/*
- * Copyright (c) 2000-2001 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
*
- * @APPLE_LICENSE_HEADER_START@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
- * The contents of this file constitute Original Code as defined in and
- * are subject to the Apple Public Source License Version 1.1 (the
- * "License"). You may not use this file except in compliance with the
- * License. Please obtain a copy of the License at
- * http://www.apple.com/publicsource and read it before using this file.
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
*
- * This Original Code and all software distributed under the License are
- * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
- * License for the specific language governing rights and limitations
- * under the License.
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
*
- * @APPLE_LICENSE_HEADER_END@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_COPYRIGHT@
* Virtual memory object module.
*/
-#ifdef MACH_BSD
-/* remove as part of compoenent support merge */
-extern int vnode_pager_workaround;
-#endif
-
+#include <debug.h>
#include <mach_pagemap.h>
#include <task_swapper.h>
#include <mach/memory_object_default.h>
#include <mach/memory_object_control_server.h>
#include <mach/vm_param.h>
+
+#include <ipc/ipc_types.h>
#include <ipc/ipc_port.h>
+
+#include <kern/kern_types.h>
#include <kern/assert.h>
#include <kern/lock.h>
#include <kern/queue.h>
#include <kern/host.h>
#include <kern/host_statistics.h>
#include <kern/processor.h>
+#include <kern/misc_protos.h>
+
#include <vm/memory_object.h>
#include <vm/vm_fault.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
-#include <kern/misc_protos.h>
-
-
+#include <vm/vm_protos.h>
+#include <vm/vm_purgeable_internal.h>
/*
* Virtual memory objects maintain the actual data
*/
/* Forward declarations for internal functions. */
-static void _vm_object_allocate(
- vm_object_size_t size,
- vm_object_t object);
-
static kern_return_t vm_object_terminate(
vm_object_t object);
static void vm_object_deactivate_all_pages(
vm_object_t object);
-static void vm_object_abort_activity(
- vm_object_t object);
-
static kern_return_t vm_object_copy_call(
vm_object_t src_object,
vm_object_offset_t src_offset,
* memory object (kernel_object) to avoid wasting data structures.
*/
static struct vm_object kernel_object_store;
-__private_extern__ vm_object_t kernel_object = &kernel_object_store;
+vm_object_t kernel_object;
+
/*
* The submap object is used as a placeholder for vm_map_submap
#define vm_object_hash(pager) \
((((unsigned)pager) >> VM_OBJECT_HASH_SHIFT) % VM_OBJECT_HASH_COUNT)
+void vm_object_hash_entry_free(
+ vm_object_hash_entry_t entry);
+
+static void vm_object_reap(vm_object_t object);
+static void vm_object_reap_async(vm_object_t object);
+static void vm_object_reaper_thread(void);
+static queue_head_t vm_object_reaper_queue; /* protected by vm_object_cache_lock() */
+unsigned int vm_object_reap_count = 0;
+unsigned int vm_object_reap_count_async = 0;
+
/*
* vm_object_hash_lookup looks up a pager in the hashtable
* and returns the corresponding entry, with optional removal.
vm_object_hash_entry_free(
vm_object_hash_entry_t entry)
{
- zfree(vm_object_hash_zone, (vm_offset_t)entry);
+ zfree(vm_object_hash_zone, entry);
}
/*
* Returns a new object with the given size.
*/
-static void
+__private_extern__ void
_vm_object_allocate(
vm_object_size_t size,
vm_object_t object)
*object = vm_object_template;
queue_init(&object->memq);
queue_init(&object->msr_q);
-#ifdef UBC_DEBUG
+#ifdef UPL_DEBUG
queue_init(&object->uplq);
-#endif /* UBC_DEBUG */
+#endif /* UPL_DEBUG */
vm_object_lock_init(object);
object->size = size;
}
return object;
}
+
+lck_grp_t vm_object_lck_grp;
+lck_grp_attr_t vm_object_lck_grp_attr;
+lck_attr_t vm_object_lck_attr;
+lck_attr_t kernel_object_lck_attr;
+
/*
* vm_object_bootstrap:
*
__private_extern__ void
vm_object_bootstrap(void)
{
- register i;
+ register int i;
vm_object_zone = zinit((vm_size_t) sizeof(struct vm_object),
- round_page(512*1024),
- round_page(12*1024),
+ round_page_32(512*1024),
+ round_page_32(12*1024),
"vm objects");
+ queue_init(&vm_object_reaper_queue);
queue_init(&vm_object_cached_list);
- mutex_init(&vm_object_cached_lock_data, ETAP_VM_OBJ_CACHE);
+ mutex_init(&vm_object_cached_lock_data, 0);
vm_object_hash_zone =
zinit((vm_size_t) sizeof (struct vm_object_hash_entry),
- round_page(512*1024),
- round_page(12*1024),
+ round_page_32(512*1024),
+ round_page_32(12*1024),
"vm object hash entries");
for (i = 0; i < VM_OBJECT_HASH_COUNT; i++)
queue_init(&vm_object_hashtable[i]);
+ vm_object_init_lck_grp();
+
/*
* Fill in a template object, for quick initialization
*/
/* memq; Lock; init after allocation */
+ vm_object_template.memq.prev = NULL;
+ vm_object_template.memq.next = NULL;
+#if 0
+ /*
+ * We can't call vm_object_lock_init() here because that will
+ * allocate some memory and VM is not fully initialized yet.
+ * The lock will be initialized for each allocate object in
+ * _vm_object_allocate(), so we don't need to initialize it in
+ * the vm_object_template.
+ */
+ vm_object_lock_init(&vm_object_template);
+#endif
vm_object_template.size = 0;
- vm_object_template.frozen_size = 0;
+ vm_object_template.memq_hint = VM_PAGE_NULL;
vm_object_template.ref_count = 1;
#if TASK_SWAPPER
vm_object_template.res_count = 1;
vm_object_template.copy = VM_OBJECT_NULL;
vm_object_template.shadow = VM_OBJECT_NULL;
vm_object_template.shadow_offset = (vm_object_offset_t) 0;
- vm_object_template.cow_hint = 0;
- vm_object_template.true_share = FALSE;
-
vm_object_template.pager = MEMORY_OBJECT_NULL;
vm_object_template.paging_offset = 0;
- vm_object_template.pager_request = PAGER_REQUEST_NULL;
- /* msr_q; init after allocation */
-
+ vm_object_template.pager_control = MEMORY_OBJECT_CONTROL_NULL;
vm_object_template.copy_strategy = MEMORY_OBJECT_COPY_SYMMETRIC;
- vm_object_template.absent_count = 0;
vm_object_template.paging_in_progress = 0;
/* Begin bitfields */
vm_object_template.private = FALSE;
vm_object_template.pageout = FALSE;
vm_object_template.alive = TRUE;
- vm_object_template.lock_in_progress = FALSE;
- vm_object_template.lock_restart = FALSE;
+ vm_object_template.purgable = VM_PURGABLE_DENY;
+ vm_object_template.shadowed = FALSE;
vm_object_template.silent_overwrite = FALSE;
vm_object_template.advisory_pageout = FALSE;
- vm_object_template.shadowed = FALSE;
+ vm_object_template.true_share = FALSE;
vm_object_template.terminating = FALSE;
+ vm_object_template.named = FALSE;
vm_object_template.shadow_severed = FALSE;
vm_object_template.phys_contiguous = FALSE;
vm_object_template.nophyscache = FALSE;
/* End bitfields */
- /* cache bitfields */
- vm_object_template.wimg_bits = VM_WIMG_DEFAULT;
-
- /* cached_list; init after allocation */
+ vm_object_template.cached_list.prev = NULL;
+ vm_object_template.cached_list.next = NULL;
+ vm_object_template.msr_q.prev = NULL;
+ vm_object_template.msr_q.next = NULL;
+
vm_object_template.last_alloc = (vm_object_offset_t) 0;
- vm_object_template.cluster_size = 0;
+ vm_object_template.sequential = (vm_object_offset_t) 0;
+ vm_object_template.pages_created = 0;
+ vm_object_template.pages_used = 0;
+
#if MACH_PAGEMAP
vm_object_template.existence_map = VM_EXTERNAL_NULL;
#endif /* MACH_PAGEMAP */
+ vm_object_template.cow_hint = ~(vm_offset_t)0;
#if MACH_ASSERT
vm_object_template.paging_object = VM_OBJECT_NULL;
#endif /* MACH_ASSERT */
+ /* cache bitfields */
+ vm_object_template.wimg_bits = VM_WIMG_DEFAULT;
+ vm_object_template.code_signed = FALSE;
+ vm_object_template.not_in_use = 0;
+#ifdef UPL_DEBUG
+ vm_object_template.uplq.prev = NULL;
+ vm_object_template.uplq.next = NULL;
+#endif /* UPL_DEBUG */
+#ifdef VM_PIP_DEBUG
+ bzero(&vm_object_template.pip_holders,
+ sizeof (vm_object_template.pip_holders));
+#endif /* VM_PIP_DEBUG */
+
+ vm_object_template.objq.next=NULL;
+ vm_object_template.objq.prev=NULL;
+
+
/*
* Initialize the "kernel object"
*/
/*
* Note that in the following size specifications, we need to add 1 because
- * VM_MAX_KERNEL_ADDRESS is a maximum address, not a size.
+ * VM_MAX_KERNEL_ADDRESS (vm_last_addr) is a maximum address, not a size.
*/
+
+#ifdef ppc
+ _vm_object_allocate((vm_last_addr - VM_MIN_KERNEL_ADDRESS) + 1,
+ kernel_object);
+#else
_vm_object_allocate((VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) + 1,
kernel_object);
+#endif
+ kernel_object->copy_strategy = MEMORY_OBJECT_COPY_NONE;
/*
* Initialize the "submap object". Make it as large as the
*/
vm_submap_object = &vm_submap_object_store;
+#ifdef ppc
+ _vm_object_allocate((vm_last_addr - VM_MIN_KERNEL_ADDRESS) + 1,
+ vm_submap_object);
+#else
_vm_object_allocate((VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) + 1,
vm_submap_object);
+#endif
+ vm_submap_object->copy_strategy = MEMORY_OBJECT_COPY_NONE;
+
/*
* Create an "extra" reference to this object so that we never
* try to deallocate it; zfree doesn't like to be called with
#endif /* MACH_PAGEMAP */
}
+void
+vm_object_reaper_init(void)
+{
+ kern_return_t kr;
+ thread_t thread;
+
+ kr = kernel_thread_start_priority(
+ (thread_continue_t) vm_object_reaper_thread,
+ NULL,
+ BASEPRI_PREEMPT - 1,
+ &thread);
+ if (kr != KERN_SUCCESS) {
+ panic("failed to launch vm_object_reaper_thread kr=0x%x", kr);
+ }
+ thread_deallocate(thread);
+}
+
__private_extern__ void
vm_object_init(void)
{
*/
}
-/* remove the typedef below when emergency work-around is taken out */
-typedef struct vnode_pager {
- memory_object_t pager;
- memory_object_t pager_handle; /* pager */
- memory_object_control_t control_handle; /* memory object's control handle */
- void *vnode_handle; /* vnode handle */
-} *vnode_pager_t;
+
+__private_extern__ void
+vm_object_init_lck_grp(void)
+{
+ /*
+ * initialze the vm_object lock world
+ */
+ lck_grp_attr_setdefault(&vm_object_lck_grp_attr);
+ lck_grp_init(&vm_object_lck_grp, "vm_object", &vm_object_lck_grp_attr);
+ lck_attr_setdefault(&vm_object_lck_attr);
+ lck_attr_setdefault(&kernel_object_lck_attr);
+ lck_attr_cleardebug(&kernel_object_lck_attr);
+}
+
#define MIGHT_NOT_CACHE_SHADOWS 1
#if MIGHT_NOT_CACHE_SHADOWS
*
* No object may be locked.
*/
+unsigned long vm_object_deallocate_shared_successes = 0;
+unsigned long vm_object_deallocate_shared_failures = 0;
+unsigned long vm_object_deallocate_shared_swap_failures = 0;
__private_extern__ void
vm_object_deallocate(
register vm_object_t object)
{
- boolean_t retry_cache_trim = FALSE;
- vm_object_t shadow;
+ boolean_t retry_cache_trim = FALSE;
+ vm_object_t shadow = VM_OBJECT_NULL;
+ uint32_t try_failed_count = 0;
// if(object)dbgLog(object, object->ref_count, object->can_persist, 3); /* (TEST/DEBUG) */
// else dbgLog(object, 0, 0, 3); /* (TEST/DEBUG) */
+ if (object == VM_OBJECT_NULL)
+ return;
+
+ if (object == kernel_object) {
+ vm_object_lock(kernel_object);
+ kernel_object->ref_count--;
+ if (kernel_object->ref_count == 0) {
+ panic("vm_object_deallocate: losing kernel_object\n");
+ }
+ vm_object_unlock(kernel_object);
+ return;
+ }
+
+ if (object->ref_count > 2 ||
+ (!object->named && object->ref_count > 1)) {
+ UInt32 original_ref_count;
+ volatile UInt32 *ref_count_p;
+ Boolean atomic_swap;
+
+ /*
+ * The object currently looks like it is not being
+ * kept alive solely by the reference we're about to release.
+ * Let's try and release our reference without taking
+ * all the locks we would need if we had to terminate the
+ * object (cache lock + exclusive object lock).
+ * Lock the object "shared" to make sure we don't race with
+ * anyone holding it "exclusive".
+ */
+ vm_object_lock_shared(object);
+ ref_count_p = (volatile UInt32 *) &object->ref_count;
+ original_ref_count = object->ref_count;
+ /*
+ * Test again as "ref_count" could have changed.
+ * "named" shouldn't change.
+ */
+ if (original_ref_count > 2 ||
+ (!object->named && original_ref_count > 1)) {
+ atomic_swap = OSCompareAndSwap(
+ original_ref_count,
+ original_ref_count - 1,
+ (UInt32 *) &object->ref_count);
+ if (atomic_swap == FALSE) {
+ vm_object_deallocate_shared_swap_failures++;
+ }
+
+ } else {
+ atomic_swap = FALSE;
+ }
+ vm_object_unlock(object);
+
+ if (atomic_swap) {
+ /* ref_count was updated atomically ! */
+ vm_object_deallocate_shared_successes++;
+ return;
+ }
+
+ /*
+ * Someone else updated the ref_count at the same
+ * time and we lost the race. Fall back to the usual
+ * slow but safe path...
+ */
+ vm_object_deallocate_shared_failures++;
+ }
while (object != VM_OBJECT_NULL) {
* the object; we must lock it before removing
* the object.
*/
+ for (;;) {
+ vm_object_cache_lock();
- vm_object_cache_lock();
- vm_object_lock(object);
+ /*
+ * if we try to take a regular lock here
+ * we risk deadlocking against someone
+ * holding a lock on this object while
+ * trying to vm_object_deallocate a different
+ * object
+ */
+ if (vm_object_lock_try(object))
+ break;
+ vm_object_cache_unlock();
+ try_failed_count++;
+ mutex_pause(try_failed_count); /* wait a bit */
+ }
assert(object->ref_count > 0);
/*
memory_object_unmap(pager);
- vm_object_cache_lock();
- vm_object_lock(object);
+ try_failed_count = 0;
+ for (;;) {
+ vm_object_cache_lock();
+
+ /*
+ * if we try to take a regular lock here
+ * we risk deadlocking against someone
+ * holding a lock on this object while
+ * trying to vm_object_deallocate a different
+ * object
+ */
+ if (vm_object_lock_try(object))
+ break;
+ vm_object_cache_unlock();
+ try_failed_count++;
+
+ mutex_pause(try_failed_count); /* wait a bit */
+ }
assert(object->ref_count > 0);
}
}
/* terminate again. */
if ((object->ref_count > 1) || object->terminating) {
+ vm_object_lock_assert_exclusive(object);
object->ref_count--;
vm_object_res_deallocate(object);
- vm_object_unlock(object);
vm_object_cache_unlock();
+
+ if (object->ref_count == 1 &&
+ object->shadow != VM_OBJECT_NULL) {
+ /*
+ * There's only one reference left on this
+ * VM object. We can't tell if it's a valid
+ * one (from a mapping for example) or if this
+ * object is just part of a possibly stale and
+ * useless shadow chain.
+ * We would like to try and collapse it into
+ * its parent, but we don't have any pointers
+ * back to this parent object.
+ * But we can try and collapse this object with
+ * its own shadows, in case these are useless
+ * too...
+ * We can't bypass this object though, since we
+ * don't know if this last reference on it is
+ * meaningful or not.
+ */
+ vm_object_collapse(object, 0, FALSE);
+ }
+
+ vm_object_unlock(object);
if (retry_cache_trim &&
((object = vm_object_cache_trim(TRUE)) !=
VM_OBJECT_NULL)) {
* Now it is safe to decrement reference count,
* and to return if reference count is > 0.
*/
+ vm_object_lock_assert_exclusive(object);
if (--object->ref_count > 0) {
vm_object_res_deallocate(object);
vm_object_unlock(object);
* This object is not cachable; terminate it.
