+static unsigned int
+cslab_alloc(mbuf_class_t class, mcache_obj_t ***plist, unsigned int num)
+{
+ unsigned int need = num;
+ mcl_slab_t *sp, *clsp, *nsp;
+ struct mbuf *m;
+ mcache_obj_t **list = *plist;
+ void *cl;
+
+ VERIFY(need > 0);
+ VERIFY(class != MC_MBUF_16KCL || njcl > 0);
+ lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
+
+ /* Get what we can from the freelist */
+ while ((*list = m_cobjlist(class)) != NULL) {
+ MRANGE(*list);
+
+ m = (struct mbuf *)*list;
+ sp = slab_get(m);
+ cl = m->m_ext.ext_buf;
+ clsp = slab_get(cl);
+ VERIFY(m->m_flags == M_EXT && cl != NULL);
+ VERIFY(MEXT_RFA(m) != NULL && MBUF_IS_COMPOSITE(m));
+
+ if (class == MC_MBUF_CL) {
+ VERIFY(clsp->sl_refcnt >= 1 &&
+ clsp->sl_refcnt <= NCLPBG);
+ } else {
+ VERIFY(clsp->sl_refcnt == 1);
+ }
+
+ if (class == MC_MBUF_16KCL) {
+ int k;
+ for (nsp = clsp, k = 1; k < NSLABSP16KB; k++) {
+ nsp = nsp->sl_next;
+ /* Next slab must already be present */
+ VERIFY(nsp != NULL);
+ VERIFY(nsp->sl_refcnt == 1);
+ }
+ }
+
+ if ((m_cobjlist(class) = (*list)->obj_next) != NULL &&
+ !MBUF_IN_MAP(m_cobjlist(class))) {
+ slab_nextptr_panic(sp, m_cobjlist(class));
+ /* NOTREACHED */
+ }
+ (*list)->obj_next = NULL;
+ list = *plist = &(*list)->obj_next;
+
+ if (--need == 0)
+ break;
+ }
+ m_infree(class) -= (num - need);
+
+ return (num - need);
+}
+
+/*
+ * Place object(s) back into a composite class's freelist.
+ */
+static unsigned int
+cslab_free(mbuf_class_t class, mcache_obj_t *list, int purged)
+{
+ mcache_obj_t *o, *tail;
+ unsigned int num = 0;
+ struct mbuf *m, *ms;
+ mcache_audit_t *mca = NULL;
+ mcache_obj_t *ref_list = NULL;
+ mcl_slab_t *clsp, *nsp;
+ void *cl;
+ mbuf_class_t cl_class;
+
+ ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class));
+ VERIFY(class != MC_MBUF_16KCL || njcl > 0);
+ lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
+
+ if (class == MC_MBUF_CL) {
+ cl_class = MC_CL;
+ } else if (class == MC_MBUF_BIGCL) {
+ cl_class = MC_BIGCL;
+ } else {
+ VERIFY(class == MC_MBUF_16KCL);
+ cl_class = MC_16KCL;
+ }
+
+ o = tail = list;
+
+ while ((m = ms = (struct mbuf *)o) != NULL) {
+ mcache_obj_t *rfa, *nexto = o->obj_next;
+
+ /* Do the mbuf sanity checks */
+ if (mclaudit != NULL) {
+ mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m);
+ if (mclverify) {
+ mcache_audit_free_verify(mca, m, 0,
+ m_maxsize(MC_MBUF));
+ }
+ ms = (struct mbuf *)mca->mca_contents;
+ }
+
+ /* Do the cluster sanity checks */
+ cl = ms->m_ext.ext_buf;
+ clsp = slab_get(cl);
+ if (mclverify) {
+ size_t size = m_maxsize(cl_class);
+ mcache_audit_free_verify(mcl_audit_buf2mca(cl_class,
+ (mcache_obj_t *)cl), cl, 0, size);
+ }
+ VERIFY(ms->m_type == MT_FREE);
+ VERIFY(ms->m_flags == M_EXT);
+ VERIFY(MEXT_RFA(ms) != NULL && MBUF_IS_COMPOSITE(ms));
+ if (cl_class == MC_CL) {
+ VERIFY(clsp->sl_refcnt >= 1 &&
+ clsp->sl_refcnt <= NCLPBG);
+ } else {
+ VERIFY(clsp->sl_refcnt == 1);
+ }
+ if (cl_class == MC_16KCL) {
+ int k;
+ for (nsp = clsp, k = 1; k < NSLABSP16KB; k++) {
+ nsp = nsp->sl_next;
+ /* Next slab must already be present */
+ VERIFY(nsp != NULL);
+ VERIFY(nsp->sl_refcnt == 1);
+ }
+ }
+
+ /*
+ * If we're asked to purge, restore the actual mbuf using
+ * contents of the shadow structure (if auditing is enabled)
+ * and clear EXTF_COMPOSITE flag from the mbuf, as we are
+ * about to free it and the attached cluster into their caches.
+ */
+ if (purged) {
+ /* Restore constructed mbuf fields */
+ if (mclaudit != NULL)
+ mcl_audit_restore_mbuf(m, mca, TRUE);
+
+ MEXT_REF(m) = 0;
+ MEXT_FLAGS(m) = 0;
+
+ rfa = (mcache_obj_t *)(void *)MEXT_RFA(m);
+ rfa->obj_next = ref_list;
+ ref_list = rfa;
+ MEXT_RFA(m) = NULL;
+
+ m->m_type = MT_FREE;
+ m->m_flags = m->m_len = 0;
+ m->m_next = m->m_nextpkt = NULL;
+
+ /* Save mbuf fields and make auditing happy */
+ if (mclaudit != NULL)
+ mcl_audit_mbuf(mca, o, FALSE, FALSE);
+
+ VERIFY(m_total(class) > 0);
+ m_total(class)--;
+
+ /* Free the mbuf */
+ o->obj_next = NULL;
+ slab_free(MC_MBUF, o);
+
+ /* And free the cluster */
+ ((mcache_obj_t *)cl)->obj_next = NULL;
+ if (class == MC_MBUF_CL)
+ slab_free(MC_CL, cl);
+ else if (class == MC_MBUF_BIGCL)
+ slab_free(MC_BIGCL, cl);
+ else
+ slab_free(MC_16KCL, cl);
+ }
+
+ ++num;
+ tail = o;
+ o = nexto;
+ }
+
+ if (!purged) {
+ tail->obj_next = m_cobjlist(class);
+ m_cobjlist(class) = list;
+ m_infree(class) += num;
+ } else if (ref_list != NULL) {
+ mcache_free_ext(ref_cache, ref_list);
+ }
+
+ return (num);
+}
+
+/*
+ * Common allocator for composite objects called by the CPU cache layer
+ * during an allocation request whenever there is no available element in
+ * the bucket layer. It returns one or more composite elements from the
+ * appropriate global freelist. If the freelist is empty, it will attempt
+ * to obtain the rudimentary objects from their caches and construct them
+ * into composite mbuf + cluster objects.
+ */
+static unsigned int
+mbuf_cslab_alloc(void *arg, mcache_obj_t ***plist, unsigned int needed,
+ int wait)
+{
+ mbuf_class_t class = (mbuf_class_t)arg;
+ mbuf_class_t cl_class = 0;
+ unsigned int num = 0, cnum = 0, want = needed;
+ mcache_obj_t *ref_list = NULL;
+ mcache_obj_t *mp_list = NULL;
+ mcache_obj_t *clp_list = NULL;
+ mcache_obj_t **list;
+ struct ext_ref *rfa;
+ struct mbuf *m;
+ void *cl;
+
+ ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class));
+ ASSERT(needed > 0);
+
+ VERIFY(class != MC_MBUF_16KCL || njcl > 0);
+
+ /* There should not be any slab for this class */
+ VERIFY(m_slab_cnt(class) == 0 &&
+ m_slablist(class).tqh_first == NULL &&
+ m_slablist(class).tqh_last == NULL);
+
+ lck_mtx_lock(mbuf_mlock);
+
+ /* Try using the freelist first */
+ num = cslab_alloc(class, plist, needed);
+ list = *plist;
+ if (num == needed) {
+ m_alloc_cnt(class) += num;
+ lck_mtx_unlock(mbuf_mlock);
+ return (needed);
+ }
+
+ lck_mtx_unlock(mbuf_mlock);
+
+ /*
+ * We could not satisfy the request using the freelist alone;
+ * allocate from the appropriate rudimentary caches and use
+ * whatever we can get to construct the composite objects.
+ */
+ needed -= num;
+
+ /*
+ * Mark these allocation requests as coming from a composite cache.
+ * Also, if the caller is willing to be blocked, mark the request
+ * with MCR_FAILOK such that we don't end up sleeping at the mbuf
+ * slab layer waiting for the individual object when one or more
+ * of the already-constructed composite objects are available.
+ */
+ wait |= MCR_COMP;
+ if (!(wait & MCR_NOSLEEP))
+ wait |= MCR_FAILOK;
+
+ /* allocate mbufs */
+ needed = mcache_alloc_ext(m_cache(MC_MBUF), &mp_list, needed, wait);
+ if (needed == 0) {
+ ASSERT(mp_list == NULL);
+ goto fail;
+ }
+
+ /* allocate clusters */
+ if (class == MC_MBUF_CL) {
+ cl_class = MC_CL;
+ } else if (class == MC_MBUF_BIGCL) {
+ cl_class = MC_BIGCL;
+ } else {
+ VERIFY(class == MC_MBUF_16KCL);
+ cl_class = MC_16KCL;
+ }
+ needed = mcache_alloc_ext(m_cache(cl_class), &clp_list, needed, wait);
+ if (needed == 0) {
+ ASSERT(clp_list == NULL);
+ goto fail;
+ }
+
+ needed = mcache_alloc_ext(ref_cache, &ref_list, needed, wait);
+ if (needed == 0) {
+ ASSERT(ref_list == NULL);
+ goto fail;
+ }
+
+ /*
+ * By this time "needed" is MIN(mbuf, cluster, ref). Any left
+ * overs will get freed accordingly before we return to caller.
+ */
+ for (cnum = 0; cnum < needed; cnum++) {
+ struct mbuf *ms;
+
+ m = ms = (struct mbuf *)mp_list;
+ mp_list = mp_list->obj_next;
+
+ cl = clp_list;
+ clp_list = clp_list->obj_next;
+ ((mcache_obj_t *)cl)->obj_next = NULL;
+
+ rfa = (struct ext_ref *)ref_list;
+ ref_list = ref_list->obj_next;
+ ((mcache_obj_t *)(void *)rfa)->obj_next = NULL;
+
+ /*
+ * If auditing is enabled, construct the shadow mbuf
+ * in the audit structure instead of in the actual one.
+ * mbuf_cslab_audit() will take care of restoring the
+ * contents after the integrity check.
+ */
+ if (mclaudit != NULL) {
+ mcache_audit_t *mca, *cl_mca;
+
+ lck_mtx_lock(mbuf_mlock);
+ mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m);
+ ms = ((struct mbuf *)mca->mca_contents);
+ cl_mca = mcl_audit_buf2mca(MC_CL, (mcache_obj_t *)cl);
+
+ /*
+ * Pair them up. Note that this is done at the time
+ * the mbuf+cluster objects are constructed. This
+ * information should be treated as "best effort"
+ * debugging hint since more than one mbufs can refer
+ * to a cluster. In that case, the cluster might not
+ * be freed along with the mbuf it was paired with.
