/*
- * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
+ * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
- *
+ *
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
- *
+ *
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
- *
+ *
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
- *
+ *
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_COPYRIGHT@
*/
-/*
+/*
* Mach Operating System
* Copyright (c) 1991,1990 Carnegie Mellon University
* All Rights Reserved.
- *
+ *
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
- *
+ *
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
- *
+ *
* Carnegie Mellon requests users of this software to return to
- *
+ *
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
- *
+ *
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
*/
#include <kern/cpu_number.h>
-#include <kern/kalloc.h>
#include <kern/cpu_data.h>
+#include <kern/percpu.h>
#include <mach/mach_types.h>
#include <mach/machine.h>
#include <mach/vm_map.h>
#define U_INTR_GATE (ACC_P|ACC_PL_U|ACC_INTR_GATE)
// Declare macros that will declare the externs
-#define TRAP(n, name) extern void *name ;
-#define TRAP_ERR(n, name) extern void *name ;
-#define TRAP_SPC(n, name) extern void *name ;
-#define TRAP_IST1(n, name) extern void *name ;
-#define TRAP_IST2(n, name) extern void *name ;
-#define INTERRUPT(n) extern void *_intr_ ## n ;
-#define USER_TRAP(n, name) extern void *name ;
-#define USER_TRAP_SPC(n, name) extern void *name ;
+#define TRAP(n, name) extern void *name ;
+#define TRAP_ERR(n, name) extern void *name ;
+#define TRAP_SPC(n, name) extern void *name ;
+#define TRAP_IST1(n, name) extern void *name ;
+#define TRAP_IST2(n, name) extern void *name ;
+#define INTERRUPT(n) extern void *_intr_ ## n ;
+#define USER_TRAP(n, name) extern void *name ;
+#define USER_TRAP_SPC(n, name) extern void *name ;
// Include the table to declare the externs
#include "../x86_64/idt_table.h"
#undef USER_TRAP
#undef USER_TRAP_SPC
-#define TRAP(n, name) \
- [n] = { \
- (uintptr_t)&name, \
- KERNEL64_CS, \
- 0, \
- K_INTR_GATE, \
- 0 \
+#define TRAP(n, name) \
+ [n] = { \
+ (uintptr_t)&name, \
+ KERNEL64_CS, \
+ 0, \
+ K_INTR_GATE, \
+ 0 \
},
#define TRAP_ERR TRAP
#define TRAP_SPC TRAP
#define TRAP_IST1(n, name) \
- [n] = { \
- (uintptr_t)&name, \
- KERNEL64_CS, \
- 1, \
- K_INTR_GATE, \
- 0 \
+ [n] = { \
+ (uintptr_t)&name, \
+ KERNEL64_CS, \
+ 1, \
+ K_INTR_GATE, \
+ 0 \
},
#define TRAP_IST2(n, name) \
- [n] = { \
- (uintptr_t)&name, \
- KERNEL64_CS, \
- 2, \
- K_INTR_GATE, \
- 0 \
+ [n] = { \
+ (uintptr_t)&name, \
+ KERNEL64_CS, \
+ 2, \
+ K_INTR_GATE, \
+ 0 \
},
#define INTERRUPT(n) \
- [n] = { \
- (uintptr_t)&_intr_ ## n,\
- KERNEL64_CS, \
- 0, \
- K_INTR_GATE, \
- 0 \
+ [n] = { \
+ (uintptr_t)&_intr_ ## n,\
+ KERNEL64_CS, \
+ 0, \
+ K_INTR_GATE, \
+ 0 \
},
#define USER_TRAP(n, name) \
- [n] = { \
- (uintptr_t)&name, \
- KERNEL64_CS, \
- 0, \
- U_INTR_GATE, \
- 0 \
+ [n] = { \
+ (uintptr_t)&name, \
+ KERNEL64_CS, \
+ 0, \
+ U_INTR_GATE, \
+ 0 \
},
#define USER_TRAP_SPC USER_TRAP
// Declare the table using the macros we just set up
struct fake_descriptor64 master_idt64[IDTSZ]
- __attribute__ ((section("__HIB,__desc")))
- __attribute__ ((aligned(PAGE_SIZE))) = {
+__attribute__ ((section("__HIB,__desc")))
+__attribute__ ((aligned(PAGE_SIZE))) = {
#include "../x86_64/idt_table.h"
};
/*
* First cpu`s interrupt stack.
