--- /dev/null
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms
+ * of the Common Development and Distribution License
+ * (the "License"). You may not use this file except
+ * in compliance with the License.
+ *
+ * You can obtain a copy of the license at
+ * src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing
+ * permissions and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL
+ * HEADER in each file and include the License file at
+ * usr/src/OPENSOLARIS.LICENSE. If applicable,
+ * add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your
+ * own identifying information: Portions Copyright [yyyy]
+ * [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+/*
+ * benchmarking routines
+ */
+
+#include <sys/types.h>
+#include <sys/time.h>
+#include <sys/ipc.h>
+#include <sys/sem.h>
+#include <sys/mman.h>
+#include <sys/wait.h>
+#include <ctype.h>
+#include <string.h>
+#include <strings.h>
+#include <signal.h>
+#include <stdio.h>
+#include <unistd.h>
+#include <stdlib.h>
+#include <poll.h>
+#include <pthread.h>
+#include <dlfcn.h>
+#include <errno.h>
+#include <sys/resource.h>
+#include <math.h>
+#include <limits.h>
+
+#ifdef __sun
+#include <sys/elf.h>
+#endif
+
+#include "libmicro.h"
+
+
+#if defined(__APPLE__)
+#include <mach/mach_time.h>
+
+long long
+gethrtime(void)
+{
+ long long elapsed;
+ static long long start;
+ static mach_timebase_info_data_t sTimebaseInfo = { 0, 0 };
+
+ // If this is the first time we've run, get the timebase.
+ // We can use denom == 0 to indicate that sTimebaseInfo is
+ // uninitialised because it makes no sense to have a zero
+ // denominator in a fraction.
+
+ if ( sTimebaseInfo.denom == 0 ) {
+ (void) mach_timebase_info(&sTimebaseInfo);
+ start = mach_absolute_time();
+ }
+
+ elapsed = mach_absolute_time() - start;
+
+ // Convert to nanoseconds.
+ // return (elapsed * (long long)sTimebaseInfo.numer)/(long long)sTimebaseInfo.denom;
+
+ // Provided the final result is representable in 64 bits the following maneuver will
+ // deliver that result without intermediate overflow.
+ if (sTimebaseInfo.denom == sTimebaseInfo.numer)
+ return elapsed;
+ else if (sTimebaseInfo.denom == 1)
+ return elapsed * (long long)sTimebaseInfo.numer;
+ else {
+ // Decompose elapsed = eta32 * 2^32 + eps32:
+ long long eta32 = elapsed >> 32;
+ long long eps32 = elapsed & 0x00000000ffffffffLL;
+
+ long long numer = sTimebaseInfo.numer, denom = sTimebaseInfo.denom;
+
+ // Form product of elapsed64 (decomposed) and numer:
+ long long mu64 = numer * eta32;
+ long long lambda64 = numer * eps32;
+
+ // Divide the constituents by denom:
+ long long q32 = mu64/denom;
+ long long r32 = mu64 - (q32 * denom); // mu64 % denom
+
+ return (q32 << 32) + ((r32 << 32) + lambda64)/denom;
+ }
+}
+
+#endif
+
+/*
+ * user visible globals
+ */
+
+int lm_argc = 0;
+char ** lm_argv = NULL;
+
+int lm_opt1;
+int lm_optA;
+int lm_optB;
+int lm_optC = 100;
+int lm_optD;
+int lm_optE;
+int lm_optH;
+int lm_optI;
+int lm_optL = 0;
+int lm_optM = 0;
+char *lm_optN;
+int lm_optP;
+int lm_optS;
+int lm_optT;
+int lm_optW;
+
+int lm_def1 = 0;
+int lm_defB = 0; /* use lm_nsecs_per_op */
+int lm_defD = 10;
+int lm_defH = 0;
+char *lm_defN = NULL;
+int lm_defP = 1;
+
+int lm_defS = 0;
+int lm_defT = 1;
+
+/*
+ * default on fast platform, should be overridden by individual
+ * benchmarks if significantly wrong in either direction.
