/*
- * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2020 Apple Inc. All rights reserved.
*
- * @APPLE_LICENSE_HEADER_START@
- *
- * The contents of this file constitute Original Code as defined in and
- * are subject to the Apple Public Source License Version 1.1 (the
- * "License"). You may not use this file except in compliance with the
- * License. Please obtain a copy of the License at
- * http://www.apple.com/publicsource and read it before using this file.
- *
- * This Original Code and all software distributed under the License are
- * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
+ *
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
+ *
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
- * License for the specific language governing rights and limitations
- * under the License.
- *
- * @APPLE_LICENSE_HEADER_END@
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
+ *
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_COPYRIGHT@
- *
+ *
*/
-#ifndef I386_CPU_DATA
+#ifndef I386_CPU_DATA
#define I386_CPU_DATA
-#include <cpus.h>
#include <mach_assert.h>
-
-#if defined(__GNUC__)
+#include <machine/atomic.h>
#include <kern/assert.h>
#include <kern/kern_types.h>
+#include <kern/mpqueue.h>
+#include <kern/queue.h>
+#include <kern/processor.h>
+#include <kern/pms.h>
+#include <pexpert/pexpert.h>
+#include <mach/i386/thread_status.h>
+#include <mach/i386/vm_param.h>
+#include <i386/locks.h>
+#include <i386/rtclock_protos.h>
+#include <i386/pmCPU.h>
+#include <i386/cpu_topology.h>
+#include <i386/seg.h>
+#include <i386/mp.h>
+
+#if CONFIG_VMX
+#include <i386/vmx/vmx_cpu.h>
+#endif
+
+#if MONOTONIC
+#include <machine/monotonic.h>
+#endif /* MONOTONIC */
+
+#include <machine/pal_routines.h>
+
+/*
+ * Data structures referenced (anonymously) from per-cpu data:
+ */
+struct cpu_cons_buffer;
+struct cpu_desc_table;
+struct mca_state;
+struct prngContext;
+
+/*
+ * Data structures embedded in per-cpu data:
+ */
+typedef struct rtclock_timer {
+ mpqueue_head_t queue;
+ uint64_t deadline;
+ uint64_t when_set;
+ boolean_t has_expired;
+} rtclock_timer_t;
+
+typedef struct {
+ /* The 'u' suffixed fields store the double-mapped descriptor addresses */
+ struct x86_64_tss *cdi_ktssu;
+ struct x86_64_tss *cdi_ktssb;
+ x86_64_desc_register_t cdi_gdtu;
+ x86_64_desc_register_t cdi_gdtb;
+ x86_64_desc_register_t cdi_idtu;
+ x86_64_desc_register_t cdi_idtb;
+ struct real_descriptor *cdi_ldtu;
+ struct real_descriptor *cdi_ldtb;
+ vm_offset_t cdi_sstku;
+ vm_offset_t cdi_sstkb;
+} cpu_desc_index_t;
+
+typedef enum {
+ TASK_MAP_32BIT, /* 32-bit user, compatibility mode */
+ TASK_MAP_64BIT, /* 64-bit user thread, shared space */
+} task_map_t;
-#if 0
-#ifndef __OPTIMIZE__
-#define extern static
+
+/*
+ * This structure is used on entry into the (uber-)kernel on syscall from
+ * a 64-bit user. It contains the address of the machine state save area
+ * for the current thread and a temporary place to save the user's rsp
+ * before loading this address into rsp.
