/*
- * Copyright (c) 2003-2012 Apple Inc. All rights reserved.
+ * Copyright (c) 2003-2019 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
- *
+ *
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
- *
+ *
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
- *
+ *
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
- *
+ *
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_COPYRIGHT@
*/
-/*
+/*
* Mach Operating System
* Copyright (c) 1991,1990,1989, 1988 Carnegie Mellon University
* All Rights Reserved.
- *
+ *
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
- *
+ *
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
- *
+ *
* Carnegie Mellon requests users of this software to return to
- *
+ *
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
- *
+ *
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
#include <i386/cpuid.h>
#include <mach/thread_status.h>
#include <pexpert/i386/efi.h>
+#include <pexpert/pexpert.h>
#include <i386/i386_lowmem.h>
+#include <i386/misc_protos.h>
#include <x86_64/lowglobals.h>
#include <i386/pal_routines.h>
#include <mach-o/loader.h>
#include <libkern/kernel_mach_header.h>
+#define P2ROUNDUP(x, align) (-(-(x) & -(align)))
-vm_size_t mem_size = 0;
-pmap_paddr_t first_avail = 0;/* first after page tables */
+vm_size_t mem_size = 0;
+pmap_paddr_t first_avail = 0;/* first after page tables */
-uint64_t max_mem; /* Size of physical memory (bytes), adjusted by maxmem */
+uint64_t max_mem; /* Size of physical memory minus carveouts (bytes), adjusted by maxmem */
+uint64_t max_mem_actual; /* Actual size of physical memory (bytes) adjusted by
+ * the maxmem boot-arg */
uint64_t mem_actual;
-uint64_t sane_size = 0; /* Memory size for defaults calculations */
+uint64_t sane_size = 0; /* Memory size for defaults calculations */
/*
* KASLR parameters
*/
-ppnum_t vm_kernel_base_page;
-vm_offset_t vm_kernel_base;
-vm_offset_t vm_kernel_top;
-vm_offset_t vm_kernel_stext;
-vm_offset_t vm_kernel_etext;
-vm_offset_t vm_kernel_slide;
-vm_offset_t vm_kernel_slid_base;
-vm_offset_t vm_kernel_slid_top;
+ppnum_t vm_kernel_base_page;
+vm_offset_t vm_kernel_base;
+vm_offset_t vm_kernel_top;
+vm_offset_t vm_kernel_stext;
+vm_offset_t vm_kernel_etext;
+vm_offset_t vm_kernel_slide;
+vm_offset_t vm_kernel_slid_base;
+vm_offset_t vm_kernel_slid_top;
vm_offset_t vm_hib_base;
-vm_offset_t vm_kext_base = VM_MIN_KERNEL_AND_KEXT_ADDRESS;
-vm_offset_t vm_kext_top = VM_MIN_KERNEL_ADDRESS;
+vm_offset_t vm_kext_base = VM_MIN_KERNEL_AND_KEXT_ADDRESS;
+vm_offset_t vm_kext_top = VM_MIN_KERNEL_ADDRESS;
vm_offset_t vm_prelink_stext;
vm_offset_t vm_prelink_etext;
vm_offset_t vm_kernel_builtinkmod_text;
vm_offset_t vm_kernel_builtinkmod_text_end;
-#define MAXLORESERVE (32 * 1024 * 1024)
+#define MAXLORESERVE (32 * 1024 * 1024)
-ppnum_t max_ppnum = 0;
-ppnum_t lowest_lo = 0;
-ppnum_t lowest_hi = 0;
-ppnum_t highest_hi = 0;
+ppnum_t max_ppnum = 0;
+
+/*
+ * pmap_high_used* are the highest range of physical memory used for kernel
+ * internals (page tables, vm_pages) via pmap_steal_memory() that don't
+ * need to be encrypted in hibernation images. There can be one gap in
+ * the middle of this due to fragmentation when using a mix of small
+ * and large pages. In that case, the fragment lives between the high
+ * and middle ranges.
+ */
+ppnum_t pmap_high_used_top = 0;
+ppnum_t pmap_high_used_bottom = 0;
+ppnum_t pmap_middle_used_top = 0;
+ppnum_t pmap_middle_used_bottom = 0;
enum {PMAP_MAX_RESERVED_RANGES = 32};
uint32_t pmap_reserved_pages_allocated = 0;
extern unsigned int bsd_mbuf_cluster_reserve(boolean_t *);
pmap_paddr_t avail_start, avail_end;
-vm_offset_t virtual_avail, virtual_end;
-static pmap_paddr_t avail_remaining;
+vm_offset_t virtual_avail, virtual_end;
+static pmap_paddr_t avail_remaining;
vm_offset_t static_memory_end = 0;
-vm_offset_t sHIB, eHIB, stext, etext, sdata, edata, end, sconst, econst;
+vm_offset_t sHIB, eHIB, stext, etext, sdata, edata, end, sconst, econst;
/*
* _mh_execute_header is the mach_header for the currently executing kernel
/*
* Linker magic to establish the highest address in the kernel.
