#include <mach/thread_status.h>
#include <mach/vm_param.h>
-#include <i386/cpu_data.h>
-#include <i386/cpu_number.h>
-
#include <kern/counters.h>
#include <kern/kalloc.h>
#include <kern/mach_param.h>
#include <vm/pmap.h>
#include <vm/vm_protos.h>
-#include <i386/thread.h>
+#include <i386/cpu_data.h>
+#include <i386/cpu_number.h>
#include <i386/eflags.h>
#include <i386/proc_reg.h>
-#include <i386/seg.h>
#include <i386/tss.h>
#include <i386/user_ldt.h>
#include <i386/fpu.h>
#include <i386/mp_desc.h>
-#include <i386/cpu_data.h>
#include <i386/misc_protos.h>
+#include <i386/thread.h>
+#if defined(__i386__)
+#include <i386/fpu.h>
+#endif
+#include <i386/seg.h>
#include <i386/machine_routines.h>
+#include <i386/lapic.h> /* LAPIC_PMC_SWI_VECTOR */
#include <machine/commpage.h>
+#if CONFIG_COUNTERS
+#include <pmc/pmc.h>
+#endif /* CONFIG_COUNTERS */
+
/*
* Maps state flavor to number of words in the state:
*/
static int
set_thread_state64(thread_t thread, x86_thread_state64_t *ts);
+#if CONFIG_COUNTERS
+static inline void
+machine_pmc_cswitch(thread_t /* old */, thread_t /* new */);
+
+static inline boolean_t
+machine_thread_pmc_eligible(thread_t);
+
+static inline void
+pmc_swi(thread_t /* old */, thread_t /*new */);
+
+static inline boolean_t
+machine_thread_pmc_eligible(thread_t t) {
+ /*
+ * NOTE: Task-level reservations are propagated to child threads via
+ * thread_create_internal. Any mutation of task reservations forces a
+ * recalculate of t_chud (for the pmc flag) for all threads in that task.
+ * Consequently, we can simply check the current thread's flag against
+ * THREAD_PMC_FLAG. If the result is non-zero, we SWI for a PMC switch.
+ */
+ return (t != NULL) ? ((t->t_chud & THREAD_PMC_FLAG) ? TRUE : FALSE) : FALSE;
+}
+
+static inline void
+pmc_swi(thread_t old, thread_t new) {
+ current_cpu_datap()->csw_old_thread = old;
+ current_cpu_datap()->csw_new_thread = new;
+ __asm__ __volatile__("int %0"::"i"(LAPIC_PMC_SWI_VECTOR):"memory");
+}
+
+static inline void
+machine_pmc_cswitch(thread_t old, thread_t new) {
+ if (machine_thread_pmc_eligible(old) || machine_thread_pmc_eligible(new)) {
+ pmc_swi(old, new);
+ }
+}
+
+void ml_get_csw_threads(thread_t *old, thread_t *new) {
+ *old = current_cpu_datap()->csw_old_thread;
+ *new = current_cpu_datap()->csw_new_thread;
+}
+
+#endif /* CONFIG_COUNTERS */
+
/*
* Don't let an illegal value for dr7 get set. Specifically,
* check for undefined settings. Setting these bit patterns
return (FALSE);
/*
- * len0-3 pattern "10B" is ok for len on 64-bit.
+ * len0-3 pattern "10B" is ok for len on Merom and newer processors
+ * (it signifies an 8-byte wide region). We use the 64bit capability
+ * of the processor in lieu of the more laborious model/family checks
+ * as all 64-bit capable processors so far support this.
+ * Reject an attempt to use this on 64-bit incapable processors.
*/
- if (current_cpu_datap()->cpu_is64bit == TRUE)
+ if (current_cpu_datap()->cpu_is64bit == FALSE)
for (i = 0, mask1 = 0x3<<18, mask2 = 0x2<<18; i < 4;
i++, mask1 <<= 4, mask2 <<= 4)
if ((*dr7 & mask1) == mask2)
cdp->cpu_dr7 = ds->dr7;
}
+boolean_t
+debug_state_is_valid32(x86_debug_state32_t *ds)
+{
+ if (!dr7_is_valid(&ds->dr7))
+ return FALSE;
+
+#if defined(__i386__)
+ /*
+ * Only allow local breakpoints and make sure they are not
+ * in the trampoline code.