+ */
+ mca->mca_uptr = cl_mca;
+ cl_mca->mca_uptr = mca;
+
+ ASSERT(mca->mca_uflags & MB_SCVALID);
+ ASSERT(!(cl_mca->mca_uflags & MB_SCVALID));
+ lck_mtx_unlock(mbuf_mlock);
+
+ /* Technically, they are in the freelist */
+ if (mclverify) {
+ size_t size;
+
+ mcache_set_pattern(MCACHE_FREE_PATTERN, m,
+ m_maxsize(MC_MBUF));
+
+ if (class == MC_MBUF_CL)
+ size = m_maxsize(MC_CL);
+ else if (class == MC_MBUF_BIGCL)
+ size = m_maxsize(MC_BIGCL);
+ else
+ size = m_maxsize(MC_16KCL);
+
+ mcache_set_pattern(MCACHE_FREE_PATTERN, cl,
+ size);
+ }
+ }
+
+ MBUF_INIT(ms, 0, MT_FREE);
+ if (class == MC_MBUF_16KCL) {
+ MBUF_16KCL_INIT(ms, cl, rfa, 0, EXTF_COMPOSITE);
+ } else if (class == MC_MBUF_BIGCL) {
+ MBUF_BIGCL_INIT(ms, cl, rfa, 0, EXTF_COMPOSITE);
+ } else {
+ MBUF_CL_INIT(ms, cl, rfa, 0, EXTF_COMPOSITE);
+ }
+ VERIFY(ms->m_flags == M_EXT);
+ VERIFY(MEXT_RFA(ms) != NULL && MBUF_IS_COMPOSITE(ms));
+
+ *list = (mcache_obj_t *)m;
+ (*list)->obj_next = NULL;
+ list = *plist = &(*list)->obj_next;
+ }
+
+fail:
+ /*
+ * Free up what's left of the above.
+ */
+ if (mp_list != NULL)
+ mcache_free_ext(m_cache(MC_MBUF), mp_list);
+ if (clp_list != NULL)
+ mcache_free_ext(m_cache(cl_class), clp_list);
+ if (ref_list != NULL)
+ mcache_free_ext(ref_cache, ref_list);
+
+ lck_mtx_lock(mbuf_mlock);
+ if (num > 0 || cnum > 0) {
+ m_total(class) += cnum;
+ VERIFY(m_total(class) <= m_maxlimit(class));
+ m_alloc_cnt(class) += num + cnum;
+ }
+ if ((num + cnum) < want)
+ m_fail_cnt(class) += (want - (num + cnum));
+ lck_mtx_unlock(mbuf_mlock);
+
+ return (num + cnum);
+}
+
+/*
+ * Common de-allocator for composite objects called by the CPU cache
+ * layer when one or more elements need to be returned to the appropriate
+ * global freelist.
+ */
+static void
+mbuf_cslab_free(void *arg, mcache_obj_t *list, int purged)
+{
+ mbuf_class_t class = (mbuf_class_t)arg;
+ unsigned int num;
+ int w;
+
+ ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class));
+
+ lck_mtx_lock(mbuf_mlock);
+
+ num = cslab_free(class, list, purged);
+ m_free_cnt(class) += num;
+
+ if ((w = mb_waiters) > 0)
+ mb_waiters = 0;
+
+ lck_mtx_unlock(mbuf_mlock);
+
+ if (w != 0)
+ wakeup(mb_waitchan);
+}
+
+/*
+ * Common auditor for composite objects called by the CPU cache layer
+ * during an allocation or free request. For the former, this is called
+ * after the objects are obtained from either the bucket or slab layer
+ * and before they are returned to the caller. For the latter, this is
+ * called immediately during free and before placing the objects into
+ * the bucket or slab layer.
+ */
+static void
+mbuf_cslab_audit(void *arg, mcache_obj_t *list, boolean_t alloc)
+{
+ mbuf_class_t class = (mbuf_class_t)arg;
+ mcache_audit_t *mca;
+ struct mbuf *m, *ms;
+ mcl_slab_t *clsp, *nsp;
+ size_t size;
+ void *cl;
+
+ ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class));
+
+ while ((m = ms = (struct mbuf *)list) != NULL) {
+ lck_mtx_lock(mbuf_mlock);
+ /* Do the mbuf sanity checks and record its transaction */
+ mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m);
+ mcl_audit_mbuf(mca, m, TRUE, alloc);
+ if (mcltrace)
+ mcache_buffer_log(mca, m, m_cache(class));
+
+ if (alloc)
+ mca->mca_uflags |= MB_COMP_INUSE;
+ else
+ mca->mca_uflags &= ~MB_COMP_INUSE;
+
+ /*
+ * Use the shadow mbuf in the audit structure if we are
+ * freeing, since the contents of the actual mbuf has been
+ * pattern-filled by the above call to mcl_audit_mbuf().
+ */
+ if (!alloc && mclverify)
+ ms = (struct mbuf *)mca->mca_contents;
+
+ /* Do the cluster sanity checks and record its transaction */
+ cl = ms->m_ext.ext_buf;
+ clsp = slab_get(cl);
+ VERIFY(ms->m_flags == M_EXT && cl != NULL);
+ VERIFY(MEXT_RFA(ms) != NULL && MBUF_IS_COMPOSITE(ms));
+ if (class == MC_MBUF_CL)
+ VERIFY(clsp->sl_refcnt >= 1 &&
+ clsp->sl_refcnt <= NCLPBG);
+ else
+ VERIFY(clsp->sl_refcnt == 1);
+
+ if (class == MC_MBUF_16KCL) {
+ int k;
+ for (nsp = clsp, k = 1; k < NSLABSP16KB; k++) {
+ nsp = nsp->sl_next;
+ /* Next slab must already be present */
+ VERIFY(nsp != NULL);
+ VERIFY(nsp->sl_refcnt == 1);
+ }
+ }
+
+ mca = mcl_audit_buf2mca(MC_CL, cl);
+ if (class == MC_MBUF_CL)
+ size = m_maxsize(MC_CL);
+ else if (class == MC_MBUF_BIGCL)
+ size = m_maxsize(MC_BIGCL);
+ else
+ size = m_maxsize(MC_16KCL);
+ mcl_audit_cluster(mca, cl, size, alloc, FALSE);
+ if (mcltrace)
+ mcache_buffer_log(mca, cl, m_cache(class));
+
+ if (alloc)
+ mca->mca_uflags |= MB_COMP_INUSE;
+ else
+ mca->mca_uflags &= ~MB_COMP_INUSE;
+ lck_mtx_unlock(mbuf_mlock);
+
+ list = list->obj_next;
+ }
+}
+
+/*
+ * Allocate some number of mbuf clusters and place on cluster freelist.
+ */
+static int
+m_clalloc(const u_int32_t num, const int wait, const u_int32_t bufsize)
+{
+ int i;
+ vm_size_t size = 0;
+ int numpages = 0, large_buffer = (bufsize == m_maxsize(MC_16KCL));
+ vm_offset_t page = 0;
+ mcache_audit_t *mca_list = NULL;
+ mcache_obj_t *con_list = NULL;
+ mcl_slab_t *sp;
+
+ VERIFY(bufsize == m_maxsize(MC_BIGCL) ||
+ bufsize == m_maxsize(MC_16KCL));
+
+ lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
+
+ /*
+ * Multiple threads may attempt to populate the cluster map one
+ * after another. Since we drop the lock below prior to acquiring
+ * the physical page(s), our view of the cluster map may no longer
+ * be accurate, and we could end up over-committing the pages beyond
+ * the maximum allowed for each class. To prevent it, this entire
+ * operation (including the page mapping) is serialized.
+ */
+ while (mb_clalloc_busy) {
+ mb_clalloc_waiters++;
+ (void) msleep(mb_clalloc_waitchan, mbuf_mlock,
+ (PZERO-1), "m_clalloc", NULL);
+ lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
+ }
+
+ /* We are busy now; tell everyone else to go away */
+ mb_clalloc_busy = TRUE;
+
+ /*
+ * Honor the caller's wish to block or not block. We have a way
+ * to grow the pool asynchronously using the mbuf worker thread.
+ */
+ i = m_howmany(num, bufsize);
+ if (i == 0 || (wait & M_DONTWAIT))
+ goto out;
+
+ lck_mtx_unlock(mbuf_mlock);
+
+ size = round_page(i * bufsize);
+ page = kmem_mb_alloc(mb_map, size, large_buffer);
+
+ /*
+ * If we did ask for "n" 16KB physically contiguous chunks
+ * and didn't get them, then please try again without this
+ * restriction.
+ */
+ if (large_buffer && page == 0)
+ page = kmem_mb_alloc(mb_map, size, 0);
+
+ if (page == 0) {
+ if (bufsize == m_maxsize(MC_BIGCL)) {
+ /* Try for 1 page if failed, only 4KB request */
+ size = NBPG;
+ page = kmem_mb_alloc(mb_map, size, 0);
+ }
+
+ if (page == 0) {
+ lck_mtx_lock(mbuf_mlock);
+ goto out;
+ }
+ }
+
+ VERIFY(IS_P2ALIGNED(page, NBPG));
+ numpages = size / NBPG;
+
+ /* If auditing is enabled, allocate the audit structures now */
+ if (mclaudit != NULL) {
+ int needed;
+
+ /*
+ * Yes, I realize this is a waste of memory for clusters
+ * that never get transformed into mbufs, as we may end
+ * up with NMBPBG-1 unused audit structures per cluster.
+ * But doing so tremendously simplifies the allocation
+ * strategy, since at this point we are not holding the
+ * mbuf lock and the caller is okay to be blocked.
+ */
+ if (bufsize == m_maxsize(MC_BIGCL)) {
+ needed = numpages * NMBPBG;
+
+ i = mcache_alloc_ext(mcl_audit_con_cache,
+ &con_list, needed, MCR_SLEEP);
+
+ VERIFY(con_list != NULL && i == needed);
+ } else {
+ needed = numpages / NSLABSP16KB;
+ }
+
+ i = mcache_alloc_ext(mcache_audit_cache,
+ (mcache_obj_t **)&mca_list, needed, MCR_SLEEP);
+
+ VERIFY(mca_list != NULL && i == needed);
+ }
+
+ lck_mtx_lock(mbuf_mlock);
+
+ for (i = 0; i < numpages; i++, page += NBPG) {
+ ppnum_t offset = ((char *)page - (char *)mbutl) / NBPG;
+ ppnum_t new_page = pmap_find_phys(kernel_pmap, page);
+
+ /*
+ * In the case of no mapper being available the following
+ * code noops and returns the input page; if there is a
+ * mapper the appropriate I/O page is returned.
+ */
+ VERIFY(offset < mcl_pages);
+ if (mcl_paddr_base) {
+ bzero((void *)(uintptr_t) page, page_size);
+ new_page = IOMapperInsertPage(mcl_paddr_base, offset, new_page);
+ }
+ mcl_paddr[offset] = new_page << PGSHIFT;
+
+ /* Pattern-fill this fresh page */
+ if (mclverify) {
+ mcache_set_pattern(MCACHE_FREE_PATTERN,
+ (caddr_t)page, NBPG);
+ }
+ if (bufsize == m_maxsize(MC_BIGCL)) {
+ union mbigcluster *mbc = (union mbigcluster *)page;
+
+ /* One for the entire page */
+ sp = slab_get(mbc);
+ if (mclaudit != NULL) {
+ mcl_audit_init(mbc, &mca_list, &con_list,
+ AUDIT_CONTENTS_SIZE, NMBPBG);
+ }
+ VERIFY(sp->sl_refcnt == 0 && sp->sl_flags == 0);
+ slab_init(sp, MC_BIGCL, SLF_MAPPED,
+ mbc, mbc, bufsize, 0, 1);
+
+ /* Insert this slab */
+ slab_insert(sp, MC_BIGCL);
+
+ /* Update stats now since slab_get() drops the lock */
+ mbstat.m_bigclfree = ++m_infree(MC_BIGCL) +
+ m_infree(MC_MBUF_BIGCL);
+ mbstat.m_bigclusters = ++m_total(MC_BIGCL);
+ VERIFY(m_total(MC_BIGCL) <= m_maxlimit(MC_BIGCL));
+ } else if ((i % NSLABSP16KB) == 0) {
+ union m16kcluster *m16kcl = (union m16kcluster *)page;
+ mcl_slab_t *nsp;
+ int k;
+
+ VERIFY(njcl > 0);
+ /* One for the entire 16KB */
+ sp = slab_get(m16kcl);
+ if (mclaudit != NULL)
+ mcl_audit_init(m16kcl, &mca_list, NULL, 0, 1);
+
+ VERIFY(sp->sl_refcnt == 0 && sp->sl_flags == 0);
+ slab_init(sp, MC_16KCL, SLF_MAPPED,
+ m16kcl, m16kcl, bufsize, 0, 1);
+
+ /*
+ * 2nd-Nth page's slab is part of the first one,
+ * where N is NSLABSP16KB.
