/*
- * Copyright (c) 2000-2010 Apple Inc. All rights reserved.
+ * Copyright (c) 2000-2020 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
- *
+ *
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
- *
+ *
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
- *
+ *
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
- *
+ *
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
-* @OSF_COPYRIGHT@
-*/
-/*
-* Mach Operating System
-* Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University
-* All Rights Reserved.
-*
-* Permission to use, copy, modify and distribute this software and its
-* documentation is hereby granted, provided that both the copyright
-* notice and this permission notice appear in all copies of the
-* software, derivative works or modified versions, and any portions
-* thereof, and that both notices appear in supporting documentation.
-*
-* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
-* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
-* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
-*
-* Carnegie Mellon requests users of this software to return to
-*
-* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
-* School of Computer Science
-* Carnegie Mellon University
-* Pittsburgh PA 15213-3890
-*
-* any improvements or extensions that they make and grant Carnegie Mellon
-* the rights to redistribute these changes.
-*/
+ * @OSF_COPYRIGHT@
+ */
+/*
+ * Mach Operating System
+ * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University
+ * All Rights Reserved.
+ *
+ * Permission to use, copy, modify and distribute this software and its
+ * documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
+ * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie Mellon
+ * the rights to redistribute these changes.
+ */
/*
-*/
+ */
/*
-* Hardware trap/fault handler.
+ * Hardware trap/fault handler.
*/
#include <mach_kdp.h>
#include <i386/trap.h>
#include <i386/pmap.h>
#include <i386/fpu.h>
-#include <i386/misc_protos.h> /* panic_io_port_read() */
+#include <i386/panic_notify.h>
#include <i386/lapic.h>
#include <mach/exception.h>
#include <kern/spl.h>
#include <kern/misc_protos.h>
#include <kern/debug.h>
-
+#if CONFIG_TELEMETRY
+#include <kern/telemetry.h>
+#endif
#include <sys/kdebug.h>
+#include <kperf/kperf.h>
+#include <prng/random.h>
+#include <prng/entropy.h>
#include <string.h>
#include <i386/postcode.h>
#include <i386/mp_desc.h>
#include <i386/proc_reg.h>
+#include <i386/machine_routines.h>
#if CONFIG_MCA
#include <i386/machine_check.h>
#endif
#include <mach/i386/syscall_sw.h>
#include <libkern/OSDebug.h>
-
+#include <i386/cpu_threads.h>
#include <machine/pal_routines.h>
extern void throttle_lowpri_io(int);
extern void kprint_state(x86_saved_state64_t *saved_state);
+#if DEVELOPMENT || DEBUG
+int insnstream_force_cacheline_mismatch = 0;
+extern int panic_on_cacheline_mismatch;
+extern char panic_on_trap_procname[];
+extern uint32_t panic_on_trap_mask;
+#endif
+
+extern int insn_copyin_count;
/*
* Forward declarations
*/
-static void user_page_fault_continue(kern_return_t kret);
-#ifdef __i386__
-static void panic_trap(x86_saved_state32_t *saved_state);
-static void set_recovery_ip(x86_saved_state32_t *saved_state, vm_offset_t ip);
-extern void panic_64(x86_saved_state_t *, int, const char *, boolean_t);
-#else
-static void panic_trap(x86_saved_state64_t *saved_state);
+static void panic_trap(x86_saved_state64_t *saved_state, uint32_t pl, kern_return_t fault_result) __dead2;
static void set_recovery_ip(x86_saved_state64_t *saved_state, vm_offset_t ip);
+#if DEVELOPMENT || DEBUG
+static __attribute__((noinline)) void copy_instruction_stream(thread_t thread, uint64_t rip, int trap_code, bool inspect_cacheline);
+#else
+static __attribute__((noinline)) void copy_instruction_stream(thread_t thread, uint64_t rip, int trap_code);
#endif
-volatile perfCallback perfTrapHook = NULL; /* Pointer to CHUD trap hook routine */
-
#if CONFIG_DTRACE
/* See <rdar://problem/4613924> */
perfCallback tempDTraceTrapHook = NULL; /* Pointer to DTrace fbt trap hook routine */
extern boolean_t dtrace_tally_fault(user_addr_t);
+extern boolean_t dtrace_handle_trap(int, x86_saved_state_t *);
#endif
+#ifdef MACH_BSD
+extern char * proc_name_address(void *p);
+#endif /* MACH_BSD */
+
extern boolean_t pmap_smep_enabled;
+extern boolean_t pmap_smap_enabled;
+__attribute__((noreturn))
void
thread_syscall_return(
- kern_return_t ret)
+ kern_return_t ret)
{
- thread_t thr_act = current_thread();
- boolean_t is_mach;
- int code;
+ thread_t thr_act = current_thread();
+ boolean_t is_mach;
+ int code;
pal_register_cache_state(thr_act, DIRTY);
- if (thread_is_64bit(thr_act)) {
- x86_saved_state64_t *regs;
-
+ if (thread_is_64bit_addr(thr_act)) {
+ x86_saved_state64_t *regs;
+
regs = USER_REGS64(thr_act);
code = (int) (regs->rax & SYSCALL_NUMBER_MASK);
is_mach = (regs->rax & SYSCALL_CLASS_MASK)
- == (SYSCALL_CLASS_MACH << SYSCALL_CLASS_SHIFT);
+ == (SYSCALL_CLASS_MACH << SYSCALL_CLASS_SHIFT);
if (kdebug_enable && is_mach) {
- /* Mach trap */
- KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
- MACHDBG_CODE(DBG_MACH_EXCP_SC,code)|DBG_FUNC_END,
- ret, 0, 0, 0, 0);
+ /* Mach trap */
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_EXCP_SC, code) | DBG_FUNC_END,
+ ret, 0, 0, 0, 0);
}
regs->rax = ret;
#if DEBUG
- if (is_mach)
+ if (is_mach) {
DEBUG_KPRINT_SYSCALL_MACH(
"thread_syscall_return: 64-bit mach ret=%u\n",
ret);
- else
+ } else {
DEBUG_KPRINT_SYSCALL_UNIX(
"thread_syscall_return: 64-bit unix ret=%u\n",
ret);
+ }
#endif
} else {
- x86_saved_state32_t *regs;
-
+ x86_saved_state32_t *regs;
+
regs = USER_REGS32(thr_act);
code = ((int) regs->eax);
is_mach = (code < 0);
if (kdebug_enable && is_mach) {
- /* Mach trap */
- KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
- MACHDBG_CODE(DBG_MACH_EXCP_SC,-code)|DBG_FUNC_END,
- ret, 0, 0, 0, 0);
+ /* Mach trap */
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_EXCP_SC, -code) | DBG_FUNC_END,
+ ret, 0, 0, 0, 0);
}
regs->eax = ret;
#if DEBUG
- if (is_mach)
+ if (is_mach) {
DEBUG_KPRINT_SYSCALL_MACH(
"thread_syscall_return: 32-bit mach ret=%u\n",
ret);
- else
+ } else {
DEBUG_KPRINT_SYSCALL_UNIX(
"thread_syscall_return: 32-bit unix ret=%u\n",
ret);
+ }
#endif
}
- throttle_lowpri_io(TRUE);
-
- thread_exception_return();
- /*NOTREACHED*/
-}
-
-
-static inline void
-user_page_fault_continue(
- kern_return_t kr)
-{
- thread_t thread = current_thread();
- user_addr_t vaddr;
-
- if (thread_is_64bit(thread)) {
- x86_saved_state64_t *uregs;
-
- uregs = USER_REGS64(thread);
-
- vaddr = (user_addr_t)uregs->cr2;
- } else {
- x86_saved_state32_t *uregs;
-
- uregs = USER_REGS32(thread);
-
- vaddr = uregs->cr2;
- }
+#if DEBUG || DEVELOPMENT
+ kern_allocation_name_t
+ prior __assert_only = thread_get_kernel_state(thr_act)->allocation_name;
+ assertf(prior == NULL, "thread_set_allocation_name(\"%s\") not cleared", kern_allocation_get_name(prior));
+#endif /* DEBUG || DEVELOPMENT */
- /* PAL debug hook */
- pal_dbg_page_fault( thread, vaddr, kr );
+ throttle_lowpri_io(1);
- i386_exception(EXC_BAD_ACCESS, kr, vaddr);
+ thread_exception_return();
/*NOTREACHED*/
}
* Fault recovery in copyin/copyout routines.
*/
struct recovery {
- uintptr_t fault_addr;
- uintptr_t recover_addr;
+ uintptr_t fault_addr;
+ uintptr_t recover_addr;
};
-extern struct recovery recover_table[];
-extern struct recovery recover_table_end[];
+extern struct recovery recover_table[];
+extern struct recovery recover_table_end[];
-const char * trap_type[] = {TRAP_NAMES};
-unsigned TRAP_TYPES = sizeof(trap_type)/sizeof(trap_type[0]);
+const char * trap_type[] = {TRAP_NAMES};
+unsigned TRAP_TYPES = sizeof(trap_type) / sizeof(trap_type[0]);
-extern void PE_incoming_interrupt(int interrupt);
+extern void PE_incoming_interrupt(int interrupt);
#if defined(__x86_64__) && DEBUG
void
-kprint_state(x86_saved_state64_t *saved_state)
+kprint_state(x86_saved_state64_t *saved_state)
{
kprintf("current_cpu_datap() 0x%lx\n", (uintptr_t)current_cpu_datap());
kprintf("Current GS base MSR 0x%llx\n", rdmsr64(MSR_IA32_GS_BASE));
kprintf("Kernel GS base MSR 0x%llx\n", rdmsr64(MSR_IA32_KERNEL_GS_BASE));
kprintf("state at 0x%lx:\n", (uintptr_t) saved_state);
- kprintf(" rdi 0x%llx\n", saved_state->rdi);
- kprintf(" rsi 0x%llx\n", saved_state->rsi);
+ kprintf(" rdi 0x%llx\n", saved_state->rdi);
+ kprintf(" rsi 0x%llx\n", saved_state->rsi);
kprintf(" rdx 0x%llx\n", saved_state->rdx);
kprintf(" r10 0x%llx\n", saved_state->r10);
kprintf(" r8 0x%llx\n", saved_state->r8);
- kprintf(" r9 0x%llx\n", saved_state->r9);
- kprintf(" v_arg6 0x%llx\n", saved_state->v_arg6);
- kprintf(" v_arg7 0x%llx\n", saved_state->v_arg7);
- kprintf(" v_arg8 0x%llx\n", saved_state->v_arg8);
+ kprintf(" r9 0x%llx\n", saved_state->r9);
kprintf(" cr2 0x%llx\n", saved_state->cr2);
kprintf("real cr2 0x%lx\n", get_cr2());
* Non-zero indicates latency assert is enabled and capped at valued
* absolute time units.