+ */
+ if (ds->dr7 & 0x1)
+ if (ds->dr0 >= (unsigned long)HIGH_MEM_BASE)
+ return FALSE;
+
+ if (ds->dr7 & (0x1<<2))
+ if (ds->dr1 >= (unsigned long)HIGH_MEM_BASE)
+ return FALSE;
+
+ if (ds->dr7 & (0x1<<4))
+ if (ds->dr2 >= (unsigned long)HIGH_MEM_BASE)
+ return FALSE;
+
+ if (ds->dr7 & (0x1<<6))
+ if (ds->dr3 >= (unsigned long)HIGH_MEM_BASE)
+ return FALSE;
+#endif
+
+ return TRUE;
+}
+
+boolean_t
+debug_state_is_valid64(x86_debug_state64_t *ds)
+{
+ if (!dr7_is_valid((uint32_t *)&ds->dr7))
+ return FALSE;
+
+ /*
+ * Don't allow the user to set debug addresses above their max
+ * value
+ */
+ if (ds->dr7 & 0x1)
+ if (ds->dr0 >= VM_MAX_PAGE_ADDRESS)
+ return FALSE;
+
+ if (ds->dr7 & (0x1<<2))
+ if (ds->dr1 >= VM_MAX_PAGE_ADDRESS)
+ return FALSE;
+
+ if (ds->dr7 & (0x1<<4))
+ if (ds->dr2 >= VM_MAX_PAGE_ADDRESS)
+ return FALSE;
+
+ if (ds->dr7 & (0x1<<6))
+ if (ds->dr3 >= VM_MAX_PAGE_ADDRESS)
+ return FALSE;
+
+ return TRUE;
+}
+
+
static kern_return_t
set_debug_state32(thread_t thread, x86_debug_state32_t *ds)
{
pcb = thread->machine.pcb;
ids = pcb->ids;
+ if (debug_state_is_valid32(ds) != TRUE) {
+ return KERN_INVALID_ARGUMENT;
+ }
+
if (ids == NULL) {
ids = zalloc(ids_zone);
bzero(ids, sizeof *ids);
}
}
- if (!dr7_is_valid(&ds->dr7))
- goto err;
-
- /*
- * Only allow local breakpoints and make sure they are not
- * in the trampoline code.
- */
- if (ds->dr7 & 0x1)
- if (ds->dr0 >= (unsigned long)HIGH_MEM_BASE)
- goto err;
-
- if (ds->dr7 & (0x1<<2))
- if (ds->dr1 >= (unsigned long)HIGH_MEM_BASE)
- goto err;
-
- if (ds->dr7 & (0x1<<4))
- if (ds->dr2 >= (unsigned long)HIGH_MEM_BASE)
- goto err;
-
- if (ds->dr7 & (0x1<<6))
- if (ds->dr3 >= (unsigned long)HIGH_MEM_BASE)
- goto err;
-
- ids->dr0 = ds->dr0;
- ids->dr1 = ds->dr1;
- ids->dr2 = ds->dr2;
- ids->dr3 = ds->dr3;
- ids->dr6 = ds->dr6;
- ids->dr7 = ds->dr7;
+ copy_debug_state32(ds, ids, FALSE);
return (KERN_SUCCESS);
-
-err:
- return (KERN_INVALID_ARGUMENT);
}
static kern_return_t
pcb = thread->machine.pcb;
ids = pcb->ids;
+ if (debug_state_is_valid64(ds) != TRUE) {
+ return KERN_INVALID_ARGUMENT;
+ }
+
if (ids == NULL) {
ids = zalloc(ids_zone);
bzero(ids, sizeof *ids);
}
}
- if (!dr7_is_valid((uint32_t *)&ds->dr7))
- goto err;
-
- /*
- * Don't allow the user to set debug addresses above their max
- * value
- */
- if (ds->dr7 & 0x1)
- if (ds->dr0 >= VM_MAX_PAGE_ADDRESS)
- goto err;
-
- if (ds->dr7 & (0x1<<2))
- if (ds->dr1 >= VM_MAX_PAGE_ADDRESS)
- goto err;
-
- if (ds->dr7 & (0x1<<4))
- if (ds->dr2 >= VM_MAX_PAGE_ADDRESS)
- goto err;
-
- if (ds->dr7 & (0x1<<6))
- if (ds->dr3 >= VM_MAX_PAGE_ADDRESS)
- goto err;
-
- ids->dr0 = ds->dr0;
- ids->dr1 = ds->dr1;
- ids->dr2 = ds->dr2;
- ids->dr3 = ds->dr3;
- ids->dr6 = ds->dr6;
- ids->dr7 = ds->dr7;
+ copy_debug_state64(ds, ids, FALSE);
return (KERN_SUCCESS);
-
-err:
- return (KERN_INVALID_ARGUMENT);
}
static void
saved_state = thread->machine.pcb->ids;
if (saved_state) {
- ds->dr0 = saved_state->dr0;
- ds->dr1 = saved_state->dr1;
- ds->dr2 = saved_state->dr2;
- ds->dr3 = saved_state->dr3;
- ds->dr4 = saved_state->dr4;
- ds->dr5 = saved_state->dr5;
- ds->dr6 = saved_state->dr6;
- ds->dr7 = saved_state->dr7;
+ copy_debug_state32(saved_state, ds, TRUE);
} else
bzero(ds, sizeof *ds);
}
saved_state = (x86_debug_state64_t *)thread->machine.pcb->ids;
if (saved_state) {
- ds->dr0 = saved_state->dr0;
- ds->dr1 = saved_state->dr1;
- ds->dr2 = saved_state->dr2;
- ds->dr3 = saved_state->dr3;
- ds->dr4 = saved_state->dr4;
- ds->dr5 = saved_state->dr5;
- ds->dr6 = saved_state->dr6;
- ds->dr7 = saved_state->dr7;
+ copy_debug_state64(saved_state, ds, TRUE);
} else
bzero(ds, sizeof *ds);
}
}
extern void *get_bsduthreadarg(thread_t th);
+#if defined(__x86_64__)
+static void
+act_machine_switch_pcb( thread_t new )
+{
+ pcb_t pcb = new->machine.pcb;
+ struct real_descriptor *ldtp;
+ mach_vm_offset_t pcb_stack_top;
+ cpu_data_t *cdp = current_cpu_datap();
+
+ assert(new->kernel_stack != 0);
+
+ if (!cpu_mode_is64bit()) {
+ panic("K64 is 64bit!");
+ } else if (is_saved_state64(pcb->iss)) {
+ /*
+ * The test above is performed against the thread save state
+ * flavor and not task's 64-bit feature flag because of the
+ * thread/task 64-bit state divergence that can arise in
+ * task_set_64bit() x86: the task state is changed before
+ * the individual thread(s).
