/*
- * Copyright (c) 2003-2006 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2003-2008 Apple Computer, Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
#include <vm/pmap.h>
#include <vm/vm_kern.h>
#include <i386/pmap.h>
-#include <i386/ipl.h>
#include <i386/misc_protos.h>
-#include <i386/mp_slave_boot.h>
+#include <i386/ipl.h>
#include <i386/cpuid.h>
#include <mach/thread_status.h>
#include <pexpert/i386/efi.h>
-#include "i386_lowmem.h"
+#include <i386/i386_lowmem.h>
+#include <i386/lowglobals.h>
+
+#include <mach-o/loader.h>
+#include <libkern/kernel_mach_header.h>
+
+#if DEBUG
+#define DBG(x...) kprintf("DBG: " x)
+#define PRINT_PMAP_MEMORY_TABLE
+#else
+#define DBG(x...)
+#endif
vm_size_t mem_size = 0;
vm_offset_t first_avail = 0;/* first after page tables */
#define MAXBOUNCEPOOL (128 * 1024 * 1024)
#define MAXLORESERVE ( 32 * 1024 * 1024)
-extern int bsd_mbuf_cluster_reserve(void);
+extern unsigned int bsd_mbuf_cluster_reserve(void);
uint32_t bounce_pool_base = 0;
static pmap_paddr_t avail_remaining;
vm_offset_t static_memory_end = 0;
-#include <mach-o/loader.h>
-vm_offset_t edata, etext, end;
-
-/*
- * _mh_execute_header is the mach_header for the currently executing
- * 32 bit kernel
- */
-extern struct mach_header _mh_execute_header;
-void *sectTEXTB; int sectSizeTEXT;
-void *sectDATAB; int sectSizeDATA;
-void *sectOBJCB; int sectSizeOBJC;
-void *sectLINKB; int sectSizeLINK;
-void *sectPRELINKB; int sectSizePRELINK;
-void *sectHIBB; int sectSizeHIB;
-
-extern void *getsegdatafromheader(struct mach_header *, const char *, int *);
-extern struct segment_command *getsegbyname(const char *);
-extern struct section *firstsect(struct segment_command *);
-extern struct section *nextsect(struct segment_command *, struct section *);
+vm_offset_t sHIB, eHIB, stext, etext, sdata, edata, end;
+boolean_t kernel_text_ps_4K = TRUE;
+boolean_t wpkernel = TRUE;
-void
-i386_macho_zerofill(void)
-{
- struct segment_command *sgp;
- struct section *sp;
-
- sgp = getsegbyname("__DATA");
- if (sgp) {
- sp = firstsect(sgp);
- if (sp) {
- do {
- if ((sp->flags & S_ZEROFILL))
- bzero((char *) sp->addr, sp->size);
- } while ((sp = nextsect(sgp, sp)));
- }
- }
+extern void *KPTphys;
- return;
-}
+/*
+ * _mh_execute_header is the mach_header for the currently executing kernel
+ */
+void *sectTEXTB; unsigned long sectSizeTEXT;
+void *sectDATAB; unsigned long sectSizeDATA;
+void *sectOBJCB; unsigned long sectSizeOBJC;
+void *sectLINKB; unsigned long sectSizeLINK;
+void *sectPRELINKB; unsigned long sectSizePRELINK;
+void *sectHIBB; unsigned long sectSizeHIB;
+void *sectINITPTB; unsigned long sectSizeINITPT;
+extern int srv;
+
+extern uint64_t firmware_Conventional_bytes;
+extern uint64_t firmware_RuntimeServices_bytes;
+extern uint64_t firmware_ACPIReclaim_bytes;
+extern uint64_t firmware_ACPINVS_bytes;
+extern uint64_t firmware_PalCode_bytes;
+extern uint64_t firmware_Reserved_bytes;
+extern uint64_t firmware_Unusable_bytes;
+extern uint64_t firmware_other_bytes;
+uint64_t firmware_MMIO_bytes;
/*
* Basic VM initialization.