*/
-
+
uint64_t interrupt_latency_cap = 0;
boolean_t ilat_assert = FALSE;
void
-interrupt_latency_tracker_setup(void) {
+interrupt_latency_tracker_setup(void)
+{
uint32_t ilat_cap_us;
if (PE_parse_boot_argn("interrupt_latency_cap_us", &ilat_cap_us, sizeof(ilat_cap_us))) {
interrupt_latency_cap = ilat_cap_us * NSEC_PER_USEC;
PE_parse_boot_argn("-interrupt_latency_assert_enable", &ilat_assert, sizeof(ilat_assert));
}
-void interrupt_reset_latency_stats(void) {
+void
+interrupt_reset_latency_stats(void)
+{
uint32_t i;
for (i = 0; i < real_ncpus; i++) {
cpu_data_ptr[i]->cpu_max_observed_int_latency =
}
}
-void interrupt_populate_latency_stats(char *buf, unsigned bufsize) {
+void
+interrupt_populate_latency_stats(char *buf, unsigned bufsize)
+{
uint32_t i, tcpu = ~0;
uint64_t cur_max = 0;
}
}
- if (tcpu < real_ncpus)
+ if (tcpu < real_ncpus) {
snprintf(buf, bufsize, "0x%x 0x%x 0x%llx", tcpu, cpu_data_ptr[tcpu]->cpu_max_observed_int_latency_vector, cpu_data_ptr[tcpu]->cpu_max_observed_int_latency);
+ }
}
+uint32_t interrupt_timer_coalescing_enabled = 1;
+uint64_t interrupt_coalesced_timers;
+
/*
* Handle interrupts:
* - local APIC interrupts (IPIs, timers, etc) are handled by the kernel,
void
interrupt(x86_saved_state_t *state)
{
- uint64_t rip;
- uint64_t rsp;
- int interrupt_num;
- boolean_t user_mode = FALSE;
- int ipl;
- int cnum = cpu_number();
- int itype = 0;
-
- if (is_saved_state64(state) == TRUE) {
- x86_saved_state64_t *state64;
-
- state64 = saved_state64(state);
- rip = state64->isf.rip;
- rsp = state64->isf.rsp;
- interrupt_num = state64->isf.trapno;
-#ifdef __x86_64__
- if(state64->isf.cs & 0x03)
+ uint64_t rip;
+ uint64_t rsp;
+ int interrupt_num;
+ boolean_t user_mode = FALSE;
+ int ipl;
+ int cnum = cpu_number();
+ cpu_data_t *cdp = cpu_data_ptr[cnum];
+ int itype = DBG_INTR_TYPE_UNKNOWN;
+ int handled;
+
+ x86_saved_state64_t *state64 = saved_state64(state);
+ rip = state64->isf.rip;
+ rsp = state64->isf.rsp;
+ interrupt_num = state64->isf.trapno;
+ if (state64->isf.cs & 0x03) {
+ user_mode = TRUE;
+ }
+
+#if DEVELOPMENT || DEBUG
+ uint64_t frameptr = is_saved_state64(state) ? state64->rbp : saved_state32(state)->ebp;
+ uint32_t traptrace_index = traptrace_start(interrupt_num, rip, mach_absolute_time(), frameptr);
#endif
- user_mode = TRUE;
+
+ if (cpu_data_ptr[cnum]->lcpu.package->num_idle == topoParms.nLThreadsPerPackage) {
+ cpu_data_ptr[cnum]->cpu_hwIntpexits[interrupt_num]++;
+ }
+
+ if (interrupt_num == (LAPIC_DEFAULT_INTERRUPT_BASE + LAPIC_INTERPROCESSOR_INTERRUPT)) {
+ itype = DBG_INTR_TYPE_IPI;
+ } else if (interrupt_num == (LAPIC_DEFAULT_INTERRUPT_BASE + LAPIC_TIMER_INTERRUPT)) {
+ itype = DBG_INTR_TYPE_TIMER;
} else {
- x86_saved_state32_t *state32;
-
- state32 = saved_state32(state);
- if (state32->cs & 0x03)
- user_mode = TRUE;
- rip = state32->eip;
- rsp = state32->uesp;
- interrupt_num = state32->trapno;
+ itype = DBG_INTR_TYPE_OTHER;
}
- if (interrupt_num == (LAPIC_DEFAULT_INTERRUPT_BASE + LAPIC_INTERPROCESSOR_INTERRUPT))
- itype = 1;
- else if (interrupt_num == (LAPIC_DEFAULT_INTERRUPT_BASE + LAPIC_TIMER_INTERRUPT))
- itype = 2;
- else
- itype = 3;
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_EXCP_INTR, 0) | DBG_FUNC_START,
+ interrupt_num,
+ (user_mode ? rip : VM_KERNEL_UNSLIDE(rip)),
+ user_mode, itype, 0);
- KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
- MACHDBG_CODE(DBG_MACH_EXCP_INTR, 0) | DBG_FUNC_START,
- interrupt_num,
- (user_mode ? rip : VM_KERNEL_UNSLIDE(rip)),
- user_mode, itype, 0);
+ SCHED_STATS_INC(interrupt_count);
- SCHED_STATS_INTERRUPT(current_processor());
+#if CONFIG_TELEMETRY
+ if (telemetry_needs_record) {
+ telemetry_mark_curthread(user_mode, FALSE);
+ }
+#endif
ipl = get_preemption_level();
-
+
/*
* Handle local APIC interrupts
* else call platform expert for devices.
*/
- if (!lapic_interrupt(interrupt_num, state))
- PE_incoming_interrupt(interrupt_num);
+ handled = lapic_interrupt(interrupt_num, state);
+
+ if (!handled) {
+ if (interrupt_num == (LAPIC_DEFAULT_INTERRUPT_BASE + LAPIC_CMCI_INTERRUPT)) {
+ /*
+ * CMCI can be signalled on any logical processor, and the kexts
+ * that implement handling CMCI use IOKit to register handlers for
+ * the CMCI vector, so if we see a CMCI, do not encode a CPU
+ * number in bits 8:31 (since the vector is the same regardless of
+ * the handling CPU).
+ */
+ PE_incoming_interrupt(interrupt_num);
+ } else if (cnum <= lapic_max_interrupt_cpunum) {
+ PE_incoming_interrupt((cnum << 8) | interrupt_num);
+ }
+ }
if (__improbable(get_preemption_level() != ipl)) {
panic("Preemption level altered by interrupt vector 0x%x: initial 0x%x, final: 0x%x\n", interrupt_num, ipl, get_preemption_level());
}
- KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
- MACHDBG_CODE(DBG_MACH_EXCP_INTR, 0) | DBG_FUNC_END,
- interrupt_num, 0, 0, 0, 0);
+ if (__improbable(cdp->cpu_nested_istack)) {
+ cdp->cpu_nested_istack_events++;
+ } else {
+ uint64_t ctime = mach_absolute_time();
+ uint64_t int_latency = ctime - cdp->cpu_int_event_time;
+ uint64_t esdeadline, ehdeadline;
+ /* Attempt to process deferred timers in the context of
+ * this interrupt, unless interrupt time has already exceeded
+ * TCOAL_ILAT_THRESHOLD.
+ */
+#define TCOAL_ILAT_THRESHOLD (30000ULL)
+
+ if ((int_latency < TCOAL_ILAT_THRESHOLD) &&
+ interrupt_timer_coalescing_enabled) {
+ esdeadline = cdp->rtclock_timer.queue.earliest_soft_deadline;
+ ehdeadline = cdp->rtclock_timer.deadline;
+ if ((ctime >= esdeadline) && (ctime < ehdeadline)) {
+ interrupt_coalesced_timers++;
+ TCOAL_DEBUG(0x88880000 | DBG_FUNC_START, ctime, esdeadline, ehdeadline, interrupt_coalesced_timers, 0);
+ rtclock_intr(state);
+ TCOAL_DEBUG(0x88880000 | DBG_FUNC_END, ctime, esdeadline, interrupt_coalesced_timers, 0, 0);
+ } else {
+ TCOAL_DEBUG(0x77770000, ctime, cdp->rtclock_timer.queue.earliest_soft_deadline, cdp->rtclock_timer.deadline, interrupt_coalesced_timers, 0);
+ }
+ }
- if (cpu_data_ptr[cnum]->cpu_nested_istack) {
- cpu_data_ptr[cnum]->cpu_nested_istack_events++;
- }
- else {
- uint64_t int_latency = mach_absolute_time() - cpu_data_ptr[cnum]->cpu_int_event_time;
- if (ilat_assert && (int_latency > interrupt_latency_cap) && !machine_timeout_suspended()) {
- panic("Interrupt vector 0x%x exceeded interrupt latency threshold, 0x%llx absolute time delta, prior signals: 0x%x, current signals: 0x%x", interrupt_num, int_latency, cpu_data_ptr[cnum]->cpu_prior_signals, cpu_data_ptr[cnum]->cpu_signals);
+ if (__improbable(ilat_assert && (int_latency > interrupt_latency_cap) && !machine_timeout_suspended())) {
+ panic("Interrupt vector 0x%x exceeded interrupt latency threshold, 0x%llx absolute time delta, prior signals: 0x%x, current signals: 0x%x", interrupt_num, int_latency, cdp->cpu_prior_signals, cdp->cpu_signals);
}
- if (int_latency > cpu_data_ptr[cnum]->cpu_max_observed_int_latency) {
- cpu_data_ptr[cnum]->cpu_max_observed_int_latency = int_latency;
- cpu_data_ptr[cnum]->cpu_max_observed_int_latency_vector = interrupt_num;
+
+ if (__improbable(int_latency > cdp->cpu_max_observed_int_latency)) {
+ cdp->cpu_max_observed_int_latency = int_latency;
+ cdp->cpu_max_observed_int_latency_vector = interrupt_num;
}
}
* Having serviced the interrupt first, look at the interrupted stack depth.
