/*
- * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2004 Apple Computer, Inc. All rights reserved.
*
* @APPLE_LICENSE_HEADER_START@
*
- * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved.
+ * The contents of this file constitute Original Code as defined in and
+ * are subject to the Apple Public Source License Version 1.1 (the
+ * "License"). You may not use this file except in compliance with the
+ * License. Please obtain a copy of the License at
+ * http://www.apple.com/publicsource and read it before using this file.
*
- * This file contains Original Code and/or Modifications of Original Code
- * as defined in and that are subject to the Apple Public Source License
- * Version 2.0 (the 'License'). You may not use this file except in
- * compliance with the License. Please obtain a copy of the License at
- * http://www.opensource.apple.com/apsl/ and read it before using this
- * file.
- *
- * The Original Code and all software distributed under the License are
- * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * This Original Code and all software distributed under the License are
+ * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
- * Please see the License for the specific language governing rights and
- * limitations under the License.
+ * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
+ * License for the specific language governing rights and limitations
+ * under the License.
*
* @APPLE_LICENSE_HEADER_END@
*/
* processor.c: processor and processor_set manipulation routines.
*/
-#include <cpus.h>
-
#include <mach/boolean.h>
#include <mach/policy.h>
+#include <mach/processor.h>
#include <mach/processor_info.h>
#include <mach/vm_param.h>
#include <kern/cpu_number.h>
* Exported interface
*/
#include <mach/mach_host_server.h>
+#include <mach/processor_set_server.h>
/*
* Exported variables.
*/
-struct processor_set default_pset;
-struct processor processor_array[NCPUS];
+struct processor_set default_pset;
-int master_cpu = 0;
+processor_t processor_list;
+unsigned int processor_count;
+static processor_t processor_list_tail;
+decl_simple_lock_data(,processor_list_lock)
processor_t master_processor;
-processor_t processor_ptr[NCPUS];
+int master_cpu = 0;
/* Forwards */
-void pset_init(
- processor_set_t pset);
-
-void processor_init(
- register processor_t pr,
- int slot_num);
-
-void pset_quanta_set(
- processor_set_t pset);
-
kern_return_t processor_set_base(
processor_set_t pset,
policy_t policy,
mach_msg_type_number_t *count,
int type);
-
-/*
- * Bootstrap the processor/pset system so the scheduler can run.
- */
void
-pset_sys_bootstrap(void)
+processor_bootstrap(void)
{
- register int i;
+ simple_lock_init(&processor_list_lock, 0);
- pset_init(&default_pset);
- for (i = 0; i < NCPUS; i++) {
- /*
- * Initialize processor data structures.
- * Note that cpu_to_processor(i) is processor_ptr[i].
- */
- processor_ptr[i] = &processor_array[i];
- processor_init(processor_ptr[i], i);
- }
master_processor = cpu_to_processor(master_cpu);
- master_processor->cpu_data = get_cpu_data();
- default_pset.active = TRUE;
+
+ processor_init(master_processor, master_cpu);
}
/*
* Initialize the given processor_set structure.
*/
-void pset_init(
+void
+pset_init(
register processor_set_t pset)
{
register int i;
/* setup run queue */
- simple_lock_init(&pset->runq.lock, ETAP_THREAD_PSET_RUNQ);
+ pset->runq.highq = IDLEPRI;
for (i = 0; i < NRQBM; i++)
pset->runq.bitmap[i] = 0;
setbit(MAXPRI - IDLEPRI, pset->runq.bitmap);
- pset->runq.highq = IDLEPRI;
pset->runq.urgency = pset->runq.count = 0;
for (i = 0; i < NRQS; i++)
queue_init(&pset->runq.queues[i]);
queue_init(&pset->idle_queue);
pset->idle_count = 0;
