/*
- * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
*
- * @APPLE_LICENSE_HEADER_START@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
- * The contents of this file constitute Original Code as defined in and
- * are subject to the Apple Public Source License Version 1.1 (the
- * "License"). You may not use this file except in compliance with the
- * License. Please obtain a copy of the License at
- * http://www.apple.com/publicsource and read it before using this file.
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
*
- * This Original Code and all software distributed under the License are
- * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
- * License for the specific language governing rights and limitations
- * under the License.
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
*
- * @APPLE_LICENSE_HEADER_END@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_COPYRIGHT@
*/
+#include <platforms.h>
+#include <vm/vm_page.h>
+#include <pexpert/pexpert.h>
-/*
- * Values from http://einstein.et.tudelft.nl/~offerman/chiplist.html
- * (dated 18 Oct 1995)
- */
-
-#include <kern/misc_protos.h>
#include <i386/cpuid.h>
-/*
- * Generic product array (before CPUID)
- */
-unsigned int cpuid_i386_freq[] = { 12, 16, 20, 25, 33, 0 };
-unsigned int cpuid_i486_freq[] = { 20, 25, 33, 50, 0 };
-
-struct cpuid_product cpuid_generic[] = {
- {
- 0, CPUID_FAMILY_386, 0,
- 80, cpuid_i386_freq, "i386"
- },
- {
- 0, CPUID_FAMILY_486, 0,
- 240, cpuid_i486_freq, "i486"
- },
-};
+static boolean_t cpuid_dbg
+#if DEBUG
+ = TRUE;
+#else
+ = FALSE;
+#endif
+#define DBG(x...) \
+ do { \
+ if (cpuid_dbg) \
+ kprintf(x); \
+ } while (0) \
-/*
- * INTEL product array
- */
-unsigned int cpuid_i486_dx_freq[] = { 20, 25, 33, 0 };
-unsigned int cpuid_i486_dx_s_freq[] = { 50, 0 };
-unsigned int cpuid_i486_sx_freq[] = { 16, 20, 25, 33, 0 };
-unsigned int cpuid_i486_dx2_freq[] = { 32, 40, 50, 66, 0 };
-unsigned int cpuid_i486_sl_freq[] = { 25, 33, 0 };
-unsigned int cpuid_i486_sx2_freq[] = { 50, 0 };
-unsigned int cpuid_i486_dx2wb_freq[] = { 50, 66, 0 };
-unsigned int cpuid_i486_dx4_freq[] = { 90, 100, 0 };
-
-unsigned int cpuid_i486_dx2wb_od_freq[] = { 32, 40, 50, 66, 0 };
-unsigned int cpuid_i486_dx4_od_freq[] = { 75, 99, 0 };
-
-unsigned int cpuid_p5_freq[] = { 60, 66, 0 };
-unsigned int cpuid_p54_freq[] = { 60, 66, 75, 90, 100, 120, 133, 166, 200, 0 };
-
-unsigned int cpuid_p24t_freq[] = { 25, 33, 0 };
-unsigned int cpuid_p24ct_freq[] = { 63, 83, 0 };
-
-unsigned int cpuid_pii_freq[] = { 300, 0 };
-
-struct cpuid_product cpuid_intel[] = {
- {
- CPUID_TYPE_OEM, CPUID_FAMILY_486, CPUID_MODEL_I486_DX,
- 240, cpuid_i486_dx_freq, "Intel 486DX"
- },
- {
- CPUID_TYPE_OEM, CPUID_FAMILY_486, CPUID_MODEL_I486_DX_S,
- 240, cpuid_i486_dx_s_freq, "Intel 486DX-S"
- },
- {
- CPUID_TYPE_OEM, CPUID_FAMILY_486, CPUID_MODEL_I486_SX,
- 240, cpuid_i486_sx_freq, "Intel 486SX"
- },
- {
- CPUID_TYPE_OEM, CPUID_FAMILY_486, CPUID_MODEL_I486_DX2,
- 240, cpuid_i486_dx2_freq, "Intel 486DX2"
- },
- {
- CPUID_TYPE_OEM, CPUID_FAMILY_486, CPUID_MODEL_I486_SL,
- 240, cpuid_i486_sl_freq, "Intel 486SL"
- },
- {
- CPUID_TYPE_OEM, CPUID_FAMILY_486, CPUID_MODEL_I486_SX2,
- 240, cpuid_i486_sx2_freq, "Intel 486SX2"
- },
- {
- CPUID_TYPE_OEM, CPUID_FAMILY_486, CPUID_MODEL_I486_DX2WB,
- 240, cpuid_i486_dx2wb_freq, "Intel 486DX2WB"
- },
- {
- CPUID_TYPE_OEM, CPUID_FAMILY_486, CPUID_MODEL_I486_DX4,
- 240, cpuid_i486_dx4_freq, "Intel 486DX4"
- },
- {
- CPUID_TYPE_OVERDRIVE, CPUID_FAMILY_486, CPUID_MODEL_I486_DX2,
- 240, cpuid_i486_dx2_freq, "Intel 486DX2 OverDrive"
- },
- {
- CPUID_TYPE_OVERDRIVE, CPUID_FAMILY_486, CPUID_MODEL_I486_DX2WB,
- 240, cpuid_i486_dx2wb_od_freq, "Intel 486DX2WB OverDrive"
- },
- {
- CPUID_TYPE_OVERDRIVE, CPUID_FAMILY_486, CPUID_MODEL_I486_DX4,
- 240, cpuid_i486_dx4_od_freq, "Intel 486DX4 OverDrive"
- },
- {
- CPUID_TYPE_OVERDRIVE, CPUID_FAMILY_P5, CPUID_MODEL_P24T,
- 208, cpuid_p24t_freq, "Intel Pentium P24T OverDrive"
- },
- {
- CPUID_TYPE_OVERDRIVE, CPUID_FAMILY_P5, CPUID_MODEL_P54,
- 207, cpuid_p24ct_freq, "Intel Pentium P24CT OverDrive"
- },
- {
- CPUID_TYPE_OEM, CPUID_FAMILY_P5, CPUID_MODEL_P5A,
- 207, cpuid_p5_freq, "Intel Pentium P5 rev A"
- },
- {
- CPUID_TYPE_OEM, CPUID_FAMILY_P5, CPUID_MODEL_P5,
- 207, cpuid_p5_freq, "Intel Pentium P5"
- },
- {
- CPUID_TYPE_OEM, CPUID_FAMILY_P5, CPUID_MODEL_P54,
- 207, cpuid_p54_freq, "Intel Pentium P54"
- },
- {
- CPUID_TYPE_OEM, CPUID_FAMILY_PPRO, CPUID_MODEL_PII,
- 480, cpuid_pii_freq, "Intel Pentium II"
- }
-};
-unsigned int cpuid_intel_size = sizeof (cpuid_intel) / sizeof (cpuid_intel[0]);
+#define min(a,b) ((a) < (b) ? (a) : (b))
+#define quad(hi,lo) (((uint64_t)(hi)) << 32 | (lo))
-/*
- * AMD product arrays
- */
-unsigned int cpuid_am486_dx_freq[] = { 33, 40, 0 };
-unsigned int cpuid_am486_dx2_freq[] = { 50, 66, 80, 99, 0 };
-unsigned int cpuid_am486_dx4_freq[] = { 99, 120, 133, 0 };
-unsigned int cpuid_am486_dx4wb_freq[] = { 99, 120, 133, 0 };
+/* Only for 32bit values */
+#define bit32(n) (1U << (n))
+#define bitmask32(h,l) ((bit32(h)|(bit32(h)-1)) & ~(bit32(l)-1))
+#define bitfield32(x,h,l) ((((x) & bitmask32(h,l)) >> l))
/*
- * UMC product array
+ * Leaf 2 cache descriptor encodings.