+ */
+
+int lm_nsecs_per_op = 5;
+
+char *lm_procpath;
+char lm_procname[STRSIZE];
+char lm_usage[STRSIZE];
+char lm_optstr[STRSIZE];
+char lm_header[STRSIZE];
+size_t lm_tsdsize = 0;
+
+
+/*
+ * Globals we do not export to the user
+ */
+
+static barrier_t *lm_barrier;
+static pid_t *pids = NULL;
+static pthread_t *tids = NULL;
+static int pindex = -1;
+static void *tsdseg = NULL;
+static size_t tsdsize = 0;
+
+#ifdef USE_RDTSC
+static long long lm_hz = 0;
+#endif
+
+
+/*
+ * Forward references
+ */
+
+static void worker_process();
+static void usage();
+static void print_stats(barrier_t *);
+static void print_histo(barrier_t *);
+static int remove_outliers(double *, int, stats_t *);
+static long long nsecs_overhead;
+static long long nsecs_resolution;
+static long long get_nsecs_overhead();
+static int crunch_stats(double *, int, stats_t *);
+static void compute_stats(barrier_t *);
+/*
+ * main routine; renamed in this file to allow linking with other
+ * files
+ */
+
+int
+actual_main(int argc, char *argv[])
+{
+ int i;
+ int opt;
+ extern char *optarg;
+ char *tmp;
+ char optstr[256];
+ barrier_t *b;
+ long long startnsecs = getnsecs();
+
+#ifdef USE_RDTSC
+ if (getenv("LIBMICRO_HZ") == NULL) {
+ (void) printf("LIBMICRO_HZ needed but not set\n");
+ exit(1);
+ }
+ lm_hz = strtoll(getenv("LIBMICRO_HZ"), NULL, 10);
+#endif
+
+ lm_argc = argc;
+ lm_argv = argv;
+
+ /* before we do anything */
+ (void) benchmark_init();
+
+
+ nsecs_overhead = get_nsecs_overhead();
+ nsecs_resolution = get_nsecs_resolution();
+
+ /*
+ * Set defaults
+ */
+
+ lm_opt1 = lm_def1;
+ lm_optB = lm_defB;
+ lm_optD = lm_defD;
+ lm_optH = lm_defH;
+ lm_optN = lm_defN;
+ lm_optP = lm_defP;
+
+ lm_optS = lm_defS;
+ lm_optT = lm_defT;
+
+ /*
+ * squirrel away the path to the current
+ * binary in a way that works on both
+ * Linux and Solaris
+ */
+
+ if (*argv[0] == '/') {
+ lm_procpath = strdup(argv[0]);
+ *strrchr(lm_procpath, '/') = 0;
+ } else {
+ char path[1024];
+ (void) getcwd(path, 1024);
+ (void) strcat(path, "/");
+ (void) strcat(path, argv[0]);
+ *strrchr(path, '/') = 0;
+ lm_procpath = strdup(path);
+ }
+
+ /*
+ * name of binary
+ */
+
+ if ((tmp = strrchr(argv[0], '/')) == NULL)
+ (void) strcpy(lm_procname, argv[0]);
+ else
+ (void) strcpy(lm_procname, tmp + 1);
+
+ if (lm_optN == NULL) {
+ lm_optN = lm_procname;
+ }
+
+ /*
+ * Parse command line arguments
+ */
+
+ (void) sprintf(optstr, "1AB:C:D:EHI:LMN:P:RST:VW?%s", lm_optstr);
+ while ((opt = getopt(argc, argv, optstr)) != -1) {
+ switch (opt) {
+ case '1':
+ lm_opt1 = 1;
+ break;
+ case 'A':
+ lm_optA = 1;
+ break;
+ case 'B':
+ lm_optB = sizetoint(optarg);
+ break;
+ case 'C':
+ lm_optC = sizetoint(optarg);
+ break;
+ case 'D':
+ lm_optD = sizetoint(optarg);
+ break;
+ case 'E':
+ lm_optE = 1;
+ break;
+ case 'H':
+ lm_optH = 1;
+ break;
+ case 'I':
+ lm_optI = sizetoint(optarg);
+ break;
+ case 'L':
+ lm_optL = 1;
+ break;
+ case 'M':
+ lm_optM = 1;
+ break;
+ case 'N':
+ lm_optN = optarg;
+ break;
+ case 'P':
+ lm_optP = sizetoint(optarg);
+ break;
+ case 'S':
+ lm_optS = 1;
+ break;
+ case 'T':
+ lm_optT = sizetoint(optarg);
+ break;
+ case 'V':
+ (void) printf("%s\n", LIBMICRO_VERSION);
+ exit(0);
+ break;
+ case 'W':
+ lm_optW = 1;
+ lm_optS = 1;
+ break;
+ case '?':
+ usage();
+ exit(0);
+ break;
+ default:
+ if (benchmark_optswitch(opt, optarg) == -1) {
+ usage();
+ exit(0);
+ }
+ }
+ }
+
+ /* deal with implicit and overriding options */
+ if (lm_opt1 && lm_optP > 1) {
+ lm_optP = 1;
+ (void) printf("warning: -1 overrides -P\n");
+ }
+
+ if (lm_optE) {
+ (void) fprintf(stderr, "Running:%20s", lm_optN);
+ (void) fflush(stderr);
+ }
+
+ if (lm_optB == 0) {
+ /*
+ * neither benchmark or user has specified the number
+ * of cnts/sample, so use computed value
+ */
+ if (lm_optI)
+ lm_nsecs_per_op = lm_optI;
+#define BLOCK_TOCK_DURATION 10000 /* number of raw timer "tocks" ideally comprising a block of work */
+ lm_optB = nsecs_resolution * BLOCK_TOCK_DURATION / lm_nsecs_per_op;
+ if (lm_optB == 0)
+ lm_optB = 1;
+ }
+
+ /*
+ * now that the options are set
+ */
+
+ if (benchmark_initrun() == -1) {
+ exit(1);
+ }
+
+ /* allocate dynamic data */
+ pids = (pid_t *)malloc(lm_optP * sizeof (pid_t));
+ if (pids == NULL) {