*/
-extern uint32_t low_intstack[]; /* bottom */
-extern uint32_t low_eintstack[]; /* top */
+extern uint32_t low_intstack[]; /* bottom */
+extern uint32_t low_eintstack[]; /* top */
/*
* Per-cpu data area pointers.
};
cpu_data_t *cpu_data_master = &scdatas[0];
-cpu_data_t *cpu_data_ptr[MAX_CPUS] = { [0] = &scdatas[0] };
+cpu_data_t *cpu_data_ptr[MAX_CPUS] = {[0] = &scdatas[0] };
+
+SECURITY_READ_ONLY_LATE(struct percpu_base) percpu_base;
-decl_simple_lock_data(,ncpus_lock); /* protects real_ncpus */
-unsigned int real_ncpus = 1;
-unsigned int max_ncpus = MAX_CPUS;
+decl_simple_lock_data(, ncpus_lock); /* protects real_ncpus */
+unsigned int real_ncpus = 1;
+unsigned int max_ncpus = MAX_CPUS;
+unsigned int max_cpus_from_firmware = 0;
extern void hi64_sysenter(void);
extern void hi64_syscall(void);
* in the uber-space remapping window on the kernel.
*/
struct fake_descriptor64 kernel_ldt_desc64 = {
- 0,
- LDTSZ_MIN*sizeof(struct fake_descriptor)-1,
- 0,
- ACC_P|ACC_PL_K|ACC_LDT,
- 0
+ .offset64 = 0,
+ .lim_or_seg = LDTSZ_MIN * sizeof(struct fake_descriptor) - 1,
+ .size_or_IST = 0,
+ .access = ACC_P | ACC_PL_K | ACC_LDT,
+ .reserved = 0
};
/*
* It is follows pattern of the KERNEL_LDT.
*/
struct fake_descriptor64 kernel_tss_desc64 = {
- 0,
- sizeof(struct x86_64_tss)-1,
- 0,
- ACC_P|ACC_PL_K|ACC_TSS,
- 0
+ .offset64 = 0,
+ .lim_or_seg = sizeof(struct x86_64_tss) - 1,
+ .size_or_IST = 0,
+ .access = ACC_P | ACC_PL_K | ACC_TSS,
+ .reserved = 0
};
/*
* bytes 6..7 offset 31..16
*/
void
-fix_desc(void *d, int num_desc) {
- //early_kprintf("fix_desc(%x, %x)\n", d, num_desc);
+fix_desc(void *d, int num_desc)
+{
uint8_t *desc = (uint8_t*) d;
do {
uint16_t selector;
uint8_t wordcount;
uint8_t acc;
-
+
offset = *((uint32_t*)(desc));
- selector = *((uint32_t*)(desc+4));
+ selector = *((uint32_t*)(desc + 4));
wordcount = desc[6] >> 4;
acc = desc[7];
*((uint16_t*)desc) = offset & 0xFFFF;
- *((uint16_t*)(desc+2)) = selector;
+ *((uint16_t*)(desc + 2)) = selector;
desc[4] = wordcount;
desc[5] = acc;
- *((uint16_t*)(desc+6)) = offset >> 16;
-
+ *((uint16_t*)(desc + 6)) = offset >> 16;
} else { /* descriptor */
uint32_t base;
uint16_t limit;
uint8_t acc1, acc2;
base = *((uint32_t*)(desc));
- limit = *((uint16_t*)(desc+4));
+ limit = *((uint16_t*)(desc + 4));
acc2 = desc[6];
acc1 = desc[7];
*((uint16_t*)(desc)) = limit;
- *((uint16_t*)(desc+2)) = base & 0xFFFF;
+ *((uint16_t*)(desc + 2)) = base & 0xFFFF;
desc[4] = (base >> 16) & 0xFF;
desc[5] = acc1;
desc[6] = acc2;
void
fix_desc64(void *descp, int count)
{
- struct fake_descriptor64 *fakep;
+ struct fake_descriptor64 *fakep;
union {
- struct real_gate64 gate;
- struct real_descriptor64 desc;
- } real;
- int i;
+ struct real_gate64 gate;
+ struct real_descriptor64 desc;
+ } real;
+ int i;
fakep = (struct fake_descriptor64 *) descp;
-
+
for (i = 0; i < count; i++, fakep++) {
/*
* Construct the real decriptor locally.