*/
-unsigned int cpuid_u5sd_freq[] = { 25, 33, 40, 0 };
-unsigned int cpuid_u5s_freq[] = { 25, 33, 40, 0 };
+typedef enum {
+ _NULL_, /* NULL (empty) descriptor */
+ CACHE, /* Cache */
+ TLB, /* TLB */
+ STLB, /* Shared second-level unified TLB */
+ PREFETCH /* Prefetch size */
+} cpuid_leaf2_desc_type_t;
+
+typedef enum {
+ NA, /* Not Applicable */
+ FULLY, /* Fully-associative */
+ TRACE, /* Trace Cache (P4 only) */
+ INST, /* Instruction TLB */
+ DATA, /* Data TLB */
+ DATA0, /* Data TLB, 1st level */
+ DATA1, /* Data TLB, 2nd level */
+ L1, /* L1 (unified) cache */
+ L1_INST, /* L1 Instruction cache */
+ L1_DATA, /* L1 Data cache */
+ L2, /* L2 (unified) cache */
+ L3, /* L3 (unified) cache */
+ L2_2LINESECTOR, /* L2 (unified) cache with 2 lines per sector */
+ L3_2LINESECTOR, /* L3(unified) cache with 2 lines per sector */
+ SMALL, /* Small page TLB */
+ LARGE, /* Large page TLB */
+ BOTH /* Small and Large page TLB */
+} cpuid_leaf2_qualifier_t;
+
+typedef struct cpuid_cache_descriptor {
+ uint8_t value; /* descriptor code */
+ uint8_t type; /* cpuid_leaf2_desc_type_t */
+ uint8_t level; /* level of cache/TLB hierachy */
+ uint8_t ways; /* wayness of cache */
+ uint16_t size; /* cachesize or TLB pagesize */
+ uint16_t entries; /* number of TLB entries or linesize */
+} cpuid_cache_descriptor_t;
/*
- * Vendor ID array
+ * These multipliers are used to encode 1*K .. 64*M in a 16 bit size field
*/
-struct cpuid_name cpuid_name[] = {
- { CPUID_VID_INTEL,
- cpuid_intel, sizeof (cpuid_intel) / sizeof (cpuid_intel[0])
- },
- { CPUID_VID_UMC,
- (struct cpuid_product *)0,
- },
- { CPUID_VID_AMD,
- (struct cpuid_product *)0,
- },
- { CPUID_VID_CYRIX,
- (struct cpuid_product *)0,
- },
- { CPUID_VID_NEXTGEN,
- (struct cpuid_product *)0
- },
- { "",
- cpuid_generic, sizeof (cpuid_generic) / sizeof (cpuid_generic[0])
- },
- { (char *)0,
- }
-};
+#define K (1)
+#define M (1024)
/*
- * Feature Flag values
+ * Intel cache descriptor table:
*/
-char *cpuid_flag[] = {
- "FPU", /* Floating point unit on-chip */
- "VME", /* Virtual Mode Extension */
- "DE", /* Debugging Extension */
- "PSE", /* Page Size Extension */
- "TSC", /* Time Stamp Counter */
- "MSR", /* Model Specific Registers */
- "PAE", /* Physical Address Extension */
- "MCE", /* Machine Check Exception */
- "CX8", /* CMPXCHG8 Instruction sSupported */
- "APIC", /* Local APIC Supported */
- "(bit 10)",
- "(bit 11)",
- "MTRR", /* Machine Type Range Register */
- "PGE", /* Page Global Enable */
- "MCA", /* Machine Check Architecture */
- "CMOV", /* Conditional Move Instruction Supported */
- "(bit 16)",
- "(bit 17)",
- "(bit 18)",
- "(bit 19)",
- "(bit 20)",
- "(bit 21)",
- "(bit 22)",
- "MMX", /* Supports MMX instructions */
- "(bit 24)",
- "(bit 25)",
- "(bit 26)",
- "(bit 27)",
- "(bit 28)",
- "(bit 29)",
- "(bit 30)",
- "(bit 31)",
+static cpuid_cache_descriptor_t intel_cpuid_leaf2_descriptor_table[] = {
+// -------------------------------------------------------
+// value type level ways size entries
+// -------------------------------------------------------
+ { 0x00, _NULL_, NA, NA, NA, NA },
+ { 0x01, TLB, INST, 4, SMALL, 32 },
+ { 0x02, TLB, INST, FULLY, LARGE, 2 },
+ { 0x03, TLB, DATA, 4, SMALL, 64 },
+ { 0x04, TLB, DATA, 4, LARGE, 8 },
+ { 0x05, TLB, DATA1, 4, LARGE, 32 },
+ { 0x06, CACHE, L1_INST, 4, 8*K, 32 },
+ { 0x08, CACHE, L1_INST, 4, 16*K, 32 },
+ { 0x09, CACHE, L1_INST, 4, 32*K, 64 },
+ { 0x0A, CACHE, L1_DATA, 2, 8*K, 32 },
+ { 0x0B, TLB, INST, 4, LARGE, 4 },
+ { 0x0C, CACHE, L1_DATA, 4, 16*K, 32 },
+ { 0x0D, CACHE, L1_DATA, 4, 16*K, 64 },
+ { 0x0E, CACHE, L1_DATA, 6, 24*K, 64 },
+ { 0x21, CACHE, L2, 8, 256*K, 64 },
+ { 0x22, CACHE, L3_2LINESECTOR, 4, 512*K, 64 },
+ { 0x23, CACHE, L3_2LINESECTOR, 8, 1*M, 64 },
+ { 0x25, CACHE, L3_2LINESECTOR, 8, 2*M, 64 },
+ { 0x29, CACHE, L3_2LINESECTOR, 8, 4*M, 64 },
+ { 0x2C, CACHE, L1_DATA, 8, 32*K, 64 },
+ { 0x30, CACHE, L1_INST, 8, 32*K, 64 },
+ { 0x40, CACHE, L2, NA, 0, NA },
+ { 0x41, CACHE, L2, 4, 128*K, 32 },
+ { 0x42, CACHE, L2, 4, 256*K, 32 },
+ { 0x43, CACHE, L2, 4, 512*K, 32 },
+ { 0x44, CACHE, L2, 4, 1*M, 32 },
+ { 0x45, CACHE, L2, 4, 2*M, 32 },
+ { 0x46, CACHE, L3, 4, 4*M, 64 },
+ { 0x47, CACHE, L3, 8, 8*M, 64 },
+ { 0x48, CACHE, L2, 12, 3*M, 64 },
+ { 0x49, CACHE, L2, 16, 4*M, 64 },
+ { 0x4A, CACHE, L3, 12, 6*M, 64 },
+ { 0x4B, CACHE, L3, 16, 8*M, 64 },
+ { 0x4C, CACHE, L3, 12, 12*M, 64 },
+ { 0x4D, CACHE, L3, 16, 16*M, 64 },
+ { 0x4E, CACHE, L2, 24, 6*M, 64 },
+ { 0x4F, TLB, INST, NA, SMALL, 32 },
+ { 0x50, TLB, INST, NA, BOTH, 64 },
+ { 0x51, TLB, INST, NA, BOTH, 128 },
+ { 0x52, TLB, INST, NA, BOTH, 256 },
+ { 0x55, TLB, INST, FULLY, BOTH, 7 },
+ { 0x56, TLB, DATA0, 4, LARGE, 16 },
+ { 0x57, TLB, DATA0, 4, SMALL, 16 },
+ { 0x59, TLB, DATA0, FULLY, SMALL, 16 },
+ { 0x5A, TLB, DATA0, 4, LARGE, 32 },
+ { 0x5B, TLB, DATA, NA, BOTH, 64 },
+ { 0x5C, TLB, DATA, NA, BOTH, 128 },
+ { 0x5D, TLB, DATA, NA, BOTH, 256 },
+ { 0x60, CACHE, L1, 16*K, 8, 64 },
+ { 0x61, CACHE, L1, 4, 8*K, 64 },
+ { 0x62, CACHE, L1, 4, 16*K, 64 },
