/*
- * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2020 Apple Inc. All rights reserved.
+ *
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
- * @APPLE_LICENSE_HEADER_START@
- *
- * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved.
- *
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
- * compliance with the License. Please obtain a copy of the License at
- * http://www.opensource.apple.com/apsl/ and read it before using this
- * file.
- *
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
+ *
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ *
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
- *
- * @APPLE_LICENSE_HEADER_END@
+ *
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_COPYRIGHT@
*/
-/*
+/*
* Mach Operating System
* Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
* All Rights Reserved.
- *
+ *
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
- *
+ *
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
- *
+ *
* Carnegie Mellon requests users of this software to return to
- *
+ *
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
- *
+ *
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
*
* Page fault handling module.
*/
-#ifdef MACH_BSD
-/* remove after component interface available */
-extern int vnode_pager_workaround;
-extern int device_pager_workaround;
-#endif
#include <mach_cluster_stats.h>
#include <mach_pagemap.h>
-#include <mach_kdb.h>
+#include <libkern/OSAtomic.h>
-#include <vm/vm_fault.h>
+#include <mach/mach_types.h>
#include <mach/kern_return.h>
-#include <mach/message.h> /* for error codes */
+#include <mach/message.h> /* for error codes */
+#include <mach/vm_param.h>
+#include <mach/vm_behavior.h>
+#include <mach/memory_object.h>
+/* For memory_object_data_{request,unlock} */
+#include <mach/sdt.h>
+
+#include <kern/kern_types.h>
#include <kern/host_statistics.h>
-#include <kern/counters.h>
+#include <kern/counter.h>
#include <kern/task.h>
#include <kern/thread.h>
#include <kern/sched_prim.h>
#include <kern/host.h>
-#include <kern/xpr.h>
-#include <ppc/proc_reg.h>
-#include <vm/task_working_set.h>
+#include <kern/mach_param.h>
+#include <kern/macro_help.h>
+#include <kern/zalloc.h>
+#include <kern/misc_protos.h>
+#include <kern/policy_internal.h>
+
+#include <vm/vm_compressor.h>
+#include <vm/vm_compressor_pager.h>
+#include <vm/vm_fault.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
+#include <vm/vm_kern.h>
#include <vm/pmap.h>
#include <vm/vm_pageout.h>
-#include <mach/vm_param.h>
-#include <mach/vm_behavior.h>
-#include <mach/memory_object.h>
- /* For memory_object_data_{request,unlock} */
-#include <kern/mach_param.h>
-#include <kern/macro_help.h>
-#include <kern/zalloc.h>
-#include <kern/misc_protos.h>
+#include <vm/vm_protos.h>
+#include <vm/vm_external.h>
+#include <vm/memory_object.h>
+#include <vm/vm_purgeable_internal.h> /* Needed by some vm_page.h macros */
+#include <vm/vm_shared_region.h>
+
+#include <sys/codesign.h>
+#include <sys/reason.h>
+#include <sys/signalvar.h>
-#include <sys/kdebug.h>
+#include <san/kasan.h>
-#define VM_FAULT_CLASSIFY 0
-#define VM_FAULT_STATIC_CONFIG 1
+#define VM_FAULT_CLASSIFY 0
#define TRACEFAULTPAGE 0 /* (TEST/DEBUG) */
-int vm_object_absent_max = 50;
+int vm_protect_privileged_from_untrusted = 1;
+
+unsigned int vm_object_pagein_throttle = 16;
+
+/*
+ * We apply a hard throttle to the demand zero rate of tasks that we believe are running out of control which
+ * kicks in when swap space runs out. 64-bit programs have massive address spaces and can leak enormous amounts
+ * of memory if they're buggy and can run the system completely out of swap space. If this happens, we
+ * impose a hard throttle on them to prevent them from taking the last bit of memory left. This helps
+ * keep the UI active so that the user has a chance to kill the offending task before the system
+ * completely hangs.
+ *
+ * The hard throttle is only applied when the system is nearly completely out of swap space and is only applied
+ * to tasks that appear to be bloated. When swap runs out, any task using more than vm_hard_throttle_threshold
+ * will be throttled. The throttling is done by giving the thread that's trying to demand zero a page a
+ * delay of HARD_THROTTLE_DELAY microseconds before being allowed to try the page fault again.
+ */
-int vm_fault_debug = 0;
-boolean_t vm_page_deactivate_behind = TRUE;
+extern void throttle_lowpri_io(int);
+extern struct vnode *vnode_pager_lookup_vnode(memory_object_t);
-#if !VM_FAULT_STATIC_CONFIG
-boolean_t vm_fault_dirty_handling = FALSE;
-boolean_t vm_fault_interruptible = FALSE;
-boolean_t software_reference_bits = TRUE;
-#endif
+uint64_t vm_hard_throttle_threshold;
-#if MACH_KDB
-extern struct db_watchpoint *db_watchpoint_list;
-#endif /* MACH_KDB */
+#if DEBUG || DEVELOPMENT
+static bool vmtc_panic_instead = false;
+#endif /* DEBUG || DEVELOPMENT */
-/* Forward declarations of internal routines. */
-extern kern_return_t vm_fault_wire_fast(
- vm_map_t map,
- vm_offset_t va,
- vm_map_entry_t entry,
- pmap_t pmap,
- vm_offset_t pmap_addr);
+OS_ALWAYS_INLINE
+boolean_t
+NEED_TO_HARD_THROTTLE_THIS_TASK(void)
+{
+ return vm_wants_task_throttled(current_task()) ||
+ ((vm_page_free_count < vm_page_throttle_limit ||
+ HARD_THROTTLE_LIMIT_REACHED()) &&
+ proc_get_effective_thread_policy(current_thread(), TASK_POLICY_IO) >= THROTTLE_LEVEL_THROTTLED);
+}
+
+#define HARD_THROTTLE_DELAY 10000 /* 10000 us == 10 ms */
+#define SOFT_THROTTLE_DELAY 200 /* 200 us == .2 ms */
-extern void vm_fault_continue(void);
+#define VM_PAGE_CREATION_THROTTLE_PERIOD_SECS 6
+#define VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC 20000
-extern void vm_fault_copy_cleanup(
- vm_page_t page,
- vm_page_t top_page);
-extern void vm_fault_copy_dst_cleanup(
- vm_page_t page);
+#define VM_STAT_DECOMPRESSIONS() \
+MACRO_BEGIN \
+ counter_inc(&vm_statistics_decompressions); \
+ current_thread()->decompressions++; \
+MACRO_END
-#if VM_FAULT_CLASSIFY
-extern void vm_fault_classify(vm_object_t object,
- vm_object_offset_t offset,
- vm_prot_t fault_type);
+boolean_t current_thread_aborted(void);
+
+/* Forward declarations of internal routines. */
+static kern_return_t vm_fault_wire_fast(
+ vm_map_t map,
+ vm_map_offset_t va,
+ vm_prot_t prot,
+ vm_tag_t wire_tag,
+ vm_map_entry_t entry,
+ pmap_t pmap,
+ vm_map_offset_t pmap_addr,
+ ppnum_t *physpage_p);
+
+static kern_return_t vm_fault_internal(
+ vm_map_t map,
+ vm_map_offset_t vaddr,
+ vm_prot_t caller_prot,
+ boolean_t change_wiring,
+ vm_tag_t wire_tag,
+ int interruptible,
+ pmap_t pmap,
+ vm_map_offset_t pmap_addr,
+ ppnum_t *physpage_p);
+
+static void vm_fault_copy_cleanup(
+ vm_page_t page,
+ vm_page_t top_page);
+
+static void vm_fault_copy_dst_cleanup(
+ vm_page_t page);
+
+#if VM_FAULT_CLASSIFY
+extern void vm_fault_classify(vm_object_t object,
+ vm_object_offset_t offset,
+ vm_prot_t fault_type);
extern void vm_fault_classify_init(void);
#endif
+unsigned long vm_pmap_enter_blocked = 0;
+unsigned long vm_pmap_enter_retried = 0;
+
+unsigned long vm_cs_validates = 0;
+unsigned long vm_cs_revalidates = 0;
+unsigned long vm_cs_query_modified = 0;
+unsigned long vm_cs_validated_dirtied = 0;
+unsigned long vm_cs_bitmap_validated = 0;
+
+void vm_pre_fault(vm_map_offset_t, vm_prot_t);
+
+extern char *kdp_compressor_decompressed_page;
+extern addr64_t kdp_compressor_decompressed_page_paddr;
+extern ppnum_t kdp_compressor_decompressed_page_ppnum;
+
+struct vmrtfr {
+ int vmrtfr_maxi;
+ int vmrtfr_curi;
+ int64_t vmrtf_total;
+ vm_rtfault_record_t *vm_rtf_records;
+} vmrtfrs;
+#define VMRTF_DEFAULT_BUFSIZE (4096)
+#define VMRTF_NUM_RECORDS_DEFAULT (VMRTF_DEFAULT_BUFSIZE / sizeof(vm_rtfault_record_t))
+TUNABLE(int, vmrtf_num_records, "vm_rtfault_records", VMRTF_NUM_RECORDS_DEFAULT);
+
+static void vm_rtfrecord_lock(void);
+static void vm_rtfrecord_unlock(void);
+static void vm_record_rtfault(thread_t, uint64_t, vm_map_offset_t, int);
+
+extern lck_grp_t vm_page_lck_grp_bucket;
+extern lck_attr_t vm_page_lck_attr;
+LCK_SPIN_DECLARE_ATTR(vm_rtfr_slock, &vm_page_lck_grp_bucket, &vm_page_lck_attr);
+
/*
* Routine: vm_fault_init
* Purpose:
* Initialize our private data structures.
*/
+__startup_func
void
vm_fault_init(void)
{
+ int i, vm_compressor_temp;
+ boolean_t need_default_val = TRUE;
+ /*
+ * Choose a value for the hard throttle threshold based on the amount of ram. The threshold is
+ * computed as a percentage of available memory, and the percentage used is scaled inversely with
+ * the amount of memory. The percentage runs between 10% and 35%. We use 35% for small memory systems
+ * and reduce the value down to 10% for very large memory configurations. This helps give us a
+ * definition of a memory hog that makes more sense relative to the amount of ram in the machine.
+ * The formula here simply uses the number of gigabytes of ram to adjust the percentage.
+ */
+
+ vm_hard_throttle_threshold = sane_size * (35 - MIN((int)(sane_size / (1024 * 1024 * 1024)), 25)) / 100;
+
+ /*
+ * Configure compressed pager behavior. A boot arg takes precedence over a device tree entry.
+ */
+
+ if (PE_parse_boot_argn("vm_compressor", &vm_compressor_temp, sizeof(vm_compressor_temp))) {
+ for (i = 0; i < VM_PAGER_MAX_MODES; i++) {
+ if (((vm_compressor_temp & (1 << i)) == vm_compressor_temp)) {
+ need_default_val = FALSE;
+ vm_compressor_mode = vm_compressor_temp;
+ break;
+ }
+ }
+ if (need_default_val) {
+ printf("Ignoring \"vm_compressor\" boot arg %d\n", vm_compressor_temp);
+ }
+ }
+ if (need_default_val) {
+ /* If no boot arg or incorrect boot arg, try device tree. */
+ PE_get_default("kern.vm_compressor", &vm_compressor_mode, sizeof(vm_compressor_mode));
+ }
+ printf("\"vm_compressor_mode\" is %d\n", vm_compressor_mode);
+
+ PE_parse_boot_argn("vm_protect_privileged_from_untrusted",
+ &vm_protect_privileged_from_untrusted,
+ sizeof(vm_protect_privileged_from_untrusted));
+
+#if DEBUG || DEVELOPMENT
+ (void)PE_parse_boot_argn("text_corruption_panic", &vmtc_panic_instead, sizeof(vmtc_panic_instead));
+#endif /* DEBUG || DEVELOPMENT */
+}
+
+__startup_func
+static void
+vm_rtfault_record_init(void)
+{
+ size_t size;
+
+ vmrtf_num_records = MAX(vmrtf_num_records, 1);
+ size = vmrtf_num_records * sizeof(vm_rtfault_record_t);
+ vmrtfrs.vm_rtf_records = zalloc_permanent(size,
+ ZALIGN(vm_rtfault_record_t));
+ vmrtfrs.vmrtfr_maxi = vmrtf_num_records - 1;
}
+STARTUP(ZALLOC, STARTUP_RANK_MIDDLE, vm_rtfault_record_init);
/*
* Routine: vm_fault_cleanup
*/
void
vm_fault_cleanup(
- register vm_object_t object,
- register vm_page_t top_page)
+ vm_object_t object,
+ vm_page_t top_page)
{
vm_object_paging_end(object);
vm_object_unlock(object);
if (top_page != VM_PAGE_NULL) {
- object = top_page->object;
- vm_object_lock(object);
- VM_PAGE_FREE(top_page);
- vm_object_paging_end(object);
- vm_object_unlock(object);
+ object = VM_PAGE_OBJECT(top_page);
+
+ vm_object_lock(object);
+ VM_PAGE_FREE(top_page);
+ vm_object_paging_end(object);
+ vm_object_unlock(object);
}
}
-#if MACH_CLUSTER_STATS
-#define MAXCLUSTERPAGES 16
-struct {
- unsigned long pages_in_cluster;
- unsigned long pages_at_higher_offsets;
- unsigned long pages_at_lower_offsets;
-} cluster_stats_in[MAXCLUSTERPAGES];
-#define CLUSTER_STAT(clause) clause
-#define CLUSTER_STAT_HIGHER(x) \
- ((cluster_stats_in[(x)].pages_at_higher_offsets)++)
-#define CLUSTER_STAT_LOWER(x) \
- ((cluster_stats_in[(x)].pages_at_lower_offsets)++)
-#define CLUSTER_STAT_CLUSTER(x) \
- ((cluster_stats_in[(x)].pages_in_cluster)++)
-#else /* MACH_CLUSTER_STATS */
-#define CLUSTER_STAT(clause)
-#endif /* MACH_CLUSTER_STATS */
-
-/* XXX - temporary */
-boolean_t vm_allow_clustered_pagein = FALSE;
-int vm_pagein_cluster_used = 0;
-
-/*
- * Prepage default sizes given VM_BEHAVIOR_DEFAULT reference behavior
- */
-int vm_default_ahead = 1; /* Number of pages to prepage ahead */
-int vm_default_behind = 0; /* Number of pages to prepage behind */
-
#define ALIGNED(x) (((x) & (PAGE_SIZE_64 - 1)) == 0)
+
+boolean_t vm_page_deactivate_behind = TRUE;
/*
- * Routine: vm_fault_page
- * Purpose:
- * Find the resident page for the virtual memory
- * specified by the given virtual memory object
- * and offset.
- * Additional arguments:
- * The required permissions for the page is given
- * in "fault_type". Desired permissions are included
- * in "protection". The minimum and maximum valid offsets
- * within the object for the relevant map entry are
- * passed in "lo_offset" and "hi_offset" respectively and
- * the expected page reference pattern is passed in "behavior".
- * These three parameters are used to determine pagein cluster
- * limits.
- *
- * If the desired page is known to be resident (for
- * example, because it was previously wired down), asserting
- * the "unwiring" parameter will speed the search.
- *
- * If the operation can be interrupted (by thread_abort
- * or thread_terminate), then the "interruptible"
- * parameter should be asserted.
- *
- * Results:
- * The page containing the proper data is returned
- * in "result_page".
- *
- * In/out conditions:
- * The source object must be locked and referenced,
- * and must donate one paging reference. The reference
- * is not affected. The paging reference and lock are
- * consumed.
- *
- * If the call succeeds, the object in which "result_page"
- * resides is left locked and holding a paging reference.
- * If this is not the original object, a busy page in the
- * original object is returned in "top_page", to prevent other
- * callers from pursuing this same data, along with a paging
- * reference for the original object. The "top_page" should
- * be destroyed when this guarantee is no longer required.
- * The "result_page" is also left busy. It is not removed
- * from the pageout queues.
+ * default sizes given VM_BEHAVIOR_DEFAULT reference behavior
*/
+#define VM_DEFAULT_DEACTIVATE_BEHIND_WINDOW 128
+#define VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER 16 /* don't make this too big... */
+ /* we use it to size an array on the stack */
+
+int vm_default_behind = VM_DEFAULT_DEACTIVATE_BEHIND_WINDOW;
+
+#define MAX_SEQUENTIAL_RUN (1024 * 1024 * 1024)
-vm_fault_return_t
-vm_fault_page(
- /* Arguments: */
- vm_object_t first_object, /* Object to begin search */
- vm_object_offset_t first_offset, /* Offset into object */
- vm_prot_t fault_type, /* What access is requested */
- boolean_t must_be_resident,/* Must page be resident? */
- int interruptible, /* how may fault be interrupted? */
- vm_object_offset_t lo_offset, /* Map entry start */
- vm_object_offset_t hi_offset, /* Map entry end */
- vm_behavior_t behavior, /* Page reference behavior */
- /* Modifies in place: */
- vm_prot_t *protection, /* Protection for mapping */
- /* Returns: */
- vm_page_t *result_page, /* Page found, if successful */
- vm_page_t *top_page, /* Page in top object, if
- * not result_page. */
- int *type_of_fault, /* if non-null, fill in with type of fault
- * COW, zero-fill, etc... returned in trace point */
- /* More arguments: */
- kern_return_t *error_code, /* code if page is in error */
- boolean_t no_zero_fill, /* don't zero fill absent pages */
- boolean_t data_supply, /* treat as data_supply if
- * it is a write fault and a full
- * page is provided */
- vm_map_t map,
- vm_offset_t vaddr)
-{
- register
- vm_page_t m;
- register
- vm_object_t object;
- register
- vm_object_offset_t offset;
- vm_page_t first_m;
- vm_object_t next_object;
- vm_object_t copy_object;
- boolean_t look_for_page;
- vm_prot_t access_required = fault_type;
- vm_prot_t wants_copy_flag;
- vm_size_t cluster_size, length;
- vm_object_offset_t cluster_offset;
- vm_object_offset_t cluster_start, cluster_end, paging_offset;
- vm_object_offset_t align_offset;
- CLUSTER_STAT(int pages_at_higher_offsets;)
- CLUSTER_STAT(int pages_at_lower_offsets;)
- kern_return_t wait_result;
- boolean_t interruptible_state;
- boolean_t bumped_pagein = FALSE;
-
-
-#if MACH_PAGEMAP
/*
- * MACH page map - an optional optimization where a bit map is maintained
- * by the VM subsystem for internal objects to indicate which pages of
- * the object currently reside on backing store. This existence map
- * duplicates information maintained by the vnode pager. It is
- * created at the time of the first pageout against the object, i.e.
- * at the same time pager for the object is created. The optimization
- * is designed to eliminate pager interaction overhead, if it is
- * 'known' that the page does not exist on backing store.
+ * vm_page_is_sequential
*
- * LOOK_FOR() evaluates to TRUE if the page specified by object/offset is
- * either marked as paged out in the existence map for the object or no
- * existence map exists for the object. LOOK_FOR() is one of the
- * criteria in the decision to invoke the pager. It is also used as one
- * of the criteria to terminate the scan for adjacent pages in a clustered
- * pagein operation. Note that LOOK_FOR() always evaluates to TRUE for
- * permanent objects. Note also that if the pager for an internal object
- * has not been created, the pager is not invoked regardless of the value
- * of LOOK_FOR() and that clustered pagein scans are only done on an object
- * for which a pager has been created.
+ * Determine if sequential access is in progress
+ * in accordance with the behavior specified.
+ * Update state to indicate current access pattern.
*
- * PAGED_OUT() evaluates to TRUE if the page specified by the object/offset
- * is marked as paged out in the existence map for the object. PAGED_OUT()
- * PAGED_OUT() is used to determine if a page has already been pushed
- * into a copy object in order to avoid a redundant page out operation.
- */
-#define LOOK_FOR(o, f) (vm_external_state_get((o)->existence_map, (f)) \
- != VM_EXTERNAL_STATE_ABSENT)
-#define PAGED_OUT(o, f) (vm_external_state_get((o)->existence_map, (f)) \
- == VM_EXTERNAL_STATE_EXISTS)
-#else /* MACH_PAGEMAP */
-/*
- * If the MACH page map optimization is not enabled,
- * LOOK_FOR() always evaluates to TRUE. The pager will always be
- * invoked to resolve missing pages in an object, assuming the pager
- * has been created for the object. In a clustered page operation, the
- * absence of a page on backing backing store cannot be used to terminate
- * a scan for adjacent pages since that information is available only in
- * the pager. Hence pages that may not be paged out are potentially
- * included in a clustered request. The vnode pager is coded to deal
- * with any combination of absent/present pages in a clustered
- * pagein request. PAGED_OUT() always evaluates to FALSE, i.e. the pager
- * will always be invoked to push a dirty page into a copy object assuming
- * a pager has been created. If the page has already been pushed, the
- * pager will ingore the new request.
- */
-#define LOOK_FOR(o, f) TRUE
-#define PAGED_OUT(o, f) FALSE
-#endif /* MACH_PAGEMAP */
-
-/*
- * Recovery actions
+ * object must have at least the shared lock held
*/
-#define PREPARE_RELEASE_PAGE(m) \
- MACRO_BEGIN \
- vm_page_lock_queues(); \
- MACRO_END
-
-#define DO_RELEASE_PAGE(m) \
- MACRO_BEGIN \
- PAGE_WAKEUP_DONE(m); \
- if (!m->active && !m->inactive) \
- vm_page_activate(m); \
- vm_page_unlock_queues(); \
- MACRO_END
-
-#define RELEASE_PAGE(m) \
- MACRO_BEGIN \
- PREPARE_RELEASE_PAGE(m); \
- DO_RELEASE_PAGE(m); \
- MACRO_END
-
-#if TRACEFAULTPAGE
- dbgTrace(0xBEEF0002, (unsigned int) first_object, (unsigned int) first_offset); /* (TEST/DEBUG) */
-#endif
-
-
-
-#if !VM_FAULT_STATIC_CONFIG
- if (vm_fault_dirty_handling
-#if MACH_KDB
- /*
- * If there are watchpoints set, then
- * we don't want to give away write permission
- * on a read fault. Make the task write fault,
- * so that the watchpoint code notices the access.
- */
- || db_watchpoint_list
-#endif /* MACH_KDB */
- ) {
- /*
- * If we aren't asking for write permission,
- * then don't give it away. We're using write
- * faults to set the dirty bit.
- */
- if (!(fault_type & VM_PROT_WRITE))
- *protection &= ~VM_PROT_WRITE;
+static
+void
+vm_fault_is_sequential(
+ vm_object_t object,
+ vm_object_offset_t offset,
+ vm_behavior_t behavior)
+{
+ vm_object_offset_t last_alloc;
+ int sequential;
+ int orig_sequential;
+
+ last_alloc = object->last_alloc;
+ sequential = object->sequential;
+ orig_sequential = sequential;
+
+ offset = vm_object_trunc_page(offset);
+ if (offset == last_alloc && behavior != VM_BEHAVIOR_RANDOM) {
+ /* re-faulting in the same page: no change in behavior */
+ return;
}
- if (!vm_fault_interruptible)
- interruptible = THREAD_UNINT;
-#else /* STATIC_CONFIG */
-#if MACH_KDB
+ switch (behavior) {
+ case VM_BEHAVIOR_RANDOM:
/*
- * If there are watchpoints set, then
- * we don't want to give away write permission
- * on a read fault. Make the task write fault,
- * so that the watchpoint code notices the access.
+ * reset indicator of sequential behavior
*/
- if (db_watchpoint_list) {
- /*
- * If we aren't asking for write permission,
- * then don't give it away. We're using write
- * faults to set the dirty bit.
- */
- if (!(fault_type & VM_PROT_WRITE))
- *protection &= ~VM_PROT_WRITE;
- }
+ sequential = 0;
+ break;
-#endif /* MACH_KDB */
-#endif /* STATIC_CONFIG */
+ case VM_BEHAVIOR_SEQUENTIAL:
+ if (offset && last_alloc == offset - PAGE_SIZE_64) {
+ /*
+ * advance indicator of sequential behavior
+ */
+ if (sequential < MAX_SEQUENTIAL_RUN) {
+ sequential += PAGE_SIZE;
+ }
+ } else {
+ /*
+ * reset indicator of sequential behavior
+ */
+ sequential = 0;
+ }
+ break;
- interruptible_state = thread_interrupt_level(interruptible);
-
- /*
- * INVARIANTS (through entire routine):
- *
- * 1) At all times, we must either have the object
- * lock or a busy page in some object to prevent
- * some other thread from trying to bring in
- * the same page.
- *
- * Note that we cannot hold any locks during the
- * pager access or when waiting for memory, so
- * we use a busy page then.
- *
- * Note also that we aren't as concerned about more than
- * one thread attempting to memory_object_data_unlock
- * the same page at once, so we don't hold the page
- * as busy then, but do record the highest unlock
- * value so far. [Unlock requests may also be delivered
- * out of order.]
- *
- * 2) To prevent another thread from racing us down the
- * shadow chain and entering a new page in the top
- * object before we do, we must keep a busy page in
- * the top object while following the shadow chain.
- *
- * 3) We must increment paging_in_progress on any object
- * for which we have a busy page
- *
- * 4) We leave busy pages on the pageout queues.
- * If the pageout daemon comes across a busy page,
- * it will remove the page from the pageout queues.
- */
+ case VM_BEHAVIOR_RSEQNTL:
+ if (last_alloc && last_alloc == offset + PAGE_SIZE_64) {
+ /*
+ * advance indicator of sequential behavior
+ */
+ if (sequential > -MAX_SEQUENTIAL_RUN) {
+ sequential -= PAGE_SIZE;
+ }
+ } else {
+ /*
+ * reset indicator of sequential behavior
+ */
+ sequential = 0;
+ }
+ break;
+ case VM_BEHAVIOR_DEFAULT:
+ default:
+ if (offset && last_alloc == (offset - PAGE_SIZE_64)) {
+ /*
+ * advance indicator of sequential behavior
+ */
+ if (sequential < 0) {
+ sequential = 0;
+ }
+ if (sequential < MAX_SEQUENTIAL_RUN) {
+ sequential += PAGE_SIZE;
+ }
+ } else if (last_alloc && last_alloc == (offset + PAGE_SIZE_64)) {
+ /*
+ * advance indicator of sequential behavior
+ */
+ if (sequential > 0) {
+ sequential = 0;
+ }
+ if (sequential > -MAX_SEQUENTIAL_RUN) {
+ sequential -= PAGE_SIZE;
+ }
+ } else {
+ /*
+ * reset indicator of sequential behavior
+ */
+ sequential = 0;
+ }
+ break;
+ }
+ if (sequential != orig_sequential) {
+ if (!OSCompareAndSwap(orig_sequential, sequential, (UInt32 *)&object->sequential)) {
+ /*
+ * if someone else has already updated object->sequential
+ * don't bother trying to update it or object->last_alloc
+ */
+ return;
+ }
+ }
/*
- * Search for the page at object/offset.
+ * I'd like to do this with a OSCompareAndSwap64, but that
+ * doesn't exist for PPC... however, it shouldn't matter
+ * that much... last_alloc is maintained so that we can determine
+ * if a sequential access pattern is taking place... if only
+ * one thread is banging on this object, no problem with the unprotected
+ * update... if 2 or more threads are banging away, we run the risk of
+ * someone seeing a mangled update... however, in the face of multiple
+ * accesses, no sequential access pattern can develop anyway, so we
+ * haven't lost any real info.
*/
+ object->last_alloc = offset;
+}
- object = first_object;
- offset = first_offset;
- first_m = VM_PAGE_NULL;
- access_required = fault_type;
-
- XPR(XPR_VM_FAULT,
- "vm_f_page: obj 0x%X, offset 0x%X, type %d, prot %d\n",
- (integer_t)object, offset, fault_type, *protection, 0);
- /*
- * See whether this page is resident
- */
+int vm_page_deactivate_behind_count = 0;
- while (TRUE) {
+/*
+ * vm_page_deactivate_behind
+ *
+ * Determine if sequential access is in progress
+ * in accordance with the behavior specified. If
+ * so, compute a potential page to deactivate and
+ * deactivate it.
+ *
+ * object must be locked.
+ *
+ * return TRUE if we actually deactivate a page
+ */
+static
+boolean_t
+vm_fault_deactivate_behind(
+ vm_object_t object,
+ vm_object_offset_t offset,
+ vm_behavior_t behavior)
+{
+ int n;
+ int pages_in_run = 0;
+ int max_pages_in_run = 0;
+ int sequential_run;
+ int sequential_behavior = VM_BEHAVIOR_SEQUENTIAL;
+ vm_object_offset_t run_offset = 0;
+ vm_object_offset_t pg_offset = 0;
+ vm_page_t m;
+ vm_page_t page_run[VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER];
+
+ pages_in_run = 0;
#if TRACEFAULTPAGE
- dbgTrace(0xBEEF0003, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */
+ dbgTrace(0xBEEF0018, (unsigned int) object, (unsigned int) vm_fault_deactivate_behind); /* (TEST/DEBUG) */
#endif
- if (!object->alive) {
- vm_fault_cleanup(object, first_m);
- thread_interrupt_level(interruptible_state);
- return(VM_FAULT_MEMORY_ERROR);
+ if (object == kernel_object || vm_page_deactivate_behind == FALSE || (vm_object_trunc_page(offset) != offset)) {
+ /*
+ * Do not deactivate pages from the kernel object: they
+ * are not intended to become pageable.
+ * or we've disabled the deactivate behind mechanism
+ * or we are dealing with an offset that is not aligned to
+ * the system's PAGE_SIZE because in that case we will
+ * handle the deactivation on the aligned offset and, thus,
+ * the full PAGE_SIZE page once. This helps us avoid the redundant
+ * deactivates and the extra faults.
+ */
+ return FALSE;
+ }
+ if ((sequential_run = object->sequential)) {
+ if (sequential_run < 0) {
+ sequential_behavior = VM_BEHAVIOR_RSEQNTL;
+ sequential_run = 0 - sequential_run;
+ } else {
+ sequential_behavior = VM_BEHAVIOR_SEQUENTIAL;
}
- m = vm_page_lookup(object, offset);
-#if TRACEFAULTPAGE
- dbgTrace(0xBEEF0004, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */
-#endif
- if (m != VM_PAGE_NULL) {
+ }
+ switch (behavior) {
+ case VM_BEHAVIOR_RANDOM:
+ break;
+ case VM_BEHAVIOR_SEQUENTIAL:
+ if (sequential_run >= (int)PAGE_SIZE) {
+ run_offset = 0 - PAGE_SIZE_64;
+ max_pages_in_run = 1;
+ }
+ break;
+ case VM_BEHAVIOR_RSEQNTL:
+ if (sequential_run >= (int)PAGE_SIZE) {
+ run_offset = PAGE_SIZE_64;
+ max_pages_in_run = 1;
+ }
+ break;
+ case VM_BEHAVIOR_DEFAULT:
+ default:
+ { vm_object_offset_t behind = vm_default_behind * PAGE_SIZE_64;
+
+ /*
+ * determine if the run of sequential accesss has been
+ * long enough on an object with default access behavior
+ * to consider it for deactivation
+ */
+ if ((uint64_t)sequential_run >= behind && (sequential_run % (VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER * PAGE_SIZE)) == 0) {
/*
- * If the page was pre-paged as part of a
- * cluster, record the fact.
+ * the comparisons between offset and behind are done
+ * in this kind of odd fashion in order to prevent wrap around
+ * at the end points
*/
- if (m->clustered) {
- vm_pagein_cluster_used++;
- m->clustered = FALSE;
+ if (sequential_behavior == VM_BEHAVIOR_SEQUENTIAL) {
+ if (offset >= behind) {
+ run_offset = 0 - behind;
+ pg_offset = PAGE_SIZE_64;
+ max_pages_in_run = VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER;
+ }
+ } else {
+ if (offset < -behind) {
+ run_offset = behind;
+ pg_offset = 0 - PAGE_SIZE_64;
+ max_pages_in_run = VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER;
+ }
}
+ }
+ break;}
+ }
+ for (n = 0; n < max_pages_in_run; n++) {
+ m = vm_page_lookup(object, offset + run_offset + (n * pg_offset));
+
+ if (m && !m->vmp_laundry && !m->vmp_busy && !m->vmp_no_cache && (m->vmp_q_state != VM_PAGE_ON_THROTTLED_Q) && !m->vmp_fictitious && !m->vmp_absent) {
+ page_run[pages_in_run++] = m;
/*
- * If the page is being brought in,
- * wait for it and then retry.
+ * by not passing in a pmap_flush_context we will forgo any TLB flushing, local or otherwise...
*
- * A possible optimization: if the page
- * is known to be resident, we can ignore
- * pages that are absent (regardless of
- * whether they're busy).
+ * a TLB flush isn't really needed here since at worst we'll miss the reference bit being
+ * updated in the PTE if a remote processor still has this mapping cached in its TLB when the
+ * new reference happens. If no futher references happen on the page after that remote TLB flushes
+ * we'll see a clean, non-referenced page when it eventually gets pulled out of the inactive queue
+ * by pageout_scan, which is just fine since the last reference would have happened quite far
+ * in the past (TLB caches don't hang around for very long), and of course could just as easily
+ * have happened before we did the deactivate_behind.
*/
+ pmap_clear_refmod_options(VM_PAGE_GET_PHYS_PAGE(m), VM_MEM_REFERENCED, PMAP_OPTIONS_NOFLUSH, (void *)NULL);
+ }
+ }
+ if (pages_in_run) {
+ vm_page_lockspin_queues();
- if (m->busy) {
-#if TRACEFAULTPAGE
- dbgTrace(0xBEEF0005, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
+ for (n = 0; n < pages_in_run; n++) {
+ m = page_run[n];
+
+ vm_page_deactivate_internal(m, FALSE);
+
+ vm_page_deactivate_behind_count++;
+#if TRACEFAULTPAGE
+ dbgTrace(0xBEEF0019, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */
+#endif
+ }
+ vm_page_unlock_queues();
+
+ return TRUE;
+ }
+ return FALSE;
+}
+
+
+#if (DEVELOPMENT || DEBUG)
+uint32_t vm_page_creation_throttled_hard = 0;
+uint32_t vm_page_creation_throttled_soft = 0;
+uint64_t vm_page_creation_throttle_avoided = 0;
+#endif /* DEVELOPMENT || DEBUG */
+
+static int
+vm_page_throttled(boolean_t page_kept)
+{
+ clock_sec_t elapsed_sec;
+ clock_sec_t tv_sec;
+ clock_usec_t tv_usec;
+
+ thread_t thread = current_thread();
+
+ if (thread->options & TH_OPT_VMPRIV) {
+ return 0;
+ }
+
+ if (thread->t_page_creation_throttled) {
+ thread->t_page_creation_throttled = 0;
+
+ if (page_kept == FALSE) {
+ goto no_throttle;
+ }
+ }
+ if (NEED_TO_HARD_THROTTLE_THIS_TASK()) {
+#if (DEVELOPMENT || DEBUG)
+ thread->t_page_creation_throttled_hard++;
+ OSAddAtomic(1, &vm_page_creation_throttled_hard);
+#endif /* DEVELOPMENT || DEBUG */
+ return HARD_THROTTLE_DELAY;
+ }
+
+ if ((vm_page_free_count < vm_page_throttle_limit || (VM_CONFIG_COMPRESSOR_IS_PRESENT && SWAPPER_NEEDS_TO_UNTHROTTLE())) &&
+ thread->t_page_creation_count > (VM_PAGE_CREATION_THROTTLE_PERIOD_SECS * VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC)) {
+ if (vm_page_free_wanted == 0 && vm_page_free_wanted_privileged == 0) {
+#if (DEVELOPMENT || DEBUG)
+ OSAddAtomic64(1, &vm_page_creation_throttle_avoided);
+#endif
+ goto no_throttle;
+ }
+ clock_get_system_microtime(&tv_sec, &tv_usec);
+
+ elapsed_sec = tv_sec - thread->t_page_creation_time;
+
+ if (elapsed_sec <= VM_PAGE_CREATION_THROTTLE_PERIOD_SECS ||
+ (thread->t_page_creation_count / elapsed_sec) >= VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC) {
+ if (elapsed_sec >= (3 * VM_PAGE_CREATION_THROTTLE_PERIOD_SECS)) {
+ /*
+ * we'll reset our stats to give a well behaved app
+ * that was unlucky enough to accumulate a bunch of pages
+ * over a long period of time a chance to get out of
+ * the throttled state... we reset the counter and timestamp
+ * so that if it stays under the rate limit for the next second
+ * it will be back in our good graces... if it exceeds it, it
+ * will remain in the throttled state
+ */
+ thread->t_page_creation_time = tv_sec;
+ thread->t_page_creation_count = VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC * (VM_PAGE_CREATION_THROTTLE_PERIOD_SECS - 1);
+ }
+ VM_PAGEOUT_DEBUG(vm_page_throttle_count, 1);
+
+ thread->t_page_creation_throttled = 1;
+
+ if (VM_CONFIG_COMPRESSOR_IS_PRESENT && HARD_THROTTLE_LIMIT_REACHED()) {
+#if (DEVELOPMENT || DEBUG)
+ thread->t_page_creation_throttled_hard++;
+ OSAddAtomic(1, &vm_page_creation_throttled_hard);
+#endif /* DEVELOPMENT || DEBUG */
+ return HARD_THROTTLE_DELAY;
+ } else {
+#if (DEVELOPMENT || DEBUG)
+ thread->t_page_creation_throttled_soft++;
+ OSAddAtomic(1, &vm_page_creation_throttled_soft);
+#endif /* DEVELOPMENT || DEBUG */
+ return SOFT_THROTTLE_DELAY;
+ }
+ }
+ thread->t_page_creation_time = tv_sec;
+ thread->t_page_creation_count = 0;
+ }
+no_throttle:
+ thread->t_page_creation_count++;
+
+ return 0;
+}
+
+
+/*
+ * check for various conditions that would
+ * prevent us from creating a ZF page...
+ * cleanup is based on being called from vm_fault_page
+ *
+ * object must be locked
+ * object == m->vmp_object
+ */
+static vm_fault_return_t
+vm_fault_check(vm_object_t object, vm_page_t m, vm_page_t first_m, wait_interrupt_t interruptible_state, boolean_t page_throttle)
+{
+ int throttle_delay;
+
+ if (object->shadow_severed ||
+ VM_OBJECT_PURGEABLE_FAULT_ERROR(object)) {
+ /*
+ * Either:
+ * 1. the shadow chain was severed,
+ * 2. the purgeable object is volatile or empty and is marked
+ * to fault on access while volatile.
+ * Just have to return an error at this point
+ */
+ if (m != VM_PAGE_NULL) {
+ VM_PAGE_FREE(m);
+ }
+ vm_fault_cleanup(object, first_m);
+
+ thread_interrupt_level(interruptible_state);
+
+ return VM_FAULT_MEMORY_ERROR;
+ }
+ if (page_throttle == TRUE) {
+ if ((throttle_delay = vm_page_throttled(FALSE))) {
+ /*
+ * we're throttling zero-fills...
+ * treat this as if we couldn't grab a page
+ */
+ if (m != VM_PAGE_NULL) {
+ VM_PAGE_FREE(m);
+ }
+ vm_fault_cleanup(object, first_m);
+
+ VM_DEBUG_EVENT(vmf_check_zfdelay, VMF_CHECK_ZFDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0);
+
+ delay(throttle_delay);
+
+ if (current_thread_aborted()) {
+ thread_interrupt_level(interruptible_state);
+ return VM_FAULT_INTERRUPTED;
+ }
+ thread_interrupt_level(interruptible_state);
+
+ return VM_FAULT_MEMORY_SHORTAGE;
+ }
+ }
+ return VM_FAULT_SUCCESS;
+}
+
+/*
+ * Clear the code signing bits on the given page_t
+ */
+static void
+vm_fault_cs_clear(vm_page_t m)
+{
+ m->vmp_cs_validated = VMP_CS_ALL_FALSE;
+ m->vmp_cs_tainted = VMP_CS_ALL_FALSE;
+ m->vmp_cs_nx = VMP_CS_ALL_FALSE;
+}
+
+/*
+ * Enqueues the given page on the throttled queue.
+ * The caller must hold the vm_page_queue_lock and it will be held on return.
+ */
+static void
+vm_fault_enqueue_throttled_locked(vm_page_t m)
+{
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+ assert(!VM_PAGE_WIRED(m));
+
+ /*
+ * can't be on the pageout queue since we don't
+ * have a pager to try and clean to
+ */
+ vm_page_queues_remove(m, TRUE);
+ vm_page_check_pageable_safe(m);
+ vm_page_queue_enter(&vm_page_queue_throttled, m, vmp_pageq);
+ m->vmp_q_state = VM_PAGE_ON_THROTTLED_Q;
+ vm_page_throttled_count++;
+}
+
+/*
+ * do the work to zero fill a page and
+ * inject it into the correct paging queue
+ *
+ * m->vmp_object must be locked
+ * page queue lock must NOT be held
+ */
+static int
+vm_fault_zero_page(vm_page_t m, boolean_t no_zero_fill)
+{
+ int my_fault = DBG_ZERO_FILL_FAULT;
+ vm_object_t object;
+
+ object = VM_PAGE_OBJECT(m);
+
+ /*
+ * This is is a zero-fill page fault...
+ *
+ * Checking the page lock is a waste of
+ * time; this page was absent, so
+ * it can't be page locked by a pager.
+ *
+ * we also consider it undefined
+ * with respect to instruction
+ * execution. i.e. it is the responsibility
+ * of higher layers to call for an instruction
+ * sync after changing the contents and before
+ * sending a program into this area. We
+ * choose this approach for performance
+ */
+ vm_fault_cs_clear(m);
+ m->vmp_pmapped = TRUE;
+
+ if (no_zero_fill == TRUE) {
+ my_fault = DBG_NZF_PAGE_FAULT;
+
+ if (m->vmp_absent && m->vmp_busy) {
+ return my_fault;
+ }
+ } else {
+ vm_page_zero_fill(m);
+
+ counter_inc(&vm_statistics_zero_fill_count);
+ DTRACE_VM2(zfod, int, 1, (uint64_t *), NULL);
+ }
+ assert(!m->vmp_laundry);
+ assert(object != kernel_object);
+ //assert(m->vmp_pageq.next == 0 && m->vmp_pageq.prev == 0);
+ if (!VM_DYNAMIC_PAGING_ENABLED() &&
+ (object->purgable == VM_PURGABLE_DENY ||
+ object->purgable == VM_PURGABLE_NONVOLATILE ||
+ object->purgable == VM_PURGABLE_VOLATILE)) {
+ vm_page_lockspin_queues();
+ if (!VM_DYNAMIC_PAGING_ENABLED()) {
+ vm_fault_enqueue_throttled_locked(m);
+ }
+ vm_page_unlock_queues();
+ }
+ return my_fault;
+}
+
+
+/*
+ * Routine: vm_fault_page
+ * Purpose:
+ * Find the resident page for the virtual memory
+ * specified by the given virtual memory object
+ * and offset.
+ * Additional arguments:
+ * The required permissions for the page is given
+ * in "fault_type". Desired permissions are included
+ * in "protection".
+ * fault_info is passed along to determine pagein cluster
+ * limits... it contains the expected reference pattern,
+ * cluster size if available, etc...
+ *
+ * If the desired page is known to be resident (for
+ * example, because it was previously wired down), asserting
+ * the "unwiring" parameter will speed the search.
+ *
+ * If the operation can be interrupted (by thread_abort
+ * or thread_terminate), then the "interruptible"
+ * parameter should be asserted.
+ *
+ * Results:
+ * The page containing the proper data is returned
+ * in "result_page".
+ *
+ * In/out conditions:
+ * The source object must be locked and referenced,
+ * and must donate one paging reference. The reference
+ * is not affected. The paging reference and lock are
+ * consumed.
+ *
+ * If the call succeeds, the object in which "result_page"
+ * resides is left locked and holding a paging reference.
+ * If this is not the original object, a busy page in the
+ * original object is returned in "top_page", to prevent other
+ * callers from pursuing this same data, along with a paging
+ * reference for the original object. The "top_page" should
+ * be destroyed when this guarantee is no longer required.
+ * The "result_page" is also left busy. It is not removed
+ * from the pageout queues.
+ * Special Case:
+ * A return value of VM_FAULT_SUCCESS_NO_PAGE means that the
+ * fault succeeded but there's no VM page (i.e. the VM object
+ * does not actually hold VM pages, but device memory or
+ * large pages). The object is still locked and we still hold a
+ * paging_in_progress reference.
+ */
+unsigned int vm_fault_page_blocked_access = 0;
+unsigned int vm_fault_page_forced_retry = 0;
+
+vm_fault_return_t
+vm_fault_page(
+ /* Arguments: */
+ vm_object_t first_object, /* Object to begin search */
+ vm_object_offset_t first_offset, /* Offset into object */
+ vm_prot_t fault_type, /* What access is requested */
+ boolean_t must_be_resident,/* Must page be resident? */
+ boolean_t caller_lookup, /* caller looked up page */
+ /* Modifies in place: */
+ vm_prot_t *protection, /* Protection for mapping */
+ vm_page_t *result_page, /* Page found, if successful */
+ /* Returns: */
+ vm_page_t *top_page, /* Page in top object, if
+ * not result_page. */
+ int *type_of_fault, /* if non-null, fill in with type of fault
+ * COW, zero-fill, etc... returned in trace point */
+ /* More arguments: */
+ kern_return_t *error_code, /* code if page is in error */
+ boolean_t no_zero_fill, /* don't zero fill absent pages */
+ boolean_t data_supply, /* treat as data_supply if
+ * it is a write fault and a full
+ * page is provided */
+ vm_object_fault_info_t fault_info)
+{
+ vm_page_t m;
+ vm_object_t object;
+ vm_object_offset_t offset;
+ vm_page_t first_m;
+ vm_object_t next_object;
+ vm_object_t copy_object;
+ boolean_t look_for_page;
+ boolean_t force_fault_retry = FALSE;
+ vm_prot_t access_required = fault_type;
+ vm_prot_t wants_copy_flag;
+ kern_return_t wait_result;
+ wait_interrupt_t interruptible_state;
+ boolean_t data_already_requested = FALSE;
+ vm_behavior_t orig_behavior;
+ vm_size_t orig_cluster_size;
+ vm_fault_return_t error;
+ int my_fault;
+ uint32_t try_failed_count;
+ int interruptible; /* how may fault be interrupted? */
+ int external_state = VM_EXTERNAL_STATE_UNKNOWN;
+ memory_object_t pager;
+ vm_fault_return_t retval;
+ int grab_options;
+
+/*
+ * MUST_ASK_PAGER() evaluates to TRUE if the page specified by object/offset is
+ * marked as paged out in the compressor pager or the pager doesn't exist.
+ * Note also that if the pager for an internal object
+ * has not been created, the pager is not invoked regardless of the value
+ * of MUST_ASK_PAGER().
+ *
+ * PAGED_OUT() evaluates to TRUE if the page specified by the object/offset
+ * is marked as paged out in the compressor pager.
+ * PAGED_OUT() is used to determine if a page has already been pushed
+ * into a copy object in order to avoid a redundant page out operation.
