t addr;
+ mach_vm_address_t endAddr;
+ mach_vm_size_t len;
+
+ // addr & len are returned by this function
+ getAddrLenForInd(addr, len, type, vec, ind);
+ if (os_add3_overflow(addr, len, PAGE_MASK, &endAddr)) {
+ break;
+ }
+ if (os_add_overflow(pages, (atop_64(endAddr) - atop_64(addr)), &pages)) {
+ break;
+ }
+ if (os_add_overflow(totalLength, len, &totalLength)) {
+ break;
+ }
+ if ((kIOMemoryTypePhysical == type) || (kIOMemoryTypePhysical64 == type)) {
+ ppnum_t highPage = atop_64(addr + len - 1);
+ if (highPage > _highestPage) {
+ _highestPage = highPage;
+ }
+ }
+ }
+ if ((ind < count)
+ || (totalLength != ((IOByteCount) totalLength))) {
+ return false; /* overflow */
+ }
+ _length = totalLength;
+ _pages = pages;
+
+ // Auto-prepare memory at creation time.
+ // Implied completion when descriptor is free-ed
+
+
+ if ((kIOMemoryTypePhysical == type) || (kIOMemoryTypePhysical64 == type)) {
+ _wireCount++; // Physical MDs are, by definition, wired
+ } else { /* kIOMemoryTypeVirtual | kIOMemoryTypeVirtual64 | kIOMemoryTypeUIO */
+ ioGMDData *dataP;
+ unsigned dataSize;
+
+ if (_pages > atop_64(max_mem)) {
+ return false;
+ }
+
+ dataSize = computeDataSize(_pages, /* upls */ count * 2);
+ if (!initMemoryEntries(dataSize, mapper)) {
+ return false;
+ }
+ dataP = getDataP(_memoryEntries);
+ dataP->fPageCnt = _pages;
+
+ if (((_task != kernel_task) || (kIOMemoryBufferPageable & _flags))
+ && (VM_KERN_MEMORY_NONE == _kernelTag)) {
+ _kernelTag = IOMemoryTag(kernel_map);
+ if (_kernelTag == gIOSurfaceTag) {
+ _userTag = VM_MEMORY_IOSURFACE;
+ }
+ }
+
+ if ((kIOMemoryPersistent & _flags) && !_memRef) {
+ IOReturn
+ err = memoryReferenceCreate(0, &_memRef);
+ if (kIOReturnSuccess != err) {
+ return false;
+ }
+ }
+
+ if ((_flags & kIOMemoryAutoPrepare)
+ && prepare() != kIOReturnSuccess) {
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+/*
+ * free
+ *
+ * Free resources.
+ */
+void
+IOGeneralMemoryDescriptor::free()
+{
+ IOOptionBits type = _flags & kIOMemoryTypeMask;
+
+ if (reserved) {
+ LOCK;
+ reserved->dp.memory = NULL;
+ UNLOCK;
+ }
+ if ((kIOMemoryTypePhysical == type) || (kIOMemoryTypePhysical64 == type)) {
+ ioGMDData * dataP;
+ if (_memoryEntries && (dataP = getDataP(_memoryEntries)) && dataP->fMappedBaseValid) {
+ dmaUnmap(dataP->fMapper, NULL, 0, dataP->fMappedBase, dataP->fMappedLength);
+ dataP->fMappedBaseValid = dataP->fMappedBase = 0;
+ }
+ } else {
+ while (_wireCount) {
+ complete();
+ }
+ }
+
+ if (_memoryEntries) {
+ _memoryEntries->release();
+ }
+
+ if (_ranges.v && !(kIOMemoryAsReference & _flags)) {
+ if (kIOMemoryTypeUIO == type) {
+ uio_free((uio_t) _ranges.v);
+ }
+#ifndef __LP64__
+ else if ((kIOMemoryTypeVirtual64 == type) || (kIOMemoryTypePhysical64 == type)) {
+ IODelete(_ranges.v64, IOAddressRange, _rangesCount);
+ }
+#endif /* !__LP64__ */
+ else {
+ IODelete(_ranges.v, IOVirtualRange, _rangesCount);
+ }
+
+ _ranges.v = NULL;
+ }
+
+ if (reserved) {
+ cleanKernelReserved(reserved);
+ if (reserved->dp.devicePager) {
+ // memEntry holds a ref on the device pager which owns reserved
+ // (IOMemoryDescriptorReserved) so no reserved access after this point
+ device_pager_deallocate((memory_object_t) reserved->dp.devicePager );
+ } else {
+ IODelete(reserved, IOMemoryDescriptorReserved, 1);
+ }
+ reserved = NULL;
+ }
+
+ if (_memRef) {
+ memoryReferenceRelease(_memRef);
+ }
+ if (_prepareLock) {
+ IOLockFree(_prepareLock);
+ }
+
+ super::free();
+}
+
+#ifndef __LP64__
+void
+IOGeneralMemoryDescriptor::unmapFromKernel()
+{
+ panic("IOGMD::unmapFromKernel deprecated");
+}
+
+void
+IOGeneralMemoryDescriptor::mapIntoKernel(unsigned rangeIndex)
+{
+ panic("IOGMD::mapIntoKernel deprecated");
+}
+#endif /* !__LP64__ */
+
+/*
+ * getDirection:
+ *
+ * Get the direction of the transfer.
+ */
+IODirection
+IOMemoryDescriptor::getDirection() const
+{
+#ifndef __LP64__
+ if (_direction) {
+ return _direction;
+ }
+#endif /* !__LP64__ */
+ return (IODirection) (_flags & kIOMemoryDirectionMask);
+}
+
+/*
+ * getLength:
+ *
+ * Get the length of the transfer (over all ranges).
+ */
+IOByteCount
+IOMemoryDescriptor::getLength() const
+{
+ return _length;
+}
+
+void
+IOMemoryDescriptor::setTag( IOOptionBits tag )
+{
+ _tag = tag;
+}
+
+IOOptionBits
+IOMemoryDescriptor::getTag( void )
+{
+ return _tag;
+}
+
+uint64_t
+IOMemoryDescriptor::getFlags(void)
+{
+ return _flags;
+}
+
+#ifndef __LP64__
+#pragma clang diagnostic push
+#pragma clang diagnostic ignored "-Wdeprecated-declarations"
+
+// @@@ gvdl: who is using this API? Seems like a wierd thing to implement.
+IOPhysicalAddress
+IOMemoryDescriptor::getSourceSegment( IOByteCount offset, IOByteCount * length )
+{
+ addr64_t physAddr = 0;
+
+ if (prepare() == kIOReturnSuccess) {
+ physAddr = getPhysicalSegment64( offset, length );
+ complete();
+ }
+
+ return (IOPhysicalAddress) physAddr; // truncated but only page offset is used
+}
+
+#pragma clang diagnostic pop
+
+#endif /* !__LP64__ */
+
+IOByteCount
+IOMemoryDescriptor::readBytes
+(IOByteCount offset, void *bytes, IOByteCount length)
+{
+ addr64_t dstAddr = CAST_DOWN(addr64_t, bytes);
+ IOByteCount remaining;
+
+ // Assert that this entire I/O is withing the available range
+ assert(offset <= _length);
+ assert(offset + length <= _length);
+ if ((offset >= _length)
+ || ((offset + length) > _length)) {
+ return 0;
+ }
+
+ assert(!(kIOMemoryRemote & _flags));
+ if (kIOMemoryRemote & _flags) {
+ return 0;
+ }
+
+ if (kIOMemoryThreadSafe & _flags) {
+ LOCK;
+ }
+
+ remaining = length = min(length, _length - offset);
+ while (remaining) { // (process another target segment?)
+ addr64_t srcAddr64;
+ IOByteCount srcLen;
+
+ srcAddr64 = getPhysicalSegment(offset, &srcLen, kIOMemoryMapperNone);
+ if (!srcAddr64) {
+ break;
+ }
+
+ // Clip segment length to remaining
+ if (srcLen > remaining) {
+ srcLen = remaining;
+ }
+
+ copypv(srcAddr64, dstAddr, srcLen,
+ cppvPsrc | cppvNoRefSrc | cppvFsnk | cppvKmap);
+
+ dstAddr += srcLen;
+ offset += srcLen;
+ remaining -= srcLen;
+ }
+
+ if (kIOMemoryThreadSafe & _flags) {
+ UNLOCK;
+ }
+
+ assert(!remaining);
+
+ return length - remaining;
+}
+
+IOByteCount
+IOMemoryDescriptor::writeBytes
+(IOByteCount inoffset, const void *bytes, IOByteCount length)
+{
+ addr64_t srcAddr = CAST_DOWN(addr64_t, bytes);
+ IOByteCount remaining;
+ IOByteCount offset = inoffset;
+
+ // Assert that this entire I/O is withing the available range
+ assert(offset <= _length);
+ assert(offset + length <= _length);
+
+ assert( !(kIOMemoryPreparedReadOnly & _flags));
+
+ if ((kIOMemoryPreparedReadOnly & _flags)
+ || (offset >= _length)
+ || ((offset + length) > _length)) {
+ return 0;
+ }
+
+ assert(!(kIOMemoryRemote & _flags));
+ if (kIOMemoryRemote & _flags) {
+ return 0;
+ }
+
+ if (kIOMemoryThreadSafe & _flags) {
+ LOCK;
+ }
+
+ remaining = length = min(length, _length - offset);
+ while (remaining) { // (process another target segment?)
+ addr64_t dstAddr64;
+ IOByteCount dstLen;
+
+ dstAddr64 = getPhysicalSegment(offset, &dstLen, kIOMemoryMapperNone);
+ if (!dstAddr64) {
+ break;
+ }
+
+ // Clip segment length to remaining
+ if (dstLen > remaining) {
+ dstLen = remaining;
+ }
+
+ if (!srcAddr) {
+ bzero_phys(dstAddr64, dstLen);
+ } else {
+ copypv(srcAddr, (addr64_t) dstAddr64, dstLen,
+ cppvPsnk | cppvFsnk | cppvNoRefSrc | cppvNoModSnk | cppvKmap);
+ srcAddr += dstLen;
+ }
+ offset += dstLen;
+ remaining -= dstLen;
+ }
+
+ if (kIOMemoryThreadSafe & _flags) {
+ UNLOCK;
+ }
+
+ assert(!remaining);
+
+#if defined(__x86_64__)
+ // copypv does not cppvFsnk on intel
+#else
+ if (!srcAddr) {
+ performOperation(kIOMemoryIncoherentIOFlush, inoffset, length);
+ }
+#endif
+
+ return length - remaining;
+}
+
+#ifndef __LP64__
+void
+IOGeneralMemoryDescriptor::setPosition(IOByteCount position)
+{
+ panic("IOGMD::setPosition deprecated");
+}
+#endif /* !__LP64__ */
+
+static volatile SInt64 gIOMDPreparationID __attribute__((aligned(8))) = (1ULL << 32);
+
+uint64_t
+IOGeneralMemoryDescriptor::getPreparationID( void )
+{
+ ioGMDData *dataP;
+
+ if (!_wireCount) {
+ return kIOPreparationIDUnprepared;
+ }
+
+ if (((kIOMemoryTypeMask & _flags) == kIOMemoryTypePhysical)
+ || ((kIOMemoryTypeMask & _flags) == kIOMemoryTypePhysical64)) {
+ IOMemoryDescriptor::setPreparationID();
+ return IOMemoryDescriptor::getPreparationID();
+ }
+
+ if (!_memoryEntries || !(dataP = getDataP(_memoryEntries))) {
+ return kIOPreparationIDUnprepared;
+ }
+
+ if (kIOPreparationIDUnprepared == dataP->fPreparationID) {
+ SInt64 newID = OSIncrementAtomic64(&gIOMDPreparationID);
+ OSCompareAndSwap64(kIOPreparationIDUnprepared, newID, &dataP->fPreparationID);
+ }
+ return dataP->fPreparationID;
+}
+
+void
+IOMemoryDescriptor::cleanKernelReserved( IOMemoryDescriptorReserved * reserved )
+{
+ if (reserved->creator) {
+ task_deallocate(reserved->creator);
+ reserved->creator = NULL;
+ }
+}
+
+IOMemoryDescriptorReserved *
+IOMemoryDescriptor::getKernelReserved( void )
+{
+ if (!reserved) {
+ reserved = IONewZero(IOMemoryDescriptorReserved, 1);
+ }
+ return reserved;
+}
+
+void
+IOMemoryDescriptor::setPreparationID( void )
+{
+ if (getKernelReserved() && (kIOPreparationIDUnprepared == reserved->preparationID)) {
+ SInt64 newID = OSIncrementAtomic64(&gIOMDPreparationID);
+ OSCompareAndSwap64(kIOPreparationIDUnprepared, newID, &reserved->preparationID);
+ }
+}
+
+uint64_t
+IOMemoryDescriptor::getPreparationID( void )
+{
+ if (reserved) {
+ return reserved->preparationID;
+ } else {
+ return kIOPreparationIDUnsupported;
+ }
+}
+
+void
+IOMemoryDescriptor::setVMTags(uint32_t kernelTag, uint32_t userTag)
+{
+ _kernelTag = (vm_tag_t) kernelTag;
+ _userTag = (vm_tag_t) userTag;
+}
+
+uint32_t
+IOMemoryDescriptor::getVMTag(vm_map_t map)
+{
+ if (vm_kernel_map_is_kernel(map)) {
+ if (VM_KERN_MEMORY_NONE != _kernelTag) {
+ return (uint32_t) _kernelTag;
+ }
+ } else {
+ if (VM_KERN_MEMORY_NONE != _userTag) {
+ return (uint32_t) _userTag;
+ }
+ }
+ return IOMemoryTag(map);
+}
+
+IOReturn
+IOGeneralMemoryDescriptor::dmaCommandOperation(DMACommandOps op, void *vData, UInt dataSize) const
+{
+ IOReturn err = kIOReturnSuccess;
+ DMACommandOps params;
+ IOGeneralMemoryDescriptor * md = const_cast<IOGeneralMemoryDescriptor *>(this);
+ ioGMDData *dataP;
+
+ params = (op & ~kIOMDDMACommandOperationMask & op);
+ op &= kIOMDDMACommandOperationMask;
+
+ if (kIOMDDMAMap == op) {
+ if (dataSize < sizeof(IOMDDMAMapArgs)) {
+ return kIOReturnUnderrun;
+ }
+
+ IOMDDMAMapArgs * data = (IOMDDMAMapArgs *) vData;
+
+ if (!_memoryEntries
+ && !md->initMemoryEntries(computeDataSize(0, 0), kIOMapperWaitSystem)) {
+ return kIOReturnNoMemory;
+ }
+
+ if (_memoryEntries && data->fMapper) {
+ bool remap, keepMap;
+ dataP = getDataP(_memoryEntries);
+
+ if (data->fMapSpec.numAddressBits < dataP->fDMAMapNumAddressBits) {
+ dataP->fDMAMapNumAddressBits = data->fMapSpec.numAddressBits;
+ }
+ if (data->fMapSpec.alignment > dataP->fDMAMapAlignment) {
+ dataP->fDMAMapAlignment = data->fMapSpec.alignment;
+ }
+
+ keepMap = (data->fMapper == gIOSystemMapper);
+ keepMap &= ((data->fOffset == 0) && (data->fLength == _length));
+
+ if ((data->fMapper == gIOSystemMapper) && _prepareLock) {
+ IOLockLock(_prepareLock);
+ }
+
+ remap = (!keepMap);
+ remap |= (dataP->fDMAMapNumAddressBits < 64)
+ && ((dataP->fMappedBase + _length) > (1ULL << dataP->fDMAMapNumAddressBits));
+ remap |= (dataP->fDMAMapAlignment > page_size);
+
+ if (remap || !dataP->fMappedBaseValid) {
+// if (dataP->fMappedBaseValid) OSReportWithBacktrace("kIOMDDMAMap whole %d remap %d params %d\n", whole, remap, params);
+ err = md->dmaMap(data->fMapper, data->fCommand, &data->fMapSpec, data->fOffset, data->fLength, &data->fAlloc, &data->fAllocLength);
+ if (keepMap && (kIOReturnSuccess == err) && !dataP->fMappedBaseValid) {
+ dataP->fMappedBase = data->fAlloc;
+ dataP->fMappedBaseValid = true;
+ dataP->fMappedLength = data->fAllocLength;
+ data->fAllocLength = 0; // IOMD owns the alloc now
+ }
+ } else {
+ data->fAlloc = dataP->fMappedBase;
+ data->fAllocLength = 0; // give out IOMD map
+ md->dmaMapRecord(data->fMapper, data->fCommand, dataP->fMappedLength);
+ }
+ data->fMapContig = !dataP->fDiscontig;
+
+ if ((data->fMapper == gIOSystemMapper) && _prepareLock) {
+ IOLockUnlock(_prepareLock);
+ }
+ }
+ return err;
+ }
+ if (kIOMDDMAUnmap == op) {
+ if (dataSize < sizeof(IOMDDMAMapArgs)) {
+ return kIOReturnUnderrun;
+ }
+ IOMDDMAMapArgs * data = (IOMDDMAMapArgs *) vData;
+
+ err = md->dmaUnmap(data->fMapper, data->fCommand, data->fOffset, data->fAlloc, data->fAllocLength);
+
+ return kIOReturnSuccess;
+ }
+
+ if (kIOMDAddDMAMapSpec == op) {
+ if (dataSize < sizeof(IODMAMapSpecification)) {
+ return kIOReturnUnderrun;
+ }
+
+ IODMAMapSpecification * data = (IODMAMapSpecification *) vData;
+
+ if (!_memoryEntries
+ && !md->initMemoryEntries(computeDataSize(0, 0), kIOMapperWaitSystem)) {
+ return kIOReturnNoMemory;
+ }
+
+ if (_memoryEntries) {
+ dataP = getDataP(_memoryEntries);
+ if (data->numAddressBits < dataP->fDMAMapNumAddressBits) {
+ dataP->fDMAMapNumAddressBits = data->numAddressBits;
