#include <i386/cpu_data.h>
#include <i386/cpu_number.h>
#include <i386/machine_cpu.h>
-#include <i386/mp_slave_boot.h>
#include <i386/seg.h>
#include <i386/serial_io.h>
#include <i386/cpu_capabilities.h>
#include <i386/machine_routines.h>
#include <i386/proc_reg.h>
#include <i386/tsc.h>
+#include <i386/acpi.h>
+#include <i386/pmap_internal.h>
#if MACH_KDB
#include <ddb/db_command.h>
#include <i386/mp.h>
#include <i386/mp_desc.h>
+#include <i386/i386_lowmem.h>
-#include <sys/kdebug.h>
/* #define DEBUGINTERRUPTS 1 uncomment to ensure pmap callers have interrupts enabled */
#ifdef DEBUGINTERRUPTS
#include <i386/postcode.h>
#endif /* IWANTTODEBUG */
-//#define PMAP_TRACES 1
-#ifdef PMAP_TRACES
-boolean_t pmap_trace = FALSE;
-#define PMAP_TRACE(x,a,b,c,d,e) \
- if (pmap_trace) { \
- KERNEL_DEBUG_CONSTANT(x,a,b,c,d,e); \
- }
-#else
-#define PMAP_TRACE(x,a,b,c,d,e) KERNEL_DEBUG(x,a,b,c,d,e)
-#endif /* PMAP_TRACES */
-
/*
* Forward declarations for internal functions.
*/
-void pmap_expand_pml4(
- pmap_t map,
- vm_map_offset_t v);
-void pmap_expand_pdpt(
- pmap_t map,
- vm_map_offset_t v);
-
-void pmap_remove_range(
+void pmap_remove_range(
pmap_t pmap,
vm_map_offset_t va,
pt_entry_t *spte,
void pmap_set_reference(
ppnum_t pn);
-void pmap_movepage(
- unsigned long from,
- unsigned long to,
- vm_size_t size);
-
boolean_t phys_page_exists(
ppnum_t pn);
void dump_4GB_pdpt_thread(thread_t tp);
#endif
-#define iswired(pte) ((pte) & INTEL_PTE_WIRED)
-
int nx_enabled = 1; /* enable no-execute protection */
#ifdef CONFIG_EMBEDDED
int allow_data_exec = 0; /* no exec from data, embedded is hardcore like that */
#endif
int allow_stack_exec = 0; /* No apps may execute from the stack by default */
-int cpu_64bit = 0;
+boolean_t cpu_64bit = FALSE;
+boolean_t pmap_trace = FALSE;
/*
* when spinning through pmap_remove
* previously.
*/
-/*
- * pmap locking
- */
-
-#define PMAP_LOCK(pmap) { \
- simple_lock(&(pmap)->lock); \
-}
-
-#define PMAP_UNLOCK(pmap) { \
- simple_unlock(&(pmap)->lock); \
-}
/*
* PV locking
#define LOOP_CHECK(msg, pmap)
#endif /* USLOCK_DEBUG */
-
-static void pmap_flush_tlbs(pmap_t pmap);
-
-#define PMAP_UPDATE_TLBS(pmap, s, e) \
- pmap_flush_tlbs(pmap)
-
-
-#define MAX_TBIS_SIZE 32 /* > this -> TBIA */ /* XXX */
-
+unsigned pmap_memory_region_count;
+unsigned pmap_memory_region_current;
pmap_memory_region_t pmap_memory_regions[PMAP_MEMORY_REGIONS_SIZE];
addr64_t kernel64_cr3;
boolean_t no_shared_cr3 = FALSE; /* -no_shared_cr3 boot arg */
+
/*
* Pmap cache. Cache is threaded through ref_count field of pmap.
* Max will eventually be constant -- variable for experimentation.