*/
XPR(XPR_VM_OBJECT,
- "vm_o_deallocate: !cacheable 0x%X res %d paging_ops %d thread 0x%lX ref %d\n",
- (integer_t)object, object->resident_page_count,
- object->paging_in_progress,
- (natural_t)current_thread(),object->ref_count);
+ "vm_o_deallocate: !cacheable 0x%X res %d paging_ops %d thread 0x%p ref %d\n",
+ (integer_t)object, object->resident_page_count,
+ object->paging_in_progress,
+ (void *)current_thread(),object->ref_count);
VM_OBJ_RES_DECR(object); /* XXX ? */
/*
assert(object->pager_initialized);
assert(object->ref_count == 0);
+ vm_object_lock_assert_exclusive(object);
object->ref_count++;
/*
}
}
-boolean_t vm_object_terminate_remove_all = FALSE;
+#define VM_OBJ_TERM_STATS DEBUG
+#if VM_OBJ_TERM_STATS
+uint32_t vm_object_terminate_pages_freed = 0;
+uint32_t vm_object_terminate_pages_removed = 0;
+uint32_t vm_object_terminate_batches = 0;
+uint32_t vm_object_terminate_biggest_batch = 0;
+#endif /* VM_OBJ_TERM_STATS */
+
+#define V_O_T_MAX_BATCH 256
/*
* Routine: vm_object_terminate
vm_object_terminate(
register vm_object_t object)
{
- memory_object_t pager;
register vm_page_t p;
vm_object_t shadow_object;
+ vm_page_t local_free_q;
+ int loop_count;
+#if VM_OBJ_TERM_STATS
+ uint32_t local_free_count;
+ uint32_t pages_removed;
+#endif /* VM_OBJ_TERM_STATS */
+
+#if VM_OBJ_TERM_STATS
+#define VM_OBJ_TERM_FREELIST_DEBUG(_pages_removed, _local_free_count) \
+ MACRO_BEGIN \
+ if (_pages_removed) { \
+ hw_atomic_add(&vm_object_terminate_batches, 1); \
+ hw_atomic_add(&vm_object_terminate_pages_removed, \
+ _pages_removed); \
+ hw_atomic_add(&vm_object_terminate_pages_freed, \
+ _local_free_count); \
+ if (_local_free_count > \
+ vm_object_terminate_biggest_batch) { \
+ vm_object_terminate_biggest_batch = \
+ _local_free_count; \
+ } \
+ _local_free_count = 0; \
+ } \
+ MACRO_END
+#else /* VM_OBJ_TERM_STATS */
+#define VM_OBJ_TERM_FREELIST_DEBUG(_pages_removed, _local_free_count)
+#endif /* VM_OBJ_TERM_STATS */
+
+#define VM_OBJ_TERM_FREELIST(_pages_removed, _local_free_count, _local_free_q) \
+ MACRO_BEGIN \
+ VM_OBJ_TERM_FREELIST_DEBUG(_pages_removed, _local_free_count); \
+ if (_local_free_q) { \
+ vm_page_free_list(_local_free_q); \
+ _local_free_q = VM_PAGE_NULL; \
+ } \
+ MACRO_END
+
+
XPR(XPR_VM_OBJECT, "vm_object_terminate, object 0x%X ref %d\n",
(integer_t)object, object->ref_count, 0, 0, 0);
+ local_free_q = VM_PAGE_NULL;
+#if VM_OBJ_TERM_STATS
+ local_free_count = 0;
+ pages_removed = 0;
+#endif /* VM_OBJ_TERM_STATS */
+
if (!object->pageout && (!object->temporary || object->can_persist)
&& (object->pager != NULL || object->shadow_severed)) {
vm_object_cache_unlock();
+ loop_count = V_O_T_MAX_BATCH;
+ vm_page_lock_queues();
while (!queue_empty(&object->memq)) {
+ if (--loop_count == 0) {
+ /*
+ * Free the pages we've reclaimed so far and
+ * take a little break to avoid hogging
+ * the page queues lock too long.
+ */
+ VM_OBJ_TERM_FREELIST(pages_removed,
+ local_free_count,
+ local_free_q);
+ mutex_yield(&vm_page_queue_lock);
+ loop_count = V_O_T_MAX_BATCH;
+ }
/*
* Clear pager_trusted bit so that the pages get yanked
* out of the object instead of cleaned in place. This
if (p->busy || p->cleaning) {
if(p->cleaning || p->absent) {
+ /* free the pages reclaimed so far */
+ VM_OBJ_TERM_FREELIST(pages_removed,
+ local_free_count,
+ local_free_q);
+ vm_page_unlock_queues();
vm_object_paging_wait(object, THREAD_UNINT);
+ vm_page_lock_queues();
continue;
} else {
- panic("vm_object_terminate.3 0x%x 0x%x", object, p);
+ panic("vm_object_terminate.3 %p %p", object, p);
}
}
- vm_page_lock_queues();
+ p->busy = TRUE;
VM_PAGE_QUEUES_REMOVE(p);
- vm_page_unlock_queues();
+#if VM_OBJ_TERM_STATS
+ pages_removed++;
+#endif /* VM_OBJ_TERM_STATS */
if (p->absent || p->private) {
goto free_page;
}
- if (p->fictitious)
- panic("vm_object_terminate.4 0x%x 0x%x", object, p);
+ if (p->fictitious) {
+ if (p->phys_page == vm_page_guard_addr) {
+ goto free_page;
+ }
+ panic("vm_object_terminate.4 %p %p", object, p);
+ }
- if (!p->dirty)
- p->dirty = pmap_is_modified(p->phys_addr);
+ if (!p->dirty && p->wpmapped)
+ p->dirty = pmap_is_modified(p->phys_page);
if ((p->dirty || p->precious) && !p->error && object->alive) {
- p->busy = TRUE;
- vm_object_paging_begin(object);
- /* protect the object from re-use/caching while it */
- /* is unlocked */
- vm_object_unlock(object);
+ /* free the pages reclaimed so far */
+ VM_OBJ_TERM_FREELIST(pages_removed,
+ local_free_count,
+ local_free_q);
+ vm_page_unlock_queues();
vm_pageout_cluster(p); /* flush page */
- vm_object_lock(object);
vm_object_paging_wait(object, THREAD_UNINT);
XPR(XPR_VM_OBJECT,
"vm_object_terminate restart, object 0x%X ref %d\n",
(integer_t)object, object->ref_count, 0, 0, 0);
+ vm_page_lock_queues();
} else {
free_page:
- VM_PAGE_FREE(p);
+ /*
+ * Add this page to our list of reclaimed pages,
+ * to be freed later.
+ */
+ vm_page_free_prepare(p);
+ p->pageq.next = (queue_entry_t) local_free_q;
+ local_free_q = p;
+#if VM_OBJ_TERM_STATS
+ local_free_count++;
+#endif /* VM_OBJ_TERM_STATS */
}
}
+
+ /*
+ * Free the remaining reclaimed pages.
+ */
+ VM_OBJ_TERM_FREELIST(pages_removed,
+ local_free_count,
+ local_free_q);
+ vm_page_unlock_queues();
vm_object_unlock(object);
vm_object_cache_lock();
vm_object_lock(object);
* Make sure the object isn't already being terminated
*/
if(object->terminating) {
- object->ref_count -= 1;
+ vm_object_lock_assert_exclusive(object);
+ object->ref_count--;
assert(object->ref_count > 0);
vm_object_cache_unlock();
vm_object_unlock(object);
* cleaning it?
*/
if(object->ref_count != 1) {
- object->ref_count -= 1;
+ vm_object_lock_assert_exclusive(object);
+ object->ref_count--;
assert(object->ref_count > 0);
vm_object_res_deallocate(object);
vm_object_cache_unlock();
/*
* Detach the object from its shadow if we are the shadow's
- * copy.
+ * copy. The reference we hold on the shadow must be dropped
+ * by our caller.
*/
if (((shadow_object = object->shadow) != VM_OBJECT_NULL) &&
!(object->pageout)) {
vm_object_lock(shadow_object);
- assert((shadow_object->copy == object) ||
- (shadow_object->copy == VM_OBJECT_NULL));
- shadow_object->copy = VM_OBJECT_NULL;
+ if (shadow_object->copy == object)
+ shadow_object->copy = VM_OBJECT_NULL;
vm_object_unlock(shadow_object);
}
- /*
- * The pageout daemon might be playing with our pages.
- * Now that the object is dead, it won't touch any more
- * pages, but some pages might already be on their way out.
- * Hence, we wait until the active paging activities have ceased
- * before we break the association with the pager itself.
- */
- while (object->paging_in_progress != 0) {
+ if (object->paging_in_progress != 0) {
+ /*
+ * There are still some paging_in_progress references
+ * on this object, meaning that there are some paging
+ * or other I/O operations in progress for this VM object.
+ * Such operations take some paging_in_progress references
+ * up front to ensure that the object doesn't go away, but
+ * they may also need to acquire a reference on the VM object,
+ * to map it in kernel space, for example. That means that
+ * they may end up releasing the last reference on the VM
+ * object, triggering its termination, while still holding
+ * paging_in_progress references. Waiting for these
+ * pending paging_in_progress references to go away here would
+ * deadlock.
+ *
+ * To avoid deadlocking, we'll let the vm_object_reaper_thread
+ * complete the VM object termination if it still holds
+ * paging_in_progress references at this point.
+ *
+ * No new paging_in_progress should appear now that the
+ * VM object is "terminating" and not "alive".
+ */
+ vm_object_reap_async(object);
vm_object_cache_unlock();
- vm_object_wait(object,
- VM_OBJECT_EVENT_PAGING_IN_PROGRESS,
- THREAD_UNINT);
- vm_object_cache_lock();
- vm_object_lock(object);
+ vm_object_unlock(object);
+ /*
+ * Return KERN_FAILURE to let the caller know that we
+ * haven't completed the termination and it can't drop this
+ * object's reference on its shadow object yet.
+ * The reaper thread will take care of that once it has
+ * completed this object's termination.
+ */
+ return KERN_FAILURE;
}
+ /* complete the VM object termination */
+ vm_object_reap(object);
+ object = VM_OBJECT_NULL;
+ /* cache lock and object lock were released by vm_object_reap() */
+
+ /*
+ * KERN_SUCCESS means that this object has been terminated
+ * and no longer needs its shadow object but still holds a
+ * reference on it.
+ * The caller is responsible for dropping that reference.
+ * We can't call vm_object_deallocate() here because that
+ * would create a recursion.
+ */
+ return KERN_SUCCESS;
+}
+
+/*
+ * vm_object_reap():
+ *
+ * Complete the termination of a VM object after it's been marked
+ * as "terminating" and "!alive" by vm_object_terminate().
+ *
+ * The VM object cache and the VM object must be locked by caller.
+ * The locks will be released on return and the VM object is no longer valid.
+ */
+void
+vm_object_reap(
+ vm_object_t object)
+{
+ memory_object_t pager;
+ vm_page_t p;
+ vm_page_t local_free_q;
+ int loop_count;
+#if VM_OBJ_TERM_STATS
+ uint32_t local_free_count;
+#endif /* VM_OBJ_TERM_STATS */
+
+#if DEBUG
+ mutex_assert(&vm_object_cached_lock_data, MA_OWNED);
+#endif /* DEBUG */
+ vm_object_lock_assert_exclusive(object);
+ assert(object->paging_in_progress == 0);
+
+ vm_object_reap_count++;
+
+ local_free_q = VM_PAGE_NULL;
+#if VM_OBJ_TERM_STATS
+ local_free_count = 0;
+#endif /* VM_OBJ_TERM_STATS */
+
pager = object->pager;
object->pager = MEMORY_OBJECT_NULL;
if (pager != MEMORY_OBJECT_NULL)
- memory_object_control_disable(object->pager_request);
+ memory_object_control_disable(object->pager_control);
vm_object_cache_unlock();
+ vm_object_lock_assert_exclusive(object);
object->ref_count--;
#if TASK_SWAPPER
assert(object->res_count == 0);
assert (object->ref_count == 0);
+ /* remove from purgeable queue if it's on */
+ if (object->objq.next || object->objq.prev) {
+ purgeable_q_t queue = vm_purgeable_object_remove(object);
+ assert(queue);
+
+ /* Must take page lock for this - using it to protect token queue */
+ vm_page_lock_queues();
+ vm_purgeable_token_delete_first(queue);
+
+ assert(queue->debug_count_objects>=0);
+ vm_page_unlock_queues();
+ }
+
/*
* Clean or free the pages, as appropriate.
* It is possible for us to find busy/absent pages,
* if some faults on this object were aborted.
*/
if (object->pageout) {
- assert(shadow_object != VM_OBJECT_NULL);
- assert(shadow_object == object->shadow);
+ assert(object->shadow != VM_OBJECT_NULL);
vm_pageout_object_terminate(object);
} else if ((object->temporary && !object->can_persist) ||
(pager == MEMORY_OBJECT_NULL)) {
+ loop_count = V_O_T_MAX_BATCH;
+ vm_page_lock_queues();
while (!queue_empty(&object->memq)) {
+ if (--loop_count == 0) {
+ /*
+ * Free the pages we reclaimed so far
+ * and take a little break to avoid
+ * hogging the page queue lock too long
+ */
+ VM_OBJ_TERM_FREELIST(local_free_count,
+ local_free_count,
+ local_free_q);
+ mutex_yield(&vm_page_queue_lock);
+ loop_count = V_O_T_MAX_BATCH;
+ }
p = (vm_page_t) queue_first(&object->memq);
- VM_PAGE_CHECK(p);
- VM_PAGE_FREE(p);
+ vm_page_free_prepare(p);
+
+ assert(p->pageq.next == NULL && p->pageq.prev == NULL);
+ p->pageq.next = (queue_entry_t) local_free_q;
+ local_free_q = p;
+#if VM_OBJ_TERM_STATS
+ local_free_count++;
+#endif /* VM_OBJ_TERM_STATS */
}
+ /*
+ * Free the remaining reclaimed pages
+ */
+ VM_OBJ_TERM_FREELIST(local_free_count,
+ local_free_count,
+ local_free_q);
+ vm_page_unlock_queues();
} else if (!queue_empty(&object->memq)) {
- panic("vm_object_terminate: queue just emptied isn't");
+ panic("vm_object_reap: queue just emptied isn't");
}
assert(object->paging_in_progress == 0);
vm_external_destroy(object->existence_map, object->size);
#endif /* MACH_PAGEMAP */
+ object->shadow = VM_OBJECT_NULL;
+
+ vm_object_lock_destroy(object);
/*
* Free the space for the object.
*/
- zfree(vm_object_zone, (vm_offset_t) object);
- return KERN_SUCCESS;
+ zfree(vm_object_zone, object);
+ object = VM_OBJECT_NULL;
+}
+
+void
+vm_object_reap_async(
+ vm_object_t object)
+{
+#if DEBUG
+ mutex_assert(&vm_object_cached_lock_data, MA_OWNED);
+#endif /* DEBUG */
+ vm_object_lock_assert_exclusive(object);
+
+ vm_object_reap_count_async++;
+
+ /* enqueue the VM object... */
+ queue_enter(&vm_object_reaper_queue, object,
+ vm_object_t, cached_list);
+ /* ... and wake up the reaper thread */
+ thread_wakeup((event_t) &vm_object_reaper_queue);
+}
+
+void
+vm_object_reaper_thread(void)
+{
+ vm_object_t object, shadow_object;
+
+ vm_object_cache_lock();
+
+ while (!queue_empty(&vm_object_reaper_queue)) {
+ queue_remove_first(&vm_object_reaper_queue,
+ object,
+ vm_object_t,
+ cached_list);
+ vm_object_lock(object);
+ assert(object->terminating);
+ assert(!object->alive);
+
+ /*
+ * The pageout daemon might be playing with our pages.
+ * Now that the object is dead, it won't touch any more
+ * pages, but some pages might already be on their way out.
+ * Hence, we wait until the active paging activities have
+ * ceased before we break the association with the pager
+ * itself.
+ */
+ while (object->paging_in_progress != 0) {
+ vm_object_cache_unlock();
+ vm_object_wait(object,
+ VM_OBJECT_EVENT_PAGING_IN_PROGRESS,
+ THREAD_UNINT);
+ vm_object_cache_lock();
+ vm_object_lock(object);
+ }
+
+ shadow_object =
+ object->pageout ? VM_OBJECT_NULL : object->shadow;
+
+ vm_object_reap(object);
+ /* cache is unlocked and object is no longer valid */
+ object = VM_OBJECT_NULL;
+
+ if (shadow_object != VM_OBJECT_NULL) {
+ /*
+ * Drop the reference "object" was holding on
+ * its shadow object.
+ */
+ vm_object_deallocate(shadow_object);
+ shadow_object = VM_OBJECT_NULL;
+ }
+
+ vm_object_cache_lock();
+ }
+
+ /* wait for more work... */
+ assert_wait((event_t) &vm_object_reaper_queue, THREAD_UNINT);
+ vm_object_cache_unlock();
+ thread_block((thread_continue_t) vm_object_reaper_thread);
+ /*NOTREACHED*/
}
/*
memory_object_deallocate(pager);
}
-/*
- * Routine: vm_object_abort_activity [internal use only]
- * Purpose:
- * Abort paging requests pending on this object.
- * In/out conditions:
- * The object is locked on entry and exit.
- */
-static void
-vm_object_abort_activity(
- vm_object_t object)
-{
- register
- vm_page_t p;
- vm_page_t next;
-
- XPR(XPR_VM_OBJECT, "vm_object_abort_activity, object 0x%X\n",
- (integer_t)object, 0, 0, 0, 0);
-
- /*
- * Abort all activity that would be waiting
- * for a result on this memory object.
- *
- * We could also choose to destroy all pages
- * that we have in memory for this object, but
- * we don't.
- */
-
- p = (vm_page_t) queue_first(&object->memq);
- while (!queue_end(&object->memq, (queue_entry_t) p)) {
- next = (vm_page_t) queue_next(&p->listq);
-
- /*
- * If it's being paged in, destroy it.
- * If an unlock has been requested, start it again.
- */
-
- if (p->busy && p->absent) {
- VM_PAGE_FREE(p);
- }
- else {
- if (p->unlock_request != VM_PROT_NONE)
- p->unlock_request = VM_PROT_NONE;
- PAGE_WAKEUP(p);
- }
-
- p = next;
- }
-
- /*
- * Wake up threads waiting for the memory object to
- * become ready.
