/*
- * Copyright (c) 2002 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2002-2015 Apple Inc. All rights reserved.
*
- * @APPLE_LICENSE_HEADER_START@
- *
- * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved.
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
- * compliance with the License. Please obtain a copy of the License at
- * http://www.opensource.apple.com/apsl/ and read it before using this
- * file.
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
+ *
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* Please see the License for the specific language governing rights and
* limitations under the License.
*
- * @APPLE_LICENSE_HEADER_END@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mount.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
+#include <sys/time.h>
#include <sys/ubc.h>
#include <sys/quota.h>
+#include <sys/kdebug.h>
+#include <libkern/OSByteOrder.h>
+#include <sys/buf_internal.h>
+#include <sys/namei.h>
+
+#include <kern/locks.h>
#include <miscfs/specfs/specdev.h>
#include <miscfs/fifofs/fifo.h>
#include <hfs/hfs_catalog.h>
#include <hfs/hfs_cnode.h>
#include <hfs/hfs_quota.h>
+#include <hfs/hfs_format.h>
+#include <hfs/hfs_kdebug.h>
+#include <hfs/hfs_cprotect.h>
extern int prtactive;
+extern lck_attr_t * hfs_lock_attr;
+extern lck_grp_t * hfs_mutex_group;
+extern lck_grp_t * hfs_rwlock_group;
+
+static void hfs_reclaim_cnode(hfsmount_t *hfsmp, struct cnode *);
+static int hfs_cnode_teardown (struct vnode *vp, vfs_context_t ctx, int reclaim);
+static int hfs_isordered(struct cnode *, struct cnode *);
-extern void hfs_relnamehints(struct cnode *dcp);
+extern int hfs_removefile_callback(struct buf *bp, void *hfsmp);
+__inline__ int hfs_checkdeleted (struct cnode *cp) {
+ return ((cp->c_flag & (C_DELETED | C_NOEXISTS)) ? ENOENT : 0);
+}
+
/*
- * Last reference to an cnode. If necessary, write or delete it.
+ * Function used by a special fcntl() that decorates a cnode/vnode that
+ * indicates it is backing another filesystem, like a disk image.
+ *
+ * the argument 'val' indicates whether or not to set the bit in the cnode flags
+ *
+ * Returns non-zero on failure. 0 on success
*/
-__private_extern__
-int
-hfs_inactive(ap)
- struct vop_inactive_args /* {
- struct vnode *a_vp;
- } */ *ap;
-{
- struct vnode *vp = ap->a_vp;
- struct cnode *cp = VTOC(vp);
- struct hfsmount *hfsmp = VTOHFS(vp);
- struct proc *p = ap->a_p;
- struct timeval tv;
- int error = 0;
- int recycle = 0;
- int forkcount = 0;
- int truncated = 0;
- int started_tr = 0, grabbed_lock = 0;
+int hfs_set_backingstore (struct vnode *vp, int val) {
+ struct cnode *cp = NULL;
+ int err = 0;
+
+ cp = VTOC(vp);
+ if (!vnode_isreg(vp) && !vnode_isdir(vp)) {
+ return EINVAL;
+ }
- if (prtactive && vp->v_usecount != 0)
- vprint("hfs_inactive: pushing active", vp);
+ /* lock the cnode */
+ err = hfs_lock (cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
+ if (err) {
+ return err;
+ }
+
+ if (val) {
+ cp->c_flag |= C_BACKINGSTORE;
+ }
+ else {
+ cp->c_flag &= ~C_BACKINGSTORE;
+ }
- /*
- * Ignore nodes related to stale file handles.
- */
- if (cp->c_mode == 0)
- goto out;
+ /* unlock everything */
+ hfs_unlock (cp);
+
+ return err;
+}
+
+/*
+ * Function used by a special fcntl() that check to see if a cnode/vnode
+ * indicates it is backing another filesystem, like a disk image.