+ */
+#define MUST_ASK_PAGER(o, f, s) \
+ ((s = VM_COMPRESSOR_PAGER_STATE_GET((o), (f))) != VM_EXTERNAL_STATE_ABSENT)
+
+#define PAGED_OUT(o, f) \
+ (VM_COMPRESSOR_PAGER_STATE_GET((o), (f)) == VM_EXTERNAL_STATE_EXISTS)
+
+/*
+ * Recovery actions
+ */
+#define RELEASE_PAGE(m) \
+ MACRO_BEGIN \
+ PAGE_WAKEUP_DONE(m); \
+ if ( !VM_PAGE_PAGEABLE(m)) { \
+ vm_page_lockspin_queues(); \
+ if ( !VM_PAGE_PAGEABLE(m)) { \
+ if (VM_CONFIG_COMPRESSOR_IS_ACTIVE) \
+ vm_page_deactivate(m); \
+ else \
+ vm_page_activate(m); \
+ } \
+ vm_page_unlock_queues(); \
+ } \
+ MACRO_END
+
+#if TRACEFAULTPAGE
+ dbgTrace(0xBEEF0002, (unsigned int) first_object, (unsigned int) first_offset); /* (TEST/DEBUG) */
+#endif
+
+ interruptible = fault_info->interruptible;
+ interruptible_state = thread_interrupt_level(interruptible);
+
+ /*
+ * INVARIANTS (through entire routine):
+ *
+ * 1) At all times, we must either have the object
+ * lock or a busy page in some object to prevent
+ * some other thread from trying to bring in
+ * the same page.
+ *
+ * Note that we cannot hold any locks during the
+ * pager access or when waiting for memory, so
+ * we use a busy page then.
+ *
+ * 2) To prevent another thread from racing us down the
+ * shadow chain and entering a new page in the top
+ * object before we do, we must keep a busy page in
+ * the top object while following the shadow chain.
+ *
+ * 3) We must increment paging_in_progress on any object
+ * for which we have a busy page before dropping
+ * the object lock
+ *
+ * 4) We leave busy pages on the pageout queues.
+ * If the pageout daemon comes across a busy page,
+ * it will remove the page from the pageout queues.
+ */
+
+ object = first_object;
+ offset = first_offset;
+ first_m = VM_PAGE_NULL;
+ access_required = fault_type;
+
+ /*
+ * default type of fault
+ */
+ my_fault = DBG_CACHE_HIT_FAULT;
+
+ while (TRUE) {
+#if TRACEFAULTPAGE
+ dbgTrace(0xBEEF0003, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */
+#endif
+
+ grab_options = 0;
+#if CONFIG_SECLUDED_MEMORY
+ if (object->can_grab_secluded) {
+ grab_options |= VM_PAGE_GRAB_SECLUDED;
+ }
+#endif /* CONFIG_SECLUDED_MEMORY */
+
+ if (!object->alive) {
+ /*
+ * object is no longer valid
+ * clean up and return error
+ */
+ vm_fault_cleanup(object, first_m);
+ thread_interrupt_level(interruptible_state);
+
+ return VM_FAULT_MEMORY_ERROR;
+ }
+
+ if (!object->pager_created && object->phys_contiguous) {
+ /*
+ * A physically-contiguous object without a pager:
+ * must be a "large page" object. We do not deal
+ * with VM pages for this object.
+ */
+ caller_lookup = FALSE;
+ m = VM_PAGE_NULL;
+ goto phys_contig_object;
+ }
+
+ if (object->blocked_access) {
+ /*
+ * Access to this VM object has been blocked.
+ * Replace our "paging_in_progress" reference with
+ * a "activity_in_progress" reference and wait for
+ * access to be unblocked.
+ */
+ caller_lookup = FALSE; /* no longer valid after sleep */
+ vm_object_activity_begin(object);
+ vm_object_paging_end(object);
+ while (object->blocked_access) {
+ vm_object_sleep(object,
+ VM_OBJECT_EVENT_UNBLOCKED,
+ THREAD_UNINT);
+ }
+ vm_fault_page_blocked_access++;
+ vm_object_paging_begin(object);
+ vm_object_activity_end(object);
+ }
+
+ /*
+ * See whether the page at 'offset' is resident
+ */
+ if (caller_lookup == TRUE) {
+ /*
+ * The caller has already looked up the page
+ * and gave us the result in "result_page".
+ * We can use this for the first lookup but
+ * it loses its validity as soon as we unlock
+ * the object.
+ */
+ m = *result_page;
+ caller_lookup = FALSE; /* no longer valid after that */
+ } else {
+ m = vm_page_lookup(object, vm_object_trunc_page(offset));
+ }
+#if TRACEFAULTPAGE
+ dbgTrace(0xBEEF0004, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */
+#endif
+ if (m != VM_PAGE_NULL) {
+ if (m->vmp_busy) {
+ /*
+ * The page is being brought in,
+ * wait for it and then retry.
+ */
+#if TRACEFAULTPAGE
+ dbgTrace(0xBEEF0005, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
#endif
wait_result = PAGE_SLEEP(object, m, interruptible);
- XPR(XPR_VM_FAULT,
- "vm_f_page: block busy obj 0x%X, offset 0x%X, page 0x%X\n",
- (integer_t)object, offset,
- (integer_t)m, 0, 0);
- counter(c_vm_fault_page_block_busy_kernel++);
- if (wait_result != THREAD_AWAKENED) {
- vm_fault_cleanup(object, first_m);
- thread_interrupt_level(interruptible_state);
- if (wait_result == THREAD_RESTART)
- {
- return(VM_FAULT_RETRY);
- }
- else
- {
- return(VM_FAULT_INTERRUPTED);
- }
- }
- continue;
+ if (wait_result != THREAD_AWAKENED) {
+ vm_fault_cleanup(object, first_m);
+ thread_interrupt_level(interruptible_state);
+
+ if (wait_result == THREAD_RESTART) {
+ return VM_FAULT_RETRY;
+ } else {
+ return VM_FAULT_INTERRUPTED;
+ }
+ }
+ continue;
+ }
+ if (m->vmp_laundry) {
+ m->vmp_free_when_done = FALSE;
+
+ if (!m->vmp_cleaning) {
+ vm_pageout_steal_laundry(m, FALSE);
+ }
+ }
+ if (VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr) {
+ /*
+ * Guard page: off limits !
+ */
+ if (fault_type == VM_PROT_NONE) {
+ /*
+ * The fault is not requesting any
+ * access to the guard page, so it must
+ * be just to wire or unwire it.
+ * Let's pretend it succeeded...
+ */
+ m->vmp_busy = TRUE;
+ *result_page = m;
+ assert(first_m == VM_PAGE_NULL);
+ *top_page = first_m;
+ if (type_of_fault) {
+ *type_of_fault = DBG_GUARD_FAULT;
+ }
+ thread_interrupt_level(interruptible_state);
+ return VM_FAULT_SUCCESS;
+ } else {
+ /*
+ * The fault requests access to the
+ * guard page: let's deny that !
+ */
+ vm_fault_cleanup(object, first_m);
+ thread_interrupt_level(interruptible_state);
+ return VM_FAULT_MEMORY_ERROR;
+ }
+ }
+
+ if (m->vmp_error) {
+ /*
+ * The page is in error, give up now.
+ */
+#if TRACEFAULTPAGE
+ dbgTrace(0xBEEF0006, (unsigned int) m, (unsigned int) error_code); /* (TEST/DEBUG) */
+#endif
+ if (error_code) {
+ *error_code = KERN_MEMORY_ERROR;
+ }
+ VM_PAGE_FREE(m);
+
+ vm_fault_cleanup(object, first_m);
+ thread_interrupt_level(interruptible_state);
+
+ return VM_FAULT_MEMORY_ERROR;
+ }
+ if (m->vmp_restart) {
+ /*
+ * The pager wants us to restart
+ * at the top of the chain,
+ * typically because it has moved the
+ * page to another pager, then do so.
+ */
+#if TRACEFAULTPAGE
+ dbgTrace(0xBEEF0007, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
+#endif
+ VM_PAGE_FREE(m);
+
+ vm_fault_cleanup(object, first_m);
+ thread_interrupt_level(interruptible_state);
+
+ return VM_FAULT_RETRY;
+ }
+ if (m->vmp_absent) {
+ /*
+ * The page isn't busy, but is absent,
+ * therefore it's deemed "unavailable".
+ *
+ * Remove the non-existent page (unless it's
+ * in the top object) and move on down to the
+ * next object (if there is one).
+ */
+#if TRACEFAULTPAGE
+ dbgTrace(0xBEEF0008, (unsigned int) m, (unsigned int) object->shadow); /* (TEST/DEBUG) */
+#endif
+ next_object = object->shadow;
+
+ if (next_object == VM_OBJECT_NULL) {
+ /*
+ * Absent page at bottom of shadow
+ * chain; zero fill the page we left
+ * busy in the first object, and free
+ * the absent page.
+ */
+ assert(!must_be_resident);
+
+ /*
+ * check for any conditions that prevent
+ * us from creating a new zero-fill page
+ * vm_fault_check will do all of the
+ * fault cleanup in the case of an error condition
+ * including resetting the thread_interrupt_level
+ */
+ error = vm_fault_check(object, m, first_m, interruptible_state, (type_of_fault == NULL) ? TRUE : FALSE);
+
+ if (error != VM_FAULT_SUCCESS) {
+ return error;
+ }
+
+ if (object != first_object) {
+ /*
+ * free the absent page we just found
+ */
+ VM_PAGE_FREE(m);
+
+ /*
+ * drop reference and lock on current object
+ */
+ vm_object_paging_end(object);
+ vm_object_unlock(object);
+
+ /*
+ * grab the original page we
+ * 'soldered' in place and
+ * retake lock on 'first_object'
+ */
+ m = first_m;
+ first_m = VM_PAGE_NULL;
+
+ object = first_object;
+ offset = first_offset;
+
+ vm_object_lock(object);
+ } else {
+ /*
+ * we're going to use the absent page we just found
+ * so convert it to a 'busy' page
+ */
+ m->vmp_absent = FALSE;
+ m->vmp_busy = TRUE;
+ }
+ if (fault_info->mark_zf_absent && no_zero_fill == TRUE) {
+ m->vmp_absent = TRUE;
+ }
+ /*
+ * zero-fill the page and put it on
+ * the correct paging queue
+ */
+ my_fault = vm_fault_zero_page(m, no_zero_fill);
+
+ break;
+ } else {
+ if (must_be_resident) {
+ vm_object_paging_end(object);
+ } else if (object != first_object) {
+ vm_object_paging_end(object);
+ VM_PAGE_FREE(m);
+ } else {
+ first_m = m;
+ m->vmp_absent = FALSE;
+ m->vmp_busy = TRUE;
+
+ vm_page_lockspin_queues();
+ vm_page_queues_remove(m, FALSE);
+ vm_page_unlock_queues();
+ }
+
+ offset += object->vo_shadow_offset;
+ fault_info->lo_offset += object->vo_shadow_offset;
+ fault_info->hi_offset += object->vo_shadow_offset;
+ access_required = VM_PROT_READ;
+
+ vm_object_lock(next_object);
+ vm_object_unlock(object);
+ object = next_object;
+ vm_object_paging_begin(object);
+
+ /*
+ * reset to default type of fault
+ */
+ my_fault = DBG_CACHE_HIT_FAULT;
+
+ continue;
+ }
+ }
+ if ((m->vmp_cleaning)
+ && ((object != first_object) || (object->copy != VM_OBJECT_NULL))
+ && (fault_type & VM_PROT_WRITE)) {
+ /*
+ * This is a copy-on-write fault that will
+ * cause us to revoke access to this page, but
+ * this page is in the process of being cleaned
+ * in a clustered pageout. We must wait until
+ * the cleaning operation completes before
+ * revoking access to the original page,
+ * otherwise we might attempt to remove a
+ * wired mapping.
+ */
+#if TRACEFAULTPAGE
+ dbgTrace(0xBEEF0009, (unsigned int) m, (unsigned int) offset); /* (TEST/DEBUG) */
+#endif
+ /*
+ * take an extra ref so that object won't die
+ */
+ vm_object_reference_locked(object);
+
+ vm_fault_cleanup(object, first_m);
+
+ vm_object_lock(object);
+ assert(object->ref_count > 0);
+
+ m = vm_page_lookup(object, vm_object_trunc_page(offset));
+
+ if (m != VM_PAGE_NULL && m->vmp_cleaning) {
+ PAGE_ASSERT_WAIT(m, interruptible);
+
+ vm_object_unlock(object);
+ wait_result = thread_block(THREAD_CONTINUE_NULL);
+ vm_object_deallocate(object);
+
+ goto backoff;
+ } else {
+ vm_object_unlock(object);
+
+ vm_object_deallocate(object);
+ thread_interrupt_level(interruptible_state);
+
+ return VM_FAULT_RETRY;
+ }
+ }
+ if (type_of_fault == NULL && (m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q) &&
+ !(fault_info != NULL && fault_info->stealth)) {
+ /*
+ * If we were passed a non-NULL pointer for
+ * "type_of_fault", than we came from
+ * vm_fault... we'll let it deal with
+ * this condition, since it
+ * needs to see m->vmp_speculative to correctly
+ * account the pageins, otherwise...
+ * take it off the speculative queue, we'll
+ * let the caller of vm_fault_page deal
+ * with getting it onto the correct queue
+ *
+ * If the caller specified in fault_info that
+ * it wants a "stealth" fault, we also leave
+ * the page in the speculative queue.
+ */
+ vm_page_lockspin_queues();
+ if (m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q) {
+ vm_page_queues_remove(m, FALSE);
+ }
+ vm_page_unlock_queues();
+ }
+ assert(object == VM_PAGE_OBJECT(m));
+
+ if (object->code_signed) {
+ /*
+ * CODE SIGNING:
+ * We just paged in a page from a signed
+ * memory object but we don't need to
+ * validate it now. We'll validate it if
+ * when it gets mapped into a user address
+ * space for the first time or when the page
+ * gets copied to another object as a result
+ * of a copy-on-write.
+ */
+ }
+
+ /*
+ * We mark the page busy and leave it on
+ * the pageout queues. If the pageout
+ * deamon comes across it, then it will
+ * remove the page from the queue, but not the object
+ */
+#if TRACEFAULTPAGE
+ dbgTrace(0xBEEF000B, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
+#endif
+ assert(!m->vmp_busy);
+ assert(!m->vmp_absent);
+
+ m->vmp_busy = TRUE;
+ break;
+ }
+
+
+ /*
+ * we get here when there is no page present in the object at
+ * the offset we're interested in... we'll allocate a page
+ * at this point if the pager associated with
+ * this object can provide the data or we're the top object...
+ * object is locked; m == NULL
+ */
+
+ if (must_be_resident) {
+ if (fault_type == VM_PROT_NONE &&
+ object == kernel_object) {
+ /*
+ * We've been called from vm_fault_unwire()
+ * while removing a map entry that was allocated
+ * with KMA_KOBJECT and KMA_VAONLY. This page
+ * is not present and there's nothing more to
+ * do here (nothing to unwire).
+ */
+ vm_fault_cleanup(object, first_m);
+ thread_interrupt_level(interruptible_state);
+
+ return VM_FAULT_MEMORY_ERROR;
+ }
+
+ goto dont_look_for_page;
+ }
+
+ /* Don't expect to fault pages into the kernel object. */
+ assert(object != kernel_object);
+
+ data_supply = FALSE;
+
+ look_for_page = (object->pager_created && (MUST_ASK_PAGER(object, offset, external_state) == TRUE) && !data_supply);
+
+#if TRACEFAULTPAGE
+ dbgTrace(0xBEEF000C, (unsigned int) look_for_page, (unsigned int) object); /* (TEST/DEBUG) */
+#endif
+ if (!look_for_page && object == first_object && !object->phys_contiguous) {
+ /*
+ * Allocate a new page for this object/offset pair as a placeholder
+ */
+ m = vm_page_grab_options(grab_options);
+#if TRACEFAULTPAGE
+ dbgTrace(0xBEEF000D, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */
+#endif
+ if (m == VM_PAGE_NULL) {
+ vm_fault_cleanup(object, first_m);
+ thread_interrupt_level(interruptible_state);
+
+ return VM_FAULT_MEMORY_SHORTAGE;
+ }
+
+ if (fault_info && fault_info->batch_pmap_op == TRUE) {
+ vm_page_insert_internal(m, object,
+ vm_object_trunc_page(offset),
+ VM_KERN_MEMORY_NONE, FALSE, TRUE, TRUE, FALSE, NULL);
+ } else {
+ vm_page_insert(m, object, vm_object_trunc_page(offset));
+ }
+ }
+ if (look_for_page) {
+ kern_return_t rc;
+ int my_fault_type;
+
+ /*
+ * If the memory manager is not ready, we
+ * cannot make requests.
+ */
+ if (!object->pager_ready) {
+#if TRACEFAULTPAGE
+ dbgTrace(0xBEEF000E, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */
+#endif
+ if (m != VM_PAGE_NULL) {
+ VM_PAGE_FREE(m);
+ }
+
+ /*
+ * take an extra ref so object won't die
+ */
+ vm_object_reference_locked(object);
+ vm_fault_cleanup(object, first_m);
+
+ vm_object_lock(object);
+ assert(object->ref_count > 0);
+
+ if (!object->pager_ready) {
+ wait_result = vm_object_assert_wait(object, VM_OBJECT_EVENT_PAGER_READY, interruptible);
+
+ vm_object_unlock(object);
+ if (wait_result == THREAD_WAITING) {
+ wait_result = thread_block(THREAD_CONTINUE_NULL);
+ }
+ vm_object_deallocate(object);
+
+ goto backoff;
+ } else {
+ vm_object_unlock(object);
+ vm_object_deallocate(object);
+ thread_interrupt_level(interruptible_state);
+
+ return VM_FAULT_RETRY;
+ }
+ }
+ if (!object->internal && !object->phys_contiguous && object->paging_in_progress > vm_object_pagein_throttle) {
+ /*
+ * If there are too many outstanding page
+ * requests pending on this external object, we
+ * wait for them to be resolved now.
+ */
+#if TRACEFAULTPAGE
+ dbgTrace(0xBEEF0010, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
+#endif
+ if (m != VM_PAGE_NULL) {
+ VM_PAGE_FREE(m);
+ }
+ /*
+ * take an extra ref so object won't die
+ */
+ vm_object_reference_locked(object);
+
+ vm_fault_cleanup(object, first_m);
+
+ vm_object_lock(object);
+ assert(object->ref_count > 0);
+
+ if (object->paging_in_progress >= vm_object_pagein_throttle) {
+ vm_object_assert_wait(object, VM_OBJECT_EVENT_PAGING_ONLY_IN_PROGRESS, interruptible);
+
+ vm_object_unlock(object);
+ wait_result = thread_block(THREAD_CONTINUE_NULL);
+ vm_object_deallocate(object);
+
+ goto backoff;
+ } else {
+ vm_object_unlock(object);
+ vm_object_deallocate(object);
+ thread_interrupt_level(interruptible_state);
+
+ return VM_FAULT_RETRY;
+ }
+ }
+ if (object->internal) {
+ int compressed_count_delta;
+
+ assert(VM_CONFIG_COMPRESSOR_IS_PRESENT);
+
+ if (m == VM_PAGE_NULL) {
+ /*
+ * Allocate a new page for this object/offset pair as a placeholder
+ */
+ m = vm_page_grab_options(grab_options);
+#if TRACEFAULTPAGE
+ dbgTrace(0xBEEF000D, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */
+#endif
+ if (m == VM_PAGE_NULL) {
+ vm_fault_cleanup(object, first_m);
+ thread_interrupt_level(interruptible_state);
+
+ return VM_FAULT_MEMORY_SHORTAGE;
+ }
+
+ m->vmp_absent = TRUE;
+ if (fault_info && fault_info->batch_pmap_op == TRUE) {
+ vm_page_insert_internal(m, object, vm_object_trunc_page(offset), VM_KERN_MEMORY_NONE, FALSE, TRUE, TRUE, FALSE, NULL);
+ } else {
+ vm_page_insert(m, object, vm_object_trunc_page(offset));
+ }
+ }
+ assert(m->vmp_busy);
+
+ m->vmp_absent = TRUE;
+ pager = object->pager;
+
+ assert(object->paging_in_progress > 0);
+ vm_object_unlock(object);
+
+ rc = vm_compressor_pager_get(
+ pager,
+ offset + object->paging_offset,
+ VM_PAGE_GET_PHYS_PAGE(m),
+ &my_fault_type,
+ 0,
+ &compressed_count_delta);
+
+ if (type_of_fault == NULL) {
+ int throttle_delay;
+
+ /*
+ * we weren't called from vm_fault, so we
+ * need to apply page creation throttling
+ * do it before we re-acquire any locks
+ */
+ if (my_fault_type == DBG_COMPRESSOR_FAULT) {
+ if ((throttle_delay = vm_page_throttled(TRUE))) {
+ VM_DEBUG_EVENT(vmf_compressordelay, VMF_COMPRESSORDELAY, DBG_FUNC_NONE, throttle_delay, 0, 1, 0);
+ delay(throttle_delay);
+ }
+ }
+ }
+ vm_object_lock(object);
+ assert(object->paging_in_progress > 0);
+
+ vm_compressor_pager_count(
+ pager,
+ compressed_count_delta,
+ FALSE, /* shared_lock */
+ object);
+
+ switch (rc) {
+ case KERN_SUCCESS:
+ m->vmp_absent = FALSE;
+ m->vmp_dirty = TRUE;
+ if ((object->wimg_bits &
+ VM_WIMG_MASK) !=
+ VM_WIMG_USE_DEFAULT) {
+ /*
+ * If the page is not cacheable,
+ * we can't let its contents
+ * linger in the data cache
+ * after the decompression.
+ */
+ pmap_sync_page_attributes_phys(
+ VM_PAGE_GET_PHYS_PAGE(m));
+ } else {
+ m->vmp_written_by_kernel = TRUE;
+ }
+
+ /*
+ * If the object is purgeable, its
+ * owner's purgeable ledgers have been
+ * updated in vm_page_insert() but the
+ * page was also accounted for in a
+ * "compressed purgeable" ledger, so
+ * update that now.
+ */
+ if (((object->purgable !=
+ VM_PURGABLE_DENY) ||
+ object->vo_ledger_tag) &&
+ (object->vo_owner !=
+ NULL)) {
+ /*
+ * One less compressed
+ * purgeable/tagged page.
+ */
+ vm_object_owner_compressed_update(
+ object,
+ -1);
+ }
+
+ break;
+ case KERN_MEMORY_FAILURE:
+ m->vmp_unusual = TRUE;
+ m->vmp_error = TRUE;
+ m->vmp_absent = FALSE;
+ break;
+ case KERN_MEMORY_ERROR:
+ assert(m->vmp_absent);
+ break;
+ default:
+ panic("vm_fault_page(): unexpected "
+ "error %d from "
+ "vm_compressor_pager_get()\n",
+ rc);
+ }
+ PAGE_WAKEUP_DONE(m);
+
+ rc = KERN_SUCCESS;
+ goto data_requested;
+ }
+ my_fault_type = DBG_PAGEIN_FAULT;
+
+ if (m != VM_PAGE_NULL) {
+ VM_PAGE_FREE(m);
+ m = VM_PAGE_NULL;
+ }
+
+#if TRACEFAULTPAGE
+ dbgTrace(0xBEEF0012, (unsigned int) object, (unsigned int) 0); /* (TEST/DEBUG) */
+#endif
+
+ /*
+ * It's possible someone called vm_object_destroy while we weren't
+ * holding the object lock. If that has happened, then bail out
+ * here.
+ */
+
+ pager = object->pager;
+
+ if (pager == MEMORY_OBJECT_NULL) {
+ vm_fault_cleanup(object, first_m);
+ thread_interrupt_level(interruptible_state);
+ return VM_FAULT_MEMORY_ERROR;
+ }
+
+ /*
+ * We have an absent page in place for the faulting offset,
+ * so we can release the object lock.
+ */
+
+ if (object->object_is_shared_cache) {
+ set_thread_rwlock_boost();
+ }
+
+ vm_object_unlock(object);
+
+ /*
+ * If this object uses a copy_call strategy,
+ * and we are interested in a copy of this object
+ * (having gotten here only by following a
+ * shadow chain), then tell the memory manager
+ * via a flag added to the desired_access
+ * parameter, so that it can detect a race
+ * between our walking down the shadow chain
+ * and its pushing pages up into a copy of
+ * the object that it manages.
+ */
+ if (object->copy_strategy == MEMORY_OBJECT_COPY_CALL && object != first_object) {
+ wants_copy_flag = VM_PROT_WANTS_COPY;
+ } else {
+ wants_copy_flag = VM_PROT_NONE;
+ }
+
+ if (object->copy == first_object) {
+ /*
+ * if we issue the memory_object_data_request in
+ * this state, we are subject to a deadlock with
+ * the underlying filesystem if it is trying to
+ * shrink the file resulting in a push of pages
+ * into the copy object... that push will stall
+ * on the placeholder page, and if the pushing thread
+ * is holding a lock that is required on the pagein
+ * path (such as a truncate lock), we'll deadlock...
+ * to avoid this potential deadlock, we throw away
+ * our placeholder page before calling memory_object_data_request
+ * and force this thread to retry the vm_fault_page after
+ * we have issued the I/O. the second time through this path
+ * we will find the page already in the cache (presumably still
+ * busy waiting for the I/O to complete) and then complete
+ * the fault w/o having to go through memory_object_data_request again
+ */
+ assert(first_m != VM_PAGE_NULL);
+ assert(VM_PAGE_OBJECT(first_m) == first_object);
+
+ vm_object_lock(first_object);
+ VM_PAGE_FREE(first_m);
+ vm_object_paging_end(first_object);
+ vm_object_unlock(first_object);
+
+ first_m = VM_PAGE_NULL;
+ force_fault_retry = TRUE;
+
+ vm_fault_page_forced_retry++;
+ }
+
+ if (data_already_requested == TRUE) {
+ orig_behavior = fault_info->behavior;
+ orig_cluster_size = fault_info->cluster_size;
+
+ fault_info->behavior = VM_BEHAVIOR_RANDOM;
+ fault_info->cluster_size = PAGE_SIZE;
+ }
+ /*
+ * Call the memory manager to retrieve the data.
+ */
+ rc = memory_object_data_request(
+ pager,
+ vm_object_trunc_page(offset) + object->paging_offset,
+ PAGE_SIZE,
+ access_required | wants_copy_flag,
+ (memory_object_fault_info_t)fault_info);
+
+ if (data_already_requested == TRUE) {
+ fault_info->behavior = orig_behavior;
+ fault_info->cluster_size = orig_cluster_size;
+ } else {
+ data_already_requested = TRUE;
+ }
+
+ DTRACE_VM2(maj_fault, int, 1, (uint64_t *), NULL);
+#if TRACEFAULTPAGE
+ dbgTrace(0xBEEF0013, (unsigned int) object, (unsigned int) rc); /* (TEST/DEBUG) */
+#endif
+ vm_object_lock(object);
+
+ if (object->object_is_shared_cache) {
+ clear_thread_rwlock_boost();
+ }
+
+data_requested:
+ if (rc != KERN_SUCCESS) {
+ vm_fault_cleanup(object, first_m);
+ thread_interrupt_level(interruptible_state);
+
+ return (rc == MACH_SEND_INTERRUPTED) ?
+ VM_FAULT_INTERRUPTED :
+ VM_FAULT_MEMORY_ERROR;
+ } else {
+ clock_sec_t tv_sec;
+ clock_usec_t tv_usec;
+
+ if (my_fault_type == DBG_PAGEIN_FAULT) {
+ clock_get_system_microtime(&tv_sec, &tv_usec);
+ current_thread()->t_page_creation_time = tv_sec;
+ current_thread()->t_page_creation_count = 0;
+ }
+ }
+ if ((interruptible != THREAD_UNINT) && (current_thread()->sched_flags & TH_SFLAG_ABORT)) {
+ vm_fault_cleanup(object, first_m);
+ thread_interrupt_level(interruptible_state);
+
+ return VM_FAULT_INTERRUPTED;
+ }
+ if (force_fault_retry == TRUE) {
+ vm_fault_cleanup(object, first_m);
+ thread_interrupt_level(interruptible_state);
+
+ return VM_FAULT_RETRY;
+ }
+ if (m == VM_PAGE_NULL && object->phys_contiguous) {
+ /*
+ * No page here means that the object we
+ * initially looked up was "physically
+ * contiguous" (i.e. device memory). However,
+ * with Virtual VRAM, the object might not
+ * be backed by that device memory anymore,
+ * so we're done here only if the object is
+ * still "phys_contiguous".
+ * Otherwise, if the object is no longer
+ * "phys_contiguous", we need to retry the
+ * page fault against the object's new backing
+ * store (different memory object).
+ */
+phys_contig_object:
+ goto done;
+ }
+ /*
+ * potentially a pagein fault
+ * if we make it through the state checks
+ * above, than we'll count it as such
+ */
+ my_fault = my_fault_type;
+
+ /*
+ * Retry with same object/offset, since new data may
+ * be in a different page (i.e., m is meaningless at
+ * this point).
+ */
+ continue;
+ }
+dont_look_for_page:
+ /*
+ * We get here if the object has no pager, or an existence map
+ * exists and indicates the page isn't present on the pager
+ * or we're unwiring a page. If a pager exists, but there
+ * is no existence map, then the m->vmp_absent case above handles
+ * the ZF case when the pager can't provide the page
+ */
+#if TRACEFAULTPAGE
+ dbgTrace(0xBEEF0014, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */
+#endif
+ if (object == first_object) {
+ first_m = m;
+ } else {
+ assert(m == VM_PAGE_NULL);
+ }
+
+ next_object = object->shadow;
+
+ if (next_object == VM_OBJECT_NULL) {
+ /*
+ * we've hit the bottom of the shadown chain,
+ * fill the page in the top object with zeros.
+ */
+ assert(!must_be_resident);
+
+ if (object != first_object) {
+ vm_object_paging_end(object);
+ vm_object_unlock(object);
+
+ object = first_object;
+ offset = first_offset;
+ vm_object_lock(object);
+ }
+ m = first_m;
+ assert(VM_PAGE_OBJECT(m) == object);
+ first_m = VM_PAGE_NULL;
+
+ /*
+ * check for any conditions that prevent
+ * us from creating a new zero-fill page
+ * vm_fault_check will do all of the
+ * fault cleanup in the case of an error condition
+ * including resetting the thread_interrupt_level
+ */
+ error = vm_fault_check(object, m, first_m, interruptible_state, (type_of_fault == NULL) ? TRUE : FALSE);
+
+ if (error != VM_FAULT_SUCCESS) {
+ return error;
+ }
+
+ if (m == VM_PAGE_NULL) {
+ m = vm_page_grab_options(grab_options);
+
+ if (m == VM_PAGE_NULL) {
+ vm_fault_cleanup(object, VM_PAGE_NULL);
+ thread_interrupt_level(interruptible_state);
+
+ return VM_FAULT_MEMORY_SHORTAGE;
+ }
+ vm_page_insert(m, object, vm_object_trunc_page(offset));
+ }
+ if (fault_info->mark_zf_absent && no_zero_fill == TRUE) {
+ m->vmp_absent = TRUE;
+ }
+
+ my_fault = vm_fault_zero_page(m, no_zero_fill);
+
+ break;
+ } else {
+ /*
+ * Move on to the next object. Lock the next
+ * object before unlocking the current one.
+ */
+ if ((object != first_object) || must_be_resident) {
+ vm_object_paging_end(object);
+ }
+
+ offset += object->vo_shadow_offset;
+ fault_info->lo_offset += object->vo_shadow_offset;
+ fault_info->hi_offset += object->vo_shadow_offset;
+ access_required = VM_PROT_READ;
+
+ vm_object_lock(next_object);
+ vm_object_unlock(object);
+
+ object = next_object;
+ vm_object_paging_begin(object);
+ }
+ }
+
+ /*
+ * PAGE HAS BEEN FOUND.
+ *
+ * This page (m) is:
+ * busy, so that we can play with it;
+ * not absent, so that nobody else will fill it;
+ * possibly eligible for pageout;
+ *
+ * The top-level page (first_m) is:
+ * VM_PAGE_NULL if the page was found in the
+ * top-level object;
+ * busy, not absent, and ineligible for pageout.
+ *
+ * The current object (object) is locked. A paging
+ * reference is held for the current and top-level
+ * objects.
+ */
+
+#if TRACEFAULTPAGE
+ dbgTrace(0xBEEF0015, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */
+#endif
+#if EXTRA_ASSERTIONS
+ assert(m->vmp_busy && !m->vmp_absent);
+ assert((first_m == VM_PAGE_NULL) ||
+ (first_m->vmp_busy && !first_m->vmp_absent &&
+ !first_m->vmp_active && !first_m->vmp_inactive && !first_m->vmp_secluded));
+#endif /* EXTRA_ASSERTIONS */
+
+ /*
+ * If the page is being written, but isn't
+ * already owned by the top-level object,
+ * we have to copy it into a new page owned
+ * by the top-level object.
+ */
+ if (object != first_object) {
+#if TRACEFAULTPAGE
+ dbgTrace(0xBEEF0016, (unsigned int) object, (unsigned int) fault_type); /* (TEST/DEBUG) */
+#endif
+ if (fault_type & VM_PROT_WRITE) {
+ vm_page_t copy_m;
+
+ /*
+ * We only really need to copy if we
+ * want to write it.
+ */
+ assert(!must_be_resident);
+
+ /*
+ * If we try to collapse first_object at this
+ * point, we may deadlock when we try to get
+ * the lock on an intermediate object (since we
+ * have the bottom object locked). We can't
+ * unlock the bottom object, because the page
+ * we found may move (by collapse) if we do.
+ *
+ * Instead, we first copy the page. Then, when
+ * we have no more use for the bottom object,
+ * we unlock it and try to collapse.
+ *
+ * Note that we copy the page even if we didn't
+ * need to... that's the breaks.
+ */
+
+ /*
+ * Allocate a page for the copy
+ */
+ copy_m = vm_page_grab_options(grab_options);
+
+ if (copy_m == VM_PAGE_NULL) {
+ RELEASE_PAGE(m);
+
+ vm_fault_cleanup(object, first_m);
+ thread_interrupt_level(interruptible_state);
+
+ return VM_FAULT_MEMORY_SHORTAGE;
+ }
+
+ vm_page_copy(m, copy_m);
+
+ /*
+ * If another map is truly sharing this
+ * page with us, we have to flush all
+ * uses of the original page, since we
+ * can't distinguish those which want the
+ * original from those which need the
+ * new copy.
+ *
+ * XXXO If we know that only one map has
+ * access to this page, then we could
+ * avoid the pmap_disconnect() call.
+ */
+ if (m->vmp_pmapped) {
+ pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m));
+ }
+
+ if (m->vmp_clustered) {
+ VM_PAGE_COUNT_AS_PAGEIN(m);
+ VM_PAGE_CONSUME_CLUSTERED(m);
+ }
+ assert(!m->vmp_cleaning);
+
+ /*
+ * We no longer need the old page or object.
+ */
+ RELEASE_PAGE(m);
+
+ /*
+ * This check helps with marking the object as having a sequential pattern
+ * Normally we'll miss doing this below because this fault is about COW to
+ * the first_object i.e. bring page in from disk, push to object above but
+ * don't update the file object's sequential pattern.
+ */
+ if (object->internal == FALSE) {
+ vm_fault_is_sequential(object, offset, fault_info->behavior);
+ }
+
+ vm_object_paging_end(object);
+ vm_object_unlock(object);
+
+ my_fault = DBG_COW_FAULT;
+ counter_inc(&vm_statistics_cow_faults);
+ DTRACE_VM2(cow_fault, int, 1, (uint64_t *), NULL);
+ current_task()->cow_faults++;
+
+ object = first_object;
+ offset = first_offset;
+
+ vm_object_lock(object);
+ /*
+ * get rid of the place holder
+ * page that we soldered in earlier
+ */
+ VM_PAGE_FREE(first_m);
+ first_m = VM_PAGE_NULL;
+
+ /*
+ * and replace it with the
+ * page we just copied into
+ */
+ assert(copy_m->vmp_busy);
+ vm_page_insert(copy_m, object, vm_object_trunc_page(offset));
+ SET_PAGE_DIRTY(copy_m, TRUE);
+
+ m = copy_m;
+ /*
+ * Now that we've gotten the copy out of the
+ * way, let's try to collapse the top object.
+ * But we have to play ugly games with
+ * paging_in_progress to do that...
+ */
+ vm_object_paging_end(object);
+ vm_object_collapse(object, vm_object_trunc_page(offset), TRUE);
+ vm_object_paging_begin(object);
+ } else {
+ *protection &= (~VM_PROT_WRITE);
+ }
+ }
+ /*
+ * Now check whether the page needs to be pushed into the
+ * copy object. The use of asymmetric copy on write for
+ * shared temporary objects means that we may do two copies to
+ * satisfy the fault; one above to get the page from a
+ * shadowed object, and one here to push it into the copy.
+ */
+ try_failed_count = 0;
+
+ while ((copy_object = first_object->copy) != VM_OBJECT_NULL) {
+ vm_object_offset_t copy_offset;
+ vm_page_t copy_m;
+
+#if TRACEFAULTPAGE
+ dbgTrace(0xBEEF0017, (unsigned int) copy_object, (unsigned int) fault_type); /* (TEST/DEBUG) */
+#endif
+ /*
+ * If the page is being written, but hasn't been
+ * copied to the copy-object, we have to copy it there.
+ */
+ if ((fault_type & VM_PROT_WRITE) == 0) {
+ *protection &= ~VM_PROT_WRITE;
+ break;
+ }
+
+ /*
+ * If the page was guaranteed to be resident,
+ * we must have already performed the copy.
+ */
+ if (must_be_resident) {
+ break;
+ }
+
+ /*
+ * Try to get the lock on the copy_object.
+ */
+ if (!vm_object_lock_try(copy_object)) {
+ vm_object_unlock(object);
+ try_failed_count++;
+
+ mutex_pause(try_failed_count); /* wait a bit */
+ vm_object_lock(object);
+
+ continue;
+ }
+ try_failed_count = 0;
+
+ /*
+ * Make another reference to the copy-object,
+ * to keep it from disappearing during the
+ * copy.
+ */
+ vm_object_reference_locked(copy_object);
+
+ /*
+ * Does the page exist in the copy?
+ */
+ copy_offset = first_offset - copy_object->vo_shadow_offset;
+ copy_offset = vm_object_trunc_page(copy_offset);
+
+ if (copy_object->vo_size <= copy_offset) {
+ /*
+ * Copy object doesn't cover this page -- do nothing.
+ */
+ ;
+ } else if ((copy_m = vm_page_lookup(copy_object, copy_offset)) != VM_PAGE_NULL) {
+ /*
+ * Page currently exists in the copy object
+ */
+ if (copy_m->vmp_busy) {
+ /*
+ * If the page is being brought
+ * in, wait for it and then retry.
+ */
+ RELEASE_PAGE(m);
+
+ /*
+ * take an extra ref so object won't die
+ */
+ vm_object_reference_locked(copy_object);
+ vm_object_unlock(copy_object);
+ vm_fault_cleanup(object, first_m);
+
+ vm_object_lock(copy_object);
+ assert(copy_object->ref_count > 0);
+ vm_object_lock_assert_exclusive(copy_object);
+ copy_object->ref_count--;
+ assert(copy_object->ref_count > 0);
+ copy_m = vm_page_lookup(copy_object, copy_offset);
+
+ if (copy_m != VM_PAGE_NULL && copy_m->vmp_busy) {
+ PAGE_ASSERT_WAIT(copy_m, interruptible);
+
+ vm_object_unlock(copy_object);
+ wait_result = thread_block(THREAD_CONTINUE_NULL);
+ vm_object_deallocate(copy_object);
+
+ goto backoff;
+ } else {
+ vm_object_unlock(copy_object);
+ vm_object_deallocate(copy_object);
+ thread_interrupt_level(interruptible_state);
+
+ return VM_FAULT_RETRY;
+ }
+ }
+ } else if (!PAGED_OUT(copy_object, copy_offset)) {
+ /*
+ * If PAGED_OUT is TRUE, then the page used to exist
+ * in the copy-object, and has already been paged out.
+ * We don't need to repeat this. If PAGED_OUT is
+ * FALSE, then either we don't know (!pager_created,
+ * for example) or it hasn't been paged out.
+ * (VM_EXTERNAL_STATE_UNKNOWN||VM_EXTERNAL_STATE_ABSENT)
+ * We must copy the page to the copy object.
+ *
+ * Allocate a page for the copy
+ */
+ copy_m = vm_page_alloc(copy_object, copy_offset);
+
+ if (copy_m == VM_PAGE_NULL) {
+ RELEASE_PAGE(m);
+
+ vm_object_lock_assert_exclusive(copy_object);
+ copy_object->ref_count--;
+ assert(copy_object->ref_count > 0);
+
+ vm_object_unlock(copy_object);
+ vm_fault_cleanup(object, first_m);
+ thread_interrupt_level(interruptible_state);
+
+ return VM_FAULT_MEMORY_SHORTAGE;
+ }
+ /*
+ * Must copy page into copy-object.
+ */
+ vm_page_copy(m, copy_m);
+
+ /*
+ * If the old page was in use by any users
+ * of the copy-object, it must be removed
+ * from all pmaps. (We can't know which
+ * pmaps use it.)
+ */
+ if (m->vmp_pmapped) {
+ pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m));
+ }
+
+ if (m->vmp_clustered) {
+ VM_PAGE_COUNT_AS_PAGEIN(m);
+ VM_PAGE_CONSUME_CLUSTERED(m);
+ }
+ /*
+ * If there's a pager, then immediately
+ * page out this page, using the "initialize"
+ * option. Else, we use the copy.
+ */
+ if ((!copy_object->pager_ready)
+ || VM_COMPRESSOR_PAGER_STATE_GET(copy_object, copy_offset) == VM_EXTERNAL_STATE_ABSENT
+ ) {
+ vm_page_lockspin_queues();
+ assert(!m->vmp_cleaning);
+ vm_page_activate(copy_m);
+ vm_page_unlock_queues();
+
+ SET_PAGE_DIRTY(copy_m, TRUE);
+ PAGE_WAKEUP_DONE(copy_m);
+ } else {
+ assert(copy_m->vmp_busy == TRUE);
+ assert(!m->vmp_cleaning);
+
+ /*
+ * dirty is protected by the object lock
+ */
+ SET_PAGE_DIRTY(copy_m, TRUE);
+
+ /*
+ * The page is already ready for pageout:
+ * not on pageout queues and busy.
+ * Unlock everything except the
+ * copy_object itself.
+ */
+ vm_object_unlock(object);
+
+ /*
+ * Write the page to the copy-object,
+ * flushing it from the kernel.
+ */
+ vm_pageout_initialize_page(copy_m);
+
+ /*
+ * Since the pageout may have
+ * temporarily dropped the
+ * copy_object's lock, we
+ * check whether we'll have
+ * to deallocate the hard way.
+ */
+ if ((copy_object->shadow != object) || (copy_object->ref_count == 1)) {
+ vm_object_unlock(copy_object);
+ vm_object_deallocate(copy_object);
+ vm_object_lock(object);
+
+ continue;
+ }
+ /*
+ * Pick back up the old object's
+ * lock. [It is safe to do so,
+ * since it must be deeper in the
+ * object tree.]
+ */
+ vm_object_lock(object);
+ }
+
+ /*
+ * Because we're pushing a page upward
+ * in the object tree, we must restart
+ * any faults that are waiting here.
+ * [Note that this is an expansion of
+ * PAGE_WAKEUP that uses the THREAD_RESTART
+ * wait result]. Can't turn off the page's
+ * busy bit because we're not done with it.
+ */
+ if (m->vmp_wanted) {
+ m->vmp_wanted = FALSE;
+ thread_wakeup_with_result((event_t) m, THREAD_RESTART);
+ }
+ }
+ /*
+ * The reference count on copy_object must be
+ * at least 2: one for our extra reference,
+ * and at least one from the outside world
+ * (we checked that when we last locked
+ * copy_object).
+ */
+ vm_object_lock_assert_exclusive(copy_object);
+ copy_object->ref_count--;
+ assert(copy_object->ref_count > 0);
+
+ vm_object_unlock(copy_object);
+
+ break;
+ }
+
+done:
+ *result_page = m;
+ *top_page = first_m;
+
+ if (m != VM_PAGE_NULL) {
+ assert(VM_PAGE_OBJECT(m) == object);
+
+ retval = VM_FAULT_SUCCESS;
+
+ if (my_fault == DBG_PAGEIN_FAULT) {
+ VM_PAGE_COUNT_AS_PAGEIN(m);
+
+ if (object->internal) {
+ my_fault = DBG_PAGEIND_FAULT;
+ } else {
+ my_fault = DBG_PAGEINV_FAULT;
+ }
+
+ /*
+ * evaluate access pattern and update state
+ * vm_fault_deactivate_behind depends on the
+ * state being up to date
+ */
+ vm_fault_is_sequential(object, offset, fault_info->behavior);
+ vm_fault_deactivate_behind(object, offset, fault_info->behavior);
+ } else if (type_of_fault == NULL && my_fault == DBG_CACHE_HIT_FAULT) {
+ /*
+ * we weren't called from vm_fault, so handle the
+ * accounting here for hits in the cache
+ */
+ if (m->vmp_clustered) {
+ VM_PAGE_COUNT_AS_PAGEIN(m);
+ VM_PAGE_CONSUME_CLUSTERED(m);
+ }
+ vm_fault_is_sequential(object, offset, fault_info->behavior);
+ vm_fault_deactivate_behind(object, offset, fault_info->behavior);
+ } else if (my_fault == DBG_COMPRESSOR_FAULT || my_fault == DBG_COMPRESSOR_SWAPIN_FAULT) {
+ VM_STAT_DECOMPRESSIONS();
+ }
+ if (type_of_fault) {
+ *type_of_fault = my_fault;
+ }
+ } else {
+ retval = VM_FAULT_SUCCESS_NO_VM_PAGE;
+ assert(first_m == VM_PAGE_NULL);
+ assert(object == first_object);
+ }
+
+ thread_interrupt_level(interruptible_state);
+
+#if TRACEFAULTPAGE
+ dbgTrace(0xBEEF001A, (unsigned int) VM_FAULT_SUCCESS, 0); /* (TEST/DEBUG) */
+#endif
+ return retval;
+
+backoff:
+ thread_interrupt_level(interruptible_state);
+
+ if (wait_result == THREAD_INTERRUPTED) {
+ return VM_FAULT_INTERRUPTED;
+ }
+ return VM_FAULT_RETRY;
+
+#undef RELEASE_PAGE
+}
+
+
+extern int panic_on_cs_killed;
+extern int proc_selfpid(void);
+extern char *proc_name_address(void *p);
+unsigned long cs_enter_tainted_rejected = 0;
+unsigned long cs_enter_tainted_accepted = 0;
+
+/*
+ * CODE SIGNING:
+ * When soft faulting a page, we have to validate the page if:
+ * 1. the page is being mapped in user space
+ * 2. the page hasn't already been found to be "tainted"
+ * 3. the page belongs to a code-signed object
+ * 4. the page has not been validated yet or has been mapped for write.