real.gate.selector16 = fakep->lim_or_seg & 0xFFFF;
real.gate.IST = fakep->size_or_IST & 0x7;
real.gate.access8 = fakep->access;
- real.gate.offset_high16 = (uint16_t)((fakep->offset64>>16) & 0xFFFF);
- real.gate.offset_top32 = (uint32_t)(fakep->offset64>>32);
+ real.gate.offset_high16 = (uint16_t)((fakep->offset64 >> 16) & 0xFFFF);
+ real.gate.offset_top32 = (uint32_t)(fakep->offset64 >> 32);
break;
- default: /* Otherwise */
+ default: /* Otherwise */
real.desc.limit_low16 = fakep->lim_or_seg & 0xFFFF;
real.desc.base_low16 = (uint16_t)(fakep->offset64 & 0xFFFF);
real.desc.base_med8 = (uint8_t)((fakep->offset64 >> 16) & 0xFF);
real.desc.limit_high4 = (fakep->lim_or_seg >> 16) & 0xFF;
real.desc.granularity4 = fakep->size_or_IST;
real.desc.base_high8 = (uint8_t)((fakep->offset64 >> 24) & 0xFF);
- real.desc.base_top32 = (uint32_t)(fakep->offset64>>32);
+ real.desc.base_top32 = (uint32_t)(fakep->offset64 >> 32);
}
/*
void
cpu_desc_init(cpu_data_t *cdp)
{
- cpu_desc_index_t *cdi = &cdp->cpu_desc_index;
+ cpu_desc_index_t *cdi = &cdp->cpu_desc_index;
if (cdp == cpu_data_master) {
/*
cdi->cdi_gdtb.ptr = (void *)&master_gdt;
cdi->cdi_idtu.ptr = (void *)DBLMAP((uintptr_t) &master_idt64);
cdi->cdi_idtb.ptr = (void *)((uintptr_t) &master_idt64);
- cdi->cdi_ldtu = (struct fake_descriptor *) (void *) DBLMAP((uintptr_t)&master_ldt[0]);
- cdi->cdi_ldtb = (struct fake_descriptor *) (void *) &master_ldt[0];
+ cdi->cdi_ldtu = (struct real_descriptor *)DBLMAP((uintptr_t)&master_ldt[0]);
+ cdi->cdi_ldtb = &master_ldt[0];
/* Replace the expanded LDTs and TSS slots in the GDT */
kernel_ldt_desc64.offset64 = (uintptr_t) cdi->cdi_ldtu;
*(struct fake_descriptor64 *) &master_gdt[sel_idx(KERNEL_LDT)] =
- kernel_ldt_desc64;
+ kernel_ldt_desc64;
*(struct fake_descriptor64 *) &master_gdt[sel_idx(USER_LDT)] =
- kernel_ldt_desc64;
+ kernel_ldt_desc64;
kernel_tss_desc64.offset64 = (uintptr_t) DBLMAP(&master_ktss64);
*(struct fake_descriptor64 *) &master_gdt[sel_idx(KERNEL_TSS)] =
- kernel_tss_desc64;
+ kernel_tss_desc64;
/* Fix up the expanded descriptors for 64-bit. */
fix_desc64((void *) &master_idt64, IDTSZ);
*/
master_ktss64.ist2 = (uintptr_t) low_eintstack;
master_ktss64.ist1 = (uintptr_t) low_eintstack - sizeof(x86_64_intr_stack_frame_t);
- } else if (cdi->cdi_ktssu == NULL) { /* Skipping re-init on wake */
- cpu_desc_table64_t *cdt = (cpu_desc_table64_t *) cdp->cpu_desc_tablep;