*/
if (!user_mode) {
- uint64_t depth = cpu_data_ptr[cnum]->cpu_kernel_stack
- + sizeof(struct x86_kernel_state)
- + sizeof(struct i386_exception_link *)
- - rsp;
- if (depth > kernel_stack_depth_max) {
+ uint64_t depth = cdp->cpu_kernel_stack
+ + sizeof(struct thread_kernel_state)
+ + sizeof(struct i386_exception_link *)
+ - rsp;
+ if (__improbable(depth > kernel_stack_depth_max)) {
kernel_stack_depth_max = (vm_offset_t)depth;
KERNEL_DEBUG_CONSTANT(
MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_DEPTH),
(long) depth, (long) VM_KERNEL_UNSLIDE(rip), 0, 0, 0);
}
}
+
+ if (cnum == master_cpu) {
+ entropy_collect();
+ }
+
+#if KPERF
+ kperf_interrupt();
+#endif /* KPERF */
+
+ KDBG_RELEASE(MACHDBG_CODE(DBG_MACH_EXCP_INTR, 0) | DBG_FUNC_END,
+ interrupt_num);
+
+ assert(ml_get_interrupts_enabled() == FALSE);
+
+#if DEVELOPMENT || DEBUG
+ if (traptrace_index != TRAPTRACE_INVALID_INDEX) {
+ traptrace_end(traptrace_index, mach_absolute_time());
+ }
+#endif
}
static inline void
reset_dr7(void)
{
long dr7 = 0x400; /* magic dr7 reset value; 32 bit on i386, 64 bit on x86_64 */
- __asm__ volatile("mov %0,%%dr7" : : "r" (dr7));
+ __asm__ volatile ("mov %0,%%dr7" : : "r" (dr7));
}
#if MACH_KDP
unsigned kdp_has_active_watchpoints = 0;
void
kernel_trap(
- x86_saved_state_t *state,
+ x86_saved_state_t *state,
uintptr_t *lo_spp)
{
-#ifdef __i386__
- x86_saved_state32_t *saved_state;
-#else
- x86_saved_state64_t *saved_state;
-#endif
- int code;
- user_addr_t vaddr;
- int type;
- vm_map_t map = 0; /* protected by T_PAGE_FAULT */
- kern_return_t result = KERN_FAILURE;
- thread_t thread;
- ast_t *myast;
+ x86_saved_state64_t *saved_state;
+ int code;
+ user_addr_t vaddr;
+ int type;
+ vm_map_t map = 0; /* protected by T_PAGE_FAULT */
+ kern_return_t result = KERN_FAILURE;
+ kern_return_t fault_result = KERN_SUCCESS;
+ thread_t thread;
boolean_t intr;
- vm_prot_t prot;
- struct recovery *rp;
- vm_offset_t kern_ip;
-#if NCOPY_WINDOWS > 0
- int fault_in_copy_window = -1;
-#endif
- int is_user = 0;
-
- thread = current_thread();
-
-#ifdef __i386__
- if (__improbable(is_saved_state64(state))) {
- panic_64(state, 0, "Kernel trap with 64-bit state", FALSE);
- }
+ vm_prot_t prot;
+ struct recovery *rp;
+ vm_offset_t kern_ip;
+ int is_user;
+ int trap_pl = get_preemption_level();
- saved_state = saved_state32(state);
-
- /* Record cpu where state was captured (trampolines don't set this) */
- saved_state->cpu = cpu_number();
+ thread = current_thread();
- vaddr = (user_addr_t)saved_state->cr2;
- type = saved_state->trapno;
- code = saved_state->err & 0xffff;
- intr = (saved_state->efl & EFL_IF) != 0; /* state of ints at trap */
- kern_ip = (vm_offset_t)saved_state->eip;
-#else
- if (__improbable(is_saved_state32(state)))
+ if (__improbable(is_saved_state32(state))) {
panic("kernel_trap(%p) with 32-bit state", state);
+ }
saved_state = saved_state64(state);
/* Record cpu where state was captured */
vaddr = (user_addr_t)saved_state->cr2;
type = saved_state->isf.trapno;
code = (int)(saved_state->isf.err & 0xffff);
- intr = (saved_state->isf.rflags & EFL_IF) != 0; /* state of ints at trap */
+ intr = (saved_state->isf.rflags & EFL_IF) != 0; /* state of ints at trap */
kern_ip = (vm_offset_t)saved_state->isf.rip;
-#endif
- myast = ast_pending();
+ is_user = (vaddr < VM_MAX_USER_PAGE_ADDRESS);
- perfASTCallback astfn = perfASTHook;
- if (__improbable(astfn != NULL)) {
- if (*myast & AST_CHUD_ALL)
- astfn(AST_CHUD_ALL, myast);
- } else
- *myast &= ~AST_CHUD_ALL;
+#if DEVELOPMENT || DEBUG
+ uint32_t traptrace_index = traptrace_start(type, kern_ip, mach_absolute_time(), saved_state->rbp);
+#endif
+#if CONFIG_DTRACE
/*
- * Is there a hook?
+ * Is there a DTrace hook?
*/
- perfCallback fn = perfTrapHook;
- if (__improbable(fn != NULL)) {
- if (fn(type, NULL, 0, 0) == KERN_SUCCESS) {
- /*
- * If it succeeds, we are done...
- */
- return;
- }
- }
-
-#if CONFIG_DTRACE
if (__improbable(tempDTraceTrapHook != NULL)) {
if (tempDTraceTrapHook(type, state, lo_spp, 0) == KERN_SUCCESS) {
/*
* If it succeeds, we are done...
*/
- return;
+ goto common_return;
+ }
+ }
+
+ /* Handle traps originated from probe context. */
+ if (thread != THREAD_NULL && thread->t_dtrace_inprobe) {
+ if (dtrace_handle_trap(type, state)) {
+ goto common_return;
}
}
+
#endif /* CONFIG_DTRACE */
/*
* as soon we possibly can to hold latency down
*/
if (__improbable(T_PREEMPT == type)) {
- ast_taken(AST_PREEMPTION, FALSE);
+ ast_taken_kernel();
- KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
- (MACHDBG_CODE(DBG_MACH_EXCP_KTRAP_x86, type)) | DBG_FUNC_NONE,
- 0, 0, 0, VM_KERNEL_UNSLIDE(kern_ip), 0);
- return;
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ (MACHDBG_CODE(DBG_MACH_EXCP_KTRAP_x86, type)) | DBG_FUNC_NONE,
+ 0, 0, 0, VM_KERNEL_UNSLIDE(kern_ip), 0);
+
+ goto common_return;
}
-
+
+ user_addr_t kd_vaddr = is_user ? vaddr : VM_KERNEL_UNSLIDE(vaddr);
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ (MACHDBG_CODE(DBG_MACH_EXCP_KTRAP_x86, type)) | DBG_FUNC_NONE,
+ (unsigned)(kd_vaddr >> 32), (unsigned)kd_vaddr, is_user,
+ VM_KERNEL_UNSLIDE(kern_ip), 0);
+
+
if (T_PAGE_FAULT == type) {
/*
* assume we're faulting in the kernel map
*/
map = kernel_map;
- if (__probable(thread != THREAD_NULL && thread->map != kernel_map)) {
-#if NCOPY_WINDOWS > 0
- vm_offset_t copy_window_base;
- vm_offset_t kvaddr;
- int window_index;
+ if (__probable((thread != THREAD_NULL) && (thread->map != kernel_map) &&
+ (vaddr < VM_MAX_USER_PAGE_ADDRESS))) {
+ /* fault occurred in userspace */
+ map = thread->map;
+
+ /* Intercept a potential Supervisor Mode Execute
+ * Protection fault. These criteria identify
+ * both NX faults and SMEP faults, but both
+ * are fatal. We avoid checking PTEs (racy).
+ * (The VM could just redrive a SMEP fault, hence
+ * the intercept).
+ */
+ if (__improbable((code == (T_PF_PROT | T_PF_EXECUTE)) &&
+ (pmap_smep_enabled) && (saved_state->isf.rip == vaddr))) {
+ goto debugger_entry;
+ }
- kvaddr = (vm_offset_t)vaddr;
/*
- * must determine if fault occurred in
- * the copy window while pre-emption is
- * disabled for this processor so that
- * we only need to look at the window
- * associated with this processor
+ * Additionally check for SMAP faults...
+ * which are characterized by page-present and
+ * the AC bit unset (i.e. not from copyin/out path).
*/
- copy_window_base = current_cpu_datap()->cpu_copywindow_base;
-
- if (kvaddr >= copy_window_base && kvaddr < (copy_window_base + (NBPDE * NCOPY_WINDOWS)) ) {
-
- window_index = (int)((kvaddr - copy_window_base) / NBPDE);
-
- if (thread->machine.copy_window[window_index].user_base != (user_addr_t)-1) {
-
- kvaddr -= (copy_window_base + (NBPDE * window_index));
- vaddr = thread->machine.copy_window[window_index].user_base + kvaddr;
-
- map = thread->map;
- fault_in_copy_window = window_index;
- }
- is_user = -1;
+ if (__improbable(code & T_PF_PROT &&
+ pmap_smap_enabled &&
+ (saved_state->isf.rflags & EFL_AC) == 0)) {
+ goto debugger_entry;
}
-#else
- if (__probable(vaddr < VM_MAX_USER_PAGE_ADDRESS)) {
- /* fault occurred in userspace */
- map = thread->map;
- is_user = -1;
-
- /* Intercept a potential Supervisor Mode Execute
- * Protection fault. These criteria identify
- * both NX faults and SMEP faults, but both
- * are fatal. We avoid checking PTEs (racy).
- * (The VM could just redrive a SMEP fault, hence
- * the intercept).
- */
- if (__improbable((code == (T_PF_PROT | T_PF_EXECUTE)) && (pmap_smep_enabled) && (saved_state->isf.rip == vaddr))) {
- goto debugger_entry;
- }
- /*
- * If we're not sharing cr3 with the user
- * and we faulted in copyio,
- * then switch cr3 here and dismiss the fault.
- */
- if (no_shared_cr3 &&
- (thread->machine.specFlags&CopyIOActive) &&
- map->pmap->pm_cr3 != get_cr3_base()) {
- pmap_assert(current_cpu_datap()->cpu_pmap_pcid_enabled == FALSE);
- set_cr3_raw(map->pmap->pm_cr3);
- return;
- }
+ /*
+ * If we're not sharing cr3 with the user
+ * and we faulted in copyio,
+ * then switch cr3 here and dismiss the fault.