extern char end;
static int nkpt;
-extern uint32_t lowGlo;
pt_entry_t *DMAP1, *DMAP2;
caddr_t DADDR1;
pde = pmap_pde(pmap,vaddr);
if (pde && ((*pde & INTEL_PTE_VALID))) {
+ if (*pde & INTEL_PTE_PS)
+ return pde;
if (pmap == kernel_pmap)
return (vtopte(vaddr)); /* compat kernel still has pte's mapped */
#if TESTING
unsigned int flags)
{
pt_entry_t template;
- pt_entry_t *pte;
+ pt_entry_t *pte;
spl_t spl;
template = pa_to_pte(start_addr)
if (prot & VM_PROT_WRITE)
template |= INTEL_PTE_WRITE;
+
while (start_addr < end_addr) {
spl = splhigh();
pte = pmap_pte(kernel_pmap, (vm_map_offset_t)virt);
pte_increment_pa(template);
virt += PAGE_SIZE;
start_addr += PAGE_SIZE;
- }
+ }
+
flush_tlb();
return(virt);
}
-extern char *first_avail;
-extern vm_offset_t virtual_avail, virtual_end;
-extern pmap_paddr_t avail_start, avail_end;
-extern vm_offset_t etext;
-extern void *sectHIBB;
-extern int sectSizeHIB;
+extern char *first_avail;
+extern vm_offset_t virtual_avail, virtual_end;
+extern pmap_paddr_t avail_start, avail_end;
void
pmap_cpu_init(void)
{
vm_offset_t haddr;
- struct __gdt_desc_struct gdt_desc = {0,0,0};
- struct __idt_desc_struct idt_desc = {0,0,0};
spl_t s;
#if MACH_KDB
struct i386_tss *ttss;
#endif
+ cpu_desc_index_t * cdi = &cpu_data_master.cpu_desc_index;
+
kprintf("HIGH_MEM_BASE 0x%x fixed per-cpu begin 0x%x\n",
HIGH_MEM_BASE,pmap_index_to_virt(HIGH_FIXED_CPUS_BEGIN));
s = splhigh();
haddr = pmap_high_shared_remap(HIGH_FIXED_TRAMPS,
(vm_offset_t) &hi_remap_text, 3);
kprintf("tramp: 0x%x, ",haddr);
- printf("hi mem tramps at 0x%x\n",haddr);
/* map gdt up high and update ptr for reload */
haddr = pmap_high_shared_remap(HIGH_FIXED_GDT,
(vm_offset_t) master_gdt, 1);
- __asm__ __volatile__("sgdt %0": "=m" (gdt_desc): :"memory");
- gdt_desc.address = haddr;
+ cdi->cdi_gdt.ptr = (void *)haddr;
kprintf("GDT: 0x%x, ",haddr);
/* map ldt up high */
haddr = pmap_high_shared_remap(HIGH_FIXED_LDT_BEGIN,
(vm_offset_t) master_ldt,
HIGH_FIXED_LDT_END - HIGH_FIXED_LDT_BEGIN + 1);
+ cdi->cdi_ldt = (struct fake_descriptor *)haddr;
kprintf("LDT: 0x%x, ",haddr);
/* put new ldt addr into gdt */
- master_gdt[sel_idx(KERNEL_LDT)] = ldt_desc_pattern;
- master_gdt[sel_idx(KERNEL_LDT)].offset = (vm_offset_t) haddr;
- fix_desc(&master_gdt[sel_idx(KERNEL_LDT)], 1);
- master_gdt[sel_idx(USER_LDT)] = ldt_desc_pattern;
- master_gdt[sel_idx(USER_LDT)].offset = (vm_offset_t) haddr;
- fix_desc(&master_gdt[sel_idx(USER_LDT)], 1);
+ struct fake_descriptor temp_fake_desc;
+ temp_fake_desc = ldt_desc_pattern;
+ temp_fake_desc.offset = (vm_offset_t) haddr;
+ fix_desc(&temp_fake_desc, 1);
+
+ *(struct fake_descriptor *) &master_gdt[sel_idx(KERNEL_LDT)] = temp_fake_desc;
+ *(struct fake_descriptor *) &master_gdt[sel_idx(USER_LDT)] = temp_fake_desc;
/* map idt up high */
haddr = pmap_high_shared_remap(HIGH_FIXED_IDT,
(vm_offset_t) master_idt, 1);
- __asm__ __volatile__("sidt %0" : "=m" (idt_desc));
- idt_desc.address = haddr;
+ cdi->cdi_idt.ptr = (void *)haddr;
kprintf("IDT: 0x%x, ", haddr);
/* remap ktss up high and put new high addr into gdt */
haddr = pmap_high_shared_remap(HIGH_FIXED_KTSS,
(vm_offset_t) &master_ktss, 1);
- master_gdt[sel_idx(KERNEL_TSS)] = tss_desc_pattern;
- master_gdt[sel_idx(KERNEL_TSS)].offset = (vm_offset_t) haddr;
- fix_desc(&master_gdt[sel_idx(KERNEL_TSS)], 1);
+
+ temp_fake_desc = tss_desc_pattern;
+ temp_fake_desc.offset = (vm_offset_t) haddr;
+ fix_desc(&temp_fake_desc, 1);
+ *(struct fake_descriptor *) &master_gdt[sel_idx(KERNEL_TSS)] = temp_fake_desc;
kprintf("KTSS: 0x%x, ",haddr);