+ }
+ if (data->alignment > dataP->fDMAMapAlignment) {
+ dataP->fDMAMapAlignment = data->alignment;
+ }
+ }
+ return kIOReturnSuccess;
+ }
+
+ if (kIOMDGetCharacteristics == op) {
+ if (dataSize < sizeof(IOMDDMACharacteristics)) {
+ return kIOReturnUnderrun;
+ }
+
+ IOMDDMACharacteristics *data = (IOMDDMACharacteristics *) vData;
+ data->fLength = _length;
+ data->fSGCount = _rangesCount;
+ data->fPages = _pages;
+ data->fDirection = getDirection();
+ if (!_wireCount) {
+ data->fIsPrepared = false;
+ } else {
+ data->fIsPrepared = true;
+ data->fHighestPage = _highestPage;
+ if (_memoryEntries) {
+ dataP = getDataP(_memoryEntries);
+ ioPLBlock *ioplList = getIOPLList(dataP);
+ UInt count = getNumIOPL(_memoryEntries, dataP);
+ if (count == 1) {
+ data->fPageAlign = (ioplList[0].fPageOffset & PAGE_MASK) | ~PAGE_MASK;
+ }
+ }
+ }
+
+ return kIOReturnSuccess;
+ } else if (kIOMDDMAActive == op) {
+ if (params) {
+ int16_t prior;
+ prior = OSAddAtomic16(1, &md->_dmaReferences);
+ if (!prior) {
+ md->_mapName = NULL;
+ }
+ } else {
+ if (md->_dmaReferences) {
+ OSAddAtomic16(-1, &md->_dmaReferences);
+ } else {
+ panic("_dmaReferences underflow");
+ }
+ }
+ } else if (kIOMDWalkSegments != op) {
+ return kIOReturnBadArgument;
+ }
+
+ // Get the next segment
+ struct InternalState {
+ IOMDDMAWalkSegmentArgs fIO;
+ mach_vm_size_t fOffset2Index;
+ mach_vm_size_t fNextOffset;
+ UInt fIndex;
+ } *isP;
+
+ // Find the next segment
+ if (dataSize < sizeof(*isP)) {
+ return kIOReturnUnderrun;
+ }
+
+ isP = (InternalState *) vData;
+ mach_vm_size_t offset = isP->fIO.fOffset;
+ uint8_t mapped = isP->fIO.fMapped;
+ uint64_t mappedBase;
+
+ if (mapped && (kIOMemoryRemote & _flags)) {
+ return kIOReturnNotAttached;
+ }
+
+ if (IOMapper::gSystem && mapped
+ && (!(kIOMemoryHostOnly & _flags))
+ && (!_memoryEntries || !getDataP(_memoryEntries)->fMappedBaseValid)) {
+// && (_memoryEntries && !getDataP(_memoryEntries)->fMappedBaseValid))
+ if (!_memoryEntries
+ && !md->initMemoryEntries(computeDataSize(0, 0), kIOMapperWaitSystem)) {
+ return kIOReturnNoMemory;
+ }
+
+ dataP = getDataP(_memoryEntries);
+ if (dataP->fMapper) {
+ IODMAMapSpecification mapSpec;
+ bzero(&mapSpec, sizeof(mapSpec));
+ mapSpec.numAddressBits = dataP->fDMAMapNumAddressBits;
+ mapSpec.alignment = dataP->fDMAMapAlignment;
+ err = md->dmaMap(dataP->fMapper, NULL, &mapSpec, 0, _length, &dataP->fMappedBase, &dataP->fMappedLength);
+ if (kIOReturnSuccess != err) {
+ return err;
+ }
+ dataP->fMappedBaseValid = true;
+ }
+ }
+
+ if (kIOMDDMAWalkMappedLocal == mapped) {
+ mappedBase = isP->fIO.fMappedBase;
+ } else if (mapped) {
+ if (IOMapper::gSystem
+ && (!(kIOMemoryHostOnly & _flags))
+ && _memoryEntries
+ && (dataP = getDataP(_memoryEntries))
+ && dataP->fMappedBaseValid) {
+ mappedBase = dataP->fMappedBase;
+ } else {
+ mapped = 0;
+ }
+ }
+
+ if (offset >= _length) {
+ return (offset == _length)? kIOReturnOverrun : kIOReturnInternalError;
+ }
+
+ // Validate the previous offset
+ UInt ind;
+ mach_vm_size_t off2Ind = isP->fOffset2Index;
+ if (!params
+ && offset
+ && (offset == isP->fNextOffset || off2Ind <= offset)) {
+ ind = isP->fIndex;
+ } else {
+ ind = off2Ind = 0; // Start from beginning
+ }
+ mach_vm_size_t length;
+ UInt64 address;
+
+ if ((_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical) {
+ // Physical address based memory descriptor
+ const IOPhysicalRange *physP = (IOPhysicalRange *) &_ranges.p[0];
+
+ // Find the range after the one that contains the offset
+ mach_vm_size_t len;
+ for (len = 0; off2Ind <= offset; ind++) {
+ len = physP[ind].length;
+ off2Ind += len;
+ }
+
+ // Calculate length within range and starting address
+ length = off2Ind - offset;
+ address = physP[ind - 1].address + len - length;
+
+ if (true && mapped) {
+ address = mappedBase + offset;
+ } else {
+ // see how far we can coalesce ranges
+ while (ind < _rangesCount && address + length == physP[ind].address) {
+ len = physP[ind].length;
+ length += len;
+ off2Ind += len;
+ ind++;
+ }
+ }
+
+ // correct contiguous check overshoot
+ ind--;
+ off2Ind -= len;
+ }
+#ifndef __LP64__
+ else if ((_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical64) {
+ // Physical address based memory descriptor
+ const IOAddressRange *physP = (IOAddressRange *) &_ranges.v64[0];
+
+ // Find the range after the one that contains the offset
+ mach_vm_size_t len;
+ for (len = 0; off2Ind <= offset; ind++) {
+ len = physP[ind].length;
+ off2Ind += len;
+ }
+
+ // Calculate length within range and starting address
+ length = off2Ind - offset;
+ address = physP[ind - 1].address + len - length;
+
+ if (true && mapped) {
+ address = mappedBase + offset;
+ } else {
+ // see how far we can coalesce ranges
+ while (ind < _rangesCount && address + length == physP[ind].address) {
+ len = physP[ind].length;
+ length += len;
+ off2Ind += len;
+ ind++;
+ }
+ }
+ // correct contiguous check overshoot
+ ind--;
+ off2Ind -= len;
+ }
+#endif /* !__LP64__ */
+ else {
+ do {
+ if (!_wireCount) {
+ panic("IOGMD: not wired for the IODMACommand");
+ }
+
+ assert(_memoryEntries);
+
+ dataP = getDataP(_memoryEntries);
+ const ioPLBlock *ioplList = getIOPLList(dataP);
+ UInt numIOPLs = getNumIOPL(_memoryEntries, dataP);
+ upl_page_info_t *pageList = getPageList(dataP);
+
+ assert(numIOPLs > 0);
+
+ // Scan through iopl info blocks looking for block containing offset
+ while (ind < numIOPLs && offset >= ioplList[ind].fIOMDOffset) {
+ ind++;
+ }
+
+ // Go back to actual range as search goes past it
+ ioPLBlock ioplInfo = ioplList[ind - 1];
+ off2Ind = ioplInfo.fIOMDOffset;
+
+ if (ind < numIOPLs) {
+ length = ioplList[ind].fIOMDOffset;
+ } else {
+ length = _length;
+ }
+ length -= offset; // Remainder within iopl
+
+ // Subtract offset till this iopl in total list
+ offset -= off2Ind;
+
+ // If a mapped address is requested and this is a pre-mapped IOPL
+ // then just need to compute an offset relative to the mapped base.
+ if (mapped) {
+ offset += (ioplInfo.fPageOffset & PAGE_MASK);
+ address = trunc_page_64(mappedBase) + ptoa_64(ioplInfo.fMappedPage) + offset;
+ continue; // Done leave do/while(false) now
+ }
+
+ // The offset is rebased into the current iopl.
+ // Now add the iopl 1st page offset.
+ offset += ioplInfo.fPageOffset;
+
+ // For external UPLs the fPageInfo field points directly to
+ // the upl's upl_page_info_t array.
+ if (ioplInfo.fFlags & kIOPLExternUPL) {
+ pageList = (upl_page_info_t *) ioplInfo.fPageInfo;
+ } else {
+ pageList = &pageList[ioplInfo.fPageInfo];
+ }
+
+ // Check for direct device non-paged memory
+ if (ioplInfo.fFlags & kIOPLOnDevice) {
+ address = ptoa_64(pageList->phys_addr) + offset;
+ continue; // Done leave do/while(false) now
+ }
+
+ // Now we need compute the index into the pageList
+ UInt pageInd = atop_32(offset);
+ offset &= PAGE_MASK;
+
+ // Compute the starting address of this segment
+ IOPhysicalAddress pageAddr = pageList[pageInd].phys_addr;
+ if (!pageAddr) {
+ panic("!pageList phys_addr");
+ }
+
+ address = ptoa_64(pageAddr) + offset;
+
+ // length is currently set to the length of the remainider of the iopl.
+ // We need to check that the remainder of the iopl is contiguous.
+ // This is indicated by pageList[ind].phys_addr being sequential.
+ IOByteCount contigLength = PAGE_SIZE - offset;
+ while (contigLength < length
+ && ++pageAddr == pageList[++pageInd].phys_addr) {
+ contigLength += PAGE_SIZE;
+ }
+
+ if (contigLength < length) {
+ length = contigLength;
+ }
+
+
+ assert(address);
+ assert(length);
+ } while (false);
+ }
+
+ // Update return values and state
+ isP->fIO.fIOVMAddr = address;
+ isP->fIO.fLength = length;
+ isP->fIndex = ind;
+ isP->fOffset2Index = off2Ind;
+ isP->fNextOffset = isP->fIO.fOffset + length;
+
+ return kIOReturnSuccess;
+}
+
+addr64_t
+IOGeneralMemoryDescriptor::getPhysicalSegment(IOByteCount offset, IOByteCount *lengthOfSegment, IOOptionBits options)
+{
+ IOReturn ret;
+ mach_vm_address_t address = 0;
+ mach_vm_size_t length = 0;
+ IOMapper * mapper = gIOSystemMapper;
+ IOOptionBits type = _flags & kIOMemoryTypeMask;
+
+ if (lengthOfSegment) {
+ *lengthOfSegment = 0;
+ }
+
+ if (offset >= _length) {
+ return 0;
+ }
+
+ // IOMemoryDescriptor::doMap() cannot use getPhysicalSegment() to obtain the page offset, since it must
+ // support the unwired memory case in IOGeneralMemoryDescriptor, and hibernate_write_image() cannot use
+ // map()->getVirtualAddress() to obtain the kernel pointer, since it must prevent the memory allocation
+ // due to IOMemoryMap, so _kIOMemorySourceSegment is a necessary evil until all of this gets cleaned up
+
+ if ((options & _kIOMemorySourceSegment) && (kIOMemoryTypeUPL != type)) {
+ unsigned rangesIndex = 0;
+ Ranges vec = _ranges;
+ mach_vm_address_t addr;
+
+ // Find starting address within the vector of ranges
+ for (;;) {
+ getAddrLenForInd(addr, length, type, vec, rangesIndex);
+ if (offset < length) {
+ break;
+ }
+ offset -= length; // (make offset relative)
+ rangesIndex++;
+ }
+
+ // Now that we have the starting range,
+ // lets find the last contiguous range
+ addr += offset;
+ length -= offset;
+
+ for (++rangesIndex; rangesIndex < _rangesCount; rangesIndex++) {
+ mach_vm_address_t newAddr;
+ mach_vm_size_t newLen;
+
+ getAddrLenForInd(newAddr, newLen, type, vec, rangesIndex);
+ if (addr + length != newAddr) {
+ break;
+ }
+ length += newLen;
+ }
+ if (addr) {
+ address = (IOPhysicalAddress) addr; // Truncate address to 32bit
+ }
+ } else {
+ IOMDDMAWalkSegmentState _state;
+ IOMDDMAWalkSegmentArgs * state = (IOMDDMAWalkSegmentArgs *) (void *)&_state;
+
+ state->fOffset = offset;
+ state->fLength = _length - offset;
+ state->fMapped = (0 == (options & kIOMemoryMapperNone)) && !(_flags & kIOMemoryHostOrRemote);
+
+ ret = dmaCommandOperation(kIOMDFirstSegment, _state, sizeof(_state));
+
+ if ((kIOReturnSuccess != ret) && (kIOReturnOverrun != ret)) {
+ DEBG("getPhysicalSegment dmaCommandOperation(%lx), %p, offset %qx, addr %qx, len %qx\n",
+ ret, this, state->fOffset,
+ state->fIOVMAddr, state->fLength);
+ }
+ if (kIOReturnSuccess == ret) {
+ address = state->fIOVMAddr;
+ length = state->fLength;
+ }
+
+ // dmaCommandOperation() does not distinguish between "mapped" and "unmapped" physical memory, even
+ // with fMapped set correctly, so we must handle the transformation here until this gets cleaned up
+
+ if (mapper && ((kIOMemoryTypePhysical == type) || (kIOMemoryTypePhysical64 == type))) {
+ if ((options & kIOMemoryMapperNone) && !(_flags & kIOMemoryMapperNone)) {
+ addr64_t origAddr = address;
+ IOByteCount origLen = length;
+
+ address = mapper->mapToPhysicalAddress(origAddr);
+ length = page_size - (address & (page_size - 1));
+ while ((length < origLen)
+ && ((address + length) == mapper->mapToPhysicalAddress(origAddr + length))) {
+ length += page_size;
+ }
+ if (length > origLen) {
+ length = origLen;
+ }
+ }
+ }
+ }
+
+ if (!address) {
+ length = 0;
+ }
+
+ if (lengthOfSegment) {
+ *lengthOfSegment = length;
+ }
+
+ return address;
+}
+
+#ifndef __LP64__
+#pragma clang diagnostic push
+#pragma clang diagnostic ignored "-Wdeprecated-declarations"
+
+addr64_t
+IOMemoryDescriptor::getPhysicalSegment(IOByteCount offset, IOByteCount *lengthOfSegment, IOOptionBits options)
+{
+ addr64_t address = 0;
+
+ if (options & _kIOMemorySourceSegment) {
+ address = getSourceSegment(offset, lengthOfSegment);
+ } else if (options & kIOMemoryMapperNone) {
+ address = getPhysicalSegment64(offset, lengthOfSegment);
+ } else {
+ address = getPhysicalSegment(offset, lengthOfSegment);
+ }
+
+ return address;
+}
+#pragma clang diagnostic pop
+
+addr64_t
+IOGeneralMemoryDescriptor::getPhysicalSegment64(IOByteCount offset, IOByteCount *lengthOfSegment)
+{
+ return getPhysicalSegment(offset, lengthOfSegment, kIOMemoryMapperNone);
+}
+
+IOPhysicalAddress
+IOGeneralMemoryDescriptor::getPhysicalSegment(IOByteCount offset, IOByteCount *lengthOfSegment)
+{
+ addr64_t address = 0;
+ IOByteCount length = 0;
+
+ address = getPhysicalSegment(offset, lengthOfSegment, 0);
+
+ if (lengthOfSegment) {
+ length = *lengthOfSegment;
+ }
+
+ if ((address + length) > 0x100000000ULL) {
+ panic("getPhysicalSegment() out of 32b range 0x%qx, len 0x%lx, class %s",
+ address, (long) length, (getMetaClass())->getClassName());
+ }
+
+ return (IOPhysicalAddress) address;
+}
+
+addr64_t
+IOMemoryDescriptor::getPhysicalSegment64(IOByteCount offset, IOByteCount *lengthOfSegment)
+{
+ IOPhysicalAddress phys32;
+ IOByteCount length;
+ addr64_t phys64;
+ IOMapper * mapper = NULL;
+
+ phys32 = getPhysicalSegment(offset, lengthOfSegment);
+ if (!phys32) {
+ return 0;
+ }
+
+ if (gIOSystemMapper) {
+ mapper = gIOSystemMapper;
+ }
+
+ if (mapper) {
+ IOByteCount origLen;
+
+ phys64 = mapper->mapToPhysicalAddress(phys32);
+ origLen = *lengthOfSegment;
+ length = page_size - (phys64 & (page_size - 1));
+ while ((length < origLen)
+ && ((phys64 + length) == mapper->mapToPhysicalAddress(phys32 + length))) {
+ length += page_size;
+ }
+ if (length > origLen) {
+ length = origLen;
+ }
+
+ *lengthOfSegment = length;