+ */
+ if (no_shared_cr3 &&
+ (thread->machine.specFlags & CopyIOActive) &&
+ map->pmap->pm_cr3 != get_cr3_base()) {
+ pmap_assert(current_cpu_datap()->cpu_pmap_pcid_enabled == FALSE);
+ set_cr3_raw(map->pmap->pm_cr3);
+ return;
+ }
+ if (__improbable(vaddr < PAGE_SIZE) &&
+ ((thread->machine.specFlags & CopyIOActive) == 0)) {
+ goto debugger_entry;
}
-#endif
}
}
- user_addr_t kd_vaddr = is_user ? vaddr : VM_KERNEL_UNSLIDE(vaddr);
- KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
- (MACHDBG_CODE(DBG_MACH_EXCP_KTRAP_x86, type)) | DBG_FUNC_NONE,
- (unsigned)(kd_vaddr >> 32), (unsigned)kd_vaddr, is_user,
- VM_KERNEL_UNSLIDE(kern_ip), 0);
-
(void) ml_set_interrupts_enabled(intr);
switch (type) {
-
- case T_NO_FPU:
+ case T_NO_FPU:
fpnoextflt();
- return;
+ goto common_return;
- case T_FPU_FAULT:
+ case T_FPU_FAULT:
fpextovrflt();
- return;
+ goto common_return;
- case T_FLOATING_POINT_ERROR:
+ case T_FLOATING_POINT_ERROR:
fpexterrflt();
- return;
-
- case T_SSE_FLOAT_ERROR:
- fpSSEexterrflt();
- return;
- case T_DEBUG:
-#ifdef __i386__
- if ((saved_state->efl & EFL_TF) == 0 && NO_WATCHPOINTS)
-#else
- if ((saved_state->isf.rflags & EFL_TF) == 0 && NO_WATCHPOINTS)
-#endif
- {
- /* We've somehow encountered a debug
- * register match that does not belong
- * to the kernel debugger.
- * This isn't supposed to happen.
- */
- reset_dr7();
- return;
- }
- goto debugger_entry;
-#ifdef __x86_64__
- case T_INT3:
- goto debugger_entry;
-#endif
- case T_PAGE_FAULT:
+ goto common_return;
+
+ case T_SSE_FLOAT_ERROR:
+ fpSSEexterrflt();
+ goto common_return;
+
+ case T_INVALID_OPCODE:
+ fpUDflt(kern_ip);
+ goto debugger_entry;
+
+ case T_DEBUG:
+ if ((saved_state->isf.rflags & EFL_TF) == 0 && NO_WATCHPOINTS) {
+ /* We've somehow encountered a debug
+ * register match that does not belong
+ * to the kernel debugger.
+ * This isn't supposed to happen.
+ */
+ reset_dr7();
+ goto common_return;
+ }
+ goto debugger_entry;
+ case T_INT3:
+ goto debugger_entry;
+ case T_PAGE_FAULT:
#if CONFIG_DTRACE
- if (thread != THREAD_NULL && thread->options & TH_OPT_DTRACE) { /* Executing under dtrace_probe? */
+ if (thread != THREAD_NULL && thread->t_dtrace_inprobe) { /* Executing under dtrace_probe? */
if (dtrace_tally_fault(vaddr)) { /* Should a fault under dtrace be ignored? */
/*
* DTrace has "anticipated" the possibility of this fault, and has
* established the suitable recovery state. Drop down now into the
- * recovery handling code in "case T_GENERAL_PROTECTION:".
+ * recovery handling code in "case T_GENERAL_PROTECTION:".
*/
goto FALL_THROUGH;
}
}
#endif /* CONFIG_DTRACE */
-
+
prot = VM_PROT_READ;
- if (code & T_PF_WRITE)
- prot |= VM_PROT_WRITE;
-#if PAE
- if (code & T_PF_EXECUTE)
- prot |= VM_PROT_EXECUTE;
-#endif
+ if (code & T_PF_WRITE) {
+ prot |= VM_PROT_WRITE;
+ }
+ if (code & T_PF_EXECUTE) {
+ prot |= VM_PROT_EXECUTE;
+ }
- result = vm_fault(map,
- vm_map_trunc_page(vaddr),
- prot,
- FALSE,
- THREAD_UNINT, NULL, 0);
+ fault_result = result = vm_fault(map,
+ vaddr,
+ prot,
+ FALSE, VM_KERN_MEMORY_NONE,
+ THREAD_UNINT, NULL, 0);
if (result == KERN_SUCCESS) {
-#if NCOPY_WINDOWS > 0
- if (fault_in_copy_window != -1) {
- ml_set_interrupts_enabled(FALSE);
- copy_window_fault(thread, map,
- fault_in_copy_window);
- (void) ml_set_interrupts_enabled(intr);
- }
-#endif /* NCOPY_WINDOWS > 0 */
- return;
+ goto common_return;
}
/*
* fall through
FALL_THROUGH:
#endif /* CONFIG_DTRACE */
- case T_GENERAL_PROTECTION:
+ case T_GENERAL_PROTECTION:
/*
* If there is a failure recovery address
* for this fault, go there.
*/
- for (rp = recover_table; rp < recover_table_end; rp++) {
- if (kern_ip == rp->fault_addr) {
- set_recovery_ip(saved_state, rp->recover_addr);
- return;
+ for (rp = recover_table; rp < recover_table_end; rp++) {
+ if (kern_ip == rp->fault_addr) {
+ set_recovery_ip(saved_state, rp->recover_addr);
+ goto common_return;
}
}
if (thread != THREAD_NULL && thread->recover) {
set_recovery_ip(saved_state, thread->recover);
thread->recover = 0;
- return;
+ goto common_return;
}
/*
* Unanticipated page-fault errors in kernel
*
* fall through...
*/
- default:
+ OS_FALLTHROUGH;
+ default:
/*
* Exception 15 is reserved but some chips may generate it
* spuriously. Seen at startup on AMD Athlon-64.
*/
- if (type == 15) {
- kprintf("kernel_trap() ignoring spurious trap 15\n");
- return;
+ if (type == 15) {
+ kprintf("kernel_trap() ignoring spurious trap 15\n");
+ goto common_return;
}
debugger_entry:
/* Ensure that the i386_kernel_state at the base of the
*/
sync_iss_to_iks(state);
#if MACH_KDP
- if (current_debugger != KDB_CUR_DB) {
- if (kdp_i386_trap(type, saved_state, result, (vm_offset_t)vaddr))
- return;
+ if (kdp_i386_trap(type, saved_state, result, (vm_offset_t)vaddr)) {
+ goto common_return;
}
#endif
}
pal_cli();
- panic_trap(saved_state);
+ panic_trap(saved_state, trap_pl, fault_result);
/*
* NO RETURN
*/
-}
-
-#ifdef __i386__
-static void
-set_recovery_ip(x86_saved_state32_t *saved_state, vm_offset_t ip)
-{
- saved_state->eip = ip;
-}
-#else
-static void
-set_recovery_ip(x86_saved_state64_t *saved_state, vm_offset_t ip)
-{
- saved_state->isf.rip = ip;
-}
+common_return:
+#if DEVELOPMENT || DEBUG
+ if (traptrace_index != TRAPTRACE_INVALID_INDEX) {
+ traptrace_end(traptrace_index, mach_absolute_time());
+ }
#endif
+ return;
+}
-
-#ifdef __i386__
static void
-panic_trap(x86_saved_state32_t *regs)
+set_recovery_ip(x86_saved_state64_t *saved_state, vm_offset_t ip)
{
- const char *trapname = "Unknown";
- pal_cr_t cr0, cr2, cr3, cr4;
-
- pal_get_control_registers( &cr0, &cr2, &cr3, &cr4 );
-
- /*
- * Issue an I/O port read if one has been requested - this is an
- * event logic analyzers can use as a trigger point.
- */
- panic_io_port_read();
-
- kprintf("panic trap number 0x%x, eip 0x%x\n", regs->trapno, regs->eip);
- kprintf("cr0 0x%08x cr2 0x%08x cr3 0x%08x cr4 0x%08x\n",
- cr0, cr2, cr3, cr4);
-
- if (regs->trapno < TRAP_TYPES)
- trapname = trap_type[regs->trapno];
-#undef panic
- panic("Kernel trap at 0x%08x, type %d=%s, registers:\n"
- "CR0: 0x%08x, CR2: 0x%08x, CR3: 0x%08x, CR4: 0x%08x\n"
- "EAX: 0x%08x, EBX: 0x%08x, ECX: 0x%08x, EDX: 0x%08x\n"
- "CR2: 0x%08x, EBP: 0x%08x, ESI: 0x%08x, EDI: 0x%08x\n"
- "EFL: 0x%08x, EIP: 0x%08x, CS: 0x%08x, DS: 0x%08x\n"
- "Error code: 0x%08x%s\n",
- regs->eip, regs->trapno, trapname, cr0, cr2, cr3, cr4,
- regs->eax,regs->ebx,regs->ecx,regs->edx,
- regs->cr2,regs->ebp,regs->esi,regs->edi,
- regs->efl,regs->eip,regs->cs & 0xFFFF, regs->ds & 0xFFFF, regs->err,
- virtualized ? " VMM" : "");
- /*
- * This next statement is not executed,
- * but it's needed to stop the compiler using tail call optimization
- * for the panic call - which confuses the subsequent backtrace.
- */
- cr0 = 0;
+ saved_state->isf.rip = ip;
}
-#else
-
static void
-panic_trap(x86_saved_state64_t *regs)
+panic_trap(x86_saved_state64_t *regs, uint32_t pl, kern_return_t fault_result)
{
- const char *trapname = "Unknown";
- pal_cr_t cr0, cr2, cr3, cr4;
- boolean_t potential_smep_fault = FALSE, potential_kernel_NX_fault = FALSE;
+ const char *trapname = "Unknown";
+ pal_cr_t cr0, cr2, cr3, cr4;
+ boolean_t potential_smep_fault = FALSE, potential_kernel_NX_fault = FALSE;
+ boolean_t potential_smap_fault = FALSE;
pal_get_control_registers( &cr0, &cr2, &cr3, &cr4 );
assert(ml_get_interrupts_enabled() == FALSE);
* Issue an I/O port read if one has been requested - this is an
* event logic analyzers can use as a trigger point.