+ */
+typedef struct {
+ addr64_t cu_isf; /* thread->pcb->iss.isf */
+ uint64_t cu_tmp; /* temporary scratch */
+ addr64_t cu_user_gs_base;
+} cpu_uber_t;
+
+typedef uint16_t pcid_t;
+typedef uint8_t pcid_ref_t;
+
+#define CPU_RTIME_BINS (12)
+#define CPU_ITIME_BINS (CPU_RTIME_BINS)
+
+#define MAX_TRACE_BTFRAMES (16)
+typedef struct {
+ boolean_t pltype;
+ int plevel;
+ uint64_t plbt[MAX_TRACE_BTFRAMES];
+} plrecord_t;
+
+#if DEVELOPMENT || DEBUG
+typedef enum {
+ IOTRACE_PHYS_READ = 1,
+ IOTRACE_PHYS_WRITE,
+ IOTRACE_IO_READ,
+ IOTRACE_IO_WRITE,
+ IOTRACE_PORTIO_READ,
+ IOTRACE_PORTIO_WRITE
+} iotrace_type_e;
+
+typedef struct {
+ iotrace_type_e iotype;
+ int size;
+ uint64_t vaddr;
+ uint64_t paddr;
+ uint64_t val;
+ uint64_t start_time_abs;
+ uint64_t duration;
+ uint64_t backtrace[MAX_TRACE_BTFRAMES];
+} iotrace_entry_t;
+
+typedef struct {
+ int vector; /* Vector number of interrupt */
+ thread_t curthread; /* Current thread at the time of the interrupt */
+ uint64_t interrupted_pc;
+ int curpl; /* Current preemption level */
+ int curil; /* Current interrupt level */
+ uint64_t start_time_abs;
+ uint64_t duration;
+ uint64_t backtrace[MAX_TRACE_BTFRAMES];
+} traptrace_entry_t;
+
+#define DEFAULT_IOTRACE_ENTRIES_PER_CPU (64)
+#define IOTRACE_MAX_ENTRIES_PER_CPU (256)
+extern volatile int mmiotrace_enabled;
+extern int iotrace_generators;
+extern int iotrace_entries_per_cpu;
+extern int *iotrace_next;
+extern iotrace_entry_t **iotrace_ring;
+
+#define TRAPTRACE_INVALID_INDEX (~0U)
+#define DEFAULT_TRAPTRACE_ENTRIES_PER_CPU (16)
+#define TRAPTRACE_MAX_ENTRIES_PER_CPU (256)
+extern volatile int traptrace_enabled;
+extern int traptrace_generators;
+extern int traptrace_entries_per_cpu;
+extern int *traptrace_next;
+extern traptrace_entry_t **traptrace_ring;
+#endif /* DEVELOPMENT || DEBUG */
+
+/*
+ * Per-cpu data.
+ *
+ * Each processor has a per-cpu data area which is dereferenced through the
+ * current_cpu_datap() macro. For speed, the %gs segment is based here, and
+ * using this, inlines provides single-instruction access to frequently used
+ * members - such as get_cpu_number()/cpu_number(), and get_active_thread()/
+ * current_thread().
+ *
+ * Cpu data owned by another processor can be accessed using the
+ * cpu_datap(cpu_number) macro which uses the cpu_data_ptr[] array of per-cpu
+ * pointers.
+ */
+typedef struct {
+ pcid_t cpu_pcid_free_hint;
+#define PMAP_PCID_MAX_PCID (0x800)
+ pcid_ref_t cpu_pcid_refcounts[PMAP_PCID_MAX_PCID];
+ pmap_t cpu_pcid_last_pmap_dispatched[PMAP_PCID_MAX_PCID];
+} pcid_cdata_t;
+
+typedef struct cpu_data {
+ struct pal_cpu_data cpu_pal_data; /* PAL-specific data */
+#define cpu_pd cpu_pal_data /* convenience alias */
+ struct cpu_data *cpu_this; /* pointer to myself */
+ vm_offset_t cpu_pcpu_base;
+ thread_t cpu_active_thread;
+ thread_t cpu_nthread;
+ int cpu_number; /* Logical CPU */
+ void *cpu_int_state; /* interrupt state */
+ vm_offset_t cpu_active_stack; /* kernel stack base */
+ vm_offset_t cpu_kernel_stack; /* kernel stack top */
+ vm_offset_t cpu_int_stack_top;
+ volatile int cpu_signals; /* IPI events */
+ volatile int cpu_prior_signals; /* Last set of events,
+ * debugging
+ */
+ ast_t cpu_pending_ast;
+ /*
+ * Note if rearranging fields:
+ * We want cpu_preemption_level on a different
+ * cache line than cpu_active_thread
+ * for optimizing mtx_spin phase.