- */
-
- object->pager_ready = TRUE;
- vm_object_wakeup(object, VM_OBJECT_EVENT_PAGER_READY);
-}
-
/*
* Routine: vm_object_destroy
* Purpose:
kern_return_t
vm_object_destroy(
vm_object_t object,
- kern_return_t reason)
+ __unused kern_return_t reason)
{
memory_object_t old_pager;
old_pager = object->pager;
object->pager = MEMORY_OBJECT_NULL;
if (old_pager != MEMORY_OBJECT_NULL)
- memory_object_control_disable(object->pager_request);
+ memory_object_control_disable(object->pager_control);
vm_object_cache_unlock();
/*
return(KERN_SUCCESS);
}
+#define VM_OBJ_DEACT_ALL_STATS DEBUG
+#if VM_OBJ_DEACT_ALL_STATS
+uint32_t vm_object_deactivate_all_pages_batches = 0;
+uint32_t vm_object_deactivate_all_pages_pages = 0;
+#endif /* VM_OBJ_DEACT_ALL_STATS */
/*
* vm_object_deactivate_pages
*
register vm_object_t object)
{
register vm_page_t p;
-
+ int loop_count;
+#if VM_OBJ_DEACT_ALL_STATS
+ int pages_count;
+#endif /* VM_OBJ_DEACT_ALL_STATS */
+#define V_O_D_A_P_MAX_BATCH 256
+
+ loop_count = V_O_D_A_P_MAX_BATCH;
+#if VM_OBJ_DEACT_ALL_STATS
+ pages_count = 0;
+#endif /* VM_OBJ_DEACT_ALL_STATS */
+ vm_page_lock_queues();
queue_iterate(&object->memq, p, vm_page_t, listq) {
- vm_page_lock_queues();
- if (!p->busy)
+ if (--loop_count == 0) {
+#if VM_OBJ_DEACT_ALL_STATS
+ hw_atomic_add(&vm_object_deactivate_all_pages_batches,
+ 1);
+ hw_atomic_add(&vm_object_deactivate_all_pages_pages,
+ pages_count);
+ pages_count = 0;
+#endif /* VM_OBJ_DEACT_ALL_STATS */
+ mutex_yield(&vm_page_queue_lock);
+ loop_count = V_O_D_A_P_MAX_BATCH;
+ }
+ if (!p->busy && !p->throttled) {
+#if VM_OBJ_DEACT_ALL_STATS
+ pages_count++;
+#endif /* VM_OBJ_DEACT_ALL_STATS */
vm_page_deactivate(p);
- vm_page_unlock_queues();
+ }
+ }
+#if VM_OBJ_DEACT_ALL_STATS
+ if (pages_count) {
+ hw_atomic_add(&vm_object_deactivate_all_pages_batches, 1);
+ hw_atomic_add(&vm_object_deactivate_all_pages_pages,
+ pages_count);
+ pages_count = 0;
}
+#endif /* VM_OBJ_DEACT_ALL_STATS */
+ vm_page_unlock_queues();
}
__private_extern__ void
if ((m->wire_count == 0) && (!m->private) && (!m->gobbled) && (!m->busy)) {
+ assert(!m->laundry);
+
m->reference = FALSE;
- pmap_clear_reference(m->phys_addr);
+ pmap_clear_reference(m->phys_page);
if ((kill_page) && (object->internal)) {
m->precious = FALSE;
m->dirty = FALSE;
- pmap_clear_modify(m->phys_addr);
+ pmap_clear_modify(m->phys_page);
+#if MACH_PAGEMAP
vm_external_state_clr(object->existence_map, offset);
+#endif /* MACH_PAGEMAP */
}
- VM_PAGE_QUEUES_REMOVE(m);
- if(m->zero_fill) {
- queue_enter_first(
+ if (!m->throttled) {
+ VM_PAGE_QUEUES_REMOVE(m);
+
+ assert(!m->laundry);
+ assert(m->object != kernel_object);
+ assert(m->pageq.next == NULL &&
+ m->pageq.prev == NULL);
+
+ if(m->zero_fill) {
+ queue_enter_first(
&vm_page_queue_zf,
m, vm_page_t, pageq);
- } else {
- queue_enter_first(
- &vm_page_queue_inactive,
- m, vm_page_t, pageq);
+ vm_zf_queue_count++;
+ } else {
+ queue_enter_first(
+ &vm_page_queue_inactive,
+ m, vm_page_t, pageq);
+ }
+
+ m->inactive = TRUE;
+ if (!m->fictitious) {
+ vm_page_inactive_count++;
+ token_new_pagecount++;
+ } else {
+ assert(m->phys_page == vm_page_fictitious_addr);
+ }
+
+ pages_moved++;
}
-
- m->inactive = TRUE;
- if (!m->fictitious)
- vm_page_inactive_count++;
-
- pages_moved++;
}
}
}
vm_object_pmap_protect(
register vm_object_t object,
register vm_object_offset_t offset,
- vm_size_t size,
+ vm_object_size_t size,
pmap_t pmap,
- vm_offset_t pmap_start,
+ vm_map_offset_t pmap_start,
vm_prot_t prot)
{
if (object == VM_OBJECT_NULL)
return;
- size = round_page_64(size);
- offset = trunc_page_64(offset);
+ size = vm_object_round_page(size);
+ offset = vm_object_trunc_page(offset);
vm_object_lock(object);
- assert(object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC);
+ if (object->phys_contiguous) {
+ if (pmap != NULL) {
+ vm_object_unlock(object);
+ pmap_protect(pmap, pmap_start, pmap_start + size, prot);
+ } else {
+ vm_object_offset_t phys_start, phys_end, phys_addr;
- while (TRUE) {
- if (object->resident_page_count > atop(size) / 2 &&
- pmap != PMAP_NULL) {
- vm_object_unlock(object);
- pmap_protect(pmap, pmap_start, pmap_start + size, prot);
- return;
- }
+ phys_start = object->shadow_offset + offset;
+ phys_end = phys_start + size;
+ assert(phys_start <= phys_end);
+ assert(phys_end <= object->shadow_offset + object->size);
+ vm_object_unlock(object);
+
+ for (phys_addr = phys_start;
+ phys_addr < phys_end;
+ phys_addr += PAGE_SIZE_64) {
+ pmap_page_protect(phys_addr >> 12, prot);
+ }
+ }
+ return;
+ }
+
+ assert(object->internal);
+
+ while (TRUE) {
+ if (ptoa_64(object->resident_page_count) > size/2 && pmap != PMAP_NULL) {
+ vm_object_unlock(object);
+ pmap_protect(pmap, pmap_start, pmap_start + size, prot);
+ return;
+ }
/* if we are doing large ranges with respect to resident */
/* page count then we should interate over pages otherwise */
/* inverse page look-up will be faster */
- if ((object->resident_page_count / 4) < atop(size)) {
+ if (ptoa_64(object->resident_page_count / 4) < size) {
vm_page_t p;
vm_object_offset_t end;
queue_iterate(&object->memq, p, vm_page_t, listq) {
if (!p->fictitious &&
(offset <= p->offset) && (p->offset < end)) {
+ vm_map_offset_t start;
- vm_offset_t start = pmap_start +
- (vm_offset_t)(p->offset - offset);
-
- pmap_protect(pmap, start, start + PAGE_SIZE, prot);
+ start = pmap_start + p->offset - offset;
+ pmap_protect(pmap, start, start + PAGE_SIZE_64, prot);
}
}
} else {
if (!p->fictitious &&
(offset <= p->offset) && (p->offset < end)) {
- pmap_page_protect(p->phys_addr,
- prot & ~p->page_lock);
+ pmap_page_protect(p->phys_page, prot);
}
}
}
if (pmap != PMAP_NULL) {
for(target_off = offset;
- target_off < end; target_off += PAGE_SIZE) {
- if(p = vm_page_lookup(object, target_off)) {
- vm_offset_t start = pmap_start +
+ target_off < end;
+ target_off += PAGE_SIZE) {
+ p = vm_page_lookup(object, target_off);
+ if (p != VM_PAGE_NULL) {
+ vm_offset_t start;
+ start = pmap_start +
(vm_offset_t)(p->offset - offset);
pmap_protect(pmap, start,
start + PAGE_SIZE, prot);
} else {
for(target_off = offset;
target_off < end; target_off += PAGE_SIZE) {
- if(p = vm_page_lookup(object, target_off)) {
- pmap_page_protect(p->phys_addr,
- prot & ~p->page_lock);
+ p = vm_page_lookup(object, target_off);
+ if (p != VM_PAGE_NULL) {
+ pmap_page_protect(p->phys_page, prot);
}
}
}
vm_object_t new_object;
vm_object_offset_t new_offset;
- vm_object_offset_t src_lo_offset = src_offset;
- vm_object_offset_t src_hi_offset = src_offset + size;
+ struct vm_object_fault_info fault_info;
XPR(XPR_VM_OBJECT, "v_o_c_slowly obj 0x%x off 0x%x size 0x%x\n",
src_object, src_offset, size, 0, 0);
* Prevent destruction of the source object while we copy.
*/
- assert(src_object->ref_count > 0);
- src_object->ref_count++;
- VM_OBJ_RES_INCR(src_object);
+ vm_object_reference_locked(src_object);
vm_object_unlock(src_object);
/*
assert(size == trunc_page_64(size)); /* Will the loop terminate? */
+ fault_info.interruptible = interruptible;
+ fault_info.behavior = VM_BEHAVIOR_SEQUENTIAL;
+ fault_info.user_tag = 0;
+ fault_info.lo_offset = src_offset;
+ fault_info.hi_offset = src_offset + size;
+ fault_info.no_cache = FALSE;
+
for ( ;
size != 0 ;
src_offset += PAGE_SIZE_64,
vm_page_t new_page;
vm_fault_return_t result;
+ vm_object_lock(new_object);
+
while ((new_page = vm_page_alloc(new_object, new_offset))
== VM_PAGE_NULL) {
+
+ vm_object_unlock(new_object);
+
if (!vm_page_wait(interruptible)) {
vm_object_deallocate(new_object);
+ vm_object_deallocate(src_object);
*_result_object = VM_OBJECT_NULL;
return(MACH_SEND_INTERRUPTED);
}
+ vm_object_lock(new_object);
}
+ vm_object_unlock(new_object);
do {
vm_prot_t prot = VM_PROT_READ;
vm_object_lock(src_object);
vm_object_paging_begin(src_object);
+ fault_info.cluster_size = size;
+
XPR(XPR_VM_FAULT,"vm_object_copy_slowly -> vm_fault_page",0,0,0,0,0);
result = vm_fault_page(src_object, src_offset,
- VM_PROT_READ, FALSE, interruptible,
- src_lo_offset, src_hi_offset,
- VM_BEHAVIOR_SEQUENTIAL,
+ VM_PROT_READ, FALSE,
&prot, &_result_page, &top_page,
(int *)0,
- &error_code, FALSE, FALSE, NULL, 0);
+ &error_code, FALSE, FALSE, &fault_info);
switch(result) {
case VM_FAULT_SUCCESS:
* Let go of both pages (make them
* not busy, perform wakeup, activate).
*/
-
- new_page->busy = FALSE;
+ vm_object_lock(new_object);
new_page->dirty = TRUE;
+ PAGE_WAKEUP_DONE(new_page);
+ vm_object_unlock(new_object);
+
vm_object_lock(result_page->object);
PAGE_WAKEUP_DONE(result_page);
- vm_page_lock_queues();
+ vm_page_lockspin_queues();
if (!result_page->active &&
- !result_page->inactive)
+ !result_page->inactive &&
+ !result_page->throttled)
vm_page_activate(result_page);
vm_page_activate(new_page);
vm_page_unlock_queues();
vm_page_lock_queues();
vm_page_free(new_page);
vm_page_unlock_queues();
+
vm_object_deallocate(new_object);
vm_object_deallocate(src_object);
*_result_object = VM_OBJECT_NULL;
/*
* Lose the extra reference, and return our object.
*/
-
vm_object_deallocate(src_object);
*_result_object = new_object;
return(KERN_SUCCESS);
__private_extern__ boolean_t
vm_object_copy_quickly(
vm_object_t *_object, /* INOUT */
- vm_object_offset_t offset, /* IN */
- vm_object_size_t size, /* IN */
+ __unused vm_object_offset_t offset, /* IN */
+ __unused vm_object_size_t size, /* IN */
boolean_t *_src_needs_copy, /* OUT */
boolean_t *_dst_needs_copy) /* OUT */
{
* Leave object/offset unchanged.
*/
- assert(object->ref_count > 0);
- object->ref_count++;
- vm_object_res_reference(object);
+ vm_object_reference_locked(object);
object->shadowed = TRUE;
vm_object_unlock(object);
kern_return_t kr;
vm_object_t copy;
boolean_t check_ready = FALSE;
+ uint32_t try_failed_count = 0;
/*
* If a copy is already in progress, wait and retry.
copy = src_object->copy;
if (!vm_object_lock_try(copy)) {
vm_object_unlock(src_object);
- mutex_pause(); /* wait a bit */
+
+ try_failed_count++;
+ mutex_pause(try_failed_count); /* wait a bit */
+
vm_object_lock(src_object);
goto Retry;
}
static int copy_delayed_max_collisions = 0;
static int copy_delayed_lock_contention = 0;
static int copy_delayed_protect_iterate = 0;
-static int copy_delayed_protect_lookup = 0;
-static int copy_delayed_protect_lookup_wait = 0;
/*
* Routine: vm_object_copy_delayed [internal]
* the asymmetric copy-on-write algorithm.
*
* In/out conditions:
- * The object must be unlocked on entry.
+ * The src_object must be locked on entry. It will be unlocked
+ * on exit - so the caller must also hold a reference to it.
*
* This routine will not block waiting for user-generated
* events. It is not interruptible.
vm_object_copy_delayed(
vm_object_t src_object,
vm_object_offset_t src_offset,
- vm_object_size_t size)
+ vm_object_size_t size,
+ boolean_t src_object_shared)
{
vm_object_t new_copy = VM_OBJECT_NULL;
vm_object_t old_copy;
vm_page_t p;
- vm_object_size_t copy_size;
+ vm_object_size_t copy_size = src_offset + size;
+
int collisions = 0;
/*
*/
Retry:
- vm_object_lock(src_object);
+ /*
+ * Wait for paging in progress.
+ */
+ if (!src_object->true_share && src_object->paging_in_progress) {
+ if (src_object_shared == TRUE) {
+ vm_object_unlock(src_object);
+
+ vm_object_lock(src_object);
+ src_object_shared = FALSE;
+ }
+ vm_object_paging_wait(src_object, THREAD_UNINT);
+ }
/*
* See whether we can reuse the result of a previous
* copy operation.
old_copy = src_object->copy;
if (old_copy != VM_OBJECT_NULL) {
+ int lock_granted;
+
/*
* Try to get the locks (out of order)
*/
- if (!vm_object_lock_try(old_copy)) {
+ if (src_object_shared == TRUE)
+ lock_granted = vm_object_lock_try_shared(old_copy);
+ else
+ lock_granted = vm_object_lock_try(old_copy);
+
+ if (!lock_granted) {
vm_object_unlock(src_object);
- mutex_pause();
- /* Heisenberg Rules */
- copy_delayed_lock_collisions++;
if (collisions++ == 0)
copy_delayed_lock_contention++;
+ mutex_pause(collisions);
+
+ /* Heisenberg Rules */
+ copy_delayed_lock_collisions++;
if (collisions > copy_delayed_max_collisions)
copy_delayed_max_collisions = collisions;
+ if (src_object_shared == TRUE)
+ vm_object_lock_shared(src_object);
+ else
+ vm_object_lock(src_object);
+
goto Retry;
}
* It has not been modified.
*
* Return another reference to
- * the existing copy-object.
+ * the existing copy-object if
+ * we can safely grow it (if
+ * needed).
*/
- assert(old_copy->ref_count > 0);
- old_copy->ref_count++;
-
- if (old_copy->size < src_offset+size)
- old_copy->size = src_offset+size;
-#if TASK_SWAPPER
- /*
- * We have to reproduce some of the code from
- * vm_object_res_reference because we've taken
- * the locks out of order here, and deadlock
- * would result if we simply called that function.
- */
- if (++old_copy->res_count == 1) {
- assert(old_copy->shadow == src_object);
- vm_object_res_reference(src_object);
+ if (old_copy->size < copy_size) {
+ if (src_object_shared == TRUE) {
+ vm_object_unlock(old_copy);
+ vm_object_unlock(src_object);
+
+ vm_object_lock(src_object);
+ src_object_shared = FALSE;
+ goto Retry;
+ }
+ /*
+ * We can't perform a delayed copy if any of the
+ * pages in the extended range are wired (because
+ * we can't safely take write permission away from
+ * wired pages). If the pages aren't wired, then
+ * go ahead and protect them.
+ */
+ copy_delayed_protect_iterate++;
+
+ queue_iterate(&src_object->memq, p, vm_page_t, listq) {
+ if (!p->fictitious &&
+ p->offset >= old_copy->size &&
+ p->offset < copy_size) {
+ if (p->wire_count > 0) {
+ vm_object_unlock(old_copy);
+ vm_object_unlock(src_object);
+
+ if (new_copy != VM_OBJECT_NULL) {
+ vm_object_unlock(new_copy);
+ vm_object_deallocate(new_copy);
+ }
+
+ return VM_OBJECT_NULL;
+ } else {
+ pmap_page_protect(p->phys_page,
+ (VM_PROT_ALL & ~VM_PROT_WRITE));
+ }
+ }
+ }
+ old_copy->size = copy_size;
}
-#endif /* TASK_SWAPPER */
-
+ if (src_object_shared == TRUE)
+ vm_object_reference_shared(old_copy);
+ else
+ vm_object_reference_locked(old_copy);
vm_object_unlock(old_copy);
vm_object_unlock(src_object);
vm_object_unlock(new_copy);
vm_object_deallocate(new_copy);
}
-
return(old_copy);
}
+
+
+
+ /*
+ * Adjust the size argument so that the newly-created
+ * copy object will be large enough to back either the
+ * old copy object or the new mapping.
+ */
+ if (old_copy->size > copy_size)
+ copy_size = old_copy->size;
+
if (new_copy == VM_OBJECT_NULL) {
vm_object_unlock(old_copy);
vm_object_unlock(src_object);
- new_copy = vm_object_allocate(src_offset + size);
+ new_copy = vm_object_allocate(copy_size);
+ vm_object_lock(src_object);
vm_object_lock(new_copy);
+
+ src_object_shared = FALSE;
goto Retry;
}
-
- /*
- * Adjust the size argument so that the newly-created
- * copy object will be large enough to back either the
- * new old copy object or the new mapping.
- */
- if (old_copy->size > src_offset+size)
- size = old_copy->size - src_offset;
+ new_copy->size = copy_size;
/*
* The copy-object is always made large enough to
assert((old_copy->shadow == src_object) &&
(old_copy->shadow_offset == (vm_object_offset_t) 0));
+ } else if (new_copy == VM_OBJECT_NULL) {
+ vm_object_unlock(src_object);
+ new_copy = vm_object_allocate(copy_size);
+ vm_object_lock(src_object);
+ vm_object_lock(new_copy);
+
+ src_object_shared = FALSE;
+ goto Retry;
+ }
+
+ /*
+ * We now have the src object locked, and the new copy object
+ * allocated and locked (and potentially the old copy locked).