+ */
+static bool
+vm_fault_cs_need_validation(
+ pmap_t pmap,
+ vm_page_t page,
+ vm_object_t page_obj,
+ vm_map_size_t fault_page_size,
+ vm_map_offset_t fault_phys_offset)
+{
+ if (pmap == kernel_pmap) {
+ /* 1 - not user space */
+ return false;
+ }
+ if (!page_obj->code_signed) {
+ /* 3 - page does not belong to a code-signed object */
+ return false;
+ }
+ if (fault_page_size == PAGE_SIZE) {
+ /* looking at the whole page */
+ assertf(fault_phys_offset == 0,
+ "fault_page_size 0x%llx fault_phys_offset 0x%llx\n",
+ (uint64_t)fault_page_size,
+ (uint64_t)fault_phys_offset);
+ if (page->vmp_cs_tainted == VMP_CS_ALL_TRUE) {
+ /* 2 - page is all tainted */
+ return false;
+ }
+ if (page->vmp_cs_validated == VMP_CS_ALL_TRUE &&
+ !page->vmp_wpmapped) {
+ /* 4 - already fully validated and never mapped writable */
+ return false;
+ }
+ } else {
+ /* looking at a specific sub-page */
+ if (VMP_CS_TAINTED(page, fault_page_size, fault_phys_offset)) {
+ /* 2 - sub-page was already marked as tainted */
+ return false;
+ }
+ if (VMP_CS_VALIDATED(page, fault_page_size, fault_phys_offset) &&
+ !page->vmp_wpmapped) {
+ /* 4 - already validated and never mapped writable */
+ return false;
+ }
+ }
+ /* page needs to be validated */
+ return true;
+}
+
+
+static bool
+vm_fault_cs_page_immutable(
+ vm_page_t m,
+ vm_map_size_t fault_page_size,
+ vm_map_offset_t fault_phys_offset,
+ vm_prot_t prot __unused)
+{
+ if (VMP_CS_VALIDATED(m, fault_page_size, fault_phys_offset)
+ /*&& ((prot) & VM_PROT_EXECUTE)*/) {
+ return true;
+ }
+ return false;
+}
+
+static bool
+vm_fault_cs_page_nx(
+ vm_page_t m,
+ vm_map_size_t fault_page_size,
+ vm_map_offset_t fault_phys_offset)
+{
+ return VMP_CS_NX(m, fault_page_size, fault_phys_offset);
+}
+
+/*
+ * Check if the page being entered into the pmap violates code signing.
+ */
+static kern_return_t
+vm_fault_cs_check_violation(
+ bool cs_bypass,
+ vm_object_t object,
+ vm_page_t m,
+ pmap_t pmap,
+ vm_prot_t prot,
+ vm_prot_t caller_prot,
+ vm_map_size_t fault_page_size,
+ vm_map_offset_t fault_phys_offset,
+ vm_object_fault_info_t fault_info,
+ bool map_is_switched,
+ bool map_is_switch_protected,
+ bool *cs_violation)
+{
+#if !PMAP_CS
+#pragma unused(caller_prot)
+#pragma unused(fault_info)
+#endif /* !PMAP_CS */
+ int cs_enforcement_enabled;
+ if (!cs_bypass &&
+ vm_fault_cs_need_validation(pmap, m, object,
+ fault_page_size, fault_phys_offset)) {
+ vm_object_lock_assert_exclusive(object);
+
+ if (VMP_CS_VALIDATED(m, fault_page_size, fault_phys_offset)) {
+ vm_cs_revalidates++;
+ }
+
+ /* VM map is locked, so 1 ref will remain on VM object -
+ * so no harm if vm_page_validate_cs drops the object lock */
+
+ vm_page_validate_cs(m, fault_page_size, fault_phys_offset);
+ }
+
+ /* If the map is switched, and is switch-protected, we must protect
+ * some pages from being write-faulted: immutable pages because by
+ * definition they may not be written, and executable pages because that
+ * would provide a way to inject unsigned code.
+ * If the page is immutable, we can simply return. However, we can't
+ * immediately determine whether a page is executable anywhere. But,
+ * we can disconnect it everywhere and remove the executable protection
+ * from the current map. We do that below right before we do the
+ * PMAP_ENTER.
+ */
+ if (pmap == kernel_pmap) {
+ /* kernel fault: cs_enforcement does not apply */
+ cs_enforcement_enabled = 0;
+ } else {
+ cs_enforcement_enabled = pmap_get_vm_map_cs_enforced(pmap);
+ }
+
+ if (cs_enforcement_enabled && map_is_switched &&
+ map_is_switch_protected &&
+ vm_fault_cs_page_immutable(m, fault_page_size, fault_phys_offset, prot) &&
+ (prot & VM_PROT_WRITE)) {
+ return KERN_CODESIGN_ERROR;
+ }
+
+ if (cs_enforcement_enabled &&
+ vm_fault_cs_page_nx(m, fault_page_size, fault_phys_offset) &&
+ (prot & VM_PROT_EXECUTE)) {
+ if (cs_debug) {
+ printf("page marked to be NX, not letting it be mapped EXEC\n");
+ }
+ return KERN_CODESIGN_ERROR;
+ }
+
+ /* A page could be tainted, or pose a risk of being tainted later.
+ * Check whether the receiving process wants it, and make it feel
+ * the consequences (that hapens in cs_invalid_page()).
+ * For CS Enforcement, two other conditions will
+ * cause that page to be tainted as well:
+ * - pmapping an unsigned page executable - this means unsigned code;
+ * - writeable mapping of a validated page - the content of that page
+ * can be changed without the kernel noticing, therefore unsigned
+ * code can be created
+ */
+ if (cs_bypass) {
+ /* code-signing is bypassed */
+ *cs_violation = FALSE;
+ } else if (VMP_CS_TAINTED(m, fault_page_size, fault_phys_offset)) {
+ /* tainted page */
+ *cs_violation = TRUE;
+ } else if (!cs_enforcement_enabled) {
+ /* no further code-signing enforcement */
+ *cs_violation = FALSE;
+ } else if (vm_fault_cs_page_immutable(m, fault_page_size, fault_phys_offset, prot) &&
+ ((prot & VM_PROT_WRITE) ||
+ m->vmp_wpmapped)) {
+ /*
+ * The page should be immutable, but is in danger of being
+ * modified.
+ * This is the case where we want policy from the code
+ * directory - is the page immutable or not? For now we have
+ * to assume that code pages will be immutable, data pages not.
+ * We'll assume a page is a code page if it has a code directory
+ * and we fault for execution.
+ * That is good enough since if we faulted the code page for
+ * writing in another map before, it is wpmapped; if we fault
+ * it for writing in this map later it will also be faulted for
+ * executing at the same time; and if we fault for writing in
+ * another map later, we will disconnect it from this pmap so
+ * we'll notice the change.
+ */
+ *cs_violation = TRUE;
+ } else if (!VMP_CS_VALIDATED(m, fault_page_size, fault_phys_offset) &&
+ (prot & VM_PROT_EXECUTE)
+ ) {
+ *cs_violation = TRUE;
+ } else {
+ *cs_violation = FALSE;
+ }
+ return KERN_SUCCESS;
+}
+
+/*
+ * Handles a code signing violation by either rejecting the page or forcing a disconnect.
+ * @param must_disconnect This value will be set to true if the caller must disconnect
+ * this page.
+ * @return If this function does not return KERN_SUCCESS, the caller must abort the page fault.
+ */
+static kern_return_t
+vm_fault_cs_handle_violation(
+ vm_object_t object,
+ vm_page_t m,
+ pmap_t pmap,
+ vm_prot_t prot,
+ vm_map_offset_t vaddr,
+ vm_map_size_t fault_page_size,
+ vm_map_offset_t fault_phys_offset,
+ bool map_is_switched,
+ bool map_is_switch_protected,
+ bool *must_disconnect)
+{
+#if !MACH_ASSERT
+#pragma unused(pmap)
+#pragma unused(map_is_switch_protected)
+#endif /* !MACH_ASSERT */
+ /*
+ * We will have a tainted page. Have to handle the special case
+ * of a switched map now. If the map is not switched, standard
+ * procedure applies - call cs_invalid_page().
+ * If the map is switched, the real owner is invalid already.
+ * There is no point in invalidating the switching process since
+ * it will not be executing from the map. So we don't call
+ * cs_invalid_page() in that case.
+ */
+ boolean_t reject_page, cs_killed;
+ kern_return_t kr;
+ if (map_is_switched) {
+ assert(pmap == vm_map_pmap(current_thread()->map));
+ assert(!(prot & VM_PROT_WRITE) || (map_is_switch_protected == FALSE));
+ reject_page = FALSE;
+ } else {
+ if (cs_debug > 5) {
+ printf("vm_fault: signed: %s validate: %s tainted: %s wpmapped: %s prot: 0x%x\n",
+ object->code_signed ? "yes" : "no",
+ VMP_CS_VALIDATED(m, fault_page_size, fault_phys_offset) ? "yes" : "no",
+ VMP_CS_TAINTED(m, fault_page_size, fault_phys_offset) ? "yes" : "no",
+ m->vmp_wpmapped ? "yes" : "no",
+ (int)prot);
+ }
+ reject_page = cs_invalid_page((addr64_t) vaddr, &cs_killed);
+ }
+
+ if (reject_page) {
+ /* reject the invalid page: abort the page fault */
+ int pid;
+ const char *procname;
+ task_t task;
+ vm_object_t file_object, shadow;
+ vm_object_offset_t file_offset;
+ char *pathname, *filename;
+ vm_size_t pathname_len, filename_len;
+ boolean_t truncated_path;
+#define __PATH_MAX 1024
+ struct timespec mtime, cs_mtime;
+ int shadow_depth;
+ os_reason_t codesigning_exit_reason = OS_REASON_NULL;
+
+ kr = KERN_CODESIGN_ERROR;
+ cs_enter_tainted_rejected++;
+
+ /* get process name and pid */
+ procname = "?";
+ task = current_task();
+ pid = proc_selfpid();
+ if (task->bsd_info != NULL) {
+ procname = proc_name_address(task->bsd_info);
+ }
+
+ /* get file's VM object */
+ file_object = object;
+ file_offset = m->vmp_offset;
+ for (shadow = file_object->shadow,
+ shadow_depth = 0;
+ shadow != VM_OBJECT_NULL;
+ shadow = file_object->shadow,
+ shadow_depth++) {
+ vm_object_lock_shared(shadow);
+ if (file_object != object) {
+ vm_object_unlock(file_object);
+ }
+ file_offset += file_object->vo_shadow_offset;
+ file_object = shadow;
+ }
+
+ mtime.tv_sec = 0;
+ mtime.tv_nsec = 0;
+ cs_mtime.tv_sec = 0;
+ cs_mtime.tv_nsec = 0;
+
+ /* get file's pathname and/or filename */
+ pathname = NULL;
+ filename = NULL;
+ pathname_len = 0;
+ filename_len = 0;
+ truncated_path = FALSE;
+ /* no pager -> no file -> no pathname, use "<nil>" in that case */
+ if (file_object->pager != NULL) {
+ pathname = kheap_alloc(KHEAP_TEMP, __PATH_MAX * 2, Z_WAITOK);
+ if (pathname) {
+ pathname[0] = '\0';
+ pathname_len = __PATH_MAX;
+ filename = pathname + pathname_len;
+ filename_len = __PATH_MAX;
+
+ if (vnode_pager_get_object_name(file_object->pager,
+ pathname,
+ pathname_len,
+ filename,
+ filename_len,
+ &truncated_path) == KERN_SUCCESS) {
+ /* safety first... */
+ pathname[__PATH_MAX - 1] = '\0';
+ filename[__PATH_MAX - 1] = '\0';
+
+ vnode_pager_get_object_mtime(file_object->pager,
+ &mtime,
+ &cs_mtime);
+ } else {
+ kheap_free(KHEAP_TEMP, pathname, __PATH_MAX * 2);
+ pathname = NULL;
+ filename = NULL;
+ pathname_len = 0;
+ filename_len = 0;
+ truncated_path = FALSE;
+ }
+ }
+ }
+ printf("CODE SIGNING: process %d[%s]: "
+ "rejecting invalid page at address 0x%llx "
+ "from offset 0x%llx in file \"%s%s%s\" "
+ "(cs_mtime:%lu.%ld %s mtime:%lu.%ld) "
+ "(signed:%d validated:%d tainted:%d nx:%d "
+ "wpmapped:%d dirty:%d depth:%d)\n",
+ pid, procname, (addr64_t) vaddr,
+ file_offset,
+ (pathname ? pathname : "<nil>"),
+ (truncated_path ? "/.../" : ""),
+ (truncated_path ? filename : ""),
+ cs_mtime.tv_sec, cs_mtime.tv_nsec,
+ ((cs_mtime.tv_sec == mtime.tv_sec &&
+ cs_mtime.tv_nsec == mtime.tv_nsec)
+ ? "=="
+ : "!="),
+ mtime.tv_sec, mtime.tv_nsec,
+ object->code_signed,
+ VMP_CS_VALIDATED(m, fault_page_size, fault_phys_offset),
+ VMP_CS_TAINTED(m, fault_page_size, fault_phys_offset),
+ VMP_CS_NX(m, fault_page_size, fault_phys_offset),
+ m->vmp_wpmapped,
+ m->vmp_dirty,
+ shadow_depth);
+
+ /*
+ * We currently only generate an exit reason if cs_invalid_page directly killed a process. If cs_invalid_page
+ * did not kill the process (more the case on desktop), vm_fault_enter will not satisfy the fault and whether the
+ * process dies is dependent on whether there is a signal handler registered for SIGSEGV and how that handler
+ * will deal with the segmentation fault.
+ */
+ if (cs_killed) {
+ KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
+ pid, OS_REASON_CODESIGNING, CODESIGNING_EXIT_REASON_INVALID_PAGE, 0, 0);
+
+ codesigning_exit_reason = os_reason_create(OS_REASON_CODESIGNING, CODESIGNING_EXIT_REASON_INVALID_PAGE);
+ if (codesigning_exit_reason == NULL) {
+ printf("vm_fault_enter: failed to allocate codesigning exit reason\n");
+ } else {
+ mach_vm_address_t data_addr = 0;
+ struct codesigning_exit_reason_info *ceri = NULL;
+ uint32_t reason_buffer_size_estimate = kcdata_estimate_required_buffer_size(1, sizeof(*ceri));
+
+ if (os_reason_alloc_buffer_noblock(codesigning_exit_reason, reason_buffer_size_estimate)) {
+ printf("vm_fault_enter: failed to allocate buffer for codesigning exit reason\n");
+ } else {
+ if (KERN_SUCCESS == kcdata_get_memory_addr(&codesigning_exit_reason->osr_kcd_descriptor,
+ EXIT_REASON_CODESIGNING_INFO, sizeof(*ceri), &data_addr)) {
+ ceri = (struct codesigning_exit_reason_info *)data_addr;
+ static_assert(__PATH_MAX == sizeof(ceri->ceri_pathname));
+
+ ceri->ceri_virt_addr = vaddr;
+ ceri->ceri_file_offset = file_offset;
+ if (pathname) {
+ strncpy((char *)&ceri->ceri_pathname, pathname, sizeof(ceri->ceri_pathname));
+ } else {
+ ceri->ceri_pathname[0] = '\0';
+ }
+ if (filename) {
+ strncpy((char *)&ceri->ceri_filename, filename, sizeof(ceri->ceri_filename));
+ } else {
+ ceri->ceri_filename[0] = '\0';
+ }
+ ceri->ceri_path_truncated = (truncated_path ? 1 : 0);
+ ceri->ceri_codesig_modtime_secs = cs_mtime.tv_sec;
+ ceri->ceri_codesig_modtime_nsecs = cs_mtime.tv_nsec;
+ ceri->ceri_page_modtime_secs = mtime.tv_sec;
+ ceri->ceri_page_modtime_nsecs = mtime.tv_nsec;
+ ceri->ceri_object_codesigned = (object->code_signed);
+ ceri->ceri_page_codesig_validated = VMP_CS_VALIDATED(m, fault_page_size, fault_phys_offset);
+ ceri->ceri_page_codesig_tainted = VMP_CS_TAINTED(m, fault_page_size, fault_phys_offset);
+ ceri->ceri_page_codesig_nx = VMP_CS_NX(m, fault_page_size, fault_phys_offset);
+ ceri->ceri_page_wpmapped = (m->vmp_wpmapped);
+ ceri->ceri_page_slid = 0;
+ ceri->ceri_page_dirty = (m->vmp_dirty);
+ ceri->ceri_page_shadow_depth = shadow_depth;
+ } else {
+#if DEBUG || DEVELOPMENT
+ panic("vm_fault_enter: failed to allocate kcdata for codesigning exit reason");
+#else
+ printf("vm_fault_enter: failed to allocate kcdata for codesigning exit reason\n");
+#endif /* DEBUG || DEVELOPMENT */
+ /* Free the buffer */
+ os_reason_alloc_buffer_noblock(codesigning_exit_reason, 0);
+ }
+ }
+ }
+
+ set_thread_exit_reason(current_thread(), codesigning_exit_reason, FALSE);
+ }
+ if (panic_on_cs_killed &&
+ object->object_is_shared_cache) {
+ char *tainted_contents;
+ vm_map_offset_t src_vaddr;
+ src_vaddr = (vm_map_offset_t) phystokv((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m) << PAGE_SHIFT);
+ tainted_contents = kalloc(PAGE_SIZE);
+ bcopy((const char *)src_vaddr, tainted_contents, PAGE_SIZE);
+ printf("CODE SIGNING: tainted page %p phys 0x%x phystokv 0x%llx copied to %p\n", m, VM_PAGE_GET_PHYS_PAGE(m), (uint64_t)src_vaddr, tainted_contents);
+ panic("CODE SIGNING: process %d[%s]: "
+ "rejecting invalid page (phys#0x%x) at address 0x%llx "
+ "from offset 0x%llx in file \"%s%s%s\" "
+ "(cs_mtime:%lu.%ld %s mtime:%lu.%ld) "
+ "(signed:%d validated:%d tainted:%d nx:%d"
+ "wpmapped:%d dirty:%d depth:%d)\n",
+ pid, procname,
+ VM_PAGE_GET_PHYS_PAGE(m),
+ (addr64_t) vaddr,
+ file_offset,
+ (pathname ? pathname : "<nil>"),
+ (truncated_path ? "/.../" : ""),
+ (truncated_path ? filename : ""),
+ cs_mtime.tv_sec, cs_mtime.tv_nsec,
+ ((cs_mtime.tv_sec == mtime.tv_sec &&
+ cs_mtime.tv_nsec == mtime.tv_nsec)
+ ? "=="
+ : "!="),
+ mtime.tv_sec, mtime.tv_nsec,
+ object->code_signed,
+ VMP_CS_VALIDATED(m, fault_page_size, fault_phys_offset),
+ VMP_CS_TAINTED(m, fault_page_size, fault_phys_offset),
+ VMP_CS_NX(m, fault_page_size, fault_phys_offset),
+ m->vmp_wpmapped,
+ m->vmp_dirty,
+ shadow_depth);
+ }
+
+ if (file_object != object) {
+ vm_object_unlock(file_object);
+ }
+ if (pathname_len != 0) {
+ kheap_free(KHEAP_TEMP, pathname, __PATH_MAX * 2);
+ pathname = NULL;
+ filename = NULL;
+ }
+ } else {
+ /* proceed with the invalid page */
+ kr = KERN_SUCCESS;
+ if (!VMP_CS_VALIDATED(m, fault_page_size, fault_phys_offset) &&
+ !object->code_signed) {
+ /*
+ * This page has not been (fully) validated but
+ * does not belong to a code-signed object
+ * so it should not be forcefully considered
+ * as tainted.
+ * We're just concerned about it here because
+ * we've been asked to "execute" it but that
+ * does not mean that it should cause other
+ * accesses to fail.
+ * This happens when a debugger sets a
+ * breakpoint and we then execute code in
+ * that page. Marking the page as "tainted"
+ * would cause any inspection tool ("leaks",
+ * "vmmap", "CrashReporter", ...) to get killed
+ * due to code-signing violation on that page,
+ * even though they're just reading it and not
+ * executing from it.
+ */
+ } else {
+ /*
+ * Page might have been tainted before or not;
+ * now it definitively is. If the page wasn't
+ * tainted, we must disconnect it from all
+ * pmaps later, to force existing mappings
+ * through that code path for re-consideration
+ * of the validity of that page.
+ */
+ if (!VMP_CS_TAINTED(m, fault_page_size, fault_phys_offset)) {
+ *must_disconnect = TRUE;
+ VMP_CS_SET_TAINTED(m, fault_page_size, fault_phys_offset, TRUE);
+ }
+ }
+ cs_enter_tainted_accepted++;
+ }
+ if (kr != KERN_SUCCESS) {
+ if (cs_debug) {
+ printf("CODESIGNING: vm_fault_enter(0x%llx): "
+ "*** INVALID PAGE ***\n",
+ (long long)vaddr);
+ }
+#if !SECURE_KERNEL
+ if (cs_enforcement_panic) {
+ panic("CODESIGNING: panicking on invalid page\n");
+ }
+#endif
+ }
+ return kr;
+}
+
+/*
+ * Check that the code signature is valid for the given page being inserted into
+ * the pmap.
+ *
+ * @param must_disconnect This value will be set to true if the caller must disconnect
+ * this page.
+ * @return If this function does not return KERN_SUCCESS, the caller must abort the page fault.
+ */
+static kern_return_t
+vm_fault_validate_cs(
+ bool cs_bypass,
+ vm_object_t object,
+ vm_page_t m,
+ pmap_t pmap,
+ vm_map_offset_t vaddr,
+ vm_prot_t prot,
+ vm_prot_t caller_prot,
+ vm_map_size_t fault_page_size,
+ vm_map_offset_t fault_phys_offset,
+ vm_object_fault_info_t fault_info,
+ bool *must_disconnect)
+{
+ bool map_is_switched, map_is_switch_protected, cs_violation;
+ kern_return_t kr;
+ /* Validate code signature if necessary. */
+ map_is_switched = ((pmap != vm_map_pmap(current_task()->map)) &&
+ (pmap == vm_map_pmap(current_thread()->map)));
+ map_is_switch_protected = current_thread()->map->switch_protect;
+ kr = vm_fault_cs_check_violation(cs_bypass, object, m, pmap,
+ prot, caller_prot, fault_page_size, fault_phys_offset, fault_info,
+ map_is_switched, map_is_switch_protected, &cs_violation);
+ if (kr != KERN_SUCCESS) {
+ return kr;
+ }
+ if (cs_violation) {
+ kr = vm_fault_cs_handle_violation(object, m, pmap, prot, vaddr,
+ fault_page_size, fault_phys_offset,
+ map_is_switched, map_is_switch_protected, must_disconnect);
+ }
+ return kr;
+}
+
+/*
+ * Enqueue the page on the appropriate paging queue.
+ */
+static void
+vm_fault_enqueue_page(
+ vm_object_t object,
+ vm_page_t m,
+ bool wired,
+ bool change_wiring,
+ vm_tag_t wire_tag,
+ bool no_cache,
+ int *type_of_fault,
+ kern_return_t kr)
+{
+ assert((m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) || object != compressor_object);
+ boolean_t page_queues_locked = FALSE;
+ boolean_t previously_pmapped = m->vmp_pmapped;
+#define __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED() \
+MACRO_BEGIN \
+ if (! page_queues_locked) { \
+ page_queues_locked = TRUE; \
+ vm_page_lockspin_queues(); \
+ } \
+MACRO_END
+#define __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED() \
+MACRO_BEGIN \
+ if (page_queues_locked) { \
+ page_queues_locked = FALSE; \
+ vm_page_unlock_queues(); \
+ } \
+MACRO_END
+
+#if CONFIG_BACKGROUND_QUEUE
+ vm_page_update_background_state(m);
+#endif
+ if (m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) {
+ /*
+ * Compressor pages are neither wired
+ * nor pageable and should never change.
+ */
+ assert(object == compressor_object);
+ } else if (change_wiring) {
+ __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED();
+
+ if (wired) {
+ if (kr == KERN_SUCCESS) {
+ vm_page_wire(m, wire_tag, TRUE);
+ }
+ } else {
+ vm_page_unwire(m, TRUE);
+ }
+ /* we keep the page queues lock, if we need it later */
+ } else {
+ if (object->internal == TRUE) {
+ /*
+ * don't allow anonymous pages on
+ * the speculative queues
+ */
+ no_cache = FALSE;
+ }
+ if (kr != KERN_SUCCESS) {
+ __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED();
+ vm_page_deactivate(m);
+ /* we keep the page queues lock, if we need it later */
+ } else if (((m->vmp_q_state == VM_PAGE_NOT_ON_Q) ||
+ (m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q) ||
+ (m->vmp_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) ||
+ ((m->vmp_q_state != VM_PAGE_ON_THROTTLED_Q) && no_cache)) &&
+ !VM_PAGE_WIRED(m)) {
+ if (vm_page_local_q &&
+ (*type_of_fault == DBG_COW_FAULT ||
+ *type_of_fault == DBG_ZERO_FILL_FAULT)) {
+ struct vpl *lq;
+ uint32_t lid;
+
+ assert(m->vmp_q_state == VM_PAGE_NOT_ON_Q);
+
+ __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED();
+ vm_object_lock_assert_exclusive(object);
+
+ /*
+ * we got a local queue to stuff this
+ * new page on...
+ * its safe to manipulate local and
+ * local_id at this point since we're
+ * behind an exclusive object lock and
+ * the page is not on any global queue.
+ *
+ * we'll use the current cpu number to
+ * select the queue note that we don't
+ * need to disable preemption... we're
+ * going to be behind the local queue's
+ * lock to do the real work
+ */
+ lid = cpu_number();
+
+ lq = zpercpu_get_cpu(vm_page_local_q, lid);
+
+ VPL_LOCK(&lq->vpl_lock);
+
+ vm_page_check_pageable_safe(m);
+ vm_page_queue_enter(&lq->vpl_queue, m, vmp_pageq);
+ m->vmp_q_state = VM_PAGE_ON_ACTIVE_LOCAL_Q;
+ m->vmp_local_id = lid;
+ lq->vpl_count++;
+
+ if (object->internal) {
+ lq->vpl_internal_count++;
+ } else {
+ lq->vpl_external_count++;
+ }
+
+ VPL_UNLOCK(&lq->vpl_lock);
+
+ if (lq->vpl_count > vm_page_local_q_soft_limit) {
+ /*
+ * we're beyond the soft limit
+ * for the local queue
+ * vm_page_reactivate_local will
+ * 'try' to take the global page
+ * queue lock... if it can't
+ * that's ok... we'll let the
+ * queue continue to grow up
+ * to the hard limit... at that
+ * point we'll wait for the
+ * lock... once we've got the
+ * lock, we'll transfer all of
+ * the pages from the local
+ * queue to the global active
+ * queue
+ */
+ vm_page_reactivate_local(lid, FALSE, FALSE);
+ }
+ } else {
+ __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED();
+
+ /*
+ * test again now that we hold the
+ * page queue lock
+ */
+ if (!VM_PAGE_WIRED(m)) {
+ if (m->vmp_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) {
+ vm_page_queues_remove(m, FALSE);
+
+ VM_PAGEOUT_DEBUG(vm_pageout_cleaned_reactivated, 1);
+ VM_PAGEOUT_DEBUG(vm_pageout_cleaned_fault_reactivated, 1);
+ }
+
+ if (!VM_PAGE_ACTIVE_OR_INACTIVE(m) ||
+ no_cache) {
+ /*
+ * If this is a no_cache mapping
+ * and the page has never been
+ * mapped before or was
+ * previously a no_cache page,
+ * then we want to leave pages
+ * in the speculative state so
+ * that they can be readily
+ * recycled if free memory runs
+ * low. Otherwise the page is
+ * activated as normal.
+ */
+
+ if (no_cache &&
+ (!previously_pmapped ||
+ m->vmp_no_cache)) {
+ m->vmp_no_cache = TRUE;
+
+ if (m->vmp_q_state != VM_PAGE_ON_SPECULATIVE_Q) {
+ vm_page_speculate(m, FALSE);
+ }
+ } else if (!VM_PAGE_ACTIVE_OR_INACTIVE(m)) {
+ vm_page_activate(m);
+ }
+ }
+ }
+ /* we keep the page queues lock, if we need it later */
+ }
+ }
+ }
+ /* we're done with the page queues lock, if we ever took it */
+ __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED();
+}
+
+/*
+ * Sets the pmmpped, xpmapped, and wpmapped bits on the vm_page_t and updates accounting.
+ * @return true if the page needs to be sync'ed via pmap_sync-page_data_physo
+ * before being inserted into the pmap.
+ */
+static bool
+vm_fault_enter_set_mapped(
+ vm_object_t object,
+ vm_page_t m,
+ vm_prot_t prot,
+ vm_prot_t fault_type)
+{
+ bool page_needs_sync = false;
+ /*
+ * NOTE: we may only hold the vm_object lock SHARED
+ * at this point, so we need the phys_page lock to
+ * properly serialize updating the pmapped and
+ * xpmapped bits
+ */
+ if ((prot & VM_PROT_EXECUTE) && !m->vmp_xpmapped) {
+ ppnum_t phys_page = VM_PAGE_GET_PHYS_PAGE(m);
+
+ pmap_lock_phys_page(phys_page);
+ m->vmp_pmapped = TRUE;
+
+ if (!m->vmp_xpmapped) {
+ m->vmp_xpmapped = TRUE;
+
+ pmap_unlock_phys_page(phys_page);
+
+ if (!object->internal) {
+ OSAddAtomic(1, &vm_page_xpmapped_external_count);
+ }
+
+#if defined(__arm__) || defined(__arm64__)
+ page_needs_sync = true;
+#else
+ if (object->internal &&
+ object->pager != NULL) {
+ /*
+ * This page could have been
+ * uncompressed by the
+ * compressor pager and its
+ * contents might be only in
+ * the data cache.
+ * Since it's being mapped for
+ * "execute" for the fist time,
+ * make sure the icache is in
+ * sync.
+ */
+ assert(VM_CONFIG_COMPRESSOR_IS_PRESENT);
+ page_needs_sync = true;
+ }
+#endif
+ } else {
+ pmap_unlock_phys_page(phys_page);
+ }
+ } else {
+ if (m->vmp_pmapped == FALSE) {
+ ppnum_t phys_page = VM_PAGE_GET_PHYS_PAGE(m);
+
+ pmap_lock_phys_page(phys_page);
+ m->vmp_pmapped = TRUE;
+ pmap_unlock_phys_page(phys_page);
+ }
+ }
+
+ if (fault_type & VM_PROT_WRITE) {
+ if (m->vmp_wpmapped == FALSE) {
+ vm_object_lock_assert_exclusive(object);
+ if (!object->internal && object->pager) {
+ task_update_logical_writes(current_task(), PAGE_SIZE, TASK_WRITE_DEFERRED, vnode_pager_lookup_vnode(object->pager));
+ }
+ m->vmp_wpmapped = TRUE;
+ }
+ }
+ return page_needs_sync;
+}
+
+/*
+ * Try to enter the given page into the pmap.
+ * Will retry without execute permission iff PMAP_CS is enabled and we encounter
+ * a codesigning failure on a non-execute fault.
+ */
+static kern_return_t
+vm_fault_attempt_pmap_enter(
+ pmap_t pmap,
+ vm_map_offset_t vaddr,
+ vm_map_size_t fault_page_size,
+ vm_map_offset_t fault_phys_offset,
+ vm_page_t m,
+ vm_prot_t *prot,
+ vm_prot_t caller_prot,
+ vm_prot_t fault_type,
+ bool wired,
+ int pmap_options)
+{
+#if !PMAP_CS
+#pragma unused(caller_prot)
+#endif /* !PMAP_CS */
+ kern_return_t kr;
+ if (fault_page_size != PAGE_SIZE) {
+ DEBUG4K_FAULT("pmap %p va 0x%llx pa 0x%llx (0x%llx+0x%llx) prot 0x%x fault_type 0x%x\n", pmap, (uint64_t)vaddr, (uint64_t)((((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m)) << PAGE_SHIFT) + fault_phys_offset), (uint64_t)(((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m)) << PAGE_SHIFT), (uint64_t)fault_phys_offset, *prot, fault_type);
+ assertf((!(fault_phys_offset & FOURK_PAGE_MASK) &&
+ fault_phys_offset < PAGE_SIZE),
+ "0x%llx\n", (uint64_t)fault_phys_offset);
+ } else {
+ assertf(fault_phys_offset == 0,
+ "0x%llx\n", (uint64_t)fault_phys_offset);
+ }
+
+ PMAP_ENTER_OPTIONS(pmap, vaddr,
+ fault_phys_offset,
+ m, *prot, fault_type, 0,
+ wired,
+ pmap_options,
+ kr);
+ return kr;
+}
+
+/*
+ * Enter the given page into the pmap.
+ * The map must be locked shared.
+ * The vm object must NOT be locked.
+ *
+ * @param need_retry if not null, avoid making a (potentially) blocking call into
+ * the pmap layer. When such a call would be necessary, return true in this boolean instead.
+ */
+static kern_return_t
+vm_fault_pmap_enter(
+ pmap_t pmap,
+ vm_map_offset_t vaddr,
+ vm_map_size_t fault_page_size,
+ vm_map_offset_t fault_phys_offset,
+ vm_page_t m,
+ vm_prot_t *prot,
+ vm_prot_t caller_prot,
+ vm_prot_t fault_type,
+ bool wired,
+ int pmap_options,
+ boolean_t *need_retry)
+{
+ kern_return_t kr;
+ if (need_retry != NULL) {
+ /*
+ * Although we don't hold a lock on this object, we hold a lock
+ * on the top object in the chain. To prevent a deadlock, we
+ * can't allow the pmap layer to block.
+ */
+ pmap_options |= PMAP_OPTIONS_NOWAIT;
+ }
+ kr = vm_fault_attempt_pmap_enter(pmap, vaddr,
+ fault_page_size, fault_phys_offset,
+ m, prot, caller_prot, fault_type, wired, pmap_options);
+ if (kr == KERN_RESOURCE_SHORTAGE) {
+ if (need_retry) {
+ /*
+ * There's nothing we can do here since we hold the
+ * lock on the top object in the chain. The caller
+ * will need to deal with this by dropping that lock and retrying.
+ */
+ *need_retry = TRUE;
+ vm_pmap_enter_retried++;
+ }
+ }
+ return kr;
+}
+
+/*
+ * Enter the given page into the pmap.
+ * The vm map must be locked shared.
+ * The vm object must be locked exclusive, unless this is a soft fault.
+ * For a soft fault, the object must be locked shared or exclusive.
+ *
+ * @param need_retry if not null, avoid making a (potentially) blocking call into
+ * the pmap layer. When such a call would be necessary, return true in this boolean instead.
+ */
+static kern_return_t
+vm_fault_pmap_enter_with_object_lock(
+ vm_object_t object,
+ pmap_t pmap,
+ vm_map_offset_t vaddr,
+ vm_map_size_t fault_page_size,
+ vm_map_offset_t fault_phys_offset,
+ vm_page_t m,
+ vm_prot_t *prot,
+ vm_prot_t caller_prot,
+ vm_prot_t fault_type,
+ bool wired,
+ int pmap_options,
+ boolean_t *need_retry)
+{
+ kern_return_t kr;
+ /*
+ * Prevent a deadlock by not
+ * holding the object lock if we need to wait for a page in
+ * pmap_enter() - <rdar://problem/7138958>
+ */
+ kr = vm_fault_attempt_pmap_enter(pmap, vaddr,
+ fault_page_size, fault_phys_offset,
+ m, prot, caller_prot, fault_type, wired, pmap_options | PMAP_OPTIONS_NOWAIT);
+#if __x86_64__
+ if (kr == KERN_INVALID_ARGUMENT &&
+ pmap == PMAP_NULL &&
+ wired) {
+ /*
+ * Wiring a page in a pmap-less VM map:
+ * VMware's "vmmon" kernel extension does this
+ * to grab pages.
+ * Let it proceed even though the PMAP_ENTER() failed.
+ */
+ kr = KERN_SUCCESS;
+ }
+#endif /* __x86_64__ */
+
+ if (kr == KERN_RESOURCE_SHORTAGE) {
+ if (need_retry) {
+ /*
+ * this will be non-null in the case where we hold the lock
+ * on the top-object in this chain... we can't just drop
+ * the lock on the object we're inserting the page into
+ * and recall the PMAP_ENTER since we can still cause
+ * a deadlock if one of the critical paths tries to
+ * acquire the lock on the top-object and we're blocked
+ * in PMAP_ENTER waiting for memory... our only recourse
+ * is to deal with it at a higher level where we can
+ * drop both locks.
+ */
+ *need_retry = TRUE;
+ vm_pmap_enter_retried++;
+ goto done;
+ }
+ /*
+ * The nonblocking version of pmap_enter did not succeed.
+ * and we don't need to drop other locks and retry
+ * at the level above us, so
+ * use the blocking version instead. Requires marking
+ * the page busy and unlocking the object
+ */
+ boolean_t was_busy = m->vmp_busy;
+
+ vm_object_lock_assert_exclusive(object);
+
+ m->vmp_busy = TRUE;
+ vm_object_unlock(object);
+
+ PMAP_ENTER_OPTIONS(pmap, vaddr,
+ fault_phys_offset,
+ m, *prot, fault_type,
+ 0, wired,
+ pmap_options, kr);
+
+ assert(VM_PAGE_OBJECT(m) == object);
+
+ /* Take the object lock again. */
+ vm_object_lock(object);
+
+ /* If the page was busy, someone else will wake it up.
+ * Otherwise, we have to do it now. */
+ assert(m->vmp_busy);
+ if (!was_busy) {
+ PAGE_WAKEUP_DONE(m);
+ }
+ vm_pmap_enter_blocked++;
+ }
+
+done:
+ return kr;
+}
+
+/*
+ * Prepare to enter a page into the pmap by checking CS, protection bits,
+ * and setting mapped bits on the page_t.
+ * Does not modify the page's paging queue.
+ *
+ * page queue lock must NOT be held
+ * m->vmp_object must be locked
+ *
+ * NOTE: m->vmp_object could be locked "shared" only if we are called
+ * from vm_fault() as part of a soft fault.
+ */
+static kern_return_t
+vm_fault_enter_prepare(
+ vm_page_t m,
+ pmap_t pmap,
+ vm_map_offset_t vaddr,
+ vm_prot_t *prot,
+ vm_prot_t caller_prot,
+ vm_map_size_t fault_page_size,
+ vm_map_offset_t fault_phys_offset,
+ boolean_t change_wiring,
+ vm_prot_t fault_type,
+ vm_object_fault_info_t fault_info,
+ int *type_of_fault,
+ bool *page_needs_data_sync)
+{
+ kern_return_t kr;
+ bool is_tainted = false;
+ vm_object_t object;
+ boolean_t cs_bypass = fault_info->cs_bypass;
+
+ object = VM_PAGE_OBJECT(m);
+
+ vm_object_lock_assert_held(object);
+
+#if KASAN
+ if (pmap == kernel_pmap) {
+ kasan_notify_address(vaddr, PAGE_SIZE);
+ }
+#endif
+
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED);
+
+ if (*type_of_fault == DBG_ZERO_FILL_FAULT) {
+ vm_object_lock_assert_exclusive(object);
+ } else if ((fault_type & VM_PROT_WRITE) == 0 &&
+ !change_wiring &&
+ (!m->vmp_wpmapped
+#if VM_OBJECT_ACCESS_TRACKING
+ || object->access_tracking
+#endif /* VM_OBJECT_ACCESS_TRACKING */
+ )) {
+ /*
+ * This is not a "write" fault, so we
+ * might not have taken the object lock
+ * exclusively and we might not be able
+ * to update the "wpmapped" bit in
+ * vm_fault_enter().
+ * Let's just grant read access to
+ * the page for now and we'll
+ * soft-fault again if we need write
+ * access later...
+ */
+
+ /* This had better not be a JIT page. */
+ if (!pmap_has_prot_policy(pmap, fault_info->pmap_options & PMAP_OPTIONS_TRANSLATED_ALLOW_EXECUTE, *prot)) {
+ *prot &= ~VM_PROT_WRITE;
+ } else {
+ assert(cs_bypass);
+ }
+ }
+ if (m->vmp_pmapped == FALSE) {
+ if (m->vmp_clustered) {
+ if (*type_of_fault == DBG_CACHE_HIT_FAULT) {
+ /*
+ * found it in the cache, but this
+ * is the first fault-in of the page (m->vmp_pmapped == FALSE)
+ * so it must have come in as part of
+ * a cluster... account 1 pagein against it
+ */
+ if (object->internal) {
+ *type_of_fault = DBG_PAGEIND_FAULT;
+ } else {
+ *type_of_fault = DBG_PAGEINV_FAULT;
+ }
+
+ VM_PAGE_COUNT_AS_PAGEIN(m);
+ }
+ VM_PAGE_CONSUME_CLUSTERED(m);
+ }
+ }
+
+ if (*type_of_fault != DBG_COW_FAULT) {
+ DTRACE_VM2(as_fault, int, 1, (uint64_t *), NULL);
+
+ if (pmap == kernel_pmap) {
+ DTRACE_VM2(kernel_asflt, int, 1, (uint64_t *), NULL);
+ }
+ }
+
+ kr = vm_fault_validate_cs(cs_bypass, object, m, pmap, vaddr,
+ *prot, caller_prot, fault_page_size, fault_phys_offset,
+ fault_info, &is_tainted);
+ if (kr == KERN_SUCCESS) {
+ /*
+ * We either have a good page, or a tainted page that has been accepted by the process.
+ * In both cases the page will be entered into the pmap.
+ */
+ *page_needs_data_sync = vm_fault_enter_set_mapped(object, m, *prot, fault_type);
+ if ((fault_type & VM_PROT_WRITE) && is_tainted) {
+ /*
+ * This page is tainted but we're inserting it anyways.
+ * Since it's writeable, we need to disconnect it from other pmaps
+ * now so those processes can take note.
+ */
+
+ /*
+ * We can only get here
+ * because of the CSE logic
+ */
+ assert(pmap_get_vm_map_cs_enforced(pmap));
+ pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m));
+ /*
+ * If we are faulting for a write, we can clear
+ * the execute bit - that will ensure the page is
+ * checked again before being executable, which
+ * protects against a map switch.
+ * This only happens the first time the page
+ * gets tainted, so we won't get stuck here
+ * to make an already writeable page executable.
+ */
+ if (!cs_bypass) {
+ assert(!pmap_has_prot_policy(pmap, fault_info->pmap_options & PMAP_OPTIONS_TRANSLATED_ALLOW_EXECUTE, *prot));
+ *prot &= ~VM_PROT_EXECUTE;
+ }
+ }
+ assert(VM_PAGE_OBJECT(m) == object);
+
+#if VM_OBJECT_ACCESS_TRACKING
+ if (object->access_tracking) {
+ DTRACE_VM2(access_tracking, vm_map_offset_t, vaddr, int, fault_type);
+ if (fault_type & VM_PROT_WRITE) {
+ object->access_tracking_writes++;
+ vm_object_access_tracking_writes++;
+ } else {
+ object->access_tracking_reads++;
+ vm_object_access_tracking_reads++;
+ }
+ }
+#endif /* VM_OBJECT_ACCESS_TRACKING */
+ }
+
+ return kr;
+}
+
+/*
+ * page queue lock must NOT be held
+ * m->vmp_object must be locked
+ *
+ * NOTE: m->vmp_object could be locked "shared" only if we are called
+ * from vm_fault() as part of a soft fault. If so, we must be
+ * careful not to modify the VM object in any way that is not
+ * legal under a shared lock...
+ */
+kern_return_t
+vm_fault_enter(
+ vm_page_t m,
+ pmap_t pmap,
+ vm_map_offset_t vaddr,
+ vm_map_size_t fault_page_size,
+ vm_map_offset_t fault_phys_offset,
+ vm_prot_t prot,
+ vm_prot_t caller_prot,
+ boolean_t wired,
+ boolean_t change_wiring,
+ vm_tag_t wire_tag,
+ vm_object_fault_info_t fault_info,
+ boolean_t *need_retry,
+ int *type_of_fault)
+{
+ kern_return_t kr;
+ vm_object_t object;
+ bool page_needs_data_sync;
+ vm_prot_t fault_type;
+ int pmap_options = fault_info->pmap_options;
+
+ if (VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr) {
+ assert(m->vmp_fictitious);
+ return KERN_SUCCESS;
+ }
+
+ fault_type = change_wiring ? VM_PROT_NONE : caller_prot;
+
+ kr = vm_fault_enter_prepare(m, pmap, vaddr, &prot, caller_prot,
+ fault_page_size, fault_phys_offset, change_wiring, fault_type,
+ fault_info, type_of_fault, &page_needs_data_sync);
+ object = VM_PAGE_OBJECT(m);
+
+ vm_fault_enqueue_page(object, m, wired, change_wiring, wire_tag, fault_info->no_cache, type_of_fault, kr);
+
+ if (kr == KERN_SUCCESS) {
+ if (page_needs_data_sync) {
+ pmap_sync_page_data_phys(VM_PAGE_GET_PHYS_PAGE(m));
+ }
+
+ kr = vm_fault_pmap_enter_with_object_lock(object, pmap, vaddr,
+ fault_page_size, fault_phys_offset, m,
+ &prot, caller_prot, fault_type, wired, pmap_options, need_retry);
+ }
+
+ return kr;
+}
+
+void
+vm_pre_fault(vm_map_offset_t vaddr, vm_prot_t prot)
+{
+ if (pmap_find_phys(current_map()->pmap, vaddr) == 0) {
+ vm_fault(current_map(), /* map */
+ vaddr, /* vaddr */
+ prot, /* fault_type */
+ FALSE, /* change_wiring */
+ VM_KERN_MEMORY_NONE, /* tag - not wiring */
+ THREAD_UNINT, /* interruptible */
+ NULL, /* caller_pmap */
+ 0 /* caller_pmap_addr */);
+ }
+}
+
+
+/*
+ * Routine: vm_fault
+ * Purpose:
+ * Handle page faults, including pseudo-faults
+ * used to change the wiring status of pages.
+ * Returns:
+ * Explicit continuations have been removed.
+ * Implementation:
+ * vm_fault and vm_fault_page save mucho state
+ * in the moral equivalent of a closure. The state
+ * structure is allocated when first entering vm_fault
+ * and deallocated when leaving vm_fault.