+ */
+ int cpu_interrupt_level;
+ volatile int cpu_preemption_level;
+ volatile int cpu_running;
+#if !MONOTONIC
+ boolean_t cpu_fixed_pmcs_enabled;
+#endif /* !MONOTONIC */
+ rtclock_timer_t rtclock_timer;
+ volatile addr64_t cpu_active_cr3 __attribute((aligned(64)));
+ union {
+ volatile uint32_t cpu_tlb_invalid;
+ struct {
+ volatile uint16_t cpu_tlb_invalid_local;
+ volatile uint16_t cpu_tlb_invalid_global;
+ };
+ };
+ uint64_t cpu_ip_desc[2];
+ volatile task_map_t cpu_task_map;
+ volatile addr64_t cpu_task_cr3;
+ addr64_t cpu_kernel_cr3;
+ volatile addr64_t cpu_ucr3;
+ volatile addr64_t cpu_shadowtask_cr3;
+ boolean_t cpu_pagezero_mapped;
+ cpu_uber_t cpu_uber;
+/* Double-mapped per-CPU exception stack address */
+ uintptr_t cd_estack;
+ int cpu_xstate;
+ int cpu_curtask_has_ldt;
+ int cpu_curthread_do_segchk;
+/* Address of shadowed, partially mirrored CPU data structures located
+ * in the double mapped PML4
+ */
+ void *cd_shadow;
+ union {
+ volatile uint32_t cpu_tlb_invalid_count;
+ struct {
+ volatile uint16_t cpu_tlb_invalid_local_count;
+ volatile uint16_t cpu_tlb_invalid_global_count;
+ };
+ };
+
+ uint16_t cpu_tlb_gen_counts_local[MAX_CPUS];
+ uint16_t cpu_tlb_gen_counts_global[MAX_CPUS];
+
+ struct processor *cpu_processor;
+ struct real_descriptor *cpu_ldtp;
+ struct cpu_desc_table *cpu_desc_tablep;
+ cpu_desc_index_t cpu_desc_index;
+ int cpu_ldt;
+
+#define HWINTCNT_SIZE 256
+ uint32_t cpu_hwIntCnt[HWINTCNT_SIZE]; /* Interrupt counts */
+ uint64_t cpu_hwIntpexits[HWINTCNT_SIZE];
+ uint64_t cpu_dr7; /* debug control register */
+ uint64_t cpu_int_event_time; /* intr entry/exit time */
+ pal_rtc_nanotime_t *cpu_nanotime; /* Nanotime info */
+#if KPC
+ /* double-buffered performance counter data */
+ uint64_t *cpu_kpc_buf[2];
+ /* PMC shadow and reload value buffers */
+ uint64_t *cpu_kpc_shadow;
+ uint64_t *cpu_kpc_reload;
+#endif
+#if MONOTONIC
+ struct mt_cpu cpu_monotonic;
+#endif /* MONOTONIC */
+ uint32_t cpu_pmap_pcid_enabled;
+ pcid_t cpu_active_pcid;
+ pcid_t cpu_last_pcid;
+ pcid_t cpu_kernel_pcid;
+ volatile pcid_ref_t *cpu_pmap_pcid_coherentp;
+ volatile pcid_ref_t *cpu_pmap_pcid_coherentp_kernel;
+ pcid_cdata_t *cpu_pcid_data;
+#ifdef PCID_STATS
+ uint64_t cpu_pmap_pcid_flushes;
+ uint64_t cpu_pmap_pcid_preserves;
+#endif
+ uint64_t cpu_aperf;
+ uint64_t cpu_mperf;
+ uint64_t cpu_c3res;
+ uint64_t cpu_c6res;
+ uint64_t cpu_c7res;
+ uint64_t cpu_itime_total;
+ uint64_t cpu_rtime_total;
+ uint64_t cpu_ixtime;
+ uint64_t cpu_idle_exits;
+ /*
+ * Note that the cacheline-copy mechanism uses the cpu_rtimes field in the shadow CPU
+ * structures to temporarily stash the code cacheline that includes the instruction
+ * pointer at the time of the fault (this field is otherwise unused in the shadow
+ * CPU structures).