#if MACH_KDB
/* remap dbtss up high and put new high addr into gdt */
haddr = pmap_high_shared_remap(HIGH_FIXED_DBTSS,
(vm_offset_t) &master_dbtss, 1);
- master_gdt[sel_idx(DEBUG_TSS)] = tss_desc_pattern;
- master_gdt[sel_idx(DEBUG_TSS)].offset = (vm_offset_t) haddr;
- fix_desc(&master_gdt[sel_idx(DEBUG_TSS)], 1);
+ temp_fake_desc = tss_desc_pattern;
+ temp_fake_desc.offset = (vm_offset_t) haddr;
+ fix_desc(&temp_fake_desc, 1);
+ *(struct fake_descriptor *)&master_gdt[sel_idx(DEBUG_TSS)] = temp_fake_desc;
ttss = (struct i386_tss *)haddr;
kprintf("DBTSS: 0x%x, ",haddr);
#endif /* MACH_KDB */
/* remap dftss up high and put new high addr into gdt */
haddr = pmap_high_shared_remap(HIGH_FIXED_DFTSS,
(vm_offset_t) &master_dftss, 1);
- master_gdt[sel_idx(DF_TSS)] = tss_desc_pattern;
- master_gdt[sel_idx(DF_TSS)].offset = (vm_offset_t) haddr;
- fix_desc(&master_gdt[sel_idx(DF_TSS)], 1);
+ temp_fake_desc = tss_desc_pattern;
+ temp_fake_desc.offset = (vm_offset_t) haddr;
+ fix_desc(&temp_fake_desc, 1);
+ *(struct fake_descriptor *) &master_gdt[sel_idx(DF_TSS)] = temp_fake_desc;
kprintf("DFTSS: 0x%x\n",haddr);
/* remap mctss up high and put new high addr into gdt */
haddr = pmap_high_shared_remap(HIGH_FIXED_DFTSS,
(vm_offset_t) &master_mctss, 1);
- master_gdt[sel_idx(MC_TSS)] = tss_desc_pattern;
- master_gdt[sel_idx(MC_TSS)].offset = (vm_offset_t) haddr;
- fix_desc(&master_gdt[sel_idx(MC_TSS)], 1);
+ temp_fake_desc = tss_desc_pattern;
+ temp_fake_desc.offset = (vm_offset_t) haddr;
+ fix_desc(&temp_fake_desc, 1);
+ *(struct fake_descriptor *) &master_gdt[sel_idx(MC_TSS)] = temp_fake_desc;
kprintf("MCTSS: 0x%x\n",haddr);
- __asm__ __volatile__("lgdt %0": "=m" (gdt_desc));
- __asm__ __volatile__("lidt %0": "=m" (idt_desc));
- kprintf("gdt/idt reloaded, ");
- set_tr(KERNEL_TSS);
- kprintf("tr reset to KERNEL_TSS\n");
+ cpu_desc_load(&cpu_data_master);
}
* Bootstrap the system enough to run with virtual memory.
* Map the kernel's code and data, and allocate the system page table.
* Called with mapping OFF. Page_size must already be set.
- *
- * Parameters:
- * load_start: PA where kernel was loaded
- * avail_start PA of first available physical page -
- * after kernel page tables
- * avail_end PA of last available physical page
- * virtual_avail VA of first available page -
- * after kernel page tables
- * virtual_end VA of last available page -
- * end of kernel address space
- *
- * &start_text start of kernel text
- * &etext end of kernel text
*/
void
vm_offset_t va;
pt_entry_t *pte;
int i;
- int wpkernel, boot_arg;
pdpt_entry_t *pdpt;
spl_t s;
kernel_pmap->pm_pdpt = pdpt;
kernel_pmap->pm_cr3 = (pmap_paddr_t)((int)IdlePDPT);
+
va = (vm_offset_t)kernel_pmap->dirbase;
/* setup self referential mapping(s) */
for (i = 0; i< NPGPTD; i++, pdpt++) {
pmap_paddr_t pa;
- pa = (pmap_paddr_t) kvtophys(va + i386_ptob(i));
+ pa = (pmap_paddr_t) kvtophys((vm_offset_t)(va + i386_ptob(i)));
pmap_store_pte(
(pd_entry_t *) (kernel_pmap->dirbase + PTDPTDI + i),
(pa & PG_FRAME) | INTEL_PTE_VALID | INTEL_PTE_RW | INTEL_PTE_REF |
splx(s);
nkpt = NKPT;
- inuse_ptepages_count += NKPT;
+ OSAddAtomic(NKPT, &inuse_ptepages_count);
virtual_avail = (vm_offset_t)VADDR(KPTDI,0) + (vm_offset_t)first_avail;
virtual_end = (vm_offset_t)(VM_MAX_KERNEL_ADDRESS);
}
printf("npvhash=%d\n",npvhash);
- wpkernel = 1;
- if (PE_parse_boot_argn("wpkernel", &boot_arg, sizeof (boot_arg))) {
- if (boot_arg == 0)
- wpkernel = 0;
- }
-
- s = splhigh();
-
- /* Remap kernel text readonly unless the "wpkernel" boot-arg is present
- * and set to 0.
