/*
- * Copyright (c) 2017 Apple Inc. All rights reserved.
+ * Copyright (c) 2017-2020 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
#include <arm64/monotonic.h>
#include <kern/assert.h>
#include <kern/debug.h> /* panic */
+#include <kern/kpc.h>
#include <kern/monotonic.h>
+#include <machine/atomic.h>
#include <machine/limits.h> /* CHAR_BIT */
+#include <os/overflow.h>
+#include <pexpert/arm64/board_config.h>
+#include <pexpert/device_tree.h> /* DTFindEntry */
+#include <pexpert/pexpert.h>
#include <stdatomic.h>
#include <stdint.h>
#include <string.h>
#include <sys/errno.h>
#include <sys/monotonic.h>
-#include <pexpert/arm64/board_config.h>
-#include <pexpert/device_tree.h> /* DTFindEntry */
-#include <pexpert/pexpert.h>
+
+/*
+ * Ensure that control registers read back what was written under MACH_ASSERT
+ * kernels.
+ *
+ * A static inline function cannot be used due to passing the register through
+ * the builtin -- it requires a constant string as its first argument, since
+ * MSRs registers are encoded as an immediate in the instruction.
+ */
+#if MACH_ASSERT
+#define CTRL_REG_SET(reg, val) do { \
+ __builtin_arm_wsr64((reg), (val)); \
+ uint64_t __check_reg = __builtin_arm_rsr64((reg)); \
+ if (__check_reg != (val)) { \
+ panic("value written to %s was not read back (wrote %llx, read %llx)", \
+ #reg, (val), __check_reg); \
+ } \
+} while (0)
+#else /* MACH_ASSERT */
+#define CTRL_REG_SET(reg, val) __builtin_arm_wsr64((reg), (val))
+#endif /* MACH_ASSERT */
#pragma mark core counters
#define PMC5 "s3_2_c15_c5_0"
#define PMC6 "s3_2_c15_c6_0"
#define PMC7 "s3_2_c15_c7_0"
+
+#define PMC_0_7(X, A) X(0, A); X(1, A); X(2, A); X(3, A); X(4, A); X(5, A); \
+ X(6, A); X(7, A)
+
+#if CORE_NCTRS > 8
#define PMC8 "s3_2_c15_c9_0"
#define PMC9 "s3_2_c15_c10_0"
+#define PMC_8_9(X, A) X(8, A); X(9, A)
+#else // CORE_NCTRS > 8
+#define PMC_8_9(X, A)
+#endif // CORE_NCTRS > 8
+
+#define PMC_ALL(X, A) PMC_0_7(X, A); PMC_8_9(X, A)
#define CTR_MAX ((UINT64_C(1) << 47) - 1)
* other features.
*/
-#define PMCR0 "s3_1_c15_c0_0"
-
#define PMCR0_CTR_EN(CTR) (UINT64_C(1) << CTR_POS(CTR))
#define PMCR0_FIXED_EN (PMCR0_CTR_EN(CYCLES) | PMCR0_CTR_EN(INSTRS))
/* how interrupts are delivered on a PMI */
PMCR0_INTGEN_HALT = 3,
PMCR0_INTGEN_FIQ = 4,
};
-#define PMCR0_INTGEN_SET(INT) ((uint64_t)(INT) << 8)
+#define PMCR0_INTGEN_SET(X) ((uint64_t)(X) << 8)
+
+#if CPMU_AIC_PMI
+#define PMCR0_INTGEN_INIT PMCR0_INTGEN_SET(PMCR0_INTGEN_AIC)
+#else /* CPMU_AIC_PMI */
#define PMCR0_INTGEN_INIT PMCR0_INTGEN_SET(PMCR0_INTGEN_FIQ)
-/* set by hardware if a PMI was delivered */
-#define PMCR0_PMAI (UINT64_C(1) << 11)
-#define PMCR0_PMI_EN(CTR) (UINT64_C(1) << (12 + CTR_POS(CTR)))
+#endif /* !CPMU_AIC_PMI */
+
+#define PMCR0_PMI_SHIFT (12)
+#define PMCR0_CTR_GE8_PMI_SHIFT (44)
+#define PMCR0_PMI_EN(CTR) (UINT64_C(1) << (PMCR0_PMI_SHIFT + CTR_POS(CTR)))
/* fixed counters are always counting */
#define PMCR0_PMI_INIT (PMCR0_PMI_EN(CYCLES) | PMCR0_PMI_EN(INSTRS))
/* disable counting on a PMI */
#define PMCR0_L2CGLOBAL_EN (UINT64_C(1) << 23)
/* user mode access to configuration registers */
#define PMCR0_USEREN_EN (UINT64_C(1) << 30)
+#define PMCR0_CTR_GE8_EN_SHIFT (32)
-#define PMCR0_INIT (PMCR0_INTGEN_INIT | PMCR0_PMI_INIT | PMCR0_DISCNT_EN)
+#define PMCR0_INIT (PMCR0_INTGEN_INIT | PMCR0_PMI_INIT)
/*
* PMCR1 controls which execution modes count events.
#define PMCR1_EL3A64_EN(CTR) (UINT64_C(1) << (24 + CTR_POS(CTR)))
#endif
#define PMCR1_ALL_EN(CTR) (PMCR1_EL0A32_EN(CTR) | PMCR1_EL0A64_EN(CTR) | \
- PMCR1_EL1A64_EN(CTR) | PMCR1_EL3A64_EN(CTR))
+ PMCR1_EL1A64_EN(CTR) | PMCR1_EL3A64_EN(CTR))
/* fixed counters always count in all modes */
#define PMCR1_INIT (PMCR1_ALL_EN(CYCLES) | PMCR1_ALL_EN(INSTRS))
#define PMCR3 "s3_1_c15_c3_0"
#define PMCR4 "s3_1_c15_c4_0"
+#define PMSR "s3_1_c15_c13_0"
+
#define PMSR_OVF(CTR) (1ULL << (CTR))
-void
-mt_early_init(void)
-{
-}
+#define PMESR0 "S3_1_c15_c5_0"
+#define PMESR1 "S3_1_c15_c6_0"
static int
core_init(__unused mt_device_t dev)
mt_core_snap(unsigned int ctr)
{
switch (ctr) {
- case 0:
- return __builtin_arm_rsr64(PMC0);
- case 1:
- return __builtin_arm_rsr64(PMC1);
+#define PMC_RD(CTR, UNUSED) case (CTR): return __builtin_arm_rsr64(PMC ## CTR)
+ PMC_ALL(PMC_RD, 0);
+#undef PMC_RD
default:
panic("monotonic: invalid core counter read: %u", ctr);
__builtin_unreachable();
static void
core_set_enabled(void)
{
- uint64_t pmcr0;
-
- pmcr0 = __builtin_arm_rsr64(PMCR0);
+ uint64_t pmcr0 = __builtin_arm_rsr64(PMCR0);
pmcr0 |= PMCR0_INIT | PMCR0_FIXED_EN;
+
+ if (kpc_get_running() & KPC_CLASS_CONFIGURABLE_MASK) {
+ uint64_t kpc_ctrs = kpc_get_configurable_pmc_mask(
+ KPC_CLASS_CONFIGURABLE_MASK) << MT_CORE_NFIXED;
+#if KPC_ARM64_CONFIGURABLE_COUNT > 6
+ uint64_t ctrs_ge8 = kpc_ctrs >> 8;
+ pmcr0 |= ctrs_ge8 << PMCR0_CTR_GE8_EN_SHIFT;
+ pmcr0 |= ctrs_ge8 << PMCR0_CTR_GE8_PMI_SHIFT;
+ kpc_ctrs &= (1ULL << 8) - 1;
+#endif /* KPC_ARM64_CONFIGURABLE_COUNT > 6 */
+ kpc_ctrs |= kpc_ctrs << PMCR0_PMI_SHIFT;
+ pmcr0 |= kpc_ctrs;
+ }
+
__builtin_arm_wsr64(PMCR0, pmcr0);
+#if MACH_ASSERT
+ /*
+ * Only check for the values that were ORed in.