+ */
+ for (k = 1; k < NSLABSP16KB; k++) {
+ nsp = slab_get(((union mbigcluster *)page) + k);
+ VERIFY(nsp->sl_refcnt == 0 &&
+ nsp->sl_flags == 0);
+ slab_init(nsp, MC_16KCL,
+ SLF_MAPPED | SLF_PARTIAL,
+ m16kcl, NULL, 0, 0, 0);
+ }
+
+ /* Insert this slab */
+ slab_insert(sp, MC_16KCL);
+
+ /* Update stats now since slab_get() drops the lock */
+ m_infree(MC_16KCL)++;
+ m_total(MC_16KCL)++;
+ VERIFY(m_total(MC_16KCL) <= m_maxlimit(MC_16KCL));
+ }
+ }
+ VERIFY(mca_list == NULL && con_list == NULL);
+
+ /* We're done; let others enter */
+ mb_clalloc_busy = FALSE;
+ if (mb_clalloc_waiters > 0) {
+ mb_clalloc_waiters = 0;
+ wakeup(mb_clalloc_waitchan);
+ }
+
+ if (bufsize == m_maxsize(MC_BIGCL))
+ return (numpages);
+
+ VERIFY(bufsize == m_maxsize(MC_16KCL));
+ return (numpages / NSLABSP16KB);
+
+out:
+ lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
+
+ /* We're done; let others enter */
+ mb_clalloc_busy = FALSE;
+ if (mb_clalloc_waiters > 0) {
+ mb_clalloc_waiters = 0;
+ wakeup(mb_clalloc_waitchan);
+ }
+
+ /*
+ * When non-blocking we kick a thread if we have to grow the
+ * pool or if the number of free clusters is less than requested.
+ */
+ if (bufsize == m_maxsize(MC_BIGCL)) {
+ if (i > 0) {
+ /*
+ * Remember total number of 4KB clusters needed
+ * at this time.
+ */
+ i += m_total(MC_BIGCL);
+ if (i > mbuf_expand_big) {
+ mbuf_expand_big = i;
+ if (mbuf_worker_ready)
+ wakeup((caddr_t)&mbuf_worker_run);
+ }
+ }
+
+ if (m_infree(MC_BIGCL) >= num)
+ return (1);
+ } else {
+ if (i > 0) {
+ /*
+ * Remember total number of 16KB clusters needed
+ * at this time.
+ */
+ i += m_total(MC_16KCL);
+ if (i > mbuf_expand_16k) {
+ mbuf_expand_16k = i;
+ if (mbuf_worker_ready)
+ wakeup((caddr_t)&mbuf_worker_run);
+ }
+ }
+
+ if (m_infree(MC_16KCL) >= num)
+ return (1);
+ }
+ return (0);
+}
+
+/*
+ * Populate the global freelist of the corresponding buffer class.
+ */
+static int
+freelist_populate(mbuf_class_t class, unsigned int num, int wait)
+{
+ mcache_obj_t *o = NULL;
+ int i, numpages = 0, count;
+
+ VERIFY(class == MC_MBUF || class == MC_CL || class == MC_BIGCL ||
+ class == MC_16KCL);
+
+ lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
+
+ switch (class) {
+ case MC_MBUF:
+ case MC_CL:
+ case MC_BIGCL:
+ numpages = (num * m_size(class) + NBPG - 1) / NBPG;
+ i = m_clalloc(numpages, wait, m_maxsize(MC_BIGCL));
+
+ /* Respect the 4KB clusters minimum limit */
+ if (m_total(MC_BIGCL) == m_maxlimit(MC_BIGCL) &&
+ m_infree(MC_BIGCL) <= m_minlimit(MC_BIGCL)) {
+ if (class != MC_BIGCL || (wait & MCR_COMP))
+ return (0);
+ }
+ if (class == MC_BIGCL)
+ return (i != 0);
+ break;
+
+ case MC_16KCL:
+ return (m_clalloc(num, wait, m_maxsize(class)) != 0);
+ /* NOTREACHED */
+
+ default:
+ VERIFY(0);
+ /* NOTREACHED */
+ }
+
+ VERIFY(class == MC_MBUF || class == MC_CL);
+
+ /* how many objects will we cut the page into? */
+ int numobj = (class == MC_MBUF ? NMBPBG : NCLPBG);
+
+ for (count = 0; count < numpages; count++) {
+
+ /* respect totals, minlimit, maxlimit */
+ if (m_total(MC_BIGCL) <= m_minlimit(MC_BIGCL) ||
+ m_total(class) >= m_maxlimit(class))
+ break;
+
+ if ((o = slab_alloc(MC_BIGCL, wait)) == NULL)
+ break;
+
+ struct mbuf *m = (struct mbuf *)o;
+ union mcluster *c = (union mcluster *)o;
+ mcl_slab_t *sp = slab_get(o);
+ mcache_audit_t *mca = NULL;
+
+ VERIFY(slab_is_detached(sp) &&
+ (sp->sl_flags & (SLF_MAPPED | SLF_PARTIAL)) == SLF_MAPPED);
+
+ /*
+ * Make sure that the cluster is unmolested
+ * while in freelist
+ */
+ if (mclverify) {
+ mca = mcl_audit_buf2mca(MC_BIGCL, o);
+ mcache_audit_free_verify(mca, o, 0,
+ m_maxsize(MC_BIGCL));
+ }
+
+ /* Reinitialize it as an mbuf or 2K slab */
+ slab_init(sp, class, sp->sl_flags,
+ sp->sl_base, NULL, sp->sl_len, 0, numobj);
+
+ VERIFY(o == (mcache_obj_t *)sp->sl_base);
+ VERIFY(sp->sl_head == NULL);
+
+ VERIFY(m_total(MC_BIGCL) > 0);
+ m_total(MC_BIGCL)--;
+ mbstat.m_bigclusters = m_total(MC_BIGCL);
+
+ m_total(class) += numobj;
+ m_infree(class) += numobj;
+
+ VERIFY(m_total(MC_BIGCL) >= m_minlimit(MC_BIGCL));
+ VERIFY(m_total(class) <= m_maxlimit(class));
+
+ i = numobj;
+ if (class == MC_MBUF) {
+ mbstat.m_mbufs = m_total(MC_MBUF);
+ mtype_stat_add(MT_FREE, NMBPBG);
+ while (i--) {
+ /*
+ * If auditing is enabled, construct the
+ * shadow mbuf in the audit structure
+ * instead of the actual one.
+ * mbuf_slab_audit() will take care of
+ * restoring the contents after the
+ * integrity check.
+ */
+ if (mclaudit != NULL) {
+ struct mbuf *ms;
+ mca = mcl_audit_buf2mca(MC_MBUF,
+ (mcache_obj_t *)m);
+ ms = ((struct mbuf *)
+ mca->mca_contents);
+ ms->m_type = MT_FREE;
+ } else {
+ m->m_type = MT_FREE;
+ }
+ m->m_next = sp->sl_head;
+ sp->sl_head = (void *)m++;
+ }
+ } else { /* MC_CL */
+ mbstat.m_clfree =
+ m_infree(MC_CL) + m_infree(MC_MBUF_CL);
+ mbstat.m_clusters = m_total(MC_CL);
+ while (i--) {
+ c->mcl_next = sp->sl_head;
+ sp->sl_head = (void *)c++;
+ }
+ }
+
+ /* Insert into the mbuf or 2k slab list */
+ slab_insert(sp, class);
+
+ if ((i = mb_waiters) > 0)
+ mb_waiters = 0;
+ if (i != 0)
+ wakeup(mb_waitchan);
+ }
+ return (count != 0);
+}
+
+/*
+ * For each class, initialize the freelist to hold m_minlimit() objects.
+ */
+static void
+freelist_init(mbuf_class_t class)
+{
+ lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
+
+ VERIFY(class == MC_CL || class == MC_BIGCL);
+ VERIFY(m_total(class) == 0);
+ VERIFY(m_minlimit(class) > 0);
+
+ while (m_total(class) < m_minlimit(class))
+ (void) freelist_populate(class, m_minlimit(class), M_WAIT);
+
+ VERIFY(m_total(class) >= m_minlimit(class));
+}
+
+/*
+ * (Inaccurately) check if it might be worth a trip back to the
+ * mcache layer due the availability of objects there. We'll
+ * end up back here if there's nothing up there.
+ */
+static boolean_t
+mbuf_cached_above(mbuf_class_t class, int wait)
+{
+ switch (class) {
+ case MC_MBUF:
+ if (wait & MCR_COMP)
+ return (!mcache_bkt_isempty(m_cache(MC_MBUF_CL)) ||
+ !mcache_bkt_isempty(m_cache(MC_MBUF_BIGCL)));
+ break;
+
+ case MC_CL:
+ if (wait & MCR_COMP)
+ return (!mcache_bkt_isempty(m_cache(MC_MBUF_CL)));
+ break;
+
+ case MC_BIGCL:
+ if (wait & MCR_COMP)
+ return (!mcache_bkt_isempty(m_cache(MC_MBUF_BIGCL)));
+ break;
+
+ case MC_16KCL:
+ if (wait & MCR_COMP)
+ return (!mcache_bkt_isempty(m_cache(MC_MBUF_16KCL)));
+ break;
+
+ case MC_MBUF_CL:
+ case MC_MBUF_BIGCL:
+ case MC_MBUF_16KCL:
+ break;
+
+ default:
+ VERIFY(0);
+ /* NOTREACHED */
+ }
+
+ return (!mcache_bkt_isempty(m_cache(class)));
+}
+
+/*
+ * If possible, convert constructed objects to raw ones.
+ */
+static boolean_t
+mbuf_steal(mbuf_class_t class, unsigned int num)
+{
+ mcache_obj_t *top = NULL;
+ mcache_obj_t **list = ⊤
+ unsigned int tot = 0;
+
+ lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
+
+ switch (class) {
+ case MC_MBUF:
+ case MC_CL:
+ case MC_BIGCL:
+ case MC_16KCL:
+ return (FALSE);
+
+ case MC_MBUF_CL:
+ case MC_MBUF_BIGCL:
+ case MC_MBUF_16KCL:
+ /* Get the required number of constructed objects if possible */
+ if (m_infree(class) > m_minlimit(class)) {
+ tot = cslab_alloc(class, &list,
+ MIN(num, m_infree(class)));
+ }
+
+ /* And destroy them to get back the raw objects */
+ if (top != NULL)
+ (void) cslab_free(class, top, 1);
+ break;
+
+ default:
+ VERIFY(0);
+ /* NOTREACHED */
+ }
+
+ return (tot == num);
+}
+
+static void
+m_reclaim(mbuf_class_t class, unsigned int num, boolean_t comp)
+{
+ int m, bmap = 0;
+
+ lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
+
+ VERIFY(m_total(MC_CL) <= m_maxlimit(MC_CL));
+ VERIFY(m_total(MC_BIGCL) <= m_maxlimit(MC_BIGCL));
+ VERIFY(m_total(MC_16KCL) <= m_maxlimit(MC_16KCL));
+
+ /*
+ * This logic can be made smarter; for now, simply mark
+ * all other related classes as potential victims.
+ */
+ switch (class) {
+ case MC_MBUF:
+ m_wantpurge(MC_CL)++;
+ m_wantpurge(MC_BIGCL)++;
+ m_wantpurge(MC_MBUF_CL)++;
+ m_wantpurge(MC_MBUF_BIGCL)++;
+ break;
+
+ case MC_CL:
+ m_wantpurge(MC_MBUF)++;
+ m_wantpurge(MC_BIGCL)++;
+ m_wantpurge(MC_MBUF_BIGCL)++;
+ if (!comp)
+ m_wantpurge(MC_MBUF_CL)++;
+ break;
+
+ case MC_BIGCL:
+ m_wantpurge(MC_MBUF)++;
+ m_wantpurge(MC_CL)++;
+ m_wantpurge(MC_MBUF_CL)++;
+ if (!comp)
+ m_wantpurge(MC_MBUF_BIGCL)++;
+ break;
+
+ case MC_16KCL:
+ if (!comp)
+ m_wantpurge(MC_MBUF_16KCL)++;
+ break;
+
+ default:
+ VERIFY(0);
+ /* NOTREACHED */
+ }
+
+ /*
+ * Run through each marked class and check if we really need to
+ * purge (and therefore temporarily disable) the per-CPU caches
+ * layer used by the class. If so, remember the classes since
+ * we are going to drop the lock below prior to purging.