&_mh_execute_header, "__LINKEDIT", §SizeLINK);
sectHIBB = (void *)getsegdatafromheader(
&_mh_execute_header, "__HIB", §SizeHIB);
+ sectINITPTB = (void *)getsegdatafromheader(
+ &_mh_execute_header, "__INITPT", §SizeINITPT);
sectPRELINKB = (void *) getsegdatafromheader(
- &_mh_execute_header, "__PRELINK", §SizePRELINK);
+ &_mh_execute_header, "__PRELINK_TEXT", §SizePRELINK);
+ sHIB = (vm_offset_t) sectHIBB;
+ eHIB = (vm_offset_t) sectHIBB + sectSizeHIB;
+ /* Zero-padded from ehib to stext if text is 2M-aligned */
+ stext = (vm_offset_t) sectTEXTB;
etext = (vm_offset_t) sectTEXTB + sectSizeTEXT;
+ /* Zero-padded from etext to sdata if text is 2M-aligned */
+ sdata = (vm_offset_t) sectDATAB;
edata = (vm_offset_t) sectDATAB + sectSizeDATA;
+#if DEBUG
+ kprintf("sectTEXTB = %p\n", sectTEXTB);
+ kprintf("sectDATAB = %p\n", sectDATAB);
+ kprintf("sectOBJCB = %p\n", sectOBJCB);
+ kprintf("sectLINKB = %p\n", sectLINKB);
+ kprintf("sectHIBB = %p\n", sectHIBB);
+ kprintf("sectPRELINKB = %p\n", sectPRELINKB);
+ kprintf("eHIB = %p\n", (void *) eHIB);
+ kprintf("stext = %p\n", (void *) stext);
+ kprintf("etext = %p\n", (void *) etext);
+ kprintf("sdata = %p\n", (void *) sdata);
+ kprintf("edata = %p\n", (void *) edata);
+#endif
+
vm_set_page_size();
/*
pmap_memory_region_count = pmap_memory_region_current = 0;
fap = (ppnum_t) i386_btop(first_avail);
- mptr = (EfiMemoryRange *)args->MemoryMap;
+ mptr = (EfiMemoryRange *)ml_static_ptovirt((vm_offset_t)args->MemoryMap);
if (args->MemoryMapDescriptorSize == 0)
panic("Invalid memory map descriptor size");
msize = args->MemoryMapDescriptorSize;
for (i = 0; i < mcount; i++, mptr = (EfiMemoryRange *)(((vm_offset_t)mptr) + msize)) {
ppnum_t base, top;
+ uint64_t region_bytes = 0;
if (pmap_memory_region_count >= PMAP_MEMORY_REGIONS_SIZE) {
kprintf("WARNING: truncating memory region count at %d\n", pmap_memory_region_count);
break;
}
base = (ppnum_t) (mptr->PhysicalStart >> I386_PGSHIFT);
- top = (ppnum_t) ((mptr->PhysicalStart) >> I386_PGSHIFT) + mptr->NumberOfPages - 1;
+ top = (ppnum_t) (((mptr->PhysicalStart) >> I386_PGSHIFT) + mptr->NumberOfPages - 1);
+ region_bytes = (uint64_t)(mptr->NumberOfPages << I386_PGSHIFT);
+ pmap_type = mptr->Type;
switch (mptr->Type) {
case kEfiLoaderCode:
* Consolidate usable memory types into one.
*/
pmap_type = kEfiConventionalMemory;
- sane_size += (uint64_t)(mptr->NumberOfPages << I386_PGSHIFT);
+ sane_size += region_bytes;
+ firmware_Conventional_bytes += region_bytes;
break;
+ /*
+ * sane_size should reflect the total amount of physical
+ * RAM in the system, not just the amount that is
+ * available for the OS to use.
+ * FIXME:Consider deriving this value from SMBIOS tables
+ * rather than reverse engineering the memory map.
+ * Alternatively, see
+ * <rdar://problem/4642773> Memory map should
+ * describe all memory
+ * Firmware on some systems guarantees that the memory
+ * map is complete via the "RomReservedMemoryTracked"
+ * feature field--consult that where possible to
+ * avoid the "round up to 128M" workaround below.