+ */
+ x86_saved_state64_tagged_t *iss64;
+ vm_offset_t isf;
+
+ assert(is_saved_state64(pcb->iss));
+
+ iss64 = (x86_saved_state64_tagged_t *) pcb->iss;
+
+ /*
+ * Set pointer to PCB's interrupt stack frame in cpu data.
+ * Used by syscall and double-fault trap handlers.
+ */
+ isf = (vm_offset_t) &iss64->state.isf;
+ cdp->cpu_uber.cu_isf = isf;
+ pcb_stack_top = (vm_offset_t) (iss64 + 1);
+ /* require 16-byte alignment */
+ assert((pcb_stack_top & 0xF) == 0);
+
+ /* Interrupt stack is pcb */
+ current_ktss64()->rsp0 = pcb_stack_top;
+
+ /*
+ * Top of temporary sysenter stack points to pcb stack.
+ * Although this is not normally used by 64-bit users,
+ * it needs to be set in case a sysenter is attempted.
+ */
+ *current_sstk64() = pcb_stack_top;
+
+ cdp->cpu_task_map = new->map->pmap->pm_task_map;
+
+ /*
+ * Enable the 64-bit user code segment, USER64_CS.
+ * Disable the 32-bit user code segment, USER_CS.
+ */
+ ldt_desc_p(USER64_CS)->access |= ACC_PL_U;
+ ldt_desc_p(USER_CS)->access &= ~ACC_PL_U;
+
+ /*
+ * Switch user's GS base if necessary
+ * by setting the Kernel's GS base MSR
+ * - this will become the user's on the swapgs when
+ * returning to user-space.
+ */
+ if (cdp->cpu_uber.cu_user_gs_base != pcb->cthread_self) {
+ cdp->cpu_uber.cu_user_gs_base = pcb->cthread_self;
+ wrmsr64(MSR_IA32_KERNEL_GS_BASE, pcb->cthread_self);
+ }
+ } else {
+ x86_saved_state_compat32_t *iss32compat;
+ vm_offset_t isf;
+
+ assert(is_saved_state32(pcb->iss));
+ iss32compat = (x86_saved_state_compat32_t *) pcb->iss;
+
+ pcb_stack_top = (uintptr_t) (iss32compat + 1);
+ /* require 16-byte alignment */
+ assert((pcb_stack_top & 0xF) == 0);
+
+ /*
+ * Set pointer to PCB's interrupt stack frame in cpu data.
+ * Used by debug trap handler.
+ */
+ isf = (vm_offset_t) &iss32compat->isf64;
+ cdp->cpu_uber.cu_isf = isf;
+
+ /* Top of temporary sysenter stack points to pcb stack */
+ *current_sstk64() = pcb_stack_top;
+
+ /* Interrupt stack is pcb */
+ current_ktss64()->rsp0 = pcb_stack_top;
+
+ cdp->cpu_task_map = TASK_MAP_32BIT;
+ /* Precalculate pointers to syscall argument store, for use
+ * in the trampolines.
+ */
+ cdp->cpu_uber_arg_store = (vm_offset_t)get_bsduthreadarg(new);
+ cdp->cpu_uber_arg_store_valid = (vm_offset_t)&pcb->arg_store_valid;
+ pcb->arg_store_valid = 0;
+
+ /*
+ * Disable USER64_CS
+ * Enable USER_CS
+ */
+ ldt_desc_p(USER64_CS)->access &= ~ACC_PL_U;
+ ldt_desc_p(USER_CS)->access |= ACC_PL_U;
+
+ /*
+ * Set the thread`s cthread (a.k.a pthread)
+ * For 32-bit user this involves setting the USER_CTHREAD
+ * descriptor in the LDT to point to the cthread data.
+ * The involves copying in the pre-initialized descriptor.
+ */
+ ldtp = (struct real_descriptor *)current_ldt();
+ ldtp[sel_idx(USER_CTHREAD)] = pcb->cthread_desc;
+ if (pcb->uldt_selector != 0)
+ ldtp[sel_idx(pcb->uldt_selector)] = pcb->uldt_desc;
+ cdp->cpu_uber.cu_user_gs_base = pcb->cthread_self;
+
+ /*
+ * Set the thread`s LDT or LDT entry.
+ */
+ if (new->task == TASK_NULL || new->task->i386_ldt == 0) {
+ /*
+ * Use system LDT.
+ */
+ ml_cpu_set_ldt(KERNEL_LDT);
+ } else {
+ /*
+ * Task has its own LDT.
+ */
+ user_ldt_set(new);
+ }
+ }
+
+ /*
+ * Bump the scheduler generation count in the commpage.
+ * This can be read by user code to detect its preemption.