+ * Before we go any further, make sure we can still perform
+ * a delayed copy, as the situation may have changed.
+ *
+ * Specifically, we can't perform a delayed copy if any of the
+ * pages in the range are wired (because we can't safely take
+ * write permission away from wired pages). If the pages aren't
+ * wired, then go ahead and protect them.
+ */
+ copy_delayed_protect_iterate++;
+
+ queue_iterate(&src_object->memq, p, vm_page_t, listq) {
+ if (!p->fictitious && p->offset < copy_size) {
+ if (p->wire_count > 0) {
+ if (old_copy)
+ vm_object_unlock(old_copy);
+ vm_object_unlock(src_object);
+ vm_object_unlock(new_copy);
+ vm_object_deallocate(new_copy);
+ return VM_OBJECT_NULL;
+ } else {
+ pmap_page_protect(p->phys_page,
+ (VM_PROT_ALL & ~VM_PROT_WRITE));
+ }
+ }
+ }
+ if (old_copy != VM_OBJECT_NULL) {
/*
* Make the old copy-object shadow the new one.
* It will receive no more pages from the original
* object.
*/
- src_object->ref_count--; /* remove ref. from old_copy */
+ /* remove ref. from old_copy */
+ vm_object_lock_assert_exclusive(src_object);
+ src_object->ref_count--;
assert(src_object->ref_count > 0);
+ vm_object_lock_assert_exclusive(old_copy);
old_copy->shadow = new_copy;
+ vm_object_lock_assert_exclusive(new_copy);
assert(new_copy->ref_count > 0);
new_copy->ref_count++; /* for old_copy->shadow ref. */
#endif
vm_object_unlock(old_copy); /* done with old_copy */
- } else if (new_copy == VM_OBJECT_NULL) {
- vm_object_unlock(src_object);
- new_copy = vm_object_allocate(src_offset + size);
- vm_object_lock(new_copy);
- goto Retry;
- }
-
- /*
- * Readjust the copy-object size if necessary.
- */
- copy_size = new_copy->size;
- if (copy_size < src_offset+size) {
- copy_size = src_offset+size;
- new_copy->size = copy_size;
}
/*
* Point the new copy at the existing object.
*/
-
+ vm_object_lock_assert_exclusive(new_copy);
new_copy->shadow = src_object;
new_copy->shadow_offset = 0;
new_copy->shadowed = TRUE; /* caller must set needs_copy */
- assert(src_object->ref_count > 0);
- src_object->ref_count++;
- VM_OBJ_RES_INCR(src_object);
+
+ vm_object_lock_assert_exclusive(src_object);
+ vm_object_reference_locked(src_object);
src_object->copy = new_copy;
+ vm_object_unlock(src_object);
vm_object_unlock(new_copy);
- /*
- * Mark all (current) pages of the existing object copy-on-write.
- * This object may have a shadow chain below it, but
- * those pages will already be marked copy-on-write.
- */
-
- vm_object_paging_wait(src_object, THREAD_UNINT);
- copy_delayed_protect_iterate++;
- queue_iterate(&src_object->memq, p, vm_page_t, listq) {
- if (!p->fictitious)
- pmap_page_protect(p->phys_addr,
- (VM_PROT_ALL & ~VM_PROT_WRITE &
- ~p->page_lock));
- }
- vm_object_unlock(src_object);
XPR(XPR_VM_OBJECT,
"vm_object_copy_delayed: used copy object %X for source %X\n",
(integer_t)new_copy, (integer_t)src_object, 0, 0, 0);
- return(new_copy);
+ return new_copy;
}
/*
{
boolean_t result;
boolean_t interruptible = THREAD_ABORTSAFE; /* XXX */
+ boolean_t object_lock_shared = FALSE;
memory_object_copy_strategy_t copy_strategy;
assert(src_object != VM_OBJECT_NULL);
- vm_object_lock(src_object);
+ copy_strategy = src_object->copy_strategy;
+
+ if (copy_strategy == MEMORY_OBJECT_COPY_DELAY) {
+ vm_object_lock_shared(src_object);
+ object_lock_shared = TRUE;
+ } else
+ vm_object_lock(src_object);
/*
* The copy strategy is only valid if the memory manager
while (!src_object->internal && !src_object->pager_ready) {
wait_result_t wait_result;
+ if (object_lock_shared == TRUE) {
+ vm_object_unlock(src_object);
+ vm_object_lock(src_object);
+ object_lock_shared = FALSE;
+ continue;
+ }
wait_result = vm_object_sleep( src_object,
VM_OBJECT_EVENT_PAGER_READY,
interruptible);
}
}
- copy_strategy = src_object->copy_strategy;
-
/*
* Use the appropriate copy strategy.
*/
switch (copy_strategy) {
+ case MEMORY_OBJECT_COPY_DELAY:
+ *dst_object = vm_object_copy_delayed(src_object,
+ src_offset, size, object_lock_shared);
+ if (*dst_object != VM_OBJECT_NULL) {
+ *dst_offset = src_offset;
+ *dst_needs_copy = TRUE;
+ result = KERN_SUCCESS;
+ break;
+ }
+ vm_object_lock(src_object);
+ /* fall thru when delayed copy not allowed */
+
case MEMORY_OBJECT_COPY_NONE:
result = vm_object_copy_slowly(src_object, src_offset, size,
interruptible, dst_object);
}
break;
- case MEMORY_OBJECT_COPY_DELAY:
- vm_object_unlock(src_object);
- *dst_object = vm_object_copy_delayed(src_object,
- src_offset, size);
- *dst_offset = src_offset;
- *dst_needs_copy = TRUE;
- result = KERN_SUCCESS;
- break;
-
case MEMORY_OBJECT_COPY_SYMMETRIC:
XPR(XPR_VM_OBJECT, "v_o_c_strategically obj 0x%x off 0x%x size 0x%x\n",(natural_t)src_object, src_offset, size, 0, 0);
vm_object_unlock(src_object);
register vm_object_t result;
source = *object;
+#if 0
+ /*
+ * XXX FBDP
+ * This assertion is valid but it gets triggered by Rosetta for example
+ * due to a combination of vm_remap() that changes a VM object's
+ * copy_strategy from SYMMETRIC to DELAY and vm_protect(VM_PROT_COPY)
+ * that then sets "needs_copy" on its map entry. This creates a
+ * mapping situation that VM should never see and doesn't know how to
+ * handle.
+ * It's not clear if this can create any real problem but we should
+ * look into fixing this, probably by having vm_protect(VM_PROT_COPY)
+ * do more than just set "needs_copy" to handle the copy-on-write...
+ * In the meantime, let's disable the assertion.
+ */
assert(source->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC);
+#endif
/*
* Determine if we really need a shadow.
* termination routines and vm_object_collapse.]
*/
-#if 0
-/*
- * Routine: vm_object_pager_dead
- *
- * Purpose:
- * A port is being destroy, and the IPC kobject code
- * can't tell if it represents a pager port or not.
- * So this function is called each time it sees a port
- * die.
- * THIS IS HORRIBLY INEFFICIENT. We should only call
- * this routine if we had requested a notification on
- * the port.
- */
-
-__private_extern__ void
-vm_object_pager_dead(
- ipc_port_t pager)
-{
- vm_object_t object;
- vm_object_hash_entry_t entry;
-
- /*
- * Perform essentially the same operations as in vm_object_lookup,
- * except that this time we look up based on the memory_object
- * port, not the control port.
- */
- vm_object_cache_lock();
- entry = vm_object_hash_lookup(pager, FALSE);
- if (entry == VM_OBJECT_HASH_ENTRY_NULL ||
- entry->object == VM_OBJECT_NULL) {
- vm_object_cache_unlock();
- return;
- }
-
- object = entry->object;
- entry->object = VM_OBJECT_NULL;
-
- vm_object_lock(object);
- if (object->ref_count == 0) {
- XPR(XPR_VM_OBJECT_CACHE,
- "vm_object_destroy: removing %x from cache, head (%x, %x)\n",
- (integer_t)object,
- (integer_t)vm_object_cached_list.next,
- (integer_t)vm_object_cached_list.prev, 0,0);
-
- queue_remove(&vm_object_cached_list, object,
- vm_object_t, cached_list);
- vm_object_cached_count--;
- }
- object->ref_count++;
- vm_object_res_reference(object);
-
- object->can_persist = FALSE;
-
- assert(object->pager == pager);
-
- /*
- * Remove the pager association.
- *
- * Note that the memory_object itself is dead, so
- * we don't bother with it.
- */
-
- object->pager = MEMORY_OBJECT_NULL;
-
- vm_object_unlock(object);
- vm_object_cache_unlock();
-
- vm_object_pager_wakeup(pager);
-
- /*
- * Release the pager reference. Note that there's no
- * point in trying the memory_object_terminate call
- * because the memory_object itself is dead. Also
- * release the memory_object_control reference, since
- * the pager didn't do that either.
- */
-
- memory_object_deallocate(pager);
- memory_object_control_deallocate(object->pager_request);
-
-
- /*
- * Restart pending page requests
- */
- vm_object_lock(object);
- vm_object_abort_activity(object);
- vm_object_unlock(object);
-
- /*
- * Lose the object reference.
- */
-
- vm_object_deallocate(object);
-}
-#endif
/*
* Routine: vm_object_enter
vm_object_t new_object;
boolean_t must_init;
vm_object_hash_entry_t entry, new_entry;
+ uint32_t try_failed_count = 0;
if (pager == MEMORY_OBJECT_NULL)
return(vm_object_allocate(size));
/*
* Look for an object associated with this port.
*/
-
-restart:
+Retry:
vm_object_cache_lock();
- for (;;) {
+ do {
entry = vm_object_hash_lookup(pager, FALSE);
- /*
- * If a previous object is being terminated,
- * we must wait for the termination message
- * to be queued.
- *
- * We set kobject to a non-null value to let the
- * terminator know that someone is waiting.
- * Among the possibilities is that the port
- * could die while we're waiting. Must restart
- * instead of continuing the loop.
- */
-
- if (entry != VM_OBJECT_HASH_ENTRY_NULL) {
- if (entry->object != VM_OBJECT_NULL)
- break;
-
- entry->waiting = TRUE;
- assert_wait((event_t) pager, THREAD_UNINT);
- vm_object_cache_unlock();
- thread_block((void (*)(void))0);
- goto restart;
- }
-
- /*
- * We must unlock to create a new object;
- * if we do so, we must try the lookup again.
- */
-
- if (new_object == VM_OBJECT_NULL) {
- vm_object_cache_unlock();
- assert(new_entry == VM_OBJECT_HASH_ENTRY_NULL);
- new_entry = vm_object_hash_entry_alloc(pager);
- new_object = vm_object_allocate(size);
- vm_object_cache_lock();
- } else {
- /*
- * Lookup failed twice, and we have something
- * to insert; set the object.
- */
-
- if (entry == VM_OBJECT_HASH_ENTRY_NULL) {
+ if (entry == VM_OBJECT_HASH_ENTRY_NULL) {
+ if (new_object == VM_OBJECT_NULL) {
+ /*
+ * We must unlock to create a new object;
+ * if we do so, we must try the lookup again.
+ */
+ vm_object_cache_unlock();
+ assert(new_entry == VM_OBJECT_HASH_ENTRY_NULL);
+ new_entry = vm_object_hash_entry_alloc(pager);
+ new_object = vm_object_allocate(size);
+ vm_object_cache_lock();
+ } else {
+ /*
+ * Lookup failed twice, and we have something
+ * to insert; set the object.
+ */
vm_object_hash_insert(new_entry);
entry = new_entry;
+ entry->object = new_object;
new_entry = VM_OBJECT_HASH_ENTRY_NULL;
+ new_object = VM_OBJECT_NULL;
+ must_init = TRUE;
}
-
- entry->object = new_object;
- new_object = VM_OBJECT_NULL;
- must_init = TRUE;
+ } else if (entry->object == VM_OBJECT_NULL) {
+ /*
+ * If a previous object is being terminated,
+ * we must wait for the termination message
+ * to be queued (and lookup the entry again).
+ */
+ entry->waiting = TRUE;
+ entry = VM_OBJECT_HASH_ENTRY_NULL;
+ assert_wait((event_t) pager, THREAD_UNINT);
+ vm_object_cache_unlock();
+ thread_block(THREAD_CONTINUE_NULL);
+ vm_object_cache_lock();
}
- }
+ } while (entry == VM_OBJECT_HASH_ENTRY_NULL);
object = entry->object;
assert(object != VM_OBJECT_NULL);
if (!must_init) {
- vm_object_lock(object);
- assert(object->pager_created);
+ if (!vm_object_lock_try(object)) {
+
+ vm_object_cache_unlock();
+
+ try_failed_count++;
+ mutex_pause(try_failed_count); /* wait a bit */
+
+ goto Retry;
+ }
assert(!internal || object->internal);
if (named) {
assert(!object->named);
vm_object_t, cached_list);
vm_object_cached_count--;
}
+ vm_object_lock_assert_exclusive(object);
object->ref_count++;
vm_object_res_reference(object);
vm_object_unlock(object);
- VM_STAT(hits++);
+ VM_STAT_INCR(hits);
}
assert(object->ref_count > 0);
- VM_STAT(lookups++);
+ VM_STAT_INCR(lookups);
vm_object_cache_unlock();
vm_object_hash_entry_free(new_entry);
if (must_init) {
- pager_request_t pager_request;
+ memory_object_control_t control;
/*
* Allocate request port.
*/
- pager_request = memory_object_control_allocate(object);
- assert (pager_request != PAGER_REQUEST_NULL);
+ control = memory_object_control_allocate(object);
+ assert (control != MEMORY_OBJECT_CONTROL_NULL);
vm_object_lock(object);
+ assert(object != kernel_object);
/*
* Copy the reference we were given.
/* copy strategy invalid until set by memory manager */
object->copy_strategy = MEMORY_OBJECT_COPY_INVALID;
}
- object->pager_request = pager_request;
+ object->pager_control = control;
object->pager_ready = FALSE;
vm_object_unlock(object);
*/
(void) memory_object_init(pager,
- object->pager_request,
+ object->pager_control,
PAGE_SIZE);
vm_object_lock(object);
XPR(XPR_VM_OBJECT, "vm_object_pager_create, object 0x%X\n",
(integer_t)object, 0,0,0,0);
+ assert(object != kernel_object);
+
if (memory_manager_default_check() != KERN_SUCCESS)
return;
*/
{
memory_object_default_t dmm;
- vm_size_t cluster_size;
/* acquire a reference for the default memory manager */
- dmm = memory_manager_default_reference(&cluster_size);
- assert(cluster_size >= PAGE_SIZE);
+ dmm = memory_manager_default_reference();
- object->cluster_size = cluster_size; /* XXX ??? */
assert(object->temporary);
/* create our new memory object */
vm_object_t object)
{
memory_object_t pager;
- pager_request_t pager_request;
if ((pager = object->pager) != MEMORY_OBJECT_NULL) {
vm_object_hash_entry_t entry;
static boolean_t vm_object_collapse_allowed = TRUE;
static boolean_t vm_object_bypass_allowed = TRUE;
+#if MACH_PAGEMAP
static int vm_external_discarded;
static int vm_external_collapsed;
+#endif
+
+unsigned long vm_object_collapse_encrypted = 0;
/*
* Routine: vm_object_do_collapse
new_offset = (p->offset - backing_offset);
assert(!p->busy || p->absent);
-
+
/*
* If the parent has a page here, or if
* this page falls outside the parent,
if (p->offset < backing_offset || new_offset >= size) {
VM_PAGE_FREE(p);
} else {
+ /*
+ * ENCRYPTED SWAP:
+ * The encryption key includes the "pager" and the
+ * "paging_offset". These will not change during the
+ * object collapse, so we can just move an encrypted
+ * page from one object to the other in this case.
+ * We can't decrypt the page here, since we can't drop
+ * the object lock.
+ */
+ if (p->encrypted) {
+ vm_object_collapse_encrypted++;
+ }
pp = vm_page_lookup(object, new_offset);
if (pp == VM_PAGE_NULL) {
* Move the backing object's page up.
*/
- vm_page_rename(p, object, new_offset);
+ vm_page_rename(p, object, new_offset, TRUE);
#if MACH_PAGEMAP
} else if (pp->absent) {
*/
VM_PAGE_FREE(pp);
- vm_page_rename(p, object, new_offset);
+ vm_page_rename(p, object, new_offset, TRUE);
#endif /* MACH_PAGEMAP */
} else {
assert(! pp->absent);
}
}
- assert(object->pager == MEMORY_OBJECT_NULL ||
- backing_object->pager == MEMORY_OBJECT_NULL);
+#if !MACH_PAGEMAP
+ assert((!object->pager_created && (object->pager == MEMORY_OBJECT_NULL))
+ || (!backing_object->pager_created
+ && (backing_object->pager == MEMORY_OBJECT_NULL)));
+#else
+ assert(!object->pager_created && object->pager == MEMORY_OBJECT_NULL);
+#endif /* !MACH_PAGEMAP */
if (backing_object->pager != MEMORY_OBJECT_NULL) {
vm_object_hash_entry_t entry;
* unused portion.
*/
+ assert(!object->paging_in_progress);
object->pager = backing_object->pager;
entry = vm_object_hash_lookup(object->pager, FALSE);
assert(entry != VM_OBJECT_HASH_ENTRY_NULL);
entry->object = object;
object->pager_created = backing_object->pager_created;
- object->pager_request = backing_object->pager_request;
+ object->pager_control = backing_object->pager_control;
object->pager_ready = backing_object->pager_ready;
object->pager_initialized = backing_object->pager_initialized;
- object->cluster_size = backing_object->cluster_size;
object->paging_offset =
backing_object->paging_offset + backing_offset;
- if (object->pager_request != PAGER_REQUEST_NULL) {
- memory_object_control_collapse(object->pager_request,
+ if (object->pager_control != MEMORY_OBJECT_CONTROL_NULL) {
+ memory_object_control_collapse(object->pager_control,
object);
}
}
vm_object_cache_unlock();
- object->paging_offset = backing_object->paging_offset + backing_offset;
-
#if MACH_PAGEMAP
/*
* If the shadow offset is 0, the use the existence map from
* moves from within backing_object to within object.