queue_init(&pset->active_queue);
- simple_lock_init(&pset->sched_lock, ETAP_THREAD_PSET_IDLE);
- pset->run_count = 0;
+ simple_lock_init(&pset->sched_lock, 0);
+ pset->run_count = pset->share_count = 0;
pset->mach_factor = pset->load_average = 0;
- pset->sched_load = 0;
+ pset->pri_shift = INT8_MAX;
queue_init(&pset->processors);
pset->processor_count = 0;
- simple_lock_init(&pset->processors_lock, ETAP_THREAD_PSET);
queue_init(&pset->tasks);
pset->task_count = 0;
queue_init(&pset->threads);
pset->thread_count = 0;
pset->ref_count = 1;
- pset->active = FALSE;
- mutex_init(&pset->lock, ETAP_THREAD_PSET);
+ pset->active = TRUE;
+ mutex_init(&pset->lock, 0);
pset->pset_self = IP_NULL;
pset->pset_name_self = IP_NULL;
- pset->set_quanta = 1;
-
- for (i = 0; i <= NCPUS; i++)
- pset->machine_quanta[i] = 1;
+ pset->timeshare_quanta = 1;
}
/*
register int i;
/* setup run queue */
- simple_lock_init(&p->runq.lock, ETAP_THREAD_PROC_RUNQ);
+ p->runq.highq = IDLEPRI;
for (i = 0; i < NRQBM; i++)
p->runq.bitmap[i] = 0;
setbit(MAXPRI - IDLEPRI, p->runq.bitmap);
- p->runq.highq = IDLEPRI;
p->runq.urgency = p->runq.count = 0;
for (i = 0; i < NRQS; i++)
queue_init(&p->runq.queues[i]);
p->state = PROCESSOR_OFF_LINE;
+ p->active_thread = p->next_thread = p->idle_thread = THREAD_NULL;
+ p->processor_set = PROCESSOR_SET_NULL;
p->current_pri = MINPRI;
- p->next_thread = THREAD_NULL;
- p->idle_thread = THREAD_NULL;
+ p->deadline = UINT64_MAX;
timer_call_setup(&p->quantum_timer, thread_quantum_expire, p);
- p->slice_quanta = 0;
- p->processor_set = PROCESSOR_SET_NULL;
- p->processor_set_next = PROCESSOR_SET_NULL;
- simple_lock_init(&p->lock, ETAP_THREAD_PROC);
+ p->timeslice = 0;
+ simple_lock_init(&p->lock, 0);
p->processor_self = IP_NULL;
- p->slot_num = slot_num;
+ processor_data_init(p);
+ PROCESSOR_DATA(p, slot_num) = slot_num;
+
+ simple_lock(&processor_list_lock);
+ if (processor_list == NULL)
+ processor_list = p;
+ else
+ processor_list_tail->processor_list = p;
+ processor_list_tail = p;
+ processor_count++;
+ p->processor_list = NULL;
+ simple_unlock(&processor_list_lock);
}
/*
pset_reference(
processor_set_t pset)
{
+ if (pset == PROCESSOR_SET_NULL)
+ return;
+
assert(pset == &default_pset);
}
queue_remove(&pset->processors, processor, processor_t, processors);
processor->processor_set = PROCESSOR_SET_NULL;
pset->processor_count--;
- pset_quanta_set(pset);
+ timeshare_quanta_update(pset);
}
/*
queue_enter(&pset->processors, processor, processor_t, processors);
processor->processor_set = pset;
pset->processor_count++;
- pset_quanta_set(pset);
+ timeshare_quanta_update(pset);
}
/*
return;
queue_remove(&pset->tasks, task, task_t, pset_tasks);
- task->processor_set = PROCESSOR_SET_NULL;
pset->task_count--;
}
thread_t thread)
{
queue_remove(&pset->threads, thread, thread_t, pset_threads);
- thread->processor_set = PROCESSOR_SET_NULL;
pset->thread_count--;
}
kern_return_t
processor_info_count(
- processor_flavor_t flavor,
+ processor_flavor_t flavor,
mach_msg_type_number_t *count)
{
- kern_return_t kr;
-
switch (flavor) {
+
case PROCESSOR_BASIC_INFO:
*count = PROCESSOR_BASIC_INFO_COUNT;
- return KERN_SUCCESS;
+ break;
+
case PROCESSOR_CPU_LOAD_INFO:
*count = PROCESSOR_CPU_LOAD_INFO_COUNT;
- return KERN_SUCCESS;
+ break;
+
default:
- kr = cpu_info_count(flavor, count);
- return kr;
+ return (cpu_info_count(flavor, count));
}
+
+ return (KERN_SUCCESS);
}
kern_return_t
processor_info(
register processor_t processor,
- processor_flavor_t flavor,
- host_t *host,
- processor_info_t info,
+ processor_flavor_t flavor,
+ host_t *host,
+ processor_info_t info,
mach_msg_type_number_t *count)
{
register int i, slot_num, state;
- register processor_basic_info_t basic_info;