*/
-extern void *last_kernel_symbol;
+extern void *last_kernel_symbol;
+
+#define LG_PPNUM_PAGES (I386_LPGBYTES >> PAGE_SHIFT)
+#define LG_PPNUM_MASK (I386_LPGMASK >> PAGE_SHIFT)
-boolean_t memmap = FALSE;
-#if DEBUG || DEVELOPMENT
+/* set so no region large page fragment pages exist */
+#define RESET_FRAG(r) (((r)->alloc_frag_up = 1), ((r)->alloc_frag_down = 0))
+
+boolean_t memmap = FALSE;
+#if DEBUG || DEVELOPMENT
static void
-kprint_memmap(vm_offset_t maddr, unsigned int msize, unsigned int mcount) {
- unsigned int i;
- unsigned int j;
- pmap_memory_region_t *p = pmap_memory_regions;
- EfiMemoryRange *mptr;
- addr64_t region_start, region_end;
- addr64_t efi_start, efi_end;
-
- for (j = 0; j < pmap_memory_region_count; j++, p++) {
- kprintf("pmap region %d type %d base 0x%llx alloc_up 0x%llx alloc_down 0x%llx top 0x%llx\n",
- j, p->type,
- (addr64_t) p->base << I386_PGSHIFT,
- (addr64_t) p->alloc_up << I386_PGSHIFT,
- (addr64_t) p->alloc_down << I386_PGSHIFT,
- (addr64_t) p->end << I386_PGSHIFT);
- region_start = (addr64_t) p->base << I386_PGSHIFT;
- region_end = ((addr64_t) p->end << I386_PGSHIFT) - 1;
- mptr = (EfiMemoryRange *) maddr;
- for (i = 0;
- i < mcount;
- i++, mptr = (EfiMemoryRange *)(((vm_offset_t)mptr) + msize)) {
- if (mptr->Type != kEfiLoaderCode &&
- mptr->Type != kEfiLoaderData &&
- mptr->Type != kEfiBootServicesCode &&
- mptr->Type != kEfiBootServicesData &&
- mptr->Type != kEfiConventionalMemory) {
- efi_start = (addr64_t)mptr->PhysicalStart;
- efi_end = efi_start + ((vm_offset_t)mptr->NumberOfPages << I386_PGSHIFT) - 1;
- if ((efi_start >= region_start && efi_start <= region_end) ||
- (efi_end >= region_start && efi_end <= region_end)) {
- kprintf(" *** Overlapping region with EFI runtime region %d\n", i);
- }
- }
- }
- }
+kprint_memmap(vm_offset_t maddr, unsigned int msize, unsigned int mcount)
+{
+ unsigned int i;
+ unsigned int j;
+ pmap_memory_region_t *p = pmap_memory_regions;
+ EfiMemoryRange *mptr;
+ addr64_t region_start, region_end;
+ addr64_t efi_start, efi_end;
+
+ for (j = 0; j < pmap_memory_region_count; j++, p++) {
+ kprintf("pmap region %d type %d base 0x%llx alloc_up 0x%llx alloc_down 0x%llx"
+ " alloc_frag_up 0x%llx alloc_frag_down 0x%llx top 0x%llx\n",
+ j, p->type,
+ (addr64_t) p->base << I386_PGSHIFT,
+ (addr64_t) p->alloc_up << I386_PGSHIFT,
+ (addr64_t) p->alloc_down << I386_PGSHIFT,
+ (addr64_t) p->alloc_frag_up << I386_PGSHIFT,
+ (addr64_t) p->alloc_frag_down << I386_PGSHIFT,
+ (addr64_t) p->end << I386_PGSHIFT);
+ region_start = (addr64_t) p->base << I386_PGSHIFT;
+ region_end = ((addr64_t) p->end << I386_PGSHIFT) - 1;
+ mptr = (EfiMemoryRange *) maddr;
+ for (i = 0;
+ i < mcount;
+ i++, mptr = (EfiMemoryRange *)(((vm_offset_t)mptr) + msize)) {
+ if (mptr->Type != kEfiLoaderCode &&
+ mptr->Type != kEfiLoaderData &&
+ mptr->Type != kEfiBootServicesCode &&
+ mptr->Type != kEfiBootServicesData &&
+ mptr->Type != kEfiConventionalMemory) {
+ efi_start = (addr64_t)mptr->PhysicalStart;
+ efi_end = efi_start + ((vm_offset_t)mptr->NumberOfPages << I386_PGSHIFT) - 1;
+ if ((efi_start >= region_start && efi_start <= region_end) ||
+ (efi_end >= region_start && efi_end <= region_end)) {
+ kprintf(" *** Overlapping region with EFI runtime region %d\n", i);
+ }
+ }
+ }
+ }
}
-#define DPRINTF(x...) do { if (memmap) kprintf(x); } while (0)
+#define DPRINTF(x...) do { if (memmap) kprintf(x); } while (0)
#else
static void
-kprint_memmap(vm_offset_t maddr, unsigned int msize, unsigned int mcount) {
+kprint_memmap(vm_offset_t maddr, unsigned int msize, unsigned int mcount)
+{
#pragma unused(maddr, msize, mcount)
}
* Basic VM initialization.