+ { 0x63, CACHE, L1, 4, 32*K, 64 },
+ { 0x70, CACHE, TRACE, 8, 12*K, NA },
+ { 0x71, CACHE, TRACE, 8, 16*K, NA },
+ { 0x72, CACHE, TRACE, 8, 32*K, NA },
+ { 0x76, TLB, INST, NA, BOTH, 8 },
+ { 0x78, CACHE, L2, 4, 1*M, 64 },
+ { 0x79, CACHE, L2_2LINESECTOR, 8, 128*K, 64 },
+ { 0x7A, CACHE, L2_2LINESECTOR, 8, 256*K, 64 },
+ { 0x7B, CACHE, L2_2LINESECTOR, 8, 512*K, 64 },
+ { 0x7C, CACHE, L2_2LINESECTOR, 8, 1*M, 64 },
+ { 0x7D, CACHE, L2, 8, 2*M, 64 },
+ { 0x7F, CACHE, L2, 2, 512*K, 64 },
+ { 0x80, CACHE, L2, 8, 512*K, 64 },
+ { 0x82, CACHE, L2, 8, 256*K, 32 },
+ { 0x83, CACHE, L2, 8, 512*K, 32 },
+ { 0x84, CACHE, L2, 8, 1*M, 32 },
+ { 0x85, CACHE, L2, 8, 2*M, 32 },
+ { 0x86, CACHE, L2, 4, 512*K, 64 },
+ { 0x87, CACHE, L2, 8, 1*M, 64 },
+ { 0xB0, TLB, INST, 4, SMALL, 128 },
+ { 0xB1, TLB, INST, 4, LARGE, 8 },
+ { 0xB2, TLB, INST, 4, SMALL, 64 },
+ { 0xB3, TLB, DATA, 4, SMALL, 128 },
+ { 0xB4, TLB, DATA1, 4, SMALL, 256 },
+ { 0xB5, TLB, DATA1, 8, SMALL, 64 },
+ { 0xB6, TLB, DATA1, 8, SMALL, 128 },
+ { 0xBA, TLB, DATA1, 4, BOTH, 64 },
+ { 0xC1, STLB, DATA1, 8, SMALL, 1024},
+ { 0xCA, STLB, DATA1, 4, SMALL, 512 },
+ { 0xD0, CACHE, L3, 4, 512*K, 64 },
+ { 0xD1, CACHE, L3, 4, 1*M, 64 },
+ { 0xD2, CACHE, L3, 4, 2*M, 64 },
+ { 0xD3, CACHE, L3, 4, 4*M, 64 },
+ { 0xD4, CACHE, L3, 4, 8*M, 64 },
+ { 0xD6, CACHE, L3, 8, 1*M, 64 },
+ { 0xD7, CACHE, L3, 8, 2*M, 64 },
+ { 0xD8, CACHE, L3, 8, 4*M, 64 },
+ { 0xD9, CACHE, L3, 8, 8*M, 64 },
+ { 0xDA, CACHE, L3, 8, 12*M, 64 },
+ { 0xDC, CACHE, L3, 12, 1536*K, 64 },
+ { 0xDD, CACHE, L3, 12, 3*M, 64 },
+ { 0xDE, CACHE, L3, 12, 6*M, 64 },
+ { 0xDF, CACHE, L3, 12, 12*M, 64 },
+ { 0xE0, CACHE, L3, 12, 18*M, 64 },
+ { 0xE2, CACHE, L3, 16, 2*M, 64 },
+ { 0xE3, CACHE, L3, 16, 4*M, 64 },
+ { 0xE4, CACHE, L3, 16, 8*M, 64 },
+ { 0xE5, CACHE, L3, 16, 16*M, 64 },
+ { 0xE6, CACHE, L3, 16, 24*M, 64 },
+ { 0xF0, PREFETCH, NA, NA, 64, NA },
+ { 0xF1, PREFETCH, NA, NA, 128, NA },
+ { 0xFF, CACHE, NA, NA, 0, NA }
};
+#define INTEL_LEAF2_DESC_NUM (sizeof(intel_cpuid_leaf2_descriptor_table) / \
+ sizeof(cpuid_cache_descriptor_t))
+
+static inline cpuid_cache_descriptor_t *
+cpuid_leaf2_find(uint8_t value)
+{
+ unsigned int i;
+
+ for (i = 0; i < INTEL_LEAF2_DESC_NUM; i++)
+ if (intel_cpuid_leaf2_descriptor_table[i].value == value)
+ return &intel_cpuid_leaf2_descriptor_table[i];
+ return NULL;
+}
/*
- * Cache description array
+ * CPU identification routines.
*/
-struct cpuid_cache_desc cpuid_cache_desc[] = {
- { CPUID_CACHE_ITLB_4K,
- "Instruction TBL, 4K, pages 4-way set associative, 64 entries"
- },
- { CPUID_CACHE_ITLB_4M,
- "Instruction TBL, 4M, pages 4-way set associative, 4 entries"
- },
- { CPUID_CACHE_DTLB_4K,
- "Data TBL, 4K pages, 4-way set associative, 64 entries"
- },
- { CPUID_CACHE_DTLB_4M,
- "Data TBL, 4M pages, 4-way set associative, 4 entries"
- },
- { CPUID_CACHE_ICACHE_8K,
- "Instruction L1 cache, 8K, 4-way set associative, 32byte line size"
- },
- { CPUID_CACHE_DCACHE_8K,
- "Data L1 cache, 8K, 2-way set associative, 32byte line size"
- },
- { CPUID_CACHE_UCACHE_128K,
- "Unified L2 cache, 128K, 4-way set associative, 32byte line size"
- },
- { CPUID_CACHE_UCACHE_256K,
- "Unified L2 cache, 256K, 4-way set associative, 32byte line size"
- },
- { CPUID_CACHE_UCACHE_512K,
- "Unified L2 cache, 512K, 4-way set associative, 32byte line size"
- },
- { CPUID_CACHE_NULL,
- (char *)0
- }
+
+static i386_cpu_info_t cpuid_cpu_info;
+static i386_cpu_info_t *cpuid_cpu_infop = NULL;
+
+static void cpuid_fn(uint32_t selector, uint32_t *result)
+{
+ do_cpuid(selector, result);
+ DBG("cpuid_fn(0x%08x) eax:0x%08x ebx:0x%08x ecx:0x%08x edx:0x%08x\n",
+ selector, result[0], result[1], result[2], result[3]);
+}
+
+static const char *cache_type_str[LCACHE_MAX] = {
+ "Lnone", "L1I", "L1D", "L2U", "L3U"
};
+
+/* this function is Intel-specific */
+static void
+cpuid_set_cache_info( i386_cpu_info_t * info_p )
+{
+ uint32_t cpuid_result[4];
+ uint32_t reg[4];
+ uint32_t index;
+ uint32_t linesizes[LCACHE_MAX];
+ unsigned int i;
+ unsigned int j;
+ boolean_t cpuid_deterministic_supported = FALSE;
+
+ DBG("cpuid_set_cache_info(%p)\n", info_p);
+
+ bzero( linesizes, sizeof(linesizes) );
+
+ /* Get processor cache descriptor info using leaf 2. We don't use
+ * this internally, but must publish it for KEXTs.
+ */
+ cpuid_fn(2, cpuid_result);
+ for (j = 0; j < 4; j++) {
+ if ((cpuid_result[j] >> 31) == 1) /* bit31 is validity */
+ continue;
+ ((uint32_t *) info_p->cache_info)[j] = cpuid_result[j];
+ }
+ /* first byte gives number of cpuid calls to get all descriptors */
+ for (i = 1; i < info_p->cache_info[0]; i++) {
+ if (i*16 > sizeof(info_p->cache_info))
+ break;
+ cpuid_fn(2, cpuid_result);
+ for (j = 0; j < 4; j++) {
+ if ((cpuid_result[j] >> 31) == 1)
+ continue;
+ ((uint32_t *) info_p->cache_info)[4*i+j] =
+ cpuid_result[j];
+ }
+ }
+
+ /*
+ * Get cache info using leaf 4, the "deterministic cache parameters."
+ * Most processors Mac OS X supports implement this flavor of CPUID.
+ * Loop over each cache on the processor.