- register processor_cpu_load_info_t cpu_load_info;
- kern_return_t kr;
+ kern_return_t result;
if (processor == PROCESSOR_NULL)
- return(KERN_INVALID_ARGUMENT);
+ return (KERN_INVALID_ARGUMENT);
- slot_num = processor->slot_num;
+ slot_num = PROCESSOR_DATA(processor, slot_num);
switch (flavor) {
case PROCESSOR_BASIC_INFO:
- {
- if (*count < PROCESSOR_BASIC_INFO_COUNT)
- return(KERN_FAILURE);
-
- basic_info = (processor_basic_info_t) info;
- basic_info->cpu_type = machine_slot[slot_num].cpu_type;
- basic_info->cpu_subtype = machine_slot[slot_num].cpu_subtype;
- state = processor->state;
- if (state == PROCESSOR_OFF_LINE)
- basic_info->running = FALSE;
- else
- basic_info->running = TRUE;
- basic_info->slot_num = slot_num;
- if (processor == master_processor)
- basic_info->is_master = TRUE;
- else
- basic_info->is_master = FALSE;
-
- *count = PROCESSOR_BASIC_INFO_COUNT;
- *host = &realhost;
- return(KERN_SUCCESS);
- }
+ {
+ register processor_basic_info_t basic_info;
+
+ if (*count < PROCESSOR_BASIC_INFO_COUNT)
+ return (KERN_FAILURE);
+
+ basic_info = (processor_basic_info_t) info;
+ basic_info->cpu_type = slot_type(slot_num);
+ basic_info->cpu_subtype = slot_subtype(slot_num);
+ state = processor->state;
+ if (state == PROCESSOR_OFF_LINE)
+ basic_info->running = FALSE;
+ else
+ basic_info->running = TRUE;
+ basic_info->slot_num = slot_num;
+ if (processor == master_processor)
+ basic_info->is_master = TRUE;
+ else
+ basic_info->is_master = FALSE;
+
+ *count = PROCESSOR_BASIC_INFO_COUNT;
+ *host = &realhost;
+
+ return (KERN_SUCCESS);
+ }
+
case PROCESSOR_CPU_LOAD_INFO:
- {
+ {
+ register processor_cpu_load_info_t cpu_load_info;
+ register integer_t *cpu_ticks;
+
if (*count < PROCESSOR_CPU_LOAD_INFO_COUNT)
- return(KERN_FAILURE);
+ return (KERN_FAILURE);
cpu_load_info = (processor_cpu_load_info_t) info;
- for (i=0;i<CPU_STATE_MAX;i++)
- cpu_load_info->cpu_ticks[i] = machine_slot[slot_num].cpu_ticks[i];
+ cpu_ticks = PROCESSOR_DATA(processor, cpu_ticks);
+ for (i=0; i < CPU_STATE_MAX; i++)
+ cpu_load_info->cpu_ticks[i] = cpu_ticks[i];
*count = PROCESSOR_CPU_LOAD_INFO_COUNT;
*host = &realhost;
- return(KERN_SUCCESS);
- }
+
+ return (KERN_SUCCESS);
+ }
+
default:
- {
- kr=cpu_info(flavor, slot_num, info, count);
- if (kr == KERN_SUCCESS)
- *host = &realhost;
- return(kr);
- }
+ result = cpu_info(flavor, slot_num, info, count);
+ if (result == KERN_SUCCESS)
+ *host = &realhost;
+
+ return (result);
}
}
processor_start(
processor_t processor)
{
- int state;
- spl_t s;
- kern_return_t kr;
+ kern_return_t result;
+ thread_t thread;
+ spl_t s;
if (processor == PROCESSOR_NULL)
- return(KERN_INVALID_ARGUMENT);
+ return (KERN_INVALID_ARGUMENT);
if (processor == master_processor) {
- thread_bind(current_thread(), processor);
+ thread_t self = current_thread();
+ processor_t prev;
+
+ prev = thread_bind(self, processor);
thread_block(THREAD_CONTINUE_NULL);
- kr = cpu_start(processor->slot_num);
- thread_bind(current_thread(), PROCESSOR_NULL);
- return(kr);
+ result = cpu_start(PROCESSOR_DATA(processor, slot_num));
+
+ thread_bind(self, prev);
+
+ return (result);
}
s = splsched();
processor_lock(processor);
-
- state = processor->state;
- if (state != PROCESSOR_OFF_LINE) {
+ if (processor->state != PROCESSOR_OFF_LINE) {
processor_unlock(processor);
splx(s);
- return(KERN_FAILURE);
+
+ return (KERN_FAILURE);
}
+
processor->state = PROCESSOR_START;
processor_unlock(processor);
splx(s);
- if (processor->next_thread == THREAD_NULL) {
- thread_t thread;
- extern void start_cpu_thread(void);
-
- thread = kernel_thread_with_priority(
- kernel_task, MAXPRI_KERNEL,
- start_cpu_thread, TRUE, FALSE);
+ /*
+ * Create the idle processor thread.