*/
void
-i386_vm_init(uint64_t maxmem,
- boolean_t IA32e,
- boot_args *args)
+i386_vm_init(uint64_t maxmem,
+ boolean_t IA32e,
+ boot_args *args)
{
pmap_memory_region_t *pmptr;
- pmap_memory_region_t *prev_pmptr;
+ pmap_memory_region_t *prev_pmptr;
EfiMemoryRange *mptr;
- unsigned int mcount;
- unsigned int msize;
+ unsigned int mcount;
+ unsigned int msize;
vm_offset_t maddr;
ppnum_t fap;
unsigned int i;
ppnum_t maxpg = 0;
- uint32_t pmap_type;
+ uint32_t pmap_type;
uint32_t maxloreserve;
uint32_t maxdmaaddr;
uint32_t mbuf_reserve = 0;
vm_kernel_base_page = i386_btop(args->kaddr);
vm_offset_t base_address;
vm_offset_t static_base_address;
-
+
PE_parse_boot_argn("memmap", &memmap, sizeof(memmap));
/*
vm_kernel_slide = base_address - static_base_address;
if (args->kslide) {
kprintf("KASLR slide: 0x%016lx dynamic\n", vm_kernel_slide);
- if (vm_kernel_slide != ((vm_offset_t)args->kslide))
+ if (vm_kernel_slide != ((vm_offset_t)args->kslide)) {
panic("Kernel base inconsistent with slide - rebased?");
+ }
} else {
/* No slide relative to on-disk symbols */
kprintf("KASLR slide: 0x%016lx static and ignored\n",
- vm_kernel_slide);
+ vm_kernel_slide);
vm_kernel_slide = 0;
}
uint32_t cmd;
loadcmd = (struct load_command *)((uintptr_t)&_mh_execute_header +
- sizeof (_mh_execute_header));
+ sizeof(_mh_execute_header));
for (cmd = 0; cmd < _mh_execute_header.ncmds; cmd++) {
if (loadcmd->cmd == LC_DYSYMTAB) {
}
/*
- * Now retrieve addresses for end, edata, and etext
+ * Now retrieve addresses for end, edata, and etext
* from MACH-O headers.
*/
segTEXTB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header,
- "__TEXT", &segSizeTEXT);
+ "__TEXT", &segSizeTEXT);
segDATAB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header,
- "__DATA", &segSizeDATA);
+ "__DATA", &segSizeDATA);
segLINKB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header,
- "__LINKEDIT", &segSizeLINK);
+ "__LINKEDIT", &segSizeLINK);
segHIBB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header,
- "__HIB", &segSizeHIB);
+ "__HIB", &segSizeHIB);
segPRELINKTEXTB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header,
- "__PRELINK_TEXT", &segSizePRELINKTEXT);
+ "__PRELINK_TEXT", &segSizePRELINKTEXT);
segPRELINKINFOB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header,
- "__PRELINK_INFO", &segSizePRELINKINFO);
+ "__PRELINK_INFO", &segSizePRELINKINFO);
segTEXT = getsegbynamefromheader(&_mh_execute_header,
- "__TEXT");
+ "__TEXT");
segDATA = getsegbynamefromheader(&_mh_execute_header,
- "__DATA");
+ "__DATA");
segCONST = getsegbynamefromheader(&_mh_execute_header,
- "__CONST");
+ "__DATA_CONST");
cursectTEXT = lastsectTEXT = firstsect(segTEXT);
/* Discover the last TEXT section within the TEXT segment */
while ((cursectTEXT = nextsect(segTEXT, cursectTEXT)) != NULL) {
segSizeConst = segCONST->vmsize;
econst = sconst + segSizeConst;
- assert(((sconst|econst) & PAGE_MASK) == 0);
-
+ kc_format_t kc_format = KCFormatUnknown;
+
+ /* XXX: FIXME_IN_dyld: For new-style kernel caches, the ending address of __DATA_CONST may not be page-aligned */
+ if (PE_get_primary_kc_format(&kc_format) && kc_format == KCFormatFileset) {
+ /* Round up the end */
+ econst = P2ROUNDUP(econst, PAGE_SIZE);
+ edata = P2ROUNDUP(edata, PAGE_SIZE);
+ } else {
+ assert(((sconst | econst) & PAGE_MASK) == 0);
+ assert(((sdata | edata) & PAGE_MASK) == 0);
+ }
+
DPRINTF("segTEXTB = %p\n", (void *) segTEXTB);
DPRINTF("segDATAB = %p\n", (void *) segDATAB);
DPRINTF("segLINKB = %p\n", (void *) segLINKB);
vm_prelink_einfo = segPRELINKINFOB + segSizePRELINKINFO;
vm_slinkedit = segLINKB;
vm_elinkedit = segLINKB + segSizeLINK;
+
+ /*
+ * In the fileset world, we want to be able to (un)slide addresses from
+ * the kernel or any of the kexts (e.g., for kernel logging metadata
+ * passed between the kernel and logd in userspace). VM_KERNEL_UNSLIDE
+ * (via VM_KERNEL_IS_SLID) should apply to the addresses in the range
+ * from the first basement address to the last boot kc address.