+ */
+ uint64_t cpu_rtimes[CPU_RTIME_BINS];
+ uint64_t cpu_itimes[CPU_ITIME_BINS];
+#if !MONOTONIC
+ uint64_t cpu_cur_insns;
+ uint64_t cpu_cur_ucc;
+ uint64_t cpu_cur_urc;
+#endif /* !MONOTONIC */
+ uint64_t cpu_gpmcs[4];
+ uint64_t cpu_max_observed_int_latency;
+ int cpu_max_observed_int_latency_vector;
+ volatile boolean_t cpu_NMI_acknowledged;
+ uint64_t debugger_entry_time;
+ uint64_t debugger_ipi_time;
+ /* A separate nested interrupt stack flag, to account
+ * for non-nested interrupts arriving while on the interrupt stack
+ * Currently only occurs when AICPM enables interrupts on the
+ * interrupt stack during processor offlining.
+ */
+ uint32_t cpu_nested_istack;
+ uint32_t cpu_nested_istack_events;
+ x86_saved_state64_t *cpu_fatal_trap_state;
+ x86_saved_state64_t *cpu_post_fatal_trap_state;
+#if CONFIG_VMX
+ vmx_cpu_t cpu_vmx; /* wonderful world of virtualization */
#endif
+#if CONFIG_MCA
+ struct mca_state *cpu_mca_state; /* State at MC fault */
#endif
+ int cpu_type;
+ int cpu_subtype;
+ int cpu_threadtype;
+ boolean_t cpu_iflag;
+ boolean_t cpu_boot_complete;
+ int cpu_hibernate;
+#define MAX_PREEMPTION_RECORDS (8)
+#if DEVELOPMENT || DEBUG
+ int cpu_plri;
+ plrecord_t plrecords[MAX_PREEMPTION_RECORDS];
+#endif
+ void *cpu_console_buf;
+ struct x86_lcpu lcpu;
+ int cpu_phys_number; /* Physical CPU */
+ cpu_id_t cpu_id; /* Platform Expert */
+#if DEBUG
+ uint64_t cpu_entry_cr3;
+ uint64_t cpu_exit_cr3;
+ uint64_t cpu_pcid_last_cr3;
+#endif
+ boolean_t cpu_rendezvous_in_progress;
+#if CST_DEMOTION_DEBUG
+ /* Count of thread wakeups issued by this processor */
+ uint64_t cpu_wakeups_issued_total;
+#endif
+#if DEBUG || DEVELOPMENT
+ uint64_t tsc_sync_delta;
+#endif
+} cpu_data_t;
-extern cpu_data_t cpu_data[NCPUS];
+extern cpu_data_t *cpu_data_ptr[];
-#define get_cpu_data() &cpu_data[cpu_number()]
+/*
+ * __SEG_GS marks %gs-relative operations:
+ * https://clang.llvm.org/docs/LanguageExtensions.html#memory-references-to-specified-segments
+ * https://gcc.gnu.org/onlinedocs/gcc/Named-Address-Spaces.html#x86-Named-Address-Spaces
+ */
+#if defined(__SEG_GS)
+// __seg_gs exists
+#elif defined(__clang__)
+#define __seg_gs __attribute__((address_space(256)))
+#else
+#error use a compiler that supports address spaces or __seg_gs
+#endif
+
+#define CPU_DATA() ((cpu_data_t __seg_gs *)0UL)
/*
* Everyone within the osfmk part of the kernel can use the fast
* inline versions of these routines. Everyone outside, must call
* the real thing,
*/
-extern thread_t __inline__ current_thread_fast(void);
-extern thread_t __inline__ current_thread_fast(void)
-{
- register thread_t ct;
- register int idx = (int)&((cpu_data_t *)0)->active_thread;
- __asm__ volatile (" movl %%gs:(%1),%0" : "=r" (ct) : "r" (idx));
- return (ct);
+/*
+ * The "volatile" flavor of current_thread() is intended for use by
+ * scheduler code which may need to update the thread pointer in the
+ * course of a context switch. Any call to current_thread() made
+ * prior to the thread pointer update should be safe to optimize away
+ * as it should be consistent with that thread's state to the extent
+ * the compiler can reason about it. Likewise, the context switch
+ * path will eventually result in an arbitrary branch to the new
+ * thread's pc, about which the compiler won't be able to reason.