+ perror("malloc(pids)");
+ exit(1);
+ }
+ tids = (pthread_t *)malloc(lm_optT * sizeof (pthread_t));
+ if (tids == NULL) {
+ perror("malloc(tids)");
+ exit(1);
+ }
+
+ /* check that the case defines lm_tsdsize before proceeding */
+ if (lm_tsdsize == (size_t)-1) {
+ (void) fprintf(stderr, "error in benchmark_init: "
+ "lm_tsdsize not set\n");
+ exit(1);
+ }
+
+ /* round up tsdsize to nearest 128 to eliminate false sharing */
+ tsdsize = ((lm_tsdsize + 127) / 128) * 128;
+
+ /* allocate sufficient TSD for each thread in each process */
+ tsdseg = (void *)mmap(NULL, lm_optT * lm_optP * tsdsize + 8192,
+ PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0L);
+ if (tsdseg == NULL) {
+ perror("mmap(tsd)");
+ exit(1);
+ }
+
+ /* initialise worker synchronisation */
+ b = barrier_create(lm_optT * lm_optP, DATASIZE);
+ if (b == NULL) {
+ perror("barrier_create()");
+ exit(1);
+ }
+ lm_barrier = b;
+ b->ba_flag = 1;
+
+ /* need this here so that parent and children can call exit() */
+ (void) fflush(stdout);
+ (void) fflush(stderr);
+
+ /* when we started and when to stop */
+
+ b->ba_starttime = getnsecs();
+ b->ba_deadline = (long long) (b->ba_starttime + (lm_optD * 1000000LL));
+
+ /* do the work */
+ if (lm_opt1) {
+ /* single process, non-fork mode */
+ pindex = 0;
+ worker_process();
+ } else {
+ /* create worker processes */
+ for (i = 0; i < lm_optP; i++) {
+ pids[i] = fork();
+
+ switch (pids[i]) {
+ case 0:
+ pindex = i;
+ worker_process();
+ exit(0);
+ break;
+ case -1:
+ perror("fork");
+ exit(1);
+ break;
+ default:
+ continue;
+ }
+ }
+
+ /* wait for worker processes */
+ for (i = 0; i < lm_optP; i++) {
+ if (pids[i] > 0) {
+ (void) waitpid(pids[i], NULL, 0);
+ }
+ }
+ }
+
+ b->ba_endtime = getnsecs();
+
+ /* compute results */
+
+ compute_stats(b);
+
+ /* print arguments benchmark was invoked with ? */
+ if (lm_optL) {
+ int l;
+ (void) printf("# %s ", argv[0]);
+ for (l = 1; l < argc; l++) {
+ (void) printf("%s ", argv[l]);
+ }
+ (void) printf("\n");
+ }
+
+ /* print result header (unless suppressed) */
+ if (!lm_optH) {
+ (void) printf("%12s %3s %3s %12s %12s %8s %8s %s\n",
+ "", "prc", "thr",
+ "usecs/call",
+ "samples", "errors", "cnt/samp", lm_header);
+ }
+
+ /* print result */
+
+ (void) printf("%-12s %3d %3d %12.5f %12d %8lld %8d %s\n",
+ lm_optN, lm_optP, lm_optT,
+ (lm_optM?b->ba_corrected.st_mean:b->ba_corrected.st_median),
+ b->ba_batches, b->ba_errors, lm_optB,
+ benchmark_result());
+
+ if (lm_optS) {
+ print_stats(b);
+ }
+
+ /* just incase something goes awry */
+ (void) fflush(stdout);
+ (void) fflush(stderr);
+
+ /* cleanup by stages */
+ (void) benchmark_finirun();
+ (void) barrier_destroy(b);
+ (void) benchmark_fini();
+
+ if (lm_optE) {
+ (void) fprintf(stderr, " for %12.5f seconds\n",
+ (double)(getnsecs() - startnsecs) /
+ 1.e9);
+ (void) fflush(stderr);
+ }
+ return (0);
+}
+
+void *
+worker_thread(void *arg)
+{
+ result_t r;
+ long long last_sleep = 0;
+ long long t;
+
+ r.re_errors = benchmark_initworker(arg);
+
+ while (lm_barrier->ba_flag) {
+ r.re_count = 0;
+ r.re_errors += benchmark_initbatch(arg);
+
+ /* sync to clock */
+
+ if (lm_optA && ((t = getnsecs()) - last_sleep) > 75000000LL) {
+ (void) poll(0, 0, 10);
+ last_sleep = t;
+ }
+ /* wait for it ... */
+ (void) barrier_queue(lm_barrier, NULL);
+
+ /* time the test */
+ r.re_t0 = getnsecs();
+ (void) benchmark(arg, &r);
+ r.re_t1 = getnsecs();
+
+ /* time to stop? */
+ if (r.re_t1 > lm_barrier->ba_deadline &&
+ (!lm_optC || lm_optC < lm_barrier->ba_batches)) {
+ lm_barrier->ba_flag = 0;
+ }
+
+ /* record results and sync */
+ (void) barrier_queue(lm_barrier, &r);
+
+ (void) benchmark_finibatch(arg);
+
+ r.re_errors = 0;
+ }
+
+ (void) benchmark_finiworker(arg);
+
+ return (0);
+}
+
+void
+worker_process()
+{
+ int i;
+ void *tsd;
+
+ for (i = 1; i < lm_optT; i++) {
+ tsd = gettsd(pindex, i);
+ if (pthread_create(&tids[i], NULL, worker_thread, tsd) != 0) {
+ perror("pthread_create");
+ exit(1);
+ }
+ }
+
+ tsd = gettsd(pindex, 0);
+ (void) worker_thread(tsd);
+
+ for (i = 1; i < lm_optT; i++) {
+ (void) pthread_join(tids[i], NULL);
+ }
+}
+
+void
+usage()
+{
+ (void) printf(
+ "usage: %s\n"
+ " [-1] (single process; overrides -P > 1)\n"