- */
- if (wpkernel)
- {
- vm_offset_t myva;
- pt_entry_t *ptep;
-
- for (myva = i386_round_page(MP_BOOT + MP_BOOTSTACK); myva < etext; myva += PAGE_SIZE) {
- if (myva >= (vm_offset_t)sectHIBB && myva < ((vm_offset_t)sectHIBB + sectSizeHIB))
- continue;
- ptep = pmap_pte(kernel_pmap, (vm_map_offset_t)myva);
- if (ptep)
- pmap_store_pte(ptep, *ptep & ~INTEL_PTE_RW);
- }
- }
-
- /* no matter what, kernel page zero is not accessible */
- pte = pmap_pte(kernel_pmap, 0);
- pmap_store_pte(pte, INTEL_PTE_INVALID);
-
- /* map lowmem global page into fixed addr 0x2000 */
- if (0 == (pte = pmap_pte(kernel_pmap,0x2000))) panic("lowmem pte");
- assert(0 == ((vm_offset_t) &lowGlo & PAGE_MASK)); /* make sure it is defined on page boundary */
- pmap_store_pte(pte, kvtophys((vm_offset_t)&lowGlo)|INTEL_PTE_VALID|INTEL_PTE_REF|INTEL_PTE_MOD|INTEL_PTE_WIRED|INTEL_PTE_RW);
- splx(s);
- flush_tlb();
-
simple_lock_init(&kernel_pmap->lock, 0);
simple_lock_init(&pv_hashed_free_list_lock, 0);
simple_lock_init(&pv_hashed_kern_free_list_lock, 0);
pde_mapped_size = PDE_MAPPED_SIZE;
if (cpu_64bit) {
- pdpt_entry_t *ppdpt = (pdpt_entry_t *)IdlePDPT;
+ pdpt_entry_t *ppdpt = IdlePDPT;
pdpt_entry_t *ppdpt64 = (pdpt_entry_t *)IdlePDPT64;
pdpt_entry_t *ppml4 = (pdpt_entry_t *)IdlePML4;
int istate = ml_set_interrupts_enabled(FALSE);
kernel64_cr3 = (addr64_t) kernel_pmap->pm_cr3;
/* Re-initialize descriptors and prepare to switch modes */
- cpu_desc_init64(&cpu_data_master, TRUE);
+ cpu_desc_init64(&cpu_data_master);
current_cpu_datap()->cpu_is64bit = TRUE;
current_cpu_datap()->cpu_active_cr3 = kernel64_cr3;
ml_set_interrupts_enabled(istate);
}
- /* Set 64-bit mode if required. */
+ /* Sets 64-bit mode if required. */
cpu_mode_init(&cpu_data_master);
+ /* Update in-kernel CPUID information if we're now in 64-bit mode */
+ if (IA32e)
+ cpuid_set_info();
kernel_pmap->pm_hold = (vm_offset_t)kernel_pmap->pm_pml4;
* so we cover all memory
*/
- npages = i386_btop(avail_end);
+ npages = (long)i386_btop(avail_end);
s = (vm_size_t) (sizeof(struct pv_rooted_entry) * npages
+ (sizeof (struct pv_hashed_entry_t *) * (npvhash+1))
+ pv_lock_table_size(npages)
+ npages);
s = round_page(s);
- if (kmem_alloc_wired(kernel_map, &addr, s) != KERN_SUCCESS)
+ if (kernel_memory_allocate(kernel_map, &addr, s, 0,
+ KMA_KOBJECT | KMA_PERMANENT)
+ != KERN_SUCCESS)
panic("pmap_init");
memset((char *)addr, 0, s);
ppnum_t last_pn;
pmap_memory_region_t *pmptr = pmap_memory_regions;
- last_pn = i386_btop(avail_end);
+ last_pn = (ppnum_t)i386_btop(avail_end);
for (i = 0; i < pmap_memory_region_count; i++, pmptr++) {
if (pmptr->type == kEfiConventionalMemory) {
+
for (pn = pmptr->base; pn <= pmptr->end; pn++) {
if (pn < last_pn) {
pmap_phys_attributes[pn] |= PHYS_MANAGED;
}
-void
-x86_lowmem_free(void)
-{
- /* free lowmem pages back to the vm system. we had to defer doing this
- until the vm system was fully up.
- the actual pages that are released are determined by which
- pages the memory sizing code puts into the region table */
-
- ml_static_mfree((vm_offset_t) i386_ptob(pmap_memory_regions[0].base),
- (vm_size_t) i386_ptob(pmap_memory_regions[0].end - pmap_memory_regions[0].base));
-}
-
#define managed_page(x) ( (unsigned int)x <= last_managed_page && (pmap_phys_attributes[x] & PHYS_MANAGED) )
boolean_t
pmap_is_empty(
pmap_t pmap,
- vm_map_offset_t vstart,
- vm_map_offset_t vend)
+ vm_map_offset_t va_start,
+ vm_map_offset_t va_end)
{
vm_map_offset_t offset;
ppnum_t phys_page;
if (pmap == PMAP_NULL) {
return TRUE;
}
- for (offset = vstart;
- offset < vend;
+
+ /*
+ * Check the resident page count
+ * - if it's zero, the pmap is completely empty.
+ * This short-circuit test prevents a virtual address scan which is
+ * painfully slow for 64-bit spaces.
+ * This assumes the count is correct
+ * .. the debug kernel ought to be checking perhaps by page table walk.