+ */
case kEfiRuntimeServicesCode:
case kEfiRuntimeServicesData:
+ firmware_RuntimeServices_bytes += region_bytes;
+ sane_size += region_bytes;
+ break;
case kEfiACPIReclaimMemory:
+ firmware_ACPIReclaim_bytes += region_bytes;
+ sane_size += region_bytes;
+ break;
case kEfiACPIMemoryNVS:
+ firmware_ACPINVS_bytes += region_bytes;
+ sane_size += region_bytes;
+ break;
case kEfiPalCode:
- /*
- * sane_size should reflect the total amount of physical ram
- * in the system, not just the amount that is available for
- * the OS to use
- */
- sane_size += (uint64_t)(mptr->NumberOfPages << I386_PGSHIFT);
- /* fall thru */
+ firmware_PalCode_bytes += region_bytes;
+ sane_size += region_bytes;
+ break;
+
+ case kEfiReservedMemoryType:
+ firmware_Reserved_bytes += region_bytes;
+ break;
case kEfiUnusableMemory:
+ firmware_Unusable_bytes += region_bytes;
+ break;
case kEfiMemoryMappedIO:
case kEfiMemoryMappedIOPortSpace:
- case kEfiReservedMemoryType:
+ firmware_MMIO_bytes += region_bytes;
+ break;
default:
- pmap_type = mptr->Type;
+ firmware_other_bytes += region_bytes;
+ break;
}
- kprintf("EFI region: type = %u/%d, base = 0x%x, top = 0x%x\n", mptr->Type, pmap_type, base, top);
+ kprintf("EFI region %d: type %u/%d, base 0x%x, top 0x%x\n",
+ i, mptr->Type, pmap_type, base, top);
if (maxpg) {
if (base >= maxpg)
}
}
-
#ifdef PRINT_PMAP_MEMORY_TABLE
{
unsigned int j;
pmap_memory_region_t *p = pmap_memory_regions;
- vm_offset_t region_start, region_end;
- vm_offset_t efi_start, efi_end;
+ addr64_t region_start, region_end;
+ addr64_t efi_start, efi_end;
for (j=0;j<pmap_memory_region_count;j++, p++) {
- kprintf("type %d base 0x%x alloc 0x%x top 0x%x\n", p->type,
- p->base << I386_PGSHIFT, p->alloc << I386_PGSHIFT, p->end << I386_PGSHIFT);
- region_start = p->base << I386_PGSHIFT;
- region_end = (p->end << I386_PGSHIFT) - 1;
- mptr = args->MemoryMap;
+ kprintf("pmap region %d type %d base 0x%llx alloc 0x%llx top 0x%llx\n",
+ j, p->type,
+ (addr64_t) p->base << I386_PGSHIFT,
+ (addr64_t) p->alloc << I386_PGSHIFT,
+ (addr64_t) p->end << I386_PGSHIFT);
+ region_start = (addr64_t) p->base << I386_PGSHIFT;
+ region_end = ((addr64_t) p->end << I386_PGSHIFT) - 1;
+ mptr = (EfiMemoryRange *) ml_static_ptovirt((vm_offset_t)args->MemoryMap);
for (i=0; i<mcount; i++, mptr = (EfiMemoryRange *)(((vm_offset_t)mptr) + msize)) {
if (mptr->Type != kEfiLoaderCode &&
mptr->Type != kEfiLoaderData &&
mptr->Type != kEfiBootServicesCode &&
mptr->Type != kEfiBootServicesData &&
mptr->Type != kEfiConventionalMemory) {
- efi_start = (vm_offset_t)mptr->PhysicalStart;
+ efi_start = (addr64_t)mptr->PhysicalStart;
efi_end = efi_start + ((vm_offset_t)mptr->NumberOfPages << I386_PGSHIFT) - 1;
if ((efi_start >= region_start && efi_start <= region_end) ||
(efi_end >= region_start && efi_end <= region_end)) {
kprintf(" *** Overlapping region with EFI runtime region %d\n", i);
}
- }
-
+ }
}
- }
+ }
}
#endif
avail_start = first_avail;
mem_actual = sane_size;
-#define MEG (1024*1024ULL)
-#define GIG (1024*MEG)
-
/*
* For user visible memory size, round up to 128 Mb - accounting for the various stolen memory
* not reported by EFI.
*/
- sane_size = (sane_size + 128 * MEG - 1) & ~((uint64_t)(128 * MEG - 1));
+ sane_size = (sane_size + 128 * MB - 1) & ~((uint64_t)(128 * MB - 1));
-#if defined(__i386__)
-#define K32_MAXMEM (32*GIG)
/*
- * For K32 we cap at K32_MAXMEM GB (currently 32GB).