+ */
+ for (m = 0; m < NELEM(mbuf_table); m++) {
+ if (m_wantpurge(m) > 0) {
+ m_wantpurge(m) = 0;
+ /*
+ * Try hard to steal the required number of objects
+ * from the freelist of other mbuf classes. Only
+ * purge and disable the per-CPU caches layer when
+ * we don't have enough; it's the last resort.
+ */
+ if (!mbuf_steal(m, num))
+ bmap |= (1 << m);
+ }
+ }
+
+ lck_mtx_unlock(mbuf_mlock);
+
+ if (bmap != 0) {
+ /* drain is performed in pfslowtimo(), to avoid deadlocks */
+ do_reclaim = 1;
+
+ /* Sigh; we have no other choices but to ask mcache to purge */
+ for (m = 0; m < NELEM(mbuf_table); m++) {
+ if ((bmap & (1 << m)) &&
+ mcache_purge_cache(m_cache(m))) {
+ lck_mtx_lock(mbuf_mlock);
+ m_purge_cnt(m)++;
+ mbstat.m_drain++;
+ lck_mtx_unlock(mbuf_mlock);
+ }
+ }
+ } else {
+ /*
+ * Request mcache to reap extra elements from all of its caches;
+ * note that all reaps are serialized and happen only at a fixed
+ * interval.
+ */
+ mcache_reap();
+ }
+ lck_mtx_lock(mbuf_mlock);
+}
+
+static inline struct mbuf *
+m_get_common(int wait, short type, int hdr)
+{
+ struct mbuf *m;
+ int mcflags = MSLEEPF(wait);
+
+ /* Is this due to a non-blocking retry? If so, then try harder */
+ if (mcflags & MCR_NOSLEEP)
+ mcflags |= MCR_TRYHARD;
+
+ m = mcache_alloc(m_cache(MC_MBUF), mcflags);
+ if (m != NULL) {
+ MBUF_INIT(m, hdr, type);
+ mtype_stat_inc(type);
+ mtype_stat_dec(MT_FREE);
+#if CONFIG_MACF_NET
+ if (hdr && mac_init_mbuf(m, wait) != 0) {
+ m_free(m);
+ return (NULL);
+ }
+#endif /* MAC_NET */
+ }
+ return (m);
+}
+
+/*
+ * Space allocation routines; these are also available as macros
+ * for critical paths.
+ */
+#define _M_GET(wait, type) m_get_common(wait, type, 0)
+#define _M_GETHDR(wait, type) m_get_common(wait, type, 1)
+#define _M_RETRY(wait, type) _M_GET(wait, type)
+#define _M_RETRYHDR(wait, type) _M_GETHDR(wait, type)
+#define _MGET(m, how, type) ((m) = _M_GET(how, type))
+#define _MGETHDR(m, how, type) ((m) = _M_GETHDR(how, type))
+
+struct mbuf *
+m_get(int wait, int type)
+{
+ return (_M_GET(wait, type));
+}
+
+struct mbuf *
+m_gethdr(int wait, int type)
+{
+ return (_M_GETHDR(wait, type));
+}
+
+struct mbuf *
+m_retry(int wait, int type)
+{
+ return (_M_RETRY(wait, type));
+}
+
+struct mbuf *
+m_retryhdr(int wait, int type)
+{
+ return (_M_RETRYHDR(wait, type));
+}
+
+struct mbuf *
+m_getclr(int wait, int type)
+{
+ struct mbuf *m;
+
+ _MGET(m, wait, type);
+ if (m != NULL)
+ bzero(MTOD(m, caddr_t), MLEN);
+ return (m);
+}
+
+struct mbuf *
+m_free(struct mbuf *m)
+{
+ struct mbuf *n = m->m_next;
+
+ if (m->m_type == MT_FREE)
+ panic("m_free: freeing an already freed mbuf");
+
+ /* Free the aux data and tags if there is any */
+ if (m->m_flags & M_PKTHDR) {
+ m_tag_delete_chain(m, NULL);
+ }
+
+ if (m->m_flags & M_EXT) {
+ u_int32_t refcnt;
+ u_int32_t composite;
+
+ refcnt = m_decref(m);
+ composite = (MEXT_FLAGS(m) & EXTF_COMPOSITE);
+ if (refcnt == 0 && !composite) {
+ if (m->m_ext.ext_free == NULL) {
+ mcache_free(m_cache(MC_CL), m->m_ext.ext_buf);
+ } else if (m->m_ext.ext_free == m_bigfree) {
+ mcache_free(m_cache(MC_BIGCL),
+ m->m_ext.ext_buf);
+ } else if (m->m_ext.ext_free == m_16kfree) {
+ mcache_free(m_cache(MC_16KCL),
+ m->m_ext.ext_buf);
+ } else {
+ (*(m->m_ext.ext_free))(m->m_ext.ext_buf,
+ m->m_ext.ext_size, m->m_ext.ext_arg);
+ }
+ mcache_free(ref_cache, MEXT_RFA(m));
+ MEXT_RFA(m) = NULL;
+ } else if (refcnt == 0 && composite) {
+ VERIFY(m->m_type != MT_FREE);
+
+ mtype_stat_dec(m->m_type);
+ mtype_stat_inc(MT_FREE);
+
+ m->m_type = MT_FREE;
+ m->m_flags = M_EXT;
+ m->m_len = 0;
+ m->m_next = m->m_nextpkt = NULL;
+
+ MEXT_FLAGS(m) &= ~EXTF_READONLY;
+
+ /* "Free" into the intermediate cache */
+ if (m->m_ext.ext_free == NULL) {
+ mcache_free(m_cache(MC_MBUF_CL), m);
+ } else if (m->m_ext.ext_free == m_bigfree) {
+ mcache_free(m_cache(MC_MBUF_BIGCL), m);
+ } else {
+ VERIFY(m->m_ext.ext_free == m_16kfree);
+ mcache_free(m_cache(MC_MBUF_16KCL), m);
+ }
+ return (n);
+ }
+ }
+
+ if (m->m_type != MT_FREE) {
+ mtype_stat_dec(m->m_type);
+ mtype_stat_inc(MT_FREE);
+ }
+
+ m->m_type = MT_FREE;
+ m->m_flags = m->m_len = 0;
+ m->m_next = m->m_nextpkt = NULL;
+
+ mcache_free(m_cache(MC_MBUF), m);
+
+ return (n);
+}
+
+__private_extern__ struct mbuf *
+m_clattach(struct mbuf *m, int type, caddr_t extbuf,
+ void (*extfree)(caddr_t, u_int, caddr_t), u_int extsize, caddr_t extarg,
+ int wait)
+{
+ struct ext_ref *rfa = NULL;
+
+ if (m == NULL && (m = _M_GETHDR(wait, type)) == NULL)
+ return (NULL);
+
+ if (m->m_flags & M_EXT) {
+ u_int32_t refcnt;
+ u_int32_t composite;
+
+ refcnt = m_decref(m);
+ composite = (MEXT_FLAGS(m) & EXTF_COMPOSITE);
+ if (refcnt == 0 && !composite) {
+ if (m->m_ext.ext_free == NULL) {
+ mcache_free(m_cache(MC_CL), m->m_ext.ext_buf);
+ } else if (m->m_ext.ext_free == m_bigfree) {
+ mcache_free(m_cache(MC_BIGCL),
+ m->m_ext.ext_buf);
+ } else if (m->m_ext.ext_free == m_16kfree) {
+ mcache_free(m_cache(MC_16KCL),
+ m->m_ext.ext_buf);
+ } else {
+ (*(m->m_ext.ext_free))(m->m_ext.ext_buf,
+ m->m_ext.ext_size, m->m_ext.ext_arg);
+ }
+ /* Re-use the reference structure */
+ rfa = MEXT_RFA(m);
+ } else if (refcnt == 0 && composite) {
+ VERIFY(m->m_type != MT_FREE);
+
+ mtype_stat_dec(m->m_type);
+ mtype_stat_inc(MT_FREE);
+
+ m->m_type = MT_FREE;
+ m->m_flags = M_EXT;
+ m->m_len = 0;
+ m->m_next = m->m_nextpkt = NULL;
+
+ MEXT_FLAGS(m) &= ~EXTF_READONLY;
+
+ /* "Free" into the intermediate cache */
+ if (m->m_ext.ext_free == NULL) {
+ mcache_free(m_cache(MC_MBUF_CL), m);
+ } else if (m->m_ext.ext_free == m_bigfree) {
+ mcache_free(m_cache(MC_MBUF_BIGCL), m);
+ } else {
+ VERIFY(m->m_ext.ext_free == m_16kfree);
+ mcache_free(m_cache(MC_MBUF_16KCL), m);
+ }
+ /*
+ * Allocate a new mbuf, since we didn't divorce
+ * the composite mbuf + cluster pair above.
+ */
+ if ((m = _M_GETHDR(wait, type)) == NULL)
+ return (NULL);
+ }
+ }
+
+ if (rfa == NULL &&
+ (rfa = mcache_alloc(ref_cache, MSLEEPF(wait))) == NULL) {
+ m_free(m);
+ return (NULL);
+ }
+
+ MEXT_INIT(m, extbuf, extsize, extfree, extarg, rfa, 1, 0);
+
+ return (m);
+}
+
+/*
+ * Perform `fast' allocation mbuf clusters from a cache of recently-freed
+ * clusters. (If the cache is empty, new clusters are allocated en-masse.)
+ */
+struct mbuf *
+m_getcl(int wait, int type, int flags)
+{
+ struct mbuf *m;
+ int mcflags = MSLEEPF(wait);
+ int hdr = (flags & M_PKTHDR);
+
+ /* Is this due to a non-blocking retry? If so, then try harder */
+ if (mcflags & MCR_NOSLEEP)
+ mcflags |= MCR_TRYHARD;
+
+ m = mcache_alloc(m_cache(MC_MBUF_CL), mcflags);
+ if (m != NULL) {
+ u_int32_t flag;
+ struct ext_ref *rfa;
+ void *cl;
+
+ VERIFY(m->m_type == MT_FREE && m->m_flags == M_EXT);
+ cl = m->m_ext.ext_buf;
+ rfa = MEXT_RFA(m);
+
+ ASSERT(cl != NULL && rfa != NULL);
+ VERIFY(MBUF_IS_COMPOSITE(m) && m->m_ext.ext_free == NULL);
+
+ flag = MEXT_FLAGS(m);
+
+ MBUF_INIT(m, hdr, type);
+ MBUF_CL_INIT(m, cl, rfa, 1, flag);
+
+ mtype_stat_inc(type);
+ mtype_stat_dec(MT_FREE);
+#if CONFIG_MACF_NET
+ if (hdr && mac_init_mbuf(m, wait) != 0) {
+ m_freem(m);
+ return (NULL);
+ }
+#endif /* MAC_NET */
+ }
+ return (m);
+}
+
+/* m_mclget() add an mbuf cluster to a normal mbuf */
+struct mbuf *
+m_mclget(struct mbuf *m, int wait)
+{
+ struct ext_ref *rfa;
+
+ if ((rfa = mcache_alloc(ref_cache, MSLEEPF(wait))) == NULL)
+ return (m);
+
+ m->m_ext.ext_buf = m_mclalloc(wait);
+ if (m->m_ext.ext_buf != NULL) {
+ MBUF_CL_INIT(m, m->m_ext.ext_buf, rfa, 1, 0);
+ } else {
+ mcache_free(ref_cache, rfa);
+ }
+ return (m);
+}
+
+/* Allocate an mbuf cluster */
+caddr_t
+m_mclalloc(int wait)
+{
+ int mcflags = MSLEEPF(wait);
+
+ /* Is this due to a non-blocking retry? If so, then try harder */
+ if (mcflags & MCR_NOSLEEP)
+ mcflags |= MCR_TRYHARD;
+
+ return (mcache_alloc(m_cache(MC_CL), mcflags));
+}
+
+/* Free an mbuf cluster */
+void
+m_mclfree(caddr_t p)
+{
+ mcache_free(m_cache(MC_CL), p);
+}
+
+/*
+ * mcl_hasreference() checks if a cluster of an mbuf is referenced by
+ * another mbuf; see comments in m_incref() regarding EXTF_READONLY.