+ * Thus any compile-time optimization of current_thread() calls made
+ * within the new thread should be safely encapsulated in its
+ * register/stack state. The volatile form therefore exists to cover
+ * the window between the thread pointer update and the branch to
+ * the new pc.
+ */
+static inline thread_t
+get_active_thread_volatile(void)
+{
+ return CPU_DATA()->cpu_active_thread;
}
-#define current_thread() current_thread_fast()
+static inline __attribute__((const)) thread_t
+get_active_thread(void)
+{
+ return CPU_DATA()->cpu_active_thread;
+}
+
+#define current_thread_fast() get_active_thread()
+#define current_thread_volatile() get_active_thread_volatile()
+#define current_thread() current_thread_fast()
-extern int __inline__ get_preemption_level(void);
-extern void __inline__ disable_preemption(void);
-extern void __inline__ enable_preemption(void);
-extern void __inline__ enable_preemption_no_check(void);
-extern void __inline__ mp_disable_preemption(void);
-extern void __inline__ mp_enable_preemption(void);
-extern void __inline__ mp_enable_preemption_no_check(void);
-extern int __inline__ get_simple_lock_count(void);
-extern int __inline__ get_interrupt_level(void);
+#define cpu_mode_is64bit() TRUE
-extern int __inline__ get_preemption_level(void)
+static inline int
+get_preemption_level(void)
+{
+ return CPU_DATA()->cpu_preemption_level;
+}
+static inline int
+get_interrupt_level(void)
+{
+ return CPU_DATA()->cpu_interrupt_level;
+}
+static inline int
+get_cpu_number(void)
{
- register int idx = (int)&((cpu_data_t *)0)->preemption_level;
- register int pl;
+ return CPU_DATA()->cpu_number;
+}
+static inline vm_offset_t
+get_current_percpu_base(void)
+{
+ return CPU_DATA()->cpu_pcpu_base;
+}
+static inline int
+get_cpu_phys_number(void)
+{
+ return CPU_DATA()->cpu_phys_number;
+}
- __asm__ volatile (" movl %%gs:(%1),%0" : "=r" (pl) : "r" (idx));
+static inline cpu_data_t *
+current_cpu_datap(void)
+{
+ return CPU_DATA()->cpu_this;
+}
- return (pl);
+/*
+ * Facility to diagnose preemption-level imbalances, which are otherwise
+ * challenging to debug. On each operation that enables or disables preemption,
+ * we record a backtrace into a per-CPU ring buffer, along with the current
+ * preemption level and operation type. Thus, if an imbalance is observed,
+ * one can examine these per-CPU records to determine which codepath failed
+ * to re-enable preemption, enabled premption without a corresponding
+ * disablement etc. The backtracer determines which stack is currently active,
+ * and uses that to perform bounds checks on unterminated stacks.
+ * To enable, sysctl -w machdep.pltrace=1 on DEVELOPMENT or DEBUG kernels (DRK '15)
+ * The bounds check currently doesn't account for non-default thread stack sizes.
+ */
+#if DEVELOPMENT || DEBUG
+static inline void
+rbtrace_bt(uint64_t *rets, int maxframes, cpu_data_t *cdata, uint64_t frameptr, bool use_cursp)
+{
+ extern uint32_t low_intstack[]; /* bottom */
+ extern uint32_t low_eintstack[]; /* top */
+ extern char mp_slave_stack[];
+ int btidx = 0;
+
+ uint64_t kstackb, kstackt;
+
+ /* Obtain the 'current' program counter, initial backtrace
+ * element. This will also indicate if we were unable to
+ * trace further up the stack for some reason
+ */
+ if (use_cursp) {
+ __asm__ volatile ("leaq 1f(%%rip), %%rax; mov %%rax, %0\n1:"
+ : "=m" (rets[btidx++])
+ :
+ : "rax");
+ }
+
+ thread_t cplthread = cdata->cpu_active_thread;
+ if (cplthread) {
+ uintptr_t csp;
+ if (use_cursp == true) {
+ __asm__ __volatile__ ("movq %%rsp, %0": "=r" (csp):);
+ } else {
+ csp = frameptr;
+ }
+ /* Determine which stack we're on to populate stack bounds.