+ */
+ uint64_t pmcr0_check = __builtin_arm_rsr64(PMCR0);
+ if ((pmcr0_check & (PMCR0_INIT | PMCR0_FIXED_EN)) != (PMCR0_INIT | PMCR0_FIXED_EN)) {
+ panic("monotonic: hardware ignored enable (read %llx, wrote %llx)",
+ pmcr0_check, pmcr0);
+ }
+#endif /* MACH_ASSERT */
}
static void
#if DEBUG
uint64_t pmcr0 = __builtin_arm_rsr64(PMCR0);
if ((pmcr0 & PMCR0_FIXED_EN) == 0) {
- panic("monotonic: counters disabled while idling, pmcr0 = 0x%llx\n", pmcr0);
+ panic("monotonic: counters disabled before idling, pmcr0 = 0x%llx\n", pmcr0);
}
uint64_t pmcr1 = __builtin_arm_rsr64(PMCR1);
if ((pmcr1 & PMCR1_INIT) == 0) {
- panic("monotonic: counter modes disabled while idling, pmcr1 = 0x%llx\n", pmcr1);
+ panic("monotonic: counter modes disabled before idling, pmcr1 = 0x%llx\n", pmcr1);
}
#endif /* DEBUG */
#pragma mark uncore performance monitor
+#if HAS_UNCORE_CTRS
+
+static bool mt_uncore_initted = false;
+
+/*
+ * Uncore Performance Monitor
+ *
+ * Uncore performance monitors provide event-counting for the last-level caches
+ * (LLCs). Each LLC has its own uncore performance monitor, which can only be
+ * accessed by cores that use that LLC. Like the core performance monitoring
+ * unit, uncore counters are configured globally. If there is more than one
+ * LLC on the system, PIO reads must be used to satisfy uncore requests (using
+ * the `_r` remote variants of the access functions). Otherwise, local MSRs
+ * suffice (using the `_l` local variants of the access functions).
+ */
+
+#if UNCORE_PER_CLUSTER
+static vm_size_t cpm_impl_size = 0;
+static uintptr_t cpm_impl[__ARM_CLUSTER_COUNT__] = {};
+static uintptr_t cpm_impl_phys[__ARM_CLUSTER_COUNT__] = {};
+#endif /* UNCORE_PER_CLUSTER */
+
+#if UNCORE_VERSION >= 2
+/*
+ * V2 uncore monitors feature a CTI mechanism -- the second bit of UPMSR is
+ * used to track if a CTI has been triggered due to an overflow.
+ */
+#define UPMSR_OVF_POS 2
+#else /* UNCORE_VERSION >= 2 */
+#define UPMSR_OVF_POS 1
+#endif /* UNCORE_VERSION < 2 */
+#define UPMSR_OVF(R, CTR) ((R) >> ((CTR) + UPMSR_OVF_POS) & 0x1)
+#define UPMSR_OVF_MASK (((UINT64_C(1) << UNCORE_NCTRS) - 1) << UPMSR_OVF_POS)
+
+#define UPMPCM "s3_7_c15_c5_4"
+#define UPMPCM_CORE(ID) (UINT64_C(1) << (ID))
+
+/*
+ * The uncore_pmi_mask is a bitmask of CPUs that receive uncore PMIs. It's
+ * initialized by uncore_init and controllable by the uncore_pmi_mask boot-arg.
+ */
+static int32_t uncore_pmi_mask = 0;
+
+/*
+ * The uncore_active_ctrs is a bitmask of uncore counters that are currently
+ * requested.
+ */
+static uint16_t uncore_active_ctrs = 0;
+static_assert(sizeof(uncore_active_ctrs) * CHAR_BIT >= UNCORE_NCTRS,
+ "counter mask should fit the full range of counters");
+
+/*
+ * mt_uncore_enabled is true when any uncore counters are active.
+ */
+bool mt_uncore_enabled = false;
+
+/*
+ * Each uncore unit has its own monitor, corresponding to the memory hierarchy
+ * of the LLCs.
+ */
+#if UNCORE_PER_CLUSTER
+#define UNCORE_NMONITORS (__ARM_CLUSTER_COUNT__)
+#else /* UNCORE_PER_CLUSTER */
+#define UNCORE_NMONITORS (1)
+#endif /* !UNCORE_PER_CLUSTER */
+
+/*
+ * The uncore_events are the event configurations for each uncore counter -- as
+ * a union to make it easy to program the hardware registers.
+ */
+static struct uncore_config {
+ union {
+ uint8_t uce_ctrs[UNCORE_NCTRS];
+ uint64_t uce_regs[UNCORE_NCTRS / 8];
+ } uc_events;
+ union {
+ uint16_t uccm_masks[UNCORE_NCTRS];
+ uint64_t uccm_regs[UNCORE_NCTRS / 4];
+ } uc_cpu_masks[UNCORE_NMONITORS];
+} uncore_config;
+
+static struct uncore_monitor {
+ /*
+ * The last snapshot of each of the hardware counter values.
+ */
+ uint64_t um_snaps[UNCORE_NCTRS];
+
+ /*
+ * The accumulated counts for each counter.
+ */
+ uint64_t um_counts[UNCORE_NCTRS];
+
+ /*
+ * Protects accessing the hardware registers and fields in this structure.