+ * We cap at KERNEL_MAXMEM bytes (currently 32GB for K32, 64GB for K64).
* Unless overriden by the maxmem= boot-arg
* -- which is a non-zero maxmem argument to this function.
*/
- if (maxmem == 0 && sane_size > K32_MAXMEM) {
- maxmem = K32_MAXMEM;
- printf("Physical memory %lld bytes capped at %dGB for 32-bit kernel\n",
- sane_size, (uint32_t) (K32_MAXMEM/GIG));
+ if (maxmem == 0 && sane_size > KERNEL_MAXMEM) {
+ maxmem = KERNEL_MAXMEM;
+ printf("Physical memory %lld bytes capped at %dGB\n",
+ sane_size, (uint32_t) (KERNEL_MAXMEM/GB));
}
-#endif
+
/*
* if user set maxmem, reduce memory sizes
*/
if ( (maxmem > (uint64_t)first_avail) && (maxmem < sane_size)) {
- ppnum_t discarded_pages = (sane_size - maxmem) >> I386_PGSHIFT;
+ ppnum_t discarded_pages = (ppnum_t)((sane_size - maxmem) >> I386_PGSHIFT);
ppnum_t highest_pn = 0;
ppnum_t cur_alloc = 0;
uint64_t pages_to_use;
mem_size = (vm_size_t)sane_size;
max_mem = sane_size;
- kprintf("Physical memory %llu MB\n", sane_size/MEG);
+ kprintf("Physical memory %llu MB\n", sane_size/MB);
if (!PE_parse_boot_argn("max_valid_dma_addr", &maxdmaaddr, sizeof (maxdmaaddr)))
- max_valid_dma_address = 1024ULL * 1024ULL * 4096ULL;
+ max_valid_dma_address = 4 * GB;
else
- max_valid_dma_address = ((uint64_t) maxdmaaddr) * 1024ULL * 1024ULL;
+ max_valid_dma_address = ((uint64_t) maxdmaaddr) * MB;
if (!PE_parse_boot_argn("maxbouncepool", &maxbouncepoolsize, sizeof (maxbouncepoolsize)))
maxbouncepoolsize = MAXBOUNCEPOOL;
else
maxbouncepoolsize = maxbouncepoolsize * (1024 * 1024);
+ /* since bsd_mbuf_cluster_reserve() is going to be called, we need to check for server */
+ if (PE_parse_boot_argn("srv", &srv, sizeof (srv))) {
+ srv = 1;
+ }
+
+
/*
* bsd_mbuf_cluster_reserve depends on sane_size being set
* in order to correctly determine the size of the mbuf pool
unsigned int
pmap_free_pages(void)
{
- return avail_remaining;
+ return (unsigned int)avail_remaining;
}
+#if defined(__LP64__)
+/* On large memory systems, early allocations should prefer memory from the
+ * last region, which is typically all physical memory >4GB. This is used
+ * by pmap_steal_memory and pmap_pre_expand during init only. */
+boolean_t
+pmap_next_page_k64( ppnum_t *pn)
+{
+ if(max_mem >= (32*GB)) {
+ pmap_memory_region_t *last_region = &pmap_memory_regions[pmap_memory_region_count-1];
+ if (last_region->alloc != last_region->end) {
+ *pn = last_region->alloc++;
+ avail_remaining--;
+ return TRUE;
+ }
+ }
+ return pmap_next_page(pn);
+}
+#endif
boolean_t
pmap_next_page(
ppnum_t *pn)
{
-
if (avail_remaining) while (pmap_memory_region_current < pmap_memory_region_count) {
- if (pmap_memory_regions[pmap_memory_region_current].alloc ==
- pmap_memory_regions[pmap_memory_region_current].end) {
- pmap_memory_region_current++;
+ if (pmap_memory_regions[pmap_memory_region_current].alloc ==
+ pmap_memory_regions[pmap_memory_region_current].end) {
+ pmap_memory_region_current++;
continue;
}
*pn = pmap_memory_regions[pmap_memory_region_current].alloc++;
unsigned int i;
pmap_memory_region_t *pmptr = pmap_memory_regions;
- assert(pn);
for (i = 0; i < pmap_memory_region_count; i++, pmptr++) {
if ( (pn >= pmptr->base) && (pn <= pmptr->end) )
return TRUE;
avail_remaining -= pages_needed;
}
}
+
+/*
+ * Called once VM is fully initialized so that we can release unused
+ * sections of low memory to the general pool.