+ * We don't need to trace across stack boundaries for this
+ * routine.
+ */
+ kstackb = cdata->cpu_active_stack;
+ kstackt = kstackb + KERNEL_STACK_SIZE;
+ if (csp < kstackb || csp > kstackt) {
+ kstackt = cdata->cpu_kernel_stack;
+ kstackb = kstackt - KERNEL_STACK_SIZE;
+ if (csp < kstackb || csp > kstackt) {
+ kstackt = cdata->cpu_int_stack_top;
+ kstackb = kstackt - INTSTACK_SIZE;
+ if (csp < kstackb || csp > kstackt) {
+ kstackt = (uintptr_t)low_eintstack;
+ kstackb = kstackt - INTSTACK_SIZE;
+ if (csp < kstackb || csp > kstackt) {
+ kstackb = (uintptr_t) mp_slave_stack;
+ kstackt = kstackb + PAGE_SIZE;
+ } else {
+ kstackb = 0;
+ kstackt = 0;
+ }
+ }
+ }
+ }
+
+ if (__probable(kstackb && kstackt)) {
+ uint64_t *cfp = (uint64_t *) frameptr;
+ int rbbtf;
+
+ for (rbbtf = btidx; rbbtf < maxframes; rbbtf++) {
+ if (((uint64_t)cfp == 0) || (((uint64_t)cfp < kstackb) || ((uint64_t)cfp > kstackt))) {
+ rets[rbbtf] = 0;
+ continue;
+ }
+ rets[rbbtf] = *(cfp + 1);
+ cfp = (uint64_t *) (*cfp);
+ }
+ }
+ }
}
-extern void __inline__ disable_preemption(void)
+__attribute__((noinline))
+static inline void
+pltrace_internal(boolean_t enable)
{
-#if MACH_ASSERT
- extern void _disable_preemption(void);
+ cpu_data_t *cdata = current_cpu_datap();
+ int cpli = cdata->cpu_preemption_level;
+ int cplrecord = cdata->cpu_plri;
+ uint64_t *plbts;
+
+ assert(cpli >= 0);
+
+ cdata->plrecords[cplrecord].pltype = enable;
+ cdata->plrecords[cplrecord].plevel = cpli;
+
+ plbts = &cdata->plrecords[cplrecord].plbt[0];
- _disable_preemption();
-#else /* MACH_ASSERT */
- register int idx = (int)&((cpu_data_t *)0)->preemption_level;
+ cplrecord++;
- __asm__ volatile (" incl %%gs:(%0)" : : "r" (idx));
-#endif /* MACH_ASSERT */
+ if (cplrecord >= MAX_PREEMPTION_RECORDS) {
+ cplrecord = 0;
+ }
+
+ cdata->cpu_plri = cplrecord;
+
+ rbtrace_bt(plbts, MAX_TRACE_BTFRAMES - 1, cdata, (uint64_t)__builtin_frame_address(0), false);
}
-extern void __inline__ enable_preemption(void)
+extern int plctrace_enabled;
+
+static inline void
+iotrace(iotrace_type_e type, uint64_t vaddr, uint64_t paddr, int size, uint64_t val,
+ uint64_t sabs, uint64_t duration)
{
-#if MACH_ASSERT
- extern void _enable_preemption(void);
+ cpu_data_t *cdata;
+ int cpu_num, nextidx;
+ iotrace_entry_t *cur_iotrace_ring;
+
+ if (__improbable(mmiotrace_enabled == 0 || iotrace_generators == 0)) {
+ return;
+ }
+
+ cdata = current_cpu_datap();
+ cpu_num = cdata->cpu_number;
+ nextidx = iotrace_next[cpu_num];
+ cur_iotrace_ring = iotrace_ring[cpu_num];
+
+ cur_iotrace_ring[nextidx].iotype = type;
+ cur_iotrace_ring[nextidx].vaddr = vaddr;
+ cur_iotrace_ring[nextidx].paddr = paddr;
+ cur_iotrace_ring[nextidx].size = size;
+ cur_iotrace_ring[nextidx].val = val;
+ cur_iotrace_ring[nextidx].start_time_abs = sabs;
+ cur_iotrace_ring[nextidx].duration = duration;
+