+ */
+ cpuid_fn(0, cpuid_result);
+ if (cpuid_result[eax] >= 4)
+ cpuid_deterministic_supported = TRUE;
+
+ for (index = 0; cpuid_deterministic_supported; index++) {
+ cache_type_t type = Lnone;
+ uint32_t cache_type;
+ uint32_t cache_level;
+ uint32_t cache_sharing;
+ uint32_t cache_linesize;
+ uint32_t cache_sets;
+ uint32_t cache_associativity;
+ uint32_t cache_size;
+ uint32_t cache_partitions;
+ uint32_t colors;
+
+ reg[eax] = 4; /* cpuid request 4 */
+ reg[ecx] = index; /* index starting at 0 */
+ cpuid(reg);
+ DBG("cpuid(4) index=%d eax=0x%x\n", index, reg[eax]);
+ cache_type = bitfield32(reg[eax], 4, 0);
+ if (cache_type == 0)
+ break; /* no more caches */
+ cache_level = bitfield32(reg[eax], 7, 5);
+ cache_sharing = bitfield32(reg[eax], 25, 14) + 1;
+ info_p->cpuid_cores_per_package
+ = bitfield32(reg[eax], 31, 26) + 1;
+ cache_linesize = bitfield32(reg[ebx], 11, 0) + 1;
+ cache_partitions = bitfield32(reg[ebx], 21, 12) + 1;
+ cache_associativity = bitfield32(reg[ebx], 31, 22) + 1;
+ cache_sets = bitfield32(reg[ecx], 31, 0) + 1;
+
+ /* Map type/levels returned by CPUID into cache_type_t */
+ switch (cache_level) {
+ case 1:
+ type = cache_type == 1 ? L1D :
+ cache_type == 2 ? L1I :
+ Lnone;
+ break;
+ case 2:
+ type = cache_type == 3 ? L2U :
+ Lnone;
+ break;
+ case 3:
+ type = cache_type == 3 ? L3U :
+ Lnone;
+ break;
+ default:
+ type = Lnone;
+ }
+
+ /* The total size of a cache is:
+ * ( linesize * sets * associativity * partitions )
+ */
+ if (type != Lnone) {
+ cache_size = cache_linesize * cache_sets *
+ cache_associativity * cache_partitions;
+ info_p->cache_size[type] = cache_size;
+ info_p->cache_sharing[type] = cache_sharing;
+ info_p->cache_partitions[type] = cache_partitions;
+ linesizes[type] = cache_linesize;
+
+ DBG(" cache_size[%s] : %d\n",
+ cache_type_str[type], cache_size);
+ DBG(" cache_sharing[%s] : %d\n",
+ cache_type_str[type], cache_sharing);
+ DBG(" cache_partitions[%s]: %d\n",
+ cache_type_str[type], cache_partitions);
+
+ /*
+ * Overwrite associativity determined via
+ * CPUID.0x80000006 -- this leaf is more
+ * accurate
+ */
+ if (type == L2U)
+ info_p->cpuid_cache_L2_associativity = cache_associativity;
+
+ /* Compute the number of page colors for this cache,
+ * which is:
+ * ( linesize * sets ) / page_size
+ *
+ * To help visualize this, consider two views of a
+ * physical address. To the cache, it is composed
+ * of a line offset, a set selector, and a tag.
+ * To VM, it is composed of a page offset, a page
+ * color, and other bits in the pageframe number:
+ *
+ * +-----------------+---------+--------+
+ * cache: | tag | set | offset |
+ * +-----------------+---------+--------+
+ *
+ * +-----------------+-------+----------+
+ * VM: | don't care | color | pg offset|
+ * +-----------------+-------+----------+
+ *
+ * The color is those bits in (set+offset) not covered
+ * by the page offset.
+ */
+ colors = ( cache_linesize * cache_sets ) >> 12;
+
+ if ( colors > vm_cache_geometry_colors )
+ vm_cache_geometry_colors = colors;
+ }
+ }
+ DBG(" vm_cache_geometry_colors: %d\n", vm_cache_geometry_colors);
+
+ /*
+ * If deterministic cache parameters are not available, use
+ * something else
+ */
+ if (info_p->cpuid_cores_per_package == 0) {
+ info_p->cpuid_cores_per_package = 1;
+
+ /* cpuid define in 1024 quantities */
+ info_p->cache_size[L2U] = info_p->cpuid_cache_size * 1024;
+ info_p->cache_sharing[L2U] = 1;
+ info_p->cache_partitions[L2U] = 1;
+
+ linesizes[L2U] = info_p->cpuid_cache_linesize;
+
+ DBG(" cache_size[L2U] : %d\n",
+ info_p->cache_size[L2U]);
+ DBG(" cache_sharing[L2U] : 1\n");
+ DBG(" cache_partitions[L2U]: 1\n");
+ DBG(" linesizes[L2U] : %d\n",
+ info_p->cpuid_cache_linesize);
+ }
+
+ /*
+ * What linesize to publish? We use the L2 linesize if any,
+ * else the L1D.
+ */
+ if ( linesizes[L2U] )
+ info_p->cache_linesize = linesizes[L2U];
+ else if (linesizes[L1D])
+ info_p->cache_linesize = linesizes[L1D];
+ else panic("no linesize");
+ DBG(" cache_linesize : %d\n", info_p->cache_linesize);
+
+ /*
+ * Extract and publish TLB information from Leaf 2 descriptors.
+ */
+ DBG(" %ld leaf2 descriptors:\n", sizeof(info_p->cache_info));
+ for (i = 1; i < sizeof(info_p->cache_info); i++) {
+ cpuid_cache_descriptor_t *descp;
+ int id;
+ int level;
+ int page;
+
+ DBG(" 0x%02x", info_p->cache_info[i]);
+ descp = cpuid_leaf2_find(info_p->cache_info[i]);
+ if (descp == NULL)
+ continue;
+
+ switch (descp->type) {
+ case TLB:
+ page = (descp->size == SMALL) ? TLB_SMALL : TLB_LARGE;
+ /* determine I or D: */
+ switch (descp->level) {
+ case INST:
+ id = TLB_INST;
+ break;
+ case DATA:
+ case DATA0:
+ case DATA1:
+ id = TLB_DATA;
+ break;
+ default:
+ continue;
+ }
+ /* determine level: */
+ switch (descp->level) {
+ case DATA1:
+ level = 1;
+ break;
+ default:
+ level = 0;
+ }
+ info_p->cpuid_tlb[id][page][level] = descp->entries;
+ break;
+ case STLB:
+ info_p->cpuid_stlb = descp->entries;
+ }
+ }
+ DBG("\n");
+}
+
+static void
+cpuid_set_generic_info(i386_cpu_info_t *info_p)
+{
+ uint32_t reg[4];
+ char str[128], *p;
+
+ DBG("cpuid_set_generic_info(%p)\n", info_p);
+
+ /* do cpuid 0 to get vendor */
+ cpuid_fn(0, reg);
+ info_p->cpuid_max_basic = reg[eax];
+ bcopy((char *)®[ebx], &info_p->cpuid_vendor[0], 4); /* ug */
+ bcopy((char *)®[ecx], &info_p->cpuid_vendor[8], 4);
+ bcopy((char *)®[edx], &info_p->cpuid_vendor[4], 4);
+ info_p->cpuid_vendor[12] = 0;
+
+ /* get extended cpuid results */
+ cpuid_fn(0x80000000, reg);
+ info_p->cpuid_max_ext = reg[eax];
+
+ /* check to see if we can get brand string */
+ if (info_p->cpuid_max_ext >= 0x80000004) {
+ /*
+ * The brand string 48 bytes (max), guaranteed to
+ * be NUL terminated.
+ */
+ cpuid_fn(0x80000002, reg);
+ bcopy((char *)reg, &str[0], 16);
+ cpuid_fn(0x80000003, reg);
+ bcopy((char *)reg, &str[16], 16);
+ cpuid_fn(0x80000004, reg);
+ bcopy((char *)reg, &str[32], 16);
+ for (p = str; *p != '\0'; p++) {
+ if (*p != ' ') break;
+ }
+ strlcpy(info_p->cpuid_brand_string,
+ p, sizeof(info_p->cpuid_brand_string));
+
+ if (!strncmp(info_p->cpuid_brand_string, CPUID_STRING_UNKNOWN,
+ min(sizeof(info_p->cpuid_brand_string),
+ strlen(CPUID_STRING_UNKNOWN) + 1))) {
+ /*
+ * This string means we have a firmware-programmable brand string,
+ * and the firmware couldn't figure out what sort of CPU we have.