+ */
+
+extern uint64_t get_current_unique_pid(void);
+
+unsigned long vm_fault_collapse_total = 0;
+unsigned long vm_fault_collapse_skipped = 0;
+
+
+kern_return_t
+vm_fault_external(
+ vm_map_t map,
+ vm_map_offset_t vaddr,
+ vm_prot_t fault_type,
+ boolean_t change_wiring,
+ int interruptible,
+ pmap_t caller_pmap,
+ vm_map_offset_t caller_pmap_addr)
+{
+ return vm_fault_internal(map, vaddr, fault_type, change_wiring,
+ change_wiring ? vm_tag_bt() : VM_KERN_MEMORY_NONE,
+ interruptible, caller_pmap, caller_pmap_addr,
+ NULL);
+}
+
+kern_return_t
+vm_fault(
+ vm_map_t map,
+ vm_map_offset_t vaddr,
+ vm_prot_t fault_type,
+ boolean_t change_wiring,
+ vm_tag_t wire_tag, /* if wiring must pass tag != VM_KERN_MEMORY_NONE */
+ int interruptible,
+ pmap_t caller_pmap,
+ vm_map_offset_t caller_pmap_addr)
+{
+ return vm_fault_internal(map, vaddr, fault_type, change_wiring, wire_tag,
+ interruptible, caller_pmap, caller_pmap_addr,
+ NULL);
+}
+
+static boolean_t
+current_proc_is_privileged(void)
+{
+ return csproc_get_platform_binary(current_proc());
+}
+
+uint64_t vm_copied_on_read = 0;
+
+/*
+ * Cleanup after a vm_fault_enter.
+ * At this point, the fault should either have failed (kr != KERN_SUCCESS)
+ * or the page should be in the pmap and on the correct paging queue.
+ *
+ * Precondition:
+ * map must be locked shared.
+ * m_object must be locked.
+ * If top_object != VM_OBJECT_NULL, it must be locked.
+ * real_map must be locked.
+ *
+ * Postcondition:
+ * map will be unlocked
+ * m_object will be unlocked
+ * top_object will be unlocked
+ * If real_map != map, it will be unlocked
+ */
+static void
+vm_fault_complete(
+ vm_map_t map,
+ vm_map_t real_map,
+ vm_object_t object,
+ vm_object_t m_object,
+ vm_page_t m,
+ vm_map_offset_t offset,
+ vm_map_offset_t trace_real_vaddr,
+ vm_object_fault_info_t fault_info,
+ vm_prot_t caller_prot,
+#if CONFIG_DTRACE
+ vm_map_offset_t real_vaddr,
+#else
+ __unused vm_map_offset_t real_vaddr,
+#endif /* CONFIG_DTRACE */
+ int type_of_fault,
+ boolean_t need_retry,
+ kern_return_t kr,
+ ppnum_t *physpage_p,
+ vm_prot_t prot,
+ vm_object_t top_object,
+ boolean_t need_collapse,
+ vm_map_offset_t cur_offset,
+ vm_prot_t fault_type,
+ vm_object_t *written_on_object,
+ memory_object_t *written_on_pager,
+ vm_object_offset_t *written_on_offset)
+{
+ int event_code = 0;
+ vm_map_lock_assert_shared(map);
+ vm_object_lock_assert_held(m_object);
+ if (top_object != VM_OBJECT_NULL) {
+ vm_object_lock_assert_held(top_object);
+ }
+ vm_map_lock_assert_held(real_map);
+
+ if (m_object->internal) {
+ event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_INTERNAL));
+ } else if (m_object->object_is_shared_cache) {
+ event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_SHAREDCACHE));
+ } else {
+ event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_EXTERNAL));
+ }
+
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, event_code, trace_real_vaddr, (fault_info->user_tag << 16) | (caller_prot << 8) | type_of_fault, m->vmp_offset, get_current_unique_pid(), 0);
+ if (need_retry == FALSE) {
+ KDBG_FILTERED(MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_FAST), get_current_unique_pid(), 0, 0, 0, 0);
+ }
+ DTRACE_VM6(real_fault, vm_map_offset_t, real_vaddr, vm_map_offset_t, m->vmp_offset, int, event_code, int, caller_prot, int, type_of_fault, int, fault_info->user_tag);
+ if (kr == KERN_SUCCESS &&
+ physpage_p != NULL) {
+ /* for vm_map_wire_and_extract() */
+ *physpage_p = VM_PAGE_GET_PHYS_PAGE(m);
+ if (prot & VM_PROT_WRITE) {
+ vm_object_lock_assert_exclusive(m_object);
+ m->vmp_dirty = TRUE;
+ }
+ }
+
+ if (top_object != VM_OBJECT_NULL) {
+ /*
+ * It's safe to drop the top object
+ * now that we've done our
+ * vm_fault_enter(). Any other fault
+ * in progress for that virtual
+ * address will either find our page
+ * and translation or put in a new page
+ * and translation.
+ */
+ vm_object_unlock(top_object);
+ top_object = VM_OBJECT_NULL;
+ }
+
+ if (need_collapse == TRUE) {
+ vm_object_collapse(object, vm_object_trunc_page(offset), TRUE);
+ }
+
+ if (need_retry == FALSE &&
+ (type_of_fault == DBG_PAGEIND_FAULT || type_of_fault == DBG_PAGEINV_FAULT || type_of_fault == DBG_CACHE_HIT_FAULT)) {
+ /*
+ * evaluate access pattern and update state
+ * vm_fault_deactivate_behind depends on the
+ * state being up to date
+ */
+ vm_fault_is_sequential(m_object, cur_offset, fault_info->behavior);
+
+ vm_fault_deactivate_behind(m_object, cur_offset, fault_info->behavior);
+ }
+ /*
+ * That's it, clean up and return.
+ */
+ if (m->vmp_busy) {
+ vm_object_lock_assert_exclusive(m_object);
+ PAGE_WAKEUP_DONE(m);
+ }
+
+ if (need_retry == FALSE && !m_object->internal && (fault_type & VM_PROT_WRITE)) {
+ vm_object_paging_begin(m_object);
+
+ assert(*written_on_object == VM_OBJECT_NULL);
+ *written_on_object = m_object;
+ *written_on_pager = m_object->pager;
+ *written_on_offset = m_object->paging_offset + m->vmp_offset;
+ }
+ vm_object_unlock(object);
+
+ vm_map_unlock_read(map);
+ if (real_map != map) {
+ vm_map_unlock(real_map);
+ }
+}
+
+static inline int
+vm_fault_type_for_tracing(boolean_t need_copy_on_read, int type_of_fault)
+{
+ if (need_copy_on_read && type_of_fault == DBG_COW_FAULT) {
+ return DBG_COR_FAULT;
+ }
+ return type_of_fault;
+}
+
+kern_return_t
+vm_fault_internal(
+ vm_map_t map,
+ vm_map_offset_t vaddr,
+ vm_prot_t caller_prot,
+ boolean_t change_wiring,
+ vm_tag_t wire_tag, /* if wiring must pass tag != VM_KERN_MEMORY_NONE */
+ int interruptible,
+ pmap_t caller_pmap,
+ vm_map_offset_t caller_pmap_addr,
+ ppnum_t *physpage_p)
+{
+ vm_map_version_t version; /* Map version for verificiation */
+ boolean_t wired; /* Should mapping be wired down? */
+ vm_object_t object; /* Top-level object */
+ vm_object_offset_t offset; /* Top-level offset */
+ vm_prot_t prot; /* Protection for mapping */
+ vm_object_t old_copy_object; /* Saved copy object */
+ vm_page_t result_page; /* Result of vm_fault_page */
+ vm_page_t top_page; /* Placeholder page */
+ kern_return_t kr;
+
+ vm_page_t m; /* Fast access to result_page */
+ kern_return_t error_code;
+ vm_object_t cur_object;
+ vm_object_t m_object = NULL;
+ vm_object_offset_t cur_offset;
+ vm_page_t cur_m;
+ vm_object_t new_object;
+ int type_of_fault;
+ pmap_t pmap;
+ wait_interrupt_t interruptible_state;
+ vm_map_t real_map = map;
+ vm_map_t original_map = map;
+ bool object_locks_dropped = FALSE;
+ vm_prot_t fault_type;
+ vm_prot_t original_fault_type;
+ struct vm_object_fault_info fault_info = {};
+ bool need_collapse = FALSE;
+ boolean_t need_retry = FALSE;
+ boolean_t *need_retry_ptr = NULL;
+ uint8_t object_lock_type = 0;
+ uint8_t cur_object_lock_type;
+ vm_object_t top_object = VM_OBJECT_NULL;
+ vm_object_t written_on_object = VM_OBJECT_NULL;
+ memory_object_t written_on_pager = NULL;
+ vm_object_offset_t written_on_offset = 0;
+ int throttle_delay;
+ int compressed_count_delta;
+ uint8_t grab_options;
+ bool need_copy;
+ bool need_copy_on_read;
+ vm_map_offset_t trace_vaddr;
+ vm_map_offset_t trace_real_vaddr;
+ vm_map_size_t fault_page_size;
+ vm_map_size_t fault_page_mask;
+ vm_map_offset_t fault_phys_offset;
+ vm_map_offset_t real_vaddr;
+ bool resilient_media_retry = FALSE;
+ vm_object_t resilient_media_object = VM_OBJECT_NULL;
+ vm_object_offset_t resilient_media_offset = (vm_object_offset_t)-1;
+ bool page_needs_data_sync = false;
+ /*
+ * Was the VM object contended when vm_map_lookup_locked locked it?
+ * If so, the zero fill path will drop the lock
+ * NB: Ideally we would always drop the lock rather than rely on
+ * this heuristic, but vm_object_unlock currently takes > 30 cycles.
+ */
+ bool object_is_contended = false;
+
+ real_vaddr = vaddr;
+ trace_real_vaddr = vaddr;
+
+ if (VM_MAP_PAGE_SIZE(original_map) < PAGE_SIZE) {
+ fault_phys_offset = (vm_map_offset_t)-1;
+ fault_page_size = VM_MAP_PAGE_SIZE(original_map);
+ fault_page_mask = VM_MAP_PAGE_MASK(original_map);
+ if (fault_page_size < PAGE_SIZE) {
+ DEBUG4K_FAULT("map %p vaddr 0x%llx caller_prot 0x%x\n", map, (uint64_t)trace_real_vaddr, caller_prot);
+ vaddr = vm_map_trunc_page(vaddr, fault_page_mask);
+ }
+ } else {
+ fault_phys_offset = 0;
+ fault_page_size = PAGE_SIZE;
+ fault_page_mask = PAGE_MASK;
+ vaddr = vm_map_trunc_page(vaddr, PAGE_MASK);
+ }
+
+ if (map == kernel_map) {
+ trace_vaddr = VM_KERNEL_ADDRHIDE(vaddr);
+ trace_real_vaddr = VM_KERNEL_ADDRHIDE(trace_real_vaddr);
+ } else {
+ trace_vaddr = vaddr;
+ }
+
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ (MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_START,
+ ((uint64_t)trace_vaddr >> 32),
+ trace_vaddr,
+ (map == kernel_map),
+ 0,
+ 0);
+
+ if (get_preemption_level() != 0) {
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ (MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_END,
+ ((uint64_t)trace_vaddr >> 32),
+ trace_vaddr,
+ KERN_FAILURE,
+ 0,
+ 0);
+
+ return KERN_FAILURE;
+ }
+
+ thread_t cthread = current_thread();
+ bool rtfault = (cthread->sched_mode == TH_MODE_REALTIME);
+ uint64_t fstart = 0;
+
+ if (rtfault) {
+ fstart = mach_continuous_time();
+ }
+
+ interruptible_state = thread_interrupt_level(interruptible);
+
+ fault_type = (change_wiring ? VM_PROT_NONE : caller_prot);
+
+ counter_inc(&vm_statistics_faults);
+ counter_inc(¤t_task()->faults);
+ original_fault_type = fault_type;
+
+ need_copy = FALSE;
+ if (fault_type & VM_PROT_WRITE) {
+ need_copy = TRUE;
+ }
+
+ if (need_copy || change_wiring) {
+ object_lock_type = OBJECT_LOCK_EXCLUSIVE;
+ } else {
+ object_lock_type = OBJECT_LOCK_SHARED;
+ }
+
+ cur_object_lock_type = OBJECT_LOCK_SHARED;
+
+ if ((map == kernel_map) && (caller_prot & VM_PROT_WRITE)) {
+ if (compressor_map) {
+ if ((vaddr >= vm_map_min(compressor_map)) && (vaddr < vm_map_max(compressor_map))) {
+ panic("Write fault on compressor map, va: %p type: %u bounds: %p->%p", (void *) vaddr, caller_prot, (void *) vm_map_min(compressor_map), (void *) vm_map_max(compressor_map));
+ }
+ }
+ }
+RetryFault:
+ assert(written_on_object == VM_OBJECT_NULL);
+
+ /*
+ * assume we will hit a page in the cache
+ * otherwise, explicitly override with
+ * the real fault type once we determine it
+ */
+ type_of_fault = DBG_CACHE_HIT_FAULT;
+
+ /*
+ * Find the backing store object and offset into
+ * it to begin the search.
+ */
+ fault_type = original_fault_type;
+ map = original_map;
+ vm_map_lock_read(map);
+
+ if (resilient_media_retry) {
+ /*
+ * If we have to insert a fake zero-filled page to hide
+ * a media failure to provide the real page, we need to
+ * resolve any pending copy-on-write on this mapping.
+ * VM_PROT_COPY tells vm_map_lookup_locked() to deal
+ * with that even if this is not a "write" fault.
+ */
+ need_copy = TRUE;
+ object_lock_type = OBJECT_LOCK_EXCLUSIVE;
+ }
+
+ kr = vm_map_lookup_locked(&map, vaddr,
+ (fault_type | (need_copy ? VM_PROT_COPY : 0)),
+ object_lock_type, &version,
+ &object, &offset, &prot, &wired,
+ &fault_info,
+ &real_map,
+ &object_is_contended);
+
+ if (kr != KERN_SUCCESS) {
+ vm_map_unlock_read(map);
+ goto done;
+ }
+
+
+ pmap = real_map->pmap;
+ fault_info.interruptible = interruptible;
+ fault_info.stealth = FALSE;
+ fault_info.io_sync = FALSE;
+ fault_info.mark_zf_absent = FALSE;
+ fault_info.batch_pmap_op = FALSE;
+
+ if (resilient_media_retry) {
+ /*
+ * We're retrying this fault after having detected a media
+ * failure from a "resilient_media" mapping.
+ * Check that the mapping is still pointing at the object
+ * that just failed to provide a page.
+ */
+ assert(resilient_media_object != VM_OBJECT_NULL);
+ assert(resilient_media_offset != (vm_object_offset_t)-1);
+ if (object != VM_OBJECT_NULL &&
+ object == resilient_media_object &&
+ offset == resilient_media_offset &&
+ fault_info.resilient_media) {
+ /*
+ * This mapping still points at the same object
+ * and is still "resilient_media": proceed in
+ * "recovery-from-media-failure" mode, where we'll
+ * insert a zero-filled page in the top object.
+ */
+// printf("RESILIENT_MEDIA %s:%d recovering for object %p offset 0x%llx\n", __FUNCTION__, __LINE__, object, offset);
+ } else {
+ /* not recovering: reset state */
+// printf("RESILIENT_MEDIA %s:%d no recovery resilient %d object %p/%p offset 0x%llx/0x%llx\n", __FUNCTION__, __LINE__, fault_info.resilient_media, object, resilient_media_object, offset, resilient_media_offset);
+ resilient_media_retry = FALSE;
+ /* release our extra reference on failed object */
+// printf("FBDP %s:%d resilient_media_object %p deallocate\n", __FUNCTION__, __LINE__, resilient_media_object);
+ vm_object_deallocate(resilient_media_object);
+ resilient_media_object = VM_OBJECT_NULL;
+ resilient_media_offset = (vm_object_offset_t)-1;
+ }
+ } else {
+ assert(resilient_media_object == VM_OBJECT_NULL);
+ resilient_media_offset = (vm_object_offset_t)-1;
+ }
+
+ /*
+ * If the page is wired, we must fault for the current protection
+ * value, to avoid further faults.
+ */
+ if (wired) {
+ fault_type = prot | VM_PROT_WRITE;
+ }
+ if (wired || need_copy) {
+ /*
+ * since we're treating this fault as a 'write'
+ * we must hold the top object lock exclusively
+ */
+ if (object_lock_type == OBJECT_LOCK_SHARED) {
+ object_lock_type = OBJECT_LOCK_EXCLUSIVE;
+
+ if (vm_object_lock_upgrade(object) == FALSE) {
+ /*
+ * couldn't upgrade, so explictly
+ * take the lock exclusively
+ */
+ vm_object_lock(object);
}
+ }
+ }
- /*
- * If the page is in error, give up now.
- */
+#if VM_FAULT_CLASSIFY
+ /*
+ * Temporary data gathering code
+ */
+ vm_fault_classify(object, offset, fault_type);
+#endif
+ /*
+ * Fast fault code. The basic idea is to do as much as
+ * possible while holding the map lock and object locks.
+ * Busy pages are not used until the object lock has to
+ * be dropped to do something (copy, zero fill, pmap enter).
+ * Similarly, paging references aren't acquired until that
+ * point, and object references aren't used.
+ *
+ * If we can figure out what to do
+ * (zero fill, copy on write, pmap enter) while holding
+ * the locks, then it gets done. Otherwise, we give up,
+ * and use the original fault path (which doesn't hold
+ * the map lock, and relies on busy pages).
+ * The give up cases include:
+ * - Have to talk to pager.
+ * - Page is busy, absent or in error.
+ * - Pager has locked out desired access.
+ * - Fault needs to be restarted.
+ * - Have to push page into copy object.
+ *
+ * The code is an infinite loop that moves one level down
+ * the shadow chain each time. cur_object and cur_offset
+ * refer to the current object being examined. object and offset
+ * are the original object from the map. The loop is at the
+ * top level if and only if object and cur_object are the same.
+ *
+ * Invariants: Map lock is held throughout. Lock is held on
+ * original object and cur_object (if different) when
+ * continuing or exiting loop.
+ *
+ */
- if (m->error) {
-#if TRACEFAULTPAGE
- dbgTrace(0xBEEF0006, (unsigned int) m, (unsigned int) error_code); /* (TEST/DEBUG) */
+#if defined(__arm64__)
+ /*
+ * Fail if reading an execute-only page in a
+ * pmap that enforces execute-only protection.
+ */
+ if (fault_type == VM_PROT_READ &&
+ (prot & VM_PROT_EXECUTE) &&
+ !(prot & VM_PROT_READ) &&
+ pmap_enforces_execute_only(pmap)) {
+ vm_object_unlock(object);
+ vm_map_unlock_read(map);
+ if (real_map != map) {
+ vm_map_unlock(real_map);
+ }
+ kr = KERN_PROTECTION_FAILURE;
+ goto done;
+ }
#endif
- if (error_code)
- *error_code = m->page_error;
- VM_PAGE_FREE(m);
- vm_fault_cleanup(object, first_m);
- thread_interrupt_level(interruptible_state);
- return(VM_FAULT_MEMORY_ERROR);
- }
- /*
- * If the pager wants us to restart
- * at the top of the chain,
- * typically because it has moved the
- * page to another pager, then do so.
- */
+ fault_phys_offset = (vm_map_offset_t)offset - vm_map_trunc_page((vm_map_offset_t)offset, PAGE_MASK);
- if (m->restart) {
-#if TRACEFAULTPAGE
- dbgTrace(0xBEEF0007, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
-#endif
- VM_PAGE_FREE(m);
- vm_fault_cleanup(object, first_m);
- thread_interrupt_level(interruptible_state);
- return(VM_FAULT_RETRY);
- }
+ /*
+ * If this page is to be inserted in a copy delay object
+ * for writing, and if the object has a copy, then the
+ * copy delay strategy is implemented in the slow fault page.
+ */
+ if (object->copy_strategy == MEMORY_OBJECT_COPY_DELAY &&
+ object->copy != VM_OBJECT_NULL && (fault_type & VM_PROT_WRITE)) {
+ goto handle_copy_delay;
+ }
+
+ cur_object = object;
+ cur_offset = offset;
+
+ grab_options = 0;
+#if CONFIG_SECLUDED_MEMORY
+ if (object->can_grab_secluded) {
+ grab_options |= VM_PAGE_GRAB_SECLUDED;
+ }
+#endif /* CONFIG_SECLUDED_MEMORY */
+
+ while (TRUE) {
+ if (!cur_object->pager_created &&
+ cur_object->phys_contiguous) { /* superpage */
+ break;
+ }
+ if (cur_object->blocked_access) {
/*
- * If the page isn't busy, but is absent,
- * then it was deemed "unavailable".
+ * Access to this VM object has been blocked.
+ * Let the slow path handle it.
*/
+ break;
+ }
+
+ m = vm_page_lookup(cur_object, vm_object_trunc_page(cur_offset));
+ m_object = NULL;
+
+ if (m != VM_PAGE_NULL) {
+ m_object = cur_object;
+
+ if (m->vmp_busy) {
+ wait_result_t result;
- if (m->absent) {
/*
- * Remove the non-existent page (unless it's
- * in the top object) and move on down to the
- * next object (if there is one).
+ * in order to do the PAGE_ASSERT_WAIT, we must
+ * have object that 'm' belongs to locked exclusively
*/
-#if TRACEFAULTPAGE
- dbgTrace(0xBEEF0008, (unsigned int) m, (unsigned int) object->shadow); /* (TEST/DEBUG) */
-#endif
-
- next_object = object->shadow;
- if (next_object == VM_OBJECT_NULL) {
- vm_page_t real_m;
+ if (object != cur_object) {
+ if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
+ cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
+
+ if (vm_object_lock_upgrade(cur_object) == FALSE) {
+ /*
+ * couldn't upgrade so go do a full retry
+ * immediately since we can no longer be
+ * certain about cur_object (since we
+ * don't hold a reference on it)...
+ * first drop the top object lock
+ */
+ vm_object_unlock(object);
- assert(!must_be_resident);
+ vm_map_unlock_read(map);
+ if (real_map != map) {
+ vm_map_unlock(real_map);
+ }
- if (object->shadow_severed) {
- vm_fault_cleanup(
- object, first_m);
- thread_interrupt_level(interruptible_state);
- return VM_FAULT_MEMORY_ERROR;
+ goto RetryFault;
+ }
}
+ } else if (object_lock_type == OBJECT_LOCK_SHARED) {
+ object_lock_type = OBJECT_LOCK_EXCLUSIVE;
+
+ if (vm_object_lock_upgrade(object) == FALSE) {
+ /*
+ * couldn't upgrade, so explictly take the lock
+ * exclusively and go relookup the page since we
+ * will have dropped the object lock and
+ * a different thread could have inserted
+ * a page at this offset
+ * no need for a full retry since we're
+ * at the top level of the object chain
+ */
+ vm_object_lock(object);
+ continue;
+ }
+ }
+ if ((m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q) && m_object->internal) {
/*
- * Absent page at bottom of shadow
- * chain; zero fill the page we left
- * busy in the first object, and flush
- * the absent page. But first we
- * need to allocate a real page.
+ * m->vmp_busy == TRUE and the object is locked exclusively
+ * if m->pageout_queue == TRUE after we acquire the
+ * queues lock, we are guaranteed that it is stable on
+ * the pageout queue and therefore reclaimable
+ *
+ * NOTE: this is only true for the internal pageout queue
+ * in the compressor world
*/
- if (VM_PAGE_THROTTLED() ||
- (real_m = vm_page_grab()) == VM_PAGE_NULL) {
- vm_fault_cleanup(object, first_m);
- thread_interrupt_level(interruptible_state);
- return(VM_FAULT_MEMORY_SHORTAGE);
- }
+ assert(VM_CONFIG_COMPRESSOR_IS_PRESENT);
+ vm_page_lock_queues();
- XPR(XPR_VM_FAULT,
- "vm_f_page: zero obj 0x%X, off 0x%X, page 0x%X, first_obj 0x%X\n",
- (integer_t)object, offset,
- (integer_t)m,
- (integer_t)first_object, 0);
- if (object != first_object) {
- VM_PAGE_FREE(m);
- vm_object_paging_end(object);
- vm_object_unlock(object);
- object = first_object;
- offset = first_offset;
- m = first_m;
- first_m = VM_PAGE_NULL;
- vm_object_lock(object);
+ if (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q) {
+ vm_pageout_throttle_up(m);
+ vm_page_unlock_queues();
+
+ PAGE_WAKEUP_DONE(m);
+ goto reclaimed_from_pageout;
}
+ vm_page_unlock_queues();
+ }
+ if (object != cur_object) {
+ vm_object_unlock(object);
+ }
- VM_PAGE_FREE(m);
- assert(real_m->busy);
- vm_page_insert(real_m, object, offset);
- m = real_m;
+ vm_map_unlock_read(map);
+ if (real_map != map) {
+ vm_map_unlock(real_map);
+ }
- /*
- * Drop the lock while zero filling
- * page. Then break because this
- * is the page we wanted. Checking
- * the page lock is a waste of time;
- * this page was either absent or
- * newly allocated -- in both cases
- * it can't be page locked by a pager.
- */
- m->no_isync = FALSE;
+ result = PAGE_ASSERT_WAIT(m, interruptible);
+
+ vm_object_unlock(cur_object);
+
+ if (result == THREAD_WAITING) {
+ result = thread_block(THREAD_CONTINUE_NULL);
+ }
+ if (result == THREAD_AWAKENED || result == THREAD_RESTART) {
+ goto RetryFault;
+ }
+
+ kr = KERN_ABORTED;
+ goto done;
+ }
+reclaimed_from_pageout:
+ if (m->vmp_laundry) {
+ if (object != cur_object) {
+ if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
+ cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
- if (!no_zero_fill) {
vm_object_unlock(object);
- vm_page_zero_fill(m);
- if (type_of_fault)
- *type_of_fault = DBG_ZERO_FILL_FAULT;
- VM_STAT(zero_fill_count++);
-
- if (bumped_pagein == TRUE) {
- VM_STAT(pageins--);
- current_task()->pageins--;
- }
- vm_object_lock(object);
- }
- pmap_clear_modify(m->phys_page);
- vm_page_lock_queues();
- VM_PAGE_QUEUES_REMOVE(m);
- m->page_ticket = vm_page_ticket;
- if(m->object->size > 0x80000) {
- m->zero_fill = TRUE;
- /* depends on the queues lock */
- vm_zf_count += 1;
- queue_enter(&vm_page_queue_zf,
- m, vm_page_t, pageq);
- } else {
- queue_enter(
- &vm_page_queue_inactive,
- m, vm_page_t, pageq);
- }
- vm_page_ticket_roll++;
- if(vm_page_ticket_roll ==
- VM_PAGE_TICKETS_IN_ROLL) {
- vm_page_ticket_roll = 0;
- if(vm_page_ticket ==
- VM_PAGE_TICKET_ROLL_IDS)
- vm_page_ticket= 0;
- else
- vm_page_ticket++;
+ vm_object_unlock(cur_object);
+
+ vm_map_unlock_read(map);
+ if (real_map != map) {
+ vm_map_unlock(real_map);
+ }
+
+ goto RetryFault;
}
- m->inactive = TRUE;
- vm_page_inactive_count++;
- vm_page_unlock_queues();
- break;
- } else {
- if (must_be_resident) {
- vm_object_paging_end(object);
- } else if (object != first_object) {
- vm_object_paging_end(object);
- VM_PAGE_FREE(m);
- } else {
- first_m = m;
- m->absent = FALSE;
- m->unusual = FALSE;
- vm_object_absent_release(object);
- m->busy = TRUE;
+ } else if (object_lock_type == OBJECT_LOCK_SHARED) {
+ object_lock_type = OBJECT_LOCK_EXCLUSIVE;
+
+ if (vm_object_lock_upgrade(object) == FALSE) {
+ /*
+ * couldn't upgrade, so explictly take the lock
+ * exclusively and go relookup the page since we
+ * will have dropped the object lock and
+ * a different thread could have inserted
+ * a page at this offset
+ * no need for a full retry since we're
+ * at the top level of the object chain
+ */
+ vm_object_lock(object);
- vm_page_lock_queues();
- VM_PAGE_QUEUES_REMOVE(m);
- vm_page_unlock_queues();
+ continue;
}
- XPR(XPR_VM_FAULT,
- "vm_f_page: unavail obj 0x%X, off 0x%X, next_obj 0x%X, newoff 0x%X\n",
- (integer_t)object, offset,
- (integer_t)next_object,
- offset+object->shadow_offset,0);
- offset += object->shadow_offset;
- hi_offset += object->shadow_offset;
- lo_offset += object->shadow_offset;
- access_required = VM_PROT_READ;
- vm_object_lock(next_object);
- vm_object_unlock(object);
- object = next_object;
- vm_object_paging_begin(object);
- continue;
}
+ vm_pageout_steal_laundry(m, FALSE);
}
- if ((m->cleaning)
- && ((object != first_object) ||
- (object->copy != VM_OBJECT_NULL))
- && (fault_type & VM_PROT_WRITE)) {
+ if (VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr) {
/*
- * This is a copy-on-write fault that will
- * cause us to revoke access to this page, but
- * this page is in the process of being cleaned
- * in a clustered pageout. We must wait until
- * the cleaning operation completes before
- * revoking access to the original page,
- * otherwise we might attempt to remove a
- * wired mapping.
+ * Guard page: let the slow path deal with it
*/
-#if TRACEFAULTPAGE
- dbgTrace(0xBEEF0009, (unsigned int) m, (unsigned int) offset); /* (TEST/DEBUG) */
-#endif
- XPR(XPR_VM_FAULT,
- "vm_f_page: cleaning obj 0x%X, offset 0x%X, page 0x%X\n",
- (integer_t)object, offset,
- (integer_t)m, 0, 0);
- /* take an extra ref so that object won't die */
- assert(object->ref_count > 0);
- object->ref_count++;
- vm_object_res_reference(object);
- vm_fault_cleanup(object, first_m);
- counter(c_vm_fault_page_block_backoff_kernel++);
- vm_object_lock(object);
- assert(object->ref_count > 0);
- m = vm_page_lookup(object, offset);
- if (m != VM_PAGE_NULL && m->cleaning) {
- PAGE_ASSERT_WAIT(m, interruptible);
- vm_object_unlock(object);
- wait_result = thread_block(THREAD_CONTINUE_NULL);
- vm_object_deallocate(object);
- goto backoff;
- } else {
+ break;
+ }
+ if (m->vmp_unusual && (m->vmp_error || m->vmp_restart || m->vmp_private || m->vmp_absent)) {
+ /*
+ * Unusual case... let the slow path deal with it
+ */
+ break;
+ }
+ if (VM_OBJECT_PURGEABLE_FAULT_ERROR(m_object)) {
+ if (object != cur_object) {
vm_object_unlock(object);
- vm_object_deallocate(object);
- thread_interrupt_level(interruptible_state);
- return VM_FAULT_RETRY;
}
+ vm_map_unlock_read(map);
+ if (real_map != map) {
+ vm_map_unlock(real_map);
+ }
+ vm_object_unlock(cur_object);
+ kr = KERN_MEMORY_ERROR;
+ goto done;
}
+ assert(m_object == VM_PAGE_OBJECT(m));
- /*
- * If the desired access to this page has
- * been locked out, request that it be unlocked.
- */
+ if (vm_fault_cs_need_validation(map->pmap, m, m_object,
+ PAGE_SIZE, 0) ||
+ (physpage_p != NULL && (prot & VM_PROT_WRITE))) {
+upgrade_lock_and_retry:
+ /*
+ * We might need to validate this page
+ * against its code signature, so we
+ * want to hold the VM object exclusively.
+ */
+ if (object != cur_object) {
+ if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
+ vm_object_unlock(object);
+ vm_object_unlock(cur_object);
- if (access_required & m->page_lock) {
- if ((access_required & m->unlock_request) != access_required) {
- vm_prot_t new_unlock_request;
- kern_return_t rc;
-
-#if TRACEFAULTPAGE
- dbgTrace(0xBEEF000A, (unsigned int) m, (unsigned int) object->pager_ready); /* (TEST/DEBUG) */
-#endif
- if (!object->pager_ready) {
- XPR(XPR_VM_FAULT,
- "vm_f_page: ready wait acc_req %d, obj 0x%X, offset 0x%X, page 0x%X\n",
- access_required,
- (integer_t)object, offset,
- (integer_t)m, 0);
- /* take an extra ref */
- assert(object->ref_count > 0);
- object->ref_count++;
- vm_object_res_reference(object);
- vm_fault_cleanup(object,
- first_m);
- counter(c_vm_fault_page_block_backoff_kernel++);
- vm_object_lock(object);
- assert(object->ref_count > 0);
- if (!object->pager_ready) {
- wait_result = vm_object_assert_wait(
- object,
- VM_OBJECT_EVENT_PAGER_READY,
- interruptible);
- vm_object_unlock(object);
- if (wait_result == THREAD_WAITING)
- wait_result = thread_block(THREAD_CONTINUE_NULL);
- vm_object_deallocate(object);
- goto backoff;
- } else {
- vm_object_unlock(object);
- vm_object_deallocate(object);
- thread_interrupt_level(interruptible_state);
- return VM_FAULT_RETRY;
+ cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
+
+ vm_map_unlock_read(map);
+ if (real_map != map) {
+ vm_map_unlock(real_map);
}
+
+ goto RetryFault;
+ }
+ } else if (object_lock_type == OBJECT_LOCK_SHARED) {
+ object_lock_type = OBJECT_LOCK_EXCLUSIVE;
+
+ if (vm_object_lock_upgrade(object) == FALSE) {
+ /*
+ * couldn't upgrade, so explictly take the lock
+ * exclusively and go relookup the page since we
+ * will have dropped the object lock and
+ * a different thread could have inserted
+ * a page at this offset
+ * no need for a full retry since we're
+ * at the top level of the object chain
+ */
+ vm_object_lock(object);
+
+ continue;
}
+ }
+ }
+ /*
+ * Two cases of map in faults:
+ * - At top level w/o copy object.
+ * - Read fault anywhere.
+ * --> must disallow write.
+ */
+
+ if (object == cur_object && object->copy == VM_OBJECT_NULL) {
+ goto FastPmapEnter;
+ }
+
+ if (!need_copy &&
+ !fault_info.no_copy_on_read &&
+ cur_object != object &&
+ !cur_object->internal &&
+ !cur_object->pager_trusted &&
+ vm_protect_privileged_from_untrusted &&
+ !((prot & VM_PROT_EXECUTE) &&
+ cur_object->code_signed &&
+ pmap_get_vm_map_cs_enforced(caller_pmap ? caller_pmap : pmap)) &&
+ current_proc_is_privileged()) {
+ /*
+ * We're faulting on a page in "object" and
+ * went down the shadow chain to "cur_object"
+ * to find out that "cur_object"'s pager
+ * is not "trusted", i.e. we can not trust it
+ * to always return the same contents.
+ * Since the target is a "privileged" process,
+ * let's treat this as a copy-on-read fault, as
+ * if it was a copy-on-write fault.
+ * Once "object" gets a copy of this page, it
+ * won't have to rely on "cur_object" to
+ * provide the contents again.
+ *
+ * This is done by setting "need_copy" and
+ * retrying the fault from the top with the
+ * appropriate locking.
+ *
+ * Special case: if the mapping is executable
+ * and the untrusted object is code-signed and
+ * the process is "cs_enforced", we do not
+ * copy-on-read because that would break
+ * code-signing enforcement expectations (an
+ * executable page must belong to a code-signed
+ * object) and we can rely on code-signing
+ * to re-validate the page if it gets evicted
+ * and paged back in.
+ */
+// printf("COPY-ON-READ %s:%d map %p va 0x%llx page %p object %p offset 0x%llx UNTRUSTED: need copy-on-read!\n", __FUNCTION__, __LINE__, map, (uint64_t)vaddr, m, VM_PAGE_OBJECT(m), m->vmp_offset);
+ vm_copied_on_read++;
+ need_copy = TRUE;
+
+ vm_object_unlock(object);
+ vm_object_unlock(cur_object);
+ object_lock_type = OBJECT_LOCK_EXCLUSIVE;
+ vm_map_unlock_read(map);
+ if (real_map != map) {
+ vm_map_unlock(real_map);
+ }
+ goto RetryFault;
+ }
+
+ if (!(fault_type & VM_PROT_WRITE) && !need_copy) {
+ if (!pmap_has_prot_policy(pmap, fault_info.pmap_options & PMAP_OPTIONS_TRANSLATED_ALLOW_EXECUTE, prot)) {
+ prot &= ~VM_PROT_WRITE;
+ } else {
+ /*
+ * For a protection that the pmap cares
+ * about, we must hand over the full
+ * set of protections (so that the pmap
+ * layer can apply any desired policy).
+ * This means that cs_bypass must be
+ * set, as this can force us to pass
+ * RWX.
+ */
+ assert(fault_info.cs_bypass);
+ }
+
+ if (object != cur_object) {
+ /*
+ * We still need to hold the top object
+ * lock here to prevent a race between
+ * a read fault (taking only "shared"
+ * locks) and a write fault (taking
+ * an "exclusive" lock on the top
+ * object.
+ * Otherwise, as soon as we release the
+ * top lock, the write fault could
+ * proceed and actually complete before
+ * the read fault, and the copied page's
+ * translation could then be overwritten
+ * by the read fault's translation for
+ * the original page.
+ *
+ * Let's just record what the top object
+ * is and we'll release it later.
+ */
+ top_object = object;
+
+ /*
+ * switch to the object that has the new page
+ */
+ object = cur_object;
+ object_lock_type = cur_object_lock_type;
+ }
+FastPmapEnter:
+ assert(m_object == VM_PAGE_OBJECT(m));
+
+ /*
+ * prepare for the pmap_enter...
+ * object and map are both locked
+ * m contains valid data
+ * object == m->vmp_object
+ * cur_object == NULL or it's been unlocked
+ * no paging references on either object or cur_object
+ */
+ if (top_object != VM_OBJECT_NULL || object_lock_type != OBJECT_LOCK_EXCLUSIVE) {
+ need_retry_ptr = &need_retry;
+ } else {
+ need_retry_ptr = NULL;
+ }
- new_unlock_request = m->unlock_request =
- (access_required | m->unlock_request);
- vm_object_unlock(object);
- XPR(XPR_VM_FAULT,
- "vm_f_page: unlock obj 0x%X, offset 0x%X, page 0x%X, unl_req %d\n",
- (integer_t)object, offset,
- (integer_t)m, new_unlock_request, 0);
- if ((rc = memory_object_data_unlock(
- object->pager,
- offset + object->paging_offset,
- PAGE_SIZE,
- new_unlock_request))
- != KERN_SUCCESS) {
- if (vm_fault_debug)
- printf("vm_fault: memory_object_data_unlock failed\n");
- vm_object_lock(object);
- vm_fault_cleanup(object, first_m);
- thread_interrupt_level(interruptible_state);
- return((rc == MACH_SEND_INTERRUPTED) ?
- VM_FAULT_INTERRUPTED :
- VM_FAULT_MEMORY_ERROR);
- }
- vm_object_lock(object);
- continue;
+ if (fault_page_size < PAGE_SIZE) {
+ DEBUG4K_FAULT("map %p original %p pmap %p va 0x%llx caller pmap %p va 0x%llx pa 0x%llx (0x%llx+0x%llx) prot 0x%x caller_prot 0x%x\n", map, original_map, pmap, (uint64_t)vaddr, caller_pmap, (uint64_t)caller_pmap_addr, (uint64_t)((((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m)) << PAGE_SHIFT) + fault_phys_offset), (uint64_t)(((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m)) << PAGE_SHIFT), (uint64_t)fault_phys_offset, prot, caller_prot);
+ assertf((!(fault_phys_offset & FOURK_PAGE_MASK) &&
+ fault_phys_offset < PAGE_SIZE),
+ "0x%llx\n", (uint64_t)fault_phys_offset);
+ } else {
+ assertf(fault_phys_offset == 0,
+ "0x%llx\n", (uint64_t)fault_phys_offset);
}
- XPR(XPR_VM_FAULT,
- "vm_f_page: access wait acc_req %d, obj 0x%X, offset 0x%X, page 0x%X\n",
- access_required, (integer_t)object,
- offset, (integer_t)m, 0);
- /* take an extra ref so object won't die */
- assert(object->ref_count > 0);
- object->ref_count++;
- vm_object_res_reference(object);
- vm_fault_cleanup(object, first_m);
- counter(c_vm_fault_page_block_backoff_kernel++);
- vm_object_lock(object);
- assert(object->ref_count > 0);
- m = vm_page_lookup(object, offset);
- if (m != VM_PAGE_NULL &&
- (access_required & m->page_lock) &&
- !((access_required & m->unlock_request) != access_required)) {
- PAGE_ASSERT_WAIT(m, interruptible);
- vm_object_unlock(object);
- wait_result = thread_block(THREAD_CONTINUE_NULL);
- vm_object_deallocate(object);
- goto backoff;
+ if (caller_pmap) {
+ kr = vm_fault_enter(m,
+ caller_pmap,
+ caller_pmap_addr,
+ fault_page_size,
+ fault_phys_offset,
+ prot,
+ caller_prot,
+ wired,
+ change_wiring,
+ wire_tag,
+ &fault_info,
+ need_retry_ptr,
+ &type_of_fault);
} else {
- vm_object_unlock(object);
- vm_object_deallocate(object);
- thread_interrupt_level(interruptible_state);
- return VM_FAULT_RETRY;
+ kr = vm_fault_enter(m,
+ pmap,
+ vaddr,
+ fault_page_size,
+ fault_phys_offset,
+ prot,
+ caller_prot,
+ wired,
+ change_wiring,
+ wire_tag,
+ &fault_info,
+ need_retry_ptr,
+ &type_of_fault);
+ }
+
+ vm_fault_complete(
+ map,
+ real_map,
+ object,
+ m_object,
+ m,
+ offset,
+ trace_real_vaddr,
+ &fault_info,
+ caller_prot,
+ real_vaddr,
+ vm_fault_type_for_tracing(need_copy_on_read, type_of_fault),
+ need_retry,
+ kr,
+ physpage_p,
+ prot,
+ top_object,
+ need_collapse,
+ cur_offset,
+ fault_type,
+ &written_on_object,
+ &written_on_pager,
+ &written_on_offset);
+ top_object = VM_OBJECT_NULL;
+ if (need_retry == TRUE) {
+ /*
+ * vm_fault_enter couldn't complete the PMAP_ENTER...
+ * at this point we don't hold any locks so it's safe
+ * to ask the pmap layer to expand the page table to
+ * accommodate this mapping... once expanded, we'll
+ * re-drive the fault which should result in vm_fault_enter
+ * being able to successfully enter the mapping this time around
+ */
+ (void)pmap_enter_options(
+ pmap, vaddr, 0, 0, 0, 0, 0,
+ PMAP_OPTIONS_NOENTER, NULL);
+
+ need_retry = FALSE;
+ goto RetryFault;
}
+ goto done;
}
/*
- * We mark the page busy and leave it on
- * the pageout queues. If the pageout
- * deamon comes across it, then it will
- * remove the page.
+ * COPY ON WRITE FAULT
*/
+ assert(object_lock_type == OBJECT_LOCK_EXCLUSIVE);
-#if TRACEFAULTPAGE
- dbgTrace(0xBEEF000B, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
-#endif
+ /*
+ * If objects match, then
+ * object->copy must not be NULL (else control
+ * would be in previous code block), and we
+ * have a potential push into the copy object
+ * with which we can't cope with here.
+ */
+ if (cur_object == object) {
+ /*
+ * must take the slow path to
+ * deal with the copy push
+ */
+ break;
+ }
-#if !VM_FAULT_STATIC_CONFIG
- if (!software_reference_bits) {
- vm_page_lock_queues();
- if (m->inactive)
- vm_stat.reactivations++;
+ /*
+ * This is now a shadow based copy on write
+ * fault -- it requires a copy up the shadow
+ * chain.
+ */
+ assert(m_object == VM_PAGE_OBJECT(m));
- VM_PAGE_QUEUES_REMOVE(m);
- vm_page_unlock_queues();
+ if ((cur_object_lock_type == OBJECT_LOCK_SHARED) &&
+ vm_fault_cs_need_validation(NULL, m, m_object,
+ PAGE_SIZE, 0)) {
+ goto upgrade_lock_and_retry;
}
-#endif
- XPR(XPR_VM_FAULT,
- "vm_f_page: found page obj 0x%X, offset 0x%X, page 0x%X\n",
- (integer_t)object, offset, (integer_t)m, 0, 0);
- assert(!m->busy);
- m->busy = TRUE;
- assert(!m->absent);
- break;
- }
- look_for_page =
- (object->pager_created) &&
- LOOK_FOR(object, offset) &&
- (!data_supply);
-
-#if TRACEFAULTPAGE
- dbgTrace(0xBEEF000C, (unsigned int) look_for_page, (unsigned int) object); /* (TEST/DEBUG) */
-#endif
- if ((look_for_page || (object == first_object))
- && !must_be_resident
- && !(object->phys_contiguous)) {
/*
- * Allocate a new page for this object/offset
- * pair.
+ * Allocate a page in the original top level
+ * object. Give up if allocate fails. Also
+ * need to remember current page, as it's the
+ * source of the copy.
+ *
+ * at this point we hold locks on both
+ * object and cur_object... no need to take
+ * paging refs or mark pages BUSY since
+ * we don't drop either object lock until
+ * the page has been copied and inserted
*/
+ cur_m = m;
+ m = vm_page_grab_options(grab_options);
+ m_object = NULL;
- m = vm_page_grab_fictitious();
-#if TRACEFAULTPAGE
- dbgTrace(0xBEEF000D, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */
-#endif
if (m == VM_PAGE_NULL) {
- vm_fault_cleanup(object, first_m);
- thread_interrupt_level(interruptible_state);
- return(VM_FAULT_FICTITIOUS_SHORTAGE);
+ /*
+ * no free page currently available...
+ * must take the slow path
+ */
+ break;
}
- vm_page_insert(m, object, offset);
- }
-
- if ((look_for_page && !must_be_resident)) {
- kern_return_t rc;
-
/*
- * If the memory manager is not ready, we
- * cannot make requests.
+ * Now do the copy. Mark the source page busy...
+ *
+ * NOTE: This code holds the map lock across
+ * the page copy.
*/
- if (!object->pager_ready) {
-#if TRACEFAULTPAGE
- dbgTrace(0xBEEF000E, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */
-#endif
- if(m != VM_PAGE_NULL)
- VM_PAGE_FREE(m);
- XPR(XPR_VM_FAULT,
- "vm_f_page: ready wait obj 0x%X, offset 0x%X\n",
- (integer_t)object, offset, 0, 0, 0);
- /* take an extra ref so object won't die */
- assert(object->ref_count > 0);
- object->ref_count++;
- vm_object_res_reference(object);
- vm_fault_cleanup(object, first_m);
- counter(c_vm_fault_page_block_backoff_kernel++);
- vm_object_lock(object);
- assert(object->ref_count > 0);
- if (!object->pager_ready) {
- wait_result = vm_object_assert_wait(object,
- VM_OBJECT_EVENT_PAGER_READY,
- interruptible);
- vm_object_unlock(object);
- if (wait_result == THREAD_WAITING)
- wait_result = thread_block(THREAD_CONTINUE_NULL);
- vm_object_deallocate(object);
- goto backoff;
- } else {
- vm_object_unlock(object);
- vm_object_deallocate(object);
- thread_interrupt_level(interruptible_state);
- return VM_FAULT_RETRY;
- }
+ vm_page_copy(cur_m, m);
+ vm_page_insert(m, object, vm_object_trunc_page(offset));
+ if (VM_MAP_PAGE_MASK(map) != PAGE_MASK) {
+ DEBUG4K_FAULT("map %p vaddr 0x%llx page %p [%p 0x%llx] copied to %p [%p 0x%llx]\n", map, (uint64_t)vaddr, cur_m, VM_PAGE_OBJECT(cur_m), cur_m->vmp_offset, m, VM_PAGE_OBJECT(m), m->vmp_offset);
}
+ m_object = object;
+ SET_PAGE_DIRTY(m, FALSE);
- if(object->phys_contiguous) {
- if(m != VM_PAGE_NULL) {
- VM_PAGE_FREE(m);
- m = VM_PAGE_NULL;
- }
- goto no_clustering;
- }
- if (object->internal) {
+ /*
+ * Now cope with the source page and object
+ */
+ if (object->ref_count > 1 && cur_m->vmp_pmapped) {
+ pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(cur_m));
+ } else if (VM_MAP_PAGE_SIZE(map) < PAGE_SIZE) {
/*
- * Requests to the default pager
- * must reserve a real page in advance,
- * because the pager's data-provided
- * won't block for pages. IMPORTANT:
- * this acts as a throttling mechanism
- * for data_requests to the default
- * pager.