+ } else {
+ phys64 = (addr64_t) phys32;
+ }
+
+ return phys64;
+}
+
+IOPhysicalAddress
+IOMemoryDescriptor::getPhysicalSegment(IOByteCount offset, IOByteCount *lengthOfSegment)
+{
+ return (IOPhysicalAddress) getPhysicalSegment(offset, lengthOfSegment, 0);
+}
+
+IOPhysicalAddress
+IOGeneralMemoryDescriptor::getSourceSegment(IOByteCount offset, IOByteCount *lengthOfSegment)
+{
+ return (IOPhysicalAddress) getPhysicalSegment(offset, lengthOfSegment, _kIOMemorySourceSegment);
+}
+
+#pragma clang diagnostic push
+#pragma clang diagnostic ignored "-Wdeprecated-declarations"
+
+void *
+IOGeneralMemoryDescriptor::getVirtualSegment(IOByteCount offset,
+ IOByteCount * lengthOfSegment)
+{
+ if (_task == kernel_task) {
+ return (void *) getSourceSegment(offset, lengthOfSegment);
+ } else {
+ panic("IOGMD::getVirtualSegment deprecated");
+ }
+
+ return NULL;
+}
+#pragma clang diagnostic pop
+#endif /* !__LP64__ */
+
+IOReturn
+IOMemoryDescriptor::dmaCommandOperation(DMACommandOps op, void *vData, UInt dataSize) const
+{
+ IOMemoryDescriptor *md = const_cast<IOMemoryDescriptor *>(this);
+ DMACommandOps params;
+ IOReturn err;
+
+ params = (op & ~kIOMDDMACommandOperationMask & op);
+ op &= kIOMDDMACommandOperationMask;
+
+ if (kIOMDGetCharacteristics == op) {
+ if (dataSize < sizeof(IOMDDMACharacteristics)) {
+ return kIOReturnUnderrun;
+ }
+
+ IOMDDMACharacteristics *data = (IOMDDMACharacteristics *) vData;
+ data->fLength = getLength();
+ data->fSGCount = 0;
+ data->fDirection = getDirection();
+ data->fIsPrepared = true; // Assume prepared - fails safe
+ } else if (kIOMDWalkSegments == op) {
+ if (dataSize < sizeof(IOMDDMAWalkSegmentArgs)) {
+ return kIOReturnUnderrun;
+ }
+
+ IOMDDMAWalkSegmentArgs *data = (IOMDDMAWalkSegmentArgs *) vData;
+ IOByteCount offset = (IOByteCount) data->fOffset;
+
+ IOPhysicalLength length;
+ if (data->fMapped && IOMapper::gSystem) {
+ data->fIOVMAddr = md->getPhysicalSegment(offset, &length);
+ } else {
+ data->fIOVMAddr = md->getPhysicalSegment(offset, &length, kIOMemoryMapperNone);
+ }
+ data->fLength = length;
+ } else if (kIOMDAddDMAMapSpec == op) {
+ return kIOReturnUnsupported;
+ } else if (kIOMDDMAMap == op) {
+ if (dataSize < sizeof(IOMDDMAMapArgs)) {
+ return kIOReturnUnderrun;
+ }
+ IOMDDMAMapArgs * data = (IOMDDMAMapArgs *) vData;
+
+ if (params) {
+ panic("class %s does not support IODMACommand::kIterateOnly", getMetaClass()->getClassName());
+ }
+
+ data->fMapContig = true;
+ err = md->dmaMap(data->fMapper, data->fCommand, &data->fMapSpec, data->fOffset, data->fLength, &data->fAlloc, &data->fAllocLength);
+
+ return err;
+ } else if (kIOMDDMAUnmap == op) {
+ if (dataSize < sizeof(IOMDDMAMapArgs)) {
+ return kIOReturnUnderrun;
+ }
+ IOMDDMAMapArgs * data = (IOMDDMAMapArgs *) vData;
+
+ err = md->dmaUnmap(data->fMapper, data->fCommand, data->fOffset, data->fAlloc, data->fAllocLength);
+
+ return kIOReturnSuccess;
+ } else {
+ return kIOReturnBadArgument;
+ }
+
+ return kIOReturnSuccess;
+}
+
+IOReturn
+IOGeneralMemoryDescriptor::setPurgeable( IOOptionBits newState,
+ IOOptionBits * oldState )
+{
+ IOReturn err = kIOReturnSuccess;
+
+ vm_purgable_t control;
+ int state;
+
+ assert(!(kIOMemoryRemote & _flags));
+ if (kIOMemoryRemote & _flags) {
+ return kIOReturnNotAttached;
+ }
+
+ if (_memRef) {
+ err = super::setPurgeable(newState, oldState);
+ } else {
+ if (kIOMemoryThreadSafe & _flags) {
+ LOCK;
+ }
+ do{
+ // Find the appropriate vm_map for the given task
+ vm_map_t curMap;
+ if (_task == kernel_task && (kIOMemoryBufferPageable & _flags)) {
+ err = kIOReturnNotReady;
+ break;
+ } else if (!_task) {
+ err = kIOReturnUnsupported;
+ break;
+ } else {
+ curMap = get_task_map(_task);
+ if (NULL == curMap) {
+ err = KERN_INVALID_ARGUMENT;
+ break;
+ }
+ }
+
+ // can only do one range
+ Ranges vec = _ranges;
+ IOOptionBits type = _flags & kIOMemoryTypeMask;
+ mach_vm_address_t addr;
+ mach_vm_size_t len;
+ getAddrLenForInd(addr, len, type, vec, 0);
+
+ err = purgeableControlBits(newState, &control, &state);
+ if (kIOReturnSuccess != err) {
+ break;
+ }
+ err = vm_map_purgable_control(curMap, addr, control, &state);
+ if (oldState) {
+ if (kIOReturnSuccess == err) {
+ err = purgeableStateBits(&state);
+ *oldState = state;
+ }
+ }
+ }while (false);
+ if (kIOMemoryThreadSafe & _flags) {
+ UNLOCK;
+ }
+ }
+
+ return err;
+}
+
+IOReturn
+IOMemoryDescriptor::setPurgeable( IOOptionBits newState,
+ IOOptionBits * oldState )
+{
+ IOReturn err = kIOReturnNotReady;
+
+ if (kIOMemoryThreadSafe & _flags) {
+ LOCK;
+ }
+ if (_memRef) {
+ err = IOGeneralMemoryDescriptor::memoryReferenceSetPurgeable(_memRef, newState, oldState);
+ }
+ if (kIOMemoryThreadSafe & _flags) {
+ UNLOCK;
+ }
+
+ return err;
+}
+
+IOReturn
+IOGeneralMemoryDescriptor::setOwnership( task_t newOwner,
+ int newLedgerTag,
+ IOOptionBits newLedgerOptions )
+{
+ IOReturn err = kIOReturnSuccess;
+
+ assert(!(kIOMemoryRemote & _flags));
+ if (kIOMemoryRemote & _flags) {
+ return kIOReturnNotAttached;
+ }
+
+ if (iokit_iomd_setownership_enabled == FALSE) {
+ return kIOReturnUnsupported;
+ }
+
+ if (_memRef) {
+ err = super::setOwnership(newOwner, newLedgerTag, newLedgerOptions);
+ } else {
+ err = kIOReturnUnsupported;
+ }
+
+ return err;
+}
+
+IOReturn
+IOMemoryDescriptor::setOwnership( task_t newOwner,
+ int newLedgerTag,
+ IOOptionBits newLedgerOptions )
+{
+ IOReturn err = kIOReturnNotReady;
+
+ assert(!(kIOMemoryRemote & _flags));
+ if (kIOMemoryRemote & _flags) {
+ return kIOReturnNotAttached;
+ }
+
+ if (iokit_iomd_setownership_enabled == FALSE) {
+ return kIOReturnUnsupported;
+ }
+
+ if (kIOMemoryThreadSafe & _flags) {
+ LOCK;
+ }
+ if (_memRef) {
+ err = IOGeneralMemoryDescriptor::memoryReferenceSetOwnership(_memRef, newOwner, newLedgerTag, newLedgerOptions);
+ } else {
+ IOMultiMemoryDescriptor * mmd;
+ IOSubMemoryDescriptor * smd;
+ if ((smd = OSDynamicCast(IOSubMemoryDescriptor, this))) {
+ err = smd->setOwnership(newOwner, newLedgerTag, newLedgerOptions);
+ } else if ((mmd = OSDynamicCast(IOMultiMemoryDescriptor, this))) {
+ err = mmd->setOwnership(newOwner, newLedgerTag, newLedgerOptions);
+ }
+ }
+ if (kIOMemoryThreadSafe & _flags) {
+ UNLOCK;
+ }
+
+ return err;
+}
+
+IOReturn
+IOMemoryDescriptor::getPageCounts( IOByteCount * residentPageCount,
+ IOByteCount * dirtyPageCount )
+{
+ IOReturn err = kIOReturnNotReady;
+
+ assert(!(kIOMemoryRemote & _flags));
+ if (kIOMemoryRemote & _flags) {
+ return kIOReturnNotAttached;
+ }
+
+ if (kIOMemoryThreadSafe & _flags) {
+ LOCK;
+ }
+ if (_memRef) {
+ err = IOGeneralMemoryDescriptor::memoryReferenceGetPageCounts(_memRef, residentPageCount, dirtyPageCount);
+ } else {
+ IOMultiMemoryDescriptor * mmd;
+ IOSubMemoryDescriptor * smd;
+ if ((smd = OSDynamicCast(IOSubMemoryDescriptor, this))) {
+ err = smd->getPageCounts(residentPageCount, dirtyPageCount);
+ } else if ((mmd = OSDynamicCast(IOMultiMemoryDescriptor, this))) {
+ err = mmd->getPageCounts(residentPageCount, dirtyPageCount);
+ }
+ }
+ if (kIOMemoryThreadSafe & _flags) {
+ UNLOCK;
+ }
+
+ return err;
+}
+
+
+#if defined(__arm__) || defined(__arm64__)
+extern "C" void dcache_incoherent_io_flush64(addr64_t pa, unsigned int count, unsigned int remaining, unsigned int *res);
+extern "C" void dcache_incoherent_io_store64(addr64_t pa, unsigned int count, unsigned int remaining, unsigned int *res);
+#else /* defined(__arm__) || defined(__arm64__) */
+extern "C" void dcache_incoherent_io_flush64(addr64_t pa, unsigned int count);
+extern "C" void dcache_incoherent_io_store64(addr64_t pa, unsigned int count);
+#endif /* defined(__arm__) || defined(__arm64__) */
+
+static void
+SetEncryptOp(addr64_t pa, unsigned int count)
+{
+ ppnum_t page, end;
+
+ page = atop_64(round_page_64(pa));
+ end = atop_64(trunc_page_64(pa + count));
+ for (; page < end; page++) {
+ pmap_clear_noencrypt(page);
+ }
+}
+
+static void
+ClearEncryptOp(addr64_t pa, unsigned int count)
+{
+ ppnum_t page, end;
+
+ page = atop_64(round_page_64(pa));
+ end = atop_64(trunc_page_64(pa + count));
+ for (; page < end; page++) {
+ pmap_set_noencrypt(page);
+ }
+}
+
+IOReturn
+IOMemoryDescriptor::performOperation( IOOptionBits options,
+ IOByteCount offset, IOByteCount length )
+{
+ IOByteCount remaining;
+ unsigned int res;
+ void (*func)(addr64_t pa, unsigned int count) = NULL;
+#if defined(__arm__) || defined(__arm64__)
+ void (*func_ext)(addr64_t pa, unsigned int count, unsigned int remaining, unsigned int *result) = NULL;
+#endif
+
+ assert(!(kIOMemoryRemote & _flags));
+ if (kIOMemoryRemote & _flags) {
+ return kIOReturnNotAttached;
+ }
+
+ switch (options) {
+ case kIOMemoryIncoherentIOFlush:
+#if defined(__arm__) || defined(__arm64__)
+ func_ext = &dcache_incoherent_io_flush64;
+#if __ARM_COHERENT_IO__
+ func_ext(0, 0, 0, &res);
+ return kIOReturnSuccess;
+#else /* __ARM_COHERENT_IO__ */
+ break;
+#endif /* __ARM_COHERENT_IO__ */
+#else /* defined(__arm__) || defined(__arm64__) */
+ func = &dcache_incoherent_io_flush64;
+ break;
+#endif /* defined(__arm__) || defined(__arm64__) */
+ case kIOMemoryIncoherentIOStore:
+#if defined(__arm__) || defined(__arm64__)
+ func_ext = &dcache_incoherent_io_store64;
+#if __ARM_COHERENT_IO__
+ func_ext(0, 0, 0, &res);
+ return kIOReturnSuccess;
+#else /* __ARM_COHERENT_IO__ */
+ break;
+#endif /* __ARM_COHERENT_IO__ */
+#else /* defined(__arm__) || defined(__arm64__) */
+ func = &dcache_incoherent_io_store64;
+ break;
+#endif /* defined(__arm__) || defined(__arm64__) */
+
+ case kIOMemorySetEncrypted:
+ func = &SetEncryptOp;
+ break;
+ case kIOMemoryClearEncrypted:
+ func = &ClearEncryptOp;
+ break;
+ }
+
+#if defined(__arm__) || defined(__arm64__)
+ if ((func == NULL) && (func_ext == NULL)) {
+ return kIOReturnUnsupported;
+ }
+#else /* defined(__arm__) || defined(__arm64__) */
+ if (!func) {
+ return kIOReturnUnsupported;
+ }
+#endif /* defined(__arm__) || defined(__arm64__) */
+
+ if (kIOMemoryThreadSafe & _flags) {
+ LOCK;
+ }
+
+ res = 0x0UL;
+ remaining = length = min(length, getLength() - offset);
+ while (remaining) {
+ // (process another target segment?)
+ addr64_t dstAddr64;
+ IOByteCount dstLen;
+
+ dstAddr64 = getPhysicalSegment(offset, &dstLen, kIOMemoryMapperNone);
+ if (!dstAddr64) {
+ break;
+ }
+
+ // Clip segment length to remaining
+ if (dstLen > remaining) {
+ dstLen = remaining;
+ }
+
+#if defined(__arm__) || defined(__arm64__)
+ if (func) {
+ (*func)(dstAddr64, dstLen);
+ }
+ if (func_ext) {
+ (*func_ext)(dstAddr64, dstLen, remaining, &res);
+ if (res != 0x0UL) {
+ remaining = 0;
+ break;
+ }
+ }
+#else /* defined(__arm__) || defined(__arm64__) */
+ (*func)(dstAddr64, dstLen);
+#endif /* defined(__arm__) || defined(__arm64__) */
+
+ offset += dstLen;
+ remaining -= dstLen;
+ }
+
+ if (kIOMemoryThreadSafe & _flags) {
+ UNLOCK;
+ }
+
+ return remaining ? kIOReturnUnderrun : kIOReturnSuccess;
+}
+
+/*
+ *
+ */
+
+#if defined(__i386__) || defined(__x86_64__)
+
+#define io_kernel_static_start vm_kernel_stext
+#define io_kernel_static_end vm_kernel_etext
+
+#elif defined(__arm__) || defined(__arm64__)
+
+extern vm_offset_t static_memory_end;
+
+#if defined(__arm64__)
+#define io_kernel_static_start vm_kext_base
+#else /* defined(__arm64__) */
+#define io_kernel_static_start vm_kernel_stext
+#endif /* defined(__arm64__) */
+
+#define io_kernel_static_end static_memory_end
+
+#else
+#error io_kernel_static_end is undefined for this architecture
+#endif
+
+static kern_return_t
+io_get_kernel_static_upl(
+ vm_map_t /* map */,
+ uintptr_t offset,
+ upl_size_t *upl_size,
+ upl_t *upl,
+ upl_page_info_array_t page_list,
+ unsigned int *count,
+ ppnum_t *highest_page)
+{
+ unsigned int pageCount, page;
+ ppnum_t phys;
+ ppnum_t highestPage = 0;
+
+ pageCount = atop_32(*upl_size);
+ if (pageCount > *count) {
+ pageCount = *count;
+ }
+
+ *upl = NULL;
+
+ for (page = 0; page < pageCount; page++) {
+ phys = pmap_find_phys(kernel_pmap, ((addr64_t)offset) + ptoa_64(page));
+ if (!phys) {
+ break;
+ }
+ page_list[page].phys_addr = phys;
+ page_list[page].free_when_done = 0;
+ page_list[page].absent = 0;
+ page_list[page].dirty = 0;
+ page_list[page].precious = 0;
+ page_list[page].device = 0;
+ if (phys > highestPage) {
+ highestPage = phys;
+ }
+ }
+
+ *highest_page = highestPage;
+
+ return (page >= pageCount) ? kIOReturnSuccess : kIOReturnVMError;
+}
+
+IOReturn
+IOGeneralMemoryDescriptor::wireVirtual(IODirection forDirection)
+{
+ IOOptionBits type = _flags & kIOMemoryTypeMask;
+ IOReturn error = kIOReturnSuccess;
+ ioGMDData *dataP;
+ upl_page_info_array_t pageInfo;
+ ppnum_t mapBase;
+ vm_tag_t tag = VM_KERN_MEMORY_NONE;
+
+ assert(kIOMemoryTypeVirtual == type || kIOMemoryTypeVirtual64 == type || kIOMemoryTypeUIO == type);
+
+ if ((kIODirectionOutIn & forDirection) == kIODirectionNone) {
+ forDirection = (IODirection) (forDirection | getDirection());
+ }
+
+ dataP = getDataP(_memoryEntries);
+ upl_control_flags_t uplFlags; // This Mem Desc's default flags for upl creation
+ switch (kIODirectionOutIn & forDirection) {
+ case kIODirectionOut:
+ // Pages do not need to be marked as dirty on commit