+ */
+ lck_spin_t um_lock;
+
+ /*
+ * Whether this monitor needs its registers restored after wake.
+ */
+ bool um_sleeping;
+} uncore_monitors[UNCORE_NMONITORS];
+
+static unsigned int
+uncmon_get_curid(void)
+{
+#if UNCORE_PER_CLUSTER
+ return cpu_cluster_id();
+#else /* UNCORE_PER_CLUSTER */
+ return 0;
+#endif /* !UNCORE_PER_CLUSTER */
+}
+
+/*
+ * Per-monitor locks are required to prevent races with the PMI handlers, not
+ * from other CPUs that are configuring (those are serialized with monotonic's
+ * per-device lock).
+ */
+
+static int
+uncmon_lock(struct uncore_monitor *mon)
+{
+ int intrs_en = ml_set_interrupts_enabled(FALSE);
+ lck_spin_lock(&mon->um_lock);
+ return intrs_en;
+}
+
+static void
+uncmon_unlock(struct uncore_monitor *mon, int intrs_en)
+{
+ lck_spin_unlock(&mon->um_lock);
+ (void)ml_set_interrupts_enabled(intrs_en);
+}
+
+/*
+ * Helper functions for accessing the hardware -- these require the monitor be
+ * locked to prevent other CPUs' PMI handlers from making local modifications
+ * or updating the counts.
+ */
+
+#if UNCORE_VERSION >= 2
+#define UPMCR0_INTEN_POS 20
+#define UPMCR0_INTGEN_POS 16
+#else /* UNCORE_VERSION >= 2 */
+#define UPMCR0_INTEN_POS 12
+#define UPMCR0_INTGEN_POS 8
+#endif /* UNCORE_VERSION < 2 */
+enum {
+ UPMCR0_INTGEN_OFF = 0,
+ /* fast PMIs are only supported on core CPMU */
+ UPMCR0_INTGEN_AIC = 2,
+ UPMCR0_INTGEN_HALT = 3,
+ UPMCR0_INTGEN_FIQ = 4,
+};
+/* always enable interrupts for all counters */
+#define UPMCR0_INTEN (((1ULL << UNCORE_NCTRS) - 1) << UPMCR0_INTEN_POS)
+/* route uncore PMIs through the FIQ path */
+#define UPMCR0_INIT (UPMCR0_INTEN | (UPMCR0_INTGEN_FIQ << UPMCR0_INTGEN_POS))
+
+/*
+ * Turn counting on for counters set in the `enctrmask` and off, otherwise.
+ */
+static inline void
+uncmon_set_counting_locked_l(__unused unsigned int monid, uint64_t enctrmask)
+{
+ /*
+ * UPMCR0 controls which counters are enabled and how interrupts are generated
+ * for overflows.
+ */
+#define UPMCR0 "s3_7_c15_c0_4"
+ __builtin_arm_wsr64(UPMCR0, UPMCR0_INIT | enctrmask);
+}
+
+#if UNCORE_PER_CLUSTER
+
+/*
+ * Turn counting on for counters set in the `enctrmask` and off, otherwise.
+ */
+static inline void
+uncmon_set_counting_locked_r(unsigned int monid, uint64_t enctrmask)
+{
+ const uintptr_t upmcr0_offset = 0x4180;
+ *(uint64_t *)(cpm_impl[monid] + upmcr0_offset) = UPMCR0_INIT | enctrmask;
+}
+
+#endif /* UNCORE_PER_CLUSTER */
+
+/*
+ * The uncore performance monitoring counters (UPMCs) are 48-bits wide. The
+ * high bit is an overflow bit, triggering a PMI, providing 47 usable bits.
+ */
+
+#define UPMC_MAX ((UINT64_C(1) << 48) - 1)
+
+/*
+ * The `__builtin_arm_{r,w}sr` functions require constant strings, since the
+ * MSR/MRS instructions encode the registers as immediates. Otherwise, this
+ * would be indexing into an array of strings.
+ */
+
+#define UPMC0 "s3_7_c15_c7_4"
+#define UPMC1 "s3_7_c15_c8_4"
+#define UPMC2 "s3_7_c15_c9_4"
+#define UPMC3 "s3_7_c15_c10_4"
+#define UPMC4 "s3_7_c15_c11_4"
+#define UPMC5 "s3_7_c15_c12_4"
+#define UPMC6 "s3_7_c15_c13_4"
+#define UPMC7 "s3_7_c15_c14_4"
+#if UNCORE_NCTRS > 8
+#define UPMC8 "s3_7_c15_c0_5"
+#define UPMC9 "s3_7_c15_c1_5"
+#define UPMC10 "s3_7_c15_c2_5"
+#define UPMC11 "s3_7_c15_c3_5"
+#define UPMC12 "s3_7_c15_c4_5"
+#define UPMC13 "s3_7_c15_c5_5"
+#define UPMC14 "s3_7_c15_c6_5"
+#define UPMC15 "s3_7_c15_c7_5"
+#endif /* UNCORE_NCTRS > 8 */
+
+#define UPMC_0_7(X, A) X(0, A); X(1, A); X(2, A); X(3, A); X(4, A); X(5, A); \
+ X(6, A); X(7, A)
+#if UNCORE_NCTRS <= 8
+#define UPMC_ALL(X, A) UPMC_0_7(X, A)
+#else /* UNCORE_NCTRS <= 8 */
+#define UPMC_8_15(X, A) X(8, A); X(9, A); X(10, A); X(11, A); X(12, A); \
+ X(13, A); X(14, A); X(15, A)
+#define UPMC_ALL(X, A) UPMC_0_7(X, A); UPMC_8_15(X, A)
+#endif /* UNCORE_NCTRS > 8 */
+
+static inline uint64_t
+uncmon_read_counter_locked_l(__unused unsigned int monid, unsigned int ctr)
+{
+ assert(ctr < UNCORE_NCTRS);
+ switch (ctr) {
+#define UPMC_RD(CTR, UNUSED) case (CTR): return __builtin_arm_rsr64(UPMC ## CTR)
+ UPMC_ALL(UPMC_RD, 0);
+#undef UPMC_RD
+ default:
+ panic("monotonic: invalid counter read %u", ctr);
+ __builtin_unreachable();
+ }
+}
+
+static inline void
+uncmon_write_counter_locked_l(__unused unsigned int monid, unsigned int ctr,
+ uint64_t count)
+{
+ assert(count < UPMC_MAX);
+ assert(ctr < UNCORE_NCTRS);
+ switch (ctr) {
+#define UPMC_WR(CTR, COUNT) case (CTR): \
+ return __builtin_arm_wsr64(UPMC ## CTR, (COUNT))
+ UPMC_ALL(UPMC_WR, count);