+ */
+ if (pmap->stats.resident_count == 0)
+ return TRUE;
+
+ for (offset = va_start;
+ offset < va_end;
offset += PAGE_SIZE_64) {
phys_page = pmap_find_phys(pmap, offset);
if (phys_page) {
}
kprintf("pmap_is_empty(%p,0x%llx,0x%llx): "
"page %d at 0x%llx\n",
- pmap, vstart, vend, phys_page, offset);
+ pmap, va_start, va_end, phys_page, offset);
return FALSE;
}
}
/* legacy 32 bit setup */
/* in the legacy case the pdpt layer is hardwired to 4 entries and each
* entry covers 1GB of addr space */
- if (KERN_SUCCESS != kmem_alloc_wired(kernel_map, (vm_offset_t *)(&p->dirbase), NBPTD))
- panic("pmap_create kmem_alloc_wired");
+ if (KERN_SUCCESS != kmem_alloc_kobject(kernel_map, (vm_offset_t *)(&p->dirbase), NBPTD))
+ panic("pmap_create kmem_alloc_kobject");
p->pm_hold = (vm_offset_t)zalloc(pdpt_zone);
if ((vm_offset_t)NULL == p->pm_hold) {
panic("pdpt zalloc");
template = cpu_64bit ? INTEL_PTE_VALID|INTEL_PTE_RW|INTEL_PTE_USER|INTEL_PTE_REF : INTEL_PTE_VALID;
for (i = 0; i< NPGPTD; i++, pdpt++ ) {
pmap_paddr_t pa;
- pa = (pmap_paddr_t) kvtophys(va + i386_ptob(i));
+ pa = (pmap_paddr_t) kvtophys((vm_offset_t)(va + i386_ptob(i)));
pmap_store_pte(pdpt, pa | template);
}
/* 64 bit setup */
/* alloc the pml4 page in kernel vm */
- if (KERN_SUCCESS != kmem_alloc_wired(kernel_map, (vm_offset_t *)(&p->pm_hold), PAGE_SIZE))
- panic("pmap_create kmem_alloc_wired pml4");
+ if (KERN_SUCCESS != kmem_alloc_kobject(kernel_map, (vm_offset_t *)(&p->pm_hold), PAGE_SIZE))
+ panic("pmap_create kmem_alloc_kobject pml4");
memset((char *)p->pm_hold, 0, PAGE_SIZE);
p->pm_cr3 = (pmap_paddr_t)kvtophys((vm_offset_t)p->pm_hold);
- vm_page_lock_queues();
- inuse_ptepages_count++;
- vm_page_unlock_queues();
+ OSAddAtomic(1, &inuse_ptepages_count);
/* allocate the vm_objs to hold the pdpt, pde and pte pages */
* pmap structure.
*/
if (!cpu_64bit) {
- vm_page_lock_queues();
- inuse_ptepages_count -= p->pm_obj->resident_page_count;
- vm_page_unlock_queues();
+ OSAddAtomic(-p->pm_obj->resident_page_count, &inuse_ptepages_count);
kmem_free(kernel_map, (vm_offset_t)p->dirbase, NBPTD);
zfree(pdpt_zone, (void *)p->pm_hold);
inuse_ptepages += p->pm_obj->resident_page_count;
vm_object_deallocate(p->pm_obj);
- vm_page_lock_queues();
- inuse_ptepages_count -= inuse_ptepages;
- vm_page_unlock_queues();
+ OSAddAtomic(-inuse_ptepages, &inuse_ptepages_count);
}
zfree(pmap_zone, p);
panic("pmap_remove_range: resident_count");
#endif
assert(pmap->stats.resident_count >= num_removed);
- OSAddAtomic(-num_removed, (SInt32 *) &pmap->stats.resident_count);
+ OSAddAtomic(-num_removed, &pmap->stats.resident_count);
#if TESTING
if (pmap->stats.wired_count < num_unwired)
panic("pmap_remove_range: wired_count");
#endif
assert(pmap->stats.wired_count >= num_unwired);
- OSAddAtomic(-num_unwired, (SInt32 *) &pmap->stats.wired_count);
+ OSAddAtomic(-num_unwired, &pmap->stats.wired_count);
return;
}
orig_s64 = s64;
while (s64 < e64) {
-
l64 = (s64 + pde_mapped_size) & ~(pde_mapped_size-1);
if (l64 > e64)
l64 = e64;
LOCK_PVH(pai);
+
/*
* Walk down PV list, changing or removing all mappings.
*/
pte = pmap_pte(pmap, vaddr);
if (0 == pte) {
- kprintf("pmap_page_protect pmap %p pn 0x%x vaddr 0x%llx\n",pmap, pn, vaddr);
- panic("pmap_page_protect");
+ panic("pmap_page_protect: Missing PTE, pmap: %p, pn: 0x%x vaddr: 0x%llx, prot: %d kernel_pmap: %p", pmap, pn, vaddr, prot, kernel_pmap);
}
nexth = (pv_hashed_entry_t)queue_next(&pvh_e->qlink); /* if there is one */
panic("pmap_page_protect: resident_count");
#endif
assert(pmap->stats.resident_count >= 1);
- OSAddAtomic(-1, (SInt32 *) &pmap->stats.resident_count);
+ OSAddAtomic(-1, &pmap->stats.resident_count);
/*
* Deal with the pv_rooted_entry.
pvh_e = nexth;
} while ((pv_e = (pv_rooted_entry_t)nexth) != pv_h);
+
/*
* If pv_head mapping was removed, fix it up.