+ " [-A] (align with clock)\n"
+ " [-B batch-size (default %d)]\n"
+ " [-C minimum number of samples (default 0)]\n"
+ " [-D duration in msecs (default %ds)]\n"
+ " [-E (echo name to stderr)]\n"
+ " [-H] (suppress headers)\n"
+ " [-I] nsecs per op (used to compute batch size)"
+ " [-L] (print argument line)\n"
+ " [-M] (reports mean rather than median)\n"
+ " [-N test-name (default '%s')]\n"
+ " [-P processes (default %d)]\n"
+ " [-S] (print detailed stats)\n"
+ " [-T threads (default %d)]\n"
+ " [-V] (print the libMicro version and exit)\n"
+ " [-W] (flag possible benchmark problems)\n"
+ "%s\n",
+ lm_procname,
+ lm_defB, lm_defD, lm_procname, lm_defP, lm_defT,
+ lm_usage);
+}
+
+void
+print_warnings(barrier_t *b)
+{
+ int head = 0;
+ int increase;
+
+ if (b->ba_quant) {
+ if (!head++) {
+ (void) printf("#\n# WARNINGS\n");
+ }
+ increase = (int)(floor((nsecs_resolution * 100.0) /
+ ((double)lm_optB * b->ba_corrected.st_median * 1000.0)) +
+ 1.0);
+ (void) printf("# Quantization error likely;"
+ "increase batch size (-B option) %dX to avoid.\n",
+ increase);
+ }
+
+ /*
+ * XXX should warn on median != mean by a lot
+ */
+
+ if (b->ba_errors) {
+ if (!head++) {
+ (void) printf("#\n# WARNINGS\n");
+ }
+ (void) printf("# Errors occured during benchmark.\n");
+ }
+}
+
+void
+print_stats(barrier_t *b)
+{
+ (void) printf("#\n");
+ (void) printf("# STATISTICS %12s %12s\n",
+ "usecs/call (raw)",
+ "usecs/call (outliers removed)");
+
+ if (b->ba_count == 0) {
+ (void) printf("zero samples\n");
+ return;
+ }
+
+ (void) printf("# min %12.5f %12.5f\n",
+ b->ba_raw.st_min,
+ b->ba_corrected.st_min);
+
+ (void) printf("# max %12.5f %12.5f\n",
+ b->ba_raw.st_max,
+ b->ba_corrected.st_max);
+ (void) printf("# mean %12.5f %12.5f\n",
+ b->ba_raw.st_mean,
+ b->ba_corrected.st_mean);
+ (void) printf("# median %12.5f %12.5f\n",
+ b->ba_raw.st_median,
+ b->ba_corrected.st_median);
+ (void) printf("# stddev %12.5f %12.5f\n",
+ b->ba_raw.st_stddev,
+ b->ba_corrected.st_stddev);
+ (void) printf("# standard error %12.5f %12.5f\n",
+ b->ba_raw.st_stderr,
+ b->ba_corrected.st_stderr);
+ (void) printf("# 99%% confidence level %12.5f %12.5f\n",
+ b->ba_raw.st_99confidence,
+ b->ba_corrected.st_99confidence);
+ (void) printf("# skew %12.5f %12.5f\n",
+ b->ba_raw.st_skew,
+ b->ba_corrected.st_skew);
+ (void) printf("# kurtosis %12.5f %12.5f\n",
+ b->ba_raw.st_kurtosis,
+ b->ba_corrected.st_kurtosis);
+
+ (void) printf("# time correlation %12.5f %12.5f\n",
+ b->ba_raw.st_timecorr,
+ b->ba_corrected.st_timecorr);
+ (void) printf("#\n");
+
+ (void) printf("# elasped time %12.5f\n", (b->ba_endtime -
+ b->ba_starttime) / 1.0e9);
+ (void) printf("# number of samples %12d\n", b->ba_batches);
+ (void) printf("# number of outliers %12d\n", b->ba_outliers);
+ (void) printf("# getnsecs overhead %12d\n", (int)nsecs_overhead);
+
+ (void) printf("#\n");
+ (void) printf("# DISTRIBUTION\n");
+
+ print_histo(b);
+
+ if (lm_optW) {
+ print_warnings(b);
+ }
+}
+
+void
+update_stats(barrier_t *b, result_t *r)
+{
+ double time;
+ double nsecs_per_call;
+
+ if (b->ba_waiters == 0) {
+ /* first thread only */
+ b->ba_t0 = r->re_t0;
+ b->ba_t1 = r->re_t1;
+ b->ba_count0 = 0;
+ b->ba_errors0 = 0;
+ } else {
+ /* all but first thread */
+ if (r->re_t0 < b->ba_t0) {
+ b->ba_t0 = r->re_t0;
+ }
+ if (r->re_t1 > b->ba_t1) {
+ b->ba_t1 = r->re_t1;
+ }
+ }
+
+ b->ba_count0 += r->re_count;
+ b->ba_errors0 += r->re_errors;
+
+ if (b->ba_waiters == b->ba_hwm - 1) {
+ /* last thread only */
+
+
+ time = (double)b->ba_t1 - (double)b->ba_t0 -
+ (double)nsecs_overhead;
+
+ if (time < 100 * nsecs_resolution)
+ b->ba_quant++;
+
+ /*
+ * normalize by procs * threads if not -U
+ */
+
+ nsecs_per_call = time / (double)b->ba_count0 *
+ (double)(lm_optT * lm_optP);
+
+ b->ba_count += b->ba_count0;
+ b->ba_errors += b->ba_errors0;
+
+ b->ba_data[b->ba_batches % b->ba_datasize] =
+ nsecs_per_call;
+
+ b->ba_batches++;
+ }
+}
+
+#ifdef USE_SEMOP
+barrier_t *
+barrier_create(int hwm, int datasize)
+{
+ struct sembuf s[1];
+ barrier_t *b;
+
+ /*LINTED*/
+ b = (barrier_t *)mmap(NULL,
+ sizeof (barrier_t) + (datasize - 1) * sizeof (double),
+ PROT_READ | PROT_WRITE,
+ MAP_SHARED | MAP_ANON, -1, 0L);
+ if (b == (barrier_t *)MAP_FAILED) {
+ return (NULL);