+ * We've copied the full 16K page but we're
+ * about to call vm_fault_enter() only for
+ * the 4K chunk we're faulting on. The other
+ * three 4K chunks in that page could still
+ * be pmapped in this pmap.
+ * Since the VM object layer thinks that the
+ * entire page has been dealt with and the
+ * original page might no longer be needed,
+ * it might collapse/bypass the original VM
+ * object and free its pages, which would be
+ * bad (and would trigger pmap_verify_free()
+ * assertions) if the other 4K chunks are still
+ * pmapped.
*/
-
-#if TRACEFAULTPAGE
- dbgTrace(0xBEEF000F, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
-#endif
- if (m->fictitious && !vm_page_convert(m)) {
- VM_PAGE_FREE(m);
- vm_fault_cleanup(object, first_m);
- thread_interrupt_level(interruptible_state);
- return(VM_FAULT_MEMORY_SHORTAGE);
- }
- } else if (object->absent_count >
- vm_object_absent_max) {
/*
- * If there are too many outstanding page
- * requests pending on this object, we
- * wait for them to be resolved now.
+ * XXX FBDP TODO4K: to be revisisted
+ * Technically, we need to pmap_disconnect()
+ * only the target pmap's mappings for the 4K
+ * chunks of this 16K VM page. If other pmaps
+ * have PTEs on these chunks, that means that
+ * the associated VM map must have a reference
+ * on the VM object, so no need to worry about
+ * those.
+ * pmap_protect() for each 4K chunk would be
+ * better but we'd have to check which chunks
+ * are actually mapped before and after this
+ * one.
+ * A full-blown pmap_disconnect() is easier
+ * for now but not efficient.
*/
+ DEBUG4K_FAULT("pmap_disconnect() page %p object %p offset 0x%llx phys 0x%x\n", cur_m, VM_PAGE_OBJECT(cur_m), cur_m->vmp_offset, VM_PAGE_GET_PHYS_PAGE(cur_m));
+ pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(cur_m));
+ }
-#if TRACEFAULTPAGE
- dbgTrace(0xBEEF0010, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
-#endif
- if(m != VM_PAGE_NULL)
- VM_PAGE_FREE(m);
- /* take an extra ref so object won't die */
- assert(object->ref_count > 0);
- object->ref_count++;
- vm_object_res_reference(object);
- vm_fault_cleanup(object, first_m);
- counter(c_vm_fault_page_block_backoff_kernel++);
- vm_object_lock(object);
- assert(object->ref_count > 0);
- if (object->absent_count > vm_object_absent_max) {
- vm_object_absent_assert_wait(object,
- interruptible);
- vm_object_unlock(object);
- wait_result = thread_block(THREAD_CONTINUE_NULL);
- vm_object_deallocate(object);
- goto backoff;
- } else {
- vm_object_unlock(object);
- vm_object_deallocate(object);
- thread_interrupt_level(interruptible_state);
- return VM_FAULT_RETRY;
+ if (cur_m->vmp_clustered) {
+ VM_PAGE_COUNT_AS_PAGEIN(cur_m);
+ VM_PAGE_CONSUME_CLUSTERED(cur_m);
+ vm_fault_is_sequential(cur_object, cur_offset, fault_info.behavior);
+ }
+ need_collapse = TRUE;
+
+ if (!cur_object->internal &&
+ cur_object->copy_strategy == MEMORY_OBJECT_COPY_DELAY) {
+ /*
+ * The object from which we've just
+ * copied a page is most probably backed
+ * by a vnode. We don't want to waste too
+ * much time trying to collapse the VM objects
+ * and create a bottleneck when several tasks
+ * map the same file.
+ */
+ if (cur_object->copy == object) {
+ /*
+ * Shared mapping or no COW yet.
+ * We can never collapse a copy
+ * object into its backing object.
+ */
+ need_collapse = FALSE;
+ } else if (cur_object->copy == object->shadow &&
+ object->shadow->resident_page_count == 0) {
+ /*
+ * Shared mapping after a COW occurred.
+ */
+ need_collapse = FALSE;
}
}
+ vm_object_unlock(cur_object);
+
+ if (need_collapse == FALSE) {
+ vm_fault_collapse_skipped++;
+ }
+ vm_fault_collapse_total++;
+
+ type_of_fault = DBG_COW_FAULT;
+ counter_inc(&vm_statistics_cow_faults);
+ DTRACE_VM2(cow_fault, int, 1, (uint64_t *), NULL);
+ current_task()->cow_faults++;
+ goto FastPmapEnter;
+ } else {
/*
- * Indicate that the page is waiting for data
- * from the memory manager.
+ * No page at cur_object, cur_offset... m == NULL
*/
+ if (cur_object->pager_created) {
+ vm_external_state_t compressor_external_state = VM_EXTERNAL_STATE_UNKNOWN;
- if(m != VM_PAGE_NULL) {
+ if (MUST_ASK_PAGER(cur_object, cur_offset, compressor_external_state) == TRUE) {
+ int my_fault_type;
+ uint8_t c_flags = C_DONT_BLOCK;
+ bool insert_cur_object = FALSE;
- m->list_req_pending = TRUE;
- m->absent = TRUE;
- m->unusual = TRUE;
- object->absent_count++;
+ /*
+ * May have to talk to a pager...
+ * if so, take the slow path by
+ * doing a 'break' from the while (TRUE) loop
+ *
+ * external_state will only be set to VM_EXTERNAL_STATE_EXISTS
+ * if the compressor is active and the page exists there
+ */
+ if (compressor_external_state != VM_EXTERNAL_STATE_EXISTS) {
+ break;
+ }
- }
+ if (map == kernel_map || real_map == kernel_map) {
+ /*
+ * can't call into the compressor with the kernel_map
+ * lock held, since the compressor may try to operate
+ * on the kernel map in order to return an empty c_segment
+ */
+ break;
+ }
+ if (object != cur_object) {
+ if (fault_type & VM_PROT_WRITE) {
+ c_flags |= C_KEEP;
+ } else {
+ insert_cur_object = TRUE;
+ }
+ }
+ if (insert_cur_object == TRUE) {
+ if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
+ cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
+
+ if (vm_object_lock_upgrade(cur_object) == FALSE) {
+ /*
+ * couldn't upgrade so go do a full retry
+ * immediately since we can no longer be
+ * certain about cur_object (since we
+ * don't hold a reference on it)...
+ * first drop the top object lock
+ */
+ vm_object_unlock(object);
+
+ vm_map_unlock_read(map);
+ if (real_map != map) {
+ vm_map_unlock(real_map);
+ }
+
+ goto RetryFault;
+ }
+ }
+ } else if (object_lock_type == OBJECT_LOCK_SHARED) {
+ object_lock_type = OBJECT_LOCK_EXCLUSIVE;
+
+ if (object != cur_object) {
+ /*
+ * we can't go for the upgrade on the top
+ * lock since the upgrade may block waiting
+ * for readers to drain... since we hold
+ * cur_object locked at this point, waiting
+ * for the readers to drain would represent
+ * a lock order inversion since the lock order
+ * for objects is the reference order in the
+ * shadown chain
+ */
+ vm_object_unlock(object);
+ vm_object_unlock(cur_object);
-no_clustering:
- cluster_start = offset;
- length = PAGE_SIZE;
+ vm_map_unlock_read(map);
+ if (real_map != map) {
+ vm_map_unlock(real_map);
+ }
- /*
- * lengthen the cluster by the pages in the working set
- */
- if((map != NULL) &&
- (current_task()->dynamic_working_set != 0)) {
- cluster_end = cluster_start + length;
- /* tws values for start and end are just a
- * suggestions. Therefore, as long as
- * build_cluster does not use pointers or
- * take action based on values that
- * could be affected by re-entrance we
- * do not need to take the map lock.
- */
- cluster_end = offset + PAGE_SIZE_64;
- tws_build_cluster((tws_hash_t)
- current_task()->dynamic_working_set,
- object, &cluster_start,
- &cluster_end, 0x40000);
- length = cluster_end - cluster_start;
- }
-#if TRACEFAULTPAGE
- dbgTrace(0xBEEF0012, (unsigned int) object, (unsigned int) 0); /* (TEST/DEBUG) */
-#endif
- /*
- * We have a busy page, so we can
- * release the object lock.
- */
- vm_object_unlock(object);
+ goto RetryFault;
+ }
+ if (vm_object_lock_upgrade(object) == FALSE) {
+ /*
+ * couldn't upgrade, so explictly take the lock
+ * exclusively and go relookup the page since we
+ * will have dropped the object lock and
+ * a different thread could have inserted
+ * a page at this offset
+ * no need for a full retry since we're
+ * at the top level of the object chain
+ */
+ vm_object_lock(object);
+
+ continue;
+ }
+ }
+ m = vm_page_grab_options(grab_options);
+ m_object = NULL;
+
+ if (m == VM_PAGE_NULL) {
+ /*
+ * no free page currently available...
+ * must take the slow path
+ */
+ break;
+ }
- /*
- * Call the memory manager to retrieve the data.
- */
+ /*
+ * The object is and remains locked
+ * so no need to take a
+ * "paging_in_progress" reference.
+ */
+ bool shared_lock;
+ if ((object == cur_object &&
+ object_lock_type == OBJECT_LOCK_EXCLUSIVE) ||
+ (object != cur_object &&
+ cur_object_lock_type == OBJECT_LOCK_EXCLUSIVE)) {
+ shared_lock = FALSE;
+ } else {
+ shared_lock = TRUE;
+ }
+
+ kr = vm_compressor_pager_get(
+ cur_object->pager,
+ (vm_object_trunc_page(cur_offset)
+ + cur_object->paging_offset),
+ VM_PAGE_GET_PHYS_PAGE(m),
+ &my_fault_type,
+ c_flags,
+ &compressed_count_delta);
+
+ vm_compressor_pager_count(
+ cur_object->pager,
+ compressed_count_delta,
+ shared_lock,
+ cur_object);
+
+ if (kr != KERN_SUCCESS) {
+ vm_page_release(m, FALSE);
+ m = VM_PAGE_NULL;
+ }
+ /*
+ * If vm_compressor_pager_get() returns
+ * KERN_MEMORY_FAILURE, then the
+ * compressed data is permanently lost,
+ * so return this error immediately.
+ */
+ if (kr == KERN_MEMORY_FAILURE) {
+ if (object != cur_object) {
+ vm_object_unlock(cur_object);
+ }
+ vm_object_unlock(object);
+ vm_map_unlock_read(map);
+ if (real_map != map) {
+ vm_map_unlock(real_map);
+ }
+ goto done;
+ } else if (kr != KERN_SUCCESS) {
+ break;
+ }
+ m->vmp_dirty = TRUE;
- if (type_of_fault)
- *type_of_fault = (length << 8) | DBG_PAGEIN_FAULT;
- VM_STAT(pageins++);
- current_task()->pageins++;
- bumped_pagein = TRUE;
+ /*
+ * If the object is purgeable, its
+ * owner's purgeable ledgers will be
+ * updated in vm_page_insert() but the
+ * page was also accounted for in a
+ * "compressed purgeable" ledger, so
+ * update that now.
+ */
+ if (object != cur_object &&
+ !insert_cur_object) {
+ /*
+ * We're not going to insert
+ * the decompressed page into
+ * the object it came from.
+ *
+ * We're dealing with a
+ * copy-on-write fault on
+ * "object".
+ * We're going to decompress
+ * the page directly into the
+ * target "object" while
+ * keepin the compressed
+ * page for "cur_object", so
+ * no ledger update in that
+ * case.
+ */
+ } else if (((cur_object->purgable ==
+ VM_PURGABLE_DENY) &&
+ (!cur_object->vo_ledger_tag)) ||
+ (cur_object->vo_owner ==
+ NULL)) {
+ /*
+ * "cur_object" is not purgeable
+ * and is not ledger-taged, or
+ * there's no owner for it,
+ * so no owner's ledgers to
+ * update.
+ */
+ } else {
+ /*
+ * One less compressed
+ * purgeable/tagged page for
+ * cur_object's owner.
+ */
+ vm_object_owner_compressed_update(
+ cur_object,
+ -1);
+ }
- /*
- * If this object uses a copy_call strategy,
- * and we are interested in a copy of this object
- * (having gotten here only by following a
- * shadow chain), then tell the memory manager
- * via a flag added to the desired_access
- * parameter, so that it can detect a race
- * between our walking down the shadow chain
- * and its pushing pages up into a copy of
- * the object that it manages.
- */
+ if (insert_cur_object) {
+ vm_page_insert(m, cur_object, vm_object_trunc_page(cur_offset));
+ m_object = cur_object;
+ } else {
+ vm_page_insert(m, object, vm_object_trunc_page(offset));
+ m_object = object;
+ }
- if (object->copy_strategy == MEMORY_OBJECT_COPY_CALL &&
- object != first_object) {
- wants_copy_flag = VM_PROT_WANTS_COPY;
- } else {
- wants_copy_flag = VM_PROT_NONE;
+ if ((m_object->wimg_bits & VM_WIMG_MASK) != VM_WIMG_USE_DEFAULT) {
+ /*
+ * If the page is not cacheable,
+ * we can't let its contents
+ * linger in the data cache
+ * after the decompression.
+ */
+ pmap_sync_page_attributes_phys(VM_PAGE_GET_PHYS_PAGE(m));
+ }
+
+ type_of_fault = my_fault_type;
+
+ VM_STAT_DECOMPRESSIONS();
+
+ if (cur_object != object) {
+ if (insert_cur_object) {
+ top_object = object;
+ /*
+ * switch to the object that has the new page
+ */
+ object = cur_object;
+ object_lock_type = cur_object_lock_type;
+ } else {
+ vm_object_unlock(cur_object);
+ cur_object = object;
+ }
+ }
+ goto FastPmapEnter;
+ }
+ /*
+ * existence map present and indicates
+ * that the pager doesn't have this page
+ */
}
+ if (cur_object->shadow == VM_OBJECT_NULL ||
+ resilient_media_retry) {
+ /*
+ * Zero fill fault. Page gets
+ * inserted into the original object.
+ */
+ if (cur_object->shadow_severed ||
+ VM_OBJECT_PURGEABLE_FAULT_ERROR(cur_object) ||
+ cur_object == compressor_object ||
+ cur_object == kernel_object ||
+ cur_object == vm_submap_object) {
+ if (object != cur_object) {
+ vm_object_unlock(cur_object);
+ }
+ vm_object_unlock(object);
+
+ vm_map_unlock_read(map);
+ if (real_map != map) {
+ vm_map_unlock(real_map);
+ }
- XPR(XPR_VM_FAULT,
- "vm_f_page: data_req obj 0x%X, offset 0x%X, page 0x%X, acc %d\n",
- (integer_t)object, offset, (integer_t)m,
- access_required | wants_copy_flag, 0);
+ kr = KERN_MEMORY_ERROR;
+ goto done;
+ }
+ if (cur_object != object) {
+ vm_object_unlock(cur_object);
- rc = memory_object_data_request(object->pager,
- cluster_start + object->paging_offset,
- length,
- access_required | wants_copy_flag);
+ cur_object = object;
+ }
+ if (object_lock_type == OBJECT_LOCK_SHARED) {
+ object_lock_type = OBJECT_LOCK_EXCLUSIVE;
+
+ if (vm_object_lock_upgrade(object) == FALSE) {
+ /*
+ * couldn't upgrade so do a full retry on the fault
+ * since we dropped the object lock which
+ * could allow another thread to insert
+ * a page at this offset
+ */
+ vm_map_unlock_read(map);
+ if (real_map != map) {
+ vm_map_unlock(real_map);
+ }
+ goto RetryFault;
+ }
+ }
+ if (!object->internal) {
+ panic("%s:%d should not zero-fill page at offset 0x%llx in external object %p", __FUNCTION__, __LINE__, (uint64_t)offset, object);
+ }
+ m = vm_page_alloc(object, vm_object_trunc_page(offset));
+ m_object = NULL;
+
+ if (m == VM_PAGE_NULL) {
+ /*
+ * no free page currently available...
+ * must take the slow path
+ */
+ break;
+ }
+ m_object = object;
-#if TRACEFAULTPAGE
- dbgTrace(0xBEEF0013, (unsigned int) object, (unsigned int) rc); /* (TEST/DEBUG) */
-#endif
- if (rc != KERN_SUCCESS) {
- if (rc != MACH_SEND_INTERRUPTED
- && vm_fault_debug)
- printf("%s(0x%x, 0x%x, 0x%x, 0x%x) failed, rc=%d\n",
- "memory_object_data_request",
- object->pager,
- cluster_start + object->paging_offset,
- length, access_required, rc);
/*
- * Don't want to leave a busy page around,
- * but the data request may have blocked,
- * so check if it's still there and busy.
+ * Zeroing the page and entering into it into the pmap
+ * represents a significant amount of the zero fill fault handler's work.
+ *
+ * To improve fault scalability, we'll drop the object lock, if it appears contended,
+ * now that we've inserted the page into the vm object.
+ * Before dropping the lock, we need to check protection bits and set the
+ * mapped bits on the page. Then we can mark the page busy, drop the lock,
+ * zero it, and do the pmap enter. We'll need to reacquire the lock
+ * to clear the busy bit and wake up any waiters.
*/
- if(!object->phys_contiguous) {
- vm_object_lock(object);
- for (; length; length -= PAGE_SIZE,
- cluster_start += PAGE_SIZE_64) {
- vm_page_t p;
- if ((p = vm_page_lookup(object,
- cluster_start))
- && p->absent && p->busy
- && p != first_m) {
- VM_PAGE_FREE(p);
- }
- }
+ vm_fault_cs_clear(m);
+ m->vmp_pmapped = TRUE;
+ if (map->no_zero_fill) {
+ type_of_fault = DBG_NZF_PAGE_FAULT;
+ } else {
+ type_of_fault = DBG_ZERO_FILL_FAULT;
}
- vm_fault_cleanup(object, first_m);
- thread_interrupt_level(interruptible_state);
- return((rc == MACH_SEND_INTERRUPTED) ?
- VM_FAULT_INTERRUPTED :
- VM_FAULT_MEMORY_ERROR);
- } else {
-#ifdef notdefcdy
- tws_hash_line_t line;
- task_t task;
-
- task = current_task();
-
- if((map != NULL) &&
- (task->dynamic_working_set != 0))
- && !(object->private)) {
- vm_object_t base_object;
- vm_object_offset_t base_offset;
- base_object = object;
- base_offset = offset;
- while(base_object->shadow) {
- base_offset +=
- base_object->shadow_offset;
- base_object =
- base_object->shadow;
+ {
+ pmap_t destination_pmap;
+ vm_map_offset_t destination_pmap_vaddr;
+ vm_prot_t enter_fault_type;
+ if (caller_pmap) {
+ destination_pmap = caller_pmap;
+ destination_pmap_vaddr = caller_pmap_addr;
+ } else {
+ destination_pmap = pmap;
+ destination_pmap_vaddr = vaddr;
}
- if(tws_lookup
- ((tws_hash_t)
- task->dynamic_working_set,
- base_offset, base_object,
- &line) == KERN_SUCCESS) {
- tws_line_signal((tws_hash_t)
- task->dynamic_working_set,
- map, line, vaddr);
+ if (change_wiring) {
+ enter_fault_type = VM_PROT_NONE;
+ } else {
+ enter_fault_type = caller_prot;
+ }
+ kr = vm_fault_enter_prepare(m,
+ destination_pmap,
+ destination_pmap_vaddr,
+ &prot,
+ caller_prot,
+ fault_page_size,
+ fault_phys_offset,
+ change_wiring,
+ enter_fault_type,
+ &fault_info,
+ &type_of_fault,
+ &page_needs_data_sync);
+ if (kr != KERN_SUCCESS) {
+ goto zero_fill_cleanup;
}
- }
-#endif
- }
-
- /*
- * Retry with same object/offset, since new data may
- * be in a different page (i.e., m is meaningless at
- * this point).
- */
- vm_object_lock(object);
- if ((interruptible != THREAD_UNINT) &&
- (current_thread()->state & TH_ABORT)) {
- vm_fault_cleanup(object, first_m);
- thread_interrupt_level(interruptible_state);
- return(VM_FAULT_INTERRUPTED);
- }
- if(m == VM_PAGE_NULL)
- break;
- continue;
- }
- /*
- * The only case in which we get here is if
- * object has no pager (or unwiring). If the pager doesn't
- * have the page this is handled in the m->absent case above
- * (and if you change things here you should look above).
- */
-#if TRACEFAULTPAGE
- dbgTrace(0xBEEF0014, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */
-#endif
- if (object == first_object)
- first_m = m;
- else
- assert(m == VM_PAGE_NULL);
+ if (object_is_contended) {
+ /*
+ * At this point the page is in the vm object, but not on a paging queue.
+ * Since it's accessible to another thread but its contents are invalid
+ * (it hasn't been zeroed) mark it busy before dropping the object lock.
+ */
+ m->vmp_busy = TRUE;
+ vm_object_unlock(object);
+ }
+ if (type_of_fault == DBG_ZERO_FILL_FAULT) {
+ /*
+ * Now zero fill page...
+ * the page is probably going to
+ * be written soon, so don't bother
+ * to clear the modified bit
+ *
+ * NOTE: This code holds the map
+ * lock across the zero fill.
+ */
+ vm_page_zero_fill(m);
+ counter_inc(&vm_statistics_zero_fill_count);
+ DTRACE_VM2(zfod, int, 1, (uint64_t *), NULL);
+ }
+ if (page_needs_data_sync) {
+ pmap_sync_page_data_phys(VM_PAGE_GET_PHYS_PAGE(m));
+ }
+
+ if (top_object != VM_OBJECT_NULL) {
+ need_retry_ptr = &need_retry;
+ } else {
+ need_retry_ptr = NULL;
+ }
+ if (object_is_contended) {
+ kr = vm_fault_pmap_enter(destination_pmap, destination_pmap_vaddr,
+ fault_page_size, fault_phys_offset,
+ m, &prot, caller_prot, enter_fault_type, wired,
+ fault_info.pmap_options, need_retry_ptr);
+ vm_object_lock(object);
+ } else {
+ kr = vm_fault_pmap_enter_with_object_lock(object, destination_pmap, destination_pmap_vaddr,
+ fault_page_size, fault_phys_offset,
+ m, &prot, caller_prot, enter_fault_type, wired,
+ fault_info.pmap_options, need_retry_ptr);
+ }
+ }
+zero_fill_cleanup:
+ if (!VM_DYNAMIC_PAGING_ENABLED() &&
+ (object->purgable == VM_PURGABLE_DENY ||
+ object->purgable == VM_PURGABLE_NONVOLATILE ||
+ object->purgable == VM_PURGABLE_VOLATILE)) {
+ vm_page_lockspin_queues();
+ if (!VM_DYNAMIC_PAGING_ENABLED()) {
+ vm_fault_enqueue_throttled_locked(m);
+ }
+ vm_page_unlock_queues();
+ }
+ vm_fault_enqueue_page(object, m, wired, change_wiring, wire_tag, fault_info.no_cache, &type_of_fault, kr);
+
+ vm_fault_complete(
+ map,
+ real_map,
+ object,
+ m_object,
+ m,
+ offset,
+ trace_real_vaddr,
+ &fault_info,
+ caller_prot,
+ real_vaddr,
+ type_of_fault,
+ need_retry,
+ kr,
+ physpage_p,
+ prot,
+ top_object,
+ need_collapse,
+ cur_offset,
+ fault_type,
+ &written_on_object,
+ &written_on_pager,
+ &written_on_offset);
+ top_object = VM_OBJECT_NULL;
+ if (need_retry == TRUE) {
+ /*
+ * vm_fault_enter couldn't complete the PMAP_ENTER...
+ * at this point we don't hold any locks so it's safe
+ * to ask the pmap layer to expand the page table to
+ * accommodate this mapping... once expanded, we'll
+ * re-drive the fault which should result in vm_fault_enter
+ * being able to successfully enter the mapping this time around
+ */
+ (void)pmap_enter_options(
+ pmap, vaddr, 0, 0, 0, 0, 0,
+ PMAP_OPTIONS_NOENTER, NULL);
- XPR(XPR_VM_FAULT,
- "vm_f_page: no pager obj 0x%X, offset 0x%X, page 0x%X, next_obj 0x%X\n",
- (integer_t)object, offset, (integer_t)m,
- (integer_t)object->shadow, 0);
- /*
- * Move on to the next object. Lock the next
- * object before unlocking the current one.
- */
- next_object = object->shadow;
- if (next_object == VM_OBJECT_NULL) {
- assert(!must_be_resident);
+ need_retry = FALSE;
+ goto RetryFault;
+ }
+ goto done;
+ }
/*
- * If there's no object left, fill the page
- * in the top object with zeros. But first we
- * need to allocate a real page.
+ * On to the next level in the shadow chain
*/
+ cur_offset += cur_object->vo_shadow_offset;
+ new_object = cur_object->shadow;
+ fault_phys_offset = cur_offset - vm_object_trunc_page(cur_offset);
- if (object != first_object) {
- vm_object_paging_end(object);
- vm_object_unlock(object);
-
- object = first_object;
- offset = first_offset;
- vm_object_lock(object);
- }
-
- m = first_m;
- assert(m->object == object);
- first_m = VM_PAGE_NULL;
-
- if (object->shadow_severed) {
- VM_PAGE_FREE(m);
- vm_fault_cleanup(object, VM_PAGE_NULL);
- thread_interrupt_level(interruptible_state);
- return VM_FAULT_MEMORY_ERROR;
+ /*
+ * take the new_object's lock with the indicated state
+ */
+ if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
+ vm_object_lock_shared(new_object);
+ } else {
+ vm_object_lock(new_object);
}
- if (VM_PAGE_THROTTLED() ||
- (m->fictitious && !vm_page_convert(m))) {
- VM_PAGE_FREE(m);
- vm_fault_cleanup(object, VM_PAGE_NULL);
- thread_interrupt_level(interruptible_state);
- return(VM_FAULT_MEMORY_SHORTAGE);
+ if (cur_object != object) {
+ vm_object_unlock(cur_object);
}
- m->no_isync = FALSE;
- if (!no_zero_fill) {
- vm_object_unlock(object);
- vm_page_zero_fill(m);
- if (type_of_fault)
- *type_of_fault = DBG_ZERO_FILL_FAULT;
- VM_STAT(zero_fill_count++);
+ cur_object = new_object;
- if (bumped_pagein == TRUE) {
- VM_STAT(pageins--);
- current_task()->pageins--;
- }
- vm_object_lock(object);
- }
- vm_page_lock_queues();
- VM_PAGE_QUEUES_REMOVE(m);
- if(m->object->size > 0x80000) {
- m->zero_fill = TRUE;
- /* depends on the queues lock */
- vm_zf_count += 1;
- queue_enter(&vm_page_queue_zf,
- m, vm_page_t, pageq);
- } else {
- queue_enter(
- &vm_page_queue_inactive,
- m, vm_page_t, pageq);
- }
- m->page_ticket = vm_page_ticket;
- vm_page_ticket_roll++;
- if(vm_page_ticket_roll == VM_PAGE_TICKETS_IN_ROLL) {
- vm_page_ticket_roll = 0;
- if(vm_page_ticket ==
- VM_PAGE_TICKET_ROLL_IDS)
- vm_page_ticket= 0;
- else
- vm_page_ticket++;
- }
- m->inactive = TRUE;
- vm_page_inactive_count++;
- vm_page_unlock_queues();
- pmap_clear_modify(m->phys_page);
- break;
- }
- else {
- if ((object != first_object) || must_be_resident)
- vm_object_paging_end(object);
- offset += object->shadow_offset;
- hi_offset += object->shadow_offset;
- lo_offset += object->shadow_offset;
- access_required = VM_PROT_READ;
- vm_object_lock(next_object);
- vm_object_unlock(object);
- object = next_object;
- vm_object_paging_begin(object);
+ continue;
}
}
+ /*
+ * Cleanup from fast fault failure. Drop any object
+ * lock other than original and drop map lock.
+ */
+ if (object != cur_object) {
+ vm_object_unlock(cur_object);
+ }
/*
- * PAGE HAS BEEN FOUND.
- *
- * This page (m) is:
- * busy, so that we can play with it;
- * not absent, so that nobody else will fill it;
- * possibly eligible for pageout;
- *
- * The top-level page (first_m) is:
- * VM_PAGE_NULL if the page was found in the
- * top-level object;
- * busy, not absent, and ineligible for pageout.
- *
- * The current object (object) is locked. A paging
- * reference is held for the current and top-level
- * objects.
+ * must own the object lock exclusively at this point
*/
+ if (object_lock_type == OBJECT_LOCK_SHARED) {
+ object_lock_type = OBJECT_LOCK_EXCLUSIVE;
-#if TRACEFAULTPAGE
- dbgTrace(0xBEEF0015, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */
-#endif
-#if EXTRA_ASSERTIONS
- if(m != VM_PAGE_NULL) {
- assert(m->busy && !m->absent);
- assert((first_m == VM_PAGE_NULL) ||
- (first_m->busy && !first_m->absent &&
- !first_m->active && !first_m->inactive));
- }
-#endif /* EXTRA_ASSERTIONS */
-
- XPR(XPR_VM_FAULT,
- "vm_f_page: FOUND obj 0x%X, off 0x%X, page 0x%X, 1_obj 0x%X, 1_m 0x%X\n",
- (integer_t)object, offset, (integer_t)m,
- (integer_t)first_object, (integer_t)first_m);
- /*
- * If the page is being written, but isn't
- * already owned by the top-level object,
- * we have to copy it into a new page owned
- * by the top-level object.
- */
-
- if ((object != first_object) && (m != VM_PAGE_NULL)) {
- /*
- * We only really need to copy if we
- * want to write it.
- */
+ if (vm_object_lock_upgrade(object) == FALSE) {
+ /*
+ * couldn't upgrade, so explictly
+ * take the lock exclusively
+ * no need to retry the fault at this
+ * point since "vm_fault_page" will
+ * completely re-evaluate the state
+ */
+ vm_object_lock(object);
+ }
+ }
-#if TRACEFAULTPAGE
- dbgTrace(0xBEEF0016, (unsigned int) object, (unsigned int) fault_type); /* (TEST/DEBUG) */
-#endif
- if (fault_type & VM_PROT_WRITE) {
- vm_page_t copy_m;
+handle_copy_delay:
+ vm_map_unlock_read(map);
+ if (real_map != map) {
+ vm_map_unlock(real_map);
+ }
- assert(!must_be_resident);
+ if (__improbable(object == compressor_object ||
+ object == kernel_object ||
+ object == vm_submap_object)) {
+ /*
+ * These objects are explicitly managed and populated by the
+ * kernel. The virtual ranges backed by these objects should
+ * either have wired pages or "holes" that are not supposed to
+ * be accessed at all until they get explicitly populated.
+ * We should never have to resolve a fault on a mapping backed
+ * by one of these VM objects and providing a zero-filled page
+ * would be wrong here, so let's fail the fault and let the
+ * caller crash or recover.
+ */
+ vm_object_unlock(object);
+ kr = KERN_MEMORY_ERROR;
+ goto done;
+ }
- /*
- * If we try to collapse first_object at this
- * point, we may deadlock when we try to get
- * the lock on an intermediate object (since we
- * have the bottom object locked). We can't
- * unlock the bottom object, because the page
- * we found may move (by collapse) if we do.
- *
- * Instead, we first copy the page. Then, when
- * we have no more use for the bottom object,
- * we unlock it and try to collapse.
- *
- * Note that we copy the page even if we didn't
- * need to... that's the breaks.
- */
+ assert(object != compressor_object);
+ assert(object != kernel_object);
+ assert(object != vm_submap_object);
- /*
- * Allocate a page for the copy
- */
- copy_m = vm_page_grab();
- if (copy_m == VM_PAGE_NULL) {
- RELEASE_PAGE(m);
- vm_fault_cleanup(object, first_m);
- thread_interrupt_level(interruptible_state);
- return(VM_FAULT_MEMORY_SHORTAGE);
- }
+ if (resilient_media_retry) {
+ /*
+ * We could get here if we failed to get a free page
+ * to zero-fill and had to take the slow path again.
+ * Reset our "recovery-from-failed-media" state.
+ */
+ assert(resilient_media_object != VM_OBJECT_NULL);
+ assert(resilient_media_offset != (vm_object_offset_t)-1);
+ /* release our extra reference on failed object */
+// printf("FBDP %s:%d resilient_media_object %p deallocate\n", __FUNCTION__, __LINE__, resilient_media_object);
+ vm_object_deallocate(resilient_media_object);
+ resilient_media_object = VM_OBJECT_NULL;
+ resilient_media_offset = (vm_object_offset_t)-1;
+ resilient_media_retry = FALSE;
+ }
+ /*
+ * Make a reference to this object to
+ * prevent its disposal while we are messing with
+ * it. Once we have the reference, the map is free
+ * to be diddled. Since objects reference their
+ * shadows (and copies), they will stay around as well.
+ */
+ vm_object_reference_locked(object);
+ vm_object_paging_begin(object);
- XPR(XPR_VM_FAULT,
- "vm_f_page: page_copy obj 0x%X, offset 0x%X, m 0x%X, copy_m 0x%X\n",
- (integer_t)object, offset,
- (integer_t)m, (integer_t)copy_m, 0);
- vm_page_copy(m, copy_m);
+ set_thread_pagein_error(cthread, 0);
+ error_code = 0;
- /*
- * If another map is truly sharing this
- * page with us, we have to flush all
- * uses of the original page, since we
- * can't distinguish those which want the
- * original from those which need the
- * new copy.
- *
- * XXXO If we know that only one map has
- * access to this page, then we could
- * avoid the pmap_page_protect() call.
- */
+ result_page = VM_PAGE_NULL;
+ kr = vm_fault_page(object, offset, fault_type,
+ (change_wiring && !wired),
+ FALSE, /* page not looked up */
+ &prot, &result_page, &top_page,
+ &type_of_fault,
+ &error_code, map->no_zero_fill,
+ FALSE, &fault_info);
- vm_page_lock_queues();
- assert(!m->cleaning);
- pmap_page_protect(m->phys_page, VM_PROT_NONE);
- vm_page_deactivate(m);
- copy_m->dirty = TRUE;
+ /*
+ * if kr != VM_FAULT_SUCCESS, then the paging reference
+ * has been dropped and the object unlocked... the ref_count
+ * is still held
+ *
+ * if kr == VM_FAULT_SUCCESS, then the paging reference
+ * is still held along with the ref_count on the original object
+ *
+ * the object is returned locked with a paging reference
+ *
+ * if top_page != NULL, then it's BUSY and the
+ * object it belongs to has a paging reference
+ * but is returned unlocked
+ */
+ if (kr != VM_FAULT_SUCCESS &&
+ kr != VM_FAULT_SUCCESS_NO_VM_PAGE) {
+ if (kr == VM_FAULT_MEMORY_ERROR &&
+ fault_info.resilient_media) {
+ assertf(object->internal, "object %p", object);
/*
- * Setting reference here prevents this fault from
- * being counted as a (per-thread) reactivate as well
- * as a copy-on-write.
+ * This fault failed but the mapping was
+ * "media resilient", so we'll retry the fault in
+ * recovery mode to get a zero-filled page in the
+ * top object.
+ * Keep the reference on the failing object so
+ * that we can check that the mapping is still
+ * pointing to it when we retry the fault.
*/
- first_m->reference = TRUE;
- vm_page_unlock_queues();
-
+// printf("RESILIENT_MEDIA %s:%d: object %p offset 0x%llx recover from media error 0x%x kr 0x%x top_page %p result_page %p\n", __FUNCTION__, __LINE__, object, offset, error_code, kr, top_page, result_page);
+ assert(!resilient_media_retry); /* no double retry */
+ assert(resilient_media_object == VM_OBJECT_NULL);
+ assert(resilient_media_offset == (vm_object_offset_t)-1);
+ resilient_media_retry = TRUE;
+ resilient_media_object = object;
+ resilient_media_offset = offset;
+// printf("FBDP %s:%d resilient_media_object %p offset 0x%llx kept reference\n", __FUNCTION__, __LINE__, resilient_media_object, resilient_mmedia_offset);
+ goto RetryFault;
+ } else {
/*
- * We no longer need the old page or object.
+ * we didn't succeed, lose the object reference
+ * immediately.
*/
-
- PAGE_WAKEUP_DONE(m);
- vm_object_paging_end(object);
- vm_object_unlock(object);
-
- if (type_of_fault)
- *type_of_fault = DBG_COW_FAULT;
- VM_STAT(cow_faults++);
- current_task()->cow_faults++;
- object = first_object;
- offset = first_offset;
-
- vm_object_lock(object);
- VM_PAGE_FREE(first_m);
- first_m = VM_PAGE_NULL;
- assert(copy_m->busy);
- vm_page_insert(copy_m, object, offset);
- m = copy_m;
-
- /*
- * Now that we've gotten the copy out of the
- * way, let's try to collapse the top object.
- * But we have to play ugly games with
- * paging_in_progress to do that...
- */
-
- vm_object_paging_end(object);
- vm_object_collapse(object);
- vm_object_paging_begin(object);
-
+ vm_object_deallocate(object);
+ object = VM_OBJECT_NULL; /* no longer valid */
}
- else {
- *protection &= (~VM_PROT_WRITE);
+
+ /*
+ * See why we failed, and take corrective action.
+ */
+ switch (kr) {
+ case VM_FAULT_MEMORY_SHORTAGE:
+ if (vm_page_wait((change_wiring) ?
+ THREAD_UNINT :
+ THREAD_ABORTSAFE)) {
+ goto RetryFault;
+ }
+ OS_FALLTHROUGH;
+ case VM_FAULT_INTERRUPTED:
+ kr = KERN_ABORTED;
+ goto done;
+ case VM_FAULT_RETRY:
+ goto RetryFault;
+ case VM_FAULT_MEMORY_ERROR:
+ if (error_code) {
+ kr = error_code;
+ } else {
+ kr = KERN_MEMORY_ERROR;
+ }
+ goto done;
+ default:
+ panic("vm_fault: unexpected error 0x%x from "
+ "vm_fault_page()\n", kr);
}
}
+ m = result_page;
+ m_object = NULL;
+
+ if (m != VM_PAGE_NULL) {
+ m_object = VM_PAGE_OBJECT(m);
+ assert((change_wiring && !wired) ?
+ (top_page == VM_PAGE_NULL) :
+ ((top_page == VM_PAGE_NULL) == (m_object == object)));
+ }
/*
- * Now check whether the page needs to be pushed into the
- * copy object. The use of asymmetric copy on write for
- * shared temporary objects means that we may do two copies to
- * satisfy the fault; one above to get the page from a
- * shadowed object, and one here to push it into the copy.
+ * What to do with the resulting page from vm_fault_page
+ * if it doesn't get entered into the physical map:
*/
+#define RELEASE_PAGE(m) \
+ MACRO_BEGIN \
+ PAGE_WAKEUP_DONE(m); \
+ if ( !VM_PAGE_PAGEABLE(m)) { \
+ vm_page_lockspin_queues(); \
+ if ( !VM_PAGE_PAGEABLE(m)) \
+ vm_page_activate(m); \
+ vm_page_unlock_queues(); \
+ } \
+ MACRO_END
- while ((copy_object = first_object->copy) != VM_OBJECT_NULL &&
- (m!= VM_PAGE_NULL)) {
- vm_object_offset_t copy_offset;
- vm_page_t copy_m;
-
-#if TRACEFAULTPAGE
- dbgTrace(0xBEEF0017, (unsigned int) copy_object, (unsigned int) fault_type); /* (TEST/DEBUG) */
-#endif
- /*
- * If the page is being written, but hasn't been
- * copied to the copy-object, we have to copy it there.
- */
- if ((fault_type & VM_PROT_WRITE) == 0) {
- *protection &= ~VM_PROT_WRITE;
- break;
+ object_locks_dropped = FALSE;
+ /*
+ * We must verify that the maps have not changed
+ * since our last lookup. vm_map_verify() needs the
+ * map lock (shared) but we are holding object locks.
+ * So we do a try_lock() first and, if that fails, we
+ * drop the object locks and go in for the map lock again.
+ */
+ if (!vm_map_try_lock_read(original_map)) {
+ if (m != VM_PAGE_NULL) {
+ old_copy_object = m_object->copy;
+ vm_object_unlock(m_object);
+ } else {
+ old_copy_object = VM_OBJECT_NULL;
+ vm_object_unlock(object);
}
- /*
- * If the page was guaranteed to be resident,
- * we must have already performed the copy.
- */
-
- if (must_be_resident)
- break;
+ object_locks_dropped = TRUE;
- /*
- * Try to get the lock on the copy_object.
- */
- if (!vm_object_lock_try(copy_object)) {
- vm_object_unlock(object);
+ vm_map_lock_read(original_map);
+ }
- mutex_pause(); /* wait a bit */
+ if ((map != original_map) || !vm_map_verify(map, &version)) {
+ if (object_locks_dropped == FALSE) {
+ if (m != VM_PAGE_NULL) {
+ old_copy_object = m_object->copy;
+ vm_object_unlock(m_object);
+ } else {
+ old_copy_object = VM_OBJECT_NULL;
+ vm_object_unlock(object);
+ }
- vm_object_lock(object);
- continue;
+ object_locks_dropped = TRUE;
}
/*
- * Make another reference to the copy-object,
- * to keep it from disappearing during the
- * copy.
+ * no object locks are held at this point
*/
- assert(copy_object->ref_count > 0);
- copy_object->ref_count++;
- VM_OBJ_RES_INCR(copy_object);
+ vm_object_t retry_object;
+ vm_object_offset_t retry_offset;
+ vm_prot_t retry_prot;
/*
- * Does the page exist in the copy?
+ * To avoid trying to write_lock the map while another
+ * thread has it read_locked (in vm_map_pageable), we
+ * do not try for write permission. If the page is
+ * still writable, we will get write permission. If it
+ * is not, or has been marked needs_copy, we enter the
+ * mapping without write permission, and will merely
+ * take another fault.
*/
- copy_offset = first_offset - copy_object->shadow_offset;
- if (copy_object->size <= copy_offset)
- /*
- * Copy object doesn't cover this page -- do nothing.
- */
- ;
- else if ((copy_m =
- vm_page_lookup(copy_object, copy_offset)) != VM_PAGE_NULL) {
- /* Page currently exists in the copy object */
- if (copy_m->busy) {
- /*
- * If the page is being brought
- * in, wait for it and then retry.
- */
- RELEASE_PAGE(m);
- /* take an extra ref so object won't die */
- assert(copy_object->ref_count > 0);
- copy_object->ref_count++;
- vm_object_res_reference(copy_object);
- vm_object_unlock(copy_object);
- vm_fault_cleanup(object, first_m);
- counter(c_vm_fault_page_block_backoff_kernel++);
- vm_object_lock(copy_object);
- assert(copy_object->ref_count > 0);
- VM_OBJ_RES_DECR(copy_object);
- copy_object->ref_count--;
- assert(copy_object->ref_count > 0);
- copy_m = vm_page_lookup(copy_object, copy_offset);
- if (copy_m != VM_PAGE_NULL && copy_m->busy) {
- PAGE_ASSERT_WAIT(copy_m, interruptible);
- vm_object_unlock(copy_object);
- wait_result = thread_block(THREAD_CONTINUE_NULL);
- vm_object_deallocate(copy_object);
- goto backoff;
- } else {
- vm_object_unlock(copy_object);
- vm_object_deallocate(copy_object);
- thread_interrupt_level(interruptible_state);
- return VM_FAULT_RETRY;
- }
- }
- }
- else if (!PAGED_OUT(copy_object, copy_offset)) {
- /*
- * If PAGED_OUT is TRUE, then the page used to exist
- * in the copy-object, and has already been paged out.
- * We don't need to repeat this. If PAGED_OUT is
- * FALSE, then either we don't know (!pager_created,
- * for example) or it hasn't been paged out.
- * (VM_EXTERNAL_STATE_UNKNOWN||VM_EXTERNAL_STATE_ABSENT)
- * We must copy the page to the copy object.
- */
-
- /*
- * Allocate a page for the copy
- */
- copy_m = vm_page_alloc(copy_object, copy_offset);
- if (copy_m == VM_PAGE_NULL) {
- RELEASE_PAGE(m);
- VM_OBJ_RES_DECR(copy_object);
- copy_object->ref_count--;
- assert(copy_object->ref_count > 0);
- vm_object_unlock(copy_object);
- vm_fault_cleanup(object, first_m);
- thread_interrupt_level(interruptible_state);
- return(VM_FAULT_MEMORY_SHORTAGE);
- }
+ map = original_map;
- /*
- * Must copy page into copy-object.
- */
+ kr = vm_map_lookup_locked(&map, vaddr,
+ fault_type & ~VM_PROT_WRITE,
+ OBJECT_LOCK_EXCLUSIVE, &version,
+ &retry_object, &retry_offset, &retry_prot,
+ &wired,
+ &fault_info,
+ &real_map,
+ NULL);
+ pmap = real_map->pmap;
- vm_page_copy(m, copy_m);
-
- /*
- * If the old page was in use by any users
- * of the copy-object, it must be removed
- * from all pmaps. (We can't know which
- * pmaps use it.)
- */
+ if (kr != KERN_SUCCESS) {
+ vm_map_unlock_read(map);
- vm_page_lock_queues();
- assert(!m->cleaning);
- pmap_page_protect(m->phys_page, VM_PROT_NONE);
- copy_m->dirty = TRUE;
- vm_page_unlock_queues();
+ if (m != VM_PAGE_NULL) {
+ assert(VM_PAGE_OBJECT(m) == m_object);
- /*
- * If there's a pager, then immediately
- * page out this page, using the "initialize"
- * option. Else, we use the copy.
- */
+ /*
+ * retake the lock so that
+ * we can drop the paging reference
+ * in vm_fault_cleanup and do the
+ * PAGE_WAKEUP_DONE in RELEASE_PAGE
+ */
+ vm_object_lock(m_object);
- if
-#if MACH_PAGEMAP
- ((!copy_object->pager_created) ||
- vm_external_state_get(
- copy_object->existence_map, copy_offset)
- == VM_EXTERNAL_STATE_ABSENT)
-#else
- (!copy_object->pager_created)
-#endif
- {
- vm_page_lock_queues();
- vm_page_activate(copy_m);
- vm_page_unlock_queues();
- PAGE_WAKEUP_DONE(copy_m);
- }
- else {
- assert(copy_m->busy == TRUE);
+ RELEASE_PAGE(m);
+ vm_fault_cleanup(m_object, top_page);
+ } else {
/*
- * The page is already ready for pageout:
- * not on pageout queues and busy.