*/
+ assert(!object->phys_contiguous);
+ assert(!backing_object->phys_contiguous);
object->shadow = backing_object->shadow;
- object->shadow_offset += backing_object->shadow_offset;
- assert((object->shadow == VM_OBJECT_NULL) ||
- (object->shadow->copy == VM_OBJECT_NULL));
+ if (object->shadow) {
+ object->shadow_offset += backing_object->shadow_offset;
+ } else {
+ /* no shadow, therefore no shadow offset... */
+ object->shadow_offset = 0;
+ }
+ assert((object->shadow == VM_OBJECT_NULL) ||
+ (object->shadow->copy != backing_object));
/*
* Discard backing_object.
XPR(XPR_VM_OBJECT, "vm_object_collapse, collapsed 0x%X\n",
(integer_t)backing_object, 0,0,0,0);
- zfree(vm_object_zone, (vm_offset_t) backing_object);
+ vm_object_lock_destroy(backing_object);
+
+ zfree(vm_object_zone, backing_object);
object_collapses++;
}
* in the chain.
*/
+ vm_object_lock_assert_exclusive(backing_object);
+
#if TASK_SWAPPER
/*
* Do object reference in-line to
*/
if (backing_object->shadow != VM_OBJECT_NULL) {
vm_object_lock(backing_object->shadow);
+ vm_object_lock_assert_exclusive(backing_object->shadow);
backing_object->shadow->ref_count++;
if (object->res_count != 0)
vm_object_res_reference(backing_object->shadow);
vm_object_reference(backing_object->shadow);
#endif /* TASK_SWAPPER */
+ assert(!object->phys_contiguous);
+ assert(!backing_object->phys_contiguous);
object->shadow = backing_object->shadow;
- object->shadow_offset += backing_object->shadow_offset;
+ if (object->shadow) {
+ object->shadow_offset += backing_object->shadow_offset;
+ } else {
+ /* no shadow, therefore no shadow offset... */
+ object->shadow_offset = 0;
+ }
/*
* Backing object might have had a copy pointer
#endif
*/
if (backing_object->ref_count > 1) {
+ vm_object_lock_assert_exclusive(backing_object);
backing_object->ref_count--;
#if TASK_SWAPPER
if (object->res_count != 0)
* Requires that the object be locked and the page queues be unlocked.
*
*/
+static unsigned long vm_object_collapse_calls = 0;
+static unsigned long vm_object_collapse_objects = 0;
+static unsigned long vm_object_collapse_do_collapse = 0;
+static unsigned long vm_object_collapse_do_bypass = 0;
+static unsigned long vm_object_collapse_delays = 0;
__private_extern__ void
vm_object_collapse(
- register vm_object_t object)
+ register vm_object_t object,
+ register vm_object_offset_t hint_offset,
+ boolean_t can_bypass)
{
register vm_object_t backing_object;
- register vm_object_offset_t backing_offset;
- register vm_object_size_t size;
- register vm_object_offset_t new_offset;
- register vm_page_t p;
+ register unsigned int rcount;
+ register unsigned int size;
+ vm_object_t original_object;
- vm_offset_t current_offset;
+ vm_object_collapse_calls++;
- if (! vm_object_collapse_allowed && ! vm_object_bypass_allowed) {
+ if (! vm_object_collapse_allowed &&
+ ! (can_bypass && vm_object_bypass_allowed)) {
return;
}
XPR(XPR_VM_OBJECT, "vm_object_collapse, obj 0x%X\n",
(integer_t)object, 0,0,0,0);
+ if (object == VM_OBJECT_NULL)
+ return;
+
+ original_object = object;
+
while (TRUE) {
+ vm_object_collapse_objects++;
/*
* Verify that the conditions are right for either
* collapse or bypass:
- *
- * The object exists and no pages in it are currently
- * being paged out, and
*/
- if (object == VM_OBJECT_NULL ||
- object->paging_in_progress != 0 ||
- object->absent_count != 0)
- return;
/*
* There is a backing object, and
*/
- if ((backing_object = object->shadow) == VM_OBJECT_NULL)
+ backing_object = object->shadow;
+ if (backing_object == VM_OBJECT_NULL) {
+ if (object != original_object) {
+ vm_object_unlock(object);
+ }
return;
+ }
+ /*
+ * No pages in the object are currently
+ * being paged out, and
+ */
+ if (object->paging_in_progress != 0) {
+ /* try and collapse the rest of the shadow chain */
+ vm_object_lock(backing_object);
+ if (object != original_object) {
+ vm_object_unlock(object);
+ }
+ object = backing_object;
+ continue;
+ }
+
vm_object_lock(backing_object);
/*
if (!backing_object->internal ||
backing_object->paging_in_progress != 0) {
- vm_object_unlock(backing_object);
- return;
+ /* try and collapse the rest of the shadow chain */
+ if (object != original_object) {
+ vm_object_unlock(object);
+ }
+ object = backing_object;
+ continue;
}
/*
* parent object.
*/
if (backing_object->shadow != VM_OBJECT_NULL &&
- backing_object->shadow->copy != VM_OBJECT_NULL) {
- vm_object_unlock(backing_object);
- return;
+ backing_object->shadow->copy == backing_object) {
+ /* try and collapse the rest of the shadow chain */
+ if (object != original_object) {
+ vm_object_unlock(object);
+ }
+ object = backing_object;
+ continue;
}
/*
* object, we may be able to collapse it into the
* parent.
*
- * The backing object must not have a pager
- * created for it, since collapsing an object
- * into a backing_object dumps new pages into
- * the backing_object that its pager doesn't
- * know about.
+ * If MACH_PAGEMAP is defined:
+ * The parent must not have a pager created for it,
+ * since collapsing a backing_object dumps new pages
+ * into the parent that its pager doesn't know about
+ * (and the collapse code can't merge the existence
+ * maps).
+ * Otherwise:
+ * As long as one of the objects is still not known
+ * to the pager, we can collapse them.
*/
-
if (backing_object->ref_count == 1 &&
- ! object->pager_created &&
- vm_object_collapse_allowed) {
+ (!object->pager_created
+#if !MACH_PAGEMAP
+ || !backing_object->pager_created
+#endif /*!MACH_PAGEMAP */
+ ) && vm_object_collapse_allowed) {
XPR(XPR_VM_OBJECT,
- "vm_object_collapse: %x to %x, pager %x, pager_request %x\n",
+ "vm_object_collapse: %x to %x, pager %x, pager_control %x\n",
(integer_t)backing_object, (integer_t)object,
(integer_t)backing_object->pager,
- (integer_t)backing_object->pager_request, 0);
+ (integer_t)backing_object->pager_control, 0);
/*
* We need the cache lock for collapsing,
*/
if (! vm_object_cache_lock_try()) {
+ if (object != original_object) {
+ vm_object_unlock(object);
+ }
vm_object_unlock(backing_object);
return;
}
*/
vm_object_do_collapse(object, backing_object);
+ vm_object_collapse_do_collapse++;
continue;
}
-
/*
* Collapsing the backing object was not possible
* or permitted, so let's try bypassing it.
*/
- if (! vm_object_bypass_allowed) {
- vm_object_unlock(backing_object);
- return;
+ if (! (can_bypass && vm_object_bypass_allowed)) {
+ /* try and collapse the rest of the shadow chain */
+ if (object != original_object) {
+ vm_object_unlock(object);
+ }
+ object = backing_object;
+ continue;
}
/*
- * If the backing object has a pager but no pagemap,
- * then we cannot bypass it, because we don't know
- * what pages it has.
+ * If the object doesn't have all its pages present,
+ * we have to make sure no pages in the backing object
+ * "show through" before bypassing it.
*/
- if (backing_object->pager_created
+ size = atop(object->size);
+ rcount = object->resident_page_count;
+ if (rcount != size) {
+ vm_object_offset_t offset;
+ vm_object_offset_t backing_offset;
+ unsigned int backing_rcount;
+ unsigned int lookups = 0;
+
+ /*
+ * If the backing object has a pager but no pagemap,
+ * then we cannot bypass it, because we don't know
+ * what pages it has.
+ */
+ if (backing_object->pager_created
#if MACH_PAGEMAP
- && (backing_object->existence_map == VM_EXTERNAL_NULL)
+ && (backing_object->existence_map == VM_EXTERNAL_NULL)
#endif /* MACH_PAGEMAP */
- ) {
- vm_object_unlock(backing_object);
- return;
- }
+ ) {
+ /* try and collapse the rest of the shadow chain */
+ if (object != original_object) {
+ vm_object_unlock(object);
+ }
+ object = backing_object;
+ continue;
+ }
- /*
- * If the object has a pager but no pagemap,
- * then we cannot bypass it, because we don't know
- * what pages it has.
- */
- if (object->pager_created
+ /*
+ * If the object has a pager but no pagemap,
+ * then we cannot bypass it, because we don't know
+ * what pages it has.
+ */
+ if (object->pager_created
#if MACH_PAGEMAP
- && (object->existence_map == VM_EXTERNAL_NULL)
+ && (object->existence_map == VM_EXTERNAL_NULL)
#endif /* MACH_PAGEMAP */
- ) {
- vm_object_unlock(backing_object);
- return;
- }
+ ) {
+ /* try and collapse the rest of the shadow chain */
+ if (object != original_object) {
+ vm_object_unlock(object);
+ }
+ object = backing_object;
+ continue;
+ }
+
+ /*
+ * If all of the pages in the backing object are
+ * shadowed by the parent object, the parent
+ * object no longer has to shadow the backing
+ * object; it can shadow the next one in the
+ * chain.
+ *
+ * If the backing object has existence info,
+ * we must check examine its existence info
+ * as well.
+ *
+ */
- backing_offset = object->shadow_offset;
- size = object->size;
+ backing_offset = object->shadow_offset;
+ backing_rcount = backing_object->resident_page_count;
- /*
- * If all of the pages in the backing object are
- * shadowed by the parent object, the parent
- * object no longer has to shadow the backing
- * object; it can shadow the next one in the
- * chain.
- *
- * If the backing object has existence info,
- * we must check examine its existence info
- * as well.
- *
- */
+#if MACH_PAGEMAP
+#define EXISTS_IN_OBJECT(obj, off, rc) \
+ (vm_external_state_get((obj)->existence_map, \
+ (vm_offset_t)(off)) == VM_EXTERNAL_STATE_EXISTS || \
+ ((rc) && ++lookups && vm_page_lookup((obj), (off)) != VM_PAGE_NULL && (rc)--))
+#else
+#define EXISTS_IN_OBJECT(obj, off, rc) \
+ (((rc) && ++lookups && vm_page_lookup((obj), (off)) != VM_PAGE_NULL && (rc)--))
+#endif /* MACH_PAGEMAP */
- if(object->cow_hint >= size)
- object->cow_hint = 0;
- current_offset = object->cow_hint;
- while(TRUE) {
- if (vm_page_lookup(object,
- (vm_object_offset_t)current_offset)
- != VM_PAGE_NULL) {
- current_offset+=PAGE_SIZE;
- } else if ((object->pager_created) &&
- (object->existence_map != NULL) &&
- (vm_external_state_get(object->existence_map,
- current_offset)
- != VM_EXTERNAL_STATE_ABSENT)) {
- current_offset+=PAGE_SIZE;
- } else if (vm_page_lookup(backing_object,
- (vm_object_offset_t)current_offset
- + backing_offset)!= VM_PAGE_NULL) {
- /* found a dependency */
- object->cow_hint = current_offset;
- vm_object_unlock(backing_object);
- return;
- } else if ((backing_object->pager_created) &&
- (backing_object->existence_map != NULL) &&
- (vm_external_state_get(
- backing_object->existence_map,
- current_offset + backing_offset)
- != VM_EXTERNAL_STATE_ABSENT)) {
- /* found a dependency */
- object->cow_hint = current_offset;
- vm_object_unlock(backing_object);
- return;
- } else {
- current_offset+=PAGE_SIZE;
+ /*
+ * Check the hint location first
+ * (since it is often the quickest way out of here).
+ */
+ if (object->cow_hint != ~(vm_offset_t)0)
+ hint_offset = (vm_object_offset_t)object->cow_hint;
+ else
+ hint_offset = (hint_offset > 8 * PAGE_SIZE_64) ?
+ (hint_offset - 8 * PAGE_SIZE_64) : 0;
+
+ if (EXISTS_IN_OBJECT(backing_object, hint_offset +
+ backing_offset, backing_rcount) &&
+ !EXISTS_IN_OBJECT(object, hint_offset, rcount)) {
+ /* dependency right at the hint */
+ object->cow_hint = (vm_offset_t)hint_offset;
+ /* try and collapse the rest of the shadow chain */
+ if (object != original_object) {
+ vm_object_unlock(object);
+ }
+ object = backing_object;
+ continue;
}
- if(current_offset >= size) {
- /* wrap at end of object */
- current_offset = 0;
+
+ /*
+ * If the object's window onto the backing_object
+ * is large compared to the number of resident
+ * pages in the backing object, it makes sense to
+ * walk the backing_object's resident pages first.
+ *
+ * NOTE: Pages may be in both the existence map and
+ * resident. So, we can't permanently decrement
+ * the rcount here because the second loop may
+ * find the same pages in the backing object'
+ * existence map that we found here and we would
+ * double-decrement the rcount. We also may or
+ * may not have found the
+ */
+ if (backing_rcount &&
+#if MACH_PAGEMAP
+ size > ((backing_object->existence_map) ?
+ backing_rcount : (backing_rcount >> 1))
+#else
+ size > (backing_rcount >> 1)
+#endif /* MACH_PAGEMAP */
+ ) {
+ unsigned int rc = rcount;
+ vm_page_t p;
+
+ backing_rcount = backing_object->resident_page_count;
+ p = (vm_page_t)queue_first(&backing_object->memq);
+ do {
+ /* Until we get more than one lookup lock */
+ if (lookups > 256) {
+ vm_object_collapse_delays++;
+ lookups = 0;
+ mutex_pause(0);
+ }
+
+ offset = (p->offset - backing_offset);
+ if (offset < object->size &&
+ offset != hint_offset &&
+ !EXISTS_IN_OBJECT(object, offset, rc)) {
+ /* found a dependency */
+ object->cow_hint = (vm_offset_t)offset;
+ break;
+ }
+ p = (vm_page_t) queue_next(&p->listq);
+
+ } while (--backing_rcount);
+ if (backing_rcount != 0 ) {
+ /* try and collapse the rest of the shadow chain */
+ if (object != original_object) {
+ vm_object_unlock(object);
+ }
+ object = backing_object;
+ continue;
+ }
}
- if(current_offset == object->cow_hint) {
- /* we are free of shadow influence */
- break;
+
+ /*
+ * Walk through the offsets looking for pages in the
+ * backing object that show through to the object.
+ */
+#if MACH_PAGEMAP
+ if (backing_rcount || backing_object->existence_map) {
+#else
+ if (backing_rcount) {
+#endif /* MACH_PAGEMAP */
+ offset = hint_offset;
+
+ while((offset =
+ (offset + PAGE_SIZE_64 < object->size) ?
+ (offset + PAGE_SIZE_64) : 0) != hint_offset) {
+
+ /* Until we get more than one lookup lock */
+ if (lookups > 256) {
+ vm_object_collapse_delays++;
+ lookups = 0;
+ mutex_pause(0);
+ }
+
+ if (EXISTS_IN_OBJECT(backing_object, offset +
+ backing_offset, backing_rcount) &&
+ !EXISTS_IN_OBJECT(object, offset, rcount)) {
+ /* found a dependency */
+ object->cow_hint = (vm_offset_t)offset;
+ break;
+ }
+ }
+ if (offset != hint_offset) {
+ /* try and collapse the rest of the shadow chain */
+ if (object != original_object) {
+ vm_object_unlock(object);
+ }
+ object = backing_object;
+ continue;
+ }
}
}
- /* reset the cow_hint for any objects deeper in the chain */
- object->cow_hint = 0;
-
+ /* reset the offset hint for any objects deeper in the chain */
+ object->cow_hint = (vm_offset_t)0;
/*
* All interesting pages in the backing object
*/
vm_object_do_bypass(object, backing_object);
+ vm_object_collapse_do_bypass++;
/*
* Try again with this object's new backing object.
continue;
}
+
+ if (object != original_object) {
+ vm_object_unlock(object);
+ }
}
/*
* It balances vm_object_lookup vs iteration.