+ } else if (cdi->cdi_ktssu == NULL) { /* Skipping re-init on wake */
+ cpu_desc_table64_t *cdt = (cpu_desc_table64_t *) cdp->cpu_desc_tablep;
cdi->cdi_idtu.ptr = (void *)DBLMAP((uintptr_t) &master_idt64);
*/
kernel_ldt_desc64.offset64 = (uintptr_t) cdi->cdi_ldtu;
*(struct fake_descriptor64 *) &cdt->gdt[sel_idx(KERNEL_LDT)] =
- kernel_ldt_desc64;
+ kernel_ldt_desc64;
fix_desc64(&cdt->gdt[sel_idx(KERNEL_LDT)], 1);
kernel_ldt_desc64.offset64 = (uintptr_t) cdi->cdi_ldtu;
*(struct fake_descriptor64 *) &cdt->gdt[sel_idx(USER_LDT)] =
- kernel_ldt_desc64;
+ kernel_ldt_desc64;
fix_desc64(&cdt->gdt[sel_idx(USER_LDT)], 1);
kernel_tss_desc64.offset64 = (uintptr_t) cdi->cdi_ktssu;
*(struct fake_descriptor64 *) &cdt->gdt[sel_idx(KERNEL_TSS)] =
- kernel_tss_desc64;
+ kernel_tss_desc64;
fix_desc64(&cdt->gdt[sel_idx(KERNEL_TSS)], 1);
/* Set (zeroed) fault stack as IST1, NMI intr stack IST2 */
}
/* Require that the top of the sysenter stack is 16-byte aligned */
- if ((cdi->cdi_sstku % 16) != 0)
+ if ((cdi->cdi_sstku % 16) != 0) {
panic("cpu_desc_init() sysenter stack not 16-byte aligned");
+ }
}
void
cpu_desc_load(cpu_data_t *cdp)
{
- cpu_desc_index_t *cdi = &cdp->cpu_desc_index;
+ cpu_desc_index_t *cdi = &cdp->cpu_desc_index;
postcode(CPU_DESC_LOAD_ENTRY);
gdt_desc_p(KERNEL_TSS)->access &= ~ACC_TSS_BUSY;
/* Load the GDT, LDT, IDT and TSS */
- cdi->cdi_gdtb.size = sizeof(struct real_descriptor)*GDTSZ - 1;
+ cdi->cdi_gdtb.size = sizeof(struct real_descriptor) * GDTSZ - 1;
cdi->cdi_gdtu.size = cdi->cdi_gdtb.size;
cdi->cdi_idtb.size = 0x1000 + cdp->cpu_number;
cdi->cdi_idtu.size = cdi->cdi_idtb.size;
postcode(CPU_DESC_LOAD_TSS);
set_tr(KERNEL_TSS);
-#if GPROF // Hack to enable mcount to work on K64
- __asm__ volatile("mov %0, %%gs" : : "rm" ((unsigned short)(KERNEL_DS)));
-#endif
postcode(CPU_DESC_LOAD_EXIT);
}
void
cpu_syscall_init(cpu_data_t *cdp)
{
-#if MONOTONIC
- mt_cpu_up(cdp);
-#else /* MONOTONIC */
#pragma unused(cdp)
-#endif /* !MONOTONIC */
- wrmsr64(MSR_IA32_SYSENTER_CS, SYSENTER_CS);
+
+ wrmsr64(MSR_IA32_SYSENTER_CS, SYSENTER_CS);
wrmsr64(MSR_IA32_SYSENTER_EIP, DBLMAP((uintptr_t) hi64_sysenter));
wrmsr64(MSR_IA32_SYSENTER_ESP, current_cpu_datap()->cpu_desc_index.cdi_sstku);
/* Enable syscall/sysret */
* is also cleared to avoid a spurious "task switch"
* should we choose to return via an IRET.