*/
- panic_io_port_read();
+ panic_notify();
- kprintf("panic trap number 0x%x, rip 0x%016llx\n",
- regs->isf.trapno, regs->isf.rip);
+ kprintf("CPU %d panic trap number 0x%x, rip 0x%016llx\n",
+ cpu_number(), regs->isf.trapno, regs->isf.rip);
kprintf("cr0 0x%016llx cr2 0x%016llx cr3 0x%016llx cr4 0x%016llx\n",
- cr0, cr2, cr3, cr4);
+ cr0, cr2, cr3, cr4);
- if (regs->isf.trapno < TRAP_TYPES)
- trapname = trap_type[regs->isf.trapno];
+ if (regs->isf.trapno < TRAP_TYPES) {
+ trapname = trap_type[regs->isf.trapno];
+ }
if ((regs->isf.trapno == T_PAGE_FAULT) && (regs->isf.err == (T_PF_PROT | T_PF_EXECUTE)) && (regs->isf.rip == regs->cr2)) {
if (pmap_smep_enabled && (regs->isf.rip < VM_MAX_USER_PAGE_ADDRESS)) {
} else if (regs->isf.rip >= VM_MIN_KERNEL_AND_KEXT_ADDRESS) {
potential_kernel_NX_fault = TRUE;
}
+ } else if (pmap_smap_enabled &&
+ regs->isf.trapno == T_PAGE_FAULT &&
+ regs->isf.err & T_PF_PROT &&
+ regs->cr2 < VM_MAX_USER_PAGE_ADDRESS &&
+ regs->isf.rip >= VM_MIN_KERNEL_AND_KEXT_ADDRESS) {
+ potential_smap_fault = TRUE;
}
#undef panic
panic("Kernel trap at 0x%016llx, type %d=%s, registers:\n"
- "CR0: 0x%016llx, CR2: 0x%016llx, CR3: 0x%016llx, CR4: 0x%016llx\n"
- "RAX: 0x%016llx, RBX: 0x%016llx, RCX: 0x%016llx, RDX: 0x%016llx\n"
- "RSP: 0x%016llx, RBP: 0x%016llx, RSI: 0x%016llx, RDI: 0x%016llx\n"
- "R8: 0x%016llx, R9: 0x%016llx, R10: 0x%016llx, R11: 0x%016llx\n"
- "R12: 0x%016llx, R13: 0x%016llx, R14: 0x%016llx, R15: 0x%016llx\n"
- "RFL: 0x%016llx, RIP: 0x%016llx, CS: 0x%016llx, SS: 0x%016llx\n"
- "Fault CR2: 0x%016llx, Error code: 0x%016llx, Fault CPU: 0x%x%s%s%s\n",
- regs->isf.rip, regs->isf.trapno, trapname,
- cr0, cr2, cr3, cr4,
- regs->rax, regs->rbx, regs->rcx, regs->rdx,
- regs->isf.rsp, regs->rbp, regs->rsi, regs->rdi,
- regs->r8, regs->r9, regs->r10, regs->r11,
- regs->r12, regs->r13, regs->r14, regs->r15,
- regs->isf.rflags, regs->isf.rip, regs->isf.cs & 0xFFFF,
- regs->isf.ss & 0xFFFF,regs->cr2, regs->isf.err, regs->isf.cpu,
- virtualized ? " VMM" : "",
- potential_kernel_NX_fault ? " Kernel NX fault" : "",
- potential_smep_fault ? " SMEP/User NX fault" : "");
- /*
- * This next statement is not executed,
- * but it's needed to stop the compiler using tail call optimization
- * for the panic call - which confuses the subsequent backtrace.
- */
- cr0 = 0;
+ "CR0: 0x%016llx, CR2: 0x%016llx, CR3: 0x%016llx, CR4: 0x%016llx\n"
+ "RAX: 0x%016llx, RBX: 0x%016llx, RCX: 0x%016llx, RDX: 0x%016llx\n"
+ "RSP: 0x%016llx, RBP: 0x%016llx, RSI: 0x%016llx, RDI: 0x%016llx\n"
+ "R8: 0x%016llx, R9: 0x%016llx, R10: 0x%016llx, R11: 0x%016llx\n"
+ "R12: 0x%016llx, R13: 0x%016llx, R14: 0x%016llx, R15: 0x%016llx\n"
+ "RFL: 0x%016llx, RIP: 0x%016llx, CS: 0x%016llx, SS: 0x%016llx\n"
+ "Fault CR2: 0x%016llx, Error code: 0x%016llx, Fault CPU: 0x%x%s%s%s%s, PL: %d, VF: %d\n",
+ regs->isf.rip, regs->isf.trapno, trapname,
+ cr0, cr2, cr3, cr4,
+ regs->rax, regs->rbx, regs->rcx, regs->rdx,
+ regs->isf.rsp, regs->rbp, regs->rsi, regs->rdi,
+ regs->r8, regs->r9, regs->r10, regs->r11,
+ regs->r12, regs->r13, regs->r14, regs->r15,
+ regs->isf.rflags, regs->isf.rip, regs->isf.cs & 0xFFFF,
+ regs->isf.ss & 0xFFFF, regs->cr2, regs->isf.err, regs->isf.cpu,
+ virtualized ? " VMM" : "",
+ potential_kernel_NX_fault ? " Kernel NX fault" : "",
+ potential_smep_fault ? " SMEP/User NX fault" : "",
+ potential_smap_fault ? " SMAP fault" : "",
+ pl,
+ fault_result);
}
-#endif
#if CONFIG_DTRACE
extern kern_return_t dtrace_user_probe(x86_saved_state_t *);
#endif
+#if DEBUG
+uint32_t fsigs[2];
+uint32_t fsigns, fsigcs;
+#endif
+
/*
* Trap from user mode.
*/
user_trap(
x86_saved_state_t *saved_state)
{
- int exc;
- int err;
- mach_exception_code_t code;
+ int exc;
+ int err;
+ mach_exception_code_t code;
mach_exception_subcode_t subcode;
- int type;
- user_addr_t vaddr;
- vm_prot_t prot;
- thread_t thread = current_thread();
- ast_t *myast;
- kern_return_t kret;
- user_addr_t rip;
- unsigned long dr6 = 0; /* 32 bit for i386, 64 bit for x86_64 */
-
- assert((is_saved_state32(saved_state) && !thread_is_64bit(thread)) ||
- (is_saved_state64(saved_state) && thread_is_64bit(thread)));
+ int type;
+ user_addr_t vaddr;
+ vm_prot_t prot;
+ thread_t thread = current_thread();
+ kern_return_t kret;
+ user_addr_t rip;
+ unsigned long dr6 = 0; /* 32 bit for i386, 64 bit for x86_64 */
+ int current_cpu = cpu_number();
+#if DEVELOPMENT || DEBUG
+ bool inspect_cacheline = false;
+ uint32_t traptrace_index;
+#endif
+ assert((is_saved_state32(saved_state) && !thread_is_64bit_addr(thread)) ||
+ (is_saved_state64(saved_state) && thread_is_64bit_addr(thread)));
if (is_saved_state64(saved_state)) {
- x86_saved_state64_t *regs;
+ x86_saved_state64_t *regs;
regs = saved_state64(saved_state);
/* Record cpu where state was captured */
- regs->isf.cpu = cpu_number();
+ regs->isf.cpu = current_cpu;
type = regs->isf.trapno;
err = (int)regs->isf.err & 0xffff;
vaddr = (user_addr_t)regs->cr2;
rip = (user_addr_t)regs->isf.rip;
+#if DEVELOPMENT || DEBUG
+ traptrace_index = traptrace_start(type, rip, mach_absolute_time(), regs->rbp);
+#endif
} else {
- x86_saved_state32_t *regs;
+ x86_saved_state32_t *regs;
regs = saved_state32(saved_state);
/* Record cpu where state was captured */
- regs->cpu = cpu_number();
+ regs->cpu = current_cpu;
type = regs->trapno;
err = regs->err & 0xffff;
vaddr = (user_addr_t)regs->cr2;
rip = (user_addr_t)regs->eip;
+#if DEVELOPMENT || DEBUG
+ traptrace_index = traptrace_start(type, rip, mach_absolute_time(), regs->ebp);
+#endif
}
- if ((type == T_DEBUG) && thread->machine.ids) {
- unsigned long clear = 0;
- /* Stash and clear this processor's DR6 value, in the event
- * this was a debug register match
- */
- __asm__ volatile ("mov %%db6, %0" : "=r" (dr6));
- __asm__ volatile ("mov %0, %%db6" : : "r" (clear));
+#if DEVELOPMENT || DEBUG
+ /*
+ * Copy the cacheline of code into the thread's instruction stream save area
+ * before enabling interrupts (the assumption is that we have not otherwise faulted or
+ * trapped since the original cache line stores). If the saved code is not valid,
+ * we'll catch it below when we process the copyin() for unhandled faults.
+ */
+ if (type == T_PAGE_FAULT || type == T_INVALID_OPCODE || type == T_GENERAL_PROTECTION) {
+#define CACHELINE_SIZE 64
+ THREAD_TO_PCB(thread)->insn_cacheline[CACHELINE_SIZE] = (uint8_t)(rip & (CACHELINE_SIZE - 1));
+ bcopy(&cpu_shadowp(current_cpu)->cpu_rtimes[0],
+ &THREAD_TO_PCB(thread)->insn_cacheline[0],
+ sizeof(THREAD_TO_PCB(thread)->insn_cacheline) - 1);
+ inspect_cacheline = true;
+ }
+#endif
+
+ if (type == T_DEBUG) {
+ if (thread->machine.ids) {
+ unsigned long clear = 0;
+ /* Stash and clear this processor's DR6 value, in the event
+ * this was a debug register match
+ */
+ __asm__ volatile ("mov %%db6, %0" : "=r" (dr6));
+ __asm__ volatile ("mov %0, %%db6" : : "r" (clear));
+ }
+ /* [Re]Enable LBRs *BEFORE* enabling interrupts to ensure we hit the right CPU */
+ i386_lbr_enable();
}
pal_sti();
- KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
- (MACHDBG_CODE(DBG_MACH_EXCP_UTRAP_x86, type)) | DBG_FUNC_NONE,
- (unsigned)(vaddr>>32), (unsigned)vaddr,
- (unsigned)(rip>>32), (unsigned)rip, 0);
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ (MACHDBG_CODE(DBG_MACH_EXCP_UTRAP_x86, type)) | DBG_FUNC_NONE,
+ (unsigned)(vaddr >> 32), (unsigned)vaddr,
+ (unsigned)(rip >> 32), (unsigned)rip, 0);
code = 0;
subcode = 0;
exc = 0;
-#if DEBUG_TRACE
- kprintf("user_trap(0x%08x) type=%d vaddr=0x%016llx\n",
- saved_state, type, vaddr);
-#endif
-
- perfASTCallback astfn = perfASTHook;
- if (__improbable(astfn != NULL)) {
- myast = ast_pending();
- if (*myast & AST_CHUD_ALL) {
- astfn(AST_CHUD_ALL, myast);
- }
- }
-
- /* Is there a hook? */
- perfCallback fn = perfTrapHook;
- if (__improbable(fn != NULL)) {
- if (fn(type, saved_state, 0, 0) == KERN_SUCCESS)
- return; /* If it succeeds, we are done... */
- }
-
+#if CONFIG_DTRACE
/*
* DTrace does not consume all user traps, only INT_3's for now.