*/
- if (atop(end - start) < (unsigned)object->resident_page_count/16) {
+ if (atop_64(end - start) < (unsigned)object->resident_page_count/16) {
vm_object_page_remove_lookup++;
for (; start < end; start += PAGE_SIZE_64) {
p = vm_page_lookup(object, start);
if (p != VM_PAGE_NULL) {
assert(!p->cleaning && !p->pageout);
- if (!p->fictitious)
- pmap_page_protect(p->phys_addr,
- VM_PROT_NONE);
+ if (!p->fictitious && p->pmapped)
+ pmap_disconnect(p->phys_page);
VM_PAGE_FREE(p);
}
}
next = (vm_page_t) queue_next(&p->listq);
if ((start <= p->offset) && (p->offset < end)) {
assert(!p->cleaning && !p->pageout);
- if (!p->fictitious)
- pmap_page_protect(p->phys_addr,
- VM_PROT_NONE);
+ if (!p->fictitious && p->pmapped)
+ pmap_disconnect(p->phys_page);
VM_PAGE_FREE(p);
}
p = next;
register vm_object_t prev_object,
vm_object_t next_object,
vm_object_offset_t prev_offset,
- vm_object_offset_t next_offset,
+ __unused vm_object_offset_t next_offset,
vm_object_size_t prev_size,
vm_object_size_t next_size)
{
/*
* Try to collapse the object first
*/
- vm_object_collapse(prev_object);
+ vm_object_collapse(prev_object, prev_offset, TRUE);
/*
* Can't coalesce if pages not mapped to
* . paged out
* . shadows another object
* . has a copy elsewhere
+ * . is purgeable
* . paging references (pages might be in page-list)
*/
(prev_object->shadow != VM_OBJECT_NULL) ||
(prev_object->copy != VM_OBJECT_NULL) ||
(prev_object->true_share != FALSE) ||
+ (prev_object->purgable != VM_PURGABLE_DENY) ||
(prev_object->paging_in_progress != 0)) {
vm_object_unlock(prev_object);
return(FALSE);
vm_page_t old_page;
vm_object_offset_t addr;
- num_pages = atop(size);
+ num_pages = atop_64(size);
for (i = 0; i < num_pages; i++, offset += PAGE_SIZE_64) {
*/
void
vm_external_print(
- vm_external_map_t map,
- vm_size_t size)
+ vm_external_map_t emap,
+ vm_size_t size)
{
- if (map == VM_EXTERNAL_NULL) {
+ if (emap == VM_EXTERNAL_NULL) {
printf("0 ");
} else {
vm_size_t existence_size = stob(size);
printf("{ size=%d, map=[", existence_size);
if (existence_size > 0) {
- print_bitstring(map[0]);
+ print_bitstring(emap[0]);
}
if (existence_size > 1) {
- print_bitstring(map[1]);
+ print_bitstring(emap[1]);
}
if (existence_size > 2) {
printf("...");
- print_bitstring(map[existence_size-1]);
+ print_bitstring(emap[existence_size-1]);
}
printf("] }\n");
}
vm_follow_object(
vm_object_t object)
{
- extern db_indent;
-
int count = 0;
int orig_db_indent = db_indent;
* vm_object_print: [ debug ]
*/
void
-vm_object_print(
- vm_object_t object,
- boolean_t have_addr,
- int arg_count,
- char *modif)
+vm_object_print(db_expr_t db_addr, __unused boolean_t have_addr,
+ __unused db_expr_t arg_count, __unused char *modif)
{
+ vm_object_t object;
register vm_page_t p;
- extern db_indent;
- char *s;
+ const char *s;
register int count;
+ object = (vm_object_t) (long) db_addr;
if (object == VM_OBJECT_NULL)
return;
db_indent += 2;
iprintf("size=0x%x", object->size);
- printf(", cluster=0x%x", object->cluster_size);
- printf(", frozen=0x%x", object->frozen_size);
+ printf(", memq_hint=%p", object->memq_hint);
printf(", ref_count=%d\n", object->ref_count);
iprintf("");
#if TASK_SWAPPER
if (object->shadow) {
register int i = 0;
vm_object_t shadow = object;
- while(shadow = shadow->shadow)
+ while((shadow = shadow->shadow))
i++;
printf(" (depth %d)", i);
}
iprintf("pager=0x%x", object->pager);
printf(", paging_offset=0x%x", object->paging_offset);
- printf(", pager_request=0x%x\n", object->pager_request);
+ printf(", pager_control=0x%x\n", object->pager_control);
iprintf("copy_strategy=%d[", object->copy_strategy);
switch (object->copy_strategy) {
printf("?");
}
printf("]");
- printf(", absent_count=%d\n", object->absent_count);
iprintf("all_wanted=0x%x<", object->all_wanted);
s = "";
printf("%spaging", s);
s = ",";
}
- if (vm_object_wanted(object, VM_OBJECT_EVENT_ABSENT_COUNT)) {
- printf("%sabsent", s);
- s = ",";
- }
if (vm_object_wanted(object, VM_OBJECT_EVENT_LOCK_IN_PROGRESS)) {
printf("%slock", s);
s = ",";
(object->pageout ? "" : "!"),
(object->internal ? "internal" : "external"),
(object->temporary ? "temporary" : "permanent"));
- iprintf("%salive, %slock_in_progress, %slock_restart, %sshadowed, %scached, %sprivate\n",
+ iprintf("%salive, %spurgeable, %spurgeable_volatile, %spurgeable_empty, %sshadowed, %scached, %sprivate\n",
(object->alive ? "" : "!"),
- (object->lock_in_progress ? "" : "!"),
- (object->lock_restart ? "" : "!"),
+ ((object->purgable != VM_PURGABLE_DENY) ? "" : "!"),
+ ((object->purgable == VM_PURGABLE_VOLATILE) ? "" : "!"),
+ ((object->purgable == VM_PURGABLE_EMPTY) ? "" : "!"),
(object->shadowed ? "" : "!"),
(vm_object_cached(object) ? "" : "!"),
(object->private ? "" : "!"));
}
count++;
- printf("(off=0x%X,page=0x%X)", p->offset, (integer_t) p);
+ printf("(off=0x%llX,page=%p)", p->offset, p);
p = (vm_page_t) queue_next(&p->listq);
}
if (count != 0) {
task_t task;
vm_map_t map;
vm_map_entry_t entry;
- processor_set_t pset = &default_pset;
boolean_t found = FALSE;
- queue_iterate(&pset->tasks, task, task_t, pset_tasks) {
+ queue_iterate(&tasks, task, task_t, tasks) {
map = task->map;
for (entry = vm_map_first_entry(map);
entry && entry != vm_map_to_entry(map);
kern_return_t
vm_object_populate_with_private(
- vm_object_t object,
+ vm_object_t object,
vm_object_offset_t offset,
- vm_offset_t phys_addr,
- vm_size_t size)
+ ppnum_t phys_page,
+ vm_size_t size)
{
- vm_offset_t base_addr;
+ ppnum_t base_page;
vm_object_offset_t base_offset;
if(!object->private)
return KERN_FAILURE;
- if((base_addr = trunc_page(phys_addr)) != phys_addr) {
- return KERN_FAILURE;
- }
-
+ base_page = phys_page;
vm_object_lock(object);
if(!object->phys_contiguous) {
vm_page_t m;
- if((base_offset = trunc_page(offset)) != offset) {
+ if((base_offset = trunc_page_64(offset)) != offset) {
vm_object_unlock(object);
return KERN_FAILURE;
}
m = vm_page_lookup(object, base_offset);
if(m != VM_PAGE_NULL) {
if(m->fictitious) {
- vm_page_lock_queues();
- m->fictitious = FALSE;
- m->private = TRUE;
- m->phys_addr = base_addr;
- if(!m->busy) {
- m->busy = TRUE;
+ if (m->phys_page !=
+ vm_page_guard_addr) {
+ vm_page_lockspin_queues();
+ m->fictitious = FALSE;
+ m->private = TRUE;
+ m->phys_page = base_page;
+ if(!m->busy) {
+ m->busy = TRUE;
+ }
+ if(!m->absent) {
+ m->absent = TRUE;
+ }
+ m->list_req_pending = TRUE;
+ vm_page_unlock_queues();
}
- if(!m->absent) {
- m->absent = TRUE;
- object->absent_count++;
+ } else if (m->phys_page != base_page) {
+ if (m->pmapped) {
+ /*
+ * pmap call to clear old mapping
+ */
+ pmap_disconnect(m->phys_page);
}
- m->list_req_pending = TRUE;
- vm_page_unlock_queues();
- } else if (m->phys_addr != base_addr) {
- /* pmap call to clear old mapping */
- pmap_page_protect(m->phys_addr,
- VM_PROT_NONE);
- m->phys_addr = base_addr;
+ m->phys_page = base_page;
}
+
+ /*
+ * ENCRYPTED SWAP:
+ * We're not pointing to the same
+ * physical page any longer and the
+ * contents of the new one are not
+ * supposed to be encrypted.
+ * XXX What happens to the original
+ * physical page. Is it lost ?
+ */
+ m->encrypted = FALSE;
+
} else {
while ((m = vm_page_grab_fictitious())
== VM_PAGE_NULL)
vm_page_more_fictitious();
- vm_page_lock_queues();
+ vm_page_lockspin_queues();
m->fictitious = FALSE;
m->private = TRUE;
- m->phys_addr = base_addr;
+ m->phys_page = base_page;
m->list_req_pending = TRUE;
m->absent = TRUE;
m->unusual = TRUE;
- object->absent_count++;
vm_page_unlock_queues();
vm_page_insert(m, object, base_offset);
}
- base_addr += PAGE_SIZE;
+ base_page++; /* Go to the next physical page */
base_offset += PAGE_SIZE;
size -= PAGE_SIZE;
}
/* shadows on contiguous memory are not allowed */
/* we therefore can use the offset field */
- object->shadow_offset = (vm_object_offset_t)phys_addr;
+ object->shadow_offset = (vm_object_offset_t)(phys_page << 12);
object->size = size;
}
vm_object_unlock(object);
* memory_object_free_from_cache:
*
* Walk the vm_object cache list, removing and freeing vm_objects
- * which are backed by the pager identified by the caller, (pager_id).
+ * which are backed by the pager identified by the caller, (pager_ops).
* Remove up to "count" objects, if there are that may available
* in the cache.
*
__private_extern__ kern_return_t
memory_object_free_from_cache(
- host_t host,
- int *pager_id,
+ __unused host_t host,
+ memory_object_pager_ops_t pager_ops,
int *count)
{
int object_released = 0;
- int i;
register vm_object_t object = VM_OBJECT_NULL;
vm_object_t shadow;
queue_iterate(&vm_object_cached_list, object,
vm_object_t, cached_list) {
- if (object->pager && (pager_id == object->pager->pager)) {
+ if (object->pager &&
+ (pager_ops == object->pager->mo_pager_ops)) {
vm_object_lock(object);
queue_remove(&vm_object_cached_list, object,
vm_object_t, cached_list);
assert(object->pager_initialized);
assert(object->ref_count == 0);
+ vm_object_lock_assert_exclusive(object);
object->ref_count++;
/*
VM_OBJECT_EVENT_PAGER_READY,
THREAD_UNINT);
}
- *control = object->pager_request;
+ *control = object->pager_control;
vm_object_unlock(object);
}
return (KERN_SUCCESS);
vm_object_cache_unlock();
object->named = TRUE;
+ vm_object_lock_assert_exclusive(object);
object->ref_count++;
vm_object_res_reference(object);
while (!object->pager_ready) {
}
return KERN_SUCCESS;
} else {
+ vm_object_lock_assert_exclusive(object);
object->ref_count--;
assert(object->ref_count > 0);
if(original_object)
return KERN_SUCCESS;
}
}
+ /*NOTREACHED*/
+ assert(0);
+ return KERN_FAILURE;
}
int flags,
vm_prot_t prot)
{
- vm_object_offset_t original_offset = offset;
- boolean_t should_flush=flags & MEMORY_OBJECT_DATA_FLUSH;
+ __unused boolean_t should_flush;
+
+ should_flush = flags & MEMORY_OBJECT_DATA_FLUSH;
XPR(XPR_MEMORY_OBJECT,
"vm_o_lock_request, obj 0x%X off 0x%X size 0x%X flags %X prot %X\n",
if ((prot & ~VM_PROT_ALL) != 0 && prot != VM_PROT_NO_CHANGE)
return (KERN_INVALID_ARGUMENT);
- size = round_page(size);
+ size = round_page_64(size);
/*
* Lock the object, and acquire a paging reference to
*/
vm_object_lock(object);
vm_object_paging_begin(object);
- offset -= object->paging_offset;
(void)vm_object_update(object,
- offset, size, should_return, flags, prot);
+ offset, size, NULL, NULL, should_return, flags, prot);
vm_object_paging_end(object);
vm_object_unlock(object);
return (KERN_SUCCESS);
}
+/*
+ * Empty a purgeable object by grabbing the physical pages assigned to it and
+ * putting them on the free queue without writing them to backing store, etc.
+ * When the pages are next touched they will be demand zero-fill pages. We
+ * skip pages which are busy, being paged in/out, wired, etc. We do _not_
+ * skip referenced/dirty pages, pages on the active queue, etc. We're more
+ * than happy to grab these since this is a purgeable object. We mark the
+ * object as "empty" after reaping its pages.
+ *
+ * On entry the object and page queues are locked, the object must be a
+ * purgeable object with no delayed copies pending.
+ */
+unsigned int
+vm_object_purge(vm_object_t object)
+{
+ vm_page_t p, next;
+ unsigned int num_purged_pages;
+ vm_page_t local_freeq;
+ unsigned long local_freed;
+ int purge_loop_quota;
+/* free pages as soon as we gather PURGE_BATCH_FREE_LIMIT pages to free */
+#define PURGE_BATCH_FREE_LIMIT 50
+/* release page queues lock every PURGE_LOOP_QUOTA iterations */
+#define PURGE_LOOP_QUOTA 100
+
+ num_purged_pages = 0;
+ if (object->purgable == VM_PURGABLE_DENY)
+ return num_purged_pages;
+
+ assert(object->purgable != VM_PURGABLE_NONVOLATILE);
+ object->purgable = VM_PURGABLE_EMPTY;
+
+ assert(object->copy == VM_OBJECT_NULL);
+ assert(object->copy_strategy == MEMORY_OBJECT_COPY_NONE);
+ purge_loop_quota = PURGE_LOOP_QUOTA;
+
+ local_freeq = VM_PAGE_NULL;
+ local_freed = 0;
+
+ /*
+ * Go through the object's resident pages and try and discard them.
+ */
+ next = (vm_page_t)queue_first(&object->memq);
+ while (!queue_end(&object->memq, (queue_entry_t)next)) {
+ p = next;
+ next = (vm_page_t)queue_next(&next->listq);
+
+ if (purge_loop_quota-- == 0) {
+ /*
+ * Avoid holding the page queues lock for too long.
+ * Let someone else take it for a while if needed.
+ * Keep holding the object's lock to guarantee that
+ * the object's page list doesn't change under us
+ * while we yield.
+ */
+ if (local_freeq != VM_PAGE_NULL) {
+ /*
+ * Flush our queue of pages to free.
+ */
+ vm_page_free_list(local_freeq);
+ local_freeq = VM_PAGE_NULL;
+ local_freed = 0;
+ }
+ mutex_yield(&vm_page_queue_lock);
+
+ /* resume with the current page and a new quota */
+ purge_loop_quota = PURGE_LOOP_QUOTA;
+ }
+
+
+ if (p->busy || p->cleaning || p->laundry ||
+ p->list_req_pending) {
+ /* page is being acted upon, so don't mess with it */
+ continue;
+ }
+ if (p->wire_count) {
+ /* don't discard a wired page */
+ continue;
+ }
+
+ assert(!p->laundry);
+ assert(p->object != kernel_object);
+ /* we can discard this page */
+
+ /* advertize that this page is in a transition state */
+ p->busy = TRUE;
+
+ if (p->pmapped == TRUE) {
+ /* unmap the page */
+ int refmod_state;
+
+ refmod_state = pmap_disconnect(p->phys_page);
+ if (refmod_state & VM_MEM_MODIFIED) {
+ p->dirty = TRUE;
+ }
+ }
+
+ if (p->dirty || p->precious) {
+ /* we saved the cost of cleaning this page ! */
+ num_purged_pages++;
+ vm_page_purged_count++;
+ }
+
+ vm_page_free_prepare(p);
+
+ /* ... and put it on our queue of pages to free */
+ assert(p->pageq.next == NULL &&
+ p->pageq.prev == NULL);
+ p->pageq.next = (queue_entry_t) local_freeq;
+ local_freeq = p;
+ if (++local_freed >= PURGE_BATCH_FREE_LIMIT) {
+ /* flush our queue of pages to free */
+ vm_page_free_list(local_freeq);
+ local_freeq = VM_PAGE_NULL;
+ local_freed = 0;
+ }
+ }
+
+ /* flush our local queue of pages to free one last time */
+ if (local_freeq != VM_PAGE_NULL) {
+ vm_page_free_list(local_freeq);
+ local_freeq = VM_PAGE_NULL;
+ local_freed = 0;
+ }
+
+ return num_purged_pages;
+}
+
+/*
+ * vm_object_purgeable_control() allows the caller to control and investigate the
+ * state of a purgeable object. A purgeable object is created via a call to
+ * vm_allocate() with VM_FLAGS_PURGABLE specified. A purgeable object will
+ * never be coalesced with any other object -- even other purgeable objects --
+ * and will thus always remain a distinct object. A purgeable object has
+ * special semantics when its reference count is exactly 1. If its reference
+ * count is greater than 1, then a purgeable object will behave like a normal
+ * object and attempts to use this interface will result in an error return
+ * of KERN_INVALID_ARGUMENT.
+ *
+ * A purgeable object may be put into a "volatile" state which will make the
+ * object's pages elligable for being reclaimed without paging to backing
+ * store if the system runs low on memory. If the pages in a volatile
+ * purgeable object are reclaimed, the purgeable object is said to have been
+ * "emptied." When a purgeable object is emptied the system will reclaim as
+ * many pages from the object as it can in a convenient manner (pages already
+ * en route to backing store or busy for other reasons are left as is). When
+ * a purgeable object is made volatile, its pages will generally be reclaimed
+ * before other pages in the application's working set. This semantic is
+ * generally used by applications which can recreate the data in the object
+ * faster than it can be paged in. One such example might be media assets
+ * which can be reread from a much faster RAID volume.
+ *
+ * A purgeable object may be designated as "non-volatile" which means it will
+ * behave like all other objects in the system with pages being written to and
+ * read from backing store as needed to satisfy system memory needs. If the
+ * object was emptied before the object was made non-volatile, that fact will
+ * be returned as the old state of the purgeable object (see
+ * VM_PURGABLE_SET_STATE below). In this case, any pages of the object which
+ * were reclaimed as part of emptying the object will be refaulted in as
+ * zero-fill on demand. It is up to the application to note that an object
+ * was emptied and recreate the objects contents if necessary. When a
+ * purgeable object is made non-volatile, its pages will generally not be paged
+ * out to backing store in the immediate future. A purgeable object may also
+ * be manually emptied.
+ *
+ * Finally, the current state (non-volatile, volatile, volatile & empty) of a
+ * volatile purgeable object may be queried at any time. This information may
+ * be used as a control input to let the application know when the system is
+ * experiencing memory pressure and is reclaiming memory.
+ *
+ * The specified address may be any address within the purgeable object. If
+ * the specified address does not represent any object in the target task's
+ * virtual address space, then KERN_INVALID_ADDRESS will be returned. If the
+ * object containing the specified address is not a purgeable object, then
+ * KERN_INVALID_ARGUMENT will be returned. Otherwise, KERN_SUCCESS will be
+ * returned.