+ }
+ b->ba_datasize = datasize;
+
+ b->ba_flag = 0;
+ b->ba_hwm = hwm;
+ b->ba_semid = semget(IPC_PRIVATE, 3, 0600);
+ if (b->ba_semid == -1) {
+ (void) munmap((void *)b, sizeof (barrier_t));
+ return (NULL);
+ }
+
+ /* [hwm - 1, 0, 0] */
+ s[0].sem_num = 0;
+ s[0].sem_op = hwm - 1;
+ s[0].sem_flg = 0;
+ if (semop(b->ba_semid, s, 1) == -1) {
+ perror("semop(1)");
+ (void) semctl(b->ba_semid, 0, IPC_RMID);
+ (void) munmap((void *)b, sizeof (barrier_t));
+ return (NULL);
+ }
+
+ b->ba_waiters = 0;
+ b->ba_phase = 0;
+
+ b->ba_count = 0;
+ b->ba_errors = 0;
+
+ return (b);
+}
+
+int
+barrier_destroy(barrier_t *b)
+{
+ (void) semctl(b->ba_semid, 0, IPC_RMID);
+ (void) munmap((void *)b, sizeof (barrier_t));
+
+ return (0);
+}
+
+int
+barrier_queue(barrier_t *b, result_t *r)
+{
+ struct sembuf s[2];
+
+ /*
+ * {s0(-(hwm-1))}
+ * if ! nowait {s1(-(hwm-1))}
+ * (all other threads)
+ * update shared stats
+ * {s0(hwm-1), s1(1)}
+ * {s0(1), s2(-1)}
+ * else
+ * (last thread)
+ * update shared stats
+ * {s2(hwm-1)}
+ */
+
+ s[0].sem_num = 0;
+ s[0].sem_op = -(b->ba_hwm - 1);
+ s[0].sem_flg = 0;
+ if (semop(b->ba_semid, s, 1) == -1) {
+ perror("semop(2)");
+ return (-1);
+ }
+
+ s[0].sem_num = 1;
+ s[0].sem_op = -(b->ba_hwm - 1);
+ s[0].sem_flg = IPC_NOWAIT;
+ if (semop(b->ba_semid, s, 1) == -1) {
+ if (errno != EAGAIN) {
+ perror("semop(3)");
+ return (-1);
+ }
+
+ /* all but the last thread */
+
+ if (r != NULL) {
+ update_stats(b, r);
+ }
+
+ b->ba_waiters++;
+
+ s[0].sem_num = 0;
+ s[0].sem_op = b->ba_hwm - 1;
+ s[0].sem_flg = 0;
+ s[1].sem_num = 1;
+ s[1].sem_op = 1;
+ s[1].sem_flg = 0;
+ if (semop(b->ba_semid, s, 2) == -1) {
+ perror("semop(4)");
+ return (-1);
+ }
+
+ s[0].sem_num = 0;
+ s[0].sem_op = 1;
+ s[0].sem_flg = 0;
+ s[1].sem_num = 2;
+ s[1].sem_op = -1;
+ s[1].sem_flg = 0;
+ if (semop(b->ba_semid, s, 2) == -1) {
+ perror("semop(5)");
+ return (-1);
+ }
+
+ } else {
+ /* the last thread */
+
+ if (r != NULL) {
+ update_stats(b, r);
+ }
+
+ b->ba_waiters = 0;
+ b->ba_phase++;
+
+ s[0].sem_num = 2;
+ s[0].sem_op = b->ba_hwm - 1;
+ s[0].sem_flg = 0;
+ if (semop(b->ba_semid, s, 1) == -1) {
+ perror("semop(6)");
+ return (-1);
+ }
+ }
+
+ return (0);
+}
+
+#else /* USE_SEMOP */
+
+barrier_t *
+barrier_create(int hwm, int datasize)
+{
+ pthread_mutexattr_t attr;
+ pthread_condattr_t cattr;
+ barrier_t *b;
+
+ /*LINTED*/
+ b = (barrier_t *)mmap(NULL,
+ sizeof (barrier_t) + (datasize - 1) * sizeof (double),
+ PROT_READ | PROT_WRITE,
+ MAP_SHARED | MAP_ANON, -1, 0L);
+ if (b == (barrier_t *)MAP_FAILED) {
+ return (NULL);
+ }
+ b->ba_datasize = datasize;
+
+ b->ba_hwm = hwm;
+ b->ba_flag = 0;
+
+ (void) pthread_mutexattr_init(&attr);
+ (void) pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
+
+ (void) pthread_condattr_init(&cattr);
+ (void) pthread_condattr_setpshared(&cattr, PTHREAD_PROCESS_SHARED);
+
+ (void) pthread_mutex_init(&b->ba_lock, &attr);
+ (void) pthread_cond_init(&b->ba_cv, &cattr);
+
+ b->ba_waiters = 0;
+ b->ba_phase = 0;
+
+ b->ba_count = 0;
+ b->ba_errors = 0;
+
+ return (b);
+}
+
+int
+barrier_destroy(barrier_t *b)
+{
+ (void) munmap((void *)b, sizeof (barrier_t));
+
+ return (0);
+}
+
+int
+barrier_queue(barrier_t *b, result_t *r)
+{
+ int phase;
+
+ (void) pthread_mutex_lock(&b->ba_lock);
+
+ if (r != NULL) {
+ update_stats(b, r);
+ }
+
+ phase = b->ba_phase;
+
+ b->ba_waiters++;
+ if (b->ba_hwm == b->ba_waiters) {
+ b->ba_waiters = 0;
+ b->ba_phase++;
+ (void) pthread_cond_broadcast(&b->ba_cv);
+ }
+
+ while (b->ba_phase == phase) {
+ (void) pthread_cond_wait(&b->ba_cv, &b->ba_lock);
+ }
+
+ (void) pthread_mutex_unlock(&b->ba_lock);
+ return (0);
+}
+#endif /* USE_SEMOP */
+
+int
+gettindex()
+{
+ int i;
+
+ if (tids == NULL) {
+ return (-1);
+ }
+
+ for (i = 1; i < lm_optT; i++) {
+ if (pthread_self() == tids[i]) {
+ return (i);
+ }
+ }
+
+ return (0);
+}
+
+int
+getpindex()
+{
+ return (pindex);
+}
+
+void *
+gettsd(int p, int t)
+{
+ if ((p < 0) || (p >= lm_optP) || (t < 0) || (t >= lm_optT))
+ return (NULL);
+
+ return ((void *)((unsigned long)tsdseg +
+ (((p * lm_optT) + t) * tsdsize)));
+}
+
+#if defined(__APPLE__)
+int
+gettsdindex(void *arg){
+ /*
+ * gettindex() can race with pthread_create() filling in tids[].