+ * Also complete the set-up of identity-mapped sections of the kernel:
+ * 1) write-protect kernel text
+ * 2) map kernel text using large pages if possible
+ * 3) read and write-protect page zero (for K32)
+ * 4) map the global page at the appropriate virtual address.
+ *
+ * Use of large pages
+ * ------------------
+ * To effectively map and write-protect all kernel text pages, the text
+ * must be 2M-aligned at the base, and the data section above must also be
+ * 2M-aligned. That is, there's padding below and above. This is achieved
+ * through linker directives. Large pages are used only if this alignment
+ * exists (and not overriden by the -kernel_text_page_4K boot-arg). The
+ * memory layout is:
+ *
+ * : :
+ * | __DATA |
+ * sdata: ================== 2Meg
+ * | |
+ * | zero-padding |
+ * | |
+ * etext: ------------------
+ * | |
+ * : :
+ * | |
+ * | __TEXT |
+ * | |
+ * : :
+ * | |
+ * stext: ================== 2Meg
+ * | |
+ * | zero-padding |
+ * | |
+ * eHIB: ------------------
+ * | __HIB |
+ * : :
+ *
+ * Prior to changing the mapping from 4K to 2M, the zero-padding pages
+ * [eHIB,stext] and [etext,sdata] are ml_static_mfree()'d. Then all the
+ * 4K pages covering [stext,etext] are coalesced as 2M large pages.
+ * The now unused level-1 PTE pages are also freed.
+ */
+void
+pmap_lowmem_finalize(void)
+{
+ spl_t spl;
+ int i;
+
+ /* Check the kernel is linked at the expected base address */
+ if (i386_btop(kvtophys((vm_offset_t) &IdlePML4)) !=
+ I386_KERNEL_IMAGE_BASE_PAGE)
+ panic("pmap_lowmem_finalize() unexpected kernel base address");
+
+ /*
+ * Free all pages in pmap regions below the base:
+ * rdar://6332712
+ * We can't free all the pages to VM that EFI reports available.
+ * Pages in the range 0xc0000-0xff000 aren't safe over sleep/wake.
+ * There's also a size miscalculation here: pend is one page less
+ * than it should be but this is not fixed to be backwards
+ * compatible.
+ * Due to this current EFI limitation, we take only the first
+ * entry in the memory region table. However, the loop is retained
+ * (with the intended termination criteria commented out) in the
+ * hope that some day we can free all low-memory ranges.
+ */
+ for (i = 0;
+// pmap_memory_regions[i].end <= I386_KERNEL_IMAGE_BASE_PAGE;
+ i < 1;
+ i++) {
+ vm_offset_t pbase = (vm_offset_t)i386_ptob(pmap_memory_regions[i].base);
+ vm_offset_t pend = (vm_offset_t)i386_ptob(pmap_memory_regions[i].end);
+// vm_offset_t pend = i386_ptob(pmap_memory_regions[i].end+1);
+
+ DBG("ml_static_mfree(%p,%p) for pmap region %d\n",
+ (void *) ml_static_ptovirt(pbase),
+ (void *) (pend - pbase), i);
+ ml_static_mfree(ml_static_ptovirt(pbase), pend - pbase);
+ }
+
+ /*
+ * If text and data are both 2MB-aligned,
+ * we can map text with large-pages,
+ * unless the -kernel_text_ps_4K boot-arg overrides.
+ */
+ if ((stext & I386_LPGMASK) == 0 && (sdata & I386_LPGMASK) == 0) {
+ kprintf("Kernel text is 2MB aligned");
+ kernel_text_ps_4K = FALSE;
+ if (PE_parse_boot_argn("-kernel_text_ps_4K",
+ &kernel_text_ps_4K,
+ sizeof (kernel_text_ps_4K)))
+ kprintf(" but will be mapped with 4K pages\n");
+ else
+ kprintf(" and will be mapped with 2M pages\n");
+ }
+
+ (void) PE_parse_boot_argn("wpkernel", &wpkernel, sizeof (wpkernel));
+ if (wpkernel)
+ kprintf("Kernel text %p-%p to be write-protected\n",
+ (void *) stext, (void *) etext);
+
+ spl = splhigh();
+
+ /*
+ * Scan over text if mappings are to be changed:
+ * - Remap kernel text readonly unless the "wpkernel" boot-arg is 0
+ * - Change to large-pages if possible and not overriden.