+ uplFlags = UPL_COPYOUT_FROM;
+ dataP->fDMAAccess = kIODMAMapReadAccess;
+ break;
+
+ case kIODirectionIn:
+ dataP->fDMAAccess = kIODMAMapWriteAccess;
+ uplFlags = 0; // i.e. ~UPL_COPYOUT_FROM
+ break;
+
+ default:
+ dataP->fDMAAccess = kIODMAMapReadAccess | kIODMAMapWriteAccess;
+ uplFlags = 0; // i.e. ~UPL_COPYOUT_FROM
+ break;
+ }
+
+ if (_wireCount) {
+ if ((kIOMemoryPreparedReadOnly & _flags) && !(UPL_COPYOUT_FROM & uplFlags)) {
+ OSReportWithBacktrace("IOMemoryDescriptor 0x%lx prepared read only", VM_KERNEL_ADDRPERM(this));
+ error = kIOReturnNotWritable;
+ }
+ } else {
+ IOMapper *mapper;
+
+ mapper = dataP->fMapper;
+ dataP->fMappedBaseValid = dataP->fMappedBase = 0;
+
+ uplFlags |= UPL_SET_IO_WIRE | UPL_SET_LITE;
+ tag = _kernelTag;
+ if (VM_KERN_MEMORY_NONE == tag) {
+ tag = IOMemoryTag(kernel_map);
+ }
+
+ if (kIODirectionPrepareToPhys32 & forDirection) {
+ if (!mapper) {
+ uplFlags |= UPL_NEED_32BIT_ADDR;
+ }
+ if (dataP->fDMAMapNumAddressBits > 32) {
+ dataP->fDMAMapNumAddressBits = 32;
+ }
+ }
+ if (kIODirectionPrepareNoFault & forDirection) {
+ uplFlags |= UPL_REQUEST_NO_FAULT;
+ }
+ if (kIODirectionPrepareNoZeroFill & forDirection) {
+ uplFlags |= UPL_NOZEROFILLIO;
+ }
+ if (kIODirectionPrepareNonCoherent & forDirection) {
+ uplFlags |= UPL_REQUEST_FORCE_COHERENCY;
+ }
+
+ mapBase = 0;
+
+ // Note that appendBytes(NULL) zeros the data up to the desired length
+ // and the length parameter is an unsigned int
+ size_t uplPageSize = dataP->fPageCnt * sizeof(upl_page_info_t);
+ if (uplPageSize > ((unsigned int)uplPageSize)) {
+ return kIOReturnNoMemory;
+ }
+ if (!_memoryEntries->appendBytes(NULL, uplPageSize)) {
+ return kIOReturnNoMemory;
+ }
+ dataP = NULL;
+
+ // Find the appropriate vm_map for the given task
+ vm_map_t curMap;
+ if ((NULL != _memRef) || ((_task == kernel_task && (kIOMemoryBufferPageable & _flags)))) {
+ curMap = NULL;
+ } else {
+ curMap = get_task_map(_task);
+ }
+
+ // Iterate over the vector of virtual ranges
+ Ranges vec = _ranges;
+ unsigned int pageIndex = 0;
+ IOByteCount mdOffset = 0;
+ ppnum_t highestPage = 0;
+
+ IOMemoryEntry * memRefEntry = NULL;
+ if (_memRef) {
+ memRefEntry = &_memRef->entries[0];
+ }
+
+ for (UInt range = 0; range < _rangesCount; range++) {
+ ioPLBlock iopl;
+ mach_vm_address_t startPage, startPageOffset;
+ mach_vm_size_t numBytes;
+ ppnum_t highPage = 0;
+
+ // Get the startPage address and length of vec[range]
+ getAddrLenForInd(startPage, numBytes, type, vec, range);
+ startPageOffset = startPage & PAGE_MASK;
+ iopl.fPageOffset = startPageOffset;
+ numBytes += startPageOffset;
+ startPage = trunc_page_64(startPage);
+
+ if (mapper) {
+ iopl.fMappedPage = mapBase + pageIndex;
+ } else {
+ iopl.fMappedPage = 0;
+ }
+
+ // Iterate over the current range, creating UPLs
+ while (numBytes) {
+ vm_address_t kernelStart = (vm_address_t) startPage;
+ vm_map_t theMap;
+ if (curMap) {
+ theMap = curMap;
+ } else if (_memRef) {
+ theMap = NULL;
+ } else {
+ assert(_task == kernel_task);
+ theMap = IOPageableMapForAddress(kernelStart);
+ }
+
+ // ioplFlags is an in/out parameter
+ upl_control_flags_t ioplFlags = uplFlags;
+ dataP = getDataP(_memoryEntries);
+ pageInfo = getPageList(dataP);
+ upl_page_list_ptr_t baseInfo = &pageInfo[pageIndex];
+
+ mach_vm_size_t _ioplSize = round_page(numBytes);
+ upl_size_t ioplSize = (_ioplSize <= MAX_UPL_SIZE_BYTES) ? _ioplSize : MAX_UPL_SIZE_BYTES;
+ unsigned int numPageInfo = atop_32(ioplSize);
+
+ if ((theMap == kernel_map)
+ && (kernelStart >= io_kernel_static_start)
+ && (kernelStart < io_kernel_static_end)) {
+ error = io_get_kernel_static_upl(theMap,
+ kernelStart,
+ &ioplSize,
+ &iopl.fIOPL,
+ baseInfo,
+ &numPageInfo,
+ &highPage);
+ } else if (_memRef) {
+ memory_object_offset_t entryOffset;
+
+ entryOffset = mdOffset;
+ entryOffset = (entryOffset - iopl.fPageOffset - memRefEntry->offset);
+ if (entryOffset >= memRefEntry->size) {
+ memRefEntry++;
+ if (memRefEntry >= &_memRef->entries[_memRef->count]) {
+ panic("memRefEntry");
+ }
+ entryOffset = 0;
+ }
+ if (ioplSize > (memRefEntry->size - entryOffset)) {
+ ioplSize = (memRefEntry->size - entryOffset);
+ }
+ error = memory_object_iopl_request(memRefEntry->entry,
+ entryOffset,
+ &ioplSize,
+ &iopl.fIOPL,
+ baseInfo,
+ &numPageInfo,
+ &ioplFlags,
+ tag);
+ } else {
+ assert(theMap);
+ error = vm_map_create_upl(theMap,
+ startPage,
+ (upl_size_t*)&ioplSize,
+ &iopl.fIOPL,
+ baseInfo,
+ &numPageInfo,
+ &ioplFlags,
+ tag);
+ }
+
+ if (error != KERN_SUCCESS) {
+ goto abortExit;
+ }
+
+ assert(ioplSize);
+
+ if (iopl.fIOPL) {
+ highPage = upl_get_highest_page(iopl.fIOPL);
+ }
+ if (highPage > highestPage) {
+ highestPage = highPage;
+ }
+
+ if (baseInfo->device) {
+ numPageInfo = 1;
+ iopl.fFlags = kIOPLOnDevice;
+ } else {
+ iopl.fFlags = 0;
+ }
+
+ iopl.fIOMDOffset = mdOffset;
+ iopl.fPageInfo = pageIndex;
+ if (mapper && pageIndex && (page_mask & (mdOffset + startPageOffset))) {
+ dataP->fDiscontig = true;
+ }
+
+ if (!_memoryEntries->appendBytes(&iopl, sizeof(iopl))) {
+ // Clean up partial created and unsaved iopl
+ if (iopl.fIOPL) {
+ upl_abort(iopl.fIOPL, 0);
+ upl_deallocate(iopl.fIOPL);
+ }
+ goto abortExit;
+ }
+ dataP = NULL;
+
+ // Check for a multiple iopl's in one virtual range
+ pageIndex += numPageInfo;
+ mdOffset -= iopl.fPageOffset;
+ if (ioplSize < numBytes) {
+ numBytes -= ioplSize;
+ startPage += ioplSize;
+ mdOffset += ioplSize;
+ iopl.fPageOffset = 0;
+ if (mapper) {
+ iopl.fMappedPage = mapBase + pageIndex;
+ }
+ } else {
+ mdOffset += numBytes;
+ break;
+ }
+ }
+ }
+
+ _highestPage = highestPage;
+
+ if (UPL_COPYOUT_FROM & uplFlags) {
+ _flags |= kIOMemoryPreparedReadOnly;
+ }
+ }
+
+#if IOTRACKING
+ if (!(_flags & kIOMemoryAutoPrepare) && (kIOReturnSuccess == error)) {
+ dataP = getDataP(_memoryEntries);
+ if (!dataP->fWireTracking.link.next) {
+ IOTrackingAdd(gIOWireTracking, &dataP->fWireTracking, ptoa(_pages), false, tag);
+ }
+ }
+#endif /* IOTRACKING */
+
+ return error;
+
+abortExit:
+ {
+ dataP = getDataP(_memoryEntries);
+ UInt done = getNumIOPL(_memoryEntries, dataP);
+ ioPLBlock *ioplList = getIOPLList(dataP);
+
+ for (UInt range = 0; range < done; range++) {
+ if (ioplList[range].fIOPL) {
+ upl_abort(ioplList[range].fIOPL, 0);
+ upl_deallocate(ioplList[range].fIOPL);
+ }
+ }
+ (void) _memoryEntries->initWithBytes(dataP, computeDataSize(0, 0)); // == setLength()
+ }
+
+ if (error == KERN_FAILURE) {
+ error = kIOReturnCannotWire;
+ } else if (error == KERN_MEMORY_ERROR) {
+ error = kIOReturnNoResources;
+ }
+
+ return error;
+}
+
+bool
+IOGeneralMemoryDescriptor::initMemoryEntries(size_t size, IOMapper * mapper)
+{
+ ioGMDData * dataP;
+ unsigned dataSize = size;
+
+ if (!_memoryEntries) {
+ _memoryEntries = OSData::withCapacity(dataSize);
+ if (!_memoryEntries) {
+ return false;
+ }
+ } else if (!_memoryEntries->initWithCapacity(dataSize)) {
+ return false;
+ }
+
+ _memoryEntries->appendBytes(NULL, computeDataSize(0, 0));
+ dataP = getDataP(_memoryEntries);
+
+ if (mapper == kIOMapperWaitSystem) {
+ IOMapper::checkForSystemMapper();
+ mapper = IOMapper::gSystem;
+ }
+ dataP->fMapper = mapper;
+ dataP->fPageCnt = 0;
+ dataP->fMappedBase = 0;
+ dataP->fDMAMapNumAddressBits = 64;
+ dataP->fDMAMapAlignment = 0;
+ dataP->fPreparationID = kIOPreparationIDUnprepared;
+ dataP->fDiscontig = false;
+ dataP->fCompletionError = false;
+ dataP->fMappedBaseValid = false;
+
+ return true;
+}
+
+IOReturn
+IOMemoryDescriptor::dmaMap(
+ IOMapper * mapper,
+ IODMACommand * command,
+ const IODMAMapSpecification * mapSpec,
+ uint64_t offset,
+ uint64_t length,
+ uint64_t * mapAddress,
+ uint64_t * mapLength)
+{
+ IOReturn err;
+ uint32_t mapOptions;
+
+ mapOptions = 0;
+ mapOptions |= kIODMAMapReadAccess;
+ if (!(kIOMemoryPreparedReadOnly & _flags)) {
+ mapOptions |= kIODMAMapWriteAccess;
+ }
+
+ err = mapper->iovmMapMemory(this, offset, length, mapOptions,
+ mapSpec, command, NULL, mapAddress, mapLength);
+
+ if (kIOReturnSuccess == err) {
+ dmaMapRecord(mapper, command, *mapLength);
+ }
+
+ return err;
+}
+
+void
+IOMemoryDescriptor::dmaMapRecord(
+ IOMapper * mapper,
+ IODMACommand * command,
+ uint64_t mapLength)
+{
+ kern_allocation_name_t alloc;
+ int16_t prior;
+
+ if ((alloc = mapper->fAllocName) /* && mapper != IOMapper::gSystem */) {
+ kern_allocation_update_size(mapper->fAllocName, mapLength);
+ }
+
+ if (!command) {
+ return;
+ }
+ prior = OSAddAtomic16(1, &_dmaReferences);
+ if (!prior) {
+ if (alloc && (VM_KERN_MEMORY_NONE != _kernelTag)) {
+ _mapName = alloc;
+ mapLength = _length;
+ kern_allocation_update_subtotal(alloc, _kernelTag, mapLength);
+ } else {
+ _mapName = NULL;
+ }
+ }
+}
+
+IOReturn
+IOMemoryDescriptor::dmaUnmap(
+ IOMapper * mapper,
+ IODMACommand * command,
+ uint64_t offset,
+ uint64_t mapAddress,
+ uint64_t mapLength)
+{
+ IOReturn ret;
+ kern_allocation_name_t alloc;
+ kern_allocation_name_t mapName;
+ int16_t prior;
+
+ mapName = NULL;
+ prior = 0;
+ if (command) {
+ mapName = _mapName;
+ if (_dmaReferences) {
+ prior = OSAddAtomic16(-1, &_dmaReferences);
+ } else {
+ panic("_dmaReferences underflow");
+ }
+ }
+
+ if (!mapLength) {
+ return kIOReturnSuccess;
+ }
+
+ ret = mapper->iovmUnmapMemory(this, command, mapAddress, mapLength);
+
+ if ((alloc = mapper->fAllocName)) {
+ kern_allocation_update_size(alloc, -mapLength);
+ if ((1 == prior) && mapName && (VM_KERN_MEMORY_NONE != _kernelTag)) {
+ mapLength = _length;
+ kern_allocation_update_subtotal(mapName, _kernelTag, -mapLength);
+ }
+ }
+
+ return ret;
+}
+
+IOReturn
+IOGeneralMemoryDescriptor::dmaMap(
+ IOMapper * mapper,
+ IODMACommand * command,
+ const IODMAMapSpecification * mapSpec,
+ uint64_t offset,
+ uint64_t length,
+ uint64_t * mapAddress,
+ uint64_t * mapLength)
+{
+ IOReturn err = kIOReturnSuccess;
+ ioGMDData * dataP;
+ IOOptionBits type = _flags & kIOMemoryTypeMask;
+
+ *mapAddress = 0;
+ if (kIOMemoryHostOnly & _flags) {
+ return kIOReturnSuccess;
+ }
+ if (kIOMemoryRemote & _flags) {
+ return kIOReturnNotAttached;
+ }
+
+ if ((type == kIOMemoryTypePhysical) || (type == kIOMemoryTypePhysical64)
+ || offset || (length != _length)) {
+ err = super::dmaMap(mapper, command, mapSpec, offset, length, mapAddress, mapLength);
+ } else if (_memoryEntries && _pages && (dataP = getDataP(_memoryEntries))) {
+ const ioPLBlock * ioplList = getIOPLList(dataP);
+ upl_page_info_t * pageList;
+ uint32_t mapOptions = 0;
+
+ IODMAMapSpecification mapSpec;
+ bzero(&mapSpec, sizeof(mapSpec));
+ mapSpec.numAddressBits = dataP->fDMAMapNumAddressBits;
+ mapSpec.alignment = dataP->fDMAMapAlignment;
+
+ // For external UPLs the fPageInfo field points directly to
+ // the upl's upl_page_info_t array.
+ if (ioplList->fFlags & kIOPLExternUPL) {
+ pageList = (upl_page_info_t *) ioplList->fPageInfo;
+ mapOptions |= kIODMAMapPagingPath;
+ } else {
+ pageList = getPageList(dataP);
+ }
+
+ if ((_length == ptoa_64(_pages)) && !(page_mask & ioplList->fPageOffset)) {
+ mapOptions |= kIODMAMapPageListFullyOccupied;
+ }
+
+ assert(dataP->fDMAAccess);
+ mapOptions |= dataP->fDMAAccess;
+
+ // Check for direct device non-paged memory
+ if (ioplList->fFlags & kIOPLOnDevice) {
+ mapOptions |= kIODMAMapPhysicallyContiguous;
+ }
+
+ IODMAMapPageList dmaPageList =
+ {
+ .pageOffset = (uint32_t)(ioplList->fPageOffset & page_mask),
+ .pageListCount = _pages,
+ .pageList = &pageList[0]
+ };
+ err = mapper->iovmMapMemory(this, offset, length, mapOptions, &mapSpec,
+ command, &dmaPageList, mapAddress, mapLength);
+
+ if (kIOReturnSuccess == err) {
+ dmaMapRecord(mapper, command, *mapLength);
+ }
+ }
+
+ return err;
+}
+
+/*
+ * prepare
+ *
+ * Prepare the memory for an I/O transfer. This involves paging in
+ * the memory, if necessary, and wiring it down for the duration of
+ * the transfer. The complete() method completes the processing of
+ * the memory after the I/O transfer finishes. This method needn't
+ * called for non-pageable memory.
+ */
+
+IOReturn
+IOGeneralMemoryDescriptor::prepare(IODirection forDirection)
+{
+ IOReturn error = kIOReturnSuccess;
+ IOOptionBits type = _flags & kIOMemoryTypeMask;
+
+ if ((kIOMemoryTypePhysical == type) || (kIOMemoryTypePhysical64 == type)) {
+ return kIOReturnSuccess;
+ }
+
+ assert(!(kIOMemoryRemote & _flags));
+ if (kIOMemoryRemote & _flags) {
+ return kIOReturnNotAttached;
+ }
+
+ if (_prepareLock) {
+ IOLockLock(_prepareLock);
+ }
+
+ if (kIOMemoryTypeVirtual == type || kIOMemoryTypeVirtual64 == type || kIOMemoryTypeUIO == type) {
+ error = wireVirtual(forDirection);
+ }
+
+ if (kIOReturnSuccess == error) {
+ if (1 == ++_wireCount) {
+ if (kIOMemoryClearEncrypt & _flags) {
+ performOperation(kIOMemoryClearEncrypted, 0, _length);
+ }
+ }
+ }
+
+ if (_prepareLock) {
+ IOLockUnlock(_prepareLock);
+ }
+
+ return error;
+}
+
+/*
+ * complete
+ *
+ * Complete processing of the memory after an I/O transfer finishes.
+ * This method should not be called unless a prepare was previously
+ * issued; the prepare() and complete() must occur in pairs, before
+ * before and after an I/O transfer involving pageable memory.