+ * This is an alternative approach to finding the calling thread's tsd in t
+sdseg
+ */
+ return tsdsize ? ((unsigned long)arg - (unsigned long)tsdseg)/tsdsize : 0;
+}
+#endif /* __APPLE__ */
+
+#ifdef USE_GETHRTIME
+long long
+getnsecs()
+{
+ return (gethrtime());
+}
+
+long long
+getusecs()
+{
+ return (gethrtime() / 1000);
+}
+
+#elif USE_RDTSC /* USE_GETHRTIME */
+
+__inline__ long long
+rdtsc(void)
+{
+ unsigned long long x;
+ __asm__ volatile(".byte 0x0f, 0x31" : "=A" (x));
+ return (x);
+}
+
+long long
+getusecs()
+{
+ return (rdtsc() * 1000000 / lm_hz);
+}
+
+long long
+getnsecs()
+{
+ return (rdtsc() * 1000000000 / lm_hz);
+}
+
+#else /* USE_GETHRTIME */
+
+long long
+getusecs()
+{
+ struct timeval tv;
+
+ (void) gettimeofday(&tv, NULL);
+
+ return ((long long)tv.tv_sec * 1000000LL + (long long) tv.tv_usec);
+}
+
+long long
+getnsecs()
+{
+ struct timeval tv;
+
+ (void) gettimeofday(&tv, NULL);
+
+ return ((long long)tv.tv_sec * 1000000000LL +
+ (long long) tv.tv_usec * 1000LL);
+}
+
+#endif /* USE_GETHRTIME */
+
+int
+setfdlimit(int limit)
+{
+ struct rlimit rlimit;
+
+ if (getrlimit(RLIMIT_NOFILE, &rlimit) < 0) {
+ perror("getrlimit");
+ exit(1);
+ }
+
+ if (rlimit.rlim_cur > limit)
+ return (0); /* no worries */
+
+ rlimit.rlim_cur = limit;
+
+ if (rlimit.rlim_max < limit)
+ rlimit.rlim_max = limit;
+
+ if (setrlimit(RLIMIT_NOFILE, &rlimit) < 0) {
+ perror("setrlimit");
+ exit(3);
+ }
+
+ return (0);
+}
+
+
+#define KILOBYTE 1024
+#define MEGABYTE (KILOBYTE * KILOBYTE)
+#define GIGABYTE (KILOBYTE * MEGABYTE)
+
+long long
+sizetoll(const char *arg)
+{
+ int len = strlen(arg);
+ int i;
+ long long mult = 1;
+
+ if (len && isalpha(arg[len - 1])) {
+ switch (arg[len - 1]) {
+
+ case 'k':
+ case 'K':
+ mult = KILOBYTE;
+ break;
+ case 'm':
+ case 'M':
+ mult = MEGABYTE;
+ break;
+ case 'g':
+ case 'G':
+ mult = GIGABYTE;
+ break;
+ default:
+ return (-1);
+ }
+
+ for (i = 0; i < len - 1; i++)
+ if (!isdigit(arg[i]))
+ return (-1);
+ }
+
+ return (mult * strtoll(arg, NULL, 10));
+}
+
+int
+sizetoint(const char *arg)
+{
+ int len = strlen(arg);
+ int i;
+ long long mult = 1;
+
+ if (len && isalpha(arg[len - 1])) {
+ switch (arg[len - 1]) {
+
+ case 'k':
+ case 'K':
+ mult = KILOBYTE;
+ break;
+ case 'm':
+ case 'M':
+ mult = MEGABYTE;
+ break;
+ case 'g':
+ case 'G':
+ mult = GIGABYTE;
+ break;
+ default:
+ return (-1);
+ }
+
+ for (i = 0; i < len - 1; i++)
+ if (!isdigit(arg[i]))
+ return (-1);
+ }
+
+ return (mult * atoi(arg));
+}
+
+static void
+print_bar(long count, long total)
+{
+ int i;
+
+ (void) putchar_unlocked(count ? '*' : ' ');
+ for (i = 1; i < (32 * count) / total; i++)
+ (void) putchar_unlocked('*');
+ for (; i < 32; i++)
+ (void) putchar_unlocked(' ');
+}
+
+static int
+doublecmp(const void *p1, const void *p2)
+{
+ double a = *((double *)p1);
+ double b = *((double *)p2);
+
+ if (a > b)
+ return (1);
+ if (a < b)
+ return (-1);
+ return (0);
+}
+
+static void
+print_histo(barrier_t *b)
+{
+ int n;
+ int i;
+ int j;
+ int last;
+ long long maxcount;
+ double sum;
+ long long min;
+ long long scale;
+ double x;
+ long long y;
+ long long count;
+ int i95;
+ double p95;
+ double r95;
+ double m95;
+ histo_t *histo;
+
+ (void) printf("# %12s %12s %32s %12s\n", "counts", "usecs/call",