- * Unlock everything except the
- * copy_object itself.
+ * retake the lock so that
+ * we can drop the paging reference
+ * in vm_fault_cleanup
*/
+ vm_object_lock(object);
- vm_object_unlock(object);
+ vm_fault_cleanup(object, top_page);
+ }
+ vm_object_deallocate(object);
- /*
- * Write the page to the copy-object,
- * flushing it from the kernel.
- */
+ goto done;
+ }
+ vm_object_unlock(retry_object);
- vm_pageout_initialize_page(copy_m);
+ if ((retry_object != object) || (retry_offset != offset)) {
+ vm_map_unlock_read(map);
+ if (real_map != map) {
+ vm_map_unlock(real_map);
+ }
+
+ if (m != VM_PAGE_NULL) {
+ assert(VM_PAGE_OBJECT(m) == m_object);
/*
- * Since the pageout may have
- * temporarily dropped the
- * copy_object's lock, we
- * check whether we'll have
- * to deallocate the hard way.
+ * retake the lock so that
+ * we can drop the paging reference
+ * in vm_fault_cleanup and do the
+ * PAGE_WAKEUP_DONE in RELEASE_PAGE
*/
+ vm_object_lock(m_object);
- if ((copy_object->shadow != object) ||
- (copy_object->ref_count == 1)) {
- vm_object_unlock(copy_object);
- vm_object_deallocate(copy_object);
- vm_object_lock(object);
- continue;
- }
+ RELEASE_PAGE(m);
+ vm_fault_cleanup(m_object, top_page);
+ } else {
/*
- * Pick back up the old object's
- * lock. [It is safe to do so,
- * since it must be deeper in the
- * object tree.]
+ * retake the lock so that
+ * we can drop the paging reference
+ * in vm_fault_cleanup
*/
-
vm_object_lock(object);
- }
- /*
- * Because we're pushing a page upward
- * in the object tree, we must restart
- * any faults that are waiting here.
- * [Note that this is an expansion of
- * PAGE_WAKEUP that uses the THREAD_RESTART
- * wait result]. Can't turn off the page's
- * busy bit because we're not done with it.
- */
-
- if (m->wanted) {
- m->wanted = FALSE;
- thread_wakeup_with_result((event_t) m,
- THREAD_RESTART);
+ vm_fault_cleanup(object, top_page);
}
- }
+ vm_object_deallocate(object);
+ goto RetryFault;
+ }
/*
- * The reference count on copy_object must be
- * at least 2: one for our extra reference,
- * and at least one from the outside world
- * (we checked that when we last locked
- * copy_object).
+ * Check whether the protection has changed or the object
+ * has been copied while we left the map unlocked.
*/
- copy_object->ref_count--;
- assert(copy_object->ref_count > 0);
- VM_OBJ_RES_DECR(copy_object);
- vm_object_unlock(copy_object);
+ if (pmap_has_prot_policy(pmap, fault_info.pmap_options & PMAP_OPTIONS_TRANSLATED_ALLOW_EXECUTE, retry_prot)) {
+ /* If the pmap layer cares, pass the full set. */
+ prot = retry_prot;
+ } else {
+ prot &= retry_prot;
+ }
+ }
- break;
+ if (object_locks_dropped == TRUE) {
+ if (m != VM_PAGE_NULL) {
+ vm_object_lock(m_object);
+
+ if (m_object->copy != old_copy_object) {
+ /*
+ * The copy object changed while the top-level object
+ * was unlocked, so take away write permission.
+ */
+ assert(!pmap_has_prot_policy(pmap, fault_info.pmap_options & PMAP_OPTIONS_TRANSLATED_ALLOW_EXECUTE, prot));
+ prot &= ~VM_PROT_WRITE;
+ }
+ } else {
+ vm_object_lock(object);
+ }
+
+ object_locks_dropped = FALSE;
}
- *result_page = m;
- *top_page = first_m;
+ if (!need_copy &&
+ !fault_info.no_copy_on_read &&
+ m != VM_PAGE_NULL &&
+ VM_PAGE_OBJECT(m) != object &&
+ !VM_PAGE_OBJECT(m)->pager_trusted &&
+ vm_protect_privileged_from_untrusted &&
+ !((prot & VM_PROT_EXECUTE) &&
+ VM_PAGE_OBJECT(m)->code_signed &&
+ pmap_get_vm_map_cs_enforced(caller_pmap ? caller_pmap : pmap)) &&
+ current_proc_is_privileged()) {
+ /*
+ * We found the page we want in an "untrusted" VM object
+ * down the shadow chain. Since the target is "privileged"
+ * we want to perform a copy-on-read of that page, so that the
+ * mapped object gets a stable copy and does not have to
+ * rely on the "untrusted" object to provide the same
+ * contents if the page gets reclaimed and has to be paged
+ * in again later on.
+ *
+ * Special case: if the mapping is executable and the untrusted
+ * object is code-signed and the process is "cs_enforced", we
+ * do not copy-on-read because that would break code-signing
+ * enforcement expectations (an executable page must belong
+ * to a code-signed object) and we can rely on code-signing
+ * to re-validate the page if it gets evicted and paged back in.
+ */
+// printf("COPY-ON-READ %s:%d map %p vaddr 0x%llx obj %p offset 0x%llx found page %p (obj %p offset 0x%llx) UNTRUSTED -> need copy-on-read\n", __FUNCTION__, __LINE__, map, (uint64_t)vaddr, object, offset, m, VM_PAGE_OBJECT(m), m->vmp_offset);
+ vm_copied_on_read++;
+ need_copy_on_read = TRUE;
+ need_copy = TRUE;
+ } else {
+ need_copy_on_read = FALSE;
+ }
- XPR(XPR_VM_FAULT,
- "vm_f_page: DONE obj 0x%X, offset 0x%X, m 0x%X, first_m 0x%X\n",
- (integer_t)object, offset, (integer_t)m, (integer_t)first_m, 0);
/*
- * If the page can be written, assume that it will be.
- * [Earlier, we restrict the permission to allow write
- * access only if the fault so required, so we don't
- * mark read-only data as dirty.]
+ * If we want to wire down this page, but no longer have
+ * adequate permissions, we must start all over.
+ * If we decided to copy-on-read, we must also start all over.
*/
+ if ((wired && (fault_type != (prot | VM_PROT_WRITE))) ||
+ need_copy_on_read) {
+ vm_map_unlock_read(map);
+ if (real_map != map) {
+ vm_map_unlock(real_map);
+ }
+
+ if (m != VM_PAGE_NULL) {
+ assert(VM_PAGE_OBJECT(m) == m_object);
+
+ RELEASE_PAGE(m);
+
+ vm_fault_cleanup(m_object, top_page);
+ } else {
+ vm_fault_cleanup(object, top_page);
+ }
+
+ vm_object_deallocate(object);
-#if !VM_FAULT_STATIC_CONFIG
- if (vm_fault_dirty_handling && (*protection & VM_PROT_WRITE) &&
- (m != VM_PAGE_NULL)) {
- m->dirty = TRUE;
+ goto RetryFault;
}
-#endif
-#if TRACEFAULTPAGE
- dbgTrace(0xBEEF0018, (unsigned int) object, (unsigned int) vm_page_deactivate_behind); /* (TEST/DEBUG) */
-#endif
- if (vm_page_deactivate_behind) {
- if (offset && /* don't underflow */
- (object->last_alloc == (offset - PAGE_SIZE_64))) {
- m = vm_page_lookup(object, object->last_alloc);
- if ((m != VM_PAGE_NULL) && !m->busy) {
- vm_page_lock_queues();
- vm_page_deactivate(m);
- vm_page_unlock_queues();
+ if (m != VM_PAGE_NULL) {
+ /*
+ * Put this page into the physical map.
+ * We had to do the unlock above because pmap_enter
+ * may cause other faults. The page may be on
+ * the pageout queues. If the pageout daemon comes
+ * across the page, it will remove it from the queues.
+ */
+ if (fault_page_size < PAGE_SIZE) {
+ DEBUG4K_FAULT("map %p original %p pmap %p va 0x%llx pa 0x%llx(0x%llx+0x%llx) prot 0x%x caller_prot 0x%x\n", map, original_map, pmap, (uint64_t)vaddr, (uint64_t)((((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m)) << PAGE_SHIFT) + fault_phys_offset), (uint64_t)(((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m)) << PAGE_SHIFT), (uint64_t)fault_phys_offset, prot, caller_prot);
+ assertf((!(fault_phys_offset & FOURK_PAGE_MASK) &&
+ fault_phys_offset < PAGE_SIZE),
+ "0x%llx\n", (uint64_t)fault_phys_offset);
+ } else {
+ assertf(fault_phys_offset == 0,
+ "0x%llx\n", (uint64_t)fault_phys_offset);
+ }
+ if (caller_pmap) {
+ kr = vm_fault_enter(m,
+ caller_pmap,
+ caller_pmap_addr,
+ fault_page_size,
+ fault_phys_offset,
+ prot,
+ caller_prot,
+ wired,
+ change_wiring,
+ wire_tag,
+ &fault_info,
+ NULL,
+ &type_of_fault);
+ } else {
+ kr = vm_fault_enter(m,
+ pmap,
+ vaddr,
+ fault_page_size,
+ fault_phys_offset,
+ prot,
+ caller_prot,
+ wired,
+ change_wiring,
+ wire_tag,
+ &fault_info,
+ NULL,
+ &type_of_fault);
+ }
+ assert(VM_PAGE_OBJECT(m) == m_object);
+
+ {
+ int event_code = 0;
+
+ if (m_object->internal) {
+ event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_INTERNAL));
+ } else if (m_object->object_is_shared_cache) {
+ event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_SHAREDCACHE));
+ } else {
+ event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_EXTERNAL));
}
-#if TRACEFAULTPAGE
- dbgTrace(0xBEEF0019, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */
-#endif
+
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, event_code, trace_real_vaddr, (fault_info.user_tag << 16) | (caller_prot << 8) | vm_fault_type_for_tracing(need_copy_on_read, type_of_fault), m->vmp_offset, get_current_unique_pid(), 0);
+ KDBG_FILTERED(MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_SLOW), get_current_unique_pid(), 0, 0, 0, 0);
+
+ DTRACE_VM6(real_fault, vm_map_offset_t, real_vaddr, vm_map_offset_t, m->vmp_offset, int, event_code, int, caller_prot, int, type_of_fault, int, fault_info.user_tag);
}
- object->last_alloc = offset;
- }
-#if TRACEFAULTPAGE
- dbgTrace(0xBEEF001A, (unsigned int) VM_FAULT_SUCCESS, 0); /* (TEST/DEBUG) */
-#endif
- thread_interrupt_level(interruptible_state);
- if(*result_page == VM_PAGE_NULL) {
- vm_object_unlock(object);
- }
- return(VM_FAULT_SUCCESS);
+ if (kr != KERN_SUCCESS) {
+ /* abort this page fault */
+ vm_map_unlock_read(map);
+ if (real_map != map) {
+ vm_map_unlock(real_map);
+ }
+ PAGE_WAKEUP_DONE(m);
+ vm_fault_cleanup(m_object, top_page);
+ vm_object_deallocate(object);
+ goto done;
+ }
+ if (physpage_p != NULL) {
+ /* for vm_map_wire_and_extract() */
+ *physpage_p = VM_PAGE_GET_PHYS_PAGE(m);
+ if (prot & VM_PROT_WRITE) {
+ vm_object_lock_assert_exclusive(m_object);
+ m->vmp_dirty = TRUE;
+ }
+ }
+ } else {
+ vm_map_entry_t entry;
+ vm_map_offset_t laddr;
+ vm_map_offset_t ldelta, hdelta;
-#if 0
- block_and_backoff:
- vm_fault_cleanup(object, first_m);
+ /*
+ * do a pmap block mapping from the physical address
+ * in the object
+ */
- counter(c_vm_fault_page_block_backoff_kernel++);
- thread_block(THREAD_CONTINUE_NULL);
-#endif
+ if (real_map != map) {
+ vm_map_unlock(real_map);
+ }
- backoff:
- thread_interrupt_level(interruptible_state);
- if (wait_result == THREAD_INTERRUPTED)
- return VM_FAULT_INTERRUPTED;
- return VM_FAULT_RETRY;
+ if (original_map != map) {
+ vm_map_unlock_read(map);
+ vm_map_lock_read(original_map);
+ map = original_map;
+ }
+ real_map = map;
-#undef RELEASE_PAGE
-}
+ laddr = vaddr;
+ hdelta = 0xFFFFF000;
+ ldelta = 0xFFFFF000;
-/*
- * Routine: vm_fault
- * Purpose:
- * Handle page faults, including pseudo-faults
- * used to change the wiring status of pages.
- * Returns:
- * Explicit continuations have been removed.
- * Implementation:
- * vm_fault and vm_fault_page save mucho state
- * in the moral equivalent of a closure. The state
- * structure is allocated when first entering vm_fault
- * and deallocated when leaving vm_fault.
- */
+ while (vm_map_lookup_entry(map, laddr, &entry)) {
+ if (ldelta > (laddr - entry->vme_start)) {
+ ldelta = laddr - entry->vme_start;
+ }
+ if (hdelta > (entry->vme_end - laddr)) {
+ hdelta = entry->vme_end - laddr;
+ }
+ if (entry->is_sub_map) {
+ laddr = ((laddr - entry->vme_start)
+ + VME_OFFSET(entry));
+ vm_map_lock_read(VME_SUBMAP(entry));
-kern_return_t
-vm_fault(
- vm_map_t map,
- vm_offset_t vaddr,
- vm_prot_t fault_type,
- boolean_t change_wiring,
- int interruptible,
- pmap_t caller_pmap,
- vm_offset_t caller_pmap_addr)
-{
- vm_map_version_t version; /* Map version for verificiation */
- boolean_t wired; /* Should mapping be wired down? */
- vm_object_t object; /* Top-level object */
- vm_object_offset_t offset; /* Top-level offset */
- vm_prot_t prot; /* Protection for mapping */
- vm_behavior_t behavior; /* Expected paging behavior */
- vm_object_offset_t lo_offset, hi_offset;
- vm_object_t old_copy_object; /* Saved copy object */
- vm_page_t result_page; /* Result of vm_fault_page */
- vm_page_t top_page; /* Placeholder page */
- kern_return_t kr;
-
- register
- vm_page_t m; /* Fast access to result_page */
- kern_return_t error_code; /* page error reasons */
- register
- vm_object_t cur_object;
- register
- vm_object_offset_t cur_offset;
- vm_page_t cur_m;
- vm_object_t new_object;
- int type_of_fault;
- vm_map_t pmap_map = map;
- vm_map_t original_map = map;
- pmap_t pmap = NULL;
- boolean_t funnel_set = FALSE;
- funnel_t *curflock;
- thread_t cur_thread;
- boolean_t interruptible_state;
- unsigned int cache_attr;
- int write_startup_file = 0;
- vm_prot_t full_fault_type;
-
-
- KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 0)) | DBG_FUNC_START,
- vaddr,
- 0,
- 0,
- 0,
- 0);
-
- /* at present we do not fully check for execute permission */
- /* we generally treat it is read except in certain device */
- /* memory settings */
- full_fault_type = fault_type;
- if(fault_type & VM_PROT_EXECUTE) {
- fault_type &= ~VM_PROT_EXECUTE;
- fault_type |= VM_PROT_READ;
- }
+ if (map != real_map) {
+ vm_map_unlock_read(map);
+ }
+ if (entry->use_pmap) {
+ vm_map_unlock_read(real_map);
+ real_map = VME_SUBMAP(entry);
+ }
+ map = VME_SUBMAP(entry);
+ } else {
+ break;
+ }
+ }
- interruptible_state = thread_interrupt_level(interruptible);
+ if (vm_map_lookup_entry(map, laddr, &entry) &&
+ (VME_OBJECT(entry) != NULL) &&
+ (VME_OBJECT(entry) == object)) {
+ uint16_t superpage;
+
+ if (!object->pager_created &&
+ object->phys_contiguous &&
+ VME_OFFSET(entry) == 0 &&
+ (entry->vme_end - entry->vme_start == object->vo_size) &&
+ VM_MAP_PAGE_ALIGNED(entry->vme_start, (object->vo_size - 1))) {
+ superpage = VM_MEM_SUPERPAGE;
+ } else {
+ superpage = 0;
+ }
+
+ if (superpage && physpage_p) {
+ /* for vm_map_wire_and_extract() */
+ *physpage_p = (ppnum_t)
+ ((((vm_map_offset_t)
+ object->vo_shadow_offset)
+ + VME_OFFSET(entry)
+ + (laddr - entry->vme_start))
+ >> PAGE_SHIFT);
+ }
+
+ if (caller_pmap) {
+ /*
+ * Set up a block mapped area
+ */
+ assert((uint32_t)((ldelta + hdelta) >> PAGE_SHIFT) == ((ldelta + hdelta) >> PAGE_SHIFT));
+ kr = pmap_map_block(caller_pmap,
+ (addr64_t)(caller_pmap_addr - ldelta),
+ (ppnum_t)((((vm_map_offset_t) (VME_OBJECT(entry)->vo_shadow_offset)) +
+ VME_OFFSET(entry) + (laddr - entry->vme_start) - ldelta) >> PAGE_SHIFT),
+ (uint32_t)((ldelta + hdelta) >> PAGE_SHIFT), prot,
+ (VM_WIMG_MASK & (int)object->wimg_bits) | superpage, 0);
+
+ if (kr != KERN_SUCCESS) {
+ goto cleanup;
+ }
+ } else {
+ /*
+ * Set up a block mapped area
+ */
+ assert((uint32_t)((ldelta + hdelta) >> PAGE_SHIFT) == ((ldelta + hdelta) >> PAGE_SHIFT));
+ kr = pmap_map_block(real_map->pmap,
+ (addr64_t)(vaddr - ldelta),
+ (ppnum_t)((((vm_map_offset_t)(VME_OBJECT(entry)->vo_shadow_offset)) +
+ VME_OFFSET(entry) + (laddr - entry->vme_start) - ldelta) >> PAGE_SHIFT),
+ (uint32_t)((ldelta + hdelta) >> PAGE_SHIFT), prot,
+ (VM_WIMG_MASK & (int)object->wimg_bits) | superpage, 0);
+
+ if (kr != KERN_SUCCESS) {
+ goto cleanup;
+ }
+ }
+ }
+ }
/*
- * assume we will hit a page in the cache
- * otherwise, explicitly override with
- * the real fault type once we determine it
+ * Success
*/
- type_of_fault = DBG_CACHE_HIT_FAULT;
-
- VM_STAT(faults++);
- current_task()->faults++;
+ kr = KERN_SUCCESS;
/*
- * drop funnel if it is already held. Then restore while returning
+ * TODO: could most of the done cases just use cleanup?
*/
- cur_thread = current_thread();
+cleanup:
+ /*
+ * Unlock everything, and return
+ */
+ vm_map_unlock_read(map);
+ if (real_map != map) {
+ vm_map_unlock(real_map);
+ }
+
+ if (m != VM_PAGE_NULL) {
+ assert(VM_PAGE_OBJECT(m) == m_object);
+
+ if (!m_object->internal && (fault_type & VM_PROT_WRITE)) {
+ vm_object_paging_begin(m_object);
+
+ assert(written_on_object == VM_OBJECT_NULL);
+ written_on_object = m_object;
+ written_on_pager = m_object->pager;
+ written_on_offset = m_object->paging_offset + m->vmp_offset;
+ }
+ PAGE_WAKEUP_DONE(m);
- if ((cur_thread->funnel_state & TH_FN_OWNED) == TH_FN_OWNED) {
- funnel_set = TRUE;
- curflock = cur_thread->funnel_lock;
- thread_funnel_set( curflock , FALSE);
+ vm_fault_cleanup(m_object, top_page);
+ } else {
+ vm_fault_cleanup(object, top_page);
}
-
- RetryFault: ;
- /*
- * Find the backing store object and offset into
- * it to begin the search.
- */
- map = original_map;
- vm_map_lock_read(map);
- kr = vm_map_lookup_locked(&map, vaddr, fault_type, &version,
- &object, &offset,
- &prot, &wired,
- &behavior, &lo_offset, &hi_offset, &pmap_map);
+ vm_object_deallocate(object);
- pmap = pmap_map->pmap;
+#undef RELEASE_PAGE
- if (kr != KERN_SUCCESS) {
- vm_map_unlock_read(map);
- goto done;
+done:
+ thread_interrupt_level(interruptible_state);
+
+ if (resilient_media_object != VM_OBJECT_NULL) {
+ assert(resilient_media_retry);
+ assert(resilient_media_offset != (vm_object_offset_t)-1);
+ /* release extra reference on failed object */
+// printf("FBDP %s:%d resilient_media_object %p deallocate\n", __FUNCTION__, __LINE__, resilient_media_object);
+ vm_object_deallocate(resilient_media_object);
+ resilient_media_object = VM_OBJECT_NULL;
+ resilient_media_offset = (vm_object_offset_t)-1;
+ resilient_media_retry = FALSE;
}
+ assert(!resilient_media_retry);
/*
- * If the page is wired, we must fault for the current protection
- * value, to avoid further faults.
+ * Only I/O throttle on faults which cause a pagein/swapin.
*/
+ if ((type_of_fault == DBG_PAGEIND_FAULT) || (type_of_fault == DBG_PAGEINV_FAULT) || (type_of_fault == DBG_COMPRESSOR_SWAPIN_FAULT)) {
+ throttle_lowpri_io(1);
+ } else {
+ if (kr == KERN_SUCCESS && type_of_fault != DBG_CACHE_HIT_FAULT && type_of_fault != DBG_GUARD_FAULT) {
+ if ((throttle_delay = vm_page_throttled(TRUE))) {
+ if (vm_debug_events) {
+ if (type_of_fault == DBG_COMPRESSOR_FAULT) {
+ VM_DEBUG_EVENT(vmf_compressordelay, VMF_COMPRESSORDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0);
+ } else if (type_of_fault == DBG_COW_FAULT) {
+ VM_DEBUG_EVENT(vmf_cowdelay, VMF_COWDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0);
+ } else {
+ VM_DEBUG_EVENT(vmf_zfdelay, VMF_ZFDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0);
+ }
+ }
+ delay(throttle_delay);
+ }
+ }
+ }
- if (wired)
- fault_type = prot | VM_PROT_WRITE;
+ if (written_on_object) {
+ vnode_pager_dirtied(written_on_pager, written_on_offset, written_on_offset + PAGE_SIZE_64);
+
+ vm_object_lock(written_on_object);
+ vm_object_paging_end(written_on_object);
+ vm_object_unlock(written_on_object);
+
+ written_on_object = VM_OBJECT_NULL;
+ }
+
+ if (rtfault) {
+ vm_record_rtfault(cthread, fstart, trace_vaddr, type_of_fault);
+ }
+
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ (MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_END,
+ ((uint64_t)trace_vaddr >> 32),
+ trace_vaddr,
+ kr,
+ vm_fault_type_for_tracing(need_copy_on_read, type_of_fault),
+ 0);
+
+ if (fault_page_size < PAGE_SIZE && kr != KERN_SUCCESS) {
+ DEBUG4K_FAULT("map %p original %p vaddr 0x%llx -> 0x%x\n", map, original_map, (uint64_t)trace_real_vaddr, kr);
+ }
+
+ return kr;
+}
+
+/*
+ * vm_fault_wire:
+ *
+ * Wire down a range of virtual addresses in a map.
+ */
+kern_return_t
+vm_fault_wire(
+ vm_map_t map,
+ vm_map_entry_t entry,
+ vm_prot_t prot,
+ vm_tag_t wire_tag,
+ pmap_t pmap,
+ vm_map_offset_t pmap_addr,
+ ppnum_t *physpage_p)
+{
+ vm_map_offset_t va;
+ vm_map_offset_t end_addr = entry->vme_end;
+ kern_return_t rc;
+ vm_map_size_t effective_page_size;
+
+ assert(entry->in_transition);
+
+ if ((VME_OBJECT(entry) != NULL) &&
+ !entry->is_sub_map &&
+ VME_OBJECT(entry)->phys_contiguous) {
+ return KERN_SUCCESS;
+ }
-#if VM_FAULT_CLASSIFY
- /*
- * Temporary data gathering code
- */
- vm_fault_classify(object, offset, fault_type);
-#endif
/*
- * Fast fault code. The basic idea is to do as much as
- * possible while holding the map lock and object locks.
- * Busy pages are not used until the object lock has to
- * be dropped to do something (copy, zero fill, pmap enter).
- * Similarly, paging references aren't acquired until that
- * point, and object references aren't used.
- *
- * If we can figure out what to do
- * (zero fill, copy on write, pmap enter) while holding
- * the locks, then it gets done. Otherwise, we give up,
- * and use the original fault path (which doesn't hold
- * the map lock, and relies on busy pages).
- * The give up cases include:
- * - Have to talk to pager.
- * - Page is busy, absent or in error.
- * - Pager has locked out desired access.
- * - Fault needs to be restarted.
- * - Have to push page into copy object.
- *
- * The code is an infinite loop that moves one level down
- * the shadow chain each time. cur_object and cur_offset
- * refer to the current object being examined. object and offset
- * are the original object from the map. The loop is at the
- * top level if and only if object and cur_object are the same.
- *
- * Invariants: Map lock is held throughout. Lock is held on
- * original object and cur_object (if different) when
- * continuing or exiting loop.
- *
+ * Inform the physical mapping system that the
+ * range of addresses may not fault, so that
+ * page tables and such can be locked down as well.
*/
+ pmap_pageable(pmap, pmap_addr,
+ pmap_addr + (end_addr - entry->vme_start), FALSE);
/*
- * If this page is to be inserted in a copy delay object
- * for writing, and if the object has a copy, then the
- * copy delay strategy is implemented in the slow fault page.
+ * We simulate a fault to get the page and enter it
+ * in the physical map.
*/
- if (object->copy_strategy != MEMORY_OBJECT_COPY_DELAY ||
- object->copy == VM_OBJECT_NULL ||
- (fault_type & VM_PROT_WRITE) == 0) {
- cur_object = object;
- cur_offset = offset;
-
- while (TRUE) {
- m = vm_page_lookup(cur_object, cur_offset);
- if (m != VM_PAGE_NULL) {
- if (m->busy) {
- wait_result_t result;
- if (object != cur_object)
- vm_object_unlock(object);
+ effective_page_size = MIN(VM_MAP_PAGE_SIZE(map), PAGE_SIZE);
+ for (va = entry->vme_start;
+ va < end_addr;
+ va += effective_page_size) {
+ rc = vm_fault_wire_fast(map, va, prot, wire_tag, entry, pmap,
+ pmap_addr + (va - entry->vme_start),
+ physpage_p);
+ if (rc != KERN_SUCCESS) {
+ rc = vm_fault_internal(map, va, prot, TRUE, wire_tag,
+ ((pmap == kernel_pmap)
+ ? THREAD_UNINT
+ : THREAD_ABORTSAFE),
+ pmap,
+ (pmap_addr +
+ (va - entry->vme_start)),
+ physpage_p);
+ DTRACE_VM2(softlock, int, 1, (uint64_t *), NULL);
+ }
- vm_map_unlock_read(map);
- if (pmap_map != map)
- vm_map_unlock(pmap_map);
+ if (rc != KERN_SUCCESS) {
+ struct vm_map_entry tmp_entry = *entry;
-#if !VM_FAULT_STATIC_CONFIG
- if (!vm_fault_interruptible)
- interruptible = THREAD_UNINT;
-#endif
- result = PAGE_ASSERT_WAIT(m, interruptible);
+ /* unwire wired pages */
+ tmp_entry.vme_end = va;
+ vm_fault_unwire(map,
+ &tmp_entry, FALSE, pmap, pmap_addr);
- vm_object_unlock(cur_object);
+ return rc;
+ }
+ }
+ return KERN_SUCCESS;
+}
- if (result == THREAD_WAITING) {
- result = thread_block(THREAD_CONTINUE_NULL);
+/*
+ * vm_fault_unwire:
+ *
+ * Unwire a range of virtual addresses in a map.
+ */
+void
+vm_fault_unwire(
+ vm_map_t map,
+ vm_map_entry_t entry,
+ boolean_t deallocate,
+ pmap_t pmap,
+ vm_map_offset_t pmap_addr)
+{
+ vm_map_offset_t va;
+ vm_map_offset_t end_addr = entry->vme_end;
+ vm_object_t object;
+ struct vm_object_fault_info fault_info = {};
+ unsigned int unwired_pages;
+ vm_map_size_t effective_page_size;
- counter(c_vm_fault_page_block_busy_kernel++);
- }
- if (result == THREAD_AWAKENED || result == THREAD_RESTART)
- goto RetryFault;
+ object = (entry->is_sub_map) ? VM_OBJECT_NULL : VME_OBJECT(entry);
- kr = KERN_ABORTED;
- goto done;
- }
- if (m->unusual && (m->error || m->restart || m->private
- || m->absent || (fault_type & m->page_lock))) {
+ /*
+ * If it's marked phys_contiguous, then vm_fault_wire() didn't actually
+ * do anything since such memory is wired by default. So we don't have
+ * anything to undo here.
+ */
- /*
- * Unusual case. Give up.
- */
- break;
- }
+ if (object != VM_OBJECT_NULL && object->phys_contiguous) {
+ return;
+ }
- /*
- * Two cases of map in faults:
- * - At top level w/o copy object.
- * - Read fault anywhere.
- * --> must disallow write.
- */
+ fault_info.interruptible = THREAD_UNINT;
+ fault_info.behavior = entry->behavior;
+ fault_info.user_tag = VME_ALIAS(entry);
+ if (entry->iokit_acct ||
+ (!entry->is_sub_map && !entry->use_pmap)) {
+ fault_info.pmap_options |= PMAP_OPTIONS_ALT_ACCT;
+ }
+ fault_info.lo_offset = VME_OFFSET(entry);
+ fault_info.hi_offset = (entry->vme_end - entry->vme_start) + VME_OFFSET(entry);
+ fault_info.no_cache = entry->no_cache;
+ fault_info.stealth = TRUE;
- if (object == cur_object &&
- object->copy == VM_OBJECT_NULL)
- goto FastMapInFault;
+ unwired_pages = 0;
- if ((fault_type & VM_PROT_WRITE) == 0) {
+ /*
+ * Since the pages are wired down, we must be able to
+ * get their mappings from the physical map system.
+ */
- prot &= ~VM_PROT_WRITE;
+ effective_page_size = MIN(VM_MAP_PAGE_SIZE(map), PAGE_SIZE);
+ for (va = entry->vme_start;
+ va < end_addr;
+ va += effective_page_size) {
+ if (object == VM_OBJECT_NULL) {
+ if (pmap) {
+ pmap_change_wiring(pmap,
+ pmap_addr + (va - entry->vme_start), FALSE);
+ }
+ (void) vm_fault(map, va, VM_PROT_NONE,
+ TRUE, VM_KERN_MEMORY_NONE, THREAD_UNINT, pmap, pmap_addr);
+ } else {
+ vm_prot_t prot;
+ vm_page_t result_page;
+ vm_page_t top_page;
+ vm_object_t result_object;
+ vm_fault_return_t result;
- /*
- * Set up to map the page ...
- * mark the page busy, drop
- * locks and take a paging reference
- * on the object with the page.
- */
+ /* cap cluster size at maximum UPL size */
+ upl_size_t cluster_size;
+ if (os_sub_overflow(end_addr, va, &cluster_size)) {
+ cluster_size = 0 - (upl_size_t)PAGE_SIZE;
+ }
+ fault_info.cluster_size = cluster_size;
- if (object != cur_object) {
- vm_object_unlock(object);
- object = cur_object;
- }
-FastMapInFault:
- m->busy = TRUE;
+ do {
+ prot = VM_PROT_NONE;
+ vm_object_lock(object);
vm_object_paging_begin(object);
+ result_page = VM_PAGE_NULL;
+ result = vm_fault_page(
+ object,
+ (VME_OFFSET(entry) +
+ (va - entry->vme_start)),
+ VM_PROT_NONE, TRUE,
+ FALSE, /* page not looked up */
+ &prot, &result_page, &top_page,
+ (int *)0,
+ NULL, map->no_zero_fill,
+ FALSE, &fault_info);
+ } while (result == VM_FAULT_RETRY);
-FastPmapEnter:
- /*
- * Check a couple of global reasons to
- * be conservative about write access.
- * Then do the pmap_enter.
- */
-#if !VM_FAULT_STATIC_CONFIG
- if (vm_fault_dirty_handling
-#if MACH_KDB
- || db_watchpoint_list
-#endif
- && (fault_type & VM_PROT_WRITE) == 0)
- prot &= ~VM_PROT_WRITE;
-#else /* STATIC_CONFIG */
-#if MACH_KDB
- if (db_watchpoint_list
- && (fault_type & VM_PROT_WRITE) == 0)
- prot &= ~VM_PROT_WRITE;
-#endif /* MACH_KDB */
-#endif /* STATIC_CONFIG */
- cache_attr = ((unsigned int)m->object->wimg_bits) & VM_WIMG_MASK;
- if ((m->no_isync == TRUE) ||
- (cache_attr != VM_WIMG_DEFAULT)) {
- pmap_sync_caches_phys(m->phys_page);
- m->no_isync = FALSE;
- }
-
- if(caller_pmap) {
- PMAP_ENTER(caller_pmap,
- caller_pmap_addr, m,
- prot, cache_attr, wired);
- } else {
- PMAP_ENTER(pmap, vaddr, m,
- prot, cache_attr, wired);
- }
-
- /*
- * Grab the queues lock to manipulate
- * the page queues. Change wiring
- * case is obvious. In soft ref bits
- * case activate page only if it fell
- * off paging queues, otherwise just
- * activate it if it's inactive.
- *
- * NOTE: original vm_fault code will
- * move active page to back of active
- * queue. This code doesn't.
- */
- vm_page_lock_queues();
-
- if (m->clustered) {
- vm_pagein_cluster_used++;
- m->clustered = FALSE;
- }
- m->reference = TRUE;
+ /*
+ * If this was a mapping to a file on a device that has been forcibly
+ * unmounted, then we won't get a page back from vm_fault_page(). Just
+ * move on to the next one in case the remaining pages are mapped from
+ * different objects. During a forced unmount, the object is terminated
+ * so the alive flag will be false if this happens. A forced unmount will
+ * will occur when an external disk is unplugged before the user does an
+ * eject, so we don't want to panic in that situation.
+ */
- if (change_wiring) {
- if (wired)
- vm_page_wire(m);
- else
- vm_page_unwire(m);
- }
-#if VM_FAULT_STATIC_CONFIG
- else {
- if (!m->active && !m->inactive)
- vm_page_activate(m);
- }
-#else
- else if (software_reference_bits) {
- if (!m->active && !m->inactive)
- vm_page_activate(m);
- }
- else if (!m->active) {
- vm_page_activate(m);
- }
-#endif
- vm_page_unlock_queues();
+ if (result == VM_FAULT_MEMORY_ERROR && !object->alive) {
+ continue;
+ }
+ if (result == VM_FAULT_MEMORY_ERROR &&
+ object == kernel_object) {
/*
- * That's it, clean up and return.
+ * This must have been allocated with
+ * KMA_KOBJECT and KMA_VAONLY and there's
+ * no physical page at this offset.
+ * We're done (no page to free).
*/
- PAGE_WAKEUP_DONE(m);
- vm_object_paging_end(object);
-
- {
- tws_hash_line_t line;
- task_t task;
-
- task = current_task();
- if((map != NULL) &&
- (task->dynamic_working_set != 0) &&
- !(object->private)) {
- kern_return_t kr;
- vm_object_t base_object;
- vm_object_offset_t base_offset;
- base_object = object;
- base_offset = cur_offset;
- while(base_object->shadow) {
- base_offset +=
- base_object->shadow_offset;
- base_object =
- base_object->shadow;
- }
- kr = tws_lookup((tws_hash_t)
- task->dynamic_working_set,
- base_offset, base_object,
- &line);
- if(kr == KERN_OPERATION_TIMED_OUT){
- write_startup_file = 1;
- } else if (kr != KERN_SUCCESS) {
- kr = tws_insert((tws_hash_t)
- task->dynamic_working_set,
- base_offset, base_object,
- vaddr, pmap_map);
- if(kr == KERN_NO_SPACE) {
- vm_object_unlock(object);
-
- tws_expand_working_set(
- task->dynamic_working_set,
- TWS_HASH_LINE_COUNT,
- FALSE);
-
- vm_object_lock(object);
- }
- if(kr ==
- KERN_OPERATION_TIMED_OUT) {
- write_startup_file = 1;
- }
- }
- }
- }
- vm_object_unlock(object);
-
- vm_map_unlock_read(map);
- if(pmap_map != map)
- vm_map_unlock(pmap_map);
-
- if(write_startup_file)
- tws_send_startup_info(current_task());
-
- if (funnel_set)
- thread_funnel_set( curflock, TRUE);
-
- thread_interrupt_level(interruptible_state);
-
-
- KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 0)) | DBG_FUNC_END,
- vaddr,
- type_of_fault & 0xff,
- KERN_SUCCESS,
- type_of_fault >> 8,
- 0);
-
- return KERN_SUCCESS;
+ assert(deallocate);
+ continue;
}
- /*
- * Copy on write fault. If objects match, then
- * object->copy must not be NULL (else control
- * would be in previous code block), and we
- * have a potential push into the copy object
- * with which we won't cope here.
- */
-
- if (cur_object == object)
- break;
- /*
- * This is now a shadow based copy on write
- * fault -- it requires a copy up the shadow
- * chain.
- *
- * Allocate a page in the original top level
- * object. Give up if allocate fails. Also
- * need to remember current page, as it's the
- * source of the copy.
- */
- cur_m = m;
- m = vm_page_grab();
- if (m == VM_PAGE_NULL) {
- break;
+ if (result != VM_FAULT_SUCCESS) {
+ panic("vm_fault_unwire: failure");
}
- /*
- * Now do the copy. Mark the source busy
- * and take out paging references on both
- * objects.
- *
- * NOTE: This code holds the map lock across
- * the page copy.
- */
- cur_m->busy = TRUE;
- vm_page_copy(cur_m, m);
- vm_page_insert(m, object, offset);
+ result_object = VM_PAGE_OBJECT(result_page);
- vm_object_paging_begin(cur_object);
- vm_object_paging_begin(object);
+ if (deallocate) {
+ assert(VM_PAGE_GET_PHYS_PAGE(result_page) !=
+ vm_page_fictitious_addr);
+ pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(result_page));
+ if (VM_PAGE_WIRED(result_page)) {
+ unwired_pages++;
+ }
+ VM_PAGE_FREE(result_page);
+ } else {
+ if ((pmap) && (VM_PAGE_GET_PHYS_PAGE(result_page) != vm_page_guard_addr)) {
+ pmap_change_wiring(pmap,
+ pmap_addr + (va - entry->vme_start), FALSE);
+ }
- type_of_fault = DBG_COW_FAULT;
- VM_STAT(cow_faults++);
- current_task()->cow_faults++;
- /*
- * Now cope with the source page and object
- * If the top object has a ref count of 1
- * then no other map can access it, and hence
- * it's not necessary to do the pmap_page_protect.
- */
+ if (VM_PAGE_WIRED(result_page)) {
+ vm_page_lockspin_queues();
+ vm_page_unwire(result_page, TRUE);
+ vm_page_unlock_queues();
+ unwired_pages++;
+ }
+ if (entry->zero_wired_pages) {
+ pmap_zero_page(VM_PAGE_GET_PHYS_PAGE(result_page));
+ entry->zero_wired_pages = FALSE;
+ }
+ PAGE_WAKEUP_DONE(result_page);
+ }
+ vm_fault_cleanup(result_object, top_page);
+ }
+ }
- vm_page_lock_queues();
- vm_page_deactivate(cur_m);
- m->dirty = TRUE;
- pmap_page_protect(cur_m->phys_page,
- VM_PROT_NONE);
- vm_page_unlock_queues();
+ /*
+ * Inform the physical mapping system that the range
+ * of addresses may fault, so that page tables and
+ * such may be unwired themselves.
+ */
- PAGE_WAKEUP_DONE(cur_m);
- vm_object_paging_end(cur_object);
- vm_object_unlock(cur_object);
+ pmap_pageable(pmap, pmap_addr,
+ pmap_addr + (end_addr - entry->vme_start), TRUE);
- /*
- * Slight hack to call vm_object collapse
- * and then reuse common map in code.
- * note that the object lock was taken above.
- */
-
- vm_object_paging_end(object);
- vm_object_collapse(object);
- vm_object_paging_begin(object);
+ if (kernel_object == object) {
+ /*
+ * Would like to make user_tag in vm_object_fault_info
+ * vm_tag_t (unsigned short) but user_tag derives its value from
+ * VME_ALIAS(entry) at a few places and VME_ALIAS, in turn, casts
+ * to an _unsigned int_ which is used by non-fault_info paths throughout the
+ * code at many places.
+ *
+ * So, for now, an explicit truncation to unsigned short (vm_tag_t).
+ */
+ assertf((fault_info.user_tag & VME_ALIAS_MASK) == fault_info.user_tag,
+ "VM Tag truncated from 0x%x to 0x%x\n", fault_info.user_tag, (fault_info.user_tag & VME_ALIAS_MASK));
+ vm_tag_update_size((vm_tag_t) fault_info.user_tag, -ptoa_64(unwired_pages));
+ }
+}
- goto FastPmapEnter;
- }
- else {
+/*
+ * vm_fault_wire_fast:
+ *
+ * Handle common case of a wire down page fault at the given address.
+ * If successful, the page is inserted into the associated physical map.
+ * The map entry is passed in to avoid the overhead of a map lookup.
+ *
+ * NOTE: the given address should be truncated to the
+ * proper page address.
+ *
+ * KERN_SUCCESS is returned if the page fault is handled; otherwise,
+ * a standard error specifying why the fault is fatal is returned.
+ *
+ * The map in question must be referenced, and remains so.
+ * Caller has a read lock on the map.
+ *
+ * This is a stripped version of vm_fault() for wiring pages. Anything
+ * other than the common case will return KERN_FAILURE, and the caller
+ * is expected to call vm_fault().
+ */
+static kern_return_t
+vm_fault_wire_fast(
+ __unused vm_map_t map,
+ vm_map_offset_t va,
+ __unused vm_prot_t caller_prot,
+ vm_tag_t wire_tag,
+ vm_map_entry_t entry,
+ pmap_t pmap,
+ vm_map_offset_t pmap_addr,
+ ppnum_t *physpage_p)
+{
+ vm_object_t object;
+ vm_object_offset_t offset;
+ vm_page_t m;
+ vm_prot_t prot;
+ thread_t thread = current_thread();
+ int type_of_fault;
+ kern_return_t kr;
+ vm_map_size_t fault_page_size;
+ vm_map_offset_t fault_phys_offset;
+ struct vm_object_fault_info fault_info = {};
- /*
- * No page at cur_object, cur_offset
- */
+ counter_inc(&vm_statistics_faults);
- if (cur_object->pager_created) {
+ if (thread != THREAD_NULL && thread->task != TASK_NULL) {
+ counter_inc(&thread->task->faults);
+ }
- /*
- * Have to talk to the pager. Give up.
- */
- break;
- }
+/*
+ * Recovery actions
+ */
+#undef RELEASE_PAGE
+#define RELEASE_PAGE(m) { \
+ PAGE_WAKEUP_DONE(m); \
+ vm_page_lockspin_queues(); \
+ vm_page_unwire(m, TRUE); \
+ vm_page_unlock_queues(); \
+}
- if (cur_object->shadow == VM_OBJECT_NULL) {
- if (cur_object->shadow_severed) {
- vm_object_paging_end(object);
- vm_object_unlock(object);
- vm_map_unlock_read(map);
- if(pmap_map != map)
- vm_map_unlock(pmap_map);
+#undef UNLOCK_THINGS
+#define UNLOCK_THINGS { \
+ vm_object_paging_end(object); \
+ vm_object_unlock(object); \
+}
- if(write_startup_file)
- tws_send_startup_info(
- current_task());
+#undef UNLOCK_AND_DEALLOCATE
+#define UNLOCK_AND_DEALLOCATE { \
+ UNLOCK_THINGS; \
+ vm_object_deallocate(object); \
+}
+/*
+ * Give up and have caller do things the hard way.
+ */
- if (funnel_set) {
- thread_funnel_set( curflock, TRUE);
- funnel_set = FALSE;
- }
- thread_interrupt_level(interruptible_state);
+#define GIVE_UP { \
+ UNLOCK_AND_DEALLOCATE; \
+ return(KERN_FAILURE); \
+}
- return VM_FAULT_MEMORY_ERROR;
- }
- /*
- * Zero fill fault. Page gets
- * filled in top object. Insert
- * page, then drop any lower lock.
- * Give up if no page.
- */
- if ((vm_page_free_target -
- ((vm_page_free_target-vm_page_free_min)>>2))
- > vm_page_free_count) {
- break;
- }
- m = vm_page_alloc(object, offset);
- if (m == VM_PAGE_NULL) {
- break;
- }
- /*
- * This is a zero-fill or initial fill
- * page fault. As such, we consider it
- * undefined with respect to instruction
- * execution. i.e. it is the responsibility
- * of higher layers to call for an instruction
- * sync after changing the contents and before
- * sending a program into this area. We
- * choose this approach for performance
- */
+ /*
+ * If this entry is not directly to a vm_object, bail out.
+ */
+ if (entry->is_sub_map) {
+ assert(physpage_p == NULL);
+ return KERN_FAILURE;
+ }
- m->no_isync = FALSE;
+ /*
+ * Find the backing store object and offset into it.
+ */
- if (cur_object != object)
- vm_object_unlock(cur_object);
+ object = VME_OBJECT(entry);
+ offset = (va - entry->vme_start) + VME_OFFSET(entry);
+ prot = entry->protection;
- vm_object_paging_begin(object);
- vm_object_unlock(object);
+ /*
+ * Make a reference to this object to prevent its
+ * disposal while we are messing with it.
+ */
- /*
- * Now zero fill page and map it.
- * the page is probably going to
- * be written soon, so don't bother
- * to clear the modified bit
- *
- * NOTE: This code holds the map
- * lock across the zero fill.