+ */
+int
+m_mclhasreference(struct mbuf *m)
+{
+ if (!(m->m_flags & M_EXT))
+ return (0);
+
+ ASSERT(MEXT_RFA(m) != NULL);
+
+ return ((MEXT_FLAGS(m) & EXTF_READONLY) ? 1 : 0);
+}
+
+__private_extern__ caddr_t
+m_bigalloc(int wait)
+{
+ int mcflags = MSLEEPF(wait);
+
+ /* Is this due to a non-blocking retry? If so, then try harder */
+ if (mcflags & MCR_NOSLEEP)
+ mcflags |= MCR_TRYHARD;
+
+ return (mcache_alloc(m_cache(MC_BIGCL), mcflags));
+}
+
+__private_extern__ void
+m_bigfree(caddr_t p, __unused u_int size, __unused caddr_t arg)
+{
+ mcache_free(m_cache(MC_BIGCL), p);
+}
+
+/* m_mbigget() add an 4KB mbuf cluster to a normal mbuf */
+__private_extern__ struct mbuf *
+m_mbigget(struct mbuf *m, int wait)
+{
+ struct ext_ref *rfa;
+
+ if ((rfa = mcache_alloc(ref_cache, MSLEEPF(wait))) == NULL)
+ return (m);
+
+ m->m_ext.ext_buf = m_bigalloc(wait);
+ if (m->m_ext.ext_buf != NULL) {
+ MBUF_BIGCL_INIT(m, m->m_ext.ext_buf, rfa, 1, 0);
+ } else {
+ mcache_free(ref_cache, rfa);
+ }
+ return (m);
+}
+
+__private_extern__ caddr_t
+m_16kalloc(int wait)
+{
+ int mcflags = MSLEEPF(wait);
+
+ /* Is this due to a non-blocking retry? If so, then try harder */
+ if (mcflags & MCR_NOSLEEP)
+ mcflags |= MCR_TRYHARD;
+
+ return (mcache_alloc(m_cache(MC_16KCL), mcflags));
+}
+
+__private_extern__ void
+m_16kfree(caddr_t p, __unused u_int size, __unused caddr_t arg)
+{
+ mcache_free(m_cache(MC_16KCL), p);
+}
+
+/* m_m16kget() add a 16KB mbuf cluster to a normal mbuf */
+__private_extern__ struct mbuf *
+m_m16kget(struct mbuf *m, int wait)
+{
+ struct ext_ref *rfa;
+
+ if ((rfa = mcache_alloc(ref_cache, MSLEEPF(wait))) == NULL)
+ return (m);
+
+ m->m_ext.ext_buf = m_16kalloc(wait);
+ if (m->m_ext.ext_buf != NULL) {
+ MBUF_16KCL_INIT(m, m->m_ext.ext_buf, rfa, 1, 0);
+ } else {
+ mcache_free(ref_cache, rfa);
+ }
+ return (m);
+}
+
+/*
+ * "Move" mbuf pkthdr from "from" to "to".
+ * "from" must have M_PKTHDR set, and "to" must be empty.
+ */
+void
+m_copy_pkthdr(struct mbuf *to, struct mbuf *from)
+{
+ /* We will be taking over the tags of 'to' */
+ if (to->m_flags & M_PKTHDR)
+ m_tag_delete_chain(to, NULL);
+ to->m_pkthdr = from->m_pkthdr; /* especially tags */
+ m_tag_init(from); /* purge tags from src */
+ m_service_class_init(from); /* reset svc class from src */
+ from->m_pkthdr.aux_flags = 0; /* clear aux flags from src */
+ to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
+ if ((to->m_flags & M_EXT) == 0)
+ to->m_data = to->m_pktdat;
+}
+
+/*
+ * Duplicate "from"'s mbuf pkthdr in "to".
+ * "from" must have M_PKTHDR set, and "to" must be empty.
+ * In particular, this does a deep copy of the packet tags.
+ */
+static int
+m_dup_pkthdr(struct mbuf *to, struct mbuf *from, int how)
+{
+ if (to->m_flags & M_PKTHDR)
+ m_tag_delete_chain(to, NULL);
+ to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
+ if ((to->m_flags & M_EXT) == 0)
+ to->m_data = to->m_pktdat;
+ to->m_pkthdr = from->m_pkthdr;
+ m_tag_init(to);
+ return (m_tag_copy_chain(to, from, how));
+}
+
+void
+m_copy_pftag(struct mbuf *to, struct mbuf *from)
+{
+ to->m_pkthdr.pf_mtag = from->m_pkthdr.pf_mtag;
+ to->m_pkthdr.pf_mtag.pftag_hdr = NULL;
+ to->m_pkthdr.pf_mtag.pftag_flags &= ~(PF_TAG_HDR_INET|PF_TAG_HDR_INET6);
+}
+
+/*
+ * Return a list of mbuf hdrs that point to clusters. Try for num_needed;
+ * if wantall is not set, return whatever number were available. Set up the
+ * first num_with_pkthdrs with mbuf hdrs configured as packet headers; these
+ * are chained on the m_nextpkt field. Any packets requested beyond this
+ * are chained onto the last packet header's m_next field. The size of
+ * the cluster is controlled by the parameter bufsize.
+ */
+__private_extern__ struct mbuf *
+m_getpackets_internal(unsigned int *num_needed, int num_with_pkthdrs,
+ int wait, int wantall, size_t bufsize)
+{
+ struct mbuf *m;
+ struct mbuf **np, *top;
+ unsigned int pnum, needed = *num_needed;
+ mcache_obj_t *mp_list = NULL;
+ int mcflags = MSLEEPF(wait);
+ u_int32_t flag;
+ struct ext_ref *rfa;
+ mcache_t *cp;
+ void *cl;
+
+ ASSERT(bufsize == m_maxsize(MC_CL) ||
+ bufsize == m_maxsize(MC_BIGCL) ||
+ bufsize == m_maxsize(MC_16KCL));
+
+ /*
+ * Caller must first check for njcl because this
+ * routine is internal and not exposed/used via KPI.
+ */
+ VERIFY(bufsize != m_maxsize(MC_16KCL) || njcl > 0);
+
+ top = NULL;
+ np = ⊤
+ pnum = 0;
+
+ /*
+ * The caller doesn't want all the requested buffers; only some.
+ * Try hard to get what we can, but don't block. This effectively
+ * overrides MCR_SLEEP, since this thread will not go to sleep
+ * if we can't get all the buffers.
+ */
+ if (!wantall || (mcflags & MCR_NOSLEEP))
+ mcflags |= MCR_TRYHARD;
+
+ /* Allocate the composite mbuf + cluster elements from the cache */
+ if (bufsize == m_maxsize(MC_CL))
+ cp = m_cache(MC_MBUF_CL);
+ else if (bufsize == m_maxsize(MC_BIGCL))
+ cp = m_cache(MC_MBUF_BIGCL);
+ else
+ cp = m_cache(MC_MBUF_16KCL);
+ needed = mcache_alloc_ext(cp, &mp_list, needed, mcflags);
+
+ for (pnum = 0; pnum < needed; pnum++) {
+ m = (struct mbuf *)mp_list;
+ mp_list = mp_list->obj_next;
+
+ VERIFY(m->m_type == MT_FREE && m->m_flags == M_EXT);
+ cl = m->m_ext.ext_buf;
+ rfa = MEXT_RFA(m);
+
+ ASSERT(cl != NULL && rfa != NULL);
+ VERIFY(MBUF_IS_COMPOSITE(m));
+
+ flag = MEXT_FLAGS(m);
+
+ MBUF_INIT(m, num_with_pkthdrs, MT_DATA);
+ if (bufsize == m_maxsize(MC_16KCL)) {
+ MBUF_16KCL_INIT(m, cl, rfa, 1, flag);
+ } else if (bufsize == m_maxsize(MC_BIGCL)) {
+ MBUF_BIGCL_INIT(m, cl, rfa, 1, flag);
+ } else {
+ MBUF_CL_INIT(m, cl, rfa, 1, flag);
+ }
+
+ if (num_with_pkthdrs > 0) {
+ --num_with_pkthdrs;
+#if CONFIG_MACF_NET
+ if (mac_mbuf_label_init(m, wait) != 0) {
+ m_freem(m);
+ break;
+ }
+#endif /* MAC_NET */
+ }
+
+ *np = m;
+ if (num_with_pkthdrs > 0)
+ np = &m->m_nextpkt;
+ else
+ np = &m->m_next;
+ }
+ ASSERT(pnum != *num_needed || mp_list == NULL);
+ if (mp_list != NULL)
+ mcache_free_ext(cp, mp_list);
+
+ if (pnum > 0) {
+ mtype_stat_add(MT_DATA, pnum);
+ mtype_stat_sub(MT_FREE, pnum);
+ }
+
+ if (wantall && (pnum != *num_needed)) {
+ if (top != NULL)
+ m_freem_list(top);
+ return (NULL);
+ }
+
+ if (pnum > *num_needed) {
+ printf("%s: File a radar related to <rdar://10146739>. \
+ needed = %u, pnum = %u, num_needed = %u \n",
+ __func__, needed, pnum, *num_needed);
+ }
+
+ *num_needed = pnum;
+ return (top);
+}
+
+/*
+ * Return list of mbuf linked by m_nextpkt. Try for numlist, and if
+ * wantall is not set, return whatever number were available. The size of
+ * each mbuf in the list is controlled by the parameter packetlen. Each
+ * mbuf of the list may have a chain of mbufs linked by m_next. Each mbuf
+ * in the chain is called a segment. If maxsegments is not null and the
+ * value pointed to is not null, this specify the maximum number of segments
+ * for a chain of mbufs. If maxsegments is zero or the value pointed to
+ * is zero the caller does not have any restriction on the number of segments.
+ * The actual number of segments of a mbuf chain is return in the value
+ * pointed to by maxsegments.
+ */
+__private_extern__ struct mbuf *
+m_allocpacket_internal(unsigned int *numlist, size_t packetlen,
+ unsigned int *maxsegments, int wait, int wantall, size_t wantsize)
+{
+ struct mbuf **np, *top, *first = NULL;
+ size_t bufsize, r_bufsize;
+ unsigned int num = 0;
+ unsigned int nsegs = 0;
+ unsigned int needed, resid;
+ int mcflags = MSLEEPF(wait);
+ mcache_obj_t *mp_list = NULL, *rmp_list = NULL;
+ mcache_t *cp = NULL, *rcp = NULL;
+
+ if (*numlist == 0)
+ return (NULL);
+
+ top = NULL;
+ np = ⊤
+
+ if (wantsize == 0) {
+ if (packetlen <= MINCLSIZE) {
+ bufsize = packetlen;
+ } else if (packetlen > m_maxsize(MC_CL)) {
+ /* Use 4KB if jumbo cluster pool isn't available */
+ if (packetlen <= m_maxsize(MC_BIGCL) || njcl == 0)
+ bufsize = m_maxsize(MC_BIGCL);
+ else
+ bufsize = m_maxsize(MC_16KCL);
+ } else {
+ bufsize = m_maxsize(MC_CL);
+ }
+ } else if (wantsize == m_maxsize(MC_CL) ||
+ wantsize == m_maxsize(MC_BIGCL) ||
+ (wantsize == m_maxsize(MC_16KCL) && njcl > 0)) {
+ bufsize = wantsize;
+ } else {
+ return (NULL);
+ }
+
+ if (bufsize <= MHLEN) {
+ nsegs = 1;
+ } else if (bufsize <= MINCLSIZE) {
+ if (maxsegments != NULL && *maxsegments == 1) {
+ bufsize = m_maxsize(MC_CL);
+ nsegs = 1;
+ } else {
+ nsegs = 2;
+ }
+ } else if (bufsize == m_maxsize(MC_16KCL)) {
+ VERIFY(njcl > 0);
+ nsegs = ((packetlen - 1) >> (PGSHIFT + 2)) + 1;
+ } else if (bufsize == m_maxsize(MC_BIGCL)) {
+ nsegs = ((packetlen - 1) >> PGSHIFT) + 1;
+ } else {
+ nsegs = ((packetlen - 1) >> MCLSHIFT) + 1;
+ }
+ if (maxsegments != NULL) {
+ if (*maxsegments && nsegs > *maxsegments) {
+ *maxsegments = nsegs;
+ return (NULL);
+ }
+ *maxsegments = nsegs;
+ }
+
+ /*
+ * The caller doesn't want all the requested buffers; only some.