+ *
+ * the argument 'val' is an output argument for whether or not the bit is set
+ *
+ * Returns non-zero on failure. 0 on success
+ */
+
+int hfs_is_backingstore (struct vnode *vp, int *val) {
+ struct cnode *cp = NULL;
+ int err = 0;
+
+ if (!vnode_isreg(vp) && !vnode_isdir(vp)) {
+ *val = 0;
+ return 0;
+ }
+
+ cp = VTOC(vp);
+
+ /* lock the cnode */
+ err = hfs_lock (cp, HFS_SHARED_LOCK, HFS_LOCK_DEFAULT);
+ if (err) {
+ return err;
+ }
+
+ if (cp->c_flag & C_BACKINGSTORE) {
+ *val = 1;
+ }
+ else {
+ *val = 0;
+ }
- if (vp->v_mount->mnt_flag & MNT_RDONLY)
- goto out;
+ /* unlock everything */
+ hfs_unlock (cp);
- if (cp->c_datafork)
+ return err;
+}
+
+
+/*
+ * hfs_cnode_teardown
+ *
+ * This is an internal function that is invoked from both hfs_vnop_inactive
+ * and hfs_vnop_reclaim. As VNOP_INACTIVE is not necessarily called from vnodes
+ * being recycled and reclaimed, it is important that we do any post-processing
+ * necessary for the cnode in both places. Important tasks include things such as
+ * releasing the blocks from an open-unlinked file when all references to it have dropped,
+ * and handling resource forks separately from data forks.
+ *
+ * Note that we take only the vnode as an argument here (rather than the cnode).
+ * Recall that each cnode supports two forks (rsrc/data), and we can always get the right
+ * cnode from either of the vnodes, but the reverse is not true -- we can't determine which
+ * vnode we need to reclaim if only the cnode is supplied.
+ *
+ * This function is idempotent and safe to call from both hfs_vnop_inactive and hfs_vnop_reclaim
+ * if both are invoked right after the other. In the second call, most of this function's if()
+ * conditions will fail, since they apply generally to cnodes still marked with C_DELETED.
+ * As a quick check to see if this function is necessary, determine if the cnode is already
+ * marked C_NOEXISTS. If it is, then it is safe to skip this function. The only tasks that
+ * remain for cnodes marked in such a fashion is to teardown their fork references and
+ * release all directory hints and hardlink origins. However, both of those are done
+ * in hfs_vnop_reclaim. hfs_update, by definition, is not necessary if the cnode's catalog
+ * entry is no longer there.
+ *
+ * 'reclaim' argument specifies whether or not we were called from hfs_vnop_reclaim. If we are
+ * invoked from hfs_vnop_reclaim, we can not call functions that cluster_push since the UBC info
+ * is totally gone by that point.
+ *
+ * Assumes that both truncate and cnode locks for 'cp' are held.
+ */
+static
+int hfs_cnode_teardown (struct vnode *vp, vfs_context_t ctx, int reclaim)
+{
+ int forkcount = 0;
+ enum vtype v_type;
+ struct cnode *cp;
+ int error = 0;
+ bool started_tr = false;
+ struct hfsmount *hfsmp = VTOHFS(vp);
+ struct proc *p = vfs_context_proc(ctx);
+ int truncated = 0;
+ cat_cookie_t cookie;
+ int cat_reserve = 0;
+ int lockflags;
+ int ea_error = 0;
+
+ v_type = vnode_vtype(vp);
+ cp = VTOC(vp);
+
+ if (cp->c_datafork) {
++forkcount;
- if (cp->c_rsrcfork)
+ }
+ if (cp->c_rsrcfork) {
++forkcount;
+ }
- /* If needed, get rid of any fork's data for a deleted file */
- if ((vp->v_type == VREG) && (cp->c_flag & C_DELETED)) {
- if (VTOF(vp)->ff_blocks != 0) {
- error = VOP_TRUNCATE(vp, (off_t)0, IO_NDELAY, NOCRED, p);
- if (error)
- goto out;
- truncated = 1;
- }
- recycle = 1;
+ /*
+ * Push file data out for normal files that haven't been evicted from
+ * the namespace. We only do this if this function was not called from reclaim,
+ * because by that point the UBC information has been totally torn down.