+ */
+ info_p->cpuid_brand_string[0] = '\0';
+ }
+ }
-/*
- * CPU identification
- */
-unsigned int cpuid_value;
-unsigned char cpuid_type;
-unsigned char cpuid_family;
-unsigned char cpuid_model;
-unsigned char cpuid_stepping;
-unsigned int cpuid_feature;
-char cpuid_vid[CPUID_VID_SIZE + 1];
-unsigned char cpuid_cache[CPUID_CACHE_SIZE];
+ /* Get cache and addressing info. */
+ if (info_p->cpuid_max_ext >= 0x80000006) {
+ uint32_t assoc;
+ cpuid_fn(0x80000006, reg);
+ info_p->cpuid_cache_linesize = bitfield32(reg[ecx], 7, 0);
+ assoc = bitfield32(reg[ecx],15,12);
+ /*
+ * L2 associativity is encoded, though in an insufficiently
+ * descriptive fashion, e.g. 24-way is mapped to 16-way.
+ * Represent a fully associative cache as 0xFFFF.
+ * Overwritten by associativity as determined via CPUID.4
+ * if available.
+ */
+ if (assoc == 6)
+ assoc = 8;
+ else if (assoc == 8)
+ assoc = 16;
+ else if (assoc == 0xF)
+ assoc = 0xFFFF;
+ info_p->cpuid_cache_L2_associativity = assoc;
+ info_p->cpuid_cache_size = bitfield32(reg[ecx],31,16);
+ cpuid_fn(0x80000008, reg);
+ info_p->cpuid_address_bits_physical =
+ bitfield32(reg[eax], 7, 0);
+ info_p->cpuid_address_bits_virtual =
+ bitfield32(reg[eax],15, 8);
+ }
+ /*
+ * Get processor signature and decode
+ * and bracket this with the approved procedure for reading the
+ * the microcode version number a.k.a. signature a.k.a. BIOS ID
+ */
+ wrmsr64(MSR_IA32_BIOS_SIGN_ID, 0);
+ cpuid_fn(1, reg);
+ info_p->cpuid_microcode_version =
+ (uint32_t) (rdmsr64(MSR_IA32_BIOS_SIGN_ID) >> 32);
+ info_p->cpuid_signature = reg[eax];
+ info_p->cpuid_stepping = bitfield32(reg[eax], 3, 0);
+ info_p->cpuid_model = bitfield32(reg[eax], 7, 4);
+ info_p->cpuid_family = bitfield32(reg[eax], 11, 8);
+ info_p->cpuid_type = bitfield32(reg[eax], 13, 12);
+ info_p->cpuid_extmodel = bitfield32(reg[eax], 19, 16);
+ info_p->cpuid_extfamily = bitfield32(reg[eax], 27, 20);
+ info_p->cpuid_brand = bitfield32(reg[ebx], 7, 0);
+ info_p->cpuid_features = quad(reg[ecx], reg[edx]);
+
+ /* Get "processor flag"; necessary for microcode update matching */
+ info_p->cpuid_processor_flag = (rdmsr64(MSR_IA32_PLATFORM_ID)>> 50) & 0x7;
+
+ /* Fold extensions into family/model */
+ if (info_p->cpuid_family == 0x0f)
+ info_p->cpuid_family += info_p->cpuid_extfamily;
+ if (info_p->cpuid_family == 0x0f || info_p->cpuid_family == 0x06)
+ info_p->cpuid_model += (info_p->cpuid_extmodel << 4);
+
+ if (info_p->cpuid_features & CPUID_FEATURE_HTT)
+ info_p->cpuid_logical_per_package =
+ bitfield32(reg[ebx], 23, 16);
+ else
+ info_p->cpuid_logical_per_package = 1;
+
+ if (info_p->cpuid_max_ext >= 0x80000001) {
+ cpuid_fn(0x80000001, reg);
+ info_p->cpuid_extfeatures =
+ quad(reg[ecx], reg[edx]);
+ }
+
+ DBG(" max_basic : %d\n", info_p->cpuid_max_basic);
+ DBG(" max_ext : 0x%08x\n", info_p->cpuid_max_ext);
+ DBG(" vendor : %s\n", info_p->cpuid_vendor);
+ DBG(" brand_string : %s\n", info_p->cpuid_brand_string);
+ DBG(" signature : 0x%08x\n", info_p->cpuid_signature);
+ DBG(" stepping : %d\n", info_p->cpuid_stepping);
+ DBG(" model : %d\n", info_p->cpuid_model);
+ DBG(" family : %d\n", info_p->cpuid_family);
+ DBG(" type : %d\n", info_p->cpuid_type);
+ DBG(" extmodel : %d\n", info_p->cpuid_extmodel);
+ DBG(" extfamily : %d\n", info_p->cpuid_extfamily);
+ DBG(" brand : %d\n", info_p->cpuid_brand);
+ DBG(" features : 0x%016llx\n", info_p->cpuid_features);
+ DBG(" extfeatures : 0x%016llx\n", info_p->cpuid_extfeatures);
+ DBG(" logical_per_package : %d\n", info_p->cpuid_logical_per_package);
+ DBG(" microcode_version : 0x%08x\n", info_p->cpuid_microcode_version);
+
+ /* Fold in the Invariant TSC feature bit, if present */
+ if (info_p->cpuid_max_ext >= 0x80000007) {
+ cpuid_fn(0x80000007, reg);
+ info_p->cpuid_extfeatures |=
+ reg[edx] & (uint32_t)CPUID_EXTFEATURE_TSCI;
+ DBG(" extfeatures : 0x%016llx\n",
+ info_p->cpuid_extfeatures);
+ }
+
+ if (info_p->cpuid_max_basic >= 0x5) {
+ cpuid_mwait_leaf_t *cmp = &info_p->cpuid_mwait_leaf;
+
+ /*
+ * Extract the Monitor/Mwait Leaf info:
+ */
+ cpuid_fn(5, reg);
+ cmp->linesize_min = reg[eax];
+ cmp->linesize_max = reg[ebx];
+ cmp->extensions = reg[ecx];
+ cmp->sub_Cstates = reg[edx];
+ info_p->cpuid_mwait_leafp = cmp;
+
+ DBG(" Monitor/Mwait Leaf:\n");
+ DBG(" linesize_min : %d\n", cmp->linesize_min);
+ DBG(" linesize_max : %d\n", cmp->linesize_max);
+ DBG(" extensions : %d\n", cmp->extensions);
+ DBG(" sub_Cstates : 0x%08x\n", cmp->sub_Cstates);
+ }
+
+ if (info_p->cpuid_max_basic >= 0x6) {
+ cpuid_thermal_leaf_t *ctp = &info_p->cpuid_thermal_leaf;
+
+ /*
+ * The thermal and Power Leaf:
+ */
+ cpuid_fn(6, reg);
+ ctp->sensor = bitfield32(reg[eax], 0, 0);
+ ctp->dynamic_acceleration = bitfield32(reg[eax], 1, 1);
+ ctp->invariant_APIC_timer = bitfield32(reg[eax], 2, 2);
+ ctp->core_power_limits = bitfield32(reg[eax], 4, 4);