+ * Try hard to get what we can, but don't block. This effectively
+ * overrides MCR_SLEEP, since this thread will not go to sleep
+ * if we can't get all the buffers.
+ */
+ if (!wantall || (mcflags & MCR_NOSLEEP))
+ mcflags |= MCR_TRYHARD;
+
+ /*
+ * Simple case where all elements in the lists/chains are mbufs.
+ * Unless bufsize is greater than MHLEN, each segment chain is made
+ * up of exactly 1 mbuf. Otherwise, each segment chain is made up
+ * of 2 mbufs; the second one is used for the residual data, i.e.
+ * the remaining data that cannot fit into the first mbuf.
+ */
+ if (bufsize <= MINCLSIZE) {
+ /* Allocate the elements in one shot from the mbuf cache */
+ ASSERT(bufsize <= MHLEN || nsegs == 2);
+ cp = m_cache(MC_MBUF);
+ needed = mcache_alloc_ext(cp, &mp_list,
+ (*numlist) * nsegs, mcflags);
+
+ /*
+ * The number of elements must be even if we are to use an
+ * mbuf (instead of a cluster) to store the residual data.
+ * If we couldn't allocate the requested number of mbufs,
+ * trim the number down (if it's odd) in order to avoid
+ * creating a partial segment chain.
+ */
+ if (bufsize > MHLEN && (needed & 0x1))
+ needed--;
+
+ while (num < needed) {
+ struct mbuf *m;
+
+ m = (struct mbuf *)mp_list;
+ mp_list = mp_list->obj_next;
+ ASSERT(m != NULL);
+
+ MBUF_INIT(m, 1, MT_DATA);
+#if CONFIG_MACF_NET
+ if (mac_init_mbuf(m, wait) != 0) {
+ m_free(m);
+ break;
+ }
+#endif /* MAC_NET */
+ num++;
+ if (bufsize > MHLEN) {
+ /* A second mbuf for this segment chain */
+ m->m_next = (struct mbuf *)mp_list;
+ mp_list = mp_list->obj_next;
+ ASSERT(m->m_next != NULL);
+
+ MBUF_INIT(m->m_next, 0, MT_DATA);
+ num++;
+ }
+ *np = m;
+ np = &m->m_nextpkt;
+ }
+ ASSERT(num != *numlist || mp_list == NULL);
+
+ if (num > 0) {
+ mtype_stat_add(MT_DATA, num);
+ mtype_stat_sub(MT_FREE, num);
+ }
+ num /= nsegs;
+
+ /* We've got them all; return to caller */
+ if (num == *numlist)
+ return (top);
+
+ goto fail;
+ }
+
+ /*
+ * Complex cases where elements are made up of one or more composite
+ * mbufs + cluster, depending on packetlen. Each N-segment chain can
+ * be illustrated as follows:
+ *
+ * [mbuf + cluster 1] [mbuf + cluster 2] ... [mbuf + cluster N]
+ *
+ * Every composite mbuf + cluster element comes from the intermediate
+ * cache (either MC_MBUF_CL or MC_MBUF_BIGCL). For space efficiency,
+ * the last composite element will come from the MC_MBUF_CL cache,
+ * unless the residual data is larger than 2KB where we use the
+ * big cluster composite cache (MC_MBUF_BIGCL) instead. Residual
+ * data is defined as extra data beyond the first element that cannot
+ * fit into the previous element, i.e. there is no residual data if
+ * the chain only has 1 segment.
+ */
+ r_bufsize = bufsize;
+ resid = packetlen > bufsize ? packetlen % bufsize : 0;
+ if (resid > 0) {
+ /* There is residual data; figure out the cluster size */
+ if (wantsize == 0 && packetlen > MINCLSIZE) {
+ /*
+ * Caller didn't request that all of the segments
+ * in the chain use the same cluster size; use the
+ * smaller of the cluster sizes.
+ */
+ if (njcl > 0 && resid > m_maxsize(MC_BIGCL))
+ r_bufsize = m_maxsize(MC_16KCL);
+ else if (resid > m_maxsize(MC_CL))
+ r_bufsize = m_maxsize(MC_BIGCL);
+ else
+ r_bufsize = m_maxsize(MC_CL);
+ } else {
+ /* Use the same cluster size as the other segments */
+ resid = 0;
+ }
+ }
+
+ needed = *numlist;
+ if (resid > 0) {
+ /*
+ * Attempt to allocate composite mbuf + cluster elements for
+ * the residual data in each chain; record the number of such
+ * elements that can be allocated so that we know how many
+ * segment chains we can afford to create.
+ */
+ if (r_bufsize <= m_maxsize(MC_CL))
+ rcp = m_cache(MC_MBUF_CL);
+ else if (r_bufsize <= m_maxsize(MC_BIGCL))
+ rcp = m_cache(MC_MBUF_BIGCL);
+ else
+ rcp = m_cache(MC_MBUF_16KCL);
+ needed = mcache_alloc_ext(rcp, &rmp_list, *numlist, mcflags);
+
+ if (needed == 0)
+ goto fail;
+
+ /* This is temporarily reduced for calculation */
+ ASSERT(nsegs > 1);
+ nsegs--;
+ }
+
+ /*
+ * Attempt to allocate the rest of the composite mbuf + cluster
+ * elements for the number of segment chains that we need.
+ */
+ if (bufsize <= m_maxsize(MC_CL))
+ cp = m_cache(MC_MBUF_CL);
+ else if (bufsize <= m_maxsize(MC_BIGCL))
+ cp = m_cache(MC_MBUF_BIGCL);
+ else
+ cp = m_cache(MC_MBUF_16KCL);
+ needed = mcache_alloc_ext(cp, &mp_list, needed * nsegs, mcflags);
+
+ /* Round it down to avoid creating a partial segment chain */
+ needed = (needed / nsegs) * nsegs;
+ if (needed == 0)
+ goto fail;
+
+ if (resid > 0) {
+ /*
+ * We're about to construct the chain(s); take into account
+ * the number of segments we have created above to hold the
+ * residual data for each chain, as well as restore the
+ * original count of segments per chain.
+ */
+ ASSERT(nsegs > 0);
+ needed += needed / nsegs;
+ nsegs++;
+ }
+
+ for (;;) {
+ struct mbuf *m;
+ u_int32_t flag;
+ struct ext_ref *rfa;
+ void *cl;
+ int pkthdr;
+
+ ++num;
+ if (nsegs == 1 || (num % nsegs) != 0 || resid == 0) {
+ m = (struct mbuf *)mp_list;
+ mp_list = mp_list->obj_next;
+ } else {
+ m = (struct mbuf *)rmp_list;
+ rmp_list = rmp_list->obj_next;
+ }
+ ASSERT(m != NULL);
+ VERIFY(m->m_type == MT_FREE && m->m_flags == M_EXT);
+ VERIFY(m->m_ext.ext_free == NULL ||
+ m->m_ext.ext_free == m_bigfree ||
+ m->m_ext.ext_free == m_16kfree);
+
+ cl = m->m_ext.ext_buf;
+ rfa = MEXT_RFA(m);
+
+ ASSERT(cl != NULL && rfa != NULL);
+ VERIFY(MBUF_IS_COMPOSITE(m));
+
+ flag = MEXT_FLAGS(m);
+
+ pkthdr = (nsegs == 1 || (num % nsegs) == 1);
+ if (pkthdr)
+ first = m;
+ MBUF_INIT(m, pkthdr, MT_DATA);
+ if (m->m_ext.ext_free == m_16kfree) {
+ MBUF_16KCL_INIT(m, cl, rfa, 1, flag);
+ } else if (m->m_ext.ext_free == m_bigfree) {
+ MBUF_BIGCL_INIT(m, cl, rfa, 1, flag);
+ } else {
+ MBUF_CL_INIT(m, cl, rfa, 1, flag);
+ }
+#if CONFIG_MACF_NET
+ if (pkthdr && mac_init_mbuf(m, wait) != 0) {
+ --num;
+ m_freem(m);
+ break;
+ }
+#endif /* MAC_NET */
+
+ *np = m;
+ if ((num % nsegs) == 0)
+ np = &first->m_nextpkt;
+ else
+ np = &m->m_next;
+
+ if (num == needed)
+ break;
+ }
+
+ if (num > 0) {
+ mtype_stat_add(MT_DATA, num);
+ mtype_stat_sub(MT_FREE, num);
+ }
+
+ num /= nsegs;
+
+ /* We've got them all; return to caller */
+ if (num == *numlist) {
+ ASSERT(mp_list == NULL && rmp_list == NULL);
+ return (top);
+ }
+
+fail:
+ /* Free up what's left of the above */
+ if (mp_list != NULL)
+ mcache_free_ext(cp, mp_list);
+ if (rmp_list != NULL)
+ mcache_free_ext(rcp, rmp_list);
+ if (wantall && top != NULL) {
+ m_freem(top);
+ return (NULL);
+ }
+ *numlist = num;
+ return (top);
+}
+
+/*
+ * Best effort to get a mbuf cluster + pkthdr. Used by drivers to allocated
+ * packets on receive ring.
+ */
+__private_extern__ struct mbuf *
+m_getpacket_how(int wait)
+{
+ unsigned int num_needed = 1;
+
+ return (m_getpackets_internal(&num_needed, 1, wait, 1,
+ m_maxsize(MC_CL)));
+}
+
+/*
+ * Best effort to get a mbuf cluster + pkthdr. Used by drivers to allocated
+ * packets on receive ring.
+ */
+struct mbuf *
+m_getpacket(void)
+{
+ unsigned int num_needed = 1;
+
+ return (m_getpackets_internal(&num_needed, 1, M_WAIT, 1,
+ m_maxsize(MC_CL)));
+}
+
+/*
+ * Return a list of mbuf hdrs that point to clusters. Try for num_needed;
+ * if this can't be met, return whatever number were available. Set up the
+ * first num_with_pkthdrs with mbuf hdrs configured as packet headers. These
+ * are chained on the m_nextpkt field. Any packets requested beyond this are
+ * chained onto the last packet header's m_next field.
+ */
+struct mbuf *
+m_getpackets(int num_needed, int num_with_pkthdrs, int how)
+{
+ unsigned int n = num_needed;
+
+ return (m_getpackets_internal(&n, num_with_pkthdrs, how, 0,
+ m_maxsize(MC_CL)));
+}
+
+/*
+ * Return a list of mbuf hdrs set up as packet hdrs chained together
+ * on the m_nextpkt field
+ */
+struct mbuf *
+m_getpackethdrs(int num_needed, int how)
+{
+ struct mbuf *m;
+ struct mbuf **np, *top;
+
+ top = NULL;
+ np = ⊤
+
+ while (num_needed--) {
+ m = _M_RETRYHDR(how, MT_DATA);
+ if (m == NULL)
+ break;
+
+ *np = m;
+ np = &m->m_nextpkt;
+ }
+
+ return (top);
+}
+
+/*
+ * Free an mbuf list (m_nextpkt) while following m_next. Returns the count
+ * for mbufs packets freed. Used by the drivers.