+ *
+ * ^
+ * :
+ * |
+ * vm_kernel_slid_top - ---------------------------------------------
+ * |
+ * :
+ * : Boot kc (kexts in the boot kc here)
+ * : - - - - - - - - - - - - - - - - - - - - - - -
+ * :
+ * :
+ * | Boot kc (kernel here)
+ * - ---------------------------------------------
+ * |
+ * :
+ * | Basement (kexts in pageable and aux kcs here)
+ * vm_kernel_slid_base - ---------------------------------------------
+ * 0
+ */
+
vm_kernel_slid_base = vm_kext_base + vm_kernel_slide;
- vm_kernel_slid_top = vm_prelink_einfo;
+ vm_kernel_slid_top = (kc_format == KCFormatFileset) ?
+ vm_slinkedit : vm_prelink_einfo;
+
+ vm_page_kernelcache_count = (unsigned int) (atop_64(vm_kernel_top - vm_kernel_base));
vm_set_page_size();
avail_remaining = 0;
avail_end = 0;
pmptr = pmap_memory_regions;
- prev_pmptr = 0;
+ prev_pmptr = 0;
pmap_memory_region_count = pmap_memory_region_current = 0;
fap = (ppnum_t) i386_btop(first_avail);
maddr = ml_static_ptovirt((vm_offset_t)args->MemoryMap);
mptr = (EfiMemoryRange *)maddr;
- if (args->MemoryMapDescriptorSize == 0)
- panic("Invalid memory map descriptor size");
- msize = args->MemoryMapDescriptorSize;
- mcount = args->MemoryMapSize / msize;
+ if (args->MemoryMapDescriptorSize == 0) {
+ panic("Invalid memory map descriptor size");
+ }
+ msize = args->MemoryMapDescriptorSize;
+ mcount = args->MemoryMapSize / msize;
#define FOURGIG 0x0000000100000000ULL
#define ONEGIG 0x0000000040000000ULL
for (i = 0; i < mcount; i++, mptr = (EfiMemoryRange *)(((vm_offset_t)mptr) + msize)) {
- ppnum_t base, top;
+ ppnum_t base, top;
uint64_t region_bytes = 0;
if (pmap_memory_region_count >= PMAP_MEMORY_REGIONS_SIZE) {
- kprintf("WARNING: truncating memory region count at %d\n", pmap_memory_region_count);
+ kprintf("WARNING: truncating memory region count at %d\n", pmap_memory_region_count);
break;
}
base = (ppnum_t) (mptr->PhysicalStart >> I386_PGSHIFT);
if (base == 0) {
/*
- * Avoid having to deal with the edge case of the
+ * Avoid having to deal with the edge case of the
* very first possible physical page and the roll-over
* to -1; just ignore that page.
*/
}
if (top + 1 == 0) {
/*
- * Avoid having to deal with the edge case of the
+ * Avoid having to deal with the edge case of the
* very last possible physical page and the roll-over
* to 0; just ignore that page.
*/
continue;
}
-#if MR_RSV_TEST
+#if MR_RSV_TEST
static uint32_t nmr = 0;
- if ((base > 0x20000) && (nmr++ < 4))
+ if ((base > 0x20000) && (nmr++ < 4)) {
mptr->Attribute |= EFI_MEMORY_KERN_RESERVED;
+ }
#endif
region_bytes = (uint64_t)(mptr->NumberOfPages << I386_PGSHIFT);
pmap_type = mptr->Type;
case kEfiBootServicesCode:
case kEfiBootServicesData:
case kEfiConventionalMemory:
- /*
+ /*
* Consolidate usable memory types into one.
*/
- pmap_type = kEfiConventionalMemory;
- sane_size += region_bytes;
+ pmap_type = kEfiConventionalMemory;
+ sane_size += region_bytes;
firmware_Conventional_bytes += region_bytes;
break;
- /*
- * sane_size should reflect the total amount of physical
- * RAM in the system, not just the amount that is
- * available for the OS to use.
- * We now get this value from SMBIOS tables
- * rather than reverse engineering the memory map.
- * But the legacy computation of "sane_size" is kept
- * for diagnostic information.
- */
+ /*
+ * sane_size should reflect the total amount of physical
+ * RAM in the system, not just the amount that is
+ * available for the OS to use.
+ * We now get this value from SMBIOS tables
+ * rather than reverse engineering the memory map.
+ * But the legacy computation of "sane_size" is kept
+ * for diagnostic information.