+ *
+ * The control parameter may be any one of VM_PURGABLE_SET_STATE or
+ * VM_PURGABLE_GET_STATE. For VM_PURGABLE_SET_STATE, the in/out parameter
+ * state is used to set the new state of the purgeable object and return its
+ * old state. For VM_PURGABLE_GET_STATE, the current state of the purgeable
+ * object is returned in the parameter state.
+ *
+ * The in/out parameter state may be one of VM_PURGABLE_NONVOLATILE,
+ * VM_PURGABLE_VOLATILE or VM_PURGABLE_EMPTY. These, respectively, represent
+ * the non-volatile, volatile and volatile/empty states described above.
+ * Setting the state of a purgeable object to VM_PURGABLE_EMPTY will
+ * immediately reclaim as many pages in the object as can be conveniently
+ * collected (some may have already been written to backing store or be
+ * otherwise busy).
+ *
+ * The process of making a purgeable object non-volatile and determining its
+ * previous state is atomic. Thus, if a purgeable object is made
+ * VM_PURGABLE_NONVOLATILE and the old state is returned as
+ * VM_PURGABLE_VOLATILE, then the purgeable object's previous contents are
+ * completely intact and will remain so until the object is made volatile
+ * again. If the old state is returned as VM_PURGABLE_EMPTY then the object
+ * was reclaimed while it was in a volatile state and its previous contents
+ * have been lost.
+ */
+/*
+ * The object must be locked.
+ */
+kern_return_t
+vm_object_purgable_control(
+ vm_object_t object,
+ vm_purgable_t control,
+ int *state)
+{
+ int old_state;
+ int new_state;
+
+ if (object == VM_OBJECT_NULL) {
+ /*
+ * Object must already be present or it can't be purgeable.
+ */
+ return KERN_INVALID_ARGUMENT;
+ }
+
+ /*
+ * Get current state of the purgeable object.
+ */
+ old_state = object->purgable;
+ if (old_state == VM_PURGABLE_DENY)
+ return KERN_INVALID_ARGUMENT;
+
+ /* purgeable cant have delayed copies - now or in the future */
+ assert(object->copy == VM_OBJECT_NULL);
+ assert(object->copy_strategy == MEMORY_OBJECT_COPY_NONE);
+
+ /*
+ * Execute the desired operation.
+ */
+ if (control == VM_PURGABLE_GET_STATE) {
+ *state = old_state;
+ return KERN_SUCCESS;
+ }
+
+ new_state = *state & VM_PURGABLE_STATE_MASK;
+ switch (new_state) {
+ case VM_PURGABLE_DENY:
+ case VM_PURGABLE_NONVOLATILE:
+ object->purgable = new_state;
+
+ if (old_state != VM_PURGABLE_NONVOLATILE) {
+ vm_page_lock_queues();
+ assert(vm_page_purgeable_count >=
+ object->resident_page_count);
+ vm_page_purgeable_count -= object->resident_page_count;
+
+ if (old_state==VM_PURGABLE_VOLATILE) {
+ assert(object->objq.next != NULL && object->objq.prev != NULL); /* object should be on a queue */
+ purgeable_q_t queue = vm_purgeable_object_remove(object);
+ assert(queue);
+
+ vm_purgeable_token_delete_first(queue);
+ assert(queue->debug_count_objects>=0);
+ };
+ vm_page_unlock_queues();
+ }
+ break;
+
+ case VM_PURGABLE_VOLATILE:
+
+ if ((old_state != VM_PURGABLE_NONVOLATILE) && (old_state != VM_PURGABLE_VOLATILE))
+ break;
+ purgeable_q_t queue;
+
+ /* find the correct queue */
+ if ((*state&VM_PURGABLE_ORDERING_MASK) == VM_PURGABLE_ORDERING_OBSOLETE)
+ queue = &purgeable_queues[PURGEABLE_Q_TYPE_FIFO];
+ else {
+ if ((*state&VM_PURGABLE_BEHAVIOR_MASK) == VM_PURGABLE_BEHAVIOR_FIFO)
+ queue = &purgeable_queues[PURGEABLE_Q_TYPE_FIFO];
+ else
+ queue = &purgeable_queues[PURGEABLE_Q_TYPE_LIFO];
+ }
+
+ if (old_state == VM_PURGABLE_NONVOLATILE) {
+ /* try to add token... this can fail */
+ vm_page_lock_queues();
+
+ kern_return_t result = vm_purgeable_token_add(queue);
+ if (result != KERN_SUCCESS) {
+ vm_page_unlock_queues();
+ return result;
+ }
+ vm_page_purgeable_count += object->resident_page_count;
+
+ vm_page_unlock_queues();
+
+ object->purgable = new_state;
+
+ /* object should not be on a queue */
+ assert(object->objq.next == NULL && object->objq.prev == NULL);
+ }
+ else if (old_state == VM_PURGABLE_VOLATILE) {
+ /*
+ * if reassigning priorities / purgeable groups, we don't change the
+ * token queue. So moving priorities will not make pages stay around longer.
+ * Reasoning is that the algorithm gives most priority to the most important
+ * object. If a new token is added, the most important object' priority is boosted.
+ * This biases the system already for purgeable queues that move a lot.
+ * It doesn't seem more biasing is neccessary in this case, where no new object is added.
+ */
+ assert(object->objq.next != NULL && object->objq.prev != NULL); /* object should be on a queue */
+
+ purgeable_q_t old_queue=vm_purgeable_object_remove(object);
+ assert(old_queue);
+
+ if (old_queue != queue) {
+ kern_return_t result;
+
+ /* Changing queue. Have to move token. */
+ vm_page_lock_queues();
+ vm_purgeable_token_delete_first(old_queue);
+ result = vm_purgeable_token_add(queue);
+ vm_page_unlock_queues();
+
+ assert(result==KERN_SUCCESS); /* this should never fail since we just freed a token */
+ }
+ };
+ vm_purgeable_object_add(object, queue, (*state&VM_VOLATILE_GROUP_MASK)>>VM_VOLATILE_GROUP_SHIFT );
+
+ assert(queue->debug_count_objects>=0);
+
+ break;
+
+
+ case VM_PURGABLE_EMPTY:
+ if (old_state != new_state)
+ {
+ assert(old_state==VM_PURGABLE_NONVOLATILE || old_state==VM_PURGABLE_VOLATILE);
+ if(old_state==VM_PURGABLE_VOLATILE) {
+ assert(object->objq.next != NULL && object->objq.prev != NULL); /* object should be on a queue */
+ purgeable_q_t old_queue=vm_purgeable_object_remove(object);
+ assert(old_queue);
+ vm_page_lock_queues();
+ vm_purgeable_token_delete_first(old_queue);
+ }
+
+ if (old_state==VM_PURGABLE_NONVOLATILE) {
+ vm_page_purgeable_count += object->resident_page_count;
+ vm_page_lock_queues();
+ }
+ (void) vm_object_purge(object);
+ vm_page_unlock_queues();
+ }
+ break;
+
+ }
+ *state = old_state;
+
+ return KERN_SUCCESS;
+}
#if TASK_SWAPPER
/*
* This is also needed as number of vnodes can be dynamically scaled.
*/
kern_return_t
-adjust_vm_object_cache(vm_size_t oval, vm_size_t nval)
+adjust_vm_object_cache(
+ __unused vm_size_t oval,
+ vm_size_t nval)
{
vm_object_cached_max = nval;
vm_object_cache_trim(FALSE);
}
#endif /* MACH_BSD */
+
+/*
+ * vm_object_transpose
+ *
+ * This routine takes two VM objects of the same size and exchanges
+ * their backing store.
+ * The objects should be "quiesced" via a UPL operation with UPL_SET_IO_WIRE
+ * and UPL_BLOCK_ACCESS if they are referenced anywhere.
+ *
+ * The VM objects must not be locked by caller.
+ */
+kern_return_t
+vm_object_transpose(
+ vm_object_t object1,
+ vm_object_t object2,
+ vm_object_size_t transpose_size)
+{
+ vm_object_t tmp_object;
+ kern_return_t retval;
+ boolean_t object1_locked, object2_locked;
+ boolean_t object1_paging, object2_paging;
+ vm_page_t page;
+ vm_object_offset_t page_offset;
+
+ tmp_object = VM_OBJECT_NULL;
+ object1_locked = FALSE; object2_locked = FALSE;
+ object1_paging = FALSE; object2_paging = FALSE;
+
+ if (object1 == object2 ||
+ object1 == VM_OBJECT_NULL ||
+ object2 == VM_OBJECT_NULL) {
+ /*
+ * If the 2 VM objects are the same, there's
+ * no point in exchanging their backing store.
+ */
+ retval = KERN_INVALID_VALUE;
+ goto done;
+ }
+
+ vm_object_lock(object1);
+ object1_locked = TRUE;
+ if (!object1->alive || object1->terminating ||
+ object1->copy || object1->shadow || object1->shadowed ||
+ object1->purgable != VM_PURGABLE_DENY) {
+ /*
+ * We don't deal with copy or shadow objects (yet).
+ */
+ retval = KERN_INVALID_VALUE;
+ goto done;
+ }
+ /*
+ * Since we're about to mess with the object's backing store,
+ * mark it as "paging_in_progress". Note that this is not enough
+ * to prevent any paging activity on this object, so the caller should
+ * have "quiesced" the objects beforehand, via a UPL operation with
+ * UPL_SET_IO_WIRE (to make sure all the pages are there and wired)
+ * and UPL_BLOCK_ACCESS (to mark the pages "busy").
+ */
+ vm_object_paging_begin(object1);
+ object1_paging = TRUE;
+ vm_object_unlock(object1);
+ object1_locked = FALSE;
+
+ /*
+ * Same as above for the 2nd object...
+ */
+ vm_object_lock(object2);
+ object2_locked = TRUE;
+ if (! object2->alive || object2->terminating ||
+ object2->copy || object2->shadow || object2->shadowed ||
+ object2->purgable != VM_PURGABLE_DENY) {
+ retval = KERN_INVALID_VALUE;
+ goto done;
+ }
+ vm_object_paging_begin(object2);
+ object2_paging = TRUE;
+ vm_object_unlock(object2);
+ object2_locked = FALSE;
+
+ /*
+ * Allocate a temporary VM object to hold object1's contents
+ * while we copy object2 to object1.
+ */
+ tmp_object = vm_object_allocate(transpose_size);
+ vm_object_lock(tmp_object);
+ vm_object_paging_begin(tmp_object);
+ tmp_object->can_persist = FALSE;
+
+ /*
+ * Since we need to lock both objects at the same time,
+ * make sure we always lock them in the same order to
+ * avoid deadlocks.
+ */
+ if (object1 < object2) {
+ vm_object_lock(object1);
+ vm_object_lock(object2);
+ } else {
+ vm_object_lock(object2);
+ vm_object_lock(object1);
+ }
+ object1_locked = TRUE;
+ object2_locked = TRUE;
+
+ if (object1->size != object2->size ||
+ object1->size != transpose_size) {
+ /*
+ * If the 2 objects don't have the same size, we can't
+ * exchange their backing stores or one would overflow.
+ * If their size doesn't match the caller's
+ * "transpose_size", we can't do it either because the
+ * transpose operation will affect the entire span of
+ * the objects.
+ */
+ retval = KERN_INVALID_VALUE;
+ goto done;
+ }
+
+
+ /*
+ * Transpose the lists of resident pages.
+ * This also updates the resident_page_count and the memq_hint.
+ */
+ if (object1->phys_contiguous || queue_empty(&object1->memq)) {
+ /*
+ * No pages in object1, just transfer pages
+ * from object2 to object1. No need to go through
+ * an intermediate object.
+ */
+ while (!queue_empty(&object2->memq)) {
+ page = (vm_page_t) queue_first(&object2->memq);
+ vm_page_rename(page, object1, page->offset, FALSE);
+ }
+ assert(queue_empty(&object2->memq));
+ } else if (object2->phys_contiguous || queue_empty(&object2->memq)) {
+ /*
+ * No pages in object2, just transfer pages
+ * from object1 to object2. No need to go through
+ * an intermediate object.
+ */
+ while (!queue_empty(&object1->memq)) {
+ page = (vm_page_t) queue_first(&object1->memq);
+ vm_page_rename(page, object2, page->offset, FALSE);
+ }
+ assert(queue_empty(&object1->memq));
+ } else {
+ /* transfer object1's pages to tmp_object */
+ vm_page_lock_queues();
+ while (!queue_empty(&object1->memq)) {
+ page = (vm_page_t) queue_first(&object1->memq);
+ page_offset = page->offset;
+ vm_page_remove(page);
+ page->offset = page_offset;
+ queue_enter(&tmp_object->memq, page, vm_page_t, listq);
+ }
+ vm_page_unlock_queues();
+ assert(queue_empty(&object1->memq));
+ /* transfer object2's pages to object1 */
+ while (!queue_empty(&object2->memq)) {
+ page = (vm_page_t) queue_first(&object2->memq);
+ vm_page_rename(page, object1, page->offset, FALSE);
+ }
+ assert(queue_empty(&object2->memq));
+ /* transfer tmp_object's pages to object1 */
+ while (!queue_empty(&tmp_object->memq)) {
+ page = (vm_page_t) queue_first(&tmp_object->memq);
+ queue_remove(&tmp_object->memq, page,
+ vm_page_t, listq);
+ vm_page_insert(page, object2, page->offset);
+ }
+ assert(queue_empty(&tmp_object->memq));
+ }
+
+#define __TRANSPOSE_FIELD(field) \
+MACRO_BEGIN \
+ tmp_object->field = object1->field; \
+ object1->field = object2->field; \
+ object2->field = tmp_object->field; \
+MACRO_END
+
+ /* "size" should be identical */
+ assert(object1->size == object2->size);
+ /* "Lock" refers to the object not its contents */
+ /* "ref_count" refers to the object not its contents */
+#if TASK_SWAPPER
+ /* "res_count" refers to the object not its contents */
+#endif
+ /* "resident_page_count" was updated above when transposing pages */
+ /* there should be no "copy" */
+ assert(!object1->copy);
+ assert(!object2->copy);
+ /* there should be no "shadow" */
+ assert(!object1->shadow);
+ assert(!object2->shadow);
+ __TRANSPOSE_FIELD(shadow_offset); /* used by phys_contiguous objects */
+ __TRANSPOSE_FIELD(pager);
+ __TRANSPOSE_FIELD(paging_offset);
+ __TRANSPOSE_FIELD(pager_control);
+ /* update the memory_objects' pointers back to the VM objects */
+ if (object1->pager_control != MEMORY_OBJECT_CONTROL_NULL) {
+ memory_object_control_collapse(object1->pager_control,
+ object1);
+ }
+ if (object2->pager_control != MEMORY_OBJECT_CONTROL_NULL) {
+ memory_object_control_collapse(object2->pager_control,
+ object2);
+ }
+ __TRANSPOSE_FIELD(copy_strategy);
+ /* "paging_in_progress" refers to the object not its contents */
+ assert(object1->paging_in_progress);
+ assert(object2->paging_in_progress);
+ /* "all_wanted" refers to the object not its contents */
+ __TRANSPOSE_FIELD(pager_created);
+ __TRANSPOSE_FIELD(pager_initialized);
+ __TRANSPOSE_FIELD(pager_ready);
+ __TRANSPOSE_FIELD(pager_trusted);
+ __TRANSPOSE_FIELD(can_persist);
+ __TRANSPOSE_FIELD(internal);
+ __TRANSPOSE_FIELD(temporary);
+ __TRANSPOSE_FIELD(private);
+ __TRANSPOSE_FIELD(pageout);
+ /* "alive" should be set */
+ assert(object1->alive);
+ assert(object2->alive);
+ /* "purgeable" should be non-purgeable */
+ assert(object1->purgable == VM_PURGABLE_DENY);
+ assert(object2->purgable == VM_PURGABLE_DENY);
+ /* "shadowed" refers to the the object not its contents */
+ __TRANSPOSE_FIELD(silent_overwrite);
+ __TRANSPOSE_FIELD(advisory_pageout);
+ __TRANSPOSE_FIELD(true_share);
+ /* "terminating" should not be set */
+ assert(!object1->terminating);
+ assert(!object2->terminating);
+ __TRANSPOSE_FIELD(named);
+ /* "shadow_severed" refers to the object not its contents */
+ __TRANSPOSE_FIELD(phys_contiguous);
+ __TRANSPOSE_FIELD(nophyscache);
+ /* "cached_list" should be NULL */
+ assert(object1->cached_list.prev == NULL);
+ assert(object1->cached_list.next == NULL);
+ assert(object2->cached_list.prev == NULL);
+ assert(object2->cached_list.next == NULL);
+ /* "msr_q" is linked to the object not its contents */
+ assert(queue_empty(&object1->msr_q));
+ assert(queue_empty(&object2->msr_q));
+ __TRANSPOSE_FIELD(last_alloc);
+ __TRANSPOSE_FIELD(sequential);
+ __TRANSPOSE_FIELD(pages_created);
+ __TRANSPOSE_FIELD(pages_used);
+#if MACH_PAGEMAP
+ __TRANSPOSE_FIELD(existence_map);
+#endif
+ __TRANSPOSE_FIELD(cow_hint);
+#if MACH_ASSERT
+ __TRANSPOSE_FIELD(paging_object);
+#endif
+ __TRANSPOSE_FIELD(wimg_bits);
+ __TRANSPOSE_FIELD(code_signed);
+ __TRANSPOSE_FIELD(not_in_use);
+#ifdef UPL_DEBUG
+ /* "uplq" refers to the object not its contents (see upl_transpose()) */
+#endif
+
+#undef __TRANSPOSE_FIELD
+
+ retval = KERN_SUCCESS;
+
+done:
+ /*
+ * Cleanup.
+ */
+ if (tmp_object != VM_OBJECT_NULL) {
+ vm_object_paging_end(tmp_object);
+ vm_object_unlock(tmp_object);
+ /*
+ * Re-initialize the temporary object to avoid
+ * deallocating a real pager.