+#undef UPMC_WR
+ default:
+ panic("monotonic: invalid counter write %u", ctr);
+ }
+}
+
+#if UNCORE_PER_CLUSTER
+
+static const uint8_t clust_offs[__ARM_CLUSTER_COUNT__] = CPU_CLUSTER_OFFSETS;
+
+uintptr_t upmc_offs[UNCORE_NCTRS] = {
+ [0] = 0x4100, [1] = 0x4248, [2] = 0x4110, [3] = 0x4250, [4] = 0x4120,
+ [5] = 0x4258, [6] = 0x4130, [7] = 0x4260, [8] = 0x4140, [9] = 0x4268,
+ [10] = 0x4150, [11] = 0x4270, [12] = 0x4160, [13] = 0x4278,
+ [14] = 0x4170, [15] = 0x4280,
+};
+
+static inline uint64_t
+uncmon_read_counter_locked_r(unsigned int mon_id, unsigned int ctr)
+{
+ assert(mon_id < __ARM_CLUSTER_COUNT__);
+ assert(ctr < UNCORE_NCTRS);
+ return *(uint64_t *)(cpm_impl[mon_id] + upmc_offs[ctr]);
+}
+
+static inline void
+uncmon_write_counter_locked_r(unsigned int mon_id, unsigned int ctr,
+ uint64_t count)
+{
+ assert(count < UPMC_MAX);
+ assert(ctr < UNCORE_NCTRS);
+ assert(mon_id < __ARM_CLUSTER_COUNT__);
+ *(uint64_t *)(cpm_impl[mon_id] + upmc_offs[ctr]) = count;
+}
+
+#endif /* UNCORE_PER_CLUSTER */
+
+static inline void
+uncmon_update_locked(unsigned int monid, unsigned int curid, unsigned int ctr)
+{
+ struct uncore_monitor *mon = &uncore_monitors[monid];
+ uint64_t snap = 0;
+ if (curid == monid) {
+ snap = uncmon_read_counter_locked_l(monid, ctr);
+ } else {
+#if UNCORE_PER_CLUSTER
+ snap = uncmon_read_counter_locked_r(monid, ctr);
+#endif /* UNCORE_PER_CLUSTER */
+ }
+ /* counters should increase monotonically */
+ assert(snap >= mon->um_snaps[ctr]);
+ mon->um_counts[ctr] += snap - mon->um_snaps[ctr];
+ mon->um_snaps[ctr] = snap;
+}
+
+static inline void
+uncmon_program_events_locked_l(unsigned int monid)
+{
+ /*
+ * UPMESR[01] is the event selection register that determines which event a
+ * counter will count.
+ */
+#define UPMESR0 "s3_7_c15_c1_4"
+ CTRL_REG_SET(UPMESR0, uncore_config.uc_events.uce_regs[0]);
+
+#if UNCORE_NCTRS > 8
+#define UPMESR1 "s3_7_c15_c11_5"
+ CTRL_REG_SET(UPMESR1, uncore_config.uc_events.uce_regs[1]);
+#endif /* UNCORE_NCTRS > 8 */
+
+ /*
+ * UPMECM[0123] are the event core masks for each counter -- whether or not
+ * that counter counts events generated by an agent. These are set to all
+ * ones so the uncore counters count events from all cores.
+ *
+ * The bits are based off the start of the cluster -- e.g. even if a core
+ * has a CPU ID of 4, it might be the first CPU in a cluster. Shift the
+ * registers right by the ID of the first CPU in the cluster.
+ */
+#define UPMECM0 "s3_7_c15_c3_4"
+#define UPMECM1 "s3_7_c15_c4_4"
+
+ CTRL_REG_SET(UPMECM0,
+ uncore_config.uc_cpu_masks[monid].uccm_regs[0]);
+ CTRL_REG_SET(UPMECM1,
+ uncore_config.uc_cpu_masks[monid].uccm_regs[1]);
+
+#if UNCORE_NCTRS > 8
+#define UPMECM2 "s3_7_c15_c8_5"
+#define UPMECM3 "s3_7_c15_c9_5"
+
+ CTRL_REG_SET(UPMECM2,
+ uncore_config.uc_cpu_masks[monid].uccm_regs[2]);
+ CTRL_REG_SET(UPMECM3,
+ uncore_config.uc_cpu_masks[monid].uccm_regs[3]);
+#endif /* UNCORE_NCTRS > 8 */
+}
+
+#if UNCORE_PER_CLUSTER
+
+static inline void
+uncmon_program_events_locked_r(unsigned int monid)
+{
+ const uintptr_t upmesr_offs[2] = {[0] = 0x41b0, [1] = 0x41b8, };
+
+ for (unsigned int i = 0; i < sizeof(upmesr_offs) / sizeof(upmesr_offs[0]);
+ i++) {
+ *(uint64_t *)(cpm_impl[monid] + upmesr_offs[i]) =
+ uncore_config.uc_events.uce_regs[i];
+ }
+
+ const uintptr_t upmecm_offs[4] = {
+ [0] = 0x4190, [1] = 0x4198, [2] = 0x41a0, [3] = 0x41a8,
+ };
+
+ for (unsigned int i = 0; i < sizeof(upmecm_offs) / sizeof(upmecm_offs[0]);
+ i++) {
+ *(uint64_t *)(cpm_impl[monid] + upmecm_offs[i]) =
+ uncore_config.uc_cpu_masks[monid].uccm_regs[i];
+ }
+}
+
+#endif /* UNCORE_PER_CLUSTER */
+
+static void
+uncmon_clear_int_locked_l(__unused unsigned int monid)
+{
+ __builtin_arm_wsr64(UPMSR, 0);
+}
+
+#if UNCORE_PER_CLUSTER
+
+static void
+uncmon_clear_int_locked_r(unsigned int monid)
+{
+ const uintptr_t upmsr_off = 0x41c0;
+ *(uint64_t *)(cpm_impl[monid] + upmsr_off) = 0;
+}
+
+#endif /* UNCORE_PER_CLUSTER */
+
+/*
+ * Get the PMI mask for the provided `monid` -- that is, the bitmap of CPUs
+ * that should be sent PMIs for a particular monitor.
+ */
+static uint64_t
+uncmon_get_pmi_mask(unsigned int monid)
+{
+ uint64_t pmi_mask = uncore_pmi_mask;
+
+#if UNCORE_PER_CLUSTER
+ /*
+ * Set up the mask for the high bits.
+ */
+ uint64_t clust_cpumask;
+ if (monid == __ARM_CLUSTER_COUNT__ - 1) {
+ clust_cpumask = UINT64_MAX;
+ } else {
+ clust_cpumask = ((1ULL << clust_offs[monid + 1]) - 1);
+ }
+
+ /*
+ * Mask off the low bits, if necessary.