*/
if (wired) {
template |= INTEL_PTE_WIRED;
if (!iswired(*pte))
- OSAddAtomic(+1, (SInt32 *) &pmap->stats.wired_count);
+ OSAddAtomic(+1, &pmap->stats.wired_count);
}
else {
if (iswired(*pte)) {
assert(pmap->stats.wired_count >= 1);
- OSAddAtomic(-1, (SInt32 *) &pmap->stats.wired_count);
+ OSAddAtomic(-1, &pmap->stats.wired_count);
}
}
pmap_store_pte(pte, 0);
if (managed_page(pai)) {
-
#if TESTING
if (pmap->stats.resident_count < 1)
panic("pmap_enter: resident_count");
#endif
assert(pmap->stats.resident_count >= 1);
- OSAddAtomic(-1, (SInt32 *) &pmap->stats.resident_count);
+ OSAddAtomic(-1, &pmap->stats.resident_count);
if (iswired(*pte)) {
panic("pmap_enter: wired_count");
#endif
assert(pmap->stats.wired_count >= 1);
- OSAddAtomic(-1, (SInt32 *) &pmap->stats.wired_count);
+ OSAddAtomic(-1, &pmap->stats.wired_count);
}
pmap_phys_attributes[pai] |= oattr;
}
}
else {
-
/*
* old_pa is not managed.
* Do removal part of accounting.
if (iswired(*pte)) {
assert(pmap->stats.wired_count >= 1);
- OSAddAtomic(-1, (SInt32 *) &pmap->stats.wired_count);
+ OSAddAtomic(-1, &pmap->stats.wired_count);
}
}
}
* only count the mapping
* for 'managed memory'
*/
- OSAddAtomic(+1, (SInt32 *) &pmap->stats.resident_count);
+ OSAddAtomic(+1, &pmap->stats.resident_count);
if (pmap->stats.resident_count > pmap->stats.resident_max) {
pmap->stats.resident_max = pmap->stats.resident_count;
}
if (wired) {
template |= INTEL_PTE_WIRED;
- OSAddAtomic(+1, (SInt32 *) &pmap->stats.wired_count);
+ OSAddAtomic(+1, &pmap->stats.wired_count);
}
pmap_store_pte(pte, template);
/*
* wiring down mapping
*/
- OSAddAtomic(+1, (SInt32 *) &map->stats.wired_count);
+ OSAddAtomic(+1, &map->stats.wired_count);
pmap_update_pte(pte, *pte, (*pte | INTEL_PTE_WIRED));
}
else if (!wired && iswired(*pte)) {
* unwiring mapping
*/
assert(map->stats.wired_count >= 1);
- OSAddAtomic(-1, (SInt32 *) &map->stats.wired_count);
+ OSAddAtomic(-1, &map->stats.wired_count);
pmap_update_pte(pte, *pte, (*pte & ~INTEL_PTE_WIRED));
}
PMAP_UNLOCK(map);
}
-ppnum_t
-pmap_find_phys(pmap_t pmap, addr64_t va)
-{
- pt_entry_t *ptp;
- ppnum_t ppn;
-
- mp_disable_preemption();
-
- ptp = pmap_pte(pmap, va);
- if (PT_ENTRY_NULL == ptp) {
- ppn = 0;
- } else {
- ppn = (ppnum_t) i386_btop(pte_to_pa(*ptp));
- }
- mp_enable_preemption();
-
- return ppn;
-}
/*
* Routine: pmap_extract
ppn = pmap_find_phys(pmap, vaddr);
if (ppn) {
- paddr = ((vm_offset_t)i386_ptob(ppn)) | (vaddr & INTEL_OFFMASK);
+ paddr = ((vm_offset_t)i386_ptob(ppn)) | ((vm_offset_t)vaddr & INTEL_OFFMASK);
}
return (paddr);
}
*/
pmap_zero_page(pn);
- vm_page_lock_queues();
+ vm_page_lockspin_queues();
vm_page_wire(m);
- inuse_ptepages_count++;
vm_page_unlock_queues();
+ OSAddAtomic(1, &inuse_ptepages_count);
+
/* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */
vm_object_lock(map->pm_obj_pml4);
PMAP_UNLOCK(map);
vm_object_unlock(map->pm_obj_pml4);
- vm_page_lock_queues();
- vm_page_free(m);
- inuse_ptepages_count--;
- vm_page_unlock_queues();
+ VM_PAGE_FREE(m);
+ OSAddAtomic(-1, &inuse_ptepages_count);
return;
}
*/
pmap_zero_page(pn);
- vm_page_lock_queues();
+ vm_page_lockspin_queues();
vm_page_wire(m);
- inuse_ptepages_count++;
vm_page_unlock_queues();
+ OSAddAtomic(1, &inuse_ptepages_count);
+
/* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */
vm_object_lock(map->pm_obj_pdpt);
PMAP_UNLOCK(map);
vm_object_unlock(map->pm_obj_pdpt);
- vm_page_lock_queues();
- vm_page_free(m);
- inuse_ptepages_count--;
- vm_page_unlock_queues();
+ VM_PAGE_FREE(m);
+ OSAddAtomic(-1, &inuse_ptepages_count);
return;
}
*/
pmap_zero_page(pn);
- vm_page_lock_queues();