- */
+ vm_object_lock(object);
+ vm_object_reference_locked(object);
+ vm_object_paging_begin(object);
- if (!map->no_zero_fill) {
- vm_page_zero_fill(m);
- type_of_fault = DBG_ZERO_FILL_FAULT;
- VM_STAT(zero_fill_count++);
- }
- vm_page_lock_queues();
- VM_PAGE_QUEUES_REMOVE(m);
-
- m->page_ticket = vm_page_ticket;
- if(m->object->size > 0x80000) {
- m->zero_fill = TRUE;
- /* depends on the queues lock */
- vm_zf_count += 1;
- queue_enter(&vm_page_queue_zf,
- m, vm_page_t, pageq);
- } else {
- queue_enter(
- &vm_page_queue_inactive,
- m, vm_page_t, pageq);
- }
- vm_page_ticket_roll++;
- if(vm_page_ticket_roll ==
- VM_PAGE_TICKETS_IN_ROLL) {
- vm_page_ticket_roll = 0;
- if(vm_page_ticket ==
- VM_PAGE_TICKET_ROLL_IDS)
- vm_page_ticket= 0;
- else
- vm_page_ticket++;
- }
-
- m->inactive = TRUE;
- vm_page_inactive_count++;
- vm_page_unlock_queues();
- vm_object_lock(object);
+ /*
+ * INVARIANTS (through entire routine):
+ *
+ * 1) At all times, we must either have the object
+ * lock or a busy page in some object to prevent
+ * some other thread from trying to bring in
+ * the same page.
+ *
+ * 2) Once we have a busy page, we must remove it from
+ * the pageout queues, so that the pageout daemon
+ * will not grab it away.
+ *
+ */
- goto FastPmapEnter;
- }
+ /*
+ * Look for page in top-level object. If it's not there or
+ * there's something going on, give up.
+ */
+ m = vm_page_lookup(object, vm_object_trunc_page(offset));
+ if ((m == VM_PAGE_NULL) || (m->vmp_busy) ||
+ (m->vmp_unusual && (m->vmp_error || m->vmp_restart || m->vmp_absent))) {
+ GIVE_UP;
+ }
+ if (m->vmp_fictitious &&
+ VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr) {
+ /*
+ * Guard pages are fictitious pages and are never
+ * entered into a pmap, so let's say it's been wired...
+ */
+ kr = KERN_SUCCESS;
+ goto done;
+ }
- /*
- * On to the next level
- */
+ /*
+ * Wire the page down now. All bail outs beyond this
+ * point must unwire the page.
+ */
- cur_offset += cur_object->shadow_offset;
- new_object = cur_object->shadow;
- vm_object_lock(new_object);
- if (cur_object != object)
- vm_object_unlock(cur_object);
- cur_object = new_object;
+ vm_page_lockspin_queues();
+ vm_page_wire(m, wire_tag, TRUE);
+ vm_page_unlock_queues();
- continue;
- }
- }
+ /*
+ * Mark page busy for other threads.
+ */
+ assert(!m->vmp_busy);
+ m->vmp_busy = TRUE;
+ assert(!m->vmp_absent);
/*
- * Cleanup from fast fault failure. Drop any object
- * lock other than original and drop map lock.
+ * Give up if the page is being written and there's a copy object
*/
+ if ((object->copy != VM_OBJECT_NULL) && (prot & VM_PROT_WRITE)) {
+ RELEASE_PAGE(m);
+ GIVE_UP;
+ }
- if (object != cur_object)
- vm_object_unlock(cur_object);
+ fault_info.user_tag = VME_ALIAS(entry);
+ fault_info.pmap_options = 0;
+ if (entry->iokit_acct ||
+ (!entry->is_sub_map && !entry->use_pmap)) {
+ fault_info.pmap_options |= PMAP_OPTIONS_ALT_ACCT;
}
- vm_map_unlock_read(map);
- if(pmap_map != map)
- vm_map_unlock(pmap_map);
+ fault_page_size = MIN(VM_MAP_PAGE_SIZE(map), PAGE_SIZE);
+ fault_phys_offset = offset - vm_object_trunc_page(offset);
- /*
- * Make a reference to this object to
- * prevent its disposal while we are messing with
- * it. Once we have the reference, the map is free
- * to be diddled. Since objects reference their
- * shadows (and copies), they will stay around as well.
+ /*
+ * Put this page into the physical map.
*/
+ type_of_fault = DBG_CACHE_HIT_FAULT;
+ kr = vm_fault_enter(m,
+ pmap,
+ pmap_addr,
+ fault_page_size,
+ fault_phys_offset,
+ prot,
+ prot,
+ TRUE, /* wired */
+ FALSE, /* change_wiring */
+ wire_tag,
+ &fault_info,
+ NULL,
+ &type_of_fault);
+ if (kr != KERN_SUCCESS) {
+ RELEASE_PAGE(m);
+ GIVE_UP;
+ }
- assert(object->ref_count > 0);
- object->ref_count++;
- vm_object_res_reference(object);
- vm_object_paging_begin(object);
+done:
+ /*
+ * Unlock everything, and return
+ */
- XPR(XPR_VM_FAULT,"vm_fault -> vm_fault_page\n",0,0,0,0,0);
- {
- tws_hash_line_t line;
- task_t task;
- kern_return_t kr;
-
- task = current_task();
- if((map != NULL) &&
- (task->dynamic_working_set != 0)
- && !(object->private)) {
- vm_object_t base_object;
- vm_object_offset_t base_offset;
- base_object = object;
- base_offset = offset;
- while(base_object->shadow) {
- base_offset +=
- base_object->shadow_offset;
- base_object =
- base_object->shadow;
- }
- kr = tws_lookup((tws_hash_t)
- task->dynamic_working_set,
- base_offset, base_object,
- &line);
- if(kr == KERN_OPERATION_TIMED_OUT){
- write_startup_file = 1;
- } else if (kr != KERN_SUCCESS) {
- tws_insert((tws_hash_t)
- task->dynamic_working_set,
- base_offset, base_object,
- vaddr, pmap_map);
- kr = tws_insert((tws_hash_t)
- task->dynamic_working_set,
- base_offset, base_object,
- vaddr, pmap_map);
- if(kr == KERN_NO_SPACE) {
- vm_object_unlock(object);
- tws_expand_working_set(
- task->dynamic_working_set,
- TWS_HASH_LINE_COUNT,
- FALSE);
- vm_object_lock(object);
- }
- if(kr == KERN_OPERATION_TIMED_OUT) {
- write_startup_file = 1;
- }
+ if (physpage_p) {
+ /* for vm_map_wire_and_extract() */
+ if (kr == KERN_SUCCESS) {
+ assert(object == VM_PAGE_OBJECT(m));
+ *physpage_p = VM_PAGE_GET_PHYS_PAGE(m);
+ if (prot & VM_PROT_WRITE) {
+ vm_object_lock_assert_exclusive(object);
+ m->vmp_dirty = TRUE;
}
+ } else {
+ *physpage_p = 0;
}
}
- kr = vm_fault_page(object, offset, fault_type,
- (change_wiring && !wired),
- interruptible,
- lo_offset, hi_offset, behavior,
- &prot, &result_page, &top_page,
- &type_of_fault,
- &error_code, map->no_zero_fill, FALSE, map, vaddr);
- /*
- * If we didn't succeed, lose the object reference immediately.
- */
+ PAGE_WAKEUP_DONE(m);
+ UNLOCK_AND_DEALLOCATE;
- if (kr != VM_FAULT_SUCCESS)
- vm_object_deallocate(object);
+ return kr;
+}
- /*
- * See why we failed, and take corrective action.
- */
+/*
+ * Routine: vm_fault_copy_cleanup
+ * Purpose:
+ * Release a page used by vm_fault_copy.
+ */
- switch (kr) {
- case VM_FAULT_SUCCESS:
- break;
- case VM_FAULT_MEMORY_SHORTAGE:
- if (vm_page_wait((change_wiring) ?
- THREAD_UNINT :
- THREAD_ABORTSAFE))
- goto RetryFault;
- /* fall thru */
- case VM_FAULT_INTERRUPTED:
- kr = KERN_ABORTED;
- goto done;
- case VM_FAULT_RETRY:
- goto RetryFault;
- case VM_FAULT_FICTITIOUS_SHORTAGE:
- vm_page_more_fictitious();
- goto RetryFault;
- case VM_FAULT_MEMORY_ERROR:
- if (error_code)
- kr = error_code;
- else
- kr = KERN_MEMORY_ERROR;
- goto done;
+static void
+vm_fault_copy_cleanup(
+ vm_page_t page,
+ vm_page_t top_page)
+{
+ vm_object_t object = VM_PAGE_OBJECT(page);
+
+ vm_object_lock(object);
+ PAGE_WAKEUP_DONE(page);
+ if (!VM_PAGE_PAGEABLE(page)) {
+ vm_page_lockspin_queues();
+ if (!VM_PAGE_PAGEABLE(page)) {
+ vm_page_activate(page);
+ }
+ vm_page_unlock_queues();
}
+ vm_fault_cleanup(object, top_page);
+}
- m = result_page;
+static void
+vm_fault_copy_dst_cleanup(
+ vm_page_t page)
+{
+ vm_object_t object;
- if(m != VM_PAGE_NULL) {
- assert((change_wiring && !wired) ?
- (top_page == VM_PAGE_NULL) :
- ((top_page == VM_PAGE_NULL) == (m->object == object)));
+ if (page != VM_PAGE_NULL) {
+ object = VM_PAGE_OBJECT(page);
+ vm_object_lock(object);
+ vm_page_lockspin_queues();
+ vm_page_unwire(page, TRUE);
+ vm_page_unlock_queues();
+ vm_object_paging_end(object);
+ vm_object_unlock(object);
}
+}
- /*
- * How to clean up the result of vm_fault_page. This
- * happens whether the mapping is entered or not.
- */
+/*
+ * Routine: vm_fault_copy
+ *
+ * Purpose:
+ * Copy pages from one virtual memory object to another --
+ * neither the source nor destination pages need be resident.
+ *
+ * Before actually copying a page, the version associated with
+ * the destination address map wil be verified.
+ *
+ * In/out conditions:
+ * The caller must hold a reference, but not a lock, to
+ * each of the source and destination objects and to the
+ * destination map.
+ *
+ * Results:
+ * Returns KERN_SUCCESS if no errors were encountered in
+ * reading or writing the data. Returns KERN_INTERRUPTED if
+ * the operation was interrupted (only possible if the
+ * "interruptible" argument is asserted). Other return values
+ * indicate a permanent error in copying the data.
+ *
+ * The actual amount of data copied will be returned in the
+ * "copy_size" argument. In the event that the destination map
+ * verification failed, this amount may be less than the amount
+ * requested.
+ */
+kern_return_t
+vm_fault_copy(
+ vm_object_t src_object,
+ vm_object_offset_t src_offset,
+ vm_map_size_t *copy_size, /* INOUT */
+ vm_object_t dst_object,
+ vm_object_offset_t dst_offset,
+ vm_map_t dst_map,
+ vm_map_version_t *dst_version,
+ int interruptible)
+{
+ vm_page_t result_page;
-#define UNLOCK_AND_DEALLOCATE \
- MACRO_BEGIN \
- vm_fault_cleanup(m->object, top_page); \
- vm_object_deallocate(object); \
- MACRO_END
+ vm_page_t src_page;
+ vm_page_t src_top_page;
+ vm_prot_t src_prot;
+
+ vm_page_t dst_page;
+ vm_page_t dst_top_page;
+ vm_prot_t dst_prot;
+
+ vm_map_size_t amount_left;
+ vm_object_t old_copy_object;
+ vm_object_t result_page_object = NULL;
+ kern_return_t error = 0;
+ vm_fault_return_t result;
+
+ vm_map_size_t part_size;
+ struct vm_object_fault_info fault_info_src = {};
+ struct vm_object_fault_info fault_info_dst = {};
/*
- * What to do with the resulting page from vm_fault_page
- * if it doesn't get entered into the physical map:
+ * In order not to confuse the clustered pageins, align
+ * the different offsets on a page boundary.
*/
-#define RELEASE_PAGE(m) \
- MACRO_BEGIN \
- PAGE_WAKEUP_DONE(m); \
- vm_page_lock_queues(); \
- if (!m->active && !m->inactive) \
- vm_page_activate(m); \
- vm_page_unlock_queues(); \
+#define RETURN(x) \
+ MACRO_BEGIN \
+ *copy_size -= amount_left; \
+ MACRO_RETURN(x); \
MACRO_END
- /*
- * We must verify that the maps have not changed
- * since our last lookup.
- */
+ amount_left = *copy_size;
- if(m != VM_PAGE_NULL) {
- old_copy_object = m->object->copy;
- vm_object_unlock(m->object);
- } else {
- old_copy_object = VM_OBJECT_NULL;
- }
- if ((map != original_map) || !vm_map_verify(map, &version)) {
- vm_object_t retry_object;
- vm_object_offset_t retry_offset;
- vm_prot_t retry_prot;
+ fault_info_src.interruptible = interruptible;
+ fault_info_src.behavior = VM_BEHAVIOR_SEQUENTIAL;
+ fault_info_src.lo_offset = vm_object_trunc_page(src_offset);
+ fault_info_src.hi_offset = fault_info_src.lo_offset + amount_left;
+ fault_info_src.stealth = TRUE;
+ fault_info_dst.interruptible = interruptible;
+ fault_info_dst.behavior = VM_BEHAVIOR_SEQUENTIAL;
+ fault_info_dst.lo_offset = vm_object_trunc_page(dst_offset);
+ fault_info_dst.hi_offset = fault_info_dst.lo_offset + amount_left;
+ fault_info_dst.stealth = TRUE;
+
+ do { /* while (amount_left > 0) */
/*
- * To avoid trying to write_lock the map while another
- * thread has it read_locked (in vm_map_pageable), we
- * do not try for write permission. If the page is
- * still writable, we will get write permission. If it
- * is not, or has been marked needs_copy, we enter the
- * mapping without write permission, and will merely
- * take another fault.
+ * There may be a deadlock if both source and destination
+ * pages are the same. To avoid this deadlock, the copy must
+ * start by getting the destination page in order to apply
+ * COW semantics if any.
*/
- map = original_map;
- vm_map_lock_read(map);
- kr = vm_map_lookup_locked(&map, vaddr,
- fault_type & ~VM_PROT_WRITE, &version,
- &retry_object, &retry_offset, &retry_prot,
- &wired, &behavior, &lo_offset, &hi_offset,
- &pmap_map);
- pmap = pmap_map->pmap;
- if (kr != KERN_SUCCESS) {
- vm_map_unlock_read(map);
- if(m != VM_PAGE_NULL) {
- vm_object_lock(m->object);
- RELEASE_PAGE(m);
- UNLOCK_AND_DEALLOCATE;
- } else {
- vm_object_deallocate(object);
- }
- goto done;
- }
+RetryDestinationFault:;
- vm_object_unlock(retry_object);
- if(m != VM_PAGE_NULL) {
- vm_object_lock(m->object);
- } else {
- vm_object_lock(object);
- }
+ dst_prot = VM_PROT_WRITE | VM_PROT_READ;
- if ((retry_object != object) ||
- (retry_offset != offset)) {
- vm_map_unlock_read(map);
- if(pmap_map != map)
- vm_map_unlock(pmap_map);
- if(m != VM_PAGE_NULL) {
- RELEASE_PAGE(m);
- UNLOCK_AND_DEALLOCATE;
+ vm_object_lock(dst_object);
+ vm_object_paging_begin(dst_object);
+
+ /* cap cluster size at maximum UPL size */
+ upl_size_t cluster_size;
+ if (os_convert_overflow(amount_left, &cluster_size)) {
+ cluster_size = 0 - (upl_size_t)PAGE_SIZE;
+ }
+ fault_info_dst.cluster_size = cluster_size;
+
+ dst_page = VM_PAGE_NULL;
+ result = vm_fault_page(dst_object,
+ vm_object_trunc_page(dst_offset),
+ VM_PROT_WRITE | VM_PROT_READ,
+ FALSE,
+ FALSE, /* page not looked up */
+ &dst_prot, &dst_page, &dst_top_page,
+ (int *)0,
+ &error,
+ dst_map->no_zero_fill,
+ FALSE, &fault_info_dst);
+ switch (result) {
+ case VM_FAULT_SUCCESS:
+ break;
+ case VM_FAULT_RETRY:
+ goto RetryDestinationFault;
+ case VM_FAULT_MEMORY_SHORTAGE:
+ if (vm_page_wait(interruptible)) {
+ goto RetryDestinationFault;
+ }
+ OS_FALLTHROUGH;
+ case VM_FAULT_INTERRUPTED:
+ RETURN(MACH_SEND_INTERRUPTED);
+ case VM_FAULT_SUCCESS_NO_VM_PAGE:
+ /* success but no VM page: fail the copy */
+ vm_object_paging_end(dst_object);
+ vm_object_unlock(dst_object);
+ OS_FALLTHROUGH;
+ case VM_FAULT_MEMORY_ERROR:
+ if (error) {
+ return error;
} else {
- vm_object_deallocate(object);
+ return KERN_MEMORY_ERROR;
}
- goto RetryFault;
+ default:
+ panic("vm_fault_copy: unexpected error 0x%x from "
+ "vm_fault_page()\n", result);
}
+ assert((dst_prot & VM_PROT_WRITE) != VM_PROT_NONE);
+
+ assert(dst_object == VM_PAGE_OBJECT(dst_page));
+ old_copy_object = dst_object->copy;
/*
- * Check whether the protection has changed or the object
- * has been copied while we left the map unlocked.
+ * There exists the possiblity that the source and
+ * destination page are the same. But we can't
+ * easily determine that now. If they are the
+ * same, the call to vm_fault_page() for the
+ * destination page will deadlock. To prevent this we
+ * wire the page so we can drop busy without having
+ * the page daemon steal the page. We clean up the
+ * top page but keep the paging reference on the object
+ * holding the dest page so it doesn't go away.
*/
- prot &= retry_prot;
- if(m != VM_PAGE_NULL) {
- vm_object_unlock(m->object);
- } else {
- vm_object_unlock(object);
- }
- }
- if(m != VM_PAGE_NULL) {
- vm_object_lock(m->object);
- } else {
- vm_object_lock(object);
- }
-
- /*
- * If the copy object changed while the top-level object
- * was unlocked, then we must take away write permission.
- */
-
- if(m != VM_PAGE_NULL) {
- if (m->object->copy != old_copy_object)
- prot &= ~VM_PROT_WRITE;
- }
- /*
- * If we want to wire down this page, but no longer have
- * adequate permissions, we must start all over.
- */
+ vm_page_lockspin_queues();
+ vm_page_wire(dst_page, VM_KERN_MEMORY_OSFMK, TRUE);
+ vm_page_unlock_queues();
+ PAGE_WAKEUP_DONE(dst_page);
+ vm_object_unlock(dst_object);
- if (wired && (fault_type != (prot|VM_PROT_WRITE))) {
- vm_map_verify_done(map, &version);
- if(pmap_map != map)
- vm_map_unlock(pmap_map);
- if(m != VM_PAGE_NULL) {
- RELEASE_PAGE(m);
- UNLOCK_AND_DEALLOCATE;
- } else {
- vm_object_deallocate(object);
+ if (dst_top_page != VM_PAGE_NULL) {
+ vm_object_lock(dst_object);
+ VM_PAGE_FREE(dst_top_page);
+ vm_object_paging_end(dst_object);
+ vm_object_unlock(dst_object);
}
- goto RetryFault;
- }
- /*
- * Put this page into the physical map.
- * We had to do the unlock above because pmap_enter
- * may cause other faults. The page may be on
- * the pageout queues. If the pageout daemon comes
- * across the page, it will remove it from the queues.
- */
- if (m != VM_PAGE_NULL) {
- if (m->no_isync == TRUE) {
- pmap_sync_caches_phys(m->phys_page);
+RetrySourceFault:;
- m->no_isync = FALSE;
- }
+ if (src_object == VM_OBJECT_NULL) {
+ /*
+ * No source object. We will just
+ * zero-fill the page in dst_object.
+ */
+ src_page = VM_PAGE_NULL;
+ result_page = VM_PAGE_NULL;
+ } else {
+ vm_object_lock(src_object);
+ src_page = vm_page_lookup(src_object,
+ vm_object_trunc_page(src_offset));
+ if (src_page == dst_page) {
+ src_prot = dst_prot;
+ result_page = VM_PAGE_NULL;
+ } else {
+ src_prot = VM_PROT_READ;
+ vm_object_paging_begin(src_object);
- cache_attr = ((unsigned int)m->object->wimg_bits) & VM_WIMG_MASK;
+ /* cap cluster size at maximum UPL size */
+ if (os_convert_overflow(amount_left, &cluster_size)) {
+ cluster_size = 0 - (upl_size_t)PAGE_SIZE;
+ }
+ fault_info_src.cluster_size = cluster_size;
- if(caller_pmap) {
- PMAP_ENTER(caller_pmap,
- caller_pmap_addr, m,
- prot, cache_attr, wired);
- } else {
- PMAP_ENTER(pmap, vaddr, m,
- prot, cache_attr, wired);
- }
- {
- tws_hash_line_t line;
- task_t task;
- kern_return_t kr;
-
- task = current_task();
- if((map != NULL) &&
- (task->dynamic_working_set != 0)
- && (object->private)) {
- vm_object_t base_object;
- vm_object_offset_t base_offset;
- base_object = m->object;
- base_offset = m->offset;
- while(base_object->shadow) {
- base_offset +=
- base_object->shadow_offset;
- base_object =
- base_object->shadow;
- }
- kr = tws_lookup((tws_hash_t)
- task->dynamic_working_set,
- base_offset, base_object, &line);
- if(kr == KERN_OPERATION_TIMED_OUT){
- write_startup_file = 1;
- } else if (kr != KERN_SUCCESS) {
- tws_insert((tws_hash_t)
- task->dynamic_working_set,
- base_offset, base_object,
- vaddr, pmap_map);
- kr = tws_insert((tws_hash_t)
- task->dynamic_working_set,
- base_offset, base_object,
- vaddr, pmap_map);
- if(kr == KERN_NO_SPACE) {
- vm_object_unlock(m->object);
- tws_expand_working_set(
- task->dynamic_working_set,
- TWS_HASH_LINE_COUNT,
- FALSE);
- vm_object_lock(m->object);
+ result_page = VM_PAGE_NULL;
+ result = vm_fault_page(
+ src_object,
+ vm_object_trunc_page(src_offset),
+ VM_PROT_READ, FALSE,
+ FALSE, /* page not looked up */
+ &src_prot,
+ &result_page, &src_top_page,
+ (int *)0, &error, FALSE,
+ FALSE, &fault_info_src);
+
+ switch (result) {
+ case VM_FAULT_SUCCESS:
+ break;
+ case VM_FAULT_RETRY:
+ goto RetrySourceFault;
+ case VM_FAULT_MEMORY_SHORTAGE:
+ if (vm_page_wait(interruptible)) {
+ goto RetrySourceFault;
}
- if(kr == KERN_OPERATION_TIMED_OUT) {
- write_startup_file = 1;
+ OS_FALLTHROUGH;
+ case VM_FAULT_INTERRUPTED:
+ vm_fault_copy_dst_cleanup(dst_page);
+ RETURN(MACH_SEND_INTERRUPTED);
+ case VM_FAULT_SUCCESS_NO_VM_PAGE:
+ /* success but no VM page: fail */
+ vm_object_paging_end(src_object);
+ vm_object_unlock(src_object);
+ OS_FALLTHROUGH;
+ case VM_FAULT_MEMORY_ERROR:
+ vm_fault_copy_dst_cleanup(dst_page);
+ if (error) {
+ return error;
+ } else {
+ return KERN_MEMORY_ERROR;
}
+ default:
+ panic("vm_fault_copy(2): unexpected "
+ "error 0x%x from "
+ "vm_fault_page()\n", result);
}
+
+ result_page_object = VM_PAGE_OBJECT(result_page);
+ assert((src_top_page == VM_PAGE_NULL) ==
+ (result_page_object == src_object));
}
+ assert((src_prot & VM_PROT_READ) != VM_PROT_NONE);
+ vm_object_unlock(result_page_object);
}
- } else {
-
-#ifndef i386
- int memattr;
- vm_map_entry_t entry;
- vm_offset_t laddr;
- vm_offset_t ldelta, hdelta;
-
- /*
- * do a pmap block mapping from the physical address
- * in the object
- */
-
- /* While we do not worry about execution protection in */
- /* general, certian pages may have instruction execution */
- /* disallowed. We will check here, and if not allowed */
- /* to execute, we return with a protection failure. */
- if((full_fault_type & VM_PROT_EXECUTE) &&
- (pmap_canExecute((ppnum_t)
- (object->shadow_offset >> 12)) < 1)) {
+ vm_map_lock_read(dst_map);
- vm_map_verify_done(map, &version);
- if(pmap_map != map)
- vm_map_unlock(pmap_map);
- vm_fault_cleanup(object, top_page);
- vm_object_deallocate(object);
- kr = KERN_PROTECTION_FAILURE;
- goto done;
+ if (!vm_map_verify(dst_map, dst_version)) {
+ vm_map_unlock_read(dst_map);
+ if (result_page != VM_PAGE_NULL && src_page != dst_page) {
+ vm_fault_copy_cleanup(result_page, src_top_page);
+ }
+ vm_fault_copy_dst_cleanup(dst_page);
+ break;
}
+ assert(dst_object == VM_PAGE_OBJECT(dst_page));
- if(pmap_map != map) {
- vm_map_unlock(pmap_map);
- }
- if (original_map != map) {
- vm_map_unlock_read(map);
- vm_map_lock_read(original_map);
- map = original_map;
+ vm_object_lock(dst_object);
+
+ if (dst_object->copy != old_copy_object) {
+ vm_object_unlock(dst_object);
+ vm_map_unlock_read(dst_map);
+ if (result_page != VM_PAGE_NULL && src_page != dst_page) {
+ vm_fault_copy_cleanup(result_page, src_top_page);
+ }
+ vm_fault_copy_dst_cleanup(dst_page);
+ break;
}
- pmap_map = map;
+ vm_object_unlock(dst_object);
- laddr = vaddr;
- hdelta = 0xFFFFF000;
- ldelta = 0xFFFFF000;
+ /*
+ * Copy the page, and note that it is dirty
+ * immediately.
+ */
+ if (!page_aligned(src_offset) ||
+ !page_aligned(dst_offset) ||
+ !page_aligned(amount_left)) {
+ vm_object_offset_t src_po,
+ dst_po;
- while(vm_map_lookup_entry(map, laddr, &entry)) {
- if(ldelta > (laddr - entry->vme_start))
- ldelta = laddr - entry->vme_start;
- if(hdelta > (entry->vme_end - laddr))
- hdelta = entry->vme_end - laddr;
- if(entry->is_sub_map) {
-
- laddr = (laddr - entry->vme_start)
- + entry->offset;
- vm_map_lock_read(entry->object.sub_map);
- if(map != pmap_map)
- vm_map_unlock_read(map);
- if(entry->use_pmap) {
- vm_map_unlock_read(pmap_map);
- pmap_map = entry->object.sub_map;
- }
- map = entry->object.sub_map;
-
+ src_po = src_offset - vm_object_trunc_page(src_offset);
+ dst_po = dst_offset - vm_object_trunc_page(dst_offset);
+
+ if (dst_po > src_po) {
+ part_size = PAGE_SIZE - dst_po;
} else {
- break;
+ part_size = PAGE_SIZE - src_po;
+ }
+ if (part_size > (amount_left)) {
+ part_size = amount_left;
}
- }
-
- if(vm_map_lookup_entry(map, laddr, &entry) &&
- (entry->object.vm_object != NULL) &&
- (entry->object.vm_object == object)) {
-
- if(caller_pmap) {
- /* Set up a block mapped area */
- pmap_map_block(caller_pmap,
- (addr64_t)(caller_pmap_addr - ldelta),
- (((vm_offset_t)
- (entry->object.vm_object->shadow_offset))
- + entry->offset +
- (laddr - entry->vme_start)
- - ldelta)>>12,
- ldelta + hdelta, prot,
- (VM_WIMG_MASK & (int)object->wimg_bits), 0);
- } else {
- /* Set up a block mapped area */
- pmap_map_block(pmap_map->pmap,
- (addr64_t)(vaddr - ldelta),
- (((vm_offset_t)
- (entry->object.vm_object->shadow_offset))
- + entry->offset +
- (laddr - entry->vme_start) - ldelta)>>12,
- ldelta + hdelta, prot,
- (VM_WIMG_MASK & (int)object->wimg_bits), 0);
+ if (result_page == VM_PAGE_NULL) {
+ assert((vm_offset_t) dst_po == dst_po);
+ assert((vm_size_t) part_size == part_size);
+ vm_page_part_zero_fill(dst_page,
+ (vm_offset_t) dst_po,
+ (vm_size_t) part_size);
+ } else {
+ assert((vm_offset_t) src_po == src_po);
+ assert((vm_offset_t) dst_po == dst_po);
+ assert((vm_size_t) part_size == part_size);
+ vm_page_part_copy(result_page,
+ (vm_offset_t) src_po,
+ dst_page,
+ (vm_offset_t) dst_po,
+ (vm_size_t)part_size);
+ if (!dst_page->vmp_dirty) {
+ vm_object_lock(dst_object);
+ SET_PAGE_DIRTY(dst_page, TRUE);
+ vm_object_unlock(dst_object);
+ }
}
- }
-#else
-#ifdef notyet
- if(caller_pmap) {
- pmap_enter(caller_pmap, caller_pmap_addr,
- object->shadow_offset>>12, prot, 0, TRUE);
} else {
- pmap_enter(pmap, vaddr,
- object->shadow_offset>>12, prot, 0, TRUE);
- }
- /* Map it in */
-#endif
-#endif
-
- }
+ part_size = PAGE_SIZE;
- /*
- * If the page is not wired down and isn't already
- * on a pageout queue, then put it where the
- * pageout daemon can find it.
- */
- if(m != VM_PAGE_NULL) {
- vm_page_lock_queues();
+ if (result_page == VM_PAGE_NULL) {
+ vm_page_zero_fill(dst_page);
+ } else {
+ vm_object_lock(result_page_object);
+ vm_page_copy(result_page, dst_page);
+ vm_object_unlock(result_page_object);
- if (change_wiring) {
- if (wired)
- vm_page_wire(m);
- else
- vm_page_unwire(m);
- }
-#if VM_FAULT_STATIC_CONFIG
- else {
- if (!m->active && !m->inactive)
- vm_page_activate(m);
- m->reference = TRUE;
- }
-#else
- else if (software_reference_bits) {
- if (!m->active && !m->inactive)
- vm_page_activate(m);
- m->reference = TRUE;
- } else {
- vm_page_activate(m);
+ if (!dst_page->vmp_dirty) {
+ vm_object_lock(dst_object);
+ SET_PAGE_DIRTY(dst_page, TRUE);
+ vm_object_unlock(dst_object);
+ }
+ }
}
-#endif
- vm_page_unlock_queues();
- }
- /*
- * Unlock everything, and return
- */
+ /*
+ * Unlock everything, and return
+ */
- vm_map_verify_done(map, &version);
- if(pmap_map != map)
- vm_map_unlock(pmap_map);
- if(m != VM_PAGE_NULL) {
- PAGE_WAKEUP_DONE(m);
- UNLOCK_AND_DEALLOCATE;
- } else {
- vm_fault_cleanup(object, top_page);
- vm_object_deallocate(object);
- }
- kr = KERN_SUCCESS;
+ vm_map_unlock_read(dst_map);
-#undef UNLOCK_AND_DEALLOCATE
-#undef RELEASE_PAGE
+ if (result_page != VM_PAGE_NULL && src_page != dst_page) {
+ vm_fault_copy_cleanup(result_page, src_top_page);
+ }
+ vm_fault_copy_dst_cleanup(dst_page);
- done:
- if(write_startup_file)
- tws_send_startup_info(current_task());
- if (funnel_set) {
- thread_funnel_set( curflock, TRUE);
- funnel_set = FALSE;
- }
- thread_interrupt_level(interruptible_state);
+ amount_left -= part_size;
+ src_offset += part_size;
+ dst_offset += part_size;
+ } while (amount_left > 0);
- KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 0)) | DBG_FUNC_END,
- vaddr,
- type_of_fault & 0xff,
- kr,
- type_of_fault >> 8,
- 0);
+ RETURN(KERN_SUCCESS);
+#undef RETURN
- return(kr);
+ /*NOTREACHED*/
}
+#if VM_FAULT_CLASSIFY
/*
- * vm_fault_wire:
- *
- * Wire down a range of virtual addresses in a map.
+ * Temporary statistics gathering support.
*/
-kern_return_t
-vm_fault_wire(
- vm_map_t map,
- vm_map_entry_t entry,
- pmap_t pmap,
- vm_offset_t pmap_addr)
-{
-
- register vm_offset_t va;
- register vm_offset_t end_addr = entry->vme_end;
- register kern_return_t rc;
-
- assert(entry->in_transition);
-
- if ((entry->object.vm_object != NULL) &&
- !entry->is_sub_map &&
- entry->object.vm_object->phys_contiguous) {
- return KERN_SUCCESS;
- }
-
- /*
- * Inform the physical mapping system that the
- * range of addresses may not fault, so that
- * page tables and such can be locked down as well.
- */
-
- pmap_pageable(pmap, pmap_addr,
- pmap_addr + (end_addr - entry->vme_start), FALSE);
-
- /*
- * We simulate a fault to get the page and enter it
- * in the physical map.
- */
- for (va = entry->vme_start; va < end_addr; va += PAGE_SIZE) {
- if ((rc = vm_fault_wire_fast(
- map, va, entry, pmap,
- pmap_addr + (va - entry->vme_start)
- )) != KERN_SUCCESS) {
- rc = vm_fault(map, va, VM_PROT_NONE, TRUE,
- (pmap == kernel_pmap) ?
- THREAD_UNINT : THREAD_ABORTSAFE,
- pmap, pmap_addr + (va - entry->vme_start));
- }
+/*
+ * Statistics arrays:
+ */
+#define VM_FAULT_TYPES_MAX 5
+#define VM_FAULT_LEVEL_MAX 8
- if (rc != KERN_SUCCESS) {
- struct vm_map_entry tmp_entry = *entry;
+int vm_fault_stats[VM_FAULT_TYPES_MAX][VM_FAULT_LEVEL_MAX];
- /* unwire wired pages */
- tmp_entry.vme_end = va;
- vm_fault_unwire(map,
- &tmp_entry, FALSE, pmap, pmap_addr);
+#define VM_FAULT_TYPE_ZERO_FILL 0
+#define VM_FAULT_TYPE_MAP_IN 1
+#define VM_FAULT_TYPE_PAGER 2
+#define VM_FAULT_TYPE_COPY 3
+#define VM_FAULT_TYPE_OTHER 4
- return rc;
- }
- }
- return KERN_SUCCESS;
-}
-/*
- * vm_fault_unwire:
- *
- * Unwire a range of virtual addresses in a map.
- */
void
-vm_fault_unwire(
- vm_map_t map,
- vm_map_entry_t entry,
- boolean_t deallocate,
- pmap_t pmap,
- vm_offset_t pmap_addr)
+vm_fault_classify(vm_object_t object,
+ vm_object_offset_t offset,
+ vm_prot_t fault_type)
{
- register vm_offset_t va;
- register vm_offset_t end_addr = entry->vme_end;
- vm_object_t object;
-
- object = (entry->is_sub_map)
- ? VM_OBJECT_NULL : entry->object.vm_object;
-
- /*
- * Since the pages are wired down, we must be able to
- * get their mappings from the physical map system.
- */
-
- for (va = entry->vme_start; va < end_addr; va += PAGE_SIZE) {
- pmap_change_wiring(pmap,
- pmap_addr + (va - entry->vme_start), FALSE);
+ int type, level = 0;
+ vm_page_t m;
- if (object == VM_OBJECT_NULL) {
- (void) vm_fault(map, va, VM_PROT_NONE,
- TRUE, THREAD_UNINT, pmap, pmap_addr);
- } else if (object->phys_contiguous) {
- continue;
+ while (TRUE) {
+ m = vm_page_lookup(object, offset);
+ if (m != VM_PAGE_NULL) {
+ if (m->vmp_busy || m->vmp_error || m->vmp_restart || m->vmp_absent) {
+ type = VM_FAULT_TYPE_OTHER;
+ break;
+ }
+ if (((fault_type & VM_PROT_WRITE) == 0) ||
+ ((level == 0) && object->copy == VM_OBJECT_NULL)) {
+ type = VM_FAULT_TYPE_MAP_IN;
+ break;
+ }
+ type = VM_FAULT_TYPE_COPY;
+ break;
} else {
- vm_prot_t prot;
- vm_page_t result_page;
- vm_page_t top_page;
- vm_object_t result_object;
- vm_fault_return_t result;
-
- do {
- prot = VM_PROT_NONE;
-
- vm_object_lock(object);
- vm_object_paging_begin(object);
- XPR(XPR_VM_FAULT,
- "vm_fault_unwire -> vm_fault_page\n",
- 0,0,0,0,0);
- result = vm_fault_page(object,
- entry->offset +
- (va - entry->vme_start),
- VM_PROT_NONE, TRUE,
- THREAD_UNINT,
- entry->offset,
- entry->offset +
- (entry->vme_end
- - entry->vme_start),
- entry->behavior,
- &prot,
- &result_page,
- &top_page,
- (int *)0,
- 0, map->no_zero_fill,
- FALSE, NULL, 0);
- } while (result == VM_FAULT_RETRY);
-
- if (result != VM_FAULT_SUCCESS)
- panic("vm_fault_unwire: failure");
-
- result_object = result_page->object;
- if (deallocate) {
- assert(!result_page->fictitious);
- pmap_page_protect(result_page->phys_page,
- VM_PROT_NONE);
- VM_PAGE_FREE(result_page);
- } else {
- vm_page_lock_queues();
- vm_page_unwire(result_page);
- vm_page_unlock_queues();
- PAGE_WAKEUP_DONE(result_page);
+ if (object->pager_created) {
+ type = VM_FAULT_TYPE_PAGER;
+ break;
+ }
+ if (object->shadow == VM_OBJECT_NULL) {
+ type = VM_FAULT_TYPE_ZERO_FILL;
+ break;
}
- vm_fault_cleanup(result_object, top_page);
+ offset += object->vo_shadow_offset;
+ object = object->shadow;
+ level++;
+ continue;
}
}
- /*
- * Inform the physical mapping system that the range
- * of addresses may fault, so that page tables and
- * such may be unwired themselves.
- */
-
- pmap_pageable(pmap, pmap_addr,
- pmap_addr + (end_addr - entry->vme_start), TRUE);
-
-}
-
-/*
- * vm_fault_wire_fast:
- *
- * Handle common case of a wire down page fault at the given address.
- * If successful, the page is inserted into the associated physical map.
- * The map entry is passed in to avoid the overhead of a map lookup.
- *
- * NOTE: the given address should be truncated to the
- * proper page address.
- *
- * KERN_SUCCESS is returned if the page fault is handled; otherwise,
- * a standard error specifying why the fault is fatal is returned.
- *
- * The map in question must be referenced, and remains so.
- * Caller has a read lock on the map.
- *
- * This is a stripped version of vm_fault() for wiring pages. Anything
- * other than the common case will return KERN_FAILURE, and the caller
- * is expected to call vm_fault().
- */
-kern_return_t
-vm_fault_wire_fast(
- vm_map_t map,
- vm_offset_t va,
- vm_map_entry_t entry,
- pmap_t pmap,
- vm_offset_t pmap_addr)
-{
- vm_object_t object;
- vm_object_offset_t offset;
- register vm_page_t m;
- vm_prot_t prot;
- thread_act_t thr_act;
- unsigned int cache_attr;
-
- VM_STAT(faults++);
-
- if((thr_act=current_act()) && (thr_act->task != TASK_NULL))
- thr_act->task->faults++;
+ if (level > VM_FAULT_LEVEL_MAX) {
+ level = VM_FAULT_LEVEL_MAX;
+ }
-/*
- * Recovery actions
- */
+ vm_fault_stats[type][level] += 1;
-#undef RELEASE_PAGE
-#define RELEASE_PAGE(m) { \
- PAGE_WAKEUP_DONE(m); \
- vm_page_lock_queues(); \
- vm_page_unwire(m); \
- vm_page_unlock_queues(); \
+ return;
}
+/* cleanup routine to call from debugger */
-#undef UNLOCK_THINGS
-#define UNLOCK_THINGS { \
- object->paging_in_progress--; \
- vm_object_unlock(object); \
-}
+void
+vm_fault_classify_init(void)
+{
+ int type, level;
-#undef UNLOCK_AND_DEALLOCATE
-#define UNLOCK_AND_DEALLOCATE { \
- UNLOCK_THINGS; \
- vm_object_deallocate(object); \
-}
-/*
- * Give up and have caller do things the hard way.
- */
+ for (type = 0; type < VM_FAULT_TYPES_MAX; type++) {
+ for (level = 0; level < VM_FAULT_LEVEL_MAX; level++) {
+ vm_fault_stats[type][level] = 0;
+ }
+ }
-#define GIVE_UP { \
- UNLOCK_AND_DEALLOCATE; \
- return(KERN_FAILURE); \
+ return;
}
+#endif /* VM_FAULT_CLASSIFY */
+vm_offset_t
+kdp_lightweight_fault(vm_map_t map, vm_offset_t cur_target_addr)
+{
+ vm_map_entry_t entry;
+ vm_object_t object;
+ vm_offset_t object_offset;
+ vm_page_t m;
+ int compressor_external_state, compressed_count_delta;
+ int compressor_flags = (C_DONT_BLOCK | C_KEEP | C_KDP);
+ int my_fault_type = VM_PROT_READ;
+ kern_return_t kr;
+ int effective_page_mask, effective_page_size;
+
+ if (VM_MAP_PAGE_SHIFT(map) < PAGE_SHIFT) {
+ effective_page_mask = VM_MAP_PAGE_MASK(map);
+ effective_page_size = VM_MAP_PAGE_SIZE(map);
+ } else {
+ effective_page_mask = PAGE_MASK;
+ effective_page_size = PAGE_SIZE;
+ }
- /*
- * If this entry is not directly to a vm_object, bail out.
- */
- if (entry->is_sub_map)
- return(KERN_FAILURE);
-
- /*
- * Find the backing store object and offset into it.
- */
+ if (not_in_kdp) {
+ panic("kdp_lightweight_fault called from outside of debugger context");
+ }
- object = entry->object.vm_object;
- offset = (va - entry->vme_start) + entry->offset;
- prot = entry->protection;
+ assert(map != VM_MAP_NULL);
- /*
- * Make a reference to this object to prevent its
- * disposal while we are messing with it.
- */
+ assert((cur_target_addr & effective_page_mask) == 0);
+ if ((cur_target_addr & effective_page_mask) != 0) {
+ return 0;
+ }
- vm_object_lock(object);
- assert(object->ref_count > 0);
- object->ref_count++;
- vm_object_res_reference(object);
- object->paging_in_progress++;
+ if (kdp_lck_rw_lock_is_acquired_exclusive(&map->lock)) {
+ return 0;
+ }
- /*
- * INVARIANTS (through entire routine):
- *
- * 1) At all times, we must either have the object
- * lock or a busy page in some object to prevent
- * some other thread from trying to bring in
- * the same page.
- *
- * 2) Once we have a busy page, we must remove it from
- * the pageout queues, so that the pageout daemon
- * will not grab it away.
- *
- */
+ if (!vm_map_lookup_entry(map, cur_target_addr, &entry)) {
+ return 0;
+ }
- /*
- * Look for page in top-level object. If it's not there or
- * there's something going on, give up.
- */
- m = vm_page_lookup(object, offset);
- if ((m == VM_PAGE_NULL) || (m->busy) ||
- (m->unusual && ( m->error || m->restart || m->absent ||
- prot & m->page_lock))) {
+ if (entry->is_sub_map) {
+ return 0;
+ }
- GIVE_UP;
+ object = VME_OBJECT(entry);
+ if (object == VM_OBJECT_NULL) {
+ return 0;
}
- /*
- * Wire the page down now. All bail outs beyond this
- * point must unwire the page.
- */
+ object_offset = cur_target_addr - entry->vme_start + VME_OFFSET(entry);
- vm_page_lock_queues();
- vm_page_wire(m);
- vm_page_unlock_queues();
+ while (TRUE) {
+ if (kdp_lck_rw_lock_is_acquired_exclusive(&object->Lock)) {
+ return 0;
+ }
- /*
- * Mark page busy for other threads.
- */
- assert(!m->busy);
- m->busy = TRUE;
- assert(!m->absent);
+ if (object->pager_created && (object->paging_in_progress ||
+ object->activity_in_progress)) {
+ return 0;
+ }
- /*
- * Give up if the page is being written and there's a copy object
- */
- if ((object->copy != VM_OBJECT_NULL) && (prot & VM_PROT_WRITE)) {
- RELEASE_PAGE(m);
- GIVE_UP;
- }
+ m = kdp_vm_page_lookup(object, vm_object_trunc_page(object_offset));
- /*
- * Put this page into the physical map.
- * We have to unlock the object because pmap_enter
- * may cause other faults.
- */
- if (m->no_isync == TRUE) {
- pmap_sync_caches_phys(m->phys_page);
+ if (m != VM_PAGE_NULL) {
+ if ((object->wimg_bits & VM_WIMG_MASK) != VM_WIMG_DEFAULT) {
+ return 0;
+ }
- m->no_isync = FALSE;
- }
+ if (m->vmp_laundry || m->vmp_busy || m->vmp_free_when_done || m->vmp_absent || m->vmp_error || m->vmp_cleaning ||
+ m->vmp_overwriting || m->vmp_restart || m->vmp_unusual) {
+ return 0;
+ }
- cache_attr = ((unsigned int)m->object->wimg_bits) & VM_WIMG_MASK;
+ assert(!m->vmp_private);
+ if (m->vmp_private) {
+ return 0;
+ }
- PMAP_ENTER(pmap, pmap_addr, m, prot, cache_attr, TRUE);
+ assert(!m->vmp_fictitious);
+ if (m->vmp_fictitious) {
+ return 0;
+ }
- /*
- * Unlock everything, and return
- */
+ assert(m->vmp_q_state != VM_PAGE_USED_BY_COMPRESSOR);
+ if (m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) {
+ return 0;
+ }
- PAGE_WAKEUP_DONE(m);
- UNLOCK_AND_DEALLOCATE;
+ return ptoa(VM_PAGE_GET_PHYS_PAGE(m));
+ }
+
+ compressor_external_state = VM_EXTERNAL_STATE_UNKNOWN;
+
+ if (object->pager_created && MUST_ASK_PAGER(object, object_offset, compressor_external_state)) {
+ if (compressor_external_state == VM_EXTERNAL_STATE_EXISTS) {
+ kr = vm_compressor_pager_get(object->pager,
+ vm_object_trunc_page(object_offset + object->paging_offset),
+ kdp_compressor_decompressed_page_ppnum, &my_fault_type,
+ compressor_flags, &compressed_count_delta);
+ if (kr == KERN_SUCCESS) {
+ return kdp_compressor_decompressed_page_paddr;
+ } else {
+ return 0;
+ }
+ }
+ }
- return(KERN_SUCCESS);
+ if (object->shadow == VM_OBJECT_NULL) {
+ return 0;
+ }
+ object_offset += object->vo_shadow_offset;
+ object = object->shadow;
+ }
}
/*
- * Routine: vm_fault_copy_cleanup
- * Purpose:
- * Release a page used by vm_fault_copy.
+ * vm_page_validate_cs_fast():
+ * Performs a few quick checks to determine if the page's code signature
+ * really needs to be fully validated. It could:
+ * 1. have been modified (i.e. automatically tainted),
+ * 2. have already been validated,
+ * 3. have already been found to be tainted,
+ * 4. no longer have a backing store.