+ */
+ if (clust_offs[monid] != 0) {
+ clust_cpumask &= ~((1ULL << clust_offs[monid]) - 1);
+ }
+
+ pmi_mask &= clust_cpumask;
+#else /* UNCORE_PER_CLUSTER */
+#pragma unused(monid)
+#endif /* !UNCORE_PER_CLUSTER */
+
+ return pmi_mask;
+}
+
+/*
+ * Initialization routines for the uncore counters.
+ */
+
+static void
+uncmon_init_locked_l(unsigned int monid)
+{
+ /*
+ * UPMPCM defines the PMI core mask for the UPMCs -- which cores should
+ * receive interrupts on overflow.
+ */
+ CTRL_REG_SET(UPMPCM, uncmon_get_pmi_mask(monid));
+ uncmon_set_counting_locked_l(monid,
+ mt_uncore_enabled ? uncore_active_ctrs : 0);
+}
+
+#if UNCORE_PER_CLUSTER
+
+static vm_size_t acc_impl_size = 0;
+static uintptr_t acc_impl[__ARM_CLUSTER_COUNT__] = {};
+static uintptr_t acc_impl_phys[__ARM_CLUSTER_COUNT__] = {};
+
+static void
+uncmon_init_locked_r(unsigned int monid)
+{
+ const uintptr_t upmpcm_off = 0x1010;
+
+ *(uint64_t *)(acc_impl[monid] + upmpcm_off) = uncmon_get_pmi_mask(monid);
+ uncmon_set_counting_locked_r(monid,
+ mt_uncore_enabled ? uncore_active_ctrs : 0);
+}
+
+#endif /* UNCORE_PER_CLUSTER */
+
+/*
+ * Initialize the uncore device for monotonic.
+ */
+static int
+uncore_init(__unused mt_device_t dev)
+{
+#if DEVELOPMENT || DEBUG
+ /*
+ * Development and debug kernels observe the `uncore_pmi_mask` boot-arg,
+ * allowing PMIs to be routed to the CPUs present in the supplied bitmap.
+ * Do some sanity checks on the value provided.
+ */
+ bool parsed_arg = PE_parse_boot_argn("uncore_pmi_mask", &uncore_pmi_mask,
+ sizeof(uncore_pmi_mask));
+ if (parsed_arg) {
+#if UNCORE_PER_CLUSTER
+ if (__builtin_popcount(uncore_pmi_mask) != __ARM_CLUSTER_COUNT__) {
+ panic("monotonic: invalid uncore PMI mask 0x%x", uncore_pmi_mask);
+ }
+ for (unsigned int i = 0; i < __ARM_CLUSTER_COUNT__; i++) {
+ if (__builtin_popcountll(uncmon_get_pmi_mask(i)) != 1) {
+ panic("monotonic: invalid uncore PMI CPU for cluster %d in mask 0x%x",
+ i, uncore_pmi_mask);
+ }
+ }
+#else /* UNCORE_PER_CLUSTER */
+ if (__builtin_popcount(uncore_pmi_mask) != 1) {
+ panic("monotonic: invalid uncore PMI mask 0x%x", uncore_pmi_mask);
+ }
+#endif /* !UNCORE_PER_CLUSTER */
+ } else
+#endif /* DEVELOPMENT || DEBUG */
+ {
+#if UNCORE_PER_CLUSTER
+ for (int i = 0; i < __ARM_CLUSTER_COUNT__; i++) {
+ /* route to the first CPU in each cluster */
+ uncore_pmi_mask |= (1ULL << clust_offs[i]);
+ }
+#else /* UNCORE_PER_CLUSTER */
+ /* arbitrarily route to core 0 */
+ uncore_pmi_mask |= 1;
+#endif /* !UNCORE_PER_CLUSTER */
+ }
+ assert(uncore_pmi_mask != 0);
+
+ unsigned int curmonid = uncmon_get_curid();
+
+ for (unsigned int monid = 0; monid < UNCORE_NMONITORS; monid++) {
+#if UNCORE_PER_CLUSTER
+ cpm_impl[monid] = (uintptr_t)ml_io_map(cpm_impl_phys[monid],
+ cpm_impl_size);
+ assert(cpm_impl[monid] != 0);
+
+ acc_impl[monid] = (uintptr_t)ml_io_map(acc_impl_phys[monid],
+ acc_impl_size);
+ assert(acc_impl[monid] != 0);
+#endif /* UNCORE_PER_CLUSTER */
+
+ struct uncore_monitor *mon = &uncore_monitors[monid];
+ lck_spin_init(&mon->um_lock, mt_lock_grp, NULL);
+
+ int intrs_en = uncmon_lock(mon);
+ if (monid != curmonid) {
+#if UNCORE_PER_CLUSTER
+ uncmon_init_locked_r(monid);
+#endif /* UNCORE_PER_CLUSTER */
+ } else {
+ uncmon_init_locked_l(monid);
+ }
+ uncmon_unlock(mon, intrs_en);
+ }
+
+ mt_uncore_initted = true;
+
+ return 0;
+}
+
+/*
+ * Support for monotonic's mtd_read function.
+ */
+
+static void
+uncmon_read_all_counters(unsigned int monid, unsigned int curmonid,
+ uint64_t ctr_mask, uint64_t *counts)
+{
+ struct uncore_monitor *mon = &uncore_monitors[monid];
+
+ int intrs_en = uncmon_lock(mon);
+
+ for (unsigned int ctr = 0; ctr < UNCORE_NCTRS; ctr++) {
+ if (ctr_mask & (1ULL << ctr)) {
+ uncmon_update_locked(monid, curmonid, ctr);
+ counts[ctr] = mon->um_counts[ctr];
+ }
+ }
+
+ uncmon_unlock(mon, intrs_en);
+}
+
+/*
+ * Read all monitor's counters.
+ */
+static int
+uncore_read(uint64_t ctr_mask, uint64_t *counts_out)
+{
+ assert(ctr_mask != 0);
+ assert(counts_out != NULL);
+
+ if (!uncore_active_ctrs) {
+ return EPWROFF;
+ }
+ if (ctr_mask & ~uncore_active_ctrs) {
+ return EINVAL;
+ }
+
+ unsigned int curmonid = uncmon_get_curid();
+ for (unsigned int monid = 0; monid < UNCORE_NMONITORS; monid++) {
+ /*
+ * Find this monitor's starting offset into the `counts_out` array.
+ */
+ uint64_t *counts = counts_out + (UNCORE_NCTRS * monid);
+
+ uncmon_read_all_counters(monid, curmonid, ctr_mask, counts);
+ }
+
+ return 0;
+}
+
+/*
+ * Support for monotonic's mtd_add function.