+ ctp->fine_grain_clock_mod = bitfield32(reg[eax], 5, 5);
+ ctp->package_thermal_intr = bitfield32(reg[eax], 6, 6);
+ ctp->thresholds = bitfield32(reg[ebx], 3, 0);
+ ctp->ACNT_MCNT = bitfield32(reg[ecx], 0, 0);
+ ctp->hardware_feedback = bitfield32(reg[ecx], 1, 1);
+ ctp->energy_policy = bitfield32(reg[ecx], 3, 3);
+ info_p->cpuid_thermal_leafp = ctp;
+
+ DBG(" Thermal/Power Leaf:\n");
+ DBG(" sensor : %d\n", ctp->sensor);
+ DBG(" dynamic_acceleration : %d\n", ctp->dynamic_acceleration);
+ DBG(" invariant_APIC_timer : %d\n", ctp->invariant_APIC_timer);
+ DBG(" core_power_limits : %d\n", ctp->core_power_limits);
+ DBG(" fine_grain_clock_mod : %d\n", ctp->fine_grain_clock_mod);
+ DBG(" package_thermal_intr : %d\n", ctp->package_thermal_intr);
+ DBG(" thresholds : %d\n", ctp->thresholds);
+ DBG(" ACNT_MCNT : %d\n", ctp->ACNT_MCNT);
+ DBG(" ACNT2 : %d\n", ctp->hardware_feedback);
+ DBG(" energy_policy : %d\n", ctp->energy_policy);
+ }
+
+ if (info_p->cpuid_max_basic >= 0xa) {
+ cpuid_arch_perf_leaf_t *capp = &info_p->cpuid_arch_perf_leaf;
+
+ /*
+ * Architectural Performance Monitoring Leaf:
+ */
+ cpuid_fn(0xa, reg);
+ capp->version = bitfield32(reg[eax], 7, 0);
+ capp->number = bitfield32(reg[eax], 15, 8);
+ capp->width = bitfield32(reg[eax], 23, 16);
+ capp->events_number = bitfield32(reg[eax], 31, 24);
+ capp->events = reg[ebx];
+ capp->fixed_number = bitfield32(reg[edx], 4, 0);
+ capp->fixed_width = bitfield32(reg[edx], 12, 5);
+ info_p->cpuid_arch_perf_leafp = capp;
+
+ DBG(" Architectural Performance Monitoring Leaf:\n");
+ DBG(" version : %d\n", capp->version);
+ DBG(" number : %d\n", capp->number);
+ DBG(" width : %d\n", capp->width);
+ DBG(" events_number : %d\n", capp->events_number);
+ DBG(" events : %d\n", capp->events);
+ DBG(" fixed_number : %d\n", capp->fixed_number);
+ DBG(" fixed_width : %d\n", capp->fixed_width);
+ }
+
+ if (info_p->cpuid_max_basic >= 0xd) {
+ cpuid_xsave_leaf_t *xsp = &info_p->cpuid_xsave_leaf;
+ /*
+ * XSAVE Features:
+ */
+ cpuid_fn(0xd, info_p->cpuid_xsave_leaf.extended_state);
+ info_p->cpuid_xsave_leafp = xsp;
+
+ DBG(" XSAVE Leaf:\n");
+ DBG(" EAX : 0x%x\n", xsp->extended_state[eax]);
+ DBG(" EBX : 0x%x\n", xsp->extended_state[ebx]);
+ DBG(" ECX : 0x%x\n", xsp->extended_state[ecx]);
+ DBG(" EDX : 0x%x\n", xsp->extended_state[edx]);
+ }
+
+ if (info_p->cpuid_model >= CPUID_MODEL_IVYBRIDGE) {
+ /*
+ * Leaf7 Features:
+ */
+ cpuid_fn(0x7, reg);
+ info_p->cpuid_leaf7_features = reg[ebx];
+
+ DBG(" Feature Leaf7:\n");
+ DBG(" EBX : 0x%x\n", reg[ebx]);
+ }
+
+ return;
+}
+
+static uint32_t
+cpuid_set_cpufamily(i386_cpu_info_t *info_p)
+{
+ uint32_t cpufamily = CPUFAMILY_UNKNOWN;
+
+ switch (info_p->cpuid_family) {
+ case 6:
+ switch (info_p->cpuid_model) {
+ case 15:
+ cpufamily = CPUFAMILY_INTEL_MEROM;
+ break;
+ case 23:
+ cpufamily = CPUFAMILY_INTEL_PENRYN;
+ break;
+ case CPUID_MODEL_NEHALEM:
+ case CPUID_MODEL_FIELDS:
+ case CPUID_MODEL_DALES:
+ case CPUID_MODEL_NEHALEM_EX:
+ cpufamily = CPUFAMILY_INTEL_NEHALEM;
+ break;
+ case CPUID_MODEL_DALES_32NM:
+ case CPUID_MODEL_WESTMERE:
+ case CPUID_MODEL_WESTMERE_EX:
+ cpufamily = CPUFAMILY_INTEL_WESTMERE;
+ break;
+ case CPUID_MODEL_SANDYBRIDGE:
+ case CPUID_MODEL_JAKETOWN:
+ cpufamily = CPUFAMILY_INTEL_SANDYBRIDGE;
+ break;
+ case CPUID_MODEL_IVYBRIDGE:
+ case CPUID_MODEL_IVYBRIDGE_EP:
+ cpufamily = CPUFAMILY_INTEL_IVYBRIDGE;
+ break;
+ case CPUID_MODEL_HASWELL:
+ case CPUID_MODEL_HASWELL_ULT:
+ case CPUID_MODEL_CRYSTALWELL:
+ cpufamily = CPUFAMILY_INTEL_HASWELL;
+ break;
+ }
+ break;
+ }
+
+ info_p->cpuid_cpufamily = cpufamily;
+ DBG("cpuid_set_cpufamily(%p) returning 0x%x\n", info_p, cpufamily);
+ return cpufamily;
+}
/*
- * Return correct CPU_TYPE
+ * Must be invoked either when executing single threaded, or with
+ * independent synchronization.
*/
-/*ARGSUSED*/
-cpu_type_t
-cpuid_cputype(
- int my_cpu)
+void
+cpuid_set_info(void)
{
-#ifndef MACH_BSD /* FIXME - add more family/chip types */
- switch (cpuid_family) {
- case CPUID_FAMILY_PPRO:
- return (CPU_TYPE_PENTIUMPRO);
- case CPUID_FAMILY_P5:
- return (CPU_TYPE_PENTIUM);
- case CPUID_FAMILY_486:
- return (CPU_TYPE_I486);
- default:
- break;
- }
-#endif
- return (CPU_TYPE_I386);
+ i386_cpu_info_t *info_p = &cpuid_cpu_info;
+
+ cpuid_set_generic_info(info_p);
+
+ /* verify we are running on a supported CPU */
+ if ((strncmp(CPUID_VID_INTEL, info_p->cpuid_vendor,
+ min(strlen(CPUID_STRING_UNKNOWN) + 1,
+ sizeof(info_p->cpuid_vendor)))) ||
+ (cpuid_set_cpufamily(info_p) == CPUFAMILY_UNKNOWN))
+ panic("Unsupported CPU");
+
+ info_p->cpuid_cpu_type = CPU_TYPE_X86;
+ info_p->cpuid_cpu_subtype = CPU_SUBTYPE_X86_ARCH1;
+ /* Must be invoked after set_generic_info */
+ cpuid_set_cache_info(info_p);
+
+ /*
+ * Find the number of enabled cores and threads
+ * (which determines whether SMT/Hyperthreading is active).
