]> git.saurik.com Git - apple/xnu.git/blobdiff - bsd/security/audit/audit_worker.c
xnu-1456.1.26.tar.gz
[apple/xnu.git] / bsd / security / audit / audit_worker.c
diff --git a/bsd/security/audit/audit_worker.c b/bsd/security/audit/audit_worker.c
new file mode 100644 (file)
index 0000000..d307a7e
--- /dev/null
@@ -0,0 +1,548 @@
+/*-
+ * Copyright (c) 1999-2008 Apple Inc.
+ * Copyright (c) 2006-2008 Robert N. M. Watson
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1.  Redistributions of source code must retain the above copyright
+ *     notice, this list of conditions and the following disclaimer.
+ * 2.  Redistributions in binary form must reproduce the above copyright
+ *     notice, this list of conditions and the following disclaimer in the
+ *     documentation and/or other materials provided with the distribution.
+ * 3.  Neither the name of Apple Inc. ("Apple") nor the names of
+ *     its contributors may be used to endorse or promote products derived
+ *     from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR
+ * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+ * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
+ * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <sys/param.h>
+#include <sys/fcntl.h>
+#include <sys/kernel.h>
+#include <sys/lock.h>
+#include <sys/namei.h>
+#include <sys/proc_internal.h>
+#include <sys/kauth.h>
+#include <sys/queue.h>
+#include <sys/systm.h>
+#include <sys/time.h>
+#include <sys/ucred.h>
+#include <sys/uio.h>
+#include <sys/unistd.h>
+#include <sys/file_internal.h>
+#include <sys/vnode_internal.h>
+#include <sys/user.h>
+#include <sys/syscall.h>
+#include <sys/malloc.h>
+#include <sys/un.h>
+#include <sys/sysent.h>
+#include <sys/sysproto.h>
+#include <sys/vfs_context.h>
+#include <sys/domain.h>
+#include <sys/protosw.h>
+#include <sys/socketvar.h>
+
+#include <bsm/audit.h>
+#include <bsm/audit_internal.h>
+#include <bsm/audit_kevents.h>
+
+#include <security/audit/audit.h>
+#include <security/audit/audit_bsd.h>
+#include <security/audit/audit_private.h>
+
+#include <mach/host_priv.h>
+#include <mach/host_special_ports.h>
+#include <mach/audit_triggers_server.h>
+
+#include <kern/host.h>
+#include <kern/zalloc.h>
+#include <kern/lock.h>
+#include <kern/sched_prim.h>
+#include <kern/task.h>
+#include <kern/wait_queue.h>
+
+#include <net/route.h>
+
+#include <netinet/in.h>
+#include <netinet/in_pcb.h>
+
+/*
+ * Worker thread that will schedule disk I/O, etc.
+ */
+static thread_t audit_thread;
+
+/*
+ * audit_ctx and audit_vp are the stored credential and vnode to use for
+ * active audit trail.  They are protected by audit_worker_sl, which will be
+ * held across all I/O and all rotation to prevent them from being replaced
+ * (rotated) while in use.  The audit_file_rotate_wait flag is set when the
+ * kernel has delivered a trigger to auditd to rotate the trail, and is
+ * cleared when the next rotation takes place.  It is also protected by
+ * audit_worker_sl.
+ */
+static int                     audit_file_rotate_wait;
+static struct slck             audit_worker_sl;
+static struct vfs_context      audit_ctx;
+static struct vnode            *audit_vp;
+
+#define        AUDIT_WORKER_SX_INIT()          slck_init(&audit_worker_sl,     \
+                                           "audit_worker_sl")
+#define        AUDIT_WORKER_SX_XLOCK()         slck_lock(&audit_worker_sl)
+#define        AUDIT_WORKER_SX_XUNLOCK()       slck_unlock(&audit_worker_sl)
+#define        AUDIT_WORKER_SX_ASSERT()        slck_assert(&audit_worker_sl, SL_OWNED)
+#define        AUDIT_WORKER_SX_DESTROY()       slck_destroy(&audit_worker_sl)
+
+/*
+ * The audit_draining flag is set when audit is disabled and the audit
+ * worker queue is being drained.
+ */
+static int                     audit_draining;
+
+/*
+ * The special kernel audit record, audit_drain_kar, is used to mark the end of
+ * the queue when draining it.