+ */
+ commpage_sched_gen_inc();
+}
+#else
static void
act_machine_switch_pcb( thread_t new )
{
struct real_descriptor *ldtp;
vm_offset_t pcb_stack_top;
vm_offset_t hi_pcb_stack_top;
- vm_offset_t hi_iss;
+ vm_offset_t hi_iss;
cpu_data_t *cdp = current_cpu_datap();
assert(new->kernel_stack != 0);
ldtp[sel_idx(USER_CTHREAD)] = pcb->cthread_desc;
if (pcb->uldt_selector != 0)
ldtp[sel_idx(pcb->uldt_selector)] = pcb->uldt_desc;
+
+
/*
* For 64-bit, we additionally set the 64-bit User GS base
* address. On return to 64-bit user, the GS.Base MSR will be written.
*/
commpage_sched_gen_inc();
}
+#endif
/*
* Switch to the first thread on a CPU.
machine_load_context(
thread_t new)
{
+#if CONFIG_COUNTERS
+ machine_pmc_cswitch(NULL, new);
+#endif
new->machine.specFlags |= OnProc;
act_machine_switch_pcb(new);
Load_context(new);
#if MACH_RT
assert(current_cpu_datap()->cpu_active_stack == old->kernel_stack);
#endif
-
+#if CONFIG_COUNTERS
+ machine_pmc_cswitch(old, new);
+#endif
/*
* Save FP registers if in use.
*/
fpu_save_context(old);
+
old->machine.specFlags &= ~OnProc;
new->machine.specFlags |= OnProc;
+ /*
+ * Monitor the stack depth and report new max,
+ * not worrying about races.
+ */
+ vm_offset_t depth = current_stack_depth();
+ if (depth > kernel_stack_depth_max) {
+ kernel_stack_depth_max = depth;
+ KERNEL_DEBUG_CONSTANT(
+ MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_DEPTH),
+ (long) depth, 0, 0, 0, 0);
+ }
+
/*
* Switch address maps if need be, even if not switching tasks.
* (A server activation may be "borrowing" a client map.)
return(Switch_context(old, continuation, new));
}
+thread_t
+machine_processor_shutdown(
+ thread_t thread,
+ void (*doshutdown)(processor_t),
+ processor_t processor)
+{
+#if CONFIG_VMX
+ vmx_suspend();
+#endif
+ fpu_save_context(thread);
+ PMAP_SWITCH_CONTEXT(thread, processor->idle_thread, cpu_number());
+ return(Shutdown_context(thread, doshutdown, processor));
+}
+
/*
* act_machine_sv_free
* release saveareas associated with an act. if flag is true, release
* The initialized state will then be lazily faulted-in, if required.
* And if we're target, re-arm the no-fpu trap.
*/
- if (thread->machine.pcb->ifps) {
- (void) fpu_set_fxstate(thread, NULL);
+ if (thread->machine.pcb->ifps) {
+ (void) fpu_set_fxstate(thread, NULL);
- if (thread == current_thread())
- clear_fpu();
- }
- return KERN_SUCCESS;
+ if (thread == current_thread())
+ clear_fpu();
+ }
+
+ if (thread->machine.pcb->ids) {
+ zfree(ids_zone, thread->machine.pcb->ids);
+ thread->machine.pcb->ids = NULL;
+ }
+
+ return KERN_SUCCESS;
}
uint32_t
saved_state = USER_REGS64(thread);
es->trapno = saved_state->isf.trapno;
- es->err = saved_state->isf.err;
+ es->err = (typeof(es->err))saved_state->isf.err;
es->faultvaddr = saved_state->cr2;
}
{
x86_saved_state32_t *saved_state;
+
saved_state = USER_REGS32(thread);
/*
* Scrub segment selector values:
*/
- if (ts->cs != USER_CS) ts->cs = USER_CS;
+ ts->cs = USER_CS;
+#ifdef __i386__
if (ts->ss == 0) ts->ss = USER_DS;
if (ts->ds == 0) ts->ds = USER_DS;
if (ts->es == 0) ts->es = USER_DS;
+#else /* __x86_64__ */
+ /*
+ * On a 64 bit kernel, we always override the data segments,
+ * as the actual selector numbers have changed. This also
+ * means that we don't support setting the data segments
+ * manually any more.