+ */
case kEfiRuntimeServicesCode:
case kEfiRuntimeServicesData:
break;
case kEfiPalCode:
firmware_PalCode_bytes += region_bytes;
- sane_size += region_bytes;
+ sane_size += region_bytes;
break;
case kEfiReservedMemoryType:
DPRINTF("EFI region %d: type %u/%d, base 0x%x, top 0x%x %s\n",
i, mptr->Type, pmap_type, base, top,
- (mptr->Attribute&EFI_MEMORY_KERN_RESERVED)? "RESERVED" :
- (mptr->Attribute&EFI_MEMORY_RUNTIME)? "RUNTIME" : "");
+ (mptr->Attribute & EFI_MEMORY_KERN_RESERVED)? "RESERVED" :
+ (mptr->Attribute & EFI_MEMORY_RUNTIME)? "RUNTIME" : "");
if (maxpg) {
- if (base >= maxpg)
+ if (base >= maxpg) {
break;
- top = (top > maxpg) ? maxpg : top;
+ }
+ top = (top > maxpg) ? maxpg : top;
}
/*
*/
if ((mptr->Attribute & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME ||
pmap_type != kEfiConventionalMemory) {
- prev_pmptr = 0;
+ prev_pmptr = 0;
continue;
} else {
- /*
+ /*
* Usable memory region
*/
- if (top < I386_LOWMEM_RESERVED ||
+ if (top < I386_LOWMEM_RESERVED ||
!pal_is_usable_memory(base, top)) {
- prev_pmptr = 0;
+ prev_pmptr = 0;
continue;
}
/*
}
if (top < fap) {
- /*
+ /*
* entire range below first_avail
- * salvage some low memory pages
+ * salvage some low memory pages
* we use some very low memory at startup
* mark as already allocated here
*/
- if (base >= I386_LOWMEM_RESERVED)
- pmptr->base = base;
- else
- pmptr->base = I386_LOWMEM_RESERVED;
+ if (base >= I386_LOWMEM_RESERVED) {
+ pmptr->base = base;
+ } else {
+ pmptr->base = I386_LOWMEM_RESERVED;
+ }
pmptr->end = top;
(top < vm_kernel_base_page)) {
pmptr->alloc_up = pmptr->base;
pmptr->alloc_down = pmptr->end;
+ RESET_FRAG(pmptr);
pmap_reserved_range_indices[pmap_last_reserved_range_index++] = pmap_memory_region_count;
- }
- else {
+ } else {
/*
* mark as already mapped
*/
pmptr->alloc_up = top + 1;
pmptr->alloc_down = top;
+ RESET_FRAG(pmptr);
}
pmptr->type = pmap_type;
pmptr->attribute = mptr->Attribute;
- }
- else if ( (base < fap) && (top > fap) ) {
- /*
+ } else if ((base < fap) && (top > fap)) {
+ /*
* spans first_avail
* put mem below first avail in table but
* mark already allocated
*/
- pmptr->base = base;
+ pmptr->base = base;
pmptr->end = (fap - 1);
pmptr->alloc_up = pmptr->end + 1;
pmptr->alloc_down = pmptr->end;
+ RESET_FRAG(pmptr);
pmptr->type = pmap_type;
pmptr->attribute = mptr->Attribute;
/*
pmptr->type = pmap_type;
pmptr->attribute = mptr->Attribute;
pmptr->alloc_down = pmptr->end = top;
+ RESET_FRAG(pmptr);
- if (mptr->Attribute & EFI_MEMORY_KERN_RESERVED)
+ if (mptr->Attribute & EFI_MEMORY_KERN_RESERVED) {
pmap_reserved_range_indices[pmap_last_reserved_range_index++] = pmap_memory_region_count;
+ }
} else {
- /*
+ /*
* entire range useable
*/
- pmptr->alloc_up = pmptr->base = base;
+ pmptr->alloc_up = pmptr->base = base;
pmptr->type = pmap_type;
pmptr->attribute = mptr->Attribute;
pmptr->alloc_down = pmptr->end = top;
- if (mptr->Attribute & EFI_MEMORY_KERN_RESERVED)
+ RESET_FRAG(pmptr);
+ if (mptr->Attribute & EFI_MEMORY_KERN_RESERVED) {
pmap_reserved_range_indices[pmap_last_reserved_range_index++] = pmap_memory_region_count;
+ }
}
- if (i386_ptob(pmptr->end) > avail_end )
- avail_end = i386_ptob(pmptr->end);
+ if (i386_ptob(pmptr->end) > avail_end) {
+ avail_end = i386_ptob(pmptr->end);
+ }
avail_remaining += (pmptr->end - pmptr->base);
coalescing_permitted = (prev_pmptr && (pmptr->attribute == prev_pmptr->attribute) && ((pmptr->attribute & EFI_MEMORY_KERN_RESERVED) == 0));
(coalescing_permitted) &&
(pmptr->base == pmptr->alloc_up) &&
(prev_pmptr->end == prev_pmptr->alloc_down) &&
- (pmptr->base == (prev_pmptr->end + 1)))
- {
+ (pmptr->base == (prev_pmptr->end + 1))) {
prev_pmptr->end = pmptr->end;
prev_pmptr->alloc_down = pmptr->alloc_down;
+ RESET_FRAG(pmptr);
} else {
- pmap_memory_region_count++;
+ pmap_memory_region_count++;
prev_pmptr = pmptr;
pmptr++;
}
* we now use the memory size reported by EFI/Booter.
*/
sane_size = (sane_size + 128 * MB - 1) & ~((uint64_t)(128 * MB - 1));
- if (sane_size != mem_actual)
+ if (sane_size != mem_actual) {
printf("mem_actual: 0x%llx\n legacy sane_size: 0x%llx\n",
- mem_actual, sane_size);
+ mem_actual, sane_size);
+ }
sane_size = mem_actual;
/*
- * We cap at KERNEL_MAXMEM bytes (currently 32GB for K32, 96GB for K64).