+ * Returns FALSE if the page needs to be fully validated.
*/
+static boolean_t
+vm_page_validate_cs_fast(
+ vm_page_t page,
+ vm_map_size_t fault_page_size,
+ vm_map_offset_t fault_phys_offset)
+{
+ vm_object_t object;
+
+ object = VM_PAGE_OBJECT(page);
+ vm_object_lock_assert_held(object);
+
+ if (page->vmp_wpmapped &&
+ !VMP_CS_TAINTED(page, fault_page_size, fault_phys_offset)) {
+ /*
+ * This page was mapped for "write" access sometime in the
+ * past and could still be modifiable in the future.
+ * Consider it tainted.
+ * [ If the page was already found to be "tainted", no
+ * need to re-validate. ]
+ */
+ vm_object_lock_assert_exclusive(object);
+ VMP_CS_SET_VALIDATED(page, fault_page_size, fault_phys_offset, TRUE);
+ VMP_CS_SET_TAINTED(page, fault_page_size, fault_phys_offset, TRUE);
+ if (cs_debug) {
+ printf("CODESIGNING: %s: "
+ "page %p obj %p off 0x%llx "
+ "was modified\n",
+ __FUNCTION__,
+ page, object, page->vmp_offset);
+ }
+ vm_cs_validated_dirtied++;
+ }
+
+ if (VMP_CS_VALIDATED(page, fault_page_size, fault_phys_offset) ||
+ VMP_CS_TAINTED(page, fault_page_size, fault_phys_offset)) {
+ return TRUE;
+ }
+ vm_object_lock_assert_exclusive(object);
+
+#if CHECK_CS_VALIDATION_BITMAP
+ kern_return_t kr;
+
+ kr = vnode_pager_cs_check_validation_bitmap(
+ object->pager,
+ page->vmp_offset + object->paging_offset,
+ CS_BITMAP_CHECK);
+ if (kr == KERN_SUCCESS) {
+ page->vmp_cs_validated = VMP_CS_ALL_TRUE;
+ page->vmp_cs_tainted = VMP_CS_ALL_FALSE;
+ vm_cs_bitmap_validated++;
+ return TRUE;
+ }
+#endif /* CHECK_CS_VALIDATION_BITMAP */
+
+ if (!object->alive || object->terminating || object->pager == NULL) {
+ /*
+ * The object is terminating and we don't have its pager
+ * so we can't validate the data...
+ */
+ return TRUE;
+ }
+
+ /* we need to really validate this page */
+ vm_object_lock_assert_exclusive(object);
+ return FALSE;
+}
void
-vm_fault_copy_cleanup(
- vm_page_t page,
- vm_page_t top_page)
+vm_page_validate_cs_mapped_slow(
+ vm_page_t page,
+ const void *kaddr)
{
- vm_object_t object = page->object;
+ vm_object_t object;
+ memory_object_offset_t mo_offset;
+ memory_object_t pager;
+ struct vnode *vnode;
+ int validated, tainted, nx;
- vm_object_lock(object);
- PAGE_WAKEUP_DONE(page);
- vm_page_lock_queues();
- if (!page->active && !page->inactive)
- vm_page_activate(page);
- vm_page_unlock_queues();
- vm_fault_cleanup(object, top_page);
+ assert(page->vmp_busy);
+ object = VM_PAGE_OBJECT(page);
+ vm_object_lock_assert_exclusive(object);
+
+ vm_cs_validates++;
+
+ /*
+ * Since we get here to validate a page that was brought in by
+ * the pager, we know that this pager is all setup and ready
+ * by now.
+ */
+ assert(object->code_signed);
+ assert(!object->internal);
+ assert(object->pager != NULL);
+ assert(object->pager_ready);
+
+ pager = object->pager;
+ assert(object->paging_in_progress);
+ vnode = vnode_pager_lookup_vnode(pager);
+ mo_offset = page->vmp_offset + object->paging_offset;
+
+ /* verify the SHA1 hash for this page */
+ validated = 0;
+ tainted = 0;
+ nx = 0;
+ cs_validate_page(vnode,
+ pager,
+ mo_offset,
+ (const void *)((const char *)kaddr),
+ &validated,
+ &tainted,
+ &nx);
+
+ page->vmp_cs_validated |= validated;
+ page->vmp_cs_tainted |= tainted;
+ page->vmp_cs_nx |= nx;
+
+#if CHECK_CS_VALIDATION_BITMAP
+ if (page->vmp_cs_validated == VMP_CS_ALL_TRUE &&
+ page->vmp_cs_tainted == VMP_CS_ALL_FALSE) {
+ vnode_pager_cs_check_validation_bitmap(object->pager,
+ mo_offset,
+ CS_BITMAP_SET);
+ }
+#endif /* CHECK_CS_VALIDATION_BITMAP */
}
void
-vm_fault_copy_dst_cleanup(
- vm_page_t page)
+vm_page_validate_cs_mapped(
+ vm_page_t page,
+ vm_map_size_t fault_page_size,
+ vm_map_offset_t fault_phys_offset,
+ const void *kaddr)
{
- vm_object_t object;
-
- if (page != VM_PAGE_NULL) {
- object = page->object;
- vm_object_lock(object);
- vm_page_lock_queues();
- vm_page_unwire(page);
- vm_page_unlock_queues();
- vm_object_paging_end(object);
- vm_object_unlock(object);
+ if (!vm_page_validate_cs_fast(page, fault_page_size, fault_phys_offset)) {
+ vm_page_validate_cs_mapped_slow(page, kaddr);
}
}
-/*
- * Routine: vm_fault_copy
- *
- * Purpose:
- * Copy pages from one virtual memory object to another --
- * neither the source nor destination pages need be resident.
- *
- * Before actually copying a page, the version associated with
- * the destination address map wil be verified.
- *
- * In/out conditions:
- * The caller must hold a reference, but not a lock, to
- * each of the source and destination objects and to the
- * destination map.
- *
- * Results:
- * Returns KERN_SUCCESS if no errors were encountered in
- * reading or writing the data. Returns KERN_INTERRUPTED if
- * the operation was interrupted (only possible if the
- * "interruptible" argument is asserted). Other return values
- * indicate a permanent error in copying the data.
- *
- * The actual amount of data copied will be returned in the
- * "copy_size" argument. In the event that the destination map
- * verification failed, this amount may be less than the amount
- * requested.
- */
-kern_return_t
-vm_fault_copy(
- vm_object_t src_object,
- vm_object_offset_t src_offset,
- vm_size_t *src_size, /* INOUT */
- vm_object_t dst_object,
- vm_object_offset_t dst_offset,
- vm_map_t dst_map,
- vm_map_version_t *dst_version,
- int interruptible)
+static void
+vm_page_map_and_validate_cs(
+ vm_object_t object,
+ vm_page_t page)
{
- vm_page_t result_page;
-
- vm_page_t src_page;
- vm_page_t src_top_page;
- vm_prot_t src_prot;
+ vm_object_offset_t offset;
+ vm_map_offset_t koffset;
+ vm_map_size_t ksize;
+ vm_offset_t kaddr;
+ kern_return_t kr;
+ boolean_t busy_page;
+ boolean_t need_unmap;
+
+ vm_object_lock_assert_exclusive(object);
+
+ assert(object->code_signed);
+ offset = page->vmp_offset;
+
+ busy_page = page->vmp_busy;
+ if (!busy_page) {
+ /* keep page busy while we map (and unlock) the VM object */
+ page->vmp_busy = TRUE;
+ }
- vm_page_t dst_page;
- vm_page_t dst_top_page;
- vm_prot_t dst_prot;
+ /*
+ * Take a paging reference on the VM object
+ * to protect it from collapse or bypass,
+ * and keep it from disappearing too.
+ */
+ vm_object_paging_begin(object);
- vm_size_t amount_left;
- vm_object_t old_copy_object;
- kern_return_t error = 0;
+ /* map the page in the kernel address space */
+ ksize = PAGE_SIZE_64;
+ koffset = 0;
+ need_unmap = FALSE;
+ kr = vm_paging_map_object(page,
+ object,
+ offset,
+ VM_PROT_READ,
+ FALSE, /* can't unlock object ! */
+ &ksize,
+ &koffset,
+ &need_unmap);
+ if (kr != KERN_SUCCESS) {
+ panic("%s: could not map page: 0x%x\n", __FUNCTION__, kr);
+ }
+ kaddr = CAST_DOWN(vm_offset_t, koffset);
- vm_size_t part_size;
+ /* validate the mapped page */
+ vm_page_validate_cs_mapped_slow(page, (const void *) kaddr);
- /*
- * In order not to confuse the clustered pageins, align
- * the different offsets on a page boundary.
- */
- vm_object_offset_t src_lo_offset = trunc_page_64(src_offset);
- vm_object_offset_t dst_lo_offset = trunc_page_64(dst_offset);
- vm_object_offset_t src_hi_offset = round_page_64(src_offset + *src_size);
- vm_object_offset_t dst_hi_offset = round_page_64(dst_offset + *src_size);
+ assert(page->vmp_busy);
+ assert(object == VM_PAGE_OBJECT(page));
+ vm_object_lock_assert_exclusive(object);
-#define RETURN(x) \
- MACRO_BEGIN \
- *src_size -= amount_left; \
- MACRO_RETURN(x); \
- MACRO_END
+ if (!busy_page) {
+ PAGE_WAKEUP_DONE(page);
+ }
+ if (need_unmap) {
+ /* unmap the map from the kernel address space */
+ vm_paging_unmap_object(object, koffset, koffset + ksize);
+ koffset = 0;
+ ksize = 0;
+ kaddr = 0;
+ }
+ vm_object_paging_end(object);
+}
- amount_left = *src_size;
- do { /* while (amount_left > 0) */
- /*
- * There may be a deadlock if both source and destination
- * pages are the same. To avoid this deadlock, the copy must
- * start by getting the destination page in order to apply
- * COW semantics if any.
- */
+void
+vm_page_validate_cs(
+ vm_page_t page,
+ vm_map_size_t fault_page_size,
+ vm_map_offset_t fault_phys_offset)
+{
+ vm_object_t object;
- RetryDestinationFault: ;
+ object = VM_PAGE_OBJECT(page);
+ vm_object_lock_assert_held(object);
+
+ if (vm_page_validate_cs_fast(page, fault_page_size, fault_phys_offset)) {
+ return;
+ }
+ vm_page_map_and_validate_cs(object, page);
+}
- dst_prot = VM_PROT_WRITE|VM_PROT_READ;
+void
+vm_page_validate_cs_mapped_chunk(
+ vm_page_t page,
+ const void *kaddr,
+ vm_offset_t chunk_offset,
+ vm_size_t chunk_size,
+ boolean_t *validated_p,
+ unsigned *tainted_p)
+{
+ vm_object_t object;
+ vm_object_offset_t offset, offset_in_page;
+ memory_object_t pager;
+ struct vnode *vnode;
+ boolean_t validated;
+ unsigned tainted;
- vm_object_lock(dst_object);
- vm_object_paging_begin(dst_object);
+ *validated_p = FALSE;
+ *tainted_p = 0;
- XPR(XPR_VM_FAULT,"vm_fault_copy -> vm_fault_page\n",0,0,0,0,0);
- switch (vm_fault_page(dst_object,
- trunc_page_64(dst_offset),
- VM_PROT_WRITE|VM_PROT_READ,
- FALSE,
- interruptible,
- dst_lo_offset,
- dst_hi_offset,
- VM_BEHAVIOR_SEQUENTIAL,
- &dst_prot,
- &dst_page,
- &dst_top_page,
- (int *)0,
- &error,
- dst_map->no_zero_fill,
- FALSE, NULL, 0)) {
- case VM_FAULT_SUCCESS:
- break;
- case VM_FAULT_RETRY:
- goto RetryDestinationFault;
- case VM_FAULT_MEMORY_SHORTAGE:
- if (vm_page_wait(interruptible))
- goto RetryDestinationFault;
- /* fall thru */
- case VM_FAULT_INTERRUPTED:
- RETURN(MACH_SEND_INTERRUPTED);
- case VM_FAULT_FICTITIOUS_SHORTAGE:
- vm_page_more_fictitious();
- goto RetryDestinationFault;
- case VM_FAULT_MEMORY_ERROR:
- if (error)
- return (error);
- else
- return(KERN_MEMORY_ERROR);
- }
- assert ((dst_prot & VM_PROT_WRITE) != VM_PROT_NONE);
+ assert(page->vmp_busy);
+ object = VM_PAGE_OBJECT(page);
+ vm_object_lock_assert_exclusive(object);
- old_copy_object = dst_page->object->copy;
+ assert(object->code_signed);
+ offset = page->vmp_offset;
+ if (!object->alive || object->terminating || object->pager == NULL) {
/*
- * There exists the possiblity that the source and
- * destination page are the same. But we can't
- * easily determine that now. If they are the
- * same, the call to vm_fault_page() for the
- * destination page will deadlock. To prevent this we
- * wire the page so we can drop busy without having
- * the page daemon steal the page. We clean up the
- * top page but keep the paging reference on the object
- * holding the dest page so it doesn't go away.
+ * The object is terminating and we don't have its pager
+ * so we can't validate the data...
*/
+ return;
+ }
+ /*
+ * Since we get here to validate a page that was brought in by
+ * the pager, we know that this pager is all setup and ready
+ * by now.
+ */
+ assert(!object->internal);
+ assert(object->pager != NULL);
+ assert(object->pager_ready);
+
+ pager = object->pager;
+ assert(object->paging_in_progress);
+ vnode = vnode_pager_lookup_vnode(pager);
+
+ /* verify the signature for this chunk */
+ offset_in_page = chunk_offset;
+ assert(offset_in_page < PAGE_SIZE);
+
+ tainted = 0;
+ validated = cs_validate_range(vnode,
+ pager,
+ (object->paging_offset +
+ offset +
+ offset_in_page),
+ (const void *)((const char *)kaddr
+ + offset_in_page),
+ chunk_size,
+ &tainted);
+ if (validated) {
+ *validated_p = TRUE;
+ }
+ if (tainted) {
+ *tainted_p = tainted;
+ }
+}
- vm_page_lock_queues();
- vm_page_wire(dst_page);
- vm_page_unlock_queues();
- PAGE_WAKEUP_DONE(dst_page);
- vm_object_unlock(dst_page->object);
+static void
+vm_rtfrecord_lock(void)
+{
+ lck_spin_lock(&vm_rtfr_slock);
+}
- if (dst_top_page != VM_PAGE_NULL) {
- vm_object_lock(dst_object);
- VM_PAGE_FREE(dst_top_page);
- vm_object_paging_end(dst_object);
- vm_object_unlock(dst_object);
- }
+static void
+vm_rtfrecord_unlock(void)
+{
+ lck_spin_unlock(&vm_rtfr_slock);
+}
- RetrySourceFault: ;
+unsigned int
+vmrtfaultinfo_bufsz(void)
+{
+ return vmrtf_num_records * sizeof(vm_rtfault_record_t);
+}
- if (src_object == VM_OBJECT_NULL) {
- /*
- * No source object. We will just
- * zero-fill the page in dst_object.
- */
- src_page = VM_PAGE_NULL;
- result_page = VM_PAGE_NULL;
- } else {
- vm_object_lock(src_object);
- src_page = vm_page_lookup(src_object,
- trunc_page_64(src_offset));
- if (src_page == dst_page) {
- src_prot = dst_prot;
- result_page = VM_PAGE_NULL;
- } else {
- src_prot = VM_PROT_READ;
- vm_object_paging_begin(src_object);
+#include <kern/backtrace.h>
- XPR(XPR_VM_FAULT,
- "vm_fault_copy(2) -> vm_fault_page\n",
- 0,0,0,0,0);
- switch (vm_fault_page(src_object,
- trunc_page_64(src_offset),
- VM_PROT_READ,
- FALSE,
- interruptible,
- src_lo_offset,
- src_hi_offset,
- VM_BEHAVIOR_SEQUENTIAL,
- &src_prot,
- &result_page,
- &src_top_page,
- (int *)0,
- &error,
- FALSE,
- FALSE, NULL, 0)) {
+__attribute__((noinline))
+static void
+vm_record_rtfault(thread_t cthread, uint64_t fstart, vm_map_offset_t fault_vaddr, int type_of_fault)
+{
+ uint64_t fend = mach_continuous_time();
- case VM_FAULT_SUCCESS:
- break;
- case VM_FAULT_RETRY:
- goto RetrySourceFault;
- case VM_FAULT_MEMORY_SHORTAGE:
- if (vm_page_wait(interruptible))
- goto RetrySourceFault;
- /* fall thru */
- case VM_FAULT_INTERRUPTED:
- vm_fault_copy_dst_cleanup(dst_page);
- RETURN(MACH_SEND_INTERRUPTED);
- case VM_FAULT_FICTITIOUS_SHORTAGE:
- vm_page_more_fictitious();
- goto RetrySourceFault;
- case VM_FAULT_MEMORY_ERROR:
- vm_fault_copy_dst_cleanup(dst_page);
- if (error)
- return (error);
- else
- return(KERN_MEMORY_ERROR);
- }
+ uint64_t cfpc = 0;
+ uint64_t ctid = cthread->thread_id;
+ uint64_t cupid = get_current_unique_pid();
+ uintptr_t bpc = 0;
+ int btr = 0;
+ bool u64 = false;
- assert((src_top_page == VM_PAGE_NULL) ==
- (result_page->object == src_object));
- }
- assert ((src_prot & VM_PROT_READ) != VM_PROT_NONE);
- vm_object_unlock(result_page->object);
- }
+ /* Capture a single-frame backtrace; this extracts just the program
+ * counter at the point of the fault into "bpc", and should perform no
+ * further user stack traversals, thus avoiding copyin()s and further
+ * faults.
+ */
+ unsigned int bfrs = backtrace_thread_user(cthread, &bpc, 1U, &btr, &u64, NULL, false);
- if (!vm_map_verify(dst_map, dst_version)) {
- if (result_page != VM_PAGE_NULL && src_page != dst_page)
- vm_fault_copy_cleanup(result_page, src_top_page);
- vm_fault_copy_dst_cleanup(dst_page);
- break;
- }
+ if ((btr == 0) && (bfrs > 0)) {
+ cfpc = bpc;
+ }
- vm_object_lock(dst_page->object);
+ assert((fstart != 0) && fend >= fstart);
+ vm_rtfrecord_lock();
+ assert(vmrtfrs.vmrtfr_curi <= vmrtfrs.vmrtfr_maxi);
- if (dst_page->object->copy != old_copy_object) {
- vm_object_unlock(dst_page->object);
- vm_map_verify_done(dst_map, dst_version);
- if (result_page != VM_PAGE_NULL && src_page != dst_page)
- vm_fault_copy_cleanup(result_page, src_top_page);
- vm_fault_copy_dst_cleanup(dst_page);
- break;
- }
- vm_object_unlock(dst_page->object);
+ vmrtfrs.vmrtf_total++;
+ vm_rtfault_record_t *cvmr = &vmrtfrs.vm_rtf_records[vmrtfrs.vmrtfr_curi++];
- /*
- * Copy the page, and note that it is dirty
- * immediately.
- */
+ cvmr->rtfabstime = fstart;
+ cvmr->rtfduration = fend - fstart;
+ cvmr->rtfaddr = fault_vaddr;
+ cvmr->rtfpc = cfpc;
+ cvmr->rtftype = type_of_fault;
+ cvmr->rtfupid = cupid;
+ cvmr->rtftid = ctid;
- if (!page_aligned(src_offset) ||
- !page_aligned(dst_offset) ||
- !page_aligned(amount_left)) {
+ if (vmrtfrs.vmrtfr_curi > vmrtfrs.vmrtfr_maxi) {
+ vmrtfrs.vmrtfr_curi = 0;
+ }
- vm_object_offset_t src_po,
- dst_po;
+ vm_rtfrecord_unlock();
+}
- src_po = src_offset - trunc_page_64(src_offset);
- dst_po = dst_offset - trunc_page_64(dst_offset);
+int
+vmrtf_extract(uint64_t cupid, __unused boolean_t isroot, unsigned long vrecordsz, void *vrecords, unsigned long *vmrtfrv)
+{
+ vm_rtfault_record_t *cvmrd = vrecords;
+ size_t residue = vrecordsz;
+ size_t numextracted = 0;
+ boolean_t early_exit = FALSE;
- if (dst_po > src_po) {
- part_size = PAGE_SIZE - dst_po;
- } else {
- part_size = PAGE_SIZE - src_po;
- }
- if (part_size > (amount_left)){
- part_size = amount_left;
- }
+ vm_rtfrecord_lock();
- if (result_page == VM_PAGE_NULL) {
- vm_page_part_zero_fill(dst_page,
- dst_po, part_size);
- } else {
- vm_page_part_copy(result_page, src_po,
- dst_page, dst_po, part_size);
- if(!dst_page->dirty){
- vm_object_lock(dst_object);
- dst_page->dirty = TRUE;
- vm_object_unlock(dst_page->object);
- }
+ for (int vmfi = 0; vmfi <= vmrtfrs.vmrtfr_maxi; vmfi++) {
+ if (residue < sizeof(vm_rtfault_record_t)) {
+ early_exit = TRUE;
+ break;
+ }
+ if (vmrtfrs.vm_rtf_records[vmfi].rtfupid != cupid) {
+#if DEVELOPMENT || DEBUG
+ if (isroot == FALSE) {
+ continue;
}
- } else {
- part_size = PAGE_SIZE;
+#else
+ continue;
+#endif /* DEVDEBUG */
+ }
- if (result_page == VM_PAGE_NULL)
- vm_page_zero_fill(dst_page);
- else{
- vm_page_copy(result_page, dst_page);
- if(!dst_page->dirty){
- vm_object_lock(dst_object);
- dst_page->dirty = TRUE;
- vm_object_unlock(dst_page->object);
- }
- }
+ *cvmrd = vmrtfrs.vm_rtf_records[vmfi];
+ cvmrd++;
+ residue -= sizeof(vm_rtfault_record_t);
+ numextracted++;
+ }
- }
+ vm_rtfrecord_unlock();
- /*
- * Unlock everything, and return
- */
+ *vmrtfrv = numextracted;
+ return early_exit;
+}
- vm_map_verify_done(dst_map, dst_version);
+/*
+ * Only allow one diagnosis to be in flight at a time, to avoid
+ * creating too much additional memory usage.
+ */
+static volatile uint_t vmtc_diagnosing;
+unsigned int vmtc_total;
+unsigned int vmtc_undiagnosed;
+unsigned int vmtc_not_eligible;
+unsigned int vmtc_copyin_fail;
+unsigned int vmtc_not_found;
+unsigned int vmtc_one_bit_flip;
+unsigned int vmtc_byte_counts[MAX_TRACK_POWER2 + 1];
+
+#if DEVELOPMENT || DEBUG
+/*
+ * Keep around the last diagnosed corruption buffers to aid in debugging.
+ */
+static size_t vmtc_last_buffer_size;
+static uint64_t *vmtc_last_before_buffer = NULL;
+static uint64_t *vmtc_last_after_buffer = NULL;
+#endif /* DEVELOPMENT || DEBUG */
- if (result_page != VM_PAGE_NULL && src_page != dst_page)
- vm_fault_copy_cleanup(result_page, src_top_page);
- vm_fault_copy_dst_cleanup(dst_page);
+/*
+ * Set things up so we can diagnose a potential text page corruption.
+ */
+static uint64_t *
+vmtc_text_page_diagnose_setup(
+ vm_map_offset_t code_addr)
+{
+ uint64_t *buffer;
+ size_t size = MIN(vm_map_page_size(current_map()), PAGE_SIZE);
- amount_left -= part_size;
- src_offset += part_size;
- dst_offset += part_size;
- } while (amount_left > 0);
+ (void)OSAddAtomic(1, &vmtc_total);
- RETURN(KERN_SUCCESS);
-#undef RETURN
+ /*
+ * If another is being diagnosed, skip this one.
+ */
+ if (!OSCompareAndSwap(0, 1, &vmtc_diagnosing)) {
+ (void)OSAddAtomic(1, &vmtc_undiagnosed);
+ return NULL;
+ }
- /*NOTREACHED*/
+ /*
+ * Get the contents of the corrupt page.
+ */
+ buffer = kheap_alloc(KHEAP_DEFAULT, size, Z_WAITOK);
+ if (copyin((user_addr_t)vm_map_trunc_page(code_addr, size - 1), buffer, size) != 0) {
+ /* copyin error, so undo things */
+ kheap_free(KHEAP_DEFAULT, buffer, size);
+ (void)OSAddAtomic(1, &vmtc_undiagnosed);
+ ++vmtc_copyin_fail;
+ if (!OSCompareAndSwap(1, 0, &vmtc_diagnosing)) {
+ panic("Bad compare and swap in setup!");
+ }
+ return NULL;
+ }
+ return buffer;
}
-#ifdef notdef
-
/*
- * Routine: vm_fault_page_overwrite
- *
- * Description:
- * A form of vm_fault_page that assumes that the
- * resulting page will be overwritten in its entirety,
- * making it unnecessary to obtain the correct *contents*
- * of the page.
- *
- * Implementation:
- * XXX Untested. Also unused. Eventually, this technology
- * could be used in vm_fault_copy() to advantage.
+ * Diagnose the text page by comparing its contents with
+ * the one we've previously saved.
*/
-vm_fault_return_t
-vm_fault_page_overwrite(
- register
- vm_object_t dst_object,
- vm_object_offset_t dst_offset,
- vm_page_t *result_page) /* OUT */
+static void
+vmtc_text_page_diagnose(
+ vm_map_offset_t code_addr,
+ uint64_t *old_code_buffer)
{
- register
- vm_page_t dst_page;
- kern_return_t wait_result;
+ uint64_t *new_code_buffer;
+ size_t size = MIN(vm_map_page_size(current_map()), PAGE_SIZE);
+ uint_t count = (uint_t)size / sizeof(uint64_t);
+ uint_t diff_count = 0;
+ bool bit_flip = false;
+ uint_t b;
+ uint64_t *new;
+ uint64_t *old;
+
+ new_code_buffer = kheap_alloc(KHEAP_DEFAULT, size, Z_WAITOK);
+ if (copyin((user_addr_t)vm_map_trunc_page(code_addr, size - 1), new_code_buffer, size) != 0) {
+ /* copyin error, so undo things */
+ (void)OSAddAtomic(1, &vmtc_undiagnosed);
+ ++vmtc_copyin_fail;
+ goto done;
+ }
-#define interruptible THREAD_UNINT /* XXX */
+ new = new_code_buffer;
+ old = old_code_buffer;
+ for (; count-- > 0; ++new, ++old) {
+ if (*new == *old) {
+ continue;
+ }
- while (TRUE) {
/*
- * Look for a page at this offset
+ * On first diff, check for a single bit flip
*/
-
- while ((dst_page = vm_page_lookup(dst_object, dst_offset))
- == VM_PAGE_NULL) {
- /*
- * No page, no problem... just allocate one.
- */
-
- dst_page = vm_page_alloc(dst_object, dst_offset);
- if (dst_page == VM_PAGE_NULL) {
- vm_object_unlock(dst_object);
- VM_PAGE_WAIT();
- vm_object_lock(dst_object);
+ if (diff_count == 0) {
+ uint64_t x = (*new ^ *old);
+ assert(x != 0);
+ if ((x & (x - 1)) == 0) {
+ bit_flip = true;
+ ++diff_count;
continue;
}
+ }
- /*
- * Pretend that the memory manager
- * write-protected the page.
- *
- * Note that we will be asking for write
- * permission without asking for the data
- * first.
- */
-
- dst_page->overwriting = TRUE;
- dst_page->page_lock = VM_PROT_WRITE;
- dst_page->absent = TRUE;
- dst_page->unusual = TRUE;
- dst_object->absent_count++;
+ /*
+ * count up the number of different bytes.
+ */
+ for (b = 0; b < sizeof(uint64_t); ++b) {
+ char *n = (char *)new;
+ char *o = (char *)old;
+ if (n[b] != o[b]) {
+ ++diff_count;
+ }
+ }
+ /* quit counting when too many */
+ if (diff_count > (1 << MAX_TRACK_POWER2)) {
break;
+ }
+ }
- /*
- * When we bail out, we might have to throw
- * away the page created here.
- */
+ if (diff_count > 1) {
+ bit_flip = false;
+ }
-#define DISCARD_PAGE \
- MACRO_BEGIN \
- vm_object_lock(dst_object); \
- dst_page = vm_page_lookup(dst_object, dst_offset); \
- if ((dst_page != VM_PAGE_NULL) && dst_page->overwriting) \
- VM_PAGE_FREE(dst_page); \
- vm_object_unlock(dst_object); \
- MACRO_END
+ if (diff_count == 0) {
+ ++vmtc_not_found;
+ } else if (bit_flip) {
+ ++vmtc_one_bit_flip;
+ ++vmtc_byte_counts[0];
+ } else {
+ for (b = 0; b <= MAX_TRACK_POWER2; ++b) {
+ if (diff_count <= (1 << b)) {
+ ++vmtc_byte_counts[b];
+ break;
+ }
}
+ if (diff_count > (1 << MAX_TRACK_POWER2)) {
+ ++vmtc_byte_counts[MAX_TRACK_POWER2];
+ }
+ }
- /*
- * If the page is write-protected...
- */
-
- if (dst_page->page_lock & VM_PROT_WRITE) {
- /*
- * ... and an unlock request hasn't been sent
- */
+done:
+ /*
+ * Free up the code copy buffers, but save the last
+ * set on development / debug kernels in case they
+ * can provide evidence for debugging memory stomps.
+ */
+#if DEVELOPMENT || DEBUG
+ if (vmtc_last_before_buffer != NULL) {
+ kheap_free(KHEAP_DEFAULT, vmtc_last_before_buffer, vmtc_last_buffer_size);
+ }
+ if (vmtc_last_after_buffer != NULL) {
+ kheap_free(KHEAP_DEFAULT, vmtc_last_after_buffer, vmtc_last_buffer_size);
+ }
+ vmtc_last_before_buffer = old_code_buffer;
+ vmtc_last_after_buffer = new_code_buffer;
+ vmtc_last_buffer_size = size;
+#else /* DEVELOPMENT || DEBUG */
+ kheap_free(KHEAP_DEFAULT, new_code_buffer, size);
+ kheap_free(KHEAP_DEFAULT, old_code_buffer, size);
+#endif /* DEVELOPMENT || DEBUG */
- if ( ! (dst_page->unlock_request & VM_PROT_WRITE)) {
- vm_prot_t u;
- kern_return_t rc;
+ /*
+ * We're finished, so clear the diagnosing flag.
+ */
+ if (!OSCompareAndSwap(1, 0, &vmtc_diagnosing)) {
+ panic("Bad compare and swap in diagnose!");
+ }
+}
- /*
- * ... then send one now.
- */
+/*
+ * For the given map, virt address, find the object, offset, and page.
+ * This has to lookup the map entry, verify protections, walk any shadow chains.
+ * If found, returns with the object locked.
+ */
+static kern_return_t
+vmtc_revalidate_lookup(
+ vm_map_t map,
+ vm_map_offset_t vaddr,
+ vm_object_t *ret_object,
+ vm_object_offset_t *ret_offset,
+ vm_page_t *ret_page)
+{
+ vm_object_t object;
+ vm_object_offset_t offset;
+ vm_page_t page;
+ kern_return_t kr = KERN_SUCCESS;
+ uint8_t object_lock_type = OBJECT_LOCK_EXCLUSIVE;
+ vm_map_version_t version;
+ boolean_t wired;
+ struct vm_object_fault_info fault_info = {};
+ vm_map_t real_map = NULL;
+ vm_prot_t prot;
+ vm_object_t shadow;
- if (!dst_object->pager_ready) {
- wait_result = vm_object_assert_wait(dst_object,
- VM_OBJECT_EVENT_PAGER_READY,
- interruptible);
- vm_object_unlock(dst_object);
- if (wait_result == THREAD_WAITING)
- wait_result = thread_block(THREAD_CONTINUE_NULL);
- if (wait_result != THREAD_AWAKENED) {
- DISCARD_PAGE;
- return(VM_FAULT_INTERRUPTED);
- }
- continue;
- }
+ /*
+ * Find the object/offset for the given location/map.
+ * Note this returns with the object locked.
+ */
+restart:
+ vm_map_lock_read(map);
+ object = VM_OBJECT_NULL; /* in case we come around the restart path */
+ kr = vm_map_lookup_locked(&map, vaddr, VM_PROT_READ,
+ object_lock_type, &version, &object, &offset, &prot, &wired,
+ &fault_info, &real_map, NULL);
+ vm_map_unlock_read(map);
+ if (real_map != NULL && real_map != map) {
+ vm_map_unlock(real_map);
+ }
- u = dst_page->unlock_request |= VM_PROT_WRITE;
- vm_object_unlock(dst_object);
+ /*
+ * If there's no mapping here, or if we fail because the page
+ * wasn't mapped executable, we can ignore this.
+ */
+ if (kr != KERN_SUCCESS ||
+ object == NULL ||
+ !(prot & VM_PROT_EXECUTE)) {
+ kr = KERN_FAILURE;
+ goto done;
+ }
- if ((rc = memory_object_data_unlock(
- dst_object->pager,
- dst_offset + dst_object->paging_offset,
- PAGE_SIZE,
- u)) != KERN_SUCCESS) {
- if (vm_fault_debug)
- printf("vm_object_overwrite: memory_object_data_unlock failed\n");
- DISCARD_PAGE;
- return((rc == MACH_SEND_INTERRUPTED) ?
- VM_FAULT_INTERRUPTED :
- VM_FAULT_MEMORY_ERROR);
- }
- vm_object_lock(dst_object);
- continue;
+ /*
+ * Chase down any shadow chains to find the actual page.
+ */
+ for (;;) {
+ /*
+ * See if the page is on the current object.
+ */
+ page = vm_page_lookup(object, vm_object_trunc_page(offset));
+ if (page != NULL) {
+ /* restart the lookup */
+ if (page->vmp_restart) {
+ vm_object_unlock(object);
+ goto restart;
}
- /* ... fall through to wait below */
- } else {
/*
- * If the page isn't being used for other
- * purposes, then we're done.
+ * If this page is busy, we need to wait for it.
*/
- if ( ! (dst_page->busy || dst_page->absent ||
- dst_page->error || dst_page->restart) )
- break;
+ if (page->vmp_busy) {
+ PAGE_SLEEP(object, page, TRUE);
+ vm_object_unlock(object);
+ goto restart;
+ }
+ break;
}
- wait_result = PAGE_ASSERT_WAIT(dst_page, interruptible);
- vm_object_unlock(dst_object);
- if (wait_result == THREAD_WAITING)
- wait_result = thread_block(THREAD_CONTINUE_NULL);
- if (wait_result != THREAD_AWAKENED) {
- DISCARD_PAGE;
- return(VM_FAULT_INTERRUPTED);
+ /*
+ * If the object doesn't have the page and
+ * has no shadow, then we can quit.
+ */
+ shadow = object->shadow;
+ if (shadow == NULL) {
+ kr = KERN_FAILURE;
+ goto done;
}
- }
- *result_page = dst_page;
- return(VM_FAULT_SUCCESS);
+ /*
+ * Move to the next object
+ */
+ offset += object->vo_shadow_offset;
+ vm_object_lock(shadow);
+ vm_object_unlock(object);
+ object = shadow;
+ shadow = VM_OBJECT_NULL;
+ }
+ *ret_object = object;
+ *ret_offset = vm_object_trunc_page(offset);
+ *ret_page = page;
-#undef interruptible
-#undef DISCARD_PAGE
+done:
+ if (kr != KERN_SUCCESS && object != NULL) {
+ vm_object_unlock(object);
+ }
+ return kr;
}
-#endif /* notdef */
-
-#if VM_FAULT_CLASSIFY
/*
- * Temporary statistics gathering support.
+ * Check if a page is wired, needs extra locking.
*/
+static bool
+is_page_wired(vm_page_t page)
+{
+ bool result;
+ vm_page_lock_queues();
+ result = VM_PAGE_WIRED(page);
+ vm_page_unlock_queues();
+ return result;
+}
/*
- * Statistics arrays:
+ * A fatal process error has occurred in the given task.
+ * Recheck the code signing of the text page at the given
+ * address to check for a text page corruption.
+ *
+ * Returns KERN_FAILURE if a page was found to be corrupt
+ * by failing to match its code signature. KERN_SUCCESS
+ * means the page is either valid or we don't have the
+ * information to say it's corrupt.
*/
-#define VM_FAULT_TYPES_MAX 5
-#define VM_FAULT_LEVEL_MAX 8
+kern_return_t
+revalidate_text_page(task_t task, vm_map_offset_t code_addr)
+{
+ kern_return_t kr;
+ vm_map_t map;
+ vm_object_t object = NULL;
+ vm_object_offset_t offset;
+ vm_page_t page = NULL;
+ struct vnode *vnode;
+ bool do_invalidate = false;
+ uint64_t *diagnose_buffer = NULL;
+
+ map = task->map;
+ if (task->map == NULL) {
+ return KERN_SUCCESS;
+ }
+
+ kr = vmtc_revalidate_lookup(map, code_addr, &object, &offset, &page);
+ if (kr != KERN_SUCCESS) {
+ goto done;
+ }
+
+ /*
+ * The object needs to have a pager.
+ */
+ if (object->pager == NULL) {
+ goto done;
+ }
-int vm_fault_stats[VM_FAULT_TYPES_MAX][VM_FAULT_LEVEL_MAX];
+ /*
+ * Needs to be a vnode backed page to have a signature.
+ */
+ vnode = vnode_pager_lookup_vnode(object->pager);
+ if (vnode == NULL) {
+ goto done;
+ }
-#define VM_FAULT_TYPE_ZERO_FILL 0
-#define VM_FAULT_TYPE_MAP_IN 1
-#define VM_FAULT_TYPE_PAGER 2
-#define VM_FAULT_TYPE_COPY 3
-#define VM_FAULT_TYPE_OTHER 4
+ /*
+ * Object checks to see if we should proceed.
+ */
+ if (!object->code_signed || /* no code signature to check */
+ object->internal || /* internal objects aren't signed */
+ object->terminating || /* the object and its pages are already going away */
+ !object->pager_ready) { /* this should happen, but check shouldn't hurt */
+ goto done;
+ }
+ /*
+ * Check the code signature of the page in question.
+ */
+ vm_page_map_and_validate_cs(object, page);
-void
-vm_fault_classify(vm_object_t object,
- vm_object_offset_t offset,
- vm_prot_t fault_type)
-{
- int type, level = 0;
- vm_page_t m;
+ /*
+ * At this point:
+ * vmp_cs_validated |= validated (set if a code signature exists)
+ * vmp_cs_tainted |= tainted (set if code signature violation)
+ * vmp_cs_nx |= nx; ??
+ *
+ * if vmp_pmapped then have to pmap_disconnect..
+ * other flags to check on object or page?
+ */
+ if (page->vmp_cs_tainted != VMP_CS_ALL_FALSE) {
+#if DEBUG || DEVELOPMENT
+ /*
+ * On development builds, a boot-arg can be used to cause
+ * a panic, instead of a quiet repair.
+ */
+ if (vmtc_panic_instead) {
+ panic("Text page corruption detected: vm_page_t 0x%llx\n", (long long)(uintptr_t)page);
+ }
+#endif /* DEBUG || DEVELOPMENT */
- while (TRUE) {
- m = vm_page_lookup(object, offset);
- if (m != VM_PAGE_NULL) {
- if (m->busy || m->error || m->restart || m->absent ||
- fault_type & m->page_lock) {
- type = VM_FAULT_TYPE_OTHER;
- break;
+ /*
+ * We're going to invalidate this page. Mark it as busy so we can
+ * drop the object lock and use copyin() to save its contents.
+ */
+ do_invalidate = true;
+ assert(!page->vmp_busy);
+ page->vmp_busy = TRUE;
+ vm_object_unlock(object);
+ diagnose_buffer = vmtc_text_page_diagnose_setup(code_addr);
+ }
+
+done:
+ if (do_invalidate) {
+ vm_object_lock(object);
+ assert(page->vmp_busy);
+ assert(VM_PAGE_OBJECT(page) == object); /* Since the page was busy, this shouldn't change */
+ assert(page->vmp_offset == offset);
+ PAGE_WAKEUP_DONE(page); /* make no longer busy */
+
+ /*
+ * Invalidate, i.e. toss, the corrupted page.
+ */
+ if (!page->vmp_cleaning &&
+ !page->vmp_laundry &&
+ !page->vmp_fictitious &&
+ !page->vmp_precious &&
+ !page->vmp_absent &&
+ !page->vmp_error &&
+ !page->vmp_dirty &&
+ !is_page_wired(page)) {
+ if (page->vmp_pmapped) {
+ int refmod = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(page));
+ if (refmod & VM_MEM_MODIFIED) {
+ SET_PAGE_DIRTY(page, FALSE);
+ }
+ if (refmod & VM_MEM_REFERENCED) {
+ page->vmp_reference = TRUE;
+ }
}
- if (((fault_type & VM_PROT_WRITE) == 0) ||
- ((level == 0) && object->copy == VM_OBJECT_NULL)) {
- type = VM_FAULT_TYPE_MAP_IN;
- break;
+ /* If the page seems intentionally modified, don't trash it. */
+ if (!page->vmp_dirty) {
+ VM_PAGE_FREE(page);
+ } else {
+ (void)OSAddAtomic(1, &vmtc_not_eligible);
}
- type = VM_FAULT_TYPE_COPY;
- break;
+ } else {
+ (void)OSAddAtomic(1, &vmtc_not_eligible);
}
- else {
- if (object->pager_created) {
- type = VM_FAULT_TYPE_PAGER;
- break;
- }
- if (object->shadow == VM_OBJECT_NULL) {
- type = VM_FAULT_TYPE_ZERO_FILL;
- break;
- }
+ vm_object_unlock(object);
- offset += object->shadow_offset;
- object = object->shadow;
- level++;
- continue;
+ /*
+ * Now try to diagnose the type of failure by faulting
+ * in a new copy and diff'ing it with what we saved.
+ */
+ if (diagnose_buffer) {
+ vmtc_text_page_diagnose(code_addr, diagnose_buffer);
}
+ return KERN_FAILURE;
}
- if (level > VM_FAULT_LEVEL_MAX)
- level = VM_FAULT_LEVEL_MAX;
-
- vm_fault_stats[type][level] += 1;
-
- return;
+ if (object != NULL) {
+ vm_object_unlock(object);
+ }
+ return KERN_SUCCESS;
}
-/* cleanup routine to call from debugger */
+#if DEBUG || DEVELOPMENT
+/*
+ * For implementing unit tests - ask the pmap to corrupt a text page.
+ * We have to find the page, to get the physical address, then invoke
+ * the pmap.
+ */
+extern kern_return_t vm_corrupt_text_addr(uintptr_t);
-void
-vm_fault_classify_init(void)
+kern_return_t
+vm_corrupt_text_addr(uintptr_t va)
{
- int type, level;
+ task_t task = current_task();
+ vm_map_t map;
+ kern_return_t kr = KERN_SUCCESS;
+ vm_object_t object = VM_OBJECT_NULL;
+ vm_object_offset_t offset;
+ vm_page_t page = NULL;
+ pmap_paddr_t pa;
+
+ map = task->map;
+ if (task->map == NULL) {
+ printf("corrupt_text_addr: no map\n");
+ return KERN_FAILURE;
+ }
- for (type = 0; type < VM_FAULT_TYPES_MAX; type++) {
- for (level = 0; level < VM_FAULT_LEVEL_MAX; level++) {
- vm_fault_stats[type][level] = 0;
+ kr = vmtc_revalidate_lookup(map, (vm_map_offset_t)va, &object, &offset, &page);
+ if (kr != KERN_SUCCESS) {
+ printf("corrupt_text_addr: page lookup failed\n");
+ return kr;
+ }
+ /* get the physical address to use */
+ pa = ptoa(VM_PAGE_GET_PHYS_PAGE(page)) + (va - vm_object_trunc_page(va));
+
+ /*
+ * Check we have something we can work with.
+ * Due to racing with pageout as we enter the sysctl,
+ * it's theoretically possible to have the page disappear, just
+ * before the lookup.
+ *
+ * That's highly likely to happen often. I've filed a radar 72857482
+ * to bubble up the error here to the sysctl result and have the
+ * test not FAIL in that case.
+ */
+ if (page->vmp_busy) {
+ printf("corrupt_text_addr: vmp_busy\n");
+ kr = KERN_FAILURE;
+ }
+ if (page->vmp_cleaning) {
+ printf("corrupt_text_addr: vmp_cleaning\n");
+ kr = KERN_FAILURE;
+ }
+ if (page->vmp_laundry) {
+ printf("corrupt_text_addr: vmp_cleaning\n");
+ kr = KERN_FAILURE;
+ }
+ if (page->vmp_fictitious) {
+ printf("corrupt_text_addr: vmp_fictitious\n");
+ kr = KERN_FAILURE;
+ }
+ if (page->vmp_precious) {
+ printf("corrupt_text_addr: vmp_precious\n");
+ kr = KERN_FAILURE;
+ }
+ if (page->vmp_absent) {
+ printf("corrupt_text_addr: vmp_absent\n");
+ kr = KERN_FAILURE;
+ }
+ if (page->vmp_error) {
+ printf("corrupt_text_addr: vmp_error\n");
+ kr = KERN_FAILURE;
+ }
+ if (page->vmp_dirty) {
+ printf("corrupt_text_addr: vmp_dirty\n");
+ kr = KERN_FAILURE;
+ }
+ if (is_page_wired(page)) {
+ printf("corrupt_text_addr: wired\n");
+ kr = KERN_FAILURE;
+ }
+ if (!page->vmp_pmapped) {
+ printf("corrupt_text_addr: !vmp_pmapped\n");
+ kr = KERN_FAILURE;
+ }
+
+ if (kr == KERN_SUCCESS) {
+ printf("corrupt_text_addr: using physaddr 0x%llx\n", (long long)pa);
+ kr = pmap_test_text_corruption(pa);
+ if (kr != KERN_SUCCESS) {
+ printf("corrupt_text_addr: pmap error %d\n", kr);
}
+ } else {
+ printf("corrupt_text_addr: object %p\n", object);
+ printf("corrupt_text_addr: offset 0x%llx\n", (uint64_t)offset);
+ printf("corrupt_text_addr: va 0x%llx\n", (uint64_t)va);
+ printf("corrupt_text_addr: vm_object_trunc_page(va) 0x%llx\n", (uint64_t)vm_object_trunc_page(va));
+ printf("corrupt_text_addr: vm_page_t %p\n", page);
+ printf("corrupt_text_addr: ptoa(PHYS_PAGE) 0x%llx\n", (uint64_t)ptoa(VM_PAGE_GET_PHYS_PAGE(page)));
+ printf("corrupt_text_addr: using physaddr 0x%llx\n", (uint64_t)pa);
}
- return;
+ if (object != VM_OBJECT_NULL) {
+ vm_object_unlock(object);
+ }
+ return kr;
}
-#endif /* VM_FAULT_CLASSIFY */
+#endif /* DEBUG || DEVELOPMENT */