+ */
+static struct kaudit_record    audit_drain_kar = {
+       .k_ar = {
+               .ar_event = AUE_NULL,
+       },
+       .k_ar_commit = AR_DRAIN_QUEUE,
+};
+
+/*
+ * Write an audit record to a file, performed as the last stage after both
+ * preselection and BSM conversion.  Both space management and write failures
+ * are handled in this function.
+ *
+ * No attempt is made to deal with possible failure to deliver a trigger to
+ * the audit daemon, since the message is asynchronous anyway.
+ */
+static void
+audit_record_write(struct vnode *vp, struct vfs_context *ctx, void *data,
+    size_t len)
+{
+       static struct timeval last_lowspace_trigger;
+       static struct timeval last_fail;
+       static int cur_lowspace_trigger;
+       struct vfsstatfs *mnt_stat;
+       int error;
+       static int cur_fail;
+       uint64_t temp;
+       off_t file_size;
+
+       AUDIT_WORKER_SX_ASSERT();       /* audit_file_rotate_wait. */
+
+       if (vp == NULL)
+               return;
+
+       if (vnode_getwithref(vp))
+               return /*(ENOENT)*/;
+
+       mnt_stat = &vp->v_mount->mnt_vfsstat;
+
+       /*
+        * First, gather statistics on the audit log file and file system so
+        * that we know how we're doing on space.  Consider failure of these
+        * operations to indicate a future inability to write to the file.
+        */
+       error = vfs_update_vfsstat(vp->v_mount, ctx, VFS_KERNEL_EVENT);
+       if (error)
+               goto fail;
+       error = vnode_size(vp, &file_size, ctx);
+       if (error)
+               goto fail;
+       audit_fstat.af_currsz = (u_quad_t)file_size;
+
+       /*
+        * We handle four different space-related limits:
+        *
+        * - A fixed (hard) limit on the minimum free blocks we require on
+        *   the file system, and results in record loss, a trigger, and
+        *   possible fail stop due to violating invariants.
+        *
+        * - An administrative (soft) limit, which when fallen below, results
+        *   in the kernel notifying the audit daemon of low space.
+        *
+        * - An audit trail size limit, which when gone above, results in the
+        *   kernel notifying the audit daemon that rotation is desired.
+        *
+        * - The total depth of the kernel audit record exceeding free space,
+        *   which can lead to possible fail stop (with drain), in order to
+        *   prevent violating invariants.  Failure here doesn't halt
+        *   immediately, but prevents new records from being generated.
+        *
+        * Possibly, the last of these should be handled differently, always
+        * allowing a full queue to be lost, rather than trying to prevent
+        * loss.
+        *
+        * First, handle the hard limit, which generates a trigger and may
+        * fail stop.  This is handled in the same manner as ENOSPC from
+        * VOP_WRITE, and results in record loss.
+        */
+       if (mnt_stat->f_bfree < AUDIT_HARD_LIMIT_FREE_BLOCKS) {
+               error = ENOSPC;
+               goto fail_enospc;
+       }
+
+       /*
+        * Second, handle falling below the soft limit, if defined; we send
+        * the daemon a trigger and continue processing the record.  Triggers
+        * are limited to 1/sec.
+        */
+       if (audit_qctrl.aq_minfree != 0) {
+               temp = mnt_stat->f_blocks / (100 / audit_qctrl.aq_minfree);
+               if (mnt_stat->f_bfree < temp) {
+                       if (ppsratecheck(&last_lowspace_trigger,
+                           &cur_lowspace_trigger, 1)) {
+                               (void)audit_send_trigger(
+                                   AUDIT_TRIGGER_LOW_SPACE);
+                               printf("Warning: audit space low (< %d%% free)"
+                                   "on audit log file-system\n",
+                                   audit_qctrl.aq_minfree);
+                       }
+               }
+       }
+
+       /*
+        * If the current file is getting full, generate a rotation trigger
+        * to the daemon.  This is only approximate, which is fine as more
+        * records may be generated before the daemon rotates the file.