+ iotrace_next[cpu_num] = ((nextidx + 1) >= iotrace_entries_per_cpu) ? 0 : (nextidx + 1);
+
+ rbtrace_bt(&cur_iotrace_ring[nextidx].backtrace[0],
+ MAX_TRACE_BTFRAMES - 1, cdata, (uint64_t)__builtin_frame_address(0), true);
+}
- assert(get_preemption_level() > 0);
- _enable_preemption();
-#else /* MACH_ASSERT */
- extern void kernel_preempt_check (void);
- register int idx = (int)&((cpu_data_t *)0)->preemption_level;
- register void (*kpc)(void)= kernel_preempt_check;
+static inline uint32_t
+traptrace_start(int vecnum, uint64_t ipc, uint64_t sabs, uint64_t frameptr)
+{
+ cpu_data_t *cdata;
+ unsigned int cpu_num, nextidx;
+ traptrace_entry_t *cur_traptrace_ring;
- __asm__ volatile ("decl %%gs:(%0); jne 1f; \
- call %1; 1:"
- : /* no outputs */
- : "r" (idx), "r" (kpc)
- : "%eax", "%ecx", "%edx", "cc", "memory");
-#endif /* MACH_ASSERT */
+ if (__improbable(traptrace_enabled == 0 || traptrace_generators == 0)) {
+ return TRAPTRACE_INVALID_INDEX;
+ }
+
+ assert(ml_get_interrupts_enabled() == FALSE);
+ cdata = current_cpu_datap();
+ cpu_num = (unsigned int)cdata->cpu_number;
+ nextidx = (unsigned int)traptrace_next[cpu_num];
+ /* prevent nested interrupts from clobbering this record */
+ traptrace_next[cpu_num] = (int)(((nextidx + 1) >= (unsigned int)traptrace_entries_per_cpu) ? 0 : (nextidx + 1));
+
+ cur_traptrace_ring = traptrace_ring[cpu_num];
+
+ cur_traptrace_ring[nextidx].vector = vecnum;
+ cur_traptrace_ring[nextidx].curthread = current_thread();
+ cur_traptrace_ring[nextidx].interrupted_pc = ipc;
+ cur_traptrace_ring[nextidx].curpl = cdata->cpu_preemption_level;
+ cur_traptrace_ring[nextidx].curil = cdata->cpu_interrupt_level;
+ cur_traptrace_ring[nextidx].start_time_abs = sabs;
+ cur_traptrace_ring[nextidx].duration = ~0ULL;
+
+ rbtrace_bt(&cur_traptrace_ring[nextidx].backtrace[0],
+ MAX_TRACE_BTFRAMES - 1, cdata, frameptr, false);
+
+ assert(nextidx <= 0xFFFF);
+
+ return (uint32_t)((cpu_num << 16) | nextidx);
}
-extern void __inline__ enable_preemption_no_check(void)
+static inline void
+traptrace_end(uint32_t index, uint64_t eabs)
{
-#if MACH_ASSERT
- extern void _enable_preemption_no_check(void);
+ if (index != TRAPTRACE_INVALID_INDEX) {
+ traptrace_entry_t *ttentp = &traptrace_ring[index >> 16][index & 0xFFFF];
- assert(get_preemption_level() > 0);
- _enable_preemption_no_check();
-#else /* MACH_ASSERT */
- register int idx = (int)&((cpu_data_t *)0)->preemption_level;
+ ttentp->duration = eabs - ttentp->start_time_abs;
+ }
+}
+
+#endif /* DEVELOPMENT || DEBUG */
- __asm__ volatile ("decl %%gs:(%0)"
- : /* no outputs */
- : "r" (idx)
- : "cc", "memory");
-#endif /* MACH_ASSERT */
+__header_always_inline void
+pltrace(boolean_t plenable)
+{
+#if DEVELOPMENT || DEBUG
+ if (__improbable(plctrace_enabled != 0)) {
+ pltrace_internal(plenable);
+ }
+#else
+ (void)plenable;
+#endif