*/
- wrmsr64(MSR_IA32_FMASK, EFL_DF|EFL_IF|EFL_TF|EFL_NT);
-
+ wrmsr64(MSR_IA32_FMASK, EFL_DF | EFL_IF | EFL_TF | EFL_NT);
}
extern vm_offset_t dyn_dblmap(vm_offset_t, vm_offset_t);
uint64_t ldt_alias_offset;
+__startup_func
+static void
+cpu_data_startup_init(void)
+{
+ int flags = KMA_GUARD_FIRST | KMA_GUARD_LAST | KMA_PERMANENT |
+ KMA_ZERO | KMA_KOBJECT;
+ uint32_t cpus = max_cpus_from_firmware;
+ vm_size_t size = percpu_section_size() * cpus;
+ kern_return_t kr;
+
+ percpu_base.size = percpu_section_size();
+ if (cpus == 0) {
+ panic("percpu: max_cpus_from_firmware not yet initialized");
+ }
+ if (cpus == 1) {
+ percpu_base.start = VM_MAX_KERNEL_ADDRESS;
+ return;
+ }
+
+ kr = kmem_alloc_flags(kernel_map, &percpu_base.start,
+ round_page(size) + 2 * PAGE_SIZE, VM_KERN_MEMORY_CPU, flags);
+ if (kr != KERN_SUCCESS) {
+ panic("percpu: kmem_alloc failed (%d)", kr);
+ }
+
+ percpu_base.start += PAGE_SIZE - percpu_section_start();
+ percpu_base.end = percpu_base.start + size - 1;
+}
+STARTUP(PERCPU, STARTUP_RANK_FIRST, cpu_data_startup_init);
+
cpu_data_t *
cpu_data_alloc(boolean_t is_boot_cpu)
{
- int ret;
- cpu_data_t *cdp;
+ int ret;
+ cpu_data_t *cdp;
if (is_boot_cpu) {
assert(real_ncpus == 1);
cdp = cpu_datap(0);
if (cdp->cpu_processor == NULL) {
simple_lock_init(&ncpus_lock, 0);
- cdp->cpu_processor = cpu_processor_alloc(TRUE);
-#if NCOPY_WINDOWS > 0
- cdp->cpu_pmap = pmap_cpu_alloc(TRUE);
-#endif
+ cdp->cpu_processor = PERCPU_GET_MASTER(processor);
}
return cdp;
}
boolean_t do_ldt_alloc = FALSE;
- simple_lock(&ncpus_lock);
+ simple_lock(&ncpus_lock, LCK_GRP_NULL);
int cnum = real_ncpus;
real_ncpus++;
if (dyn_ldts == NULL) {
cdp->cpu_this = cdp;
cdp->cpu_number = cnum;
cdp->cd_shadow = &cpshadows[cnum];
+ cdp->cpu_pcpu_base = percpu_base.start + (cnum - 1) * percpu_section_size();
+ cdp->cpu_processor = PERCPU_GET_WITH_BASE(cdp->cpu_pcpu_base, processor);
+
/*
* Allocate interrupt stack:
*/
- ret = kmem_alloc(kernel_map,
- (vm_offset_t *) &cdp->cpu_int_stack_top,
- INTSTACK_SIZE, VM_KERN_MEMORY_CPU);
+ ret = kmem_alloc(kernel_map,
+ (vm_offset_t *) &cdp->cpu_int_stack_top,
+ INTSTACK_SIZE, VM_KERN_MEMORY_CPU);
if (ret != KERN_SUCCESS) {
panic("cpu_data_alloc() int stack failed, ret=%d\n", ret);
}
panic("cpu_data_alloc() ldt failed, kmem_alloc=%d\n", ret);
}
- simple_lock(&ncpus_lock);
+ simple_lock(&ncpus_lock, LCK_GRP_NULL);
if (dyn_ldts == NULL) {
dyn_ldts = (cldt_t *)ldtalloc;
} else {
cdp->cpu_nanotime = &pal_rtc_nanotime_info;
kprintf("cpu_data_alloc(%d) %p desc_table: %p "
- "ldt: %p "
- "int_stack: 0x%lx-0x%lx\n",
- cdp->cpu_number, cdp, cdp->cpu_desc_tablep, cdp->cpu_ldtp,
- (long)(cdp->cpu_int_stack_top - INTSTACK_SIZE), (long)(cdp->cpu_int_stack_top));
+ "ldt: %p "
+ "int_stack: 0x%lx-0x%lx\n",
+ cdp->cpu_number, cdp, cdp->cpu_desc_tablep, cdp->cpu_ldtp,
+ (long)(cdp->cpu_int_stack_top - INTSTACK_SIZE), (long)(cdp->cpu_int_stack_top));
cpu_data_ptr[cnum] = cdp;
return cdp;
-
}
boolean_t
valid_user_data_selector(uint16_t selector)
{
- sel_t sel = selector_to_sel(selector);
-
- if (selector == 0)
- return (TRUE);
-
- if (sel.ti == SEL_LDT)
- return (TRUE);
- else if (sel.index < GDTSZ) {
- if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U)
- return (TRUE);
- }
- return (FALSE);
-}
+ sel_t sel = selector_to_sel(selector);
-boolean_t
-valid_user_code_selector(uint16_t selector)
-{
- sel_t sel = selector_to_sel(selector);
-
- if (selector == 0)
- return (FALSE);
-
- if (sel.ti == SEL_LDT) {