+ vm_page_lockspin_queues();
vm_page_wire(m);
- inuse_ptepages_count++;
vm_page_unlock_queues();
+ OSAddAtomic(1, &inuse_ptepages_count);
+
/* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */
vm_object_lock(map->pm_obj);
PMAP_UNLOCK(map);
vm_object_unlock(map->pm_obj);
- vm_page_lock_queues();
- vm_page_free(m);
- inuse_ptepages_count--;
- vm_page_unlock_queues();
+ VM_PAGE_FREE(m);
+ OSAddAtomic(-1, &inuse_ptepages_count);
return;
}
if (m == VM_PAGE_NULL)
panic("pmap_collect: pte page not in object");
- vm_page_lock_queues();
- vm_page_free(m);
- inuse_ptepages_count--;
- vm_page_unlock_queues();
+ VM_PAGE_FREE(m);
+
+ OSAddAtomic(-1, &inuse_ptepages_count);
vm_object_unlock(p->pm_obj);
}
return;
}
+
PMAP_TRACE(PMAP_CODE(PMAP__ATTRIBUTE_CLEAR) | DBG_FUNC_START,
(int) pn, bits, 0, 0, 0);
attributes = pmap_phys_attributes[pai] & bits;
+
/*
* Walk down PV list, checking the mappings until we
* reach the end or we've found the attributes we've asked for
/*
* pick up modify and/or reference bits from this mapping
*/
-
pte = pmap_pte(pmap, va);
- attributes |= *pte & bits;
+ attributes |= (int)(*pte & bits);
}
pmap_store_pte(mp->prv_CMAP, 0);
}
-
-/*
- * The Intel platform can nest at the PDE level, so NBPDE (i.e. 2MB) at a time,
- * on a NBPDE boundary.
- */
-uint64_t pmap_nesting_size_min = NBPDE;
-uint64_t pmap_nesting_size_max = 0 - (uint64_t)NBPDE; /* no limit, really... */
-
-/*
- * kern_return_t pmap_nest(grand, subord, vstart, size)
- *
- * grand = the pmap that we will nest subord into
- * subord = the pmap that goes into the grand
- * vstart = start of range in pmap to be inserted
- * nstart = start of range in pmap nested pmap
- * size = Size of nest area (up to 16TB)
- *
- * Inserts a pmap into another. This is used to implement shared segments.
- *
- * on x86 this is very limited right now. must be exactly 1 segment.
- *
- * Note that we depend upon higher level VM locks to insure that things don't change while
- * we are doing this. For example, VM should not be doing any pmap enters while it is nesting
- * or do 2 nests at once.
- */
-
-
-kern_return_t pmap_nest(pmap_t grand, pmap_t subord, addr64_t vstart, addr64_t nstart, uint64_t size) {
-
- vm_map_offset_t vaddr, nvaddr;
- pd_entry_t *pde,*npde;
- unsigned int i;
- uint64_t num_pde;
-
- // do validity tests
- if (size & (pmap_nesting_size_min-1)) return KERN_INVALID_VALUE;
- if(vstart & (pmap_nesting_size_min-1)) return KERN_INVALID_VALUE;
- if(nstart & (pmap_nesting_size_min-1)) return KERN_INVALID_VALUE;
- if((size >> 28) > 65536) return KERN_INVALID_VALUE; /* Max size we can nest is 16TB */
- if(size == 0) {
- panic("pmap_nest: size is invalid - %016llX\n", size);
- }
-
- PMAP_TRACE(PMAP_CODE(PMAP__NEST) | DBG_FUNC_START,
- (int) grand, (int) subord,
- (int) (vstart>>32), (int) vstart, 0);
-
- subord->pm_shared = TRUE;
- nvaddr = (vm_map_offset_t)nstart;
- num_pde = size >> PDESHIFT;
-
- PMAP_LOCK(subord);
- for (i = 0; i < num_pde; i++) {
- npde = pmap_pde(subord, nvaddr);
- while (0 == npde || ((*npde & INTEL_PTE_VALID) == 0)) {
- PMAP_UNLOCK(subord);
- pmap_expand(subord, nvaddr); // pmap_expand handles races
- PMAP_LOCK(subord);
- npde = pmap_pde(subord, nvaddr);
- }
- nvaddr += NBPDE;
- }
-
- PMAP_UNLOCK(subord);
-
- vaddr = (vm_map_offset_t)vstart;
-
- PMAP_LOCK(grand);
-
- for (i = 0;i < num_pde; i++) {
- pd_entry_t tpde;
-
- npde = pmap_pde(subord, nstart);
- if (npde == 0)
- panic("pmap_nest: no npde, subord %p nstart 0x%llx", subord, nstart);
- tpde = *npde;
- nstart += NBPDE;
- pde = pmap_pde(grand, vaddr);
-/* Legacy mode does not require expansion.