+ */
+ ts->ss = USER_DS;
+ ts->ds = USER_DS;
+ ts->es = USER_DS;
+#endif
/* Check segment selectors are safe */
if (!valid_user_segment_selectors(ts->cs,
{
x86_saved_state64_t *saved_state;
+
saved_state = USER_REGS64(thread);
if (!IS_USERADDR64_CANONICAL(ts->rsp) ||
saved_state->isf.rflags = (ts->rflags & ~EFL_USER_CLEAR) | EFL_USER_SET;
saved_state->isf.rip = ts->rip;
saved_state->isf.cs = USER64_CS;
- saved_state->fs = ts->fs;
- saved_state->gs = ts->gs;
+ saved_state->fs = (uint32_t)ts->fs;
+ saved_state->gs = (uint32_t)ts->gs;
return(KERN_SUCCESS);
}
{
x86_saved_state32_t *saved_state;
+
saved_state = USER_REGS32(thread);
ts->eax = saved_state->eax;
{
x86_saved_state64_t *saved_state;
+
saved_state = USER_REGS64(thread);
ts->r8 = saved_state->r8;
x86_thread_state32_t *state;
x86_saved_state32_t *saved_state;
thread_t curth = current_thread();
+ spl_t s=0;
+
saved_state = USER_REGS32(thread);
+
state = (x86_thread_state32_t *)tstate;
- if (curth != thread)
+ if (curth != thread) {
+ s = splsched();
thread_lock(thread);
+ }
+ saved_state->ebp = 0;
saved_state->eip = state->eip;
saved_state->eax = state->eax;
saved_state->ebx = state->ebx;
saved_state->ds = USER_DS;
saved_state->es = USER_DS;
- if (curth != thread)
+
+ if (curth != thread) {
thread_unlock(thread);
+ splx(s);
+ }
}
x86_thread_state64_t *state;
x86_saved_state64_t *saved_state;
thread_t curth = current_thread();
+ spl_t s=0;
+
saved_state = USER_REGS64(thread);
state = (x86_thread_state64_t *)tstate;
- if (curth != thread)
+ if (curth != thread) {
+ s = splsched();
thread_lock(thread);
+ }
+ saved_state->rbp = 0;
saved_state->rdi = state->rdi;
saved_state->rsi = state->rsi;
saved_state->rdx = state->rdx;
saved_state->isf.cs = USER64_CS;
saved_state->isf.rflags = EFL_USER_SET;
- if (curth != thread)
+
+ if (curth != thread) {
thread_unlock(thread);
+ splx(s);
+ }
}
state->gs))
return KERN_INVALID_ARGUMENT;
+
saved_state = USER_REGS32(thr_act);
/*
saved_state->es = state->es;
saved_state->fs = state->fs;
saved_state->gs = state->gs;
+
break;
}
!IS_USERADDR64_CANONICAL(state->isf.rip))
return KERN_INVALID_ARGUMENT;
+
saved_state = USER_REGS64(thr_act);
/*
saved_state->isf.ss = state->isf.ss;
saved_state->fs = state->fs;
saved_state->gs = state->gs;
+
break;
}
thread_state_t tstate,
mach_msg_type_number_t *count)
{
+ x86_saved_state_t *int_state = current_cpu_datap()->cpu_int_state;
/*
* This works only for an interrupted kernel thread
*/
- if (thread != current_thread() || current_cpu_datap()->cpu_int_state == NULL)
+ if (thread != current_thread() || int_state == NULL)
return KERN_FAILURE;
- switch(flavor) {
- case x86_THREAD_STATE32:
- {
- x86_thread_state32_t *state;
- x86_saved_state32_t *saved_state;
+ switch (flavor) {
+ case x86_THREAD_STATE32: {
+ x86_thread_state32_t *state;
+ x86_saved_state32_t *saved_state;
+
+ if (!is_saved_state32(int_state) ||
+ *count < x86_THREAD_STATE32_COUNT)
+ return (KERN_INVALID_ARGUMENT);
+
+ state = (x86_thread_state32_t *) tstate;
- if (*count < x86_THREAD_STATE32_COUNT)
- return(KERN_INVALID_ARGUMENT);
+ saved_state = saved_state32(int_state);
+ /*
+ * General registers.
+ */
+ state->eax = saved_state->eax;
+ state->ebx = saved_state->ebx;
+ state->ecx = saved_state->ecx;
+ state->edx = saved_state->edx;
+ state->edi = saved_state->edi;
+ state->esi = saved_state->esi;
+ state->ebp = saved_state->ebp;
+ state->esp = saved_state->uesp;
+ state->eflags = saved_state->efl;
+ state->eip = saved_state->eip;
+ state->cs = saved_state->cs;
+ state->ss = saved_state->ss;
+ state->ds = saved_state->ds & 0xffff;
+ state->es = saved_state->es & 0xffff;
+ state->fs = saved_state->fs & 0xffff;
+ state->gs = saved_state->gs & 0xffff;
+
+ *count = x86_THREAD_STATE32_COUNT;
- state = (x86_thread_state32_t *)tstate;
+ return KERN_SUCCESS;
+ }
+
+ case x86_THREAD_STATE64: {
+ x86_thread_state64_t *state;
+ x86_saved_state64_t *saved_state;
+
+ if (!is_saved_state64(int_state) ||
+ *count < x86_THREAD_STATE64_COUNT)
+ return (KERN_INVALID_ARGUMENT);
+
+ state = (x86_thread_state64_t *) tstate;
+
+ saved_state = saved_state64(int_state);
+ /*
+ * General registers.