+ */
+ if (processor->idle_thread == THREAD_NULL) {
+ result = idle_thread_create(processor);
+ if (result != KERN_SUCCESS) {
+ s = splsched();
+ processor_lock(processor);
+ processor->state = PROCESSOR_OFF_LINE;
+ processor_unlock(processor);
+ splx(s);
+
+ return (result);
+ }
+ }
+
+ /*
+ * If there is no active thread, the processor
+ * has never been started. Create a dedicated
+ * start up thread.
+ */
+ if ( processor->active_thread == THREAD_NULL &&
+ processor->next_thread == THREAD_NULL ) {
+ result = kernel_thread_create((thread_continue_t)processor_start_thread, NULL, MAXPRI_KERNEL, &thread);
+ if (result != KERN_SUCCESS) {
+ s = splsched();
+ processor_lock(processor);
+ processor->state = PROCESSOR_OFF_LINE;
+ processor_unlock(processor);
+ splx(s);
+
+ return (result);
+ }
s = splsched();
thread_lock(thread);
- thread_bind_locked(thread, processor);
- thread_go_locked(thread, THREAD_AWAKENED);
- (void)rem_runq(thread);
+ thread->bound_processor = processor;
processor->next_thread = thread;
+ thread->state = TH_RUN;
thread_unlock(thread);
splx(s);
+
+ thread_deallocate(thread);
}
- kr = cpu_start(processor->slot_num);
+ if (processor->processor_self == IP_NULL)
+ ipc_processor_init(processor);
- if (kr != KERN_SUCCESS) {
+ result = cpu_start(PROCESSOR_DATA(processor, slot_num));
+ if (result != KERN_SUCCESS) {
s = splsched();
processor_lock(processor);
processor->state = PROCESSOR_OFF_LINE;
+ timer_call_shutdown(processor);
processor_unlock(processor);
splx(s);
+
+ return (result);
}
- return(kr);
+ ipc_processor_enable(processor);
+
+ return (KERN_SUCCESS);
}
kern_return_t
if (processor == PROCESSOR_NULL)
return(KERN_INVALID_ARGUMENT);
- return(cpu_control(processor->slot_num, info, count));
+ return(cpu_control(PROCESSOR_DATA(processor, slot_num), info, count));
}
/*
- * Precalculate the appropriate timesharing quanta based on load. The
- * index into machine_quanta is the number of threads on the
- * processor set queue. It is limited to the number of processors in
- * the set.
+ * Calculate the appropriate timesharing quanta based on set load.
*/
void
-pset_quanta_set(
+timeshare_quanta_update(
processor_set_t pset)
{
- register int i, count = pset->processor_count;
-
- for (i = 1; i <= count; i++)
- pset->machine_quanta[i] = (count + (i / 2)) / i;
-
- pset->machine_quanta[0] = pset->machine_quanta[1];
-
- pset_quanta_update(pset);
+ int pcount = pset->processor_count;
+ int i = pset->runq.count;
+
+ if (i >= pcount)
+ i = 1;
+ else
+ if (i <= 1)
+ i = pcount;
+ else
+ i = (pcount + (i / 2)) / i;
+
+ pset->timeshare_quanta = i;
}
kern_return_t
processor_set_create(
- host_t host,
- processor_set_t *new_set,
- processor_set_t *new_name)
+ __unused host_t host,
+ __unused processor_set_t *new_set,
+ __unused processor_set_t *new_name)
{
-#ifdef lint
- host++; new_set++; new_name++;
-#endif /* lint */
return(KERN_FAILURE);
}
kern_return_t
processor_set_destroy(
- processor_set_t pset)
+ __unused processor_set_t pset)
{
-#ifdef lint
- pset++;
-#endif /* lint */
return(KERN_FAILURE);
}
return(KERN_FAILURE);
ts_limit = (policy_timeshare_limit_t) info;
- ts_limit->max_priority = MAXPRI_STANDARD;
+ ts_limit->max_priority = MAXPRI_KERNEL;
*count = POLICY_TIMESHARE_LIMIT_COUNT;
*host = &realhost;
return(KERN_FAILURE);