+        */
+       if ((audit_fstat.af_filesz != 0) && (audit_file_rotate_wait == 0) &&
+           ((u_quad_t)file_size >= audit_fstat.af_filesz)) {
+               AUDIT_WORKER_SX_ASSERT();
+
+               audit_file_rotate_wait = 1;
+               (void)audit_send_trigger(AUDIT_TRIGGER_ROTATE_KERNEL);
+       }
+
+       /*
+        * If the estimated amount of audit data in the audit event queue
+        * (plus records allocated but not yet queued) has reached the amount
+        * of free space on the disk, then we need to go into an audit fail
+        * stop state, in which we do not permit the allocation/committing of
+        * any new audit records.  We continue to process records but don't
+        * allow any activities that might generate new records.  In the
+        * future, we might want to detect when space is available again and
+        * allow operation to continue, but this behavior is sufficient to
+        * meet fail stop requirements in CAPP.
+        */
+       if (audit_fail_stop) {
+               if ((unsigned long)((audit_q_len + audit_pre_q_len + 1) *
+                   MAX_AUDIT_RECORD_SIZE) / mnt_stat->f_bsize >=
+                   (unsigned long)(mnt_stat->f_bfree)) {
+                       if (ppsratecheck(&last_fail, &cur_fail, 1))
+                               printf("audit_record_write: free space "
+                                   "below size of audit queue, failing "
+                                   "stop\n");
+                       audit_in_failure = 1;
+               } else if (audit_in_failure) {
+                       /*
+                        * Note: if we want to handle recovery, this is the
+                        * spot to do it: unset audit_in_failure, and issue a
+                        * wakeup on the cv.
+                        */
+               }
+       }
+
+       error = vn_rdwr(UIO_WRITE, vp, data, len, (off_t)0, UIO_SYSSPACE,
+           IO_APPEND|IO_UNIT, vfs_context_ucred(ctx), NULL,
+           vfs_context_proc(ctx));
+       if (error == ENOSPC)
+               goto fail_enospc;
+       else if (error)
+               goto fail;
+
+       /*
+        * Catch completion of a queue drain here; if we're draining and the
+        * queue is now empty, fail stop.  That audit_fail_stop is implicitly
+        * true, since audit_in_failure can only be set of audit_fail_stop is
+        * set.
+        *
+        * Note: if we handle recovery from audit_in_failure, then we need to
+        * make panic here conditional.
+        */
+       if (audit_in_failure) {
+               if (audit_q_len == 0 && audit_pre_q_len == 0) {
+                       (void)VNOP_FSYNC(vp, MNT_WAIT, ctx);
+                       panic("Audit store overflow; record queue drained.");
+               }
+       }
+
+       vnode_put(vp);
+       return;
+
+fail_enospc:
+       /*
+        * ENOSPC is considered a special case with respect to failures, as
+        * this can reflect either our preemptive detection of insufficient
+        * space, or ENOSPC returned by the vnode write call.
+        */
+       if (audit_fail_stop) {
+               (void)VNOP_FSYNC(vp, MNT_WAIT, ctx);
+               panic("Audit log space exhausted and fail-stop set.");
+       }
+       (void)audit_send_trigger(AUDIT_TRIGGER_NO_SPACE);
+       audit_suspended = 1;
+
+       /* FALLTHROUGH */
+fail:
+       /*
+        * We have failed to write to the file, so the current record is
+        * lost, which may require an immediate system halt.
+        */
+       if (audit_panic_on_write_fail) {
+               (void)VNOP_FSYNC(vp, MNT_WAIT, ctx);
+               panic("audit_worker: write error %d\n", error);
+       } else if (ppsratecheck(&last_fail, &cur_fail, 1))
+               printf("audit_worker: write error %d\n", error);
+       vnode_put(vp);
+}
+
+/*
+ * Given a kernel audit record, process as required.  Kernel audit records
+ * are converted to one, or possibly two, BSM records, depending on whether
+ * there is a user audit record present also.  Kernel records need be
+ * converted to BSM before they can be written out.  Both types will be
+ * written to disk, and audit pipes.
+ */
+static void
+audit_worker_process_record(struct kaudit_record *ar)
+{
+       struct au_record *bsm;
+       au_class_t class;
+       au_event_t event;
+       au_id_t auid;
+       int error, sorf;
+       int trail_locked;
+
+       /*
+        * We hold the audit_worker_sl lock over both writes, if there are
+        * two, so that the two records won't be split across a rotation and
+        * end up in two different trail files.