- if (sel.rpl == USER_PRIV)
- return (TRUE);
- }
- else if (sel.index < GDTSZ && sel.rpl == USER_PRIV) {
- if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U)
- return (TRUE);
- /* Explicitly validate the system code selectors
- * even if not instantaneously privileged,
- * since they are dynamically re-privileged
- * at context switch
- */
- if ((selector == USER_CS) || (selector == USER64_CS))
- return (TRUE);
- }
-
- return (FALSE);
-}
+ if (selector == 0) {
+ return TRUE;
+ }
-boolean_t
-valid_user_stack_selector(uint16_t selector)
-{
- sel_t sel = selector_to_sel(selector);
-
- if (selector == 0)
- return (FALSE);
-
- if (sel.ti == SEL_LDT) {
- if (sel.rpl == USER_PRIV)
- return (TRUE);
- }
- else if (sel.index < GDTSZ && sel.rpl == USER_PRIV) {
- if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U)
- return (TRUE);
- }
-
- return (FALSE);
+ if (sel.ti == SEL_LDT) {
+ return TRUE;
+ } else if (sel.index < GDTSZ) {
+ if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U) {
+ return TRUE;
+ }
+ }
+ return FALSE;
}
boolean_t
-valid_user_segment_selectors(uint16_t cs,
- uint16_t ss,
- uint16_t ds,
- uint16_t es,
- uint16_t fs,
- uint16_t gs)
-{
- return valid_user_code_selector(cs) &&
- valid_user_stack_selector(ss) &&
- valid_user_data_selector(ds) &&
- valid_user_data_selector(es) &&
- valid_user_data_selector(fs) &&
- valid_user_data_selector(gs);
-}
-
-#if NCOPY_WINDOWS > 0
-
-static vm_offset_t user_window_base = 0;
-
-void
-cpu_userwindow_init(int cpu)
+valid_user_code_selector(uint16_t selector)
{
- cpu_data_t *cdp = cpu_data_ptr[cpu];
- vm_offset_t user_window;
- vm_offset_t vaddr;
- int num_cpus;
-
- num_cpus = ml_get_max_cpus();
-
- if (cpu >= num_cpus)
- panic("cpu_userwindow_init: cpu > num_cpus");
+ sel_t sel = selector_to_sel(selector);
- if (user_window_base == 0) {
-
- if (vm_allocate(kernel_map, &vaddr,
- (NBPDE * NCOPY_WINDOWS * num_cpus) + NBPDE,
- VM_FLAGS_ANYWHERE | VM_MAKE_TAG(VM_KERN_MEMORY_CPU)) != KERN_SUCCESS)
- panic("cpu_userwindow_init: "
- "couldn't allocate user map window");
+ if (selector == 0) {
+ return FALSE;
+ }
- /*
- * window must start on a page table boundary
- * in the virtual address space
+ if (sel.ti == SEL_LDT) {
+ if (sel.rpl == USER_PRIV) {
+ return TRUE;
+ }
+ } else if (sel.index < GDTSZ && sel.rpl == USER_PRIV) {
+ if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U) {
+ return TRUE;
+ }
+ /* Explicitly validate the system code selectors
+ * even if not instantaneously privileged,
+ * since they are dynamically re-privileged
+ * at context switch
*/
- user_window_base = (vaddr + (NBPDE - 1)) & ~(NBPDE - 1);
+ if ((selector == USER_CS) || (selector == USER64_CS)) {
+ return TRUE;
+ }
+ }
- /*
- * get rid of any allocation leading up to our
- * starting boundary
- */
- vm_deallocate(kernel_map, vaddr, user_window_base - vaddr);
+ return FALSE;
+}
- /*
- * get rid of tail that we don't need
- */
- user_window = user_window_base +
- (NBPDE * NCOPY_WINDOWS * num_cpus);
+boolean_t
+valid_user_stack_selector(uint16_t selector)
+{
+ sel_t sel = selector_to_sel(selector);
- vm_deallocate(kernel_map, user_window,
- (vaddr +
- ((NBPDE * NCOPY_WINDOWS * num_cpus) + NBPDE)) -
- user_window);
+ if (selector == 0) {
+ return FALSE;
}
- user_window = user_window_base + (cpu * NCOPY_WINDOWS * NBPDE);
-
- cdp->cpu_copywindow_base = user_window;
- /*
- * Abuse this pdp entry, the pdp now actually points to
- * an array of copy windows addresses.