* Avoid needlessly calling tempDTraceTrapHook here, and let the
* INT_3 case handle them.
*/
+#endif
+
DEBUG_KPRINT_SYSCALL_MASK(1,
- "user_trap: type=0x%x(%s) err=0x%x cr2=%p rip=%p\n",
- type, trap_type[type], err, (void *)(long) vaddr, (void *)(long) rip);
-
- switch (type) {
+ "user_trap: type=0x%x(%s) err=0x%x cr2=%p rip=%p\n",
+ type, trap_type[type], err, (void *)(long) vaddr, (void *)(long) rip);
- case T_DIVIDE_ERROR:
+ switch (type) {
+ case T_DIVIDE_ERROR:
exc = EXC_ARITHMETIC;
code = EXC_I386_DIV;
break;
- case T_DEBUG:
- {
- pcb_t pcb;
+ case T_DEBUG:
+ {
+ pcb_t pcb;
+ /*
+ * Update the PCB with this processor's DR6 value
+ * in the event this was a debug register match.
+ */
+ pcb = THREAD_TO_PCB(thread);
+ if (pcb->ids) {
/*
- * Update the PCB with this processor's DR6 value
- * in the event this was a debug register match.
+ * We can get and set the status register
+ * in 32-bit mode even on a 64-bit thread
+ * because the high order bits are not
+ * used on x86_64
*/
- pcb = THREAD_TO_PCB(thread);
- if (pcb->ids) {
- /*
- * We can get and set the status register
- * in 32-bit mode even on a 64-bit thread
- * because the high order bits are not
- * used on x86_64
- */
- if (thread_is_64bit(thread)) {
- x86_debug_state64_t *ids = pcb->ids;
- ids->dr6 = dr6;
- } else { /* 32 bit thread */
- x86_debug_state32_t *ids = pcb->ids;
- ids->dr6 = (uint32_t) dr6;
- }
+ if (thread_is_64bit_addr(thread)) {
+ x86_debug_state64_t *ids = pcb->ids;
+ ids->dr6 = dr6;
+ } else { /* 32 bit thread */
+ x86_debug_state32_t *ids = pcb->ids;
+ ids->dr6 = (uint32_t) dr6;
}
- exc = EXC_BREAKPOINT;
- code = EXC_I386_SGL;
- break;
}
- case T_INT3:
+ exc = EXC_BREAKPOINT;
+ code = EXC_I386_SGL;
+ break;
+ }
+ case T_INT3:
#if CONFIG_DTRACE
- if (dtrace_user_probe(saved_state) == KERN_SUCCESS)
+ if (dtrace_user_probe(saved_state) == KERN_SUCCESS) {
return; /* If it succeeds, we are done... */
+ }
#endif
exc = EXC_BREAKPOINT;
code = EXC_I386_BPT;
break;
- case T_OVERFLOW:
+ case T_OVERFLOW:
exc = EXC_ARITHMETIC;
code = EXC_I386_INTO;
break;
- case T_OUT_OF_BOUNDS:
+ case T_OUT_OF_BOUNDS:
exc = EXC_SOFTWARE;
code = EXC_I386_BOUND;
break;
- case T_INVALID_OPCODE:
- exc = EXC_BAD_INSTRUCTION;
- code = EXC_I386_INVOP;
+ case T_INVALID_OPCODE:
+ if (fpUDflt(rip) == 1) {
+ exc = EXC_BAD_INSTRUCTION;
+ code = EXC_I386_INVOP;
+ }
break;
- case T_NO_FPU:
+ case T_NO_FPU:
fpnoextflt();
- return;
+ break;
- case T_FPU_FAULT:
- fpextovrflt(); /* Propagates exception directly, doesn't return */
- return;
+ case T_FPU_FAULT:
+ fpextovrflt();
+ /*
+ * Raise exception.
+ */
+ exc = EXC_BAD_ACCESS;
+ code = VM_PROT_READ | VM_PROT_EXECUTE;
+ subcode = 0;
+ break;
- case T_INVALID_TSS: /* invalid TSS == iret with NT flag set */
+ case T_INVALID_TSS: /* invalid TSS == iret with NT flag set */
exc = EXC_BAD_INSTRUCTION;
code = EXC_I386_INVTSSFLT;
subcode = err;
break;
- case T_SEGMENT_NOT_PRESENT:
+ case T_SEGMENT_NOT_PRESENT:
exc = EXC_BAD_INSTRUCTION;
code = EXC_I386_SEGNPFLT;
subcode = err;
break;
- case T_STACK_FAULT:
+ case T_STACK_FAULT:
exc = EXC_BAD_INSTRUCTION;
code = EXC_I386_STKFLT;
subcode = err;
break;
- case T_GENERAL_PROTECTION:
+ case T_GENERAL_PROTECTION:
/*
* There's a wide range of circumstances which generate this
* class of exception. From user-space, many involve bad
* to EXC_BAD_ACCESS (and thence SIGSEGV) also - rather than
* EXC_BAD_INSTRUCTION which is more accurate. We just can't
* win!
- */
+ */
exc = EXC_BAD_ACCESS;
code = EXC_I386_GPFLT;
subcode = err;
break;
- case T_PAGE_FAULT:
- {
+ case T_PAGE_FAULT:
+ {
prot = VM_PROT_READ;
- if (err & T_PF_WRITE)
- prot |= VM_PROT_WRITE;
-#if PAE
- if (__improbable(err & T_PF_EXECUTE))
- prot |= VM_PROT_EXECUTE;
+ if (err & T_PF_WRITE) {
+ prot |= VM_PROT_WRITE;
+ }
+ if (__improbable(err & T_PF_EXECUTE)) {
+ prot |= VM_PROT_EXECUTE;
+ }
+#if DEVELOPMENT || DEBUG
+ uint32_t fsig = 0;
+ fsig = thread_fpsimd_hash(thread);
+#if DEBUG
+ fsigs[0] = fsig;
+#endif
+#endif
+ kret = vm_fault(thread->map,
+ vaddr,
+ prot, FALSE, VM_KERN_MEMORY_NONE,
+ THREAD_ABORTSAFE, NULL, 0);
+#if DEVELOPMENT || DEBUG
+ if (fsig) {
+ uint32_t fsig2 = thread_fpsimd_hash(thread);
+#if DEBUG
+ fsigcs++;
+ fsigs[1] = fsig2;
+#endif
+ if (fsig != fsig2) {
+ panic("FP/SIMD state hash mismatch across fault thread: %p 0x%x->0x%x", thread, fsig, fsig2);
+ }
+ } else {
+#if DEBUG
+ fsigns++;
+#endif
+ }
#endif
- kret = vm_fault(thread->map, vm_map_trunc_page(vaddr),
- prot, FALSE,
- THREAD_ABORTSAFE, NULL, 0);
-
if (__probable((kret == KERN_SUCCESS) || (kret == KERN_ABORTED))) {
- thread_exception_return();
- /* NOTREACHED */
+ break;
+ } else if (__improbable(kret == KERN_FAILURE)) {
+ /*
+ * For a user trap, vm_fault() should never return KERN_FAILURE.
+ * If it does, we're leaking preemption disables somewhere in the kernel.
+ */
+ panic("vm_fault() KERN_FAILURE from user fault on thread %p", thread);
}
- user_page_fault_continue(kret);
- } /* NOTREACHED */
- break;
+ /* PAL debug hook (empty on x86) */
+ pal_dbg_page_fault(thread, vaddr, kret);
+ exc = EXC_BAD_ACCESS;
+ code = kret;
+ subcode = vaddr;
+ }
+ break;
- case T_SSE_FLOAT_ERROR:
- fpSSEexterrflt(); /* Propagates exception directly, doesn't return */
- return;
+ case T_SSE_FLOAT_ERROR:
+ fpSSEexterrflt();
+ exc = EXC_ARITHMETIC;
+ code = EXC_I386_SSEEXTERR;
+ subcode = ((struct x86_fx_thread_state *)thread->machine.ifps)->fx_MXCSR;
+ break;
- case T_FLOATING_POINT_ERROR:
- fpexterrflt(); /* Propagates exception directly, doesn't return */
- return;
+ case T_FLOATING_POINT_ERROR:
+ fpexterrflt();
+ exc = EXC_ARITHMETIC;
+ code = EXC_I386_EXTERR;
+ subcode = ((struct x86_fx_thread_state *)thread->machine.ifps)->fx_status;
+ break;
- case T_DTRACE_RET:
+ case T_DTRACE_RET:
#if CONFIG_DTRACE
- if (dtrace_user_probe(saved_state) == KERN_SUCCESS)
+ if (dtrace_user_probe(saved_state) == KERN_SUCCESS) {
return; /* If it succeeds, we are done... */
+ }
#endif
/*
* If we get an INT 0x7f when we do not expect to,
code = EXC_I386_INVOP;
break;
- default:
+ default:
panic("Unexpected user trap, type %d", type);
- return;
}
- /* Note: Codepaths that directly return from user_trap() have pending
- * ASTs processed in locore
- */
- i386_exception(exc, code, subcode);
- /* NOTREACHED */
-}
+ if (exc != 0) {
+ uint16_t cs;
+ boolean_t intrs;
+
+ if (is_saved_state64(saved_state)) {
+ cs = saved_state64(saved_state)->isf.cs;
+ } else {
+ cs = saved_state32(saved_state)->cs;
+ }
+
+ if (last_branch_support_enabled) {
+ intrs = ml_set_interrupts_enabled(FALSE);
+ /*
+ * This is a bit racy (it's possible for this thread to migrate to another CPU, then
+ * migrate back, but that seems rather rare in practice), but good enough to ensure
+ * the LBRs are saved before proceeding with exception/signal dispatch.