+ */
+ if (kernel_text_ps_4K && wpkernel) {
+ vm_offset_t myva;
+ for (myva = stext; myva < etext; myva += PAGE_SIZE) {
+ pt_entry_t *ptep;
+
+ ptep = pmap_pte(kernel_pmap, (vm_map_offset_t)myva);
+ if (ptep)
+ pmap_store_pte(ptep, *ptep & ~INTEL_PTE_RW);
+ }
+ }
+
+ if (!kernel_text_ps_4K) {
+ vm_offset_t myva;
+
+ /*
+ * Release zero-filled page padding used for 2M-alignment.
+ */
+ DBG("ml_static_mfree(%p,%p) for padding below text\n",
+ (void *) eHIB, (void *) (stext - eHIB));
+ ml_static_mfree(eHIB, stext - eHIB);
+ DBG("ml_static_mfree(%p,%p) for padding above text\n",
+ (void *) etext, (void *) (sdata - etext));
+ ml_static_mfree(etext, sdata - etext);
+
+ /*
+ * Coalesce text pages into large pages.
+ */
+ for (myva = stext; myva < sdata; myva += I386_LPGBYTES) {
+ pt_entry_t *ptep;
+ vm_offset_t pte_phys;
+ pt_entry_t *pdep;
+ pt_entry_t pde;
+
+ pdep = pmap_pde(kernel_pmap, (vm_map_offset_t)myva);
+ ptep = pmap_pte(kernel_pmap, (vm_map_offset_t)myva);
+ DBG("myva: %p pdep: %p ptep: %p\n",
+ (void *) myva, (void *) pdep, (void *) ptep);
+ if ((*ptep & INTEL_PTE_VALID) == 0)
+ continue;
+ pte_phys = (vm_offset_t)(*ptep & PG_FRAME);
+ pde = *pdep & PTMASK; /* page attributes from pde */
+ pde |= INTEL_PTE_PS; /* make it a 2M entry */
+ pde |= pte_phys; /* take page frame from pte */
+
+ if (wpkernel)
+ pde &= ~INTEL_PTE_RW;
+ DBG("pmap_store_pte(%p,0x%llx)\n",
+ (void *)pdep, pde);
+ pmap_store_pte(pdep, pde);
+
+ /*
+ * Free the now-unused level-1 pte.
+ * Note: ptep is a virtual address to the pte in the
+ * recursive map. We can't use this address to free
+ * the page. Instead we need to compute its address
+ * in the Idle PTEs in "low memory".
+ */
+ vm_offset_t vm_ptep = (vm_offset_t) KPTphys
+ + (pte_phys >> PTPGSHIFT);
+ DBG("ml_static_mfree(%p,0x%x) for pte\n",
+ (void *) vm_ptep, PAGE_SIZE);
+ ml_static_mfree(vm_ptep, PAGE_SIZE);
+ }
+
+ /* Change variable read by sysctl machdep.pmap */
+ pmap_kernel_text_ps = I386_LPGBYTES;
+ }
+
+#if defined(__i386__)
+ /* no matter what, kernel page zero is not accessible */
+ pmap_store_pte(pmap_pte(kernel_pmap, 0), INTEL_PTE_INVALID);
+#endif
+
+ /* map lowmem global page into fixed addr */
+ pt_entry_t *pte = NULL;
+ if (0 == (pte = pmap_pte(kernel_pmap,
+ VM_MIN_KERNEL_LOADED_ADDRESS + 0x2000)))
+ panic("lowmem pte");
+ /* make sure it is defined on page boundary */
+ assert(0 == ((vm_offset_t) &lowGlo & PAGE_MASK));
+ pmap_store_pte(pte, kvtophys((vm_offset_t)&lowGlo)
+ | INTEL_PTE_REF
+ | INTEL_PTE_MOD
+ | INTEL_PTE_WIRED
+ | INTEL_PTE_VALID
+ | INTEL_PTE_RW);
+ splx(spl);
+ flush_tlb();
+}
+