+ */
+ _vm_object_allocate(transpose_size, tmp_object);
+ vm_object_deallocate(tmp_object);
+ tmp_object = VM_OBJECT_NULL;
+ }
+
+ if (object1_locked) {
+ vm_object_unlock(object1);
+ object1_locked = FALSE;
+ }
+ if (object2_locked) {
+ vm_object_unlock(object2);
+ object2_locked = FALSE;
+ }
+ if (object1_paging) {
+ vm_object_lock(object1);
+ vm_object_paging_end(object1);
+ vm_object_unlock(object1);
+ object1_paging = FALSE;
+ }
+ if (object2_paging) {
+ vm_object_lock(object2);
+ vm_object_paging_end(object2);
+ vm_object_unlock(object2);
+ object2_paging = FALSE;
+ }
+
+ return retval;
+}
+
+
+/*
+ * vm_object_build_cluster
+ *
+ * Determine how big a cluster we should issue an I/O for...
+ *
+ * Inputs: *start == offset of page needed
+ * *length == maximum cluster pager can handle
+ * Outputs: *start == beginning offset of cluster
+ * *length == length of cluster to try
+ *
+ * The original *start will be encompassed by the cluster
+ *
+ */
+extern int speculative_reads_disabled;
+
+uint32_t pre_heat_scaling[MAX_UPL_TRANSFER];
+uint32_t pre_heat_cluster[MAX_UPL_TRANSFER];
+
+#define PRE_HEAT_MULTIPLIER 4
+
+__private_extern__ void
+vm_object_cluster_size(vm_object_t object, vm_object_offset_t *start,
+ vm_size_t *length, vm_object_fault_info_t fault_info)
+{
+ vm_size_t pre_heat_size;
+ vm_size_t tail_size;
+ vm_size_t head_size;
+ vm_size_t max_length;
+ vm_size_t cluster_size;
+ vm_object_offset_t object_size;
+ vm_object_offset_t orig_start;
+ vm_object_offset_t target_start;
+ vm_object_offset_t offset;
+ vm_behavior_t behavior;
+ boolean_t look_behind = TRUE;
+ boolean_t look_ahead = TRUE;
+ int sequential_run;
+ int sequential_behavior = VM_BEHAVIOR_SEQUENTIAL;
+
+ assert( !(*length & PAGE_MASK));
+ assert( !(*start & PAGE_MASK_64));
+
+ if ( (max_length = *length) > (MAX_UPL_TRANSFER * PAGE_SIZE) )
+ max_length = (MAX_UPL_TRANSFER * PAGE_SIZE);
+ /*
+ * we'll always return a cluster size of at least
+ * 1 page, since the original fault must always
+ * be processed
+ */
+ *length = PAGE_SIZE;
+
+ if (speculative_reads_disabled || fault_info == NULL || max_length == 0) {
+ /*
+ * no cluster... just fault the page in
+ */
+ return;
+ }
+ orig_start = *start;
+ target_start = orig_start;
+ cluster_size = round_page_32(fault_info->cluster_size);
+ behavior = fault_info->behavior;
+
+ vm_object_lock(object);
+
+ if (object->internal)
+ object_size = object->size;
+ else if (object->pager != MEMORY_OBJECT_NULL)
+ vnode_pager_get_object_size(object->pager, &object_size);
+ else
+ goto out; /* pager is gone for this object, nothing more to do */
+
+ object_size = round_page_64(object_size);
+
+ if (orig_start >= object_size) {
+ /*
+ * fault occurred beyond the EOF...
+ * we need to punt w/o changing the
+ * starting offset
+ */
+ goto out;
+ }
+ if (object->pages_used > object->pages_created) {
+ /*
+ * must have wrapped our 32 bit counters
+ * so reset
+ */
+ object->pages_used = object->pages_created = 0;
+ }
+ if ((sequential_run = object->sequential)) {
+ if (sequential_run < 0) {
+ sequential_behavior = VM_BEHAVIOR_RSEQNTL;
+ sequential_run = 0 - sequential_run;
+ } else {
+ sequential_behavior = VM_BEHAVIOR_SEQUENTIAL;
+ }
+ }
+ switch(behavior) {
+
+ default:
+ behavior = VM_BEHAVIOR_DEFAULT;
+
+ case VM_BEHAVIOR_DEFAULT:
+ if (object->internal && fault_info->user_tag == VM_MEMORY_STACK)
+ goto out;
+
+ if (sequential_run >= (3 * PAGE_SIZE)) {
+ pre_heat_size = sequential_run + PAGE_SIZE;
+
+ if ((behavior = sequential_behavior) == VM_BEHAVIOR_SEQUENTIAL)
+ look_behind = FALSE;
+ else
+ look_ahead = FALSE;
+ } else {
+ uint32_t pages_unused;
+
+ if (object->pages_created < 32 * PRE_HEAT_MULTIPLIER) {
+ /*
+ * prime the pump
+ */
+ pre_heat_size = PAGE_SIZE * 8 * PRE_HEAT_MULTIPLIER;
+ break;
+ }
+ pages_unused = object->pages_created - object->pages_used;
+
+ if (pages_unused < (object->pages_created / 8)) {
+ pre_heat_size = PAGE_SIZE * 32 * PRE_HEAT_MULTIPLIER;
+ } else if (pages_unused < (object->pages_created / 4)) {
+ pre_heat_size = PAGE_SIZE * 16 * PRE_HEAT_MULTIPLIER;
+ } else if (pages_unused < (object->pages_created / 2)) {
+ pre_heat_size = PAGE_SIZE * 8 * PRE_HEAT_MULTIPLIER;
+ } else {
+ pre_heat_size = PAGE_SIZE * 4 * PRE_HEAT_MULTIPLIER;
+ }
+ }
+ break;
+
+ case VM_BEHAVIOR_RANDOM:
+ if ((pre_heat_size = cluster_size) <= PAGE_SIZE)
+ goto out;
+ break;
+
+ case VM_BEHAVIOR_SEQUENTIAL:
+ if ((pre_heat_size = cluster_size) == 0)
+ pre_heat_size = sequential_run + PAGE_SIZE;
+ look_behind = FALSE;
+
+ break;
+
+ case VM_BEHAVIOR_RSEQNTL:
+ if ((pre_heat_size = cluster_size) == 0)
+ pre_heat_size = sequential_run + PAGE_SIZE;
+ look_ahead = FALSE;
+
+ break;
+
+ }
+ if (pre_heat_size > max_length)
+ pre_heat_size = max_length;
+
+ if (behavior == VM_BEHAVIOR_DEFAULT && vm_page_free_count < vm_page_free_target)
+ pre_heat_size /= 2;
+
+ if (look_ahead == TRUE) {
+ if (look_behind == TRUE)
+ target_start &= ~(pre_heat_size - 1);
+
+ if ((target_start + pre_heat_size) > object_size)
+ pre_heat_size = (vm_size_t)(trunc_page_64(object_size - target_start));
+
+ tail_size = pre_heat_size - (orig_start - target_start) - PAGE_SIZE;
+ } else {
+ if (pre_heat_size > target_start)
+ pre_heat_size = target_start;
+ tail_size = 0;
+ }
+ pre_heat_scaling[pre_heat_size / PAGE_SIZE]++;
+
+ if (pre_heat_size <= PAGE_SIZE)
+ goto out;
+
+ if (look_behind == TRUE) {
+ /*
+ * take a look at the pages before the original
+ * faulting offset
+ */
+ head_size = pre_heat_size - tail_size - PAGE_SIZE;
+
+ for (offset = orig_start - PAGE_SIZE_64; head_size; offset -= PAGE_SIZE_64, head_size -= PAGE_SIZE) {
+ /*
+ * don't poke below the lowest offset
+ */
+ if (offset < fault_info->lo_offset)
+ break;
+ /*
+ * for external objects and internal objects w/o an existence map
+ * vm_externl_state_get will return VM_EXTERNAL_STATE_UNKNOWN
+ */
+#if MACH_PAGEMAP
+ if (vm_external_state_get(object->existence_map, offset) == VM_EXTERNAL_STATE_ABSENT) {
+ /*
+ * we know for a fact that the pager can't provide the page
+ * so don't include it or any pages beyond it in this cluster
+ */
+ break;
+ }
+#endif
+ if (vm_page_lookup(object, offset) != VM_PAGE_NULL) {
+ /*
+ * don't bridge resident pages
+ */
+ break;
+ }
+ *start = offset;
+ *length += PAGE_SIZE;
+ }
+ }
+ if (look_ahead == TRUE) {
+ for (offset = orig_start + PAGE_SIZE_64; tail_size; offset += PAGE_SIZE_64, tail_size -= PAGE_SIZE) {
+ /*
+ * don't poke above the highest offset
+ */
+ if (offset >= fault_info->hi_offset)
+ break;
+ /*
+ * for external objects and internal objects w/o an existence map
+ * vm_externl_state_get will return VM_EXTERNAL_STATE_UNKNOWN
+ */
+#if MACH_PAGEMAP
+ if (vm_external_state_get(object->existence_map, offset) == VM_EXTERNAL_STATE_ABSENT) {
+ /*
+ * we know for a fact that the pager can't provide the page
+ * so don't include it or any pages beyond it in this cluster
+ */
+ break;
+ }
+#endif
+ if (vm_page_lookup(object, offset) != VM_PAGE_NULL) {
+ /*
+ * don't bridge resident pages
+ */
+ break;
+ }
+ *length += PAGE_SIZE;
+ }
+ }
+out:
+ pre_heat_cluster[*length / PAGE_SIZE]++;
+
+ vm_object_unlock(object);
+}
+
+
+/*
+ * Allow manipulation of individual page state. This is actually part of
+ * the UPL regimen but takes place on the VM object rather than on a UPL
+ */
+
+kern_return_t
+vm_object_page_op(
+ vm_object_t object,
+ vm_object_offset_t offset,
+ int ops,
+ ppnum_t *phys_entry,
+ int *flags)
+{
+ vm_page_t dst_page;
+
+ vm_object_lock(object);
+
+ if(ops & UPL_POP_PHYSICAL) {
+ if(object->phys_contiguous) {
+ if (phys_entry) {
+ *phys_entry = (ppnum_t)
+ (object->shadow_offset >> 12);
+ }
+ vm_object_unlock(object);
+ return KERN_SUCCESS;
+ } else {
+ vm_object_unlock(object);
+ return KERN_INVALID_OBJECT;
+ }
+ }
+ if(object->phys_contiguous) {
+ vm_object_unlock(object);
+ return KERN_INVALID_OBJECT;
+ }
+
+ while(TRUE) {
+ if((dst_page = vm_page_lookup(object,offset)) == VM_PAGE_NULL) {
+ vm_object_unlock(object);
+ return KERN_FAILURE;
+ }
+
+ /* Sync up on getting the busy bit */
+ if((dst_page->busy || dst_page->cleaning) &&
+ (((ops & UPL_POP_SET) &&
+ (ops & UPL_POP_BUSY)) || (ops & UPL_POP_DUMP))) {
+ /* someone else is playing with the page, we will */
+ /* have to wait */
+ PAGE_SLEEP(object, dst_page, THREAD_UNINT);
+ continue;
+ }
+
+ if (ops & UPL_POP_DUMP) {
+ if (dst_page->pmapped == TRUE)
+ pmap_disconnect(dst_page->phys_page);
+
+ vm_page_lock_queues();
+ vm_page_free(dst_page);
+ vm_page_unlock_queues();
+
+ break;
+ }
+
+ if (flags) {
+ *flags = 0;
+
+ /* Get the condition of flags before requested ops */
+ /* are undertaken */
+
+ if(dst_page->dirty) *flags |= UPL_POP_DIRTY;
+ if(dst_page->pageout) *flags |= UPL_POP_PAGEOUT;
+ if(dst_page->precious) *flags |= UPL_POP_PRECIOUS;
+ if(dst_page->absent) *flags |= UPL_POP_ABSENT;
+ if(dst_page->busy) *flags |= UPL_POP_BUSY;
+ }
+
+ /* The caller should have made a call either contingent with */
+ /* or prior to this call to set UPL_POP_BUSY */
+ if(ops & UPL_POP_SET) {
+ /* The protection granted with this assert will */
+ /* not be complete. If the caller violates the */
+ /* convention and attempts to change page state */
+ /* without first setting busy we may not see it */
+ /* because the page may already be busy. However */
+ /* if such violations occur we will assert sooner */
+ /* or later. */
+ assert(dst_page->busy || (ops & UPL_POP_BUSY));
+ if (ops & UPL_POP_DIRTY) dst_page->dirty = TRUE;
+ if (ops & UPL_POP_PAGEOUT) dst_page->pageout = TRUE;
+ if (ops & UPL_POP_PRECIOUS) dst_page->precious = TRUE;
+ if (ops & UPL_POP_ABSENT) dst_page->absent = TRUE;
+ if (ops & UPL_POP_BUSY) dst_page->busy = TRUE;
+ }
+
+ if(ops & UPL_POP_CLR) {
+ assert(dst_page->busy);
+ if (ops & UPL_POP_DIRTY) dst_page->dirty = FALSE;
+ if (ops & UPL_POP_PAGEOUT) dst_page->pageout = FALSE;
+ if (ops & UPL_POP_PRECIOUS) dst_page->precious = FALSE;
+ if (ops & UPL_POP_ABSENT) dst_page->absent = FALSE;
+ if (ops & UPL_POP_BUSY) {
+ dst_page->busy = FALSE;
+ PAGE_WAKEUP(dst_page);
+ }
+ }
+
+ if (dst_page->encrypted) {
+ /*
+ * ENCRYPTED SWAP:
+ * We need to decrypt this encrypted page before the
+ * caller can access its contents.
+ * But if the caller really wants to access the page's
+ * contents, they have to keep the page "busy".
+ * Otherwise, the page could get recycled or re-encrypted
+ * at any time.
+ */
+ if ((ops & UPL_POP_SET) && (ops & UPL_POP_BUSY) &&
+ dst_page->busy) {
+ /*
+ * The page is stable enough to be accessed by
+ * the caller, so make sure its contents are
+ * not encrypted.
+ */
+ vm_page_decrypt(dst_page, 0);
+ } else {
+ /*
+ * The page is not busy, so don't bother
+ * decrypting it, since anything could
+ * happen to it between now and when the
+ * caller wants to access it.
+ * We should not give the caller access
+ * to this page.
+ */
+ assert(!phys_entry);
+ }
+ }
+
+ if (phys_entry) {
+ /*
+ * The physical page number will remain valid
+ * only if the page is kept busy.
+ * ENCRYPTED SWAP: make sure we don't let the
+ * caller access an encrypted page.
+ */
+ assert(dst_page->busy);
+ assert(!dst_page->encrypted);
+ *phys_entry = dst_page->phys_page;
+ }
+
+ break;
+ }
+
+ vm_object_unlock(object);
+ return KERN_SUCCESS;
+
+}
+
+/*
+ * vm_object_range_op offers performance enhancement over
+ * vm_object_page_op for page_op functions which do not require page
+ * level state to be returned from the call. Page_op was created to provide
+ * a low-cost alternative to page manipulation via UPLs when only a single
+ * page was involved. The range_op call establishes the ability in the _op
+ * family of functions to work on multiple pages where the lack of page level
+ * state handling allows the caller to avoid the overhead of the upl structures.
+ */
+
+kern_return_t
+vm_object_range_op(
+ vm_object_t object,
+ vm_object_offset_t offset_beg,
+ vm_object_offset_t offset_end,
+ int ops,
+ int *range)
+{
+ vm_object_offset_t offset;
+ vm_page_t dst_page;
+
+ if (object->resident_page_count == 0) {
+ if (range) {
+ if (ops & UPL_ROP_PRESENT)
+ *range = 0;
+ else
+ *range = offset_end - offset_beg;
+ }
+ return KERN_SUCCESS;
+ }
+ vm_object_lock(object);
+
+ if (object->phys_contiguous) {
+ vm_object_unlock(object);
+ return KERN_INVALID_OBJECT;
+ }
+
+ offset = offset_beg & ~PAGE_MASK_64;
+
+ while (offset < offset_end) {
+ dst_page = vm_page_lookup(object, offset);
+ if (dst_page != VM_PAGE_NULL) {
+ if (ops & UPL_ROP_DUMP) {
+ if (dst_page->busy || dst_page->cleaning) {
+ /*
+ * someone else is playing with the
+ * page, we will have to wait
+ */
+ PAGE_SLEEP(object, dst_page, THREAD_UNINT);
+ /*
+ * need to relook the page up since it's
+ * state may have changed while we slept
+ * it might even belong to a different object
+ * at this point
+ */
+ continue;
+ }
+ if (dst_page->pmapped == TRUE)
+ pmap_disconnect(dst_page->phys_page);
+
+ vm_page_lock_queues();
+ vm_page_free(dst_page);
+ vm_page_unlock_queues();
+
+ } else if (ops & UPL_ROP_ABSENT)
+ break;
+ } else if (ops & UPL_ROP_PRESENT)
+ break;
+
+ offset += PAGE_SIZE;
+ }
+ vm_object_unlock(object);
+
+ if (range) {
+ if (offset > offset_end)
+ offset = offset_end;
+ if(offset > offset_beg)
+ *range = offset - offset_beg;
+ else *range=0;
+ }
+ return KERN_SUCCESS;
+}
+
+
+uint32_t scan_object_collision = 0;
+
+void
+vm_object_lock(vm_object_t object)
+{
+ if (object == vm_pageout_scan_wants_object) {
+ scan_object_collision++;
+ mutex_pause(2);
+ }
+ lck_rw_lock_exclusive(&object->Lock);
+}
+
+boolean_t
+vm_object_lock_try(vm_object_t object)
+{
+ if (object == vm_pageout_scan_wants_object) {
+ scan_object_collision++;
+ mutex_pause(2);
+ }
+ return (lck_rw_try_lock_exclusive(&object->Lock));
+}
+
+void
+vm_object_lock_shared(vm_object_t object)
+{
+ if (object == vm_pageout_scan_wants_object) {
+ scan_object_collision++;
+ mutex_pause(2);
+ }
+ lck_rw_lock_shared(&object->Lock);
+}
+
+boolean_t
+vm_object_lock_try_shared(vm_object_t object)
+{
+ if (object == vm_pageout_scan_wants_object) {
+ scan_object_collision++;
+ mutex_pause(2);
+ }
+ return (lck_rw_try_lock_shared(&object->Lock));
+}