+ */
+
+IOReturn
+IOGeneralMemoryDescriptor::complete(IODirection forDirection)
+{
+ IOOptionBits type = _flags & kIOMemoryTypeMask;
+ ioGMDData * dataP;
+
+ if ((kIOMemoryTypePhysical == type) || (kIOMemoryTypePhysical64 == type)) {
+ return kIOReturnSuccess;
+ }
+
+ assert(!(kIOMemoryRemote & _flags));
+ if (kIOMemoryRemote & _flags) {
+ return kIOReturnNotAttached;
+ }
+
+ if (_prepareLock) {
+ IOLockLock(_prepareLock);
+ }
+ do{
+ assert(_wireCount);
+ if (!_wireCount) {
+ break;
+ }
+ dataP = getDataP(_memoryEntries);
+ if (!dataP) {
+ break;
+ }
+
+ if (kIODirectionCompleteWithError & forDirection) {
+ dataP->fCompletionError = true;
+ }
+
+ if ((kIOMemoryClearEncrypt & _flags) && (1 == _wireCount)) {
+ performOperation(kIOMemorySetEncrypted, 0, _length);
+ }
+
+ _wireCount--;
+ if (!_wireCount || (kIODirectionCompleteWithDataValid & forDirection)) {
+ ioPLBlock *ioplList = getIOPLList(dataP);
+ UInt ind, count = getNumIOPL(_memoryEntries, dataP);
+
+ if (_wireCount) {
+ // kIODirectionCompleteWithDataValid & forDirection
+ if (kIOMemoryTypeVirtual == type || kIOMemoryTypeVirtual64 == type || kIOMemoryTypeUIO == type) {
+ vm_tag_t tag;
+ tag = getVMTag(kernel_map);
+ for (ind = 0; ind < count; ind++) {
+ if (ioplList[ind].fIOPL) {
+ iopl_valid_data(ioplList[ind].fIOPL, tag);
+ }
+ }
+ }
+ } else {
+ if (_dmaReferences) {
+ panic("complete() while dma active");
+ }
+
+ if (dataP->fMappedBaseValid) {
+ dmaUnmap(dataP->fMapper, NULL, 0, dataP->fMappedBase, dataP->fMappedLength);
+ dataP->fMappedBaseValid = dataP->fMappedBase = 0;
+ }
+#if IOTRACKING
+ if (dataP->fWireTracking.link.next) {
+ IOTrackingRemove(gIOWireTracking, &dataP->fWireTracking, ptoa(_pages));
+ }
+#endif /* IOTRACKING */
+ // Only complete iopls that we created which are for TypeVirtual
+ if (kIOMemoryTypeVirtual == type || kIOMemoryTypeVirtual64 == type || kIOMemoryTypeUIO == type) {
+ for (ind = 0; ind < count; ind++) {
+ if (ioplList[ind].fIOPL) {
+ if (dataP->fCompletionError) {
+ upl_abort(ioplList[ind].fIOPL, 0 /*!UPL_ABORT_DUMP_PAGES*/);
+ } else {
+ upl_commit(ioplList[ind].fIOPL, NULL, 0);
+ }
+ upl_deallocate(ioplList[ind].fIOPL);
+ }
+ }
+ } else if (kIOMemoryTypeUPL == type) {
+ upl_set_referenced(ioplList[0].fIOPL, false);
+ }
+
+ (void) _memoryEntries->initWithBytes(dataP, computeDataSize(0, 0)); // == setLength()
+
+ dataP->fPreparationID = kIOPreparationIDUnprepared;
+ _flags &= ~kIOMemoryPreparedReadOnly;
+ }
+ }
+ }while (false);
+
+ if (_prepareLock) {
+ IOLockUnlock(_prepareLock);
+ }
+
+ return kIOReturnSuccess;
+}
+
+IOReturn
+IOGeneralMemoryDescriptor::doMap(
+ vm_map_t __addressMap,
+ IOVirtualAddress * __address,
+ IOOptionBits options,
+ IOByteCount __offset,
+ IOByteCount __length )
+{
+#ifndef __LP64__
+ if (!(kIOMap64Bit & options)) {
+ panic("IOGeneralMemoryDescriptor::doMap !64bit");
+ }
+#endif /* !__LP64__ */
+
+ kern_return_t err;
+
+ IOMemoryMap * mapping = (IOMemoryMap *) *__address;
+ mach_vm_size_t offset = mapping->fOffset + __offset;
+ mach_vm_size_t length = mapping->fLength;
+
+ IOOptionBits type = _flags & kIOMemoryTypeMask;
+ Ranges vec = _ranges;
+
+ mach_vm_address_t range0Addr = 0;
+ mach_vm_size_t range0Len = 0;
+
+ if ((offset >= _length) || ((offset + length) > _length)) {
+ return kIOReturnBadArgument;
+ }
+
+ assert(!(kIOMemoryRemote & _flags));
+ if (kIOMemoryRemote & _flags) {
+ return 0;
+ }
+
+ if (vec.v) {
+ getAddrLenForInd(range0Addr, range0Len, type, vec, 0);
+ }
+
+ // mapping source == dest? (could be much better)
+ if (_task
+ && (mapping->fAddressTask == _task)
+ && (mapping->fAddressMap == get_task_map(_task))
+ && (options & kIOMapAnywhere)
+ && (!(kIOMapUnique & options))
+ && (1 == _rangesCount)
+ && (0 == offset)
+ && range0Addr
+ && (length <= range0Len)) {
+ mapping->fAddress = range0Addr;
+ mapping->fOptions |= kIOMapStatic;
+
+ return kIOReturnSuccess;
+ }
+
+ if (!_memRef) {
+ IOOptionBits createOptions = 0;
+ if (!(kIOMapReadOnly & options)) {
+ createOptions |= kIOMemoryReferenceWrite;
+#if DEVELOPMENT || DEBUG
+ if ((kIODirectionOut == (kIODirectionOutIn & _flags))
+ && (!reserved || (reserved->creator != mapping->fAddressTask))) {
+ OSReportWithBacktrace("warning: creating writable mapping from IOMemoryDescriptor(kIODirectionOut) - use kIOMapReadOnly or change direction");
+ }
+#endif
+ }
+ err = memoryReferenceCreate(createOptions, &_memRef);
+ if (kIOReturnSuccess != err) {
+ return err;
+ }
+ }
+
+ memory_object_t pager;
+ pager = (memory_object_t) (reserved ? reserved->dp.devicePager : NULL);
+
+ // <upl_transpose //
+ if ((kIOMapReference | kIOMapUnique) == ((kIOMapReference | kIOMapUnique) & options)) {
+ do{
+ upl_t redirUPL2;
+ upl_size_t size;
+ upl_control_flags_t flags;
+ unsigned int lock_count;
+
+ if (!_memRef || (1 != _memRef->count)) {
+ err = kIOReturnNotReadable;
+ break;
+ }
+
+ size = round_page(mapping->fLength);
+ flags = UPL_COPYOUT_FROM | UPL_SET_INTERNAL
+ | UPL_SET_LITE | UPL_SET_IO_WIRE | UPL_BLOCK_ACCESS;
+
+ if (KERN_SUCCESS != memory_object_iopl_request(_memRef->entries[0].entry, 0, &size, &redirUPL2,
+ NULL, NULL,
+ &flags, getVMTag(kernel_map))) {
+ redirUPL2 = NULL;
+ }
+
+ for (lock_count = 0;
+ IORecursiveLockHaveLock(gIOMemoryLock);
+ lock_count++) {
+ UNLOCK;
+ }
+ err = upl_transpose(redirUPL2, mapping->fRedirUPL);
+ for (;
+ lock_count;
+ lock_count--) {
+ LOCK;
+ }
+
+ if (kIOReturnSuccess != err) {
+ IOLog("upl_transpose(%x)\n", err);
+ err = kIOReturnSuccess;
+ }
+
+ if (redirUPL2) {
+ upl_commit(redirUPL2, NULL, 0);
+ upl_deallocate(redirUPL2);
+ redirUPL2 = NULL;
+ }
+ {
+ // swap the memEntries since they now refer to different vm_objects
+ IOMemoryReference * me = _memRef;
+ _memRef = mapping->fMemory->_memRef;
+ mapping->fMemory->_memRef = me;
+ }
+ if (pager) {
+ err = populateDevicePager( pager, mapping->fAddressMap, mapping->fAddress, offset, length, options );
+ }
+ }while (false);
+ }
+ // upl_transpose> //
+ else {
+ err = memoryReferenceMap(_memRef, mapping->fAddressMap, offset, length, options, &mapping->fAddress);
+#if IOTRACKING
+ if ((err == KERN_SUCCESS) && ((kIOTracking & gIOKitDebug) || _task)) {
+ // only dram maps in the default on developement case
+ IOTrackingAddUser(gIOMapTracking, &mapping->fTracking, mapping->fLength);
+ }
+#endif /* IOTRACKING */
+ if ((err == KERN_SUCCESS) && pager) {
+ err = populateDevicePager(pager, mapping->fAddressMap, mapping->fAddress, offset, length, options);
+
+ if (err != KERN_SUCCESS) {
+ doUnmap(mapping->fAddressMap, (IOVirtualAddress) mapping, 0);
+ } else if (kIOMapDefaultCache == (options & kIOMapCacheMask)) {
+ mapping->fOptions |= ((_flags & kIOMemoryBufferCacheMask) >> kIOMemoryBufferCacheShift);
+ }
+ }
+ }
+
+ return err;
+}
+
+#if IOTRACKING
+IOReturn
+IOMemoryMapTracking(IOTrackingUser * tracking, task_t * task,
+ mach_vm_address_t * address, mach_vm_size_t * size)
+{
+#define iomap_offsetof(type, field) ((size_t)(&((type *)NULL)->field))
+
+ IOMemoryMap * map = (typeof(map))(((uintptr_t) tracking) - iomap_offsetof(IOMemoryMap, fTracking));
+
+ if (!map->fAddressMap || (map->fAddressMap != get_task_map(map->fAddressTask))) {
+ return kIOReturnNotReady;
+ }
+
+ *task = map->fAddressTask;
+ *address = map->fAddress;
+ *size = map->fLength;
+
+ return kIOReturnSuccess;
+}
+#endif /* IOTRACKING */
+
+IOReturn
+IOGeneralMemoryDescriptor::doUnmap(
+ vm_map_t addressMap,
+ IOVirtualAddress __address,
+ IOByteCount __length )
+{
+ return super::doUnmap(addressMap, __address, __length);
+}
- if (_cachedPhysicalAddress != physicalPage) break;
+/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
- physicalLength += page_size;
- }
+#undef super
+#define super OSObject
- /* Clip contiguous physical length at the end of this range. */
- if (physicalLength > virtualLength)
- physicalLength = virtualLength;
+OSDefineMetaClassAndStructors( IOMemoryMap, OSObject )
- if( lengthOfSegment)
- *lengthOfSegment = physicalLength;
+OSMetaClassDefineReservedUnused(IOMemoryMap, 0);
+OSMetaClassDefineReservedUnused(IOMemoryMap, 1);
+OSMetaClassDefineReservedUnused(IOMemoryMap, 2);
+OSMetaClassDefineReservedUnused(IOMemoryMap, 3);
+OSMetaClassDefineReservedUnused(IOMemoryMap, 4);
+OSMetaClassDefineReservedUnused(IOMemoryMap, 5);
+OSMetaClassDefineReservedUnused(IOMemoryMap, 6);
+OSMetaClassDefineReservedUnused(IOMemoryMap, 7);
- return physicalAddress;
+/* ex-inline function implementation */
+IOPhysicalAddress
+IOMemoryMap::getPhysicalAddress()
+{
+ return getPhysicalSegment( 0, NULL );
}
+/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
-/*
- * getVirtualSegment:
- *
- * Get the virtual address of the buffer, relative to the current position.
- * If the memory wasn't mapped into the caller's address space, it will be
- * mapped in now. If the current position is at the end of the buffer, a
- * null is returned.
- */
-void * IOGeneralMemoryDescriptor::getVirtualSegment(IOByteCount offset,
- IOByteCount * lengthOfSegment)
+bool
+IOMemoryMap::init(
+ task_t intoTask,
+ mach_vm_address_t toAddress,
+ IOOptionBits _options,
+ mach_vm_size_t _offset,
+ mach_vm_size_t _length )
{
- if( offset != _position)
- setPosition( offset );
-
- assert(_position <= _length);
-
- /* Fail gracefully if the position is at (or past) the end-of-buffer. */
- if (_position >= _length)
- {
- *lengthOfSegment = 0;
- return 0;
- }
-
- /* Compute the relative length to the end of this virtual segment. */
- *lengthOfSegment = _ranges.v[_positionAtIndex].length - _positionAtOffset;
+ if (!intoTask) {
+ return false;
+ }
- /* Compute the relative address of this virtual segment. */
- if (_task == kernel_task)
- return (void *)(_ranges.v[_positionAtIndex].address + _positionAtOffset);
- else
- {
- vm_offset_t off;
+ if (!super::init()) {
+ return false;
+ }
- mapIntoKernel(_positionAtIndex);
+ fAddressMap = get_task_map(intoTask);
+ if (!fAddressMap) {
+ return false;
+ }
+ vm_map_reference(fAddressMap);
- off = _ranges.v[_kernPtrAtIndex].address;
- off -= trunc_page(off);
+ fAddressTask = intoTask;
+ fOptions = _options;
+ fLength = _length;
+ fOffset = _offset;
+ fAddress = toAddress;
- return (void *) (_kernPtrAligned + off + _positionAtOffset);
- }
+ return true;
}
-/*
- * prepare
- *
- * Prepare the memory for an I/O transfer. This involves paging in
- * the memory, if necessary, and wiring it down for the duration of
- * the transfer. The complete() method completes the processing of
- * the memory after the I/O transfer finishes. This method needn't
- * called for non-pageable memory.
- */
-IOReturn IOGeneralMemoryDescriptor::prepare(
- IODirection forDirection = kIODirectionNone)
-{
- UInt rangeIndex = 0;
-
- if((_wireCount == 0) && (kIOMemoryRequiresWire & _flags)) {
- kern_return_t rc;
-
- if(forDirection == kIODirectionNone)
- forDirection = _direction;
-
- vm_prot_t access = VM_PROT_DEFAULT; // Could be cleverer using direction
-
- //
- // Check user read/write access to the data buffer.
- //
-
- for (rangeIndex = 0; rangeIndex < _rangesCount; rangeIndex++)
- {
- vm_offset_t checkBase = trunc_page(_ranges.v[rangeIndex].address);
- vm_size_t checkSize = round_page(_ranges.v[rangeIndex].length );
-
- while (checkSize)
- {
- vm_region_basic_info_data_t regionInfo;
- mach_msg_type_number_t regionInfoSize = sizeof(regionInfo);
- vm_size_t regionSize;
-
- if ( (vm_region(
- /* map */ getMapForTask(_task, checkBase),
- /* address */ &checkBase,
- /* size */ ®ionSize,
- /* flavor */ VM_REGION_BASIC_INFO,
- /* info */ (vm_region_info_t) ®ionInfo,
- /* info size */ ®ionInfoSize,
- /* object name */ 0 ) != KERN_SUCCESS ) ||
- ( (forDirection & kIODirectionIn ) &&
- !(regionInfo.protection & VM_PROT_WRITE) ) ||
- ( (forDirection & kIODirectionOut) &&
- !(regionInfo.protection & VM_PROT_READ ) ) )
- {
- return kIOReturnVMError;
- }
-
- assert((regionSize & PAGE_MASK) == 0);
-
- regionSize = min(regionSize, checkSize);
- checkSize -= regionSize;
- checkBase += regionSize;
- } // (for each vm region)
- } // (for each io range)
-
- for (rangeIndex = 0; rangeIndex < _rangesCount; rangeIndex++) {
-
- vm_offset_t srcAlign = trunc_page(_ranges.v[rangeIndex].address);
- IOByteCount srcAlignEnd = trunc_page(_ranges.v[rangeIndex].address +
- _ranges.v[rangeIndex].length +
- page_size - 1);
-
- vm_map_t taskVMMap = getMapForTask(_task, srcAlign);
-
- rc = vm_map_wire(taskVMMap, srcAlign, srcAlignEnd, access, FALSE);
- if (KERN_SUCCESS != rc) {
- IOLog("IOMemoryDescriptor::prepare vm_map_wire failed: %d\n", rc);
- goto abortExit;
- }
-
- // If this I/O is for a user land task then protect ourselves
- // against COW and other vm_shenanigans
- if (_task && _task != kernel_task) {
- // setup a data object to hold the 'named' memory regions
- // @@@ gvdl: If we fail to allocate an OSData we will just
- // hope for the best for the time being. Lets not fail a
- // prepare at this late stage in product release.
- if (!_memoryEntries)
- _memoryEntries = OSData::withCapacity(16);
- if (_memoryEntries) {
- vm_object_offset_t desiredSize = srcAlignEnd - srcAlign;
- vm_object_offset_t entryStart = srcAlign;
- ipc_port_t memHandle;
-
- do {
- vm_object_offset_t actualSize = desiredSize;
-
- rc = mach_make_memory_entry_64
- (taskVMMap, &actualSize, entryStart,
- forDirection, &memHandle, NULL);
- if (KERN_SUCCESS != rc) {
- IOLog("IOMemoryDescriptor::prepare mach_make_memory_entry_64 failed: %d\n", rc);
- goto abortExit;
- }
+bool
+IOMemoryMap::setMemoryDescriptor(IOMemoryDescriptor * _memory, mach_vm_size_t _offset)
+{
+ if (!_memory) {
+ return false;
+ }
- _memoryEntries->
- appendBytes(&memHandle, sizeof(memHandle));
- desiredSize -= actualSize;
- entryStart += actualSize;
- } while (desiredSize);
+ if (!fSuperMap) {
+ if ((_offset + fLength) > _memory->getLength()) {
+ return false;
}
- }
- }
- }
- _wireCount++;
- return kIOReturnSuccess;
-
-abortExit:
- UInt doneIndex;
-
-
- for(doneIndex = 0; doneIndex < rangeIndex; doneIndex++) {
- vm_offset_t srcAlign = trunc_page(_ranges.v[doneIndex].address);
- IOByteCount srcAlignEnd = trunc_page(_ranges.v[doneIndex].address +
- _ranges.v[doneIndex].length +
- page_size - 1);
+ fOffset = _offset;
+ }
- vm_map_unwire(getMapForTask(_task, srcAlign), srcAlign,
- srcAlignEnd, FALSE);
- }
+ _memory->retain();
+ if (fMemory) {
+ if (fMemory != _memory) {
+ fMemory->removeMapping(this);
+ }
+ fMemory->release();
+ }
+ fMemory = _memory;
- if (_memoryEntries) {
- ipc_port_t *handles, *handlesEnd;
+ return true;
+}
- handles = (ipc_port_t *) _memoryEntries->getBytesNoCopy();
- handlesEnd = (ipc_port_t *)
- ((vm_address_t) handles + _memoryEntries->getLength());
- while (handles < handlesEnd)
- ipc_port_release_send(*handles++);
- _memoryEntries->release();
- _memoryEntries = 0;
- }
+IOReturn
+IOMemoryDescriptor::doMap(
+ vm_map_t __addressMap,
+ IOVirtualAddress * __address,
+ IOOptionBits options,
+ IOByteCount __offset,
+ IOByteCount __length )
+{
+ return kIOReturnUnsupported;
+}
- return kIOReturnVMError;
+IOReturn
+IOMemoryDescriptor::handleFault(
+ void * _pager,
+ mach_vm_size_t sourceOffset,
+ mach_vm_size_t length)
+{
+ if (kIOMemoryRedirected & _flags) {
+#if DEBUG
+ IOLog("sleep mem redirect %p, %qx\n", this, sourceOffset);
+#endif
+ do {
+ SLEEP;
+ } while (kIOMemoryRedirected & _flags);
+ }
+ return kIOReturnSuccess;
}
-/*
- * complete
- *
- * Complete processing of the memory after an I/O transfer finishes.