+ * We cap at KERNEL_MAXMEM bytes (currently 1536GB).
* Unless overriden by the maxmem= boot-arg
* -- which is a non-zero maxmem argument to this function.
*/
if (maxmem == 0 && sane_size > KERNEL_MAXMEM) {
maxmem = KERNEL_MAXMEM;
printf("Physical memory %lld bytes capped at %dGB\n",
- sane_size, (uint32_t) (KERNEL_MAXMEM/GB));
+ sane_size, (uint32_t) (KERNEL_MAXMEM / GB));
}
/*
* if user set maxmem, reduce memory sizes
*/
- if ( (maxmem > (uint64_t)first_avail) && (maxmem < sane_size)) {
+ if ((maxmem > (uint64_t)first_avail) && (maxmem < sane_size)) {
ppnum_t discarded_pages = (ppnum_t)((sane_size - maxmem) >> I386_PGSHIFT);
- ppnum_t highest_pn = 0;
- ppnum_t cur_end = 0;
- uint64_t pages_to_use;
- unsigned cur_region = 0;
+ ppnum_t highest_pn = 0;
+ ppnum_t cur_end = 0;
+ uint64_t pages_to_use;
+ unsigned cur_region = 0;
sane_size = maxmem;
- if (avail_remaining > discarded_pages)
+ if (avail_remaining > discarded_pages) {
avail_remaining -= discarded_pages;
- else
+ } else {
avail_remaining = 0;
-
+ }
+
pages_to_use = avail_remaining;
while (cur_region < pmap_memory_region_count && pages_to_use) {
- for (cur_end = pmap_memory_regions[cur_region].base;
- cur_end < pmap_memory_regions[cur_region].end && pages_to_use;
- cur_end++) {
- if (cur_end > highest_pn)
- highest_pn = cur_end;
+ for (cur_end = pmap_memory_regions[cur_region].base;
+ cur_end < pmap_memory_regions[cur_region].end && pages_to_use;
+ cur_end++) {
+ if (cur_end > highest_pn) {
+ highest_pn = cur_end;
+ }
pages_to_use--;
}
if (pages_to_use == 0) {
- pmap_memory_regions[cur_region].end = cur_end;
- pmap_memory_regions[cur_region].alloc_down = cur_end;
+ pmap_memory_regions[cur_region].end = cur_end;
+ pmap_memory_regions[cur_region].alloc_down = cur_end;
+ RESET_FRAG(&pmap_memory_regions[cur_region]);
}
cur_region++;
* mem_size is only a 32 bit container... follow the PPC route
* and pin it to a 2 Gbyte maximum
*/
- if (sane_size > (FOURGIG >> 1))
- mem_size = (vm_size_t)(FOURGIG >> 1);
- else
- mem_size = (vm_size_t)sane_size;
+ if (sane_size > (FOURGIG >> 1)) {
+ mem_size = (vm_size_t)(FOURGIG >> 1);
+ } else {
+ mem_size = (vm_size_t)sane_size;
+ }
max_mem = sane_size;
+ max_mem_actual = sane_size;
- kprintf("Physical memory %llu MB\n", sane_size/MB);
+ kprintf("Physical memory %llu MB\n", sane_size / MB);
max_valid_low_ppnum = (2 * GB) / PAGE_SIZE;
- if (!PE_parse_boot_argn("max_valid_dma_addr", &maxdmaaddr, sizeof (maxdmaaddr))) {
- max_valid_dma_address = (uint64_t)4 * (uint64_t)GB;
+ if (!PE_parse_boot_argn("max_valid_dma_addr", &maxdmaaddr, sizeof(maxdmaaddr))) {
+ max_valid_dma_address = (uint64_t)4 * (uint64_t)GB;
} else {
- max_valid_dma_address = ((uint64_t) maxdmaaddr) * MB;
+ max_valid_dma_address = ((uint64_t) maxdmaaddr) * MB;
- if ((max_valid_dma_address / PAGE_SIZE) < max_valid_low_ppnum)
+ if ((max_valid_dma_address / PAGE_SIZE) < max_valid_low_ppnum) {
max_valid_low_ppnum = (ppnum_t)(max_valid_dma_address / PAGE_SIZE);
+ }
}
if (avail_end >= max_valid_dma_address) {
-
- if (!PE_parse_boot_argn("maxloreserve", &maxloreserve, sizeof (maxloreserve))) {
-
- if (sane_size >= (ONEGIG * 15))
+ if (!PE_parse_boot_argn("maxloreserve", &maxloreserve, sizeof(maxloreserve))) {
+ if (sane_size >= (ONEGIG * 15)) {
maxloreserve = (MAXLORESERVE / PAGE_SIZE) * 4;
- else if (sane_size >= (ONEGIG * 7))
+ } else if (sane_size >= (ONEGIG * 7)) {
maxloreserve = (MAXLORESERVE / PAGE_SIZE) * 2;
- else
+ } else {
maxloreserve = MAXLORESERVE / PAGE_SIZE;
+ }
#if SOCKETS
mbuf_reserve = bsd_mbuf_cluster_reserve(&mbuf_override) / PAGE_SIZE;
#endif
- } else
+ } else {
maxloreserve = (maxloreserve * (1024 * 1024)) / PAGE_SIZE;
+ }
if (maxloreserve) {
- vm_lopage_free_limit = maxloreserve;
-
+ vm_lopage_free_limit = maxloreserve;
+
if (mbuf_override == TRUE) {
vm_lopage_free_limit += mbuf_reserve;
vm_lopage_lowater = 0;
- } else
+ } else {
vm_lopage_lowater = vm_lopage_free_limit / 16;
+ }
vm_lopage_refill = TRUE;
vm_lopage_needed = TRUE;
}
}
-
+
/*
* Initialize kernel physical map.