+ */
+
+/*
+ * Add an event to the current uncore configuration. This doesn't take effect
+ * until the counters are enabled again, so there's no need to involve the
+ * monitors.
+ */
+static int
+uncore_add(struct monotonic_config *config, uint32_t *ctr_out)
+{
+ if (mt_uncore_enabled) {
+ return EBUSY;
+ }
+
+ uint32_t available = ~uncore_active_ctrs & config->allowed_ctr_mask;
+
+ if (available == 0) {
+ return ENOSPC;
+ }
+
+ uint32_t valid_ctrs = (UINT32_C(1) << UNCORE_NCTRS) - 1;
+ if ((available & valid_ctrs) == 0) {
+ return E2BIG;
+ }
+
+ uint32_t ctr = __builtin_ffsll(available) - 1;
+
+ uncore_active_ctrs |= UINT64_C(1) << ctr;
+ uncore_config.uc_events.uce_ctrs[ctr] = config->event;
+ uint64_t cpu_mask = UINT64_MAX;
+ if (config->cpu_mask != 0) {
+ cpu_mask = config->cpu_mask;
+ }
+ for (int i = 0; i < UNCORE_NMONITORS; i++) {
+#if UNCORE_PER_CLUSTER
+ const unsigned int shift = clust_offs[i];
+#else /* UNCORE_PER_CLUSTER */
+ const unsigned int shift = 0;
+#endif /* !UNCORE_PER_CLUSTER */
+ uncore_config.uc_cpu_masks[i].uccm_masks[ctr] = cpu_mask >> shift;
+ }
+
+ *ctr_out = ctr;
+ return 0;
+}
+
+/*
+ * Support for monotonic's mtd_reset function.
+ */
+
+/*
+ * Reset all configuration and disable the counters if they're currently
+ * counting.
+ */
+static void
+uncore_reset(void)
+{
+ mt_uncore_enabled = false;
+
+ unsigned int curmonid = uncmon_get_curid();
+
+ for (unsigned int monid = 0; monid < UNCORE_NMONITORS; monid++) {
+ struct uncore_monitor *mon = &uncore_monitors[monid];
+ bool remote = monid != curmonid;
+
+ int intrs_en = uncmon_lock(mon);
+ if (remote) {
+#if UNCORE_PER_CLUSTER
+ uncmon_set_counting_locked_r(monid, 0);
+#endif /* UNCORE_PER_CLUSTER */
+ } else {
+ uncmon_set_counting_locked_l(monid, 0);
+ }
+
+ for (int ctr = 0; ctr < UNCORE_NCTRS; ctr++) {
+ if (uncore_active_ctrs & (1U << ctr)) {
+ if (remote) {
+#if UNCORE_PER_CLUSTER
+ uncmon_write_counter_locked_r(monid, ctr, 0);
+#endif /* UNCORE_PER_CLUSTER */
+ } else {
+ uncmon_write_counter_locked_l(monid, ctr, 0);
+ }
+ }
+ }
+
+ memset(&mon->um_snaps, 0, sizeof(mon->um_snaps));
+ memset(&mon->um_counts, 0, sizeof(mon->um_counts));
+ if (remote) {
+#if UNCORE_PER_CLUSTER
+ uncmon_clear_int_locked_r(monid);
+#endif /* UNCORE_PER_CLUSTER */
+ } else {
+ uncmon_clear_int_locked_l(monid);
+ }
+
+ uncmon_unlock(mon, intrs_en);
+ }
+
+ uncore_active_ctrs = 0;
+ memset(&uncore_config, 0, sizeof(uncore_config));
+
+ for (unsigned int monid = 0; monid < UNCORE_NMONITORS; monid++) {
+ struct uncore_monitor *mon = &uncore_monitors[monid];
+ bool remote = monid != curmonid;
+
+ int intrs_en = uncmon_lock(mon);
+ if (remote) {
+#if UNCORE_PER_CLUSTER
+ uncmon_program_events_locked_r(monid);
+#endif /* UNCORE_PER_CLUSTER */
+ } else {
+ uncmon_program_events_locked_l(monid);
+ }
+ uncmon_unlock(mon, intrs_en);
+ }
+}
+
+/*
+ * Support for monotonic's mtd_enable function.
+ */
+
+static void
+uncmon_set_enabled_l(unsigned int monid, bool enable)
+{
+ struct uncore_monitor *mon = &uncore_monitors[monid];
+ int intrs_en = uncmon_lock(mon);
+
+ if (enable) {
+ uncmon_program_events_locked_l(monid);
+ uncmon_set_counting_locked_l(monid, uncore_active_ctrs);
+ } else {
+ uncmon_set_counting_locked_l(monid, 0);
+ }
+
+ uncmon_unlock(mon, intrs_en);
+}
+
+#if UNCORE_PER_CLUSTER
+
+static void
+uncmon_set_enabled_r(unsigned int monid, bool enable)
+{
+ struct uncore_monitor *mon = &uncore_monitors[monid];
+ int intrs_en = uncmon_lock(mon);
+
+ if (enable) {
+ uncmon_program_events_locked_r(monid);
+ uncmon_set_counting_locked_r(monid, uncore_active_ctrs);
+ } else {
+ uncmon_set_counting_locked_r(monid, 0);
+ }
+
+ uncmon_unlock(mon, intrs_en);
+}
+
+#endif /* UNCORE_PER_CLUSTER */
+
+static void
+uncore_set_enabled(bool enable)
+{
+ mt_uncore_enabled = enable;
+
+ unsigned int curmonid = uncmon_get_curid();
+ for (unsigned int monid = 0; monid < UNCORE_NMONITORS; monid++) {
+ if (monid != curmonid) {
+#if UNCORE_PER_CLUSTER
+ uncmon_set_enabled_r(monid, enable);
+#endif /* UNCORE_PER_CLUSTER */
+ } else {
+ uncmon_set_enabled_l(monid, enable);
+ }
+ }
+}
+
+/*
+ * Hooks in the machine layer.
+ */
+
+static void
+uncore_fiq(uint64_t upmsr)
+{
+ /*
+ * Determine which counters overflowed.
+ */
+ uint64_t disable_ctr_mask = (upmsr & UPMSR_OVF_MASK) >> UPMSR_OVF_POS;
+ /* should not receive interrupts from inactive counters */
+ assert(!(disable_ctr_mask & ~uncore_active_ctrs));
+
+ unsigned int monid = uncmon_get_curid();
+ struct uncore_monitor *mon = &uncore_monitors[monid];
+
+ int intrs_en = uncmon_lock(mon);
+
+ /*
+ * Disable any counters that overflowed.