+ *
+ * There should also be no way that a normal file that has NOT been deleted from
+ * the namespace to skip INACTIVE and go straight to RECLAIM. That race only happens
+ * when the file becomes open-unlinked.
+ */
+ if ((v_type == VREG) &&
+ (!ISSET(cp->c_flag, C_DELETED)) &&
+ (!ISSET(cp->c_flag, C_NOEXISTS)) &&
+ (VTOF(vp)->ff_blocks) &&
+ (reclaim == 0)) {
+ /*
+ * If we're called from hfs_vnop_inactive, all this means is at the time
+ * the logic for deciding to call this function, there were not any lingering
+ * mmap/fd references for this file. However, there is nothing preventing the system
+ * from creating a new reference in between the time that logic was checked
+ * and we entered hfs_vnop_inactive. As a result, the only time we can guarantee
+ * that there aren't any references is during vnop_reclaim.
+ */
+ hfs_filedone(vp, ctx, 0);
+ }
+
+ /*
+ * Remove any directory hints or cached origins
+ */
+ if (v_type == VDIR) {
+ hfs_reldirhints(cp, 0);
+ }
+ if (cp->c_flag & C_HARDLINK) {
+ hfs_relorigins(cp);
}
/*
- * Check for a postponed deletion.
- * (only delete cnode when the last fork goes inactive)
+ * -- Handle open unlinked files --
+ *
+ * If the vnode is in use, it means a force unmount is in progress
+ * in which case we defer cleaning up until either we come back
+ * through here via hfs_vnop_reclaim, at which point the UBC
+ * information will have been torn down and the vnode might no
+ * longer be in use, or if it's still in use, it will get cleaned
+ * up when next remounted.
*/
- if ((cp->c_flag & C_DELETED) && (forkcount <= 1)) {
+ if (ISSET(cp->c_flag, C_DELETED) && !vnode_isinuse(vp, 0)) {
/*
- * Mark cnode in transit so that one can get this
- * cnode from cnode hash.
+ * This check is slightly complicated. We should only truncate data
+ * in very specific cases for open-unlinked files. This is because
+ * we want to ensure that the resource fork continues to be available
+ * if the caller has the data fork open. However, this is not symmetric;
+ * someone who has the resource fork open need not be able to access the data
+ * fork once the data fork has gone inactive.
+ *
+ * If we're the last fork, then we have cleaning up to do.
+ *
+ * A) last fork, and vp == c_vp
+ * Truncate away own fork data. If rsrc fork is not in core, truncate it too.
+ *
+ * B) last fork, and vp == c_rsrc_vp
+ * Truncate ourselves, assume data fork has been cleaned due to C).
+ *
+ * If we're not the last fork, then things are a little different:
+ *
+ * C) not the last fork, vp == c_vp
+ * Truncate ourselves. Once the file has gone out of the namespace,
+ * it cannot be further opened. Further access to the rsrc fork may
+ * continue, however.
+ *
+ * D) not the last fork, vp == c_rsrc_vp
+ * Don't enter the block below, just clean up vnode and push it out of core.
*/
- SET(cp->c_flag, C_TRANSIT);
- cp->c_flag &= ~C_DELETED;
- cp->c_rdev = 0;
-
- // XXXdbg
- hfs_global_shared_lock_acquire(hfsmp);
- grabbed_lock = 1;
- if (hfsmp->jnl) {
- if (journal_start_transaction(hfsmp->jnl) != 0) {
- error = EINVAL;
- goto out;
- }
- started_tr = 1;
- }
-
- /* Lock catalog b-tree */
- error = hfs_metafilelocking(hfsmp, kHFSCatalogFileID, LK_EXCLUSIVE, p);
- if (error) goto out;
+
+ if ((v_type == VREG || v_type == VLNK) &&
+ ((forkcount == 1) || (!VNODE_IS_RSRC(vp)))) {
+
+ /* Truncate away our own fork data. (Case A, B, C above) */
+ if (VTOF(vp)->ff_blocks != 0) {
+ /*
+ * SYMLINKS only:
+ *
+ * Encapsulate the entire change (including truncating the link) in
+ * nested transactions if we are modifying a symlink, because we know that its
+ * file length will be at most 4k, and we can fit both the truncation and
+ * any relevant bitmap changes into a single journal transaction. We also want
+ * the kill_block code to execute in the same transaction so that any dirty symlink
+ * blocks will not be written. Otherwise, rely on
+ * hfs_truncate doing its own transactions to ensure that we don't blow up
+ * the journal.