- * DRK: consider a debug mode test to verify that no PTEs are extant within
- * this range.
- */
- if ((0 == pde) && cpu_64bit) {
- PMAP_UNLOCK(grand);
- pmap_expand_pdpt(grand, vaddr);
- PMAP_LOCK(grand);
- pde = pmap_pde(grand, vaddr);
- }
-
- if (pde == 0)
- panic("pmap_nest: no pde, grand %p vaddr 0x%llx", grand, vaddr);
- vaddr += NBPDE;
- pmap_store_pte(pde, tpde);
- }
-
- /* XXX FBDP: why do we need to flush here ? */
- PMAP_UPDATE_TLBS(grand, vstart, vstart + size - 1);
-
- PMAP_UNLOCK(grand);
-
- PMAP_TRACE(PMAP_CODE(PMAP__NEST) | DBG_FUNC_END, 0, 0, 0, 0, 0);
-
- return KERN_SUCCESS;
-}
-
-/*
- * kern_return_t pmap_unnest(grand, vaddr)
- *
- * grand = the pmap that we will nest subord into
- * vaddr = start of range in pmap to be unnested
- *
- * Removes a pmap from another. This is used to implement shared segments.
- * On the current PPC processors, this is limited to segment (256MB) aligned
- * segment sized ranges.
- */
-
-kern_return_t pmap_unnest(pmap_t grand, addr64_t vaddr, uint64_t size) {
-
- pd_entry_t *pde;
- unsigned int i;
- unsigned int num_pde;
- addr64_t vstart, vend;
-
- PMAP_TRACE(PMAP_CODE(PMAP__NEST) | DBG_FUNC_START,
- (int) grand,
- (int) (vaddr>>32), (int) vaddr, 0, 0);
-
- if ((size & (pmap_nesting_size_min-1)) ||
- (vaddr & (pmap_nesting_size_min-1))) {
- panic("pmap_unnest(%p,0x%llx,0x%llx): unaligned...\n",
- grand, vaddr, size);
- }
-
- /* align everything to PDE boundaries */
- vstart = vaddr & ~(NBPDE-1);
- vend = (vaddr + size + NBPDE - 1) & ~(NBPDE-1);
- size = vend - vstart;
-
- PMAP_LOCK(grand);
-
- // invalidate all pdes for segment at vaddr in pmap grand
-
- num_pde = size >> PDESHIFT;
-
- vaddr = vstart;
- for (i=0;i<num_pde;i++,pde++) {
- pde = pmap_pde(grand, (vm_map_offset_t)vaddr);
- if (pde == 0) panic("pmap_unnest: no pde, grand %p vaddr 0x%llx\n", grand, vaddr);
- pmap_store_pte(pde, (pd_entry_t)0);
- vaddr += NBPDE;
- }
- PMAP_UPDATE_TLBS(grand, vstart, vend);
-
- PMAP_UNLOCK(grand);
-
- PMAP_TRACE(PMAP_CODE(PMAP__NEST) | DBG_FUNC_END, 0, 0, 0, 0, 0);
-
- return KERN_SUCCESS;
-}
-
void
pmap_switch(pmap_t tpmap)
{
spl_t s;
- int my_cpu;
s = splhigh(); /* Make sure interruptions are disabled */
- my_cpu = cpu_number();
- set_dirbase(tpmap, my_cpu);
+ set_dirbase(tpmap, current_thread());
splx(s);
}
if (cpu_mask & cpu_bit)
cpu_NMI_interrupt(cpu);
}
- deadline = mach_absolute_time() + (LockTimeOut >> 2);
+ deadline = mach_absolute_time() + (LockTimeOut);
while (mach_absolute_time() < deadline)
cpu_pause();
}
-
/*
* Called with pmap locked, we:
* - scan through per-cpu data to see which other cpus need to flush
*/
while (cpus_to_respond != 0) {
if (mach_absolute_time() > deadline) {
+ if (mp_recent_debugger_activity())
+ continue;
if (!panic_active()) {
pmap_tlb_flush_timeout = TRUE;
pmap_cpuset_NMIPI(cpus_to_respond);
}
}
}
-
/*
* Flush local tlb if required.
* We need this flush even if the pmap being changed
if (flush_self)
flush_tlb();
+ if ((pmap == kernel_pmap) && (flush_self != TRUE)) {
+ panic("pmap_flush_tlbs: pmap == kernel_pmap && flush_self != TRUE; kernel CR3: 0x%llX, CPU active CR3: 0x%llX, CPU Task Map: %d", kernel_pmap->pm_cr3, current_cpu_datap()->cpu_active_cr3, current_cpu_datap()->cpu_task_map);
+ }
+
PMAP_TRACE(PMAP_CODE(PMAP__FLUSH_TLBS) | DBG_FUNC_END,
(int) pmap, cpus_to_signal, flush_self, 0, 0);
}
#endif
+