fifo_limit = (policy_fifo_limit_t) info;
- fifo_limit->max_priority = MAXPRI_STANDARD;
+ fifo_limit->max_priority = MAXPRI_KERNEL;
*count = POLICY_FIFO_LIMIT_COUNT;
*host = &realhost;
return(KERN_FAILURE);
rr_limit = (policy_rr_limit_t) info;
- rr_limit->max_priority = MAXPRI_STANDARD;
+ rr_limit->max_priority = MAXPRI_KERNEL;
*count = POLICY_RR_LIMIT_COUNT;
*host = &realhost;
*/
kern_return_t
processor_set_max_priority(
- processor_set_t pset,
- int max_priority,
- boolean_t change_threads)
+ __unused processor_set_t pset,
+ __unused int max_priority,
+ __unused boolean_t change_threads)
{
return (KERN_INVALID_ARGUMENT);
}
kern_return_t
processor_set_policy_enable(
- processor_set_t pset,
- int policy)
+ __unused processor_set_t pset,
+ __unused int policy)
{
return (KERN_INVALID_ARGUMENT);
}
*/
kern_return_t
processor_set_policy_disable(
- processor_set_t pset,
- int policy,
- boolean_t change_threads)
+ __unused processor_set_t pset,
+ __unused int policy,
+ __unused boolean_t change_threads)
{
return (KERN_INVALID_ARGUMENT);
}
*/
kern_return_t
processor_set_things(
- processor_set_t pset,
- mach_port_t **thing_list,
+ processor_set_t pset,
+ mach_port_t **thing_list,
mach_msg_type_number_t *count,
- int type)
+ int type)
{
unsigned int actual; /* this many things */
- int i;
+ unsigned int maxthings;
+ unsigned int i;
vm_size_t size, size_needed;
- vm_offset_t addr;
+ void *addr;
if (pset == PROCESSOR_SET_NULL)
- return KERN_INVALID_ARGUMENT;
+ return (KERN_INVALID_ARGUMENT);
size = 0; addr = 0;
pset_lock(pset);
if (!pset->active) {
pset_unlock(pset);
- return KERN_FAILURE;
+
+ return (KERN_FAILURE);
}
if (type == THING_TASK)
- actual = pset->task_count;
+ maxthings = pset->task_count;
else
- actual = pset->thread_count;
+ maxthings = pset->thread_count;
/* do we have the memory we need? */
- size_needed = actual * sizeof(mach_port_t);
+ size_needed = maxthings * sizeof (mach_port_t);
if (size_needed <= size)
break;
addr = kalloc(size);
if (addr == 0)
- return KERN_RESOURCE_SHORTAGE;
+ return (KERN_RESOURCE_SHORTAGE);
}
/* OK, have memory and the processor_set is locked & active */
+ actual = 0;
switch (type) {
- case THING_TASK: {
- task_t *tasks = (task_t *) addr;
- task_t task;
-
- for (i = 0, task = (task_t) queue_first(&pset->tasks);
- !queue_end(&pset->tasks, (queue_entry_t) task);
- task = (task_t) queue_next(&task->pset_tasks)) {
-
- task_lock(task);
- if (task->ref_count > 0) {
- /* take ref for convert_task_to_port */
- task_reference_locked(task);
- tasks[i++] = task;
- }
- task_unlock(task);
+
+ case THING_TASK:
+ {
+ task_t task, *tasks = (task_t *)addr;
+
+ for (task = (task_t)queue_first(&pset->tasks);
+ !queue_end(&pset->tasks, (queue_entry_t)task);
+ task = (task_t)queue_next(&task->pset_tasks)) {
+ task_reference_internal(task);
+ tasks[actual++] = task;
}
+
break;
- }
-
- case THING_THREAD: {
- thread_act_t *thr_acts = (thread_act_t *) addr;
- thread_t thread;
- thread_act_t thr_act;
-
- for (i = 0, thread = (thread_t) queue_first(&pset->threads);
- !queue_end(&pset->threads, (queue_entry_t)thread);
- thread = (thread_t) queue_next(&thread->pset_threads)) {
-
- thr_act = thread_lock_act(thread);
- if (thr_act && thr_act->ref_count > 0) {
- /* take ref for convert_act_to_port */
- act_locked_act_reference(thr_act);