+ */
+ state->rax = saved_state->rax;
+ state->rbx = saved_state->rbx;
+ state->rcx = saved_state->rcx;
+ state->rdx = saved_state->rdx;
+ state->rdi = saved_state->rdi;
+ state->rsi = saved_state->rsi;
+ state->rbp = saved_state->rbp;
+ state->rsp = saved_state->isf.rsp;
+ state->r8 = saved_state->r8;
+ state->r9 = saved_state->r9;
+ state->r10 = saved_state->r10;
+ state->r11 = saved_state->r11;
+ state->r12 = saved_state->r12;
+ state->r13 = saved_state->r13;
+ state->r14 = saved_state->r14;
+ state->r15 = saved_state->r15;
+
+ state->rip = saved_state->isf.rip;
+ state->rflags = saved_state->isf.rflags;
+ state->cs = saved_state->isf.cs;
+ state->fs = saved_state->fs & 0xffff;
+ state->gs = saved_state->gs & 0xffff;
+ *count = x86_THREAD_STATE64_COUNT;
+
+ return KERN_SUCCESS;
+ }
+
+ case x86_THREAD_STATE: {
+ x86_thread_state_t *state = NULL;
+
+ if (*count < x86_THREAD_STATE_COUNT)
+ return (KERN_INVALID_ARGUMENT);
+
+ state = (x86_thread_state_t *) tstate;
+
+ if (is_saved_state32(int_state)) {
+ x86_saved_state32_t *saved_state = saved_state32(int_state);
+
+ state->tsh.flavor = x86_THREAD_STATE32;
+ state->tsh.count = x86_THREAD_STATE32_COUNT;
- assert(is_saved_state32(current_cpu_datap()->cpu_int_state));
- saved_state = saved_state32(current_cpu_datap()->cpu_int_state);
/*
* General registers.
*/
- state->eax = saved_state->eax;
- state->ebx = saved_state->ebx;
- state->ecx = saved_state->ecx;
- state->edx = saved_state->edx;
- state->edi = saved_state->edi;
- state->esi = saved_state->esi;
- state->ebp = saved_state->ebp;
- state->esp = saved_state->uesp;
- state->eflags = saved_state->efl;
- state->eip = saved_state->eip;
- state->cs = saved_state->cs;
- state->ss = saved_state->ss;
- state->ds = saved_state->ds & 0xffff;
- state->es = saved_state->es & 0xffff;
- state->fs = saved_state->fs & 0xffff;
- state->gs = saved_state->gs & 0xffff;
-
- *count = x86_THREAD_STATE32_COUNT;
-
- return KERN_SUCCESS;
- }
- break;
+ state->uts.ts32.eax = saved_state->eax;
+ state->uts.ts32.ebx = saved_state->ebx;
+ state->uts.ts32.ecx = saved_state->ecx;
+ state->uts.ts32.edx = saved_state->edx;
+ state->uts.ts32.edi = saved_state->edi;
+ state->uts.ts32.esi = saved_state->esi;
+ state->uts.ts32.ebp = saved_state->ebp;
+ state->uts.ts32.esp = saved_state->uesp;
+ state->uts.ts32.eflags = saved_state->efl;
+ state->uts.ts32.eip = saved_state->eip;
+ state->uts.ts32.cs = saved_state->cs;
+ state->uts.ts32.ss = saved_state->ss;
+ state->uts.ts32.ds = saved_state->ds & 0xffff;
+ state->uts.ts32.es = saved_state->es & 0xffff;
+ state->uts.ts32.fs = saved_state->fs & 0xffff;
+ state->uts.ts32.gs = saved_state->gs & 0xffff;
+ } else if (is_saved_state64(int_state)) {
+ x86_saved_state64_t *saved_state = saved_state64(int_state);
- case x86_THREAD_STATE:
- {
- // wrap a 32 bit thread state into a 32/64bit clean thread state
- x86_thread_state_t *state;
- x86_saved_state32_t *saved_state;
-
- if(*count < x86_THREAD_STATE_COUNT)
- return (KERN_INVALID_ARGUMENT);
-
- state = (x86_thread_state_t *)tstate;
- assert(is_saved_state32(current_cpu_datap()->cpu_int_state));
- saved_state = saved_state32(current_cpu_datap()->cpu_int_state);
-
- state->tsh.flavor = x86_THREAD_STATE32;
- state->tsh.count = x86_THREAD_STATE32_COUNT;
-
- /*
- * General registers.
- */
-
- state->uts.ts32.eax = saved_state->eax;
- state->uts.ts32.ebx = saved_state->ebx;
- state->uts.ts32.ecx = saved_state->ecx;
- state->uts.ts32.edx = saved_state->edx;
- state->uts.ts32.edi = saved_state->edi;
- state->uts.ts32.esi = saved_state->esi;
- state->uts.ts32.ebp = saved_state->ebp;
- state->uts.ts32.esp = saved_state->uesp;
- state->uts.ts32.eflags = saved_state->efl;
- state->uts.ts32.eip = saved_state->eip;
- state->uts.ts32.cs = saved_state->cs;
- state->uts.ts32.ss = saved_state->ss;
- state->uts.ts32.ds = saved_state->ds & 0xffff;
- state->uts.ts32.es = saved_state->es & 0xffff;
- state->uts.ts32.fs = saved_state->fs & 0xffff;
- state->uts.ts32.gs = saved_state->gs & 0xffff;
-
- *count = x86_THREAD_STATE_COUNT;
- return KERN_SUCCESS;
+ state->tsh.flavor = x86_THREAD_STATE64;
+ state->tsh.count = x86_THREAD_STATE64_COUNT;
+
+ /*
+ * General registers.