+ */
+int
+m_freem_list(struct mbuf *m)
+{
+ struct mbuf *nextpkt;
+ mcache_obj_t *mp_list = NULL;
+ mcache_obj_t *mcl_list = NULL;
+ mcache_obj_t *mbc_list = NULL;
+ mcache_obj_t *m16k_list = NULL;
+ mcache_obj_t *m_mcl_list = NULL;
+ mcache_obj_t *m_mbc_list = NULL;
+ mcache_obj_t *m_m16k_list = NULL;
+ mcache_obj_t *ref_list = NULL;
+ int pktcount = 0;
+ int mt_free = 0, mt_data = 0, mt_header = 0, mt_soname = 0, mt_tag = 0;
+
+ while (m != NULL) {
+ pktcount++;
+
+ nextpkt = m->m_nextpkt;
+ m->m_nextpkt = NULL;
+
+ while (m != NULL) {
+ struct mbuf *next = m->m_next;
+ mcache_obj_t *o, *rfa;
+ u_int32_t refcnt, composite;
+
+ if (m->m_type == MT_FREE)
+ panic("m_free: freeing an already freed mbuf");
+
+ if (m->m_type != MT_FREE)
+ mt_free++;
+
+ if (m->m_flags & M_PKTHDR) {
+ m_tag_delete_chain(m, NULL);
+ }
+
+ if (!(m->m_flags & M_EXT))
+ goto simple_free;
+
+ o = (mcache_obj_t *)(void *)m->m_ext.ext_buf;
+ refcnt = m_decref(m);
+ composite = (MEXT_FLAGS(m) & EXTF_COMPOSITE);
+ if (refcnt == 0 && !composite) {
+ if (m->m_ext.ext_free == NULL) {
+ o->obj_next = mcl_list;
+ mcl_list = o;
+ } else if (m->m_ext.ext_free == m_bigfree) {
+ o->obj_next = mbc_list;
+ mbc_list = o;
+ } else if (m->m_ext.ext_free == m_16kfree) {
+ o->obj_next = m16k_list;
+ m16k_list = o;
+ } else {
+ (*(m->m_ext.ext_free))((caddr_t)o,
+ m->m_ext.ext_size,
+ m->m_ext.ext_arg);
+ }
+ rfa = (mcache_obj_t *)(void *)MEXT_RFA(m);
+ rfa->obj_next = ref_list;
+ ref_list = rfa;
+ MEXT_RFA(m) = NULL;
+ } else if (refcnt == 0 && composite) {
+ VERIFY(m->m_type != MT_FREE);
+ /*
+ * Amortize the costs of atomic operations
+ * by doing them at the end, if possible.
+ */
+ if (m->m_type == MT_DATA)
+ mt_data++;
+ else if (m->m_type == MT_HEADER)
+ mt_header++;
+ else if (m->m_type == MT_SONAME)
+ mt_soname++;
+ else if (m->m_type == MT_TAG)
+ mt_tag++;
+ else
+ mtype_stat_dec(m->m_type);
+
+ m->m_type = MT_FREE;
+ m->m_flags = M_EXT;
+ m->m_len = 0;
+ m->m_next = m->m_nextpkt = NULL;
+
+ MEXT_FLAGS(m) &= ~EXTF_READONLY;
+
+ /* "Free" into the intermediate cache */
+ o = (mcache_obj_t *)m;
+ if (m->m_ext.ext_free == NULL) {
+ o->obj_next = m_mcl_list;
+ m_mcl_list = o;
+ } else if (m->m_ext.ext_free == m_bigfree) {
+ o->obj_next = m_mbc_list;
+ m_mbc_list = o;
+ } else {
+ VERIFY(m->m_ext.ext_free == m_16kfree);
+ o->obj_next = m_m16k_list;
+ m_m16k_list = o;
+ }
+ m = next;
+ continue;
+ }
+simple_free:
+ /*
+ * Amortize the costs of atomic operations
+ * by doing them at the end, if possible.
+ */
+ if (m->m_type == MT_DATA)
+ mt_data++;
+ else if (m->m_type == MT_HEADER)
+ mt_header++;
+ else if (m->m_type == MT_SONAME)
+ mt_soname++;
+ else if (m->m_type == MT_TAG)
+ mt_tag++;
+ else if (m->m_type != MT_FREE)
+ mtype_stat_dec(m->m_type);
+
+ m->m_type = MT_FREE;
+ m->m_flags = m->m_len = 0;
+ m->m_next = m->m_nextpkt = NULL;
+
+ ((mcache_obj_t *)m)->obj_next = mp_list;
+ mp_list = (mcache_obj_t *)m;
+
+ m = next;
+ }
+
+ m = nextpkt;
+ }
+
+ if (mt_free > 0)
+ mtype_stat_add(MT_FREE, mt_free);
+ if (mt_data > 0)
+ mtype_stat_sub(MT_DATA, mt_data);
+ if (mt_header > 0)
+ mtype_stat_sub(MT_HEADER, mt_header);
+ if (mt_soname > 0)
+ mtype_stat_sub(MT_SONAME, mt_soname);
+ if (mt_tag > 0)
+ mtype_stat_sub(MT_TAG, mt_tag);
+
+ if (mp_list != NULL)
+ mcache_free_ext(m_cache(MC_MBUF), mp_list);
+ if (mcl_list != NULL)
+ mcache_free_ext(m_cache(MC_CL), mcl_list);
+ if (mbc_list != NULL)
+ mcache_free_ext(m_cache(MC_BIGCL), mbc_list);
+ if (m16k_list != NULL)
+ mcache_free_ext(m_cache(MC_16KCL), m16k_list);
+ if (m_mcl_list != NULL)
+ mcache_free_ext(m_cache(MC_MBUF_CL), m_mcl_list);
+ if (m_mbc_list != NULL)
+ mcache_free_ext(m_cache(MC_MBUF_BIGCL), m_mbc_list);
+ if (m_m16k_list != NULL)
+ mcache_free_ext(m_cache(MC_MBUF_16KCL), m_m16k_list);
+ if (ref_list != NULL)
+ mcache_free_ext(ref_cache, ref_list);
+
+ return (pktcount);
+}
+
+void
+m_freem(struct mbuf *m)
+{
+ while (m != NULL)
+ m = m_free(m);
+}
+
+/*
+ * Mbuffer utility routines.
+ */
+
+/*
+ * Compute the amount of space available before the current start
+ * of data in an mbuf.
+ */
+int
+m_leadingspace(struct mbuf *m)
+{
+ if (m->m_flags & M_EXT) {
+ if (MCLHASREFERENCE(m))
+ return (0);
+ return (m->m_data - m->m_ext.ext_buf);
+ }
+ if (m->m_flags & M_PKTHDR)
+ return (m->m_data - m->m_pktdat);
+ return (m->m_data - m->m_dat);
+}
+
+/*
+ * Compute the amount of space available after the end of data in an mbuf.
+ */
+int
+m_trailingspace(struct mbuf *m)
+{
+ if (m->m_flags & M_EXT) {
+ if (MCLHASREFERENCE(m))
+ return (0);
+ return (m->m_ext.ext_buf + m->m_ext.ext_size -
+ (m->m_data + m->m_len));
+ }
+ return (&m->m_dat[MLEN] - (m->m_data + m->m_len));
+}
+
+/*
+ * Lesser-used path for M_PREPEND: allocate new mbuf to prepend to chain,
+ * copy junk along. Does not adjust packet header length.
+ */
+struct mbuf *
+m_prepend(struct mbuf *m, int len, int how)
+{
+ struct mbuf *mn;
+
+ _MGET(mn, how, m->m_type);
+ if (mn == NULL) {
+ m_freem(m);
+ return (NULL);
+ }
+ if (m->m_flags & M_PKTHDR) {
+ M_COPY_PKTHDR(mn, m);
+ m->m_flags &= ~M_PKTHDR;
+ }
+ mn->m_next = m;
+ m = mn;
+ if (len < MHLEN)
+ MH_ALIGN(m, len);
+ m->m_len = len;
+ return (m);
+}
+
+/*
+ * Replacement for old M_PREPEND macro: allocate new mbuf to prepend to
+ * chain, copy junk along, and adjust length.
+ */
+struct mbuf *
+m_prepend_2(struct mbuf *m, int len, int how)
+{
+ if (M_LEADINGSPACE(m) >= len) {
+ m->m_data -= len;
+ m->m_len += len;
+ } else {
+ m = m_prepend(m, len, how);
+ }
+ if ((m) && (m->m_flags & M_PKTHDR))
+ m->m_pkthdr.len += len;
+ return (m);
+}
+
+/*
+ * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
+ * continuing for "len" bytes. If len is M_COPYALL, copy to end of mbuf.
+ * The wait parameter is a choice of M_WAIT/M_DONTWAIT from caller.
+ */
+int MCFail;
+
+struct mbuf *
+m_copym(struct mbuf *m, int off0, int len, int wait)
+{
+ struct mbuf *n, *mhdr = NULL, **np;
+ int off = off0;
+ struct mbuf *top;
+ int copyhdr = 0;
+
+ if (off < 0 || len < 0)
+ panic("m_copym: invalid offset %d or len %d", off, len);
+
+ if (off == 0 && (m->m_flags & M_PKTHDR)) {
+ mhdr = m;
+ copyhdr = 1;
+ }
+
+ while (off >= m->m_len) {
+ if (m->m_next == NULL)
+ panic("m_copym: invalid mbuf chain");
+ off -= m->m_len;
+ m = m->m_next;
+ }
+ np = ⊤
+ top = NULL;
+
+ while (len > 0) {
+ if (m == NULL) {
+ if (len != M_COPYALL)
+ panic("m_copym: len != M_COPYALL");
+ break;
+ }
+
+ n = _M_RETRY(wait, m->m_type);
+ *np = n;
+
+ if (n == NULL)
+ goto nospace;
+
+ if (copyhdr != 0) {
+ M_COPY_PKTHDR(n, mhdr);
+ if (len == M_COPYALL)
+ n->m_pkthdr.len -= off0;
+ else
+ n->m_pkthdr.len = len;
+ copyhdr = 0;
+ }
+ if (len == M_COPYALL) {
+ if (MIN(len, (m->m_len - off)) == len) {
+ printf("m->m_len %d - off %d = %d, %d\n",
+ m->m_len, off, m->m_len - off,
+ MIN(len, (m->m_len - off)));
+ }
+ }
+ n->m_len = MIN(len, (m->m_len - off));
+ if (n->m_len == M_COPYALL) {
+ printf("n->m_len == M_COPYALL, fixing\n");
+ n->m_len = MHLEN;
+ }
+ if (m->m_flags & M_EXT) {
+ n->m_ext = m->m_ext;
+ m_incref(m);
+ n->m_data = m->m_data + off;
+ n->m_flags |= M_EXT;
+ } else {
+ bcopy(MTOD(m, caddr_t)+off, MTOD(n, caddr_t),
+ (unsigned)n->m_len);
+ }
+ if (len != M_COPYALL)
+ len -= n->m_len;
+ off = 0;
+ m = m->m_next;
+ np = &n->m_next;
+ }
+
+ if (top == NULL)
+ MCFail++;
+
+ return (top);
+nospace:
+
+ m_freem(top);
+ MCFail++;
+ return (NULL);
+}
+
+/*
+ * Equivalent to m_copym except that all necessary mbuf hdrs are allocated
+ * within this routine also, the last mbuf and offset accessed are passed
+ * out and can be passed back in to avoid having to rescan the entire mbuf
+ * list (normally hung off of the socket)
+ */
+struct mbuf *
+m_copym_with_hdrs(struct mbuf *m, int off0, int len0, int wait,
+ struct mbuf **m_lastm, int *m_off)
+{
+ struct mbuf *n, **np = NULL;
+ int off = off0, len = len0;
+ struct mbuf *top = NULL;
+ int mcflags = MSLEEPF(wait);
+ int copyhdr = 0;
+ int type = 0;
+ mcache_obj_t *list = NULL;
+ int needed = 0;
+
+ if (off == 0 && (m->m_flags & M_PKTHDR))
+ copyhdr = 1;
+
+ if (*m_lastm != NULL) {
+ m = *m_lastm;
+ off = *m_off;
+ } else {
+ while (off >= m->m_len) {
+ off -= m->m_len;
+ m = m->m_next;
+ }
+ }
+
+ n = m;
+ while (len > 0) {
+ needed++;
+ ASSERT(n != NULL);
+ len -= MIN(len, (n->m_len - ((needed == 1) ? off : 0)));
+ n = n->m_next;
+ }
+ needed++;
+ len = len0;
+
+ /*
+ * If the caller doesn't want to be put to sleep, mark it with
+ * MCR_TRYHARD so that we may reclaim buffers from other places
+ * before giving up.