+ */
+ uncmon_set_counting_locked_l(monid,
+ uncore_active_ctrs & ~disable_ctr_mask);
+
+ /*
+ * With the overflowing counters disabled, capture their counts and reset
+ * the UPMCs and their snapshots to 0.
+ */
+ for (unsigned int ctr = 0; ctr < UNCORE_NCTRS; ctr++) {
+ if (UPMSR_OVF(upmsr, ctr)) {
+ uncmon_update_locked(monid, monid, ctr);
+ mon->um_snaps[ctr] = 0;
+ uncmon_write_counter_locked_l(monid, ctr, 0);
+ }
+ }
+
+ /*
+ * Acknowledge the interrupt, now that any overflowed PMCs have been reset.
+ */
+ uncmon_clear_int_locked_l(monid);
+
+ /*
+ * Re-enable all active counters.
+ */
+ uncmon_set_counting_locked_l(monid, uncore_active_ctrs);
+
+ uncmon_unlock(mon, intrs_en);
+}
+
+static void
+uncore_save(void)
+{
+ if (!uncore_active_ctrs) {
+ return;
+ }
+
+ unsigned int curmonid = uncmon_get_curid();
+
+ for (unsigned int monid = 0; monid < UNCORE_NMONITORS; monid++) {
+ struct uncore_monitor *mon = &uncore_monitors[monid];
+ int intrs_en = uncmon_lock(mon);
+
+ if (mt_uncore_enabled) {
+ if (monid != curmonid) {
+#if UNCORE_PER_CLUSTER
+ uncmon_set_counting_locked_r(monid, 0);
+#endif /* UNCORE_PER_CLUSTER */
+ } else {
+ uncmon_set_counting_locked_l(monid, 0);
+ }
+ }
+
+ for (unsigned int ctr = 0; ctr < UNCORE_NCTRS; ctr++) {
+ if (uncore_active_ctrs & (1U << ctr)) {
+ uncmon_update_locked(monid, curmonid, ctr);
+ }
+ }
+
+ mon->um_sleeping = true;
+ uncmon_unlock(mon, intrs_en);
+ }
+}
+
+static void
+uncore_restore(void)
+{
+ if (!uncore_active_ctrs) {
+ return;
+ }
+ unsigned int curmonid = uncmon_get_curid();
+
+ struct uncore_monitor *mon = &uncore_monitors[curmonid];
+ int intrs_en = uncmon_lock(mon);
+ if (!mon->um_sleeping) {
+ goto out;
+ }
+
+ for (unsigned int ctr = 0; ctr < UNCORE_NCTRS; ctr++) {
+ if (uncore_active_ctrs & (1U << ctr)) {
+ uncmon_write_counter_locked_l(curmonid, ctr, mon->um_snaps[ctr]);
+ }
+ }
+ uncmon_program_events_locked_l(curmonid);
+ uncmon_init_locked_l(curmonid);
+ mon->um_sleeping = false;
+
+out:
+ uncmon_unlock(mon, intrs_en);
+}
+
+static void
+uncore_early_init(void)
+{
+#if UNCORE_PER_CLUSTER
+ /*
+ * Initialize the necessary PIO physical regions from the device tree.
+ */
+ DTEntry armio_entry = NULL;
+ if ((DTFindEntry("name", "arm-io", &armio_entry) != kSuccess)) {
+ panic("unable to find arm-io DT entry");
+ }
+
+ uint64_t *regs;
+ unsigned int regs_size = 0;
+ if (DTGetProperty(armio_entry, "acc-impl", (void **)®s, ®s_size) !=
+ kSuccess) {
+ panic("unable to find acc-impl DT property");
+ }
+ /*
+ * Two 8-byte values are expected for each cluster -- the physical address
+ * of the region and its size.
+ */
+ const unsigned int expected_size =
+ (typeof(expected_size))sizeof(uint64_t) * __ARM_CLUSTER_COUNT__ * 2;
+ if (regs_size != expected_size) {
+ panic("invalid size for acc-impl DT property");
+ }
+ for (int i = 0; i < __ARM_CLUSTER_COUNT__; i++) {
+ acc_impl_phys[i] = regs[i * 2];
+ }
+ acc_impl_size = regs[1];
+
+ regs_size = 0;
+ if (DTGetProperty(armio_entry, "cpm-impl", (void **)®s, ®s_size) !=
+ kSuccess) {
+ panic("unable to find cpm-impl property");
+ }
+ if (regs_size != expected_size) {
+ panic("invalid size for cpm-impl DT property");
+ }
+ for (int i = 0; i < __ARM_CLUSTER_COUNT__; i++) {
+ cpm_impl_phys[i] = regs[i * 2];
+ }
+ cpm_impl_size = regs[1];
+#endif /* UNCORE_PER_CLUSTER */
+}
+
+#endif /* HAS_UNCORE_CTRS */
#pragma mark common hooks
+void
+mt_early_init(void)
+{
+#if HAS_UNCORE_CTRS
+ uncore_early_init();
+#endif /* HAS_UNCORE_CTRS */
+}
+
void
mt_cpu_idle(cpu_data_t *cpu)
{
void
mt_cpu_run(cpu_data_t *cpu)
{
- uint64_t pmcr0;
struct mt_cpu *mtc;
assert(cpu != NULL);
/* re-enable the counters */
core_init_execution_modes();
- pmcr0 = __builtin_arm_rsr64(PMCR0);
- pmcr0 |= PMCR0_INIT | PMCR0_FIXED_EN;
- __builtin_arm_wsr64(PMCR0, pmcr0);
+ core_set_enabled();
}
void
void
mt_sleep(void)
{
+#if HAS_UNCORE_CTRS
+ uncore_save();
+#endif /* HAS_UNCORE_CTRS */
}
void
mt_wake_per_core(void)
{
+#if HAS_UNCORE_CTRS
+ if (mt_uncore_initted) {
+ uncore_restore();
+ }
+#endif /* HAS_UNCORE_CTRS */
+}
+
+uint64_t
+mt_count_pmis(void)
+{
+ uint64_t npmis = 0;
+ int max_cpu = ml_get_max_cpu_number();
+ for (int i = 0; i <= max_cpu; i++) {
+ cpu_data_t *cpu = (cpu_data_t *)CpuDataEntries[i].cpu_data_vaddr;
+ npmis += cpu->cpu_monotonic.mtc_npmis;
+ }
+ return npmis;
}
static void
-mt_cpu_pmi(cpu_data_t *cpu, uint64_t pmsr)
+mt_cpu_pmi(cpu_data_t *cpu, uint64_t pmcr0)
{
assert(cpu != NULL);
assert(ml_get_interrupts_enabled() == FALSE);
- (void)atomic_fetch_add_explicit(&mt_pmis, 1, memory_order_relaxed);
+ __builtin_arm_wsr64(PMCR0, PMCR0_INIT);
+ /*
+ * Ensure the CPMU has flushed any increments at this point, so PMSR is up
+ * to date.