+ "", "means");
+
+ /* calculate how much data we've captured */
+ n = b->ba_batches > b->ba_datasize ? b->ba_datasize : b->ba_batches;
+
+ /* find the 95th percentile - index, value and range */
+ qsort((void *)b->ba_data, n, sizeof (double), doublecmp);
+ min = b->ba_data[0] + 0.000001;
+ i95 = n * 95 / 100;
+ p95 = b->ba_data[i95];
+ r95 = p95 - min + 1;
+
+ /* find a suitable min and scale */
+ i = 0;
+ x = r95 / (HISTOSIZE - 1);
+ while (x >= 10.0) {
+ x /= 10.0;
+ i++;
+ }
+ y = x + 0.9999999999;
+ while (i > 0) {
+ y *= 10;
+ i--;
+ }
+ min /= y;
+ min *= y;
+ scale = y * (HISTOSIZE - 1);
+ if (scale < (HISTOSIZE - 1)) {
+ scale = (HISTOSIZE - 1);
+ }
+
+ /* create and initialise the histogram */
+ histo = malloc(HISTOSIZE * sizeof (histo_t));
+ for (i = 0; i < HISTOSIZE; i++) {
+ histo[i].sum = 0.0;
+ histo[i].count = 0;
+ }
+
+ /* populate the histogram */
+ last = 0;
+ sum = 0.0;
+ count = 0;
+ for (i = 0; i < i95; i++) {
+ j = (HISTOSIZE - 1) * (b->ba_data[i] - min) / scale;
+
+ if (j >= HISTOSIZE) {
+ (void) printf("panic!\n");
+ j = HISTOSIZE - 1;
+ }
+
+ histo[j].sum += b->ba_data[i];
+ histo[j].count++;
+
+ sum += b->ba_data[i];
+ count++;
+ }
+ m95 = sum / count;
+
+ /* find the larges bucket */
+ maxcount = 0;
+ for (i = 0; i < HISTOSIZE; i++)
+ if (histo[i].count > 0) {
+ last = i;
+ if (histo[i].count > maxcount)
+ maxcount = histo[i].count;
+ }
+
+ /* print the buckets */
+ for (i = 0; i <= last; i++) {
+ (void) printf("# %12lld %12.5f |", histo[i].count,
+ (min + scale * (double)i / (HISTOSIZE - 1)));
+
+ print_bar(histo[i].count, maxcount);
+
+ if (histo[i].count > 0)
+ (void) printf("%12.5f\n",
+ histo[i].sum / histo[i].count);
+ else
+ (void) printf("%12s\n", "-");
+ }
+
+ /* find the mean of values beyond the 95th percentile */
+ sum = 0.0;
+ count = 0;
+ for (i = i95; i < n; i++) {
+ sum += b->ba_data[i];
+ count++;
+ }
+
+ /* print the >95% bucket summary */
+ (void) printf("#\n");
+ (void) printf("# %12lld %12s |", count, "> 95%");
+ print_bar(count, maxcount);
+ if (count > 0)
+ (void) printf("%12.5f\n", sum / count);
+ else
+ (void) printf("%12s\n", "-");
+ (void) printf("#\n");
+ (void) printf("# %12s %12.5f\n", "mean of 95%", m95);
+ (void) printf("# %12s %12.5f\n", "95th %ile", p95);
+
+ /* quantify any buffer overflow */
+ if (b->ba_batches > b->ba_datasize)
+ (void) printf("# %12s %12d\n", "data dropped",
+ b->ba_batches - b->ba_datasize);
+}
+
+static void
+compute_stats(barrier_t *b)
+{
+ int i;
+
+ if (b->ba_batches > b->ba_datasize)
+ b->ba_batches = b->ba_datasize;
+
+ /*
+ * convert to usecs/call
+ */
+
+ for (i = 0; i < b->ba_batches; i++)
+ b->ba_data[i] /= 1000.0;
+
+ /*
+ * do raw stats
+ */
+
+ (void) crunch_stats(b->ba_data, b->ba_batches, &b->ba_raw);
+
+ /*
+ * recursively apply 3 sigma rule to remove outliers
+ */
+
+ b->ba_corrected = b->ba_raw;
+ b->ba_outliers = 0;
+
+ if (b->ba_batches > 40) { /* remove outliers */
+ int removed;
+
+ do {
+ removed = remove_outliers(b->ba_data, b->ba_batches,
+ &b->ba_corrected);
+ b->ba_outliers += removed;
+ b->ba_batches -= removed;
+ (void) crunch_stats(b->ba_data, b->ba_batches,
+ &b->ba_corrected);
+ } while (removed != 0 && b->ba_batches > 40);
+ }
+
+}
+
+/*
+ * routine to compute various statistics on array of doubles.