+ */
+ switch (info_p->cpuid_cpufamily) {
+ case CPUFAMILY_INTEL_WESTMERE: {
+ uint64_t msr = rdmsr64(MSR_CORE_THREAD_COUNT);
+ info_p->core_count = bitfield32((uint32_t)msr, 19, 16);
+ info_p->thread_count = bitfield32((uint32_t)msr, 15, 0);
+ break;
+ }
+ case CPUFAMILY_INTEL_HASWELL:
+ case CPUFAMILY_INTEL_IVYBRIDGE:
+ case CPUFAMILY_INTEL_SANDYBRIDGE:
+ case CPUFAMILY_INTEL_NEHALEM: {
+ uint64_t msr = rdmsr64(MSR_CORE_THREAD_COUNT);
+ info_p->core_count = bitfield32((uint32_t)msr, 31, 16);
+ info_p->thread_count = bitfield32((uint32_t)msr, 15, 0);
+ break;
+ }
+ }
+ if (info_p->core_count == 0) {
+ info_p->core_count = info_p->cpuid_cores_per_package;
+ info_p->thread_count = info_p->cpuid_logical_per_package;
+ }
+ DBG("cpuid_set_info():\n");
+ DBG(" core_count : %d\n", info_p->core_count);
+ DBG(" thread_count : %d\n", info_p->thread_count);
+
+ info_p->cpuid_model_string = ""; /* deprecated */
+}
+
+static struct table {
+ uint64_t mask;
+ const char *name;
+} feature_map[] = {
+ {CPUID_FEATURE_FPU, "FPU"},
+ {CPUID_FEATURE_VME, "VME"},
+ {CPUID_FEATURE_DE, "DE"},
+ {CPUID_FEATURE_PSE, "PSE"},
+ {CPUID_FEATURE_TSC, "TSC"},
+ {CPUID_FEATURE_MSR, "MSR"},
+ {CPUID_FEATURE_PAE, "PAE"},
+ {CPUID_FEATURE_MCE, "MCE"},
+ {CPUID_FEATURE_CX8, "CX8"},
+ {CPUID_FEATURE_APIC, "APIC"},
+ {CPUID_FEATURE_SEP, "SEP"},
+ {CPUID_FEATURE_MTRR, "MTRR"},
+ {CPUID_FEATURE_PGE, "PGE"},
+ {CPUID_FEATURE_MCA, "MCA"},
+ {CPUID_FEATURE_CMOV, "CMOV"},
+ {CPUID_FEATURE_PAT, "PAT"},
+ {CPUID_FEATURE_PSE36, "PSE36"},
+ {CPUID_FEATURE_PSN, "PSN"},
+ {CPUID_FEATURE_CLFSH, "CLFSH"},
+ {CPUID_FEATURE_DS, "DS"},
+ {CPUID_FEATURE_ACPI, "ACPI"},
+ {CPUID_FEATURE_MMX, "MMX"},
+ {CPUID_FEATURE_FXSR, "FXSR"},
+ {CPUID_FEATURE_SSE, "SSE"},
+ {CPUID_FEATURE_SSE2, "SSE2"},
+ {CPUID_FEATURE_SS, "SS"},
+ {CPUID_FEATURE_HTT, "HTT"},
+ {CPUID_FEATURE_TM, "TM"},
+ {CPUID_FEATURE_PBE, "PBE"},
+ {CPUID_FEATURE_SSE3, "SSE3"},
+ {CPUID_FEATURE_PCLMULQDQ, "PCLMULQDQ"},
+ {CPUID_FEATURE_DTES64, "DTES64"},
+ {CPUID_FEATURE_MONITOR, "MON"},
+ {CPUID_FEATURE_DSCPL, "DSCPL"},
+ {CPUID_FEATURE_VMX, "VMX"},
+ {CPUID_FEATURE_SMX, "SMX"},
+ {CPUID_FEATURE_EST, "EST"},
+ {CPUID_FEATURE_TM2, "TM2"},
+ {CPUID_FEATURE_SSSE3, "SSSE3"},
+ {CPUID_FEATURE_CID, "CID"},
+ {CPUID_FEATURE_FMA, "FMA"},
+ {CPUID_FEATURE_CX16, "CX16"},
+ {CPUID_FEATURE_xTPR, "TPR"},
+ {CPUID_FEATURE_PDCM, "PDCM"},
+ {CPUID_FEATURE_SSE4_1, "SSE4.1"},
+ {CPUID_FEATURE_SSE4_2, "SSE4.2"},
+ {CPUID_FEATURE_x2APIC, "x2APIC"},
+ {CPUID_FEATURE_MOVBE, "MOVBE"},
+ {CPUID_FEATURE_POPCNT, "POPCNT"},
+ {CPUID_FEATURE_AES, "AES"},
+ {CPUID_FEATURE_VMM, "VMM"},
+ {CPUID_FEATURE_PCID, "PCID"},
+ {CPUID_FEATURE_XSAVE, "XSAVE"},
+ {CPUID_FEATURE_OSXSAVE, "OSXSAVE"},
+ {CPUID_FEATURE_SEGLIM64, "SEGLIM64"},
+ {CPUID_FEATURE_TSCTMR, "TSCTMR"},
+ {CPUID_FEATURE_AVX1_0, "AVX1.0"},
+ {CPUID_FEATURE_RDRAND, "RDRAND"},
+ {CPUID_FEATURE_F16C, "F16C"},
+ {0, 0}
+},
+extfeature_map[] = {
+ {CPUID_EXTFEATURE_SYSCALL, "SYSCALL"},
+ {CPUID_EXTFEATURE_XD, "XD"},
+ {CPUID_EXTFEATURE_1GBPAGE, "1GBPAGE"},
+ {CPUID_EXTFEATURE_EM64T, "EM64T"},
+ {CPUID_EXTFEATURE_LAHF, "LAHF"},
+ {CPUID_EXTFEATURE_RDTSCP, "RDTSCP"},
+ {CPUID_EXTFEATURE_TSCI, "TSCI"},
+ {0, 0}
+
+},
+leaf7_feature_map[] = {
+ {CPUID_LEAF7_FEATURE_SMEP, "SMEP"},
+ {CPUID_LEAF7_FEATURE_ENFSTRG, "ENFSTRG"},
+ {CPUID_LEAF7_FEATURE_RDWRFSGS, "RDWRFSGS"},
+ {CPUID_LEAF7_FEATURE_TSCOFF, "TSC_THREAD_OFFSET"},
+ {CPUID_LEAF7_FEATURE_BMI1, "BMI1"},
+ {CPUID_LEAF7_FEATURE_HLE, "HLE"},
+ {CPUID_LEAF7_FEATURE_AVX2, "AVX2"},
+ {CPUID_LEAF7_FEATURE_BMI2, "BMI2"},
+ {CPUID_LEAF7_FEATURE_INVPCID, "INVPCID"},
+ {CPUID_LEAF7_FEATURE_RTM, "RTM"},
+ {0, 0}
+};
+
+static char *
+cpuid_get_names(struct table *map, uint64_t bits, char *buf, unsigned buf_len)
+{
+ size_t len = 0;
+ char *p = buf;
+ int i;
+
+ for (i = 0; map[i].mask != 0; i++) {
+ if ((bits & map[i].mask) == 0)
+ continue;
+ if (len && ((size_t) (p - buf) < (buf_len - 1)))
+ *p++ = ' ';
+ len = min(strlen(map[i].name), (size_t)((buf_len-1)-(p-buf)));
+ if (len == 0)
+ break;
+ bcopy(map[i].name, p, len);
+ p += len;
+ }
+ *p = '\0';
+ return buf;
+}
+
+i386_cpu_info_t *
+cpuid_info(void)
+{
+ /* Set-up the cpuid_info stucture lazily */
+ if (cpuid_cpu_infop == NULL) {
+ PE_parse_boot_argn("-cpuid", &cpuid_dbg, sizeof(cpuid_dbg));
+ cpuid_set_info();
+ cpuid_cpu_infop = &cpuid_cpu_info;
+ }
+ return cpuid_cpu_infop;
+}
+
+char *
+cpuid_get_feature_names(uint64_t features, char *buf, unsigned buf_len)
+{
+ return cpuid_get_names(feature_map, features, buf, buf_len);
+}
+
+char *
+cpuid_get_extfeature_names(uint64_t extfeatures, char *buf, unsigned buf_len)
+{
+ return cpuid_get_names(extfeature_map, extfeatures, buf, buf_len);
+}
+
+char *
+cpuid_get_leaf7_feature_names(uint64_t features, char *buf, unsigned buf_len)
+{
+ return cpuid_get_names(leaf7_feature_map, features, buf, buf_len);
}
-/*
- * Display processor signature
- */
-/*ARGSUSED*/
void
-cpuid_cpu_display(
- char *header,
- int my_cpu)
+cpuid_feature_display(
+ const char *header)
{
- struct cpuid_name *name;
- unsigned int i;
- unsigned int *freq;
- unsigned int mhz;
- unsigned int feature;
- char **flag;
- extern unsigned int delaycount;
-
- /*
- * Identify vendor ID
- */
- for (name = cpuid_name; name->name != (char *)0; name++) {
- char *p = name->name;
- char *q = cpuid_vid;
- while (*p == *q && *p != 0) {
- p++;
- q++;
+ char buf[256];
+
+ kprintf("%s: %s", header,
+ cpuid_get_feature_names(cpuid_features(), buf, sizeof(buf)));
+ if (cpuid_leaf7_features())
+ kprintf(" %s", cpuid_get_leaf7_feature_names(
+ cpuid_leaf7_features(), buf, sizeof(buf)));
+ kprintf("\n");
+ if (cpuid_features() & CPUID_FEATURE_HTT) {