+ */
+ if (!started_tr && (v_type == VLNK)) {
+ if (hfs_start_transaction(hfsmp) != 0) {
+ error = EINVAL;
+ goto out;
+ }
+ else {
+ started_tr = true;
+ }
+ }
+
+ /*
+ * At this point, we have decided that this cnode is
+ * suitable for full removal. We are about to deallocate
+ * its blocks and remove its entry from the catalog.
+ * If it was a symlink, then it's possible that the operation
+ * which created it is still in the current transaction group
+ * due to coalescing. Take action here to kill the data blocks
+ * of the symlink out of the journal before moving to
+ * deallocate the blocks. We need to be in the middle of
+ * a transaction before calling buf_iterate like this.
+ *
+ * Note: we have to kill any potential symlink buffers out of
+ * the journal prior to deallocating their blocks. This is so
+ * that we don't race with another thread that may be doing an
+ * an allocation concurrently and pick up these blocks. It could
+ * generate I/O against them which could go out ahead of our journal
+ * transaction.
+ */
+
+ if (hfsmp->jnl && vnode_islnk(vp)) {
+ buf_iterate(vp, hfs_removefile_callback, BUF_SKIP_NONLOCKED, (void *)hfsmp);
+ }
+
+
+ /*
+ * This truncate call (and the one below) is fine from VNOP_RECLAIM's
+ * context because we're only removing blocks, not zero-filling new
+ * ones. The C_DELETED check above makes things much simpler.
+ */
+ error = hfs_truncate(vp, (off_t)0, IO_NDELAY, 0, ctx);
+ if (error) {
+ goto out;
+ }
+ truncated = 1;
+
+ /* (SYMLINKS ONLY): Close/End our transaction after truncating the file record */
+ if (started_tr) {
+ hfs_end_transaction(hfsmp);
+ started_tr = false;
+ }
- if (cp->c_blocks > 0)
- printf("hfs_inactive: attempting to delete a non-empty file!");
+ }
+
+ /*
+ * Truncate away the resource fork, if we represent the data fork and
+ * it is the last fork. That means, by definition, the rsrc fork is not in
+ * core. To avoid bringing a vnode into core for the sole purpose of deleting the
+ * data in the resource fork, we call cat_lookup directly, then hfs_release_storage
+ * to get rid of the resource fork's data. Note that because we are holding the
+ * cnode lock, it is impossible for a competing thread to create the resource fork
+ * vnode from underneath us while we do this.
+ *
+ * This is invoked via case A above only.