- */
- cdp->cpu_copywindow_pdp = pmap_pde(kernel_pmap, user_window);
+ if (sel.ti == SEL_LDT) {
+ if (sel.rpl == USER_PRIV) {
+ return TRUE;
+ }
+ } else if (sel.index < GDTSZ && sel.rpl == USER_PRIV) {
+ if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U) {
+ return TRUE;
+ }
+ }
+ return FALSE;
}
-void
-cpu_physwindow_init(int cpu)
+boolean_t
+valid_user_segment_selectors(uint16_t cs,
+ uint16_t ss,
+ uint16_t ds,
+ uint16_t es,
+ uint16_t fs,
+ uint16_t gs)
{
- cpu_data_t *cdp = cpu_data_ptr[cpu];
- vm_offset_t phys_window = cdp->cpu_physwindow_base;
-
- if (phys_window == 0) {
- if (vm_allocate(kernel_map, &phys_window,
- PAGE_SIZE, VM_FLAGS_ANYWHERE | VM_MAKE_TAG(VM_KERN_MEMORY_CPU))
- != KERN_SUCCESS)
- panic("cpu_physwindow_init: "
- "couldn't allocate phys map window");
-
- /*
- * make sure the page that encompasses the
- * pte pointer we're interested in actually
- * exists in the page table
- */
- pmap_expand(kernel_pmap, phys_window, PMAP_EXPAND_OPTIONS_NONE);
-
- cdp->cpu_physwindow_base = phys_window;
- cdp->cpu_physwindow_ptep = vtopte(phys_window);
- }
+ return valid_user_code_selector(cs) &&
+ valid_user_stack_selector(ss) &&
+ valid_user_data_selector(ds) &&
+ valid_user_data_selector(es) &&
+ valid_user_data_selector(fs) &&
+ valid_user_data_selector(gs);
}
-#endif /* NCOPY_WINDOWS > 0 */
/*
* Allocate a new interrupt stack for the boot processor from the
void
cpu_data_realloc(void)
{
- int ret;
- vm_offset_t istk;
- cpu_data_t *cdp;
- boolean_t istate;
+ int ret;
+ vm_offset_t istk;
+ cpu_data_t *cdp;
+ boolean_t istate;
ret = kmem_alloc(kernel_map, &istk, INTSTACK_SIZE, VM_KERN_MEMORY_CPU);
if (ret != KERN_SUCCESS) {
cdp->cpu_int_stack_top = istk;
timer_call_queue_init(&cdp->rtclock_timer.queue);
cdp->cpu_desc_tablep = (struct cpu_desc_table *) &scdtables[0];
- cpu_desc_table64_t *cdt = (cpu_desc_table64_t *) cdp->cpu_desc_tablep;
+ cpu_desc_table64_t *cdt = (cpu_desc_table64_t *) cdp->cpu_desc_tablep;
uint8_t *cfstk = &scfstks[cdp->cpu_number].fstk[0];
cdt->fstkp = cfstk;
(void) ml_set_interrupts_enabled(istate);
kprintf("Reallocated master cpu data: %p,"
- " interrupt stack: %p, fault stack: %p\n",
- (void *) cdp, (void *) istk, (void *) cfstk);
+ " interrupt stack: %p, fault stack: %p\n",
+ (void *) cdp, (void *) istk, (void *) cfstk);
}