+        */
+       if (((ar->k_ar_commit & AR_COMMIT_USER) &&
+           (ar->k_ar_commit & AR_PRESELECT_USER_TRAIL)) ||
+           (ar->k_ar_commit & AR_PRESELECT_TRAIL)) {
+               AUDIT_WORKER_SX_XLOCK();
+               trail_locked = 1;
+       } else
+               trail_locked = 0;
+
+       /*
+        * First, handle the user record, if any: commit to the system trail
+        * and audit pipes as selected.
+        */
+       if ((ar->k_ar_commit & AR_COMMIT_USER) &&
+           (ar->k_ar_commit & AR_PRESELECT_USER_TRAIL)) {
+               AUDIT_WORKER_SX_ASSERT();
+               audit_record_write(audit_vp, &audit_ctx, ar->k_udata,
+                   ar->k_ulen);
+       }
+
+       if ((ar->k_ar_commit & AR_COMMIT_USER) &&
+           (ar->k_ar_commit & AR_PRESELECT_USER_PIPE))
+               audit_pipe_submit_user(ar->k_udata, ar->k_ulen);
+
+       if (!(ar->k_ar_commit & AR_COMMIT_KERNEL) ||
+           ((ar->k_ar_commit & AR_PRESELECT_PIPE) == 0 &&
+           (ar->k_ar_commit & AR_PRESELECT_TRAIL) == 0))
+               goto out;
+
+       auid = ar->k_ar.ar_subj_auid;
+       event = ar->k_ar.ar_event;
+       class = au_event_class(event);
+       if (ar->k_ar.ar_errno == 0)
+               sorf = AU_PRS_SUCCESS;
+       else
+               sorf = AU_PRS_FAILURE;
+
+       error = kaudit_to_bsm(ar, &bsm);
+       switch (error) {
+       case BSM_NOAUDIT:
+               goto out;
+
+       case BSM_FAILURE:
+               printf("audit_worker_process_record: BSM_FAILURE\n");
+               goto out;
+
+       case BSM_SUCCESS:
+               break;
+
+       default:
+               panic("kaudit_to_bsm returned %d", error);
+       }
+
+       if (ar->k_ar_commit & AR_PRESELECT_TRAIL) {
+               AUDIT_WORKER_SX_ASSERT();
+               audit_record_write(audit_vp, &audit_ctx, bsm->data, bsm->len);
+       }
+
+       if (ar->k_ar_commit & AR_PRESELECT_PIPE)
+               audit_pipe_submit(auid, event, class, sorf,
+                   ar->k_ar_commit & AR_PRESELECT_TRAIL, bsm->data,
+                   bsm->len);
+
+       kau_free(bsm);
+out:
+       if (trail_locked)
+               AUDIT_WORKER_SX_XUNLOCK();
+}
+
+/*
+ * The audit_worker thread is responsible for watching the event queue,
+ * dequeueing records, converting them to BSM format, and committing them to
+ * disk.  In order to minimize lock thrashing, records are dequeued in sets
+ * to a thread-local work queue.
+ *
+ * Note: this means that the effect bound on the size of the pending record
+ * queue is 2x the length of the global queue.
+ */
+static void
+audit_worker(void)
+{
+       struct kaudit_queue ar_worklist;
+       struct kaudit_record *ar;
+       int lowater_signal;
+
+       audit_ctx.vc_thread = current_thread();
+       TAILQ_INIT(&ar_worklist);
+       mtx_lock(&audit_mtx);
+       while (1) {
+               mtx_assert(&audit_mtx, MA_OWNED);
+
+               /*
+                * Wait for a record.
+                */
+               while (TAILQ_EMPTY(&audit_q))
+                       cv_wait(&audit_worker_cv, &audit_mtx);
+
+               /*
+                * If there are records in the global audit record queue,
+                * transfer them to a thread-local queue and process them
+                * one by one.  If we cross the low watermark threshold,
+                * signal any waiting processes that they may wake up and
+                * continue generating records.