+ */
+ if (current_cpu == cpu_number()) {
+ i386_lbr_synch(thread);
+ }
+ ml_set_interrupts_enabled(intrs);
+ }
+
+ /*
+ * Do not try to copyin from the instruction stream if the page fault was due
+ * to an access to rip and was unhandled.
+ * Do not deal with cases when %cs != USER[64]_CS
+ * And of course there's no need to copy the instruction stream if the boot-arg
+ * was set to 0.
+ */
+ if (insn_copyin_count > 0 &&
+ (cs == USER64_CS || cs == USER_CS) && (type != T_PAGE_FAULT || vaddr != rip)) {
+#if DEVELOPMENT || DEBUG
+ copy_instruction_stream(thread, rip, type, inspect_cacheline);
+#else
+ copy_instruction_stream(thread, rip, type);
+#endif
+ }
+
+#if DEVELOPMENT || DEBUG
+ if (traptrace_index != TRAPTRACE_INVALID_INDEX) {
+ traptrace_end(traptrace_index, mach_absolute_time());
+ }
+#endif
+ /*
+ * Note: Codepaths that directly return from user_trap() have pending
+ * ASTs processed in locore
+ */
+ i386_exception(exc, code, subcode);
+ /* NOTREACHED */
+ } else {
+#if DEVELOPMENT || DEBUG
+ if (traptrace_index != TRAPTRACE_INVALID_INDEX) {
+ traptrace_end(traptrace_index, mach_absolute_time());
+ }
+#endif
+ }
+}
/*
- * Handle AST traps for i386.
+ * Copyin up to x86_INSTRUCTION_STATE_MAX_INSN_BYTES bytes from the page that includes `rip`,
+ * ensuring that we stay on the same page, clipping the start or end, as needed.
+ * Add the clipped amount back at the start or end, depending on where it fits.
+ * Consult the variable populated by the boot-arg `insn_capcnt'
*/
+static __attribute__((noinline)) void
+copy_instruction_stream(thread_t thread, uint64_t rip, int __unused trap_code
+#if DEVELOPMENT || DEBUG
+ , bool inspect_cacheline
+#endif
+ )
+{
+#if x86_INSTRUCTION_STATE_MAX_INSN_BYTES > 4096
+#error x86_INSTRUCTION_STATE_MAX_INSN_BYTES cannot exceed a page in size.
+#endif
+ pcb_t pcb = THREAD_TO_PCB(thread);
+ vm_map_offset_t pagemask = ~vm_map_page_mask(current_map());
+ vm_map_offset_t rip_page = rip & pagemask;
+ vm_map_offset_t start_addr;
+ vm_map_offset_t insn_offset;
+ vm_map_offset_t end_addr = rip + (insn_copyin_count / 2);
+ void *stack_buffer;
+ int copyin_err = 0;
+#if defined(MACH_BSD) && (DEVELOPMENT || DEBUG)
+ void *procname;
+#endif
-extern void log_thread_action (thread_t, char *);
+#if DEVELOPMENT || DEBUG
+ assert(insn_copyin_count <= x86_INSTRUCTION_STATE_MAX_INSN_BYTES);
+#else
+ if (insn_copyin_count > x86_INSTRUCTION_STATE_MAX_INSN_BYTES ||
+ insn_copyin_count < 64 /* CACHELINE_SIZE */) {
+ return;
+ }
+#endif
-void
-i386_astintr(int preemption)
-{
- ast_t mask = AST_ALL;
- spl_t s;
+#pragma clang diagnostic push
+#pragma clang diagnostic ignored "-Walloca"
+ stack_buffer = __builtin_alloca(insn_copyin_count);
+#pragma clang diagnostic pop
- if (preemption)
- mask = AST_PREEMPTION;
+ if (rip >= (insn_copyin_count / 2)) {
+ start_addr = rip - (insn_copyin_count / 2);
+ } else {
+ start_addr = 0;
+ }
+
+ if (start_addr < rip_page) {
+ insn_offset = (insn_copyin_count / 2) - (rip_page - start_addr);
+ end_addr += (rip_page - start_addr);
+ start_addr = rip_page;
+ } else if (end_addr >= (rip_page + (~pagemask + 1))) {
+ start_addr -= (end_addr - (rip_page + (~pagemask + 1))); /* Adjust start address backward */
+ /* Adjust instruction offset due to start address change */
+ insn_offset = (insn_copyin_count / 2) + (end_addr - (rip_page + (~pagemask + 1)));
+ end_addr = rip_page + (~pagemask + 1); /* clip to the start of the next page (non-inclusive */
+ } else {
+ insn_offset = insn_copyin_count / 2;
+ }
+
+ disable_preemption(); /* Prevent copyin from faulting in the instruction stream */
+ if (
+#if DEVELOPMENT || DEBUG
+ (insnstream_force_cacheline_mismatch < 2) &&
+#endif
+ ((end_addr > start_addr) && (copyin_err = copyin(start_addr, stack_buffer, end_addr - start_addr)) == 0)) {
+ enable_preemption();
- s = splsched();
+ if (pcb->insn_state == 0) {
+ pcb->insn_state = kalloc(sizeof(x86_instruction_state_t));
+ }
+
+ if (pcb->insn_state != 0) {
+ bcopy(stack_buffer, pcb->insn_state->insn_bytes, end_addr - start_addr);
+ bzero(&pcb->insn_state->insn_bytes[end_addr - start_addr],
+ insn_copyin_count - (end_addr - start_addr));
+
+ pcb->insn_state->insn_stream_valid_bytes = (int)(end_addr - start_addr);
+ pcb->insn_state->insn_offset = (int)insn_offset;
+
+#if DEVELOPMENT || DEBUG
+ /* Now try to validate the cacheline we read at early-fault time matches the code
+ * copied in. Before we do that, we have to make sure the buffer contains a valid
+ * cacheline by looking for the 2 sentinel values written in the event the cacheline
+ * could not be copied.
+ */
+#define CACHELINE_DATA_NOT_PRESENT 0xdeadc0debeefcafeULL
+#define CACHELINE_MASK (CACHELINE_SIZE - 1)
+
+ if (inspect_cacheline &&
+ (*(uint64_t *)(uintptr_t)&pcb->insn_cacheline[0] != CACHELINE_DATA_NOT_PRESENT &&
+ *(uint64_t *)(uintptr_t)&pcb->insn_cacheline[8] != CACHELINE_DATA_NOT_PRESENT)) {
+ /*
+ * The position of the cacheline in the instruction buffer is at offset
+ * insn_offset - (rip & CACHELINE_MASK)
+ */
+ if (__improbable((rip & CACHELINE_MASK) > insn_offset)) {
+ printf("thread %p code cacheline @ %p clipped wrt copied-in code (offset %d)\n",
+ thread, (void *)(rip & ~CACHELINE_MASK), (int)(rip & CACHELINE_MASK));
+ } else if (bcmp(&pcb->insn_state->insn_bytes[insn_offset - (rip & CACHELINE_MASK)],
+ &pcb->insn_cacheline[0], CACHELINE_SIZE) != 0
+ || insnstream_force_cacheline_mismatch
+ ) {
+#if x86_INSTRUCTION_STATE_CACHELINE_SIZE != CACHELINE_SIZE
+#error cacheline size mismatch
+#endif
+ bcopy(&pcb->insn_cacheline[0], &pcb->insn_state->insn_cacheline[0],
+ x86_INSTRUCTION_STATE_CACHELINE_SIZE);
+ /* Mark the instruction stream as being out-of-synch */
+ pcb->insn_state->out_of_synch = 1;
+
+ printf("thread %p code cacheline @ %p mismatches with copied-in code [trap 0x%x]\n",
+ thread, (void *)(rip & ~CACHELINE_MASK), trap_code);
+ for (int i = 0; i < 8; i++) {
+ printf("\t[%d] cl=0x%08llx vs. ci=0x%08llx\n", i, *(uint64_t *)(uintptr_t)&pcb->insn_cacheline[i * 8],
+ *(uint64_t *)(uintptr_t)&pcb->insn_state->insn_bytes[(i * 8) + insn_offset - (rip & CACHELINE_MASK)]);
+ }
+ if (panic_on_cacheline_mismatch) {
+ panic("Cacheline mismatch while processing unhandled exception.");
+ }
+ } else {
+ printf("thread %p code cacheline @ %p DOES match with copied-in code\n",
+ thread, (void *)(rip & ~CACHELINE_MASK));
+ pcb->insn_state->out_of_synch = 0;
+ }
+ } else if (inspect_cacheline) {
+ printf("thread %p could not capture code cacheline at fault IP %p [offset %d]\n",
+ (void *)thread, (void *)rip, (int)(insn_offset - (rip & CACHELINE_MASK)));
+ pcb->insn_state->out_of_synch = 0;
+ }
+#else
+ pcb->insn_state->out_of_synch = 0;
+#endif /* DEVELOPMENT || DEBUG */
+
+#if defined(MACH_BSD) && (DEVELOPMENT || DEBUG)
+ if (panic_on_trap_procname[0] != 0) {
+ char procnamebuf[65] = {0};
+
+ if (thread->task->bsd_info != NULL) {
+ procname = proc_name_address(thread->task->bsd_info);
+ strlcpy(procnamebuf, procname, sizeof(procnamebuf));
+
+ if (strcasecmp(panic_on_trap_procname, procnamebuf) == 0 &&
+ ((1U << trap_code) & panic_on_trap_mask) != 0) {
+ panic("Panic requested on trap type 0x%x for process `%s'", trap_code,
+ panic_on_trap_procname);
+ /*NORETURN*/
+ }
+ }
+ }
+#endif /* MACH_BSD && (DEVELOPMENT || DEBUG) */
+ }
+ } else {
+ enable_preemption();
- ast_taken(mask, s);
+ pcb->insn_state_copyin_failure_errorcode = copyin_err;
+#if DEVELOPMENT || DEBUG
+ if (inspect_cacheline && pcb->insn_state == 0) {
+ pcb->insn_state = kalloc(sizeof(x86_instruction_state_t));
+ }
+ if (pcb->insn_state != 0) {
+ pcb->insn_state->insn_stream_valid_bytes = 0;
+ pcb->insn_state->insn_offset = 0;
- splx(s);
+ if (inspect_cacheline &&
+ (*(uint64_t *)(uintptr_t)&pcb->insn_cacheline[0] != CACHELINE_DATA_NOT_PRESENT &&
+ *(uint64_t *)(uintptr_t)&pcb->insn_cacheline[8] != CACHELINE_DATA_NOT_PRESENT)) {
+ /*
+ * We can still copy the cacheline into the instruction state structure
+ * if it contains valid data
+ */
+ pcb->insn_state->out_of_synch = 1;
+ bcopy(&pcb->insn_cacheline[0], &pcb->insn_state->insn_cacheline[0],
+ x86_INSTRUCTION_STATE_CACHELINE_SIZE);
+ }
+ }
+#endif /* DEVELOPMENT || DEBUG */
+ }
}
/*
*/
void
i386_exception(
- int exc,
+ int exc,
mach_exception_code_t code,
mach_exception_subcode_t subcode)
{
mach_exception_data_type_t codes[EXCEPTION_CODE_MAX];
DEBUG_KPRINT_SYSCALL_MACH("i386_exception: exc=%d code=0x%llx subcode=0x%llx\n",
- exc, code, subcode);
- codes[0] = code; /* new exception interface */
+ exc, code, subcode);
+ codes[0] = code; /* new exception interface */
codes[1] = subcode;
exception_triage(exc, codes, 2);
/*NOTREACHED*/
}
-/* Synchronize a thread's i386_kernel_state (if any) with the given
- * i386_saved_state_t obtained from the trap/IPI handler; called in
+/* Synchronize a thread's x86_kernel_state (if any) with the given
+ * x86_saved_state_t obtained from the trap/IPI handler; called in
* kernel_trap() prior to entering the debugger, and when receiving
- * an "MP_KDP" IPI.