- * This method should not be called unless a prepare was previously
- * issued; the prepare() and complete() must occur in pairs, before
- * before and after an I/O transfer involving pageable memory.
- */
-
-IOReturn IOGeneralMemoryDescriptor::complete(
- IODirection forDirection = kIODirectionNone)
+IOReturn
+IOMemoryDescriptor::populateDevicePager(
+ void * _pager,
+ vm_map_t addressMap,
+ mach_vm_address_t address,
+ mach_vm_size_t sourceOffset,
+ mach_vm_size_t length,
+ IOOptionBits options )
{
- assert(_wireCount);
+ IOReturn err = kIOReturnSuccess;
+ memory_object_t pager = (memory_object_t) _pager;
+ mach_vm_size_t size;
+ mach_vm_size_t bytes;
+ mach_vm_size_t page;
+ mach_vm_size_t pageOffset;
+ mach_vm_size_t pagerOffset;
+ IOPhysicalLength segLen, chunk;
+ addr64_t physAddr;
+ IOOptionBits type;
+
+ type = _flags & kIOMemoryTypeMask;
+
+ if (reserved->dp.pagerContig) {
+ sourceOffset = 0;
+ pagerOffset = 0;
+ }
- if(0 == _wireCount)
- return kIOReturnSuccess;
+ physAddr = getPhysicalSegment( sourceOffset, &segLen, kIOMemoryMapperNone );
+ assert( physAddr );
+ pageOffset = physAddr - trunc_page_64( physAddr );
+ pagerOffset = sourceOffset;
+
+ size = length + pageOffset;
+ physAddr -= pageOffset;
+
+ segLen += pageOffset;
+ bytes = size;
+ do{
+ // in the middle of the loop only map whole pages
+ if (segLen >= bytes) {
+ segLen = bytes;
+ } else if (segLen != trunc_page_64(segLen)) {
+ err = kIOReturnVMError;
+ }
+ if (physAddr != trunc_page_64(physAddr)) {
+ err = kIOReturnBadArgument;
+ }
- _wireCount--;
- if((_wireCount == 0) && (kIOMemoryRequiresWire & _flags)) {
- UInt rangeIndex;
- kern_return_t rc;
+ if (kIOReturnSuccess != err) {
+ break;
+ }
- if(forDirection == kIODirectionNone)
- forDirection = _direction;
+#if DEBUG || DEVELOPMENT
+ if ((kIOMemoryTypeUPL != type)
+ && pmap_has_managed_page(atop_64(physAddr), atop_64(physAddr + segLen - 1))) {
+ OSReportWithBacktrace("IOMemoryDescriptor physical with managed page 0x%qx:0x%qx", physAddr, segLen);
+ }
+#endif /* DEBUG || DEVELOPMENT */
+
+ chunk = (reserved->dp.pagerContig ? round_page(segLen) : page_size);
+ for (page = 0;
+ (page < segLen) && (KERN_SUCCESS == err);
+ page += chunk) {
+ err = device_pager_populate_object(pager, pagerOffset,
+ (ppnum_t)(atop_64(physAddr + page)), chunk);
+ pagerOffset += chunk;
+ }
- for(rangeIndex = 0; rangeIndex < _rangesCount; rangeIndex++) {
+ assert(KERN_SUCCESS == err);
+ if (err) {
+ break;
+ }
- vm_offset_t srcAlign = trunc_page(_ranges.v[rangeIndex].address);
- IOByteCount srcAlignEnd = trunc_page(_ranges.v[rangeIndex].address +
- _ranges.v[rangeIndex].length +
- page_size - 1);
+ // This call to vm_fault causes an early pmap level resolution
+ // of the mappings created above for kernel mappings, since
+ // faulting in later can't take place from interrupt level.
+ if ((addressMap == kernel_map) && !(kIOMemoryRedirected & _flags)) {
+ err = vm_fault(addressMap,
+ (vm_map_offset_t)trunc_page_64(address),
+ options & kIOMapReadOnly ? VM_PROT_READ : VM_PROT_READ | VM_PROT_WRITE,
+ FALSE, VM_KERN_MEMORY_NONE,
+ THREAD_UNINT, NULL,
+ (vm_map_offset_t)0);
+
+ if (KERN_SUCCESS != err) {
+ break;
+ }
+ }
- if(forDirection == kIODirectionIn)
- pmap_modify_pages(get_task_pmap(_task), srcAlign, srcAlignEnd);
+ sourceOffset += segLen - pageOffset;
+ address += segLen;
+ bytes -= segLen;
+ pageOffset = 0;
+ }while (bytes && (physAddr = getPhysicalSegment( sourceOffset, &segLen, kIOMemoryMapperNone )));
- rc = vm_map_unwire(getMapForTask(_task, srcAlign), srcAlign,
- srcAlignEnd, FALSE);
- if(rc != KERN_SUCCESS)
- IOLog("IOMemoryDescriptor::complete: vm_map_unwire failed: %d\n", rc);
- }
+ if (bytes) {
+ err = kIOReturnBadArgument;
+ }
- if (_memoryEntries) {
- ipc_port_t *handles, *handlesEnd;
-
- handles = (ipc_port_t *) _memoryEntries->getBytesNoCopy();
- handlesEnd = (ipc_port_t *)
- ((vm_address_t) handles + _memoryEntries->getLength());
- while (handles < handlesEnd)
- ipc_port_release_send(*handles++);
-
- _memoryEntries->release();
- _memoryEntries = 0;
- }
-
- _cachedVirtualAddress = 0;
- }
- return kIOReturnSuccess;
-}
-
-IOReturn IOGeneralMemoryDescriptor::doMap(
- vm_map_t addressMap,
- IOVirtualAddress * atAddress,
- IOOptionBits options,
- IOByteCount sourceOffset = 0,
- IOByteCount length = 0 )
-{
- kern_return_t kr;
-
- // mapping source == dest? (could be much better)
- if( _task && (addressMap == get_task_map(_task)) && (options & kIOMapAnywhere)
- && (1 == _rangesCount) && (0 == sourceOffset)
- && (length <= _ranges.v[0].length) ) {
- *atAddress = _ranges.v[0].address;
- return( kIOReturnSuccess );
- }
-
- if( _task && _memEntry && (_flags & kIOMemoryRequiresWire)) {
-
- do {
-
- if( (1 != _rangesCount)
- || (kIOMapDefaultCache != (options & kIOMapCacheMask)) ) {
- kr = kIOReturnUnsupported;
- continue;
- }
-
- if( 0 == length)
- length = getLength();
- if( (sourceOffset + length) > _ranges.v[0].length) {
- kr = kIOReturnBadArgument;
- continue;
- }
-
- ipc_port_t sharedMem = (ipc_port_t) _memEntry;
- vm_prot_t prot = VM_PROT_READ
- | ((options & kIOMapReadOnly) ? 0 : VM_PROT_WRITE);
-
- // vm_map looks for addresses above here, even when VM_FLAGS_ANYWHERE
- if( options & kIOMapAnywhere)
- *atAddress = 0;
-
- if( 0 == sharedMem)
- kr = kIOReturnVMError;
- else
- kr = KERN_SUCCESS;
-
- if( KERN_SUCCESS == kr)
- kr = vm_map( addressMap,
- atAddress,
- length, 0 /* mask */,
- (( options & kIOMapAnywhere ) ? VM_FLAGS_ANYWHERE : VM_FLAGS_FIXED)
- | VM_MAKE_TAG(VM_MEMORY_IOKIT),
- sharedMem, sourceOffset,
- false, // copy
- prot, // cur
- prot, // max
- VM_INHERIT_NONE);
-
- } while( false );
-
- } else
- kr = super::doMap( addressMap, atAddress,
- options, sourceOffset, length );
- return( kr );
-}
-
-IOReturn IOGeneralMemoryDescriptor::doUnmap(
- vm_map_t addressMap,
- IOVirtualAddress logical,
- IOByteCount length )
-{
- // could be much better
- if( _task && (addressMap == getMapForTask(_task, _ranges.v[0].address)) && (1 == _rangesCount)
- && (logical == _ranges.v[0].address)
- && (length <= _ranges.v[0].length) )
- return( kIOReturnSuccess );
-
- return( super::doUnmap( addressMap, logical, length ));
+ return err;
}
-/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
-
-extern "C" {
-// osfmk/device/iokit_rpc.c
-extern kern_return_t IOMapPages( vm_map_t map, vm_offset_t va, vm_offset_t pa,
- vm_size_t length, unsigned int mapFlags);
-extern kern_return_t IOUnmapPages(vm_map_t map, vm_offset_t va, vm_size_t length);
-};
-
-/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
+IOReturn
+IOMemoryDescriptor::doUnmap(
+ vm_map_t addressMap,
+ IOVirtualAddress __address,
+ IOByteCount __length )
+{
+ IOReturn err;
+ IOMemoryMap * mapping;
+ mach_vm_address_t address;
+ mach_vm_size_t length;
-static IORecursiveLock * gIOMemoryLock;
+ if (__length) {
+ panic("doUnmap");
+ }
-#define LOCK IORecursiveLockLock( gIOMemoryLock)
-#define UNLOCK IORecursiveLockUnlock( gIOMemoryLock)
+ mapping = (IOMemoryMap *) __address;
+ addressMap = mapping->fAddressMap;
+ address = mapping->fAddress;
+ length = mapping->fLength;
-/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
+ if (kIOMapOverwrite & mapping->fOptions) {
+ err = KERN_SUCCESS;
+ } else {
+ if ((addressMap == kernel_map) && (kIOMemoryBufferPageable & _flags)) {
+ addressMap = IOPageableMapForAddress( address );
+ }
+#if DEBUG
+ if (kIOLogMapping & gIOKitDebug) {
+ IOLog("IOMemoryDescriptor::doUnmap map %p, 0x%qx:0x%qx\n",
+ addressMap, address, length );
+ }
+#endif
+ err = mach_vm_deallocate( addressMap, address, length );
+ }
-OSDefineMetaClass( IOMemoryMap, OSObject )
-OSDefineAbstractStructors( IOMemoryMap, OSObject )
+#if IOTRACKING
+ IOTrackingRemoveUser(gIOMapTracking, &mapping->fTracking);
+#endif /* IOTRACKING */
-/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
+ return err;
+}
-class _IOMemoryMap : public IOMemoryMap
-{
- OSDeclareDefaultStructors(_IOMemoryMap)
-
- IOMemoryDescriptor * memory;
- IOMemoryMap * superMap;
- IOByteCount offset;
- IOByteCount length;
- IOVirtualAddress logical;
- task_t addressTask;
- vm_map_t addressMap;
- IOOptionBits options;
-
-public:
- virtual void free();
-
- // IOMemoryMap methods
- virtual IOVirtualAddress getVirtualAddress();
- virtual IOByteCount getLength();
- virtual task_t getAddressTask();
- virtual IOMemoryDescriptor * getMemoryDescriptor();
- virtual IOOptionBits getMapOptions();
-
- virtual IOReturn unmap();
- virtual void taskDied();
-
- virtual IOPhysicalAddress getPhysicalSegment(IOByteCount offset,
- IOByteCount * length);
-
- // for IOMemoryDescriptor use
- _IOMemoryMap * isCompatible(
- IOMemoryDescriptor * owner,
- task_t intoTask,
- IOVirtualAddress toAddress,
- IOOptionBits options,
- IOByteCount offset,
- IOByteCount length );
-
- bool init(
- IOMemoryDescriptor * memory,
- IOMemoryMap * superMap,
- IOByteCount offset,
- IOByteCount length );
-
- bool init(
- IOMemoryDescriptor * memory,
- task_t intoTask,
- IOVirtualAddress toAddress,
- IOOptionBits options,
- IOByteCount offset,
- IOByteCount length );
-
- IOReturn redirect(
- task_t intoTask, bool redirect );
-};
+IOReturn
+IOMemoryDescriptor::redirect( task_t safeTask, bool doRedirect )
+{
+ IOReturn err = kIOReturnSuccess;
+ IOMemoryMap * mapping = NULL;
+ OSIterator * iter;
-/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
+ LOCK;
-#undef super
-#define super IOMemoryMap
+ if (doRedirect) {
+ _flags |= kIOMemoryRedirected;
+ } else {
+ _flags &= ~kIOMemoryRedirected;
+ }
-OSDefineMetaClassAndStructors(_IOMemoryMap, IOMemoryMap)
+ do {
+ if ((iter = OSCollectionIterator::withCollection( _mappings))) {
+ memory_object_t pager;
-/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
+ if (reserved) {
+ pager = (memory_object_t) reserved->dp.devicePager;
+ } else {
+ pager = MACH_PORT_NULL;
+ }
-bool _IOMemoryMap::init(
- IOMemoryDescriptor * _memory,
- IOMemoryMap * _superMap,
- IOByteCount _offset,
- IOByteCount _length )
-{
-
- if( !super::init())
- return( false);
-
- if( (_offset + _length) > _superMap->getLength())
- return( false);
-
- _memory->retain();
- memory = _memory;
- _superMap->retain();
- superMap = _superMap;
-
- offset = _offset;
- if( _length)
- length = _length;
- else
- length = _memory->getLength();
-
- options = superMap->getMapOptions();
- logical = superMap->getVirtualAddress() + offset;
-
- return( true );
-}
-
-bool _IOMemoryMap::init(
- IOMemoryDescriptor * _memory,
- task_t intoTask,
- IOVirtualAddress toAddress,
- IOOptionBits _options,
- IOByteCount _offset,
- IOByteCount _length )
-{
- bool ok;
-
- if( (!_memory) || (!intoTask) || !super::init())
- return( false);
-
- if( (_offset + _length) > _memory->getLength())
- return( false);
-
- addressMap = get_task_map(intoTask);
- if( !addressMap)
- return( false);
- kernel_vm_map_reference(addressMap);
-
- _memory->retain();
- memory = _memory;
-
- offset = _offset;
- if( _length)
- length = _length;
- else
- length = _memory->getLength();
-
- addressTask = intoTask;
- logical = toAddress;
- options = _options;
-
- if( options & kIOMapStatic)
- ok = true;
- else
- ok = (kIOReturnSuccess == memory->doMap( addressMap, &logical,
- options, offset, length ));
- if( !ok) {
- logical = 0;
- memory->release();
- memory = 0;
- vm_map_deallocate(addressMap);
- addressMap = 0;
- }
- return( ok );
-}
-
-IOReturn IOMemoryDescriptor::doMap(
- vm_map_t addressMap,
- IOVirtualAddress * atAddress,
- IOOptionBits options,
- IOByteCount sourceOffset = 0,
- IOByteCount length = 0 )
-{
- IOReturn err = kIOReturnSuccess;
- vm_size_t ourSize;
- vm_size_t bytes;
- vm_offset_t mapped;
- vm_address_t logical;
- IOByteCount pageOffset;
- IOPhysicalLength segLen;
- IOPhysicalAddress physAddr;
-
- if( 0 == length)
- length = getLength();
-
- physAddr = getPhysicalSegment( sourceOffset, &segLen );
- assert( physAddr );
-
- pageOffset = physAddr - trunc_page( physAddr );
- ourSize = length + pageOffset;
- physAddr -= pageOffset;
-
- logical = *atAddress;
- if( 0 == (options & kIOMapAnywhere)) {
- mapped = trunc_page( logical );
- if( (logical - mapped) != pageOffset)
- err = kIOReturnVMError;
- }
- if( kIOReturnSuccess == err)
- err = vm_allocate( addressMap, &mapped, ourSize,
- ((options & kIOMapAnywhere) ? VM_FLAGS_ANYWHERE : VM_FLAGS_FIXED)
- | VM_MAKE_TAG(VM_MEMORY_IOKIT) );
-
- if( err) {
-#ifdef DEBUG
- kprintf("IOMemoryDescriptor::doMap: vm_allocate() "
- "returned %08x\n", err);
-#endif
- return( err);
- }
-
- // we have to make sure that these guys don't get copied if we fork.