+                */
+               lowater_signal = 0;
+               while ((ar = TAILQ_FIRST(&audit_q))) {
+                       TAILQ_REMOVE(&audit_q, ar, k_q);
+                       audit_q_len--;
+                       if (audit_q_len == audit_qctrl.aq_lowater)
+                               lowater_signal++;
+                       TAILQ_INSERT_TAIL(&ar_worklist, ar, k_q);
+               }
+               if (lowater_signal)
+                       cv_broadcast(&audit_watermark_cv);
+
+               mtx_unlock(&audit_mtx);
+               while ((ar = TAILQ_FIRST(&ar_worklist))) {
+                       TAILQ_REMOVE(&ar_worklist, ar, k_q);
+                       if (ar->k_ar_commit & AR_DRAIN_QUEUE) {
+                               audit_draining = 0;
+                               cv_broadcast(&audit_drain_cv);
+                       } else {
+                               audit_worker_process_record(ar);
+                               audit_free(ar);
+                       }
+               }
+               mtx_lock(&audit_mtx);
+       }
+}
+
+/*
+ * audit_rotate_vnode() is called by a user or kernel thread to configure or
+ * de-configure auditing on a vnode.  The arguments are the replacement
+ * credential (referenced) and vnode (referenced and opened) to substitute
+ * for the current credential and vnode, if any.  If either is set to NULL,
+ * both should be NULL, and this is used to indicate that audit is being
+ * disabled.  Any previous cred/vnode will be closed and freed.  We re-enable
+ * generating rotation requests to auditd.
+ */
+void
+audit_rotate_vnode(kauth_cred_t cred, struct vnode *vp)
+{
+       kauth_cred_t old_audit_cred;
+       struct vnode *old_audit_vp;
+       int audit_was_enabled;
+
+       KASSERT((cred != NULL && vp != NULL) || (cred == NULL && vp == NULL),
+           ("audit_rotate_vnode: cred %p vp %p", cred, vp));
+
+       /*
+        * Rotate the vnode/cred, and clear the rotate flag so that we will
+        * send a rotate trigger if the new file fills.
+        */
+       AUDIT_WORKER_SX_XLOCK();
+       old_audit_cred = audit_ctx.vc_ucred;
+       old_audit_vp = audit_vp;
+       audit_ctx.vc_ucred = cred;
+       audit_file_rotate_wait = 0;
+       audit_was_enabled = audit_enabled;
+       if ((audit_enabled = (NULL != vp)))
+               audit_vp = vp;
+       audit_draining = (audit_was_enabled && !audit_enabled);
+       AUDIT_WORKER_SX_XUNLOCK();
+
+       /*
+        * If audit (was enabled and) is now disabled then drain the audit
+        * record queue and wait until it is done.
+        */
+       mtx_lock(&audit_mtx);
+       if (audit_draining) {
+               /*
+                * Insert the special drain record in the queue.
+                */
+               while (audit_q_len >= audit_qctrl.aq_hiwater)
+                       cv_wait(&audit_watermark_cv, &audit_mtx);
+               TAILQ_INSERT_TAIL(&audit_q, &audit_drain_kar, k_q);
+               audit_q_len++;
+               cv_signal(&audit_worker_cv);
+
+               /*
+                * Wait for the audit worker thread to signal it is done.
+                */
+               while (audit_draining)
+                       cv_wait(&audit_drain_cv, &audit_mtx);
+
+               audit_vp = NULL;
+       }
+       mtx_unlock(&audit_mtx);
+
+       /*
+        * If there was an old vnode/credential, close and free.
+        */
+       if (old_audit_vp != NULL) {
+               if (vnode_get(old_audit_vp) == 0) {
+                       vn_close(old_audit_vp, AUDIT_CLOSE_FLAGS,
+                           vfs_context_kernel());
+                       vnode_put(old_audit_vp);
+               } else
+                       printf("audit_rotate_vnode: Couldn't close "
+                           "audit file.\n");
+               kauth_cred_unref(&old_audit_cred);
+       }
+}
+
+void
+audit_worker_init(void)
+{
+
+       AUDIT_WORKER_SX_INIT();
+       kernel_thread_start((thread_continue_t)audit_worker, NULL,
+           &audit_thread);
+       if (audit_thread == THREAD_NULL)
+               panic("audit_worker_init: Couldn't create audit_worker thread");
+}