+#define s_if_plural(n) ((n > 1) ? "s" : "")
+ kprintf(" HTT: %d core%s per package;"
+ " %d logical cpu%s per package\n",
+ cpuid_cpu_infop->cpuid_cores_per_package,
+ s_if_plural(cpuid_cpu_infop->cpuid_cores_per_package),
+ cpuid_cpu_infop->cpuid_logical_per_package,
+ s_if_plural(cpuid_cpu_infop->cpuid_logical_per_package));
}
- if (*p == '\0' && *q == '\0')
- break;
- }
- if (name->name == (char *)0) {
- printf("Unrecognized processor vendor id = '%s'\n", cpuid_vid);
- return;
- }
+}
- /*
- * Identify Product ID
- */
- for (i = 0; i < name->size; i++)
- if (name->product[i].type == cpuid_type &&
- name->product[i].family == cpuid_family &&
- name->product[i].model == cpuid_model)
- break;
- if (i == name->size) {
- printf("%s processor (type = 0x%x, family = 0x%x, model = 0x%x)\n",
- "Unrecognized", cpuid_type, cpuid_family, cpuid_model);
- return;
+void
+cpuid_extfeature_display(
+ const char *header)
+{
+ char buf[256];
+
+ kprintf("%s: %s\n", header,
+ cpuid_get_extfeature_names(cpuid_extfeatures(),
+ buf, sizeof(buf)));
+}
+
+void
+cpuid_cpu_display(
+ const char *header)
+{
+ if (cpuid_cpu_infop->cpuid_brand_string[0] != '\0') {
+ kprintf("%s: %s\n", header, cpuid_cpu_infop->cpuid_brand_string);
}
+}
+
+unsigned int
+cpuid_family(void)
+{
+ return cpuid_info()->cpuid_family;
+}
+
+uint32_t
+cpuid_cpufamily(void)
+{
+ return cpuid_info()->cpuid_cpufamily;
+}
+
+cpu_type_t
+cpuid_cputype(void)
+{
+ return cpuid_info()->cpuid_cpu_type;
+}
+
+cpu_subtype_t
+cpuid_cpusubtype(void)
+{
+ return cpuid_info()->cpuid_cpu_subtype;
+}
+
+uint64_t
+cpuid_features(void)
+{
+ static int checked = 0;
+ char fpu_arg[20] = { 0 };
- /*
- * Look for frequency and adjust it to known values
- */
- mhz = (1000 * delaycount) / name->product[i].delay;
- for (freq = name->product[i].frequency; *freq != 0; freq++)
- if (*freq >= mhz)
- break;
- if (*freq == 0)
- mhz = *(freq - 1);
- else if (freq == name->product[i].frequency)
- mhz = *freq;
- else if (*freq - mhz > mhz - *(freq - 1))
- mhz = *(freq - 1);
- else if (*freq != mhz)
- mhz = *freq;
-
- /*
- * Display product and frequency
- */
- printf("%s: %s at %d MHz (signature = %d/%d/%d/%d)\n",
- header, name->product[i].name, mhz, cpuid_type,
- cpuid_family, cpuid_model, cpuid_stepping);
-
- /*
- * Display feature (if any)
- */
- if (cpuid_feature) {
- i = 0;
- flag = cpuid_flag;
- for (feature = cpuid_feature; feature != 0; feature >>= 1) {
- if (feature & 1)
- if (i == 0) {
- printf("%s: %s", header, *flag);
- i = 1;
- } else
- printf(", %s", *flag);
- flag++;
+ (void) cpuid_info();
+ if (!checked) {
+ /* check for boot-time fpu limitations */
+ if (PE_parse_boot_argn("_fpu", &fpu_arg[0], sizeof (fpu_arg))) {
+ printf("limiting fpu features to: %s\n", fpu_arg);
+ if (!strncmp("387", fpu_arg, sizeof("387")) || !strncmp("mmx", fpu_arg, sizeof("mmx"))) {
+ printf("no sse or sse2\n");
+ cpuid_cpu_infop->cpuid_features &= ~(CPUID_FEATURE_SSE | CPUID_FEATURE_SSE2 | CPUID_FEATURE_FXSR);
+ } else if (!strncmp("sse", fpu_arg, sizeof("sse"))) {
+ printf("no sse2\n");
+ cpuid_cpu_infop->cpuid_features &= ~(CPUID_FEATURE_SSE2);
+ }
+ }
+ checked = 1;
}
- printf("\n");
- }
+ return cpuid_cpu_infop->cpuid_features;
}
-/*
- * Display processor configuration information
- */
-/*ARGSUSED*/
-void
-cpuid_cache_display(
- char *header,
- int my_cpu)
+uint64_t
+cpuid_extfeatures(void)
+{
+ return cpuid_info()->cpuid_extfeatures;
+}
+
+uint64_t
+cpuid_leaf7_features(void)
{
- struct cpuid_cache_desc *desc;
- unsigned int i;
-
- if (cpuid_cache[CPUID_CACHE_VALID] == 1)
- for (i = 0; i < CPUID_CACHE_SIZE; i++) {
- if (i != CPUID_CACHE_VALID || cpuid_cache[i] == CPUID_CACHE_NULL)
- continue;
- for (desc = cpuid_cache_desc;
- desc->description != (char *)0; desc++)
- if (desc->value == cpuid_cache[i])
- break;
- if (desc->description != (char *)0)
- printf("%s: %s\n", header, desc->description);
+ return cpuid_info()->cpuid_leaf7_features;
+}
+
+static i386_vmm_info_t *_cpuid_vmm_infop = NULL;
+static i386_vmm_info_t _cpuid_vmm_info;
+
+static void
+cpuid_init_vmm_info(i386_vmm_info_t *info_p)
+{
+ uint32_t reg[4];
+ uint32_t max_vmm_leaf;
+
+ bzero(info_p, sizeof(*info_p));
+
+ if (!cpuid_vmm_present())
+ return;
+
+ DBG("cpuid_init_vmm_info(%p)\n", info_p);
+
+ /* do cpuid 0x40000000 to get VMM vendor */
+ cpuid_fn(0x40000000, reg);
+ max_vmm_leaf = reg[eax];
+ bcopy((char *)®[ebx], &info_p->cpuid_vmm_vendor[0], 4);
+ bcopy((char *)®[ecx], &info_p->cpuid_vmm_vendor[4], 4);
+ bcopy((char *)®[edx], &info_p->cpuid_vmm_vendor[8], 4);
+ info_p->cpuid_vmm_vendor[12] = '\0';
+
+ if (0 == strcmp(info_p->cpuid_vmm_vendor, CPUID_VMM_ID_VMWARE)) {
+ /* VMware identification string: kb.vmware.com/kb/1009458 */
+ info_p->cpuid_vmm_family = CPUID_VMM_FAMILY_VMWARE;
+ } else {
+ info_p->cpuid_vmm_family = CPUID_VMM_FAMILY_UNKNOWN;
}
+
+ /* VMM generic leaves: https://lkml.org/lkml/2008/10/1/246 */
+ if (max_vmm_leaf >= 0x40000010) {
+ cpuid_fn(0x40000010, reg);
+
+ info_p->cpuid_vmm_tsc_frequency = reg[eax];
+ info_p->cpuid_vmm_bus_frequency = reg[ebx];
+ }
+
+ DBG(" vmm_vendor : %s\n", info_p->cpuid_vmm_vendor);
+ DBG(" vmm_family : %u\n", info_p->cpuid_vmm_family);
+ DBG(" vmm_bus_frequency : %u\n", info_p->cpuid_vmm_bus_frequency);
+ DBG(" vmm_tsc_frequency : %u\n", info_p->cpuid_vmm_tsc_frequency);
}
+
+boolean_t
+cpuid_vmm_present(void)
+{
+ return (cpuid_features() & CPUID_FEATURE_VMM) ? TRUE : FALSE;
+}
+
+i386_vmm_info_t *
+cpuid_vmm_info(void)
+{
+ if (_cpuid_vmm_infop == NULL) {
+ cpuid_init_vmm_info(&_cpuid_vmm_info);
+ _cpuid_vmm_infop = &_cpuid_vmm_info;
+ }
+ return _cpuid_vmm_infop;
+}
+
+uint32_t
+cpuid_vmm_family(void)
+{
+ return cpuid_vmm_info()->cpuid_vmm_family;
+}
+