+ */
+
+static int
+crunch_stats(double *data, int count, stats_t *stats)
+{
+ double a;
+ double std;
+ double diff;
+ double sk;
+ double ku;
+ double mean;
+ int i;
+ int bytes;
+ double *dupdata;
+
+ /*
+ * first we need the mean
+ */
+
+ mean = 0.0;
+
+ for (i = 0; i < count; i++) {
+ mean += data[i];
+ }
+
+ mean /= count;
+
+ stats->st_mean = mean;
+
+ /*
+ * malloc and sort so we can do median
+ */
+
+ dupdata = malloc(bytes = sizeof (double) * count);
+ (void) memcpy(dupdata, data, bytes);
+ qsort((void *)dupdata, count, sizeof (double), doublecmp);
+ stats->st_median = dupdata[count/2];
+
+ /*
+ * reuse dupdata to compute time correlation of data to
+ * detect interesting time-based trends
+ */
+
+ for (i = 0; i < count; i++)
+ dupdata[i] = (double)i;
+
+ (void) fit_line(dupdata, data, count, &a, &stats->st_timecorr);
+ free(dupdata);
+
+ std = 0.0;
+ sk = 0.0;
+ ku = 0.0;
+
+ stats->st_max = -1;
+ stats->st_min = 1.0e99; /* hard to find portable values */
+
+ for (i = 0; i < count; i++) {
+ if (data[i] > stats->st_max)
+ stats->st_max = data[i];
+ if (data[i] < stats->st_min)
+ stats->st_min = data[i];
+
+ diff = data[i] - mean;
+ std += diff * diff;
+ sk += diff * diff * diff;
+ ku += diff * diff * diff * diff;
+ }
+
+ stats->st_stddev = std = sqrt(std/(double)(count - 1));
+ stats->st_stderr = std / sqrt(count);
+ stats->st_99confidence = stats->st_stderr * 2.326;
+ stats->st_skew = sk / (std * std * std) / (double)(count);
+ stats->st_kurtosis = ku / (std * std * std * std) /
+ (double)(count) - 3;
+
+ return (0);
+}
+
+/*
+ * does a least squares fit to the set of points x, y and
+ * fits a line y = a + bx. Returns a, b
+ */
+
+int
+fit_line(double *x, double *y, int count, double *a, double *b)
+{
+ double sumx, sumy, sumxy, sumx2;
+ double denom;
+ int i;
+
+ sumx = sumy = sumxy = sumx2 = 0.0;
+
+ for (i = 0; i < count; i++) {
+ sumx += x[i];
+ sumx2 += x[i] * x[i];
+ sumy += y[i];
+ sumxy += x[i] * y[i];
+ }
+
+ denom = count * sumx2 - sumx * sumx;
+
+ if (denom == 0.0)
+ return (-1);
+
+ *a = (sumy * sumx2 - sumx * sumxy) / denom;
+
+ *b = (count * sumxy - sumx * sumy) / denom;
+
+ return (0);
+}
+
+/*
+ * empty function for measurement purposes
+ */
+
+int
+nop()
+{
+ return (1);
+}
+
+#define NSECITER 1000
+
+static long long
+get_nsecs_overhead()
+{
+ long long s;
+
+ double data[NSECITER];
+ stats_t stats;
+
+ int i;
+ int count;
+ int outliers;
+
+ (void) getnsecs(); /* warmup */
+ (void) getnsecs(); /* warmup */
+ (void) getnsecs(); /* warmup */
+
+ i = 0;
+
+ count = NSECITER;
+
+ for (i = 0; i < count; i++) {
+ s = getnsecs();
+ data[i] = getnsecs() - s;
+ }
+
+ (void) crunch_stats(data, count, &stats);
+
+ while ((outliers = remove_outliers(data, count, &stats)) != 0) {
+ count -= outliers;
+ (void) crunch_stats(data, count, &stats);
+ }
+
+ return ((long long)stats.st_mean);
+
+}
+
+long long
+get_nsecs_resolution()
+{
+ long long y[1000];
+
+ int i, j, nops, res;
+ long long start, stop;
+
+ /*
+ * first, figure out how many nops to use
+ * to get any delta between time measurements.
+ * use a minimum of one.
+ */
+
+ /*
+ * warm cache
+ */
+
+ stop = start = getnsecs();
+
+ for (i = 1; i < 10000000; i++) {
+ start = getnsecs();
+ for (j = i; j; j--)
+ ;
+ stop = getnsecs();
+ if (stop > start)
+ break;
+ }
+
+ nops = i;
+
+ /*
+ * now collect data at linearly varying intervals
+ */
+
+ for (i = 0; i < 1000; i++) {
+ start = getnsecs();
+ for (j = nops * i; j; j--)
+ ;
+ stop = getnsecs();
+ y[i] = stop - start;
+ }
+
+ /*
+ * find smallest positive difference between samples;
+ * this is the timer resolution
+ */
+
+ res = 1<<30;
+
+ for (i = 1; i < 1000; i++) {
+ int diff = y[i] - y[i-1];
+
+ if (diff > 0 && res > diff)
+ res = diff;
+
+ }
+
+ return (res);
+}
+
+/*
+ * remove any data points from the array more than 3 sigma out
+ */
+
+static int
+remove_outliers(double *data, int count, stats_t *stats)
+{
+ double outmin = stats->st_mean - 3 * stats->st_stddev;
+ double outmax = stats->st_mean + 3 * stats->st_stddev;
+
+ int i, j, outliers;
+
+ for (outliers = i = j = 0; i < count; i++)
+ if (data[i] > outmax || data[i] < outmin)
+ outliers++;
+ else
+ data[j++] = data[i];
+
+ return (outliers);
+}