+ */
+ __builtin_arm_isb(ISB_SY);
+
+ cpu->cpu_monotonic.mtc_npmis += 1;
+ cpu->cpu_stat.pmi_cnt_wake += 1;
+
+#if MONOTONIC_DEBUG
+ if (!PMCR0_PMI(pmcr0)) {
+ kprintf("monotonic: mt_cpu_pmi but no PMI (PMCR0 = %#llx)\n",
+ pmcr0);
+ }
+#else /* MONOTONIC_DEBUG */
+#pragma unused(pmcr0)
+#endif /* !MONOTONIC_DEBUG */
+
+ uint64_t pmsr = __builtin_arm_rsr64(PMSR);
+
+#if MONOTONIC_DEBUG
+ printf("monotonic: cpu = %d, PMSR = 0x%llx, PMCR0 = 0x%llx\n",
+ cpu_number(), pmsr, pmcr0);
+#endif /* MONOTONIC_DEBUG */
+
+#if MACH_ASSERT
+ uint64_t handled = 0;
+#endif /* MACH_ASSERT */
/*
* monotonic handles any fixed counter PMIs.
continue;
}
+#if MACH_ASSERT
+ handled |= 1ULL << i;
+#endif /* MACH_ASSERT */
uint64_t count = mt_cpu_update_count(cpu, i);
cpu->cpu_monotonic.mtc_counts[i] += count;
mt_core_set_snap(i, mt_core_reset_values[i]);
user_mode = PSR64_IS_USER(get_saved_state_cpsr(state));
}
KDBG_RELEASE(KDBG_EVENTID(DBG_MONOTONIC, DBG_MT_DEBUG, 1),
- mt_microstackshot_ctr, user_mode);
+ mt_microstackshot_ctr, user_mode);
mt_microstackshot_pmi_handler(user_mode, mt_microstackshot_ctx);
+ } else if (mt_debug) {
+ KDBG_RELEASE(KDBG_EVENTID(DBG_MONOTONIC, DBG_MT_DEBUG, 2),
+ i, count);
}
}
*/
for (unsigned int i = MT_CORE_NFIXED; i < CORE_NCTRS; i++) {
if (pmsr & PMSR_OVF(i)) {
+#if MACH_ASSERT
+ handled |= 1ULL << i;
+#endif /* MACH_ASSERT */
extern void kpc_pmi_handler(unsigned int ctr);
kpc_pmi_handler(i);
}
}
+#if MACH_ASSERT
+ uint64_t pmsr_after_handling = __builtin_arm_rsr64(PMSR);
+ if (pmsr_after_handling != 0) {
+ unsigned int first_ctr_ovf = __builtin_ffsll(pmsr_after_handling) - 1;
+ uint64_t count = 0;
+ const char *extra = "";
+ if (first_ctr_ovf >= CORE_NCTRS) {
+ extra = " (invalid counter)";
+ } else {
+ count = mt_core_snap(first_ctr_ovf);
+ }
+
+ panic("monotonic: PMI status not cleared on exit from handler, "
+ "PMSR = 0x%llx HANDLE -> -> 0x%llx, handled 0x%llx, "
+ "PMCR0 = 0x%llx, PMC%d = 0x%llx%s", pmsr, pmsr_after_handling,
+ handled, __builtin_arm_rsr64(PMCR0), first_ctr_ovf, count, extra);
+ }
+#endif /* MACH_ASSERT */
+
core_set_enabled();
}
+#if CPMU_AIC_PMI
void
-mt_fiq(void *cpu, uint64_t pmsr, uint64_t upmsr)
+mt_cpmu_aic_pmi(cpu_id_t source)
{
- mt_cpu_pmi(cpu, pmsr);
+ struct cpu_data *curcpu = getCpuDatap();
+ if (source != curcpu->interrupt_nub) {
+ panic("monotonic: PMI from IOCPU %p delivered to %p", source,
+ curcpu->interrupt_nub);
+ }
+ mt_cpu_pmi(curcpu, __builtin_arm_rsr64(PMCR0));
+}
+#endif /* CPMU_AIC_PMI */
+void
+mt_fiq(void *cpu, uint64_t pmcr0, uint64_t upmsr)
+{
+#if CPMU_AIC_PMI
+#pragma unused(cpu, pmcr0)
+#else /* CPMU_AIC_PMI */
+ mt_cpu_pmi(cpu, pmcr0);
+#endif /* !CPMU_AIC_PMI */
+
+#if HAS_UNCORE_CTRS
+ uncore_fiq(upmsr);
+#else /* HAS_UNCORE_CTRS */
#pragma unused(upmsr)
+#endif /* !HAS_UNCORE_CTRS */
}
static uint32_t mt_xc_sync;
core_set_enabled();
- if (hw_atomic_sub(&mt_xc_sync, 1) == 0) {
+ if (os_atomic_dec(&mt_xc_sync, relaxed) == 0) {
thread_wakeup((event_t)&mt_xc_sync);
}
}
int
mt_microstackshot_start_arch(uint64_t period)
{
- mt_core_reset_values[mt_microstackshot_ctr] = CTR_MAX - period;
+ uint64_t reset_value = 0;
+ int ovf = os_sub_overflow(CTR_MAX, period, &reset_value);
+ if (ovf) {
+ return ERANGE;
+ }
+
+ mt_core_reset_values[mt_microstackshot_ctr] = reset_value;
cpu_broadcast_xcall(&mt_xc_sync, TRUE, mt_microstackshot_start_remote,
- mt_microstackshot_start_remote /* cannot pass NULL */);
+ mt_microstackshot_start_remote /* cannot pass NULL */);
return 0;
}
.mtd_name = "core",
.mtd_init = core_init,
},
+#if HAS_UNCORE_CTRS
+ [1] = {
+ .mtd_name = "uncore",
+ .mtd_init = uncore_init,
+ .mtd_add = uncore_add,
+ .mtd_reset = uncore_reset,
+ .mtd_enable = uncore_set_enabled,
+ .mtd_read = uncore_read,
+
+ .mtd_nmonitors = UNCORE_NMONITORS,
+ .mtd_ncounters = UNCORE_NCTRS,
+ }
+#endif /* HAS_UNCORE_CTRS */
};
static_assert(
- (sizeof(mt_devices) / sizeof(mt_devices[0])) == MT_NDEVS,
- "MT_NDEVS macro should be same as the length of mt_devices");
+ (sizeof(mt_devices) / sizeof(mt_devices[0])) == MT_NDEVS,
+ "MT_NDEVS macro should be same as the length of mt_devices");