* Kernel virtual address starts at VM_KERNEL_MIN_ADDRESS.
return (unsigned int)avail_remaining;
}
-
boolean_t pmap_next_page_reserved(ppnum_t *);
/*
* Pick a page from a "kernel private" reserved range; works around
- * errata on some hardware.
+ * errata on some hardware. EFI marks pages which can't be used for
+ * certain kinds of I/O-ish activities as reserved. We reserve them for
+ * kernel internal usage and prevent them from ever going on regular
+ * free list.
*/
boolean_t
-pmap_next_page_reserved(ppnum_t *pn) {
+pmap_next_page_reserved(
+ ppnum_t *pn)
+{
+ uint32_t n;
+ pmap_memory_region_t *region;
+ uint32_t reserved_index;
+
if (pmap_reserved_ranges) {
- uint32_t n;
- pmap_memory_region_t *region;
for (n = 0; n < pmap_last_reserved_range_index; n++) {
- uint32_t reserved_index = pmap_reserved_range_indices[n];
+ reserved_index = pmap_reserved_range_indices[n];
region = &pmap_memory_regions[reserved_index];
if (region->alloc_up <= region->alloc_down) {
*pn = region->alloc_up++;
- avail_remaining--;
-
- if (*pn > max_ppnum)
- max_ppnum = *pn;
+ } else if (region->alloc_frag_up <= region->alloc_frag_down) {
+ *pn = region->alloc_frag_up++;
+ } else {
+ continue;
+ }
+ avail_remaining--;
- if (lowest_lo == 0 || *pn < lowest_lo)
- lowest_lo = *pn;
+ if (*pn > max_ppnum) {
+ max_ppnum = *pn;
+ }
- pmap_reserved_pages_allocated++;
+ pmap_reserved_pages_allocated++;
#if DEBUG
- if (region->alloc_up > region->alloc_down) {
- kprintf("Exhausted reserved range index: %u, base: 0x%x end: 0x%x, type: 0x%x, attribute: 0x%llx\n", reserved_index, region->base, region->end, region->type, region->attribute);
- }
-#endif
- return TRUE;
+ if (region->alloc_up > region->alloc_down) {
+ kprintf("Exhausted reserved range index: %u, base: 0x%x end: 0x%x, type: 0x%x, attribute: 0x%llx\n", reserved_index, region->base, region->end, region->type, region->attribute);
}
+#endif
+ return TRUE;
}
}
return FALSE;
}
+/*
+ * Return the highest large page available. Fails once there are no more large pages.
+ */
+kern_return_t
+pmap_next_page_large(
+ ppnum_t *pn)
+{
+ int r;
+ pmap_memory_region_t *region;
+ ppnum_t frag_start;
+ ppnum_t lgpg;
+
+ if (avail_remaining < LG_PPNUM_PAGES) {
+ return KERN_FAILURE;
+ }
+
+ for (r = pmap_memory_region_count - 1; r >= 0; r--) {
+ region = &pmap_memory_regions[r];
+
+ /*
+ * First check if there is enough memory.
+ */
+ if (region->alloc_down < region->alloc_up ||
+ (region->alloc_down - region->alloc_up + 1) < LG_PPNUM_PAGES) {
+ continue;
+ }
+
+ /*
+ * Find the starting large page, creating a fragment if needed.