+ */
+ state->uts.ts64.rax = saved_state->rax;
+ state->uts.ts64.rbx = saved_state->rbx;
+ state->uts.ts64.rcx = saved_state->rcx;
+ state->uts.ts64.rdx = saved_state->rdx;
+ state->uts.ts64.rdi = saved_state->rdi;
+ state->uts.ts64.rsi = saved_state->rsi;
+ state->uts.ts64.rbp = saved_state->rbp;
+ state->uts.ts64.rsp = saved_state->isf.rsp;
+ state->uts.ts64.r8 = saved_state->r8;
+ state->uts.ts64.r9 = saved_state->r9;
+ state->uts.ts64.r10 = saved_state->r10;
+ state->uts.ts64.r11 = saved_state->r11;
+ state->uts.ts64.r12 = saved_state->r12;
+ state->uts.ts64.r13 = saved_state->r13;
+ state->uts.ts64.r14 = saved_state->r14;
+ state->uts.ts64.r15 = saved_state->r15;
+
+ state->uts.ts64.rip = saved_state->isf.rip;
+ state->uts.ts64.rflags = saved_state->isf.rflags;
+ state->uts.ts64.cs = saved_state->isf.cs;
+ state->uts.ts64.fs = saved_state->fs & 0xffff;
+ state->uts.ts64.gs = saved_state->gs & 0xffff;
+ } else {
+ panic("unknown thread state");
}
- break;
+
+ *count = x86_THREAD_STATE_COUNT;
+ return KERN_SUCCESS;
+ }
}
return KERN_FAILURE;
}
task_t task)
{
pcb_t pcb = &thread->machine.xxx_pcb;
- struct real_descriptor *ldtp;
- pmap_paddr_t paddr;
x86_saved_state_t *iss;
+#if NCOPY_WINDOWS > 0
inval_copy_windows(thread);
thread->machine.physwindow_pte = 0;
thread->machine.physwindow_busy = 0;
+#endif
/*
* Allocate pcb only if required.
iss = (x86_saved_state_t *) &sfc32->ssf.iss32;
iss->flavor = x86_SAVED_STATE32;
+#if defined(__i386__)
#if DEBUG
{
x86_saved_state_compat32_t *xssc;
xssc = (x86_saved_state_compat32_t *) iss;
+
xssc->pad_for_16byte_alignment[0] = 0x64326432;
xssc->pad_for_16byte_alignment[1] = 0x64326432;
}
-#endif
+#endif /* DEBUG */
} else {
- x86_sframe32_t *sf32;
+ x86_sframe32_t *sf32;
+ struct real_descriptor *ldtp;
+ pmap_paddr_t paddr;
sf32 = (x86_sframe32_t *) pcb->sf;
iss = (x86_saved_state_t *) &sf32->ssf;
iss->flavor = x86_SAVED_STATE32;
+ pcb->iss_pte0 = pte_kernel_rw(kvtophys((vm_offset_t)iss));
+ if (0 == (paddr = pa_to_pte(kvtophys((vm_offset_t)iss + PAGE_SIZE))))
+ pcb->iss_pte1 = INTEL_PTE_INVALID;
+ else
+ pcb->iss_pte1 = pte_kernel_rw(paddr);
+
+
+ ldtp = (struct real_descriptor *)
+ pmap_index_to_virt(HIGH_FIXED_LDT_BEGIN);
+ pcb->cthread_desc = ldtp[sel_idx(USER_DS)];
+ pcb->uldt_desc = ldtp[sel_idx(USER_DS)];
+#endif /* __i386__ */
}
/*
* Guarantee that the bootstrapped thread will be in user
thread->machine.pcb = pcb;
simple_lock_init(&pcb->lock, 0);
- ldtp = (struct real_descriptor *)pmap_index_to_virt(HIGH_FIXED_LDT_BEGIN);
- pcb->cthread_desc = ldtp[sel_idx(USER_DS)];
- pcb->uldt_desc = ldtp[sel_idx(USER_DS)];
- pcb->uldt_selector = 0;
-
- pcb->iss_pte0 = (uint64_t)pte_kernel_rw(kvtophys((vm_offset_t)pcb->iss));
pcb->arg_store_valid = 0;
+ pcb->cthread_self = 0;
+ pcb->uldt_selector = 0;
- if (0 == (paddr = pa_to_pte(kvtophys((vm_offset_t)(pcb->iss) + PAGE_SIZE))))
- pcb->iss_pte1 = INTEL_PTE_INVALID;
- else
- pcb->iss_pte1 = (uint64_t)pte_kernel_rw(paddr);
return(KERN_SUCCESS);
}
/* If we're switching ourselves, reset the pcb addresses etc. */
if (thread == current_thread()) {
+#if defined(__i386__)
if (current_cpu_datap()->cpu_active_cr3 != kernel_pmap->pm_cr3)
pmap_load_kernel_cr3();
+#endif /* defined(__i386) */
act_machine_switch_pcb(thread);
}
enable_preemption();
* when starting up a new processor
*/
void
-machine_set_current_thread( thread_t thread )
+machine_set_current_thread(thread_t thread)
{
current_cpu_datap()->cpu_active_thread = thread;
}
/*
- * This is called when a task is termianted.
+ * This is called when a task is terminated, and also on exec().
+ * Clear machine-dependent state that is stored on the task.