- thr_acts[i++] = thr_act;
- }
- thread_unlock_act(thread);
+ }
+
+ case THING_THREAD:
+ {
+ thread_t thread, *threads = (thread_t *)addr;
+
+ for (i = 0, thread = (thread_t)queue_first(&pset->threads);
+ !queue_end(&pset->threads, (queue_entry_t)thread);
+ thread = (thread_t)queue_next(&thread->pset_threads)) {
+ thread_reference_internal(thread);
+ threads[actual++] = thread;
}
+
break;
- }
+ }
}
- /* can unlock processor set now that we have the task/thread refs */
pset_unlock(pset);
- if (i < actual) {
- actual = i;
- size_needed = actual * sizeof(mach_port_t);
- }
- assert(i == actual);
+ if (actual < maxthings)
+ size_needed = actual * sizeof (mach_port_t);
if (actual == 0) {
/* no things, so return null pointer and deallocate memory */
if (size != 0)
kfree(addr, size);
- } else {
+ }
+ else {
/* if we allocated too much, must copy */
if (size_needed < size) {
- vm_offset_t newaddr;
+ void *newaddr;
newaddr = kalloc(size_needed);
if (newaddr == 0) {
switch (type) {
- case THING_TASK: {
- task_t *tasks = (task_t *) addr;
+
+ case THING_TASK:
+ {
+ task_t *tasks = (task_t *)addr;
for (i = 0; i < actual; i++)
task_deallocate(tasks[i]);
break;
- }
+ }
- case THING_THREAD: {
- thread_act_t *acts = (thread_act_t *) addr;
+ case THING_THREAD:
+ {
+ thread_t *threads = (thread_t *)addr;
for (i = 0; i < actual; i++)
- act_deallocate(acts[i]);
+ thread_deallocate(threads[i]);
break;
- }
}
+ }
+
kfree(addr, size);
- return KERN_RESOURCE_SHORTAGE;
+ return (KERN_RESOURCE_SHORTAGE);
}
- bcopy((char *) addr, (char *) newaddr, size_needed);
+ bcopy((void *) addr, (void *) newaddr, size_needed);
kfree(addr, size);
addr = newaddr;
}
- *thing_list = (mach_port_t *) addr;
+ *thing_list = (mach_port_t *)addr;
*count = actual;
/* do the conversion that Mig should handle */
switch (type) {
- case THING_TASK: {
- task_t *tasks = (task_t *) addr;
+
+ case THING_TASK:
+ {
+ task_t *tasks = (task_t *)addr;
for (i = 0; i < actual; i++)
(*thing_list)[i] = convert_task_to_port(tasks[i]);
break;
- }
+ }
- case THING_THREAD: {
- thread_act_t *thr_acts = (thread_act_t *) addr;
+ case THING_THREAD:
+ {
+ thread_t *threads = (thread_t *)addr;
for (i = 0; i < actual; i++)
- (*thing_list)[i] = convert_act_to_port(thr_acts[i]);
+ (*thing_list)[i] = convert_thread_to_port(threads[i]);
break;
- }
+ }
}
}
- return(KERN_SUCCESS);
+ return (KERN_SUCCESS);
}
*/
kern_return_t
processor_set_base(
- processor_set_t pset,
- policy_t policy,
- policy_base_t base,
- boolean_t change)
+ __unused processor_set_t pset,
+ __unused policy_t policy,
+ __unused policy_base_t base,
+ __unused boolean_t change)
{
return (KERN_INVALID_ARGUMENT);
}
*/
kern_return_t
processor_set_limit(
- processor_set_t pset,
- policy_t policy,
- policy_limit_t limit,
- boolean_t change)
+ __unused processor_set_t pset,
+ __unused policy_t policy,
+ __unused policy_limit_t limit,
+ __unused boolean_t change)
{
return (KERN_POLICY_LIMIT);
}
*/
kern_return_t
processor_set_policy_control(
- processor_set_t pset,
- int flavor,
- processor_set_info_t policy_info,
- mach_msg_type_number_t count,
- boolean_t change)
+ __unused processor_set_t pset,
+ __unused int flavor,
+ __unused processor_set_info_t policy_info,
+ __unused mach_msg_type_number_t count,
+ __unused boolean_t change)
{
return (KERN_INVALID_ARGUMENT);
}