- err = vm_inherit( addressMap, mapped, ourSize, VM_INHERIT_NONE);
- if( err != KERN_SUCCESS) {
- doUnmap( addressMap, mapped, ourSize); // back out
- return( err);
- }
-
- logical = mapped;
- *atAddress = mapped + pageOffset;
-
- segLen += pageOffset;
- bytes = ourSize;
- do {
- // in the middle of the loop only map whole pages
- if( segLen >= bytes)
- segLen = bytes;
- else if( segLen != trunc_page( segLen))
- err = kIOReturnVMError;
- if( physAddr != trunc_page( physAddr))
- err = kIOReturnBadArgument;
-
-#ifdef DEBUG
- if( kIOLogMapping & gIOKitDebug)
- kprintf("_IOMemoryMap::map(%x) %08x->%08x:%08x\n",
- addressMap, mapped + pageOffset, physAddr + pageOffset,
- segLen - pageOffset);
-#endif
+ while ((mapping = (IOMemoryMap *) iter->getNextObject())) {
+ mapping->redirect( safeTask, doRedirect );
+ if (!doRedirect && !safeTask && pager && (kernel_map == mapping->fAddressMap)) {
+ err = populateDevicePager(pager, mapping->fAddressMap, mapping->fAddress, mapping->fOffset, mapping->fLength, kIOMapDefaultCache );
+ }
+ }
- if( kIOReturnSuccess == err)
- err = IOMapPages( addressMap, mapped, physAddr, segLen, options );
- if( err)
- break;
+ iter->release();
+ }
+ } while (false);
- sourceOffset += segLen - pageOffset;
- mapped += segLen;
- bytes -= segLen;
- pageOffset = 0;
+ if (!doRedirect) {
+ WAKEUP;
+ }
- } while( bytes
- && (physAddr = getPhysicalSegment( sourceOffset, &segLen )));
+ UNLOCK;
- if( bytes)
- err = kIOReturnBadArgument;
- if( err)
- doUnmap( addressMap, logical, ourSize );
- else
- mapped = true;
+#ifndef __LP64__
+ // temporary binary compatibility
+ IOSubMemoryDescriptor * subMem;
+ if ((subMem = OSDynamicCast( IOSubMemoryDescriptor, this))) {
+ err = subMem->redirect( safeTask, doRedirect );
+ } else {
+ err = kIOReturnSuccess;
+ }
+#endif /* !__LP64__ */
- return( err );
+ return err;
}
-IOReturn IOMemoryDescriptor::doUnmap(
- vm_map_t addressMap,
- IOVirtualAddress logical,
- IOByteCount length )
+IOReturn
+IOMemoryMap::redirect( task_t safeTask, bool doRedirect )
{
- IOReturn err;
+ IOReturn err = kIOReturnSuccess;
+
+ if (fSuperMap) {
+// err = ((IOMemoryMap *)superMap)->redirect( safeTask, doRedirect );
+ } else {
+ LOCK;
+
+ do{
+ if (!fAddress) {
+ break;
+ }
+ if (!fAddressMap) {
+ break;
+ }
-#ifdef DEBUG
- if( kIOLogMapping & gIOKitDebug)
- kprintf("IOMemoryDescriptor::doUnmap(%x) %08x:%08x\n",
- addressMap, logical, length );
+ if ((!safeTask || (get_task_map(safeTask) != fAddressMap))
+ && (0 == (fOptions & kIOMapStatic))) {
+ IOUnmapPages( fAddressMap, fAddress, fLength );
+ err = kIOReturnSuccess;
+#if DEBUG
+ IOLog("IOMemoryMap::redirect(%d, %p) 0x%qx:0x%qx from %p\n", doRedirect, this, fAddress, fLength, fAddressMap);
#endif
+ } else if (kIOMapWriteCombineCache == (fOptions & kIOMapCacheMask)) {
+ IOOptionBits newMode;
+ newMode = (fOptions & ~kIOMapCacheMask) | (doRedirect ? kIOMapInhibitCache : kIOMapWriteCombineCache);
+ IOProtectCacheMode(fAddressMap, fAddress, fLength, newMode);
+ }
+ }while (false);
+ UNLOCK;
+ }
- if( (addressMap == kernel_map) || (addressMap == get_task_map(current_task())))
- err = vm_deallocate( addressMap, logical, length );
- else
- err = kIOReturnSuccess;
+ if ((((fMemory->_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical)
+ || ((fMemory->_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical64))
+ && safeTask
+ && (doRedirect != (0 != (fMemory->_flags & kIOMemoryRedirected)))) {
+ fMemory->redirect(safeTask, doRedirect);
+ }
- return( err );
+ return err;
}
-IOReturn IOMemoryDescriptor::redirect( task_t safeTask, bool redirect )
+IOReturn
+IOMemoryMap::unmap( void )
{
- IOReturn err;
- _IOMemoryMap * mapping = 0;
- OSIterator * iter;
+ IOReturn err;
- LOCK;
+ LOCK;
- do {
- if( (iter = OSCollectionIterator::withCollection( _mappings))) {
- while( (mapping = (_IOMemoryMap *) iter->getNextObject()))
- mapping->redirect( safeTask, redirect );
+ if (fAddress && fAddressMap && (NULL == fSuperMap) && fMemory
+ && (0 == (kIOMapStatic & fOptions))) {
+ err = fMemory->doUnmap(fAddressMap, (IOVirtualAddress) this, 0);
+ } else {
+ err = kIOReturnSuccess;
+ }
- iter->release();
- }
- } while( false );
+ if (fAddressMap) {
+ vm_map_deallocate(fAddressMap);
+ fAddressMap = NULL;
+ }
- UNLOCK;
+ fAddress = 0;
- // temporary binary compatibility
- IOSubMemoryDescriptor * subMem;
- if( (subMem = OSDynamicCast( IOSubMemoryDescriptor, this)))
- err = subMem->redirect( safeTask, redirect );
- else
- err = kIOReturnSuccess;
+ UNLOCK;
- return( err );
+ return err;
}
-IOReturn IOSubMemoryDescriptor::redirect( task_t safeTask, bool redirect )
+void
+IOMemoryMap::taskDied( void )
{
-// temporary binary compatibility IOMemoryDescriptor::redirect( safeTask, redirect );
- return( _parent->redirect( safeTask, redirect ));
+ LOCK;
+ if (fUserClientUnmap) {
+ unmap();
+ }
+#if IOTRACKING
+ else {
+ IOTrackingRemoveUser(gIOMapTracking, &fTracking);
+ }
+#endif /* IOTRACKING */
+
+ if (fAddressMap) {
+ vm_map_deallocate(fAddressMap);
+ fAddressMap = NULL;
+ }
+ fAddressTask = NULL;
+ fAddress = 0;
+ UNLOCK;
}
-IOReturn _IOMemoryMap::redirect( task_t safeTask, bool redirect )
+IOReturn
+IOMemoryMap::userClientUnmap( void )
{
- IOReturn err = kIOReturnSuccess;
-
- if( superMap) {
-// err = ((_IOMemoryMap *)superMap)->redirect( safeTask, redirect );
- } else {
-
- LOCK;
- if( logical && addressMap
- && (get_task_map( safeTask) != addressMap)
- && (0 == (options & kIOMapStatic))) {
-
- IOUnmapPages( addressMap, logical, length );
- if( !redirect) {
- err = vm_deallocate( addressMap, logical, length );
- err = memory->doMap( addressMap, &logical,
- (options & ~kIOMapAnywhere) /*| kIOMapReserve*/ );
- } else
- err = kIOReturnSuccess;
-#ifdef DEBUG
- IOLog("IOMemoryMap::redirect(%d, %x) %x from %lx\n", redirect, err, logical, addressMap);
-#endif
- }
- UNLOCK;
- }
-
- return( err );
+ fUserClientUnmap = true;
+ return kIOReturnSuccess;
}
-IOReturn _IOMemoryMap::unmap( void )
+// Overload the release mechanism. All mappings must be a member
+// of a memory descriptors _mappings set. This means that we
+// always have 2 references on a mapping. When either of these mappings
+// are released we need to free ourselves.
+void
+IOMemoryMap::taggedRelease(const void *tag) const
{
- IOReturn err;
-
- LOCK;
+ LOCK;
+ super::taggedRelease(tag, 2);
+ UNLOCK;
+}
- if( logical && addressMap && (0 == superMap)
- && (0 == (options & kIOMapStatic))) {
+void
+IOMemoryMap::free()
+{
+ unmap();
- err = memory->doUnmap( addressMap, logical, length );
- vm_map_deallocate(addressMap);
- addressMap = 0;
+ if (fMemory) {
+ LOCK;
+ fMemory->removeMapping(this);
+ UNLOCK;
+ fMemory->release();
+ }
- } else
- err = kIOReturnSuccess;
+ if (fOwner && (fOwner != fMemory)) {
+ LOCK;
+ fOwner->removeMapping(this);
+ UNLOCK;
+ }
- logical = 0;
+ if (fSuperMap) {
+ fSuperMap->release();
+ }
- UNLOCK;
+ if (fRedirUPL) {
+ upl_commit(fRedirUPL, NULL, 0);
+ upl_deallocate(fRedirUPL);
+ }
- return( err );
+ super::free();
}
-void _IOMemoryMap::taskDied( void )
+IOByteCount
+IOMemoryMap::getLength()
{
- LOCK;
- if( addressMap) {
- vm_map_deallocate(addressMap);
- addressMap = 0;
- }
- addressTask = 0;
- logical = 0;
- UNLOCK;
+ return fLength;
}
-void _IOMemoryMap::free()
+IOVirtualAddress
+IOMemoryMap::getVirtualAddress()
{
- unmap();
-
- if( memory) {
- LOCK;
- memory->removeMapping( this);
- UNLOCK;
- memory->release();
- }
-
- if( superMap)
- superMap->release();
+#ifndef __LP64__
+ if (fSuperMap) {
+ fSuperMap->getVirtualAddress();
+ } else if (fAddressMap
+ && vm_map_is_64bit(fAddressMap)
+ && (sizeof(IOVirtualAddress) < 8)) {
+ OSReportWithBacktrace("IOMemoryMap::getVirtualAddress(0x%qx) called on 64b map; use ::getAddress()", fAddress);
+ }
+#endif /* !__LP64__ */
- super::free();
+ return fAddress;
}
-IOByteCount _IOMemoryMap::getLength()
+#ifndef __LP64__
+mach_vm_address_t
+IOMemoryMap::getAddress()
{
- return( length );
+ return fAddress;
}
-IOVirtualAddress _IOMemoryMap::getVirtualAddress()
+mach_vm_size_t
+IOMemoryMap::getSize()
{
- return( logical);
+ return fLength;
}
+#endif /* !__LP64__ */
-task_t _IOMemoryMap::getAddressTask()
+
+task_t
+IOMemoryMap::getAddressTask()
{
- if( superMap)
- return( superMap->getAddressTask());
- else
- return( addressTask);
+ if (fSuperMap) {
+ return fSuperMap->getAddressTask();
+ } else {
+ return fAddressTask;
+ }
}
-IOOptionBits _IOMemoryMap::getMapOptions()
+IOOptionBits
+IOMemoryMap::getMapOptions()
{
- return( options);
+ return fOptions;
}
-IOMemoryDescriptor * _IOMemoryMap::getMemoryDescriptor()
+IOMemoryDescriptor *
+IOMemoryMap::getMemoryDescriptor()
{
- return( memory );
+ return fMemory;
}
-_IOMemoryMap * _IOMemoryMap::isCompatible(
- IOMemoryDescriptor * owner,
- task_t task,
- IOVirtualAddress toAddress,
- IOOptionBits _options,
- IOByteCount _offset,
- IOByteCount _length )
+IOMemoryMap *
+IOMemoryMap::copyCompatible(
+ IOMemoryMap * newMapping )
{
- _IOMemoryMap * mapping;
+ task_t task = newMapping->getAddressTask();
+ mach_vm_address_t toAddress = newMapping->fAddress;
+ IOOptionBits _options = newMapping->fOptions;
+ mach_vm_size_t _offset = newMapping->fOffset;
+ mach_vm_size_t _length = newMapping->fLength;
+
+ if ((!task) || (!fAddressMap) || (fAddressMap != get_task_map(task))) {
+ return NULL;
+ }
+ if ((fOptions ^ _options) & kIOMapReadOnly) {
+ return NULL;
+ }
+ if ((kIOMapDefaultCache != (_options & kIOMapCacheMask))
+ && ((fOptions ^ _options) & kIOMapCacheMask)) {
+ return NULL;
+ }
- if( (!task) || (task != getAddressTask()))
- return( 0 );
- if( (options ^ _options) & (kIOMapCacheMask | kIOMapReadOnly))
- return( 0 );
+ if ((0 == (_options & kIOMapAnywhere)) && (fAddress != toAddress)) {
+ return NULL;
+ }
- if( (0 == (_options & kIOMapAnywhere)) && (logical != toAddress))
- return( 0 );
+ if (_offset < fOffset) {
+ return NULL;
+ }
- if( _offset < offset)
- return( 0 );
+ _offset -= fOffset;
- _offset -= offset;
+ if ((_offset + _length) > fLength) {
+ return NULL;
+ }
- if( (_offset + _length) > length)
- return( 0 );
+ retain();
+ if ((fLength == _length) && (!_offset)) {
+ newMapping = this;
+ } else {
+ newMapping->fSuperMap = this;
+ newMapping->fOffset = fOffset + _offset;
+ newMapping->fAddress = fAddress + _offset;
+ }
- if( (length == _length) && (!_offset)) {
- retain();
- mapping = this;
+ return newMapping;
+}
- } else {
- mapping = new _IOMemoryMap;
- if( mapping
- && !mapping->init( owner, this, _offset, _length )) {
- mapping->release();
- mapping = 0;
- }
- }
+IOReturn
+IOMemoryMap::wireRange(
+ uint32_t options,
+ mach_vm_size_t offset,
+ mach_vm_size_t length)
+{
+ IOReturn kr;
+ mach_vm_address_t start = trunc_page_64(fAddress + offset);
+ mach_vm_address_t end = round_page_64(fAddress + offset + length);
+ vm_prot_t prot;
+
+ prot = (kIODirectionOutIn & options);
+ if (prot) {
+ kr = vm_map_wire_kernel(fAddressMap, start, end, prot, fMemory->getVMTag(kernel_map), FALSE);
+ } else {
+ kr = vm_map_unwire(fAddressMap, start, end, FALSE);
+ }
- return( mapping );
+ return kr;
}
-IOPhysicalAddress _IOMemoryMap::getPhysicalSegment( IOByteCount _offset,
- IOPhysicalLength * length)
-{
- IOPhysicalAddress address;
- LOCK;
- address = memory->getPhysicalSegment( offset + _offset, length );
- UNLOCK;
+IOPhysicalAddress
+#ifdef __LP64__
+IOMemoryMap::getPhysicalSegment( IOByteCount _offset, IOPhysicalLength * _length, IOOptionBits _options)
+#else /* !__LP64__ */
+IOMemoryMap::getPhysicalSegment( IOByteCount _offset, IOPhysicalLength * _length)
+#endif /* !__LP64__ */
+{
+ IOPhysicalAddress address;
+
+ LOCK;
+#ifdef __LP64__
+ address = fMemory->getPhysicalSegment( fOffset + _offset, _length, _options );
+#else /* !__LP64__ */
+ address = fMemory->getPhysicalSegment( fOffset + _offset, _length );
+#endif /* !__LP64__ */
+ UNLOCK;
- return( address );
+ return address;
}
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
-void IOMemoryDescriptor::initialize( void )
+void
+IOMemoryDescriptor::initialize( void )
{
- if( 0 == gIOMemoryLock)
- gIOMemoryLock = IORecursiveLockAlloc();
+ if (NULL == gIOMemoryLock) {
+ gIOMemoryLock = IORecursiveLockAlloc();
+ }
+
+ gIOLastPage = IOGetLastPageNumber();
}
-void IOMemoryDescriptor::free( void )
+void
+IOMemoryDescriptor::free( void )
{
- if( _mappings)
- _mappings->release();
+ if (_mappings) {
+ _mappings->release();
+ }
- super::free();
+ if (reserved) {
+ cleanKernelReserved(reserved);
+ IODelete(reserved, IOMemoryDescriptorReserved, 1);
+ reserved = NULL;
+ }
+ super::free();
}
-IOMemoryMap * IOMemoryDescriptor::setMapping(
- task_t intoTask,
- IOVirtualAddress mapAddress,
- IOOptionBits options = 0 )
+IOMemoryMap *
+IOMemoryDescriptor::setMapping(
+ task_t intoTask,
+ IOVirtualAddress mapAddress,
+ IOOptionBits options )
{
- _IOMemoryMap * map;
-
- map = new _IOMemoryMap;
-
- LOCK;
-
- if( map
- && !map->init( this, intoTask, mapAddress,
- options | kIOMapStatic, 0, getLength() )) {
- map->release();
- map = 0;
- }
-
- addMapping( map);
-
- UNLOCK;
-
- return( map);
+ return createMappingInTask( intoTask, mapAddress,
+ options | kIOMapStatic,
+ 0, getLength());
}
-IOMemoryMap * IOMemoryDescriptor::map(
- IOOptionBits options = 0 )
+IOMemoryMap *
+IOMemoryDescriptor::map(
+ IOOptionBits options )
{
-
- return( makeMapping( this, kernel_task, 0,
- options | kIOMapAnywhere,
- 0, getLength() ));
+ return createMappingInTask( kernel_task, 0,
+ options | kIOMapAnywhere,
+ 0, getLength());
}
-IOMemoryMap * IOMemoryDescriptor::map(
- task_t intoTask,
- IOVirtualAddress toAddress,
- IOOptionBits options,
- IOByteCount offset = 0,
- IOByteCount length = 0 )
+#ifndef __LP64__
+IOMemoryMap *
+IOMemoryDescriptor::map(
+ task_t intoTask,
+ IOVirtualAddress atAddress,
+ IOOptionBits options,
+ IOByteCount offset,
+ IOByteCount length )
{
- if( 0 == length)
- length = getLength();
+ if ((!(kIOMapAnywhere & options)) && vm_map_is_64bit(get_task_map(intoTask))) {
+ OSReportWithBacktrace("IOMemoryDescriptor::map() in 64b task, use ::createMappingInTask()");
+ return NULL;
+ }
- return( makeMapping( this, intoTask, toAddress, options, offset, length ));
+ return createMappingInTask(intoTask, atAddress,
+ options, offset, length);
}
-
-IOMemoryMap * IOMemoryDescriptor::makeMapping(
- IOMemoryDescriptor * owner,
- task_t intoTask,
- IOVirtualAddress toAddress,
- IOOptionBits options,
- IOByteCount offset,
- IOByteCount length )
+#endif /* !__LP64__ */
+
+IOMemoryMap *
+IOMemoryDescriptor::createMappingInTask(
+ task_t intoTask,
+ mach_vm_address_t atAddress,
+ IOOptionBits options,
+ mach_vm_size_t offset,
+ mach_vm_size_t length)
{
- _IOMemoryMap * mapping = 0;
- OSIterator * iter;
-
- LOCK;
-
- do {
- // look for an existing mapping