+ * an "MP_KDP" IPI. Called with null saved_state if an incoming IPI
+ * was detected from the kernel while spinning with interrupts masked.
*/
-
+
void
sync_iss_to_iks(x86_saved_state_t *saved_state)
{
- struct x86_kernel_state *iks;
+ struct x86_kernel_state *iks = NULL;
vm_offset_t kstack;
boolean_t record_active_regs = FALSE;
/* The PAL may have a special way to sync registers */
- if( saved_state->flavor == THREAD_STATE_NONE )
+ if (saved_state && saved_state->flavor == THREAD_STATE_NONE) {
pal_get_kern_regs( saved_state );
+ }
- if ((kstack = current_thread()->kernel_stack) != 0) {
-#ifdef __i386__
- x86_saved_state32_t *regs = saved_state32(saved_state);
-#else
- x86_saved_state64_t *regs = saved_state64(saved_state);
-#endif
+ if (current_thread() != NULL &&
+ (kstack = current_thread()->kernel_stack) != 0) {
+ x86_saved_state64_t *regs = saved_state64(saved_state);
iks = STACK_IKS(kstack);
/* Did we take the trap/interrupt in kernel mode? */
-#ifdef __i386__
- if (regs == USER_REGS32(current_thread()))
- record_active_regs = TRUE;
- else {
- iks->k_ebx = regs->ebx;
- iks->k_esp = (int)regs;
- iks->k_ebp = regs->ebp;
- iks->k_edi = regs->edi;
- iks->k_esi = regs->esi;
- iks->k_eip = regs->eip;
- }
-#else
- if (regs == USER_REGS64(current_thread()))
- record_active_regs = TRUE;
- else {
+ if (saved_state == NULL || /* NULL => polling in kernel */
+ regs == USER_REGS64(current_thread())) {
+ record_active_regs = TRUE;
+ } else {
iks->k_rbx = regs->rbx;
iks->k_rsp = regs->isf.rsp;
iks->k_rbp = regs->rbp;
iks->k_r15 = regs->r15;
iks->k_rip = regs->isf.rip;
}
-#endif
}
if (record_active_regs == TRUE) {
-#ifdef __i386__
/* Show the trap handler path */
- __asm__ volatile("movl %%ebx, %0" : "=m" (iks->k_ebx));
- __asm__ volatile("movl %%esp, %0" : "=m" (iks->k_esp));
- __asm__ volatile("movl %%ebp, %0" : "=m" (iks->k_ebp));
- __asm__ volatile("movl %%edi, %0" : "=m" (iks->k_edi));
- __asm__ volatile("movl %%esi, %0" : "=m" (iks->k_esi));
+ __asm__ volatile ("movq %%rbx, %0" : "=m" (iks->k_rbx));
+ __asm__ volatile ("movq %%rsp, %0" : "=m" (iks->k_rsp));
+ __asm__ volatile ("movq %%rbp, %0" : "=m" (iks->k_rbp));
+ __asm__ volatile ("movq %%r12, %0" : "=m" (iks->k_r12));
+ __asm__ volatile ("movq %%r13, %0" : "=m" (iks->k_r13));
+ __asm__ volatile ("movq %%r14, %0" : "=m" (iks->k_r14));
+ __asm__ volatile ("movq %%r15, %0" : "=m" (iks->k_r15));
/* "Current" instruction pointer */
- __asm__ volatile("movl $1f, %0\n1:" : "=m" (iks->k_eip));
-#else
- /* Show the trap handler path */
- __asm__ volatile("movq %%rbx, %0" : "=m" (iks->k_rbx));
- __asm__ volatile("movq %%rsp, %0" : "=m" (iks->k_rsp));
- __asm__ volatile("movq %%rbp, %0" : "=m" (iks->k_rbp));
- __asm__ volatile("movq %%r12, %0" : "=m" (iks->k_r12));
- __asm__ volatile("movq %%r13, %0" : "=m" (iks->k_r13));
- __asm__ volatile("movq %%r14, %0" : "=m" (iks->k_r14));
- __asm__ volatile("movq %%r15, %0" : "=m" (iks->k_r15));
- /* "Current" instruction pointer */
- __asm__ volatile("leaq 1f(%%rip), %%rax; mov %%rax, %0\n1:"
- : "=m" (iks->k_rip)
- :
- : "rax");
-#endif
+ __asm__ volatile ("leaq 1f(%%rip), %%rax; mov %%rax, %0\n1:"
+ : "=m" (iks->k_rip)
+ :
+ : "rax");
}
}
* or user space.
*/
void
-sync_iss_to_iks_unconditionally(__unused x86_saved_state_t *saved_state) {
+sync_iss_to_iks_unconditionally(__unused x86_saved_state_t *saved_state)
+{
struct x86_kernel_state *iks;
vm_offset_t kstack;
if ((kstack = current_thread()->kernel_stack) != 0) {
iks = STACK_IKS(kstack);
-#ifdef __i386__
/* Display the trap handler path */
- __asm__ volatile("movl %%ebx, %0" : "=m" (iks->k_ebx));
- __asm__ volatile("movl %%esp, %0" : "=m" (iks->k_esp));
- __asm__ volatile("movl %%ebp, %0" : "=m" (iks->k_ebp));
- __asm__ volatile("movl %%edi, %0" : "=m" (iks->k_edi));
- __asm__ volatile("movl %%esi, %0" : "=m" (iks->k_esi));
+ __asm__ volatile ("movq %%rbx, %0" : "=m" (iks->k_rbx));
+ __asm__ volatile ("movq %%rsp, %0" : "=m" (iks->k_rsp));
+ __asm__ volatile ("movq %%rbp, %0" : "=m" (iks->k_rbp));
+ __asm__ volatile ("movq %%r12, %0" : "=m" (iks->k_r12));
+ __asm__ volatile ("movq %%r13, %0" : "=m" (iks->k_r13));
+ __asm__ volatile ("movq %%r14, %0" : "=m" (iks->k_r14));
+ __asm__ volatile ("movq %%r15, %0" : "=m" (iks->k_r15));
/* "Current" instruction pointer */
- __asm__ volatile("movl $1f, %0\n1:" : "=m" (iks->k_eip));
-#else
- /* Display the trap handler path */
- __asm__ volatile("movq %%rbx, %0" : "=m" (iks->k_rbx));
- __asm__ volatile("movq %%rsp, %0" : "=m" (iks->k_rsp));
- __asm__ volatile("movq %%rbp, %0" : "=m" (iks->k_rbp));
- __asm__ volatile("movq %%r12, %0" : "=m" (iks->k_r12));
- __asm__ volatile("movq %%r13, %0" : "=m" (iks->k_r13));
- __asm__ volatile("movq %%r14, %0" : "=m" (iks->k_r14));
- __asm__ volatile("movq %%r15, %0" : "=m" (iks->k_r15));
- /* "Current" instruction pointer */
- __asm__ volatile("leaq 1f(%%rip), %%rax; mov %%rax, %0\n1:" : "=m" (iks->k_rip)::"rax");
+ __asm__ volatile ("leaq 1f(%%rip), %%rax; mov %%rax, %0\n1:" : "=m" (iks->k_rip)::"rax");
+ }
+}
+
+#if DEBUG
+#define TERI 1
#endif
+
+#if TERI
+extern void thread_exception_return_internal(void) __dead2;
+
+void
+thread_exception_return(void)
+{
+ thread_t thread = current_thread();
+ ml_set_interrupts_enabled(FALSE);
+ if (thread_is_64bit_addr(thread) != task_has_64Bit_addr(thread->task)) {
+ panic("Task/thread bitness mismatch %p %p, task: %d, thread: %d", thread, thread->task, thread_is_64bit_addr(thread), task_has_64Bit_addr(thread->task));
+ }
+
+ if (thread_is_64bit_addr(thread)) {
+ if ((gdt_desc_p(USER64_CS)->access & ACC_PL_U) == 0) {
+ panic("64-GDT mismatch %p, descriptor: %p", thread, gdt_desc_p(USER64_CS));
+ }
+ } else {
+ if ((gdt_desc_p(USER_CS)->access & ACC_PL_U) == 0) {
+ panic("32-GDT mismatch %p, descriptor: %p", thread, gdt_desc_p(USER_CS));
+ }
}
+ assert(get_preemption_level() == 0);
+ thread_exception_return_internal();
}
+#endif