+ */
+ if ((region->alloc_down & LG_PPNUM_MASK) == LG_PPNUM_MASK) {
+ lgpg = (region->alloc_down & ~LG_PPNUM_MASK);
+ } else {
+ /* Can only have 1 fragment per region at a time */
+ if (region->alloc_frag_up <= region->alloc_frag_down) {
+ continue;
+ }
+
+ /* Check for enough room below any fragment. */
+ frag_start = (region->alloc_down & ~LG_PPNUM_MASK);
+ if (frag_start < region->alloc_up ||
+ frag_start - region->alloc_up < LG_PPNUM_PAGES) {
+ continue;
+ }
+
+ lgpg = frag_start - LG_PPNUM_PAGES;
+ region->alloc_frag_up = frag_start;
+ region->alloc_frag_down = region->alloc_down;
+ }
+
+ *pn = lgpg;
+ region->alloc_down = lgpg - 1;
+
+
+ avail_remaining -= LG_PPNUM_PAGES;
+ if (*pn + LG_PPNUM_MASK > max_ppnum) {
+ max_ppnum = *pn + LG_PPNUM_MASK;
+ }
+
+ return KERN_SUCCESS;
+ }
+ return KERN_FAILURE;
+}
boolean_t
pmap_next_page_hi(
- ppnum_t *pn)
+ ppnum_t *pn,
+ boolean_t might_free)
{
pmap_memory_region_t *region;
- int n;
+ int n;
- if (pmap_next_page_reserved(pn))
+ if (!might_free && pmap_next_page_reserved(pn)) {
return TRUE;
+ }
if (avail_remaining) {
for (n = pmap_memory_region_count - 1; n >= 0; n--) {
region = &pmap_memory_regions[n];
-
- if (region->alloc_down >= region->alloc_up) {
+ if (region->alloc_frag_up <= region->alloc_frag_down) {
+ *pn = region->alloc_frag_down--;
+ } else if (region->alloc_down >= region->alloc_up) {
*pn = region->alloc_down--;
- avail_remaining--;
-
- if (*pn > max_ppnum)
- max_ppnum = *pn;
-
- if (lowest_lo == 0 || *pn < lowest_lo)
- lowest_lo = *pn;
-
- if (lowest_hi == 0 || *pn < lowest_hi)
- lowest_hi = *pn;
+ } else {
+ continue;
+ }
- if (*pn > highest_hi)
- highest_hi = *pn;
+ avail_remaining--;
- return TRUE;
+ if (*pn > max_ppnum) {
+ max_ppnum = *pn;
}
+
+ return TRUE;
}
}
return FALSE;
}
+/*
+ * Record which high pages have been allocated so far,
+ * so that pmap_init() can mark them PMAP_NOENCRYPT, which
+ * makes hibernation faster.
+ *
+ * Because of the code in pmap_next_page_large(), we could
+ * theoretically have fragments in several regions.
+ * In practice that just doesn't happen. The last pmap region
+ * is normally the largest and will satisfy all pmap_next_hi/large()
+ * allocations. Since this information is used as an optimization
+ * and it's ok to be conservative, we'll just record the information
+ * for the final region.
+ */
+void
+pmap_hi_pages_done(void)
+{
+ pmap_memory_region_t *r;
+
+ r = &pmap_memory_regions[pmap_memory_region_count - 1];
+ pmap_high_used_top = r->end;
+ if (r->alloc_frag_up <= r->alloc_frag_down) {
+ pmap_high_used_bottom = r->alloc_frag_down + 1;
+ pmap_middle_used_top = r->alloc_frag_up - 1;
+ if (r->alloc_up <= r->alloc_down) {
+ pmap_middle_used_bottom = r->alloc_down + 1;
+ } else {
+ pmap_high_used_bottom = r->base;
+ }
+ } else {
+ if (r->alloc_up <= r->alloc_down) {
+ pmap_high_used_bottom = r->alloc_down + 1;
+ } else {
+ pmap_high_used_bottom = r->base;
+ }
+ }
+#if DEBUG || DEVELOPMENT
+ kprintf("pmap_high_used_top 0x%x\n", pmap_high_used_top);
+ kprintf("pmap_high_used_bottom 0x%x\n", pmap_high_used_bottom);
+ kprintf("pmap_middle_used_top 0x%x\n", pmap_middle_used_top);
+ kprintf("pmap_middle_used_bottom 0x%x\n", pmap_middle_used_bottom);
+#endif
+}
+/*
+ * Return the next available page from lowest memory for general use.
+ */
boolean_t
pmap_next_page(
- ppnum_t *pn)
+ ppnum_t *pn)
{
- if (avail_remaining) while (pmap_memory_region_current < pmap_memory_region_count) {
- if (pmap_memory_regions[pmap_memory_region_current].alloc_up >
- pmap_memory_regions[pmap_memory_region_current].alloc_down) {
- pmap_memory_region_current++;
- continue;
- }
- *pn = pmap_memory_regions[pmap_memory_region_current].alloc_up++;
- avail_remaining--;
+ pmap_memory_region_t *region;
- if (*pn > max_ppnum)
- max_ppnum = *pn;
+ if (avail_remaining) {
+ while (pmap_memory_region_current < pmap_memory_region_count) {
+ region = &pmap_memory_regions[pmap_memory_region_current];
+ if (region->alloc_up <= region->alloc_down) {
+ *pn = region->alloc_up++;
+ } else if (region->alloc_frag_up <= region->alloc_frag_down) {
+ *pn = region->alloc_frag_up++;
+ } else {
+ pmap_memory_region_current++;
+ continue;
+ }
+ avail_remaining--;
- if (lowest_lo == 0 || *pn < lowest_lo)
- lowest_lo = *pn;
+ if (*pn > max_ppnum) {
+ max_ppnum = *pn;
+ }
- return TRUE;
+ return TRUE;
+ }
}
return FALSE;
}
pmap_valid_page(
ppnum_t pn)
{
- unsigned int i;
+ unsigned int i;
pmap_memory_region_t *pmptr = pmap_memory_regions;
for (i = 0; i < pmap_memory_region_count; i++, pmptr++) {
- if ( (pn >= pmptr->base) && (pn <= pmptr->end) )
- return TRUE;
+ if ((pn >= pmptr->base) && (pn <= pmptr->end)) {
+ return TRUE;
+ }
}
return FALSE;
}
-