+ */
+ if ((cp->c_blocks > 0) && (forkcount == 1) && (vp != cp->c_rsrc_vp)) {
+ struct cat_lookup_buffer *lookup_rsrc = NULL;
+ struct cat_desc *desc_ptr = NULL;
+ lockflags = 0;
+
+ MALLOC(lookup_rsrc, struct cat_lookup_buffer*, sizeof (struct cat_lookup_buffer), M_TEMP, M_WAITOK);
+ if (lookup_rsrc == NULL) {
+ printf("hfs_cnode_teardown: ENOMEM from MALLOC\n");
+ error = ENOMEM;
+ goto out;
+ }
+ else {
+ bzero (lookup_rsrc, sizeof (struct cat_lookup_buffer));
+ }
+
+ if (cp->c_desc.cd_namelen == 0) {
+ /* Initialize the rsrc descriptor for lookup if necessary*/
+ MAKE_DELETED_NAME (lookup_rsrc->lookup_name, HFS_TEMPLOOKUP_NAMELEN, cp->c_fileid);
+
+ lookup_rsrc->lookup_desc.cd_nameptr = (const uint8_t*) lookup_rsrc->lookup_name;
+ lookup_rsrc->lookup_desc.cd_namelen = strlen (lookup_rsrc->lookup_name);
+ lookup_rsrc->lookup_desc.cd_parentcnid = hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid;
+ lookup_rsrc->lookup_desc.cd_cnid = cp->c_cnid;
+
+ desc_ptr = &lookup_rsrc->lookup_desc;
+ }
+ else {
+ desc_ptr = &cp->c_desc;
+ }
+
+ lockflags = hfs_systemfile_lock (hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
+
+ error = cat_lookup (hfsmp, desc_ptr, 1, 0, (struct cat_desc *) NULL,
+ (struct cat_attr*) NULL, &lookup_rsrc->lookup_fork.ff_data, NULL);
+
+ hfs_systemfile_unlock (hfsmp, lockflags);
+
+ if (error) {
+ FREE (lookup_rsrc, M_TEMP);
+ goto out;
+ }
+
+ /*
+ * Make the filefork in our temporary struct look like a real
+ * filefork. Fill in the cp, sysfileinfo and rangelist fields..
+ */
+ rl_init (&lookup_rsrc->lookup_fork.ff_invalidranges);
+ lookup_rsrc->lookup_fork.ff_cp = cp;
+
+ /*
+ * If there were no errors, then we have the catalog's fork information
+ * for the resource fork in question. Go ahead and delete the data in it now.
+ */
+
+ error = hfs_release_storage (hfsmp, NULL, &lookup_rsrc->lookup_fork, cp->c_fileid);
+ FREE(lookup_rsrc, M_TEMP);
+
+ if (error) {
+ goto out;
+ }
+
+ /*
+ * This fileid's resource fork extents have now been fully deleted on-disk
+ * and this CNID is no longer valid. At this point, we should be able to
+ * zero out cp->c_blocks to indicate there is no data left in this file.
+ */
+ cp->c_blocks = 0;
+ }
+ }
/*
- * The descriptor name may be zero,
- * in which case the fileid is used.
+ * If we represent the last fork (or none in the case of a dir),
+ * and the cnode has become open-unlinked...
+ *
+ * We check c_blocks here because it is possible in the force
+ * unmount case for the data fork to be in use but the resource
+ * fork to not be in use in which case we will truncate the
+ * resource fork, but not the data fork. It will get cleaned
+ * up upon next mount.
*/
- error = cat_delete(hfsmp, &cp->c_desc, &cp->c_attr);
-
- if (error && truncated && (error != ENXIO))
- printf("hfs_inactive: couldn't delete a truncated file!");
-
- /* Update HFS Private Data dir */
- if (error == 0) {
- hfsmp->hfs_privdir_attr.ca_entries--;
- (void)cat_update(hfsmp, &hfsmp->hfs_privdir_desc,
- &hfsmp->hfs_privdir_attr, NULL, NULL);
- }
+ if (forkcount <= 1 && !cp->c_blocks) {
+ /*
+ * If it has EA's, then we need to get rid of them.
+ *
+ * Note that this must happen outside of any other transactions
+ * because it starts/ends its own transactions and grabs its
+ * own locks. This is to prevent a file with a lot of attributes
+ * from creating a transaction that is too large (which panics).
+ */
+ if (ISSET(cp->c_attr.ca_recflags, kHFSHasAttributesMask))
+ ea_error = hfs_removeallattr(hfsmp, cp->c_fileid, &started_tr);
- /* Unlock catalog b-tree */
- (void) hfs_metafilelocking(hfsmp, kHFSCatalogFileID, LK_RELEASE, p);
- if (error