+ */
+ if (mcflags & MCR_NOSLEEP)
+ mcflags |= MCR_TRYHARD;
+
+ if (mcache_alloc_ext(m_cache(MC_MBUF), &list, needed,
+ mcflags) != needed)
+ goto nospace;
+
+ needed = 0;
+ while (len > 0) {
+ n = (struct mbuf *)list;
+ list = list->obj_next;
+ ASSERT(n != NULL && m != NULL);
+
+ type = (top == NULL) ? MT_HEADER : m->m_type;
+ MBUF_INIT(n, (top == NULL), type);
+#if CONFIG_MACF_NET
+ if (top == NULL && mac_mbuf_label_init(n, wait) != 0) {
+ mtype_stat_inc(MT_HEADER);
+ mtype_stat_dec(MT_FREE);
+ m_free(n);
+ goto nospace;
+ }
+#endif /* MAC_NET */
+
+ if (top == NULL) {
+ top = n;
+ np = &top->m_next;
+ continue;
+ } else {
+ needed++;
+ *np = n;
+ }
+
+ if (copyhdr) {
+ M_COPY_PKTHDR(n, m);
+ n->m_pkthdr.len = len;
+ copyhdr = 0;
+ }
+ n->m_len = MIN(len, (m->m_len - off));
+
+ if (m->m_flags & M_EXT) {
+ n->m_ext = m->m_ext;
+ m_incref(m);
+ n->m_data = m->m_data + off;
+ n->m_flags |= M_EXT;
+ } else {
+ bcopy(MTOD(m, caddr_t)+off, MTOD(n, caddr_t),
+ (unsigned)n->m_len);
+ }
+ len -= n->m_len;
+
+ if (len == 0) {
+ if ((off + n->m_len) == m->m_len) {
+ *m_lastm = m->m_next;
+ *m_off = 0;
+ } else {
+ *m_lastm = m;
+ *m_off = off + n->m_len;
+ }
+ break;
+ }
+ off = 0;
+ m = m->m_next;
+ np = &n->m_next;
+ }
+
+ mtype_stat_inc(MT_HEADER);
+ mtype_stat_add(type, needed);
+ mtype_stat_sub(MT_FREE, needed + 1);
+
+ ASSERT(list == NULL);
+ return (top);
+
+nospace:
+ if (list != NULL)
+ mcache_free_ext(m_cache(MC_MBUF), list);
+ if (top != NULL)
+ m_freem(top);
+ MCFail++;
+ return (NULL);
+}
+
+/*
+ * Copy data from an mbuf chain starting "off" bytes from the beginning,
+ * continuing for "len" bytes, into the indicated buffer.
+ */
+void
+m_copydata(struct mbuf *m, int off, int len, void *vp)
+{
+ unsigned count;
+ char *cp = vp;
+
+ if (off < 0 || len < 0)
+ panic("m_copydata: invalid offset %d or len %d", off, len);
+
+ while (off > 0) {
+ if (m == NULL)
+ panic("m_copydata: invalid mbuf chain");
+ if (off < m->m_len)
+ break;
+ off -= m->m_len;
+ m = m->m_next;
+ }
+ while (len > 0) {
+ if (m == NULL)
+ panic("m_copydata: invalid mbuf chain");
+ count = MIN(m->m_len - off, len);
+ bcopy(MTOD(m, caddr_t) + off, cp, count);
+ len -= count;
+ cp += count;
+ off = 0;
+ m = m->m_next;
+ }
+}
+
+/*
+ * Concatenate mbuf chain n to m. Both chains must be of the same type
+ * (e.g. MT_DATA). Any m_pkthdr is not updated.
+ */
+void
+m_cat(struct mbuf *m, struct mbuf *n)
+{
+ while (m->m_next)
+ m = m->m_next;
+ while (n) {
+ if ((m->m_flags & M_EXT) ||
+ m->m_data + m->m_len + n->m_len >= &m->m_dat[MLEN]) {
+ /* just join the two chains */
+ m->m_next = n;
+ return;
+ }
+ /* splat the data from one into the other */
+ bcopy(MTOD(n, caddr_t), MTOD(m, caddr_t) + m->m_len,
+ (u_int)n->m_len);
+ m->m_len += n->m_len;
+ n = m_free(n);
+ }
+}
+
+void
+m_adj(struct mbuf *mp, int req_len)
+{
+ int len = req_len;
+ struct mbuf *m;
+ int count;
+
+ if ((m = mp) == NULL)
+ return;
+ if (len >= 0) {
+ /*
+ * Trim from head.
+ */
+ while (m != NULL && len > 0) {
+ if (m->m_len <= len) {
+ len -= m->m_len;
+ m->m_len = 0;
+ m = m->m_next;
+ } else {
+ m->m_len -= len;
+ m->m_data += len;
+ len = 0;
+ }
+ }
+ m = mp;
+ if (m->m_flags & M_PKTHDR)
+ m->m_pkthdr.len -= (req_len - len);
+ } else {
+ /*
+ * Trim from tail. Scan the mbuf chain,
+ * calculating its length and finding the last mbuf.
+ * If the adjustment only affects this mbuf, then just
+ * adjust and return. Otherwise, rescan and truncate
+ * after the remaining size.
+ */
+ len = -len;
+ count = 0;
+ for (;;) {
+ count += m->m_len;
+ if (m->m_next == (struct mbuf *)0)
+ break;
+ m = m->m_next;
+ }
+ if (m->m_len >= len) {
+ m->m_len -= len;
+ m = mp;
+ if (m->m_flags & M_PKTHDR)
+ m->m_pkthdr.len -= len;
+ return;
+ }
+ count -= len;
+ if (count < 0)
+ count = 0;
+ /*
+ * Correct length for chain is "count".
+ * Find the mbuf with last data, adjust its length,
+ * and toss data from remaining mbufs on chain.
+ */
+ m = mp;
+ if (m->m_flags & M_PKTHDR)
+ m->m_pkthdr.len = count;
+ for (; m; m = m->m_next) {
+ if (m->m_len >= count) {
+ m->m_len = count;
+ break;
+ }
+ count -= m->m_len;
+ }
+ while ((m = m->m_next))
+ m->m_len = 0;
+ }
+}
+
+/*
+ * Rearange an mbuf chain so that len bytes are contiguous
+ * and in the data area of an mbuf (so that mtod and dtom
+ * will work for a structure of size len). Returns the resulting
+ * mbuf chain on success, frees it and returns null on failure.
+ * If there is room, it will add up to max_protohdr-len extra bytes to the
+ * contiguous region in an attempt to avoid being called next time.
+ */
+int MPFail;
+
+struct mbuf *
+m_pullup(struct mbuf *n, int len)
+{
+ struct mbuf *m;
+ int count;
+ int space;
+
+ /*
+ * If first mbuf has no cluster, and has room for len bytes
+ * without shifting current data, pullup into it,
+ * otherwise allocate a new mbuf to prepend to the chain.
+ */
+ if ((n->m_flags & M_EXT) == 0 &&
+ n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
+ if (n->m_len >= len)
+ return (n);
+ m = n;
+ n = n->m_next;
+ len -= m->m_len;
+ } else {
+ if (len > MHLEN)
+ goto bad;
+ _MGET(m, M_DONTWAIT, n->m_type);
+ if (m == 0)
+ goto bad;
+ m->m_len = 0;
+ if (n->m_flags & M_PKTHDR) {
+ M_COPY_PKTHDR(m, n);
+ n->m_flags &= ~M_PKTHDR;
+ }
+ }
+ space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
+ do {
+ count = MIN(MIN(MAX(len, max_protohdr), space), n->m_len);
+ bcopy(MTOD(n, caddr_t), MTOD(m, caddr_t) + m->m_len,
+ (unsigned)count);
+ len -= count;
+ m->m_len += count;
+ n->m_len -= count;
+ space -= count;
+ if (n->m_len)
+ n->m_data += count;
+ else
+ n = m_free(n);
+ } while (len > 0 && n);
+ if (len > 0) {
+ (void) m_free(m);
+ goto bad;
+ }
+ m->m_next = n;
+ return (m);
+bad:
+ m_freem(n);
+ MPFail++;
+ return (0);
+}
+
+/*
+ * Like m_pullup(), except a new mbuf is always allocated, and we allow
+ * the amount of empty space before the data in the new mbuf to be specified
+ * (in the event that the caller expects to prepend later).
+ */
+__private_extern__ int MSFail = 0;
+
+__private_extern__ struct mbuf *
+m_copyup(struct mbuf *n, int len, int dstoff)
+{
+ struct mbuf *m;
+ int count, space;
+
+ if (len > (MHLEN - dstoff))
+ goto bad;
+ MGET(m, M_DONTWAIT, n->m_type);
+ if (m == NULL)
+ goto bad;
+ m->m_len = 0;
+ if (n->m_flags & M_PKTHDR) {
+ m_copy_pkthdr(m, n);
+ n->m_flags &= ~M_PKTHDR;
+ }
+ m->m_data += dstoff;
+ space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
+ do {
+ count = min(min(max(len, max_protohdr), space), n->m_len);
+ memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
+ (unsigned)count);
+ len -= count;
+ m->m_len += count;
+ n->m_len -= count;
+ space -= count;
+ if (n->m_len)
+ n->m_data += count;
+ else
+ n = m_free(n);
+ } while (len > 0 && n);
+ if (len > 0) {
+ (void) m_free(m);
+ goto bad;
+ }
+ m->m_next = n;
+ return (m);
+bad:
+ m_freem(n);
+ MSFail++;
+ return (NULL);
+}
+
+/*
+ * Partition an mbuf chain in two pieces, returning the tail --
+ * all but the first len0 bytes. In case of failure, it returns NULL and
+ * attempts to restore the chain to its original state.
+ */
+struct mbuf *
+m_split(struct mbuf *m0, int len0, int wait)
+{
+ return (m_split0(m0, len0, wait, 1));
+}
+
+static struct mbuf *
+m_split0(struct mbuf *m0, int len0, int wait, int copyhdr)
+{
+ struct mbuf *m, *n;
+ unsigned len = len0, remain;
+
+ for (m = m0; m && len > m->m_len; m = m->m_next)
+ len -= m->m_len;
+ if (m == NULL)
+ return (NULL);
+ remain = m->m_len - len;
+ if (copyhdr && (m0->m_flags & M_PKTHDR)) {
+ _MGETHDR(n, wait, m0->m_type);
+ if (n == NULL)
+ return (NULL);
+ n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
+ n->m_pkthdr.len = m0->m_pkthdr.len - len0;
+ m0->m_pkthdr.len = len0;
+ if (m->m_flags & M_EXT)
+ goto extpacket;
+ if (remain > MHLEN) {
+ /* m can't be the lead packet */
+ MH_ALIGN(n, 0);
+ n->m_next = m_split(m, len, wait);
+ if (n->m_next == NULL) {
+ (void) m_free(n);
+ return (NULL);
+ } else
+ return (n);
+ } else
+ MH_ALIGN(n, remain);
+ } else if (remain == 0) {
+ n = m->m_next;
+ m->m_next = NULL;
+ return (n);
+ } else {
+ _MGET(n, wait, m->m_type);
+ if (n == NULL)
+ return (NULL);
+ M_ALIGN(n, remain);
+ }
+extpacket:
+ if (m->m_flags & M_EXT) {
+ n->m_flags |= M_EXT;
+ n->m_ext = m->m_ext;
+ m_incref(m);
+ n->m_data = m->m_data + len;
+ } else {
+ bcopy(MTOD(m, caddr_t) + len, MTOD(n, caddr_t), remain);
+ }
+ n->m_len = remain;
+ m->m_len = len;
+ n->m_next = m->m_next;
+ m->m_next = NULL;
+ return (n);
+}
+
+/*
+ * Routine to copy from device local memory into mbufs.
+ */
+struct mbuf *
+m_devget(char *buf, int totlen, int off0, struct ifnet *ifp,
+ void (*copy)(const void *, void *, size_t))
+{
+ struct mbuf *m;
+ struct mbuf *top = NULL, **mp = ⊤
+ int off = off0, len;
+ char *cp;