- if( (iter = OSCollectionIterator::withCollection( _mappings))) {
-
- while( (mapping = (_IOMemoryMap *) iter->getNextObject())) {
-
- if( (mapping = mapping->isCompatible(
- owner, intoTask, toAddress,
- options | kIOMapReference,
- offset, length )))
- break;
- }
- iter->release();
- if( mapping)
- continue;
- }
+ IOMemoryMap * result;
+ IOMemoryMap * mapping;
+ if (0 == length) {
+ length = getLength();
+ }
- if( mapping || (options & kIOMapReference))
- continue;
-
- owner = this;
-
- mapping = new _IOMemoryMap;
- if( mapping
- && !mapping->init( owner, intoTask, toAddress, options,
- offset, length )) {
+ mapping = new IOMemoryMap;
- IOLog("Didn't make map %08lx : %08lx\n", offset, length );
- mapping->release();
- mapping = 0;
+ if (mapping
+ && !mapping->init( intoTask, atAddress,
+ options, offset, length )) {
+ mapping->release();
+ mapping = NULL;
}
- } while( false );
-
- owner->addMapping( mapping);
+ if (mapping) {
+ result = makeMapping(this, intoTask, (IOVirtualAddress) mapping, options | kIOMap64Bit, 0, 0);
+ } else {
+ result = NULL;
+ }
- UNLOCK;
+#if DEBUG
+ if (!result) {
+ IOLog("createMappingInTask failed desc %p, addr %qx, options %x, offset %qx, length %llx\n",
+ this, atAddress, (uint32_t) options, offset, length);
+ }
+#endif
- return( mapping);
+ return result;
}
-void IOMemoryDescriptor::addMapping(
- IOMemoryMap * mapping )
+#ifndef __LP64__ // there is only a 64 bit version for LP64
+IOReturn
+IOMemoryMap::redirect(IOMemoryDescriptor * newBackingMemory,
+ IOOptionBits options,
+ IOByteCount offset)
{
- if( mapping) {
- if( 0 == _mappings)
- _mappings = OSSet::withCapacity(1);
- if( _mappings && _mappings->setObject( mapping ))
- mapping->release(); /* really */
- }
+ return redirect(newBackingMemory, options, (mach_vm_size_t)offset);
}
+#endif
-void IOMemoryDescriptor::removeMapping(
- IOMemoryMap * mapping )
+IOReturn
+IOMemoryMap::redirect(IOMemoryDescriptor * newBackingMemory,
+ IOOptionBits options,
+ mach_vm_size_t offset)
{
- if( _mappings) {
- mapping->retain();
- mapping->retain();
- _mappings->removeObject( mapping);
- }
-}
-
-/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
-
-#undef super
-#define super IOMemoryDescriptor
+ IOReturn err = kIOReturnSuccess;
+ IOMemoryDescriptor * physMem = NULL;
-OSDefineMetaClassAndStructors(IOSubMemoryDescriptor, IOMemoryDescriptor)
+ LOCK;
-/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
-
-bool IOSubMemoryDescriptor::initSubRange( IOMemoryDescriptor * parent,
- IOByteCount offset, IOByteCount length,
- IODirection withDirection )
-{
- if( !super::init())
- return( false );
-
- if( !parent)
- return( false);
+ if (fAddress && fAddressMap) {
+ do{
+ if (((fMemory->_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical)
+ || ((fMemory->_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical64)) {
+ physMem = fMemory;
+ physMem->retain();
+ }
- if( (offset + length) > parent->getLength())
- return( false);
+ if (!fRedirUPL && fMemory->_memRef && (1 == fMemory->_memRef->count)) {
+ upl_size_t size = round_page(fLength);
+ upl_control_flags_t flags = UPL_COPYOUT_FROM | UPL_SET_INTERNAL
+ | UPL_SET_LITE | UPL_SET_IO_WIRE | UPL_BLOCK_ACCESS;
+ if (KERN_SUCCESS != memory_object_iopl_request(fMemory->_memRef->entries[0].entry, 0, &size, &fRedirUPL,
+ NULL, NULL,
+ &flags, fMemory->getVMTag(kernel_map))) {
+ fRedirUPL = NULL;
+ }
+
+ if (physMem) {
+ IOUnmapPages( fAddressMap, fAddress, fLength );
+ if ((false)) {
+ physMem->redirect(NULL, true);
+ }
+ }
+ }
- parent->retain();
- _parent = parent;
- _start = offset;
- _length = length;
- _direction = withDirection;
- _tag = parent->getTag();
+ if (newBackingMemory) {
+ if (newBackingMemory != fMemory) {
+ fOffset = 0;
+ if (this != newBackingMemory->makeMapping(newBackingMemory, fAddressTask, (IOVirtualAddress) this,
+ options | kIOMapUnique | kIOMapReference | kIOMap64Bit,
+ offset, fLength)) {
+ err = kIOReturnError;
+ }
+ }
+ if (fRedirUPL) {
+ upl_commit(fRedirUPL, NULL, 0);
+ upl_deallocate(fRedirUPL);
+ fRedirUPL = NULL;
+ }
+ if ((false) && physMem) {
+ physMem->redirect(NULL, false);
+ }
+ }
+ }while (false);
+ }
- return( true );
-}
+ UNLOCK;
-void IOSubMemoryDescriptor::free( void )
-{
- if( _parent)
- _parent->release();
+ if (physMem) {
+ physMem->release();
+ }
- super::free();
+ return err;
}
-
-IOPhysicalAddress IOSubMemoryDescriptor::getPhysicalSegment( IOByteCount offset,
- IOByteCount * length )
+IOMemoryMap *
+IOMemoryDescriptor::makeMapping(
+ IOMemoryDescriptor * owner,
+ task_t __intoTask,
+ IOVirtualAddress __address,
+ IOOptionBits options,
+ IOByteCount __offset,
+ IOByteCount __length )
{
- IOPhysicalAddress address;
- IOByteCount actualLength;
-
- assert(offset <= _length);
-
- if( length)
- *length = 0;
+#ifndef __LP64__
+ if (!(kIOMap64Bit & options)) {
+ panic("IOMemoryDescriptor::makeMapping !64bit");
+ }
+#endif /* !__LP64__ */
- if( offset >= _length)
- return( 0 );
+ IOMemoryDescriptor * mapDesc = NULL;
+ __block IOMemoryMap * result = NULL;
- address = _parent->getPhysicalSegment( offset + _start, &actualLength );
+ IOMemoryMap * mapping = (IOMemoryMap *) __address;
+ mach_vm_size_t offset = mapping->fOffset + __offset;
+ mach_vm_size_t length = mapping->fLength;
- if( address && length)
- *length = min( _length - offset, actualLength );
+ mapping->fOffset = offset;
- return( address );
-}
+ LOCK;
-void * IOSubMemoryDescriptor::getVirtualSegment(IOByteCount offset,
- IOByteCount * lengthOfSegment)
-{
- return( 0 );
-}
+ do{
+ if (kIOMapStatic & options) {
+ result = mapping;
+ addMapping(mapping);
+ mapping->setMemoryDescriptor(this, 0);
+ continue;
+ }
-IOByteCount IOSubMemoryDescriptor::readBytes(IOByteCount offset,
- void * bytes, IOByteCount withLength)
-{
- IOByteCount byteCount;
+ if (kIOMapUnique & options) {
+ addr64_t phys;
+ IOByteCount physLen;
+
+// if (owner != this) continue;
+
+ if (((_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical)
+ || ((_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical64)) {
+ phys = getPhysicalSegment(offset, &physLen, kIOMemoryMapperNone);
+ if (!phys || (physLen < length)) {
+ continue;
+ }
+
+ mapDesc = IOMemoryDescriptor::withAddressRange(
+ phys, length, getDirection() | kIOMemoryMapperNone, NULL);
+ if (!mapDesc) {
+ continue;
+ }
+ offset = 0;
+ mapping->fOffset = offset;
+ }
+ } else {
+ // look for a compatible existing mapping
+ if (_mappings) {
+ _mappings->iterateObjects(^(OSObject * object)
+ {
+ IOMemoryMap * lookMapping = (IOMemoryMap *) object;
+ if ((result = lookMapping->copyCompatible(mapping))) {
+ addMapping(result);
+ result->setMemoryDescriptor(this, offset);
+ return true;
+ }
+ return false;
+ });
+ }
+ if (result || (options & kIOMapReference)) {
+ if (result != mapping) {
+ mapping->release();
+ mapping = NULL;
+ }
+ continue;
+ }
+ }
- assert(offset <= _length);
+ if (!mapDesc) {
+ mapDesc = this;
+ mapDesc->retain();
+ }
+ IOReturn
+ kr = mapDesc->doMap( NULL, (IOVirtualAddress *) &mapping, options, 0, 0 );
+ if (kIOReturnSuccess == kr) {
+ result = mapping;
+ mapDesc->addMapping(result);
+ result->setMemoryDescriptor(mapDesc, offset);
+ } else {
+ mapping->release();
+ mapping = NULL;
+ }
+ }while (false);
- if( offset >= _length)
- return( 0 );
+ UNLOCK;
- LOCK;
- byteCount = _parent->readBytes( _start + offset, bytes,
- min(withLength, _length - offset) );
- UNLOCK;
+ if (mapDesc) {
+ mapDesc->release();
+ }
- return( byteCount );
+ return result;
}
-IOByteCount IOSubMemoryDescriptor::writeBytes(IOByteCount offset,
- const void* bytes, IOByteCount withLength)
+void
+IOMemoryDescriptor::addMapping(
+ IOMemoryMap * mapping )
{
- IOByteCount byteCount;
-
- assert(offset <= _length);
-
- if( offset >= _length)
- return( 0 );
-
- LOCK;
- byteCount = _parent->writeBytes( _start + offset, bytes,
- min(withLength, _length - offset) );
- UNLOCK;
-
- return( byteCount );
+ if (mapping) {
+ if (NULL == _mappings) {
+ _mappings = OSSet::withCapacity(1);
+ }
+ if (_mappings) {
+ _mappings->setObject( mapping );
+ }
+ }
}
-IOReturn IOSubMemoryDescriptor::prepare(
- IODirection forDirection = kIODirectionNone)
+void
+IOMemoryDescriptor::removeMapping(
+ IOMemoryMap * mapping )
{
- IOReturn err;
-
- LOCK;
- err = _parent->prepare( forDirection);
- UNLOCK;
-
- return( err );
+ if (_mappings) {
+ _mappings->removeObject( mapping);
+ }
}
-IOReturn IOSubMemoryDescriptor::complete(
- IODirection forDirection = kIODirectionNone)
+#ifndef __LP64__
+// obsolete initializers
+// - initWithOptions is the designated initializer
+bool
+IOMemoryDescriptor::initWithAddress(void * address,
+ IOByteCount length,
+ IODirection direction)
{
- IOReturn err;
-
- LOCK;
- err = _parent->complete( forDirection);
- UNLOCK;
-
- return( err );
+ return false;
}
-IOMemoryMap * IOSubMemoryDescriptor::makeMapping(
- IOMemoryDescriptor * owner,
- task_t intoTask,
- IOVirtualAddress toAddress,
- IOOptionBits options,
- IOByteCount offset,
- IOByteCount length )
+bool
+IOMemoryDescriptor::initWithAddress(IOVirtualAddress address,
+ IOByteCount length,
+ IODirection direction,
+ task_t task)
{
- IOMemoryMap * mapping;
-
- mapping = (IOMemoryMap *) _parent->makeMapping(
- _parent, intoTask,
- toAddress - (_start + offset),
- options | kIOMapReference,
- _start + offset, length );
-
- if( !mapping)
- mapping = super::makeMapping( owner, intoTask, toAddress, options,
- offset, length );
-
- return( mapping );
+ return false;
}
-/* ick */
-
bool
-IOSubMemoryDescriptor::initWithAddress(void * address,
- IOByteCount withLength,
- IODirection withDirection)
+IOMemoryDescriptor::initWithPhysicalAddress(
+ IOPhysicalAddress address,
+ IOByteCount length,
+ IODirection direction )
{
- return( false );
+ return false;
}
bool
-IOSubMemoryDescriptor::initWithAddress(vm_address_t address,
- IOByteCount withLength,
- IODirection withDirection,
- task_t withTask)
+IOMemoryDescriptor::initWithRanges(
+ IOVirtualRange * ranges,
+ UInt32 withCount,
+ IODirection direction,
+ task_t task,
+ bool asReference)
{
- return( false );
+ return false;
}
bool
-IOSubMemoryDescriptor::initWithPhysicalAddress(
- IOPhysicalAddress address,
- IOByteCount withLength,
- IODirection withDirection )
+IOMemoryDescriptor::initWithPhysicalRanges( IOPhysicalRange * ranges,
+ UInt32 withCount,
+ IODirection direction,
+ bool asReference)
{
- return( false );
+ return false;
}
-bool
-IOSubMemoryDescriptor::initWithRanges(
- IOVirtualRange * ranges,
- UInt32 withCount,
- IODirection withDirection,
- task_t withTask,
- bool asReference = false)
+void *
+IOMemoryDescriptor::getVirtualSegment(IOByteCount offset,
+ IOByteCount * lengthOfSegment)
{
- return( false );
+ return NULL;
}
+#endif /* !__LP64__ */
+
+/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
bool
-IOSubMemoryDescriptor::initWithPhysicalRanges( IOPhysicalRange * ranges,
- UInt32 withCount,
- IODirection withDirection,
- bool asReference = false)
+IOGeneralMemoryDescriptor::serialize(OSSerialize * s) const
{
- return( false );
+ OSSymbol const *keys[2] = {NULL};
+ OSObject *values[2] = {NULL};
+ OSArray * array;
+ vm_size_t vcopy_size;
+
+ struct SerData {
+ user_addr_t address;
+ user_size_t length;
+ } *vcopy = NULL;
+ unsigned int index, nRanges;
+ bool result = false;
+
+ IOOptionBits type = _flags & kIOMemoryTypeMask;
+
+ if (s == NULL) {
+ return false;
+ }
+
+ array = OSArray::withCapacity(4);
+ if (!array) {
+ return false;
+ }
+
+ nRanges = _rangesCount;
+ if (os_mul_overflow(sizeof(SerData), nRanges, &vcopy_size)) {
+ result = false;
+ goto bail;
+ }
+ vcopy = (SerData *) IOMalloc(vcopy_size);
+ if (vcopy == NULL) {
+ result = false;
+ goto bail;
+ }
+
+ keys[0] = OSSymbol::withCString("address");
+ keys[1] = OSSymbol::withCString("length");
+
+ // Copy the volatile data so we don't have to allocate memory
+ // while the lock is held.
+ LOCK;
+ if (nRanges == _rangesCount) {
+ Ranges vec = _ranges;
+ for (index = 0; index < nRanges; index++) {
+ mach_vm_address_t addr; mach_vm_size_t len;
+ getAddrLenForInd(addr, len, type, vec, index);
+ vcopy[index].address = addr;
+ vcopy[index].length = len;
+ }
+ } else {
+ // The descriptor changed out from under us. Give up.
+ UNLOCK;
+ result = false;
+ goto bail;
+ }
+ UNLOCK;
+
+ for (index = 0; index < nRanges; index++) {
+ user_addr_t addr = vcopy[index].address;
+ IOByteCount len = (IOByteCount) vcopy[index].length;
+ values[0] = OSNumber::withNumber(addr, sizeof(addr) * 8);
+ if (values[0] == NULL) {
+ result = false;
+ goto bail;
+ }
+ values[1] = OSNumber::withNumber(len, sizeof(len) * 8);
+ if (values[1] == NULL) {
+ result = false;
+ goto bail;
+ }
+ OSDictionary *dict = OSDictionary::withObjects((const OSObject **)values, (const OSSymbol **)keys, 2);
+ if (dict == NULL) {
+ result = false;
+ goto bail;
+ }
+ array->setObject(dict);
+ dict->release();
+ values[0]->release();
+ values[1]->release();
+ values[0] = values[1] = NULL;
+ }
+
+ result = array->serialize(s);
+
+bail:
+ if (array) {
+ array->release();
+ }
+ if (values[0]) {
+ values[0]->release();
+ }
+ if (values[1]) {
+ values[1]->release();
+ }
+ if (keys[0]) {
+ keys[0]->release();
+ }
+ if (keys[1]) {
+ keys[1]->release();
+ }
+ if (vcopy) {
+ IOFree(vcopy, vcopy_size);
+ }
+
+ return result;
}
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
-OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 0);
+OSMetaClassDefineReservedUsed(IOMemoryDescriptor, 0);
+#ifdef __LP64__
OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 1);
OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 2);
OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 3);
OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 5);
OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 6);
OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 7);
+#else /* !__LP64__ */
+OSMetaClassDefineReservedUsed(IOMemoryDescriptor, 1);
+OSMetaClassDefineReservedUsed(IOMemoryDescriptor, 2);
+OSMetaClassDefineReservedUsed(IOMemoryDescriptor, 3);
+OSMetaClassDefineReservedUsed(IOMemoryDescriptor, 4);
+OSMetaClassDefineReservedUsed(IOMemoryDescriptor, 5);
+OSMetaClassDefineReservedUsed(IOMemoryDescriptor, 6);
+OSMetaClassDefineReservedUsed(IOMemoryDescriptor, 7);
+#endif /* !__LP64__ */
OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 8);
OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 9);
OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 10);
OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 13);
OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 14);
OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 15);
+
+/* ex-inline function implementation */
+IOPhysicalAddress
+IOMemoryDescriptor::getPhysicalAddress()
+{
+ return getPhysicalSegment( 0, NULL );
+}