}
-extern void __inline__ mp_disable_preemption(void)
+static inline void
+disable_preemption_internal(void)
{
-#if NCPUS > 1
- disable_preemption();
-#endif /* NCPUS > 1 */
+ assert(get_preemption_level() >= 0);
+
+ os_compiler_barrier();
+ CPU_DATA()->cpu_preemption_level++;
+ os_compiler_barrier();
+ pltrace(FALSE);
}
-extern void __inline__ mp_enable_preemption(void)
+static inline void
+enable_preemption_internal(void)
{
-#if NCPUS > 1
- enable_preemption();
-#endif /* NCPUS > 1 */
+ assert(get_preemption_level() > 0);
+ pltrace(TRUE);
+ os_compiler_barrier();
+ if (0 == --CPU_DATA()->cpu_preemption_level) {
+ kernel_preempt_check();
+ }
+ os_compiler_barrier();
}
-extern void __inline__ mp_enable_preemption_no_check(void)
+static inline void
+enable_preemption_no_check(void)
+{
+ assert(get_preemption_level() > 0);
+
+ pltrace(TRUE);
+ os_compiler_barrier();
+ CPU_DATA()->cpu_preemption_level--;
+ os_compiler_barrier();
+}
+
+static inline void
+_enable_preemption_no_check(void)
{
-#if NCPUS > 1
enable_preemption_no_check();
-#endif /* NCPUS > 1 */
}
-extern int __inline__ get_simple_lock_count(void)
+static inline void
+mp_disable_preemption(void)
{
- register int idx = (int)&((cpu_data_t *)0)->simple_lock_count;
- register int pl;
+ disable_preemption_internal();
+}
- __asm__ volatile (" movl %%gs:(%1),%0" : "=r" (pl) : "r" (idx));
+static inline void
+_mp_disable_preemption(void)
+{
+ disable_preemption_internal();
+}
- return (pl);
+static inline void
+mp_enable_preemption(void)
+{
+ enable_preemption_internal();
}
-extern int __inline__ get_interrupt_level(void)
+static inline void
+_mp_enable_preemption(void)
{
- register int idx = (int)&((cpu_data_t *)0)->interrupt_level;
- register int pl;
+ enable_preemption_internal();
+}
- __asm__ volatile (" movl %%gs:(%1),%0" : "=r" (pl) : "r" (idx));
+static inline void
+mp_enable_preemption_no_check(void)
+{
+ enable_preemption_no_check();
+}
- return (pl);
+static inline void
+_mp_enable_preemption_no_check(void)
+{
+ enable_preemption_no_check();
}
-#if 0
-#ifndef __OPTIMIZE__
-#undef extern
-#endif
+#ifdef XNU_KERNEL_PRIVATE
+#define disable_preemption() disable_preemption_internal()
+#define enable_preemption() enable_preemption_internal()
+#define MACHINE_PREEMPTION_MACROS (1)
#endif
-#else /* !defined(__GNUC__) */
+static inline cpu_data_t *
+cpu_datap(int cpu)
+{
+ return cpu_data_ptr[cpu];
+}
+
+static inline int
+cpu_is_running(int cpu)
+{
+ return (cpu_datap(cpu) != NULL) && (cpu_datap(cpu)->cpu_running);
+}
+
+#ifdef MACH_KERNEL_PRIVATE
+static inline cpu_data_t *
+cpu_shadowp(int cpu)
+{
+ return cpu_data_ptr[cpu]->cd_shadow;
+}
-#endif /* defined(__GNUC__) */
+#endif
+extern cpu_data_t *cpu_data_alloc(boolean_t is_boot_cpu);
+extern void cpu_data_realloc(void);
-#endif /* I386_CPU_DATA */
+#endif /* I386_CPU_DATA */