*/
void
machine_thread_terminate_self(void)
self_task->i386_ldt = 0;
user_ldt_free(user_ldt);
}
+
+ if (self_task->task_debug != NULL) {
+ zfree(ids_zone, self_task->task_debug);
+ self_task->task_debug = NULL;
+ }
}
}
void
act_machine_return(
-#if CONFIG_NO_PANIC_STRINGS
- __unused int code
-#else
int code
-#endif
)
{
/*
if (cpu_mode_is64bit()) {
assert(sizeof(x86_sframe_compat32_t) % 16 == 0);
iss_zone = zinit(sizeof(x86_sframe64_t),
- THREAD_MAX * sizeof(x86_sframe64_t),
+ thread_max * sizeof(x86_sframe64_t),
THREAD_CHUNK * sizeof(x86_sframe64_t),
"x86_64 saved state");
ids_zone = zinit(sizeof(x86_debug_state64_t),
- THREAD_MAX * sizeof(x86_debug_state64_t),
+ thread_max * sizeof(x86_debug_state64_t),
THREAD_CHUNK * sizeof(x86_debug_state64_t),
"x86_64 debug state");
} else {
iss_zone = zinit(sizeof(x86_sframe32_t),
- THREAD_MAX * sizeof(x86_sframe32_t),
+ thread_max * sizeof(x86_sframe32_t),
THREAD_CHUNK * sizeof(x86_sframe32_t),
"x86 saved state");
ids_zone = zinit(sizeof(x86_debug_state32_t),
- THREAD_MAX * (sizeof(x86_debug_state32_t)),
+ thread_max * (sizeof(x86_debug_state32_t)),
THREAD_CHUNK * (sizeof(x86_debug_state32_t)),
"x86 debug state");
}
}
+#if defined(__i386__)
/*
* Some routines for debugging activation code
*/
if (thr_act->kernel_stack) {
vm_offset_t stack = thr_act->kernel_stack;
- printf("\tk_stk %x eip %x ebx %x esp %x iss %p\n",
- stack, STACK_IKS(stack)->k_eip, STACK_IKS(stack)->k_ebx,
+ printf("\tk_stk %lx eip %x ebx %x esp %x iss %p\n",
+ (long)stack, STACK_IKS(stack)->k_eip, STACK_IKS(stack)->k_ebx,
STACK_IKS(stack)->k_esp, STACK_IEL(stack)->saved_state);
}
dump_regs(thr_act);
return((int)thr_act);
}
+#endif
user_addr_t
get_useraddr(void)
vm_offset_t stack;
KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_DETACH),
- thread, thread->priority,
+ (uintptr_t)thread_tid(thread), thread->priority,
thread->sched_pri, 0,
0);
thread_t thread,
vm_offset_t stack)
{
- struct x86_kernel_state32 *statep;
+ struct x86_kernel_state *statep;
KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_ATTACH),
- thread, thread->priority,
+ (uintptr_t)thread_tid(thread), thread->priority,
thread->sched_pri, 0, 0);
assert(stack);
thread->kernel_stack = stack;
statep = STACK_IKS(stack);
+#if defined(__x86_64__)
+ statep->k_rip = (unsigned long) Thread_continue;
+ statep->k_rbx = (unsigned long) thread_continue;
+ statep->k_rsp = (unsigned long) STACK_IEL(stack);
+#else
statep->k_eip = (unsigned long) Thread_continue;
statep->k_ebx = (unsigned long) thread_continue;
statep->k_esp = (unsigned long) STACK_IEL(stack);
+#endif
return;
}
assert(new);
assert(old);
+#if CONFIG_COUNTERS
+ machine_pmc_cswitch(old, new);
+#endif
+
stack = old->kernel_stack;
if (stack == old->reserved_stack) {
assert(new->reserved_stack);
new->kernel_stack = stack;
fpu_save_context(old);
+
old->machine.specFlags &= ~OnProc;
new->machine.specFlags |= OnProc;
boolean_t x86_sysenter_arg_store_isvalid(thread_t thread) {
return (thread->machine.pcb->arg_store_valid);
}
+
+/*
+ * Duplicate one x86_debug_state32_t to another. "all" parameter
+ * chooses whether dr4 and dr5 are copied (they are never meant
+ * to be installed when we do machine_task_set_state() or
+ * machine_thread_set_state()).
+ */
+void
+copy_debug_state32(
+ x86_debug_state32_t *src,
+ x86_debug_state32_t *target,
+ boolean_t all)
+{
+ if (all) {
+ target->dr4 = src->dr4;
+ target->dr5 = src->dr5;
+ }
+
+ target->dr0 = src->dr0;
+ target->dr1 = src->dr1;
+ target->dr2 = src->dr2;
+ target->dr3 = src->dr3;
+ target->dr6 = src->dr6;
+ target->dr7 = src->dr7;
+}
+
+/*
+ * Duplicate one x86_debug_state64_t to another. "all" parameter
+ * chooses whether dr4 and dr5 are copied (they are never meant
+ * to be installed when we do machine_task_set_state() or
+ * machine_thread_set_state()).
+ */
+void
+copy_debug_state64(
+ x86_debug_state64_t *src,
+ x86_debug_state64_t *target,
+ boolean_t all)
+{
+ if (all) {
+ target->dr4 = src->dr4;
+ target->dr5 = src->dr5;
+ }
+
+ target->dr0 = src->dr0;
+ target->dr1 = src->dr1;
+ target->dr2 = src->dr2;
+ target->dr3 = src->dr3;
+ target->dr6 = src->dr6;
+ target->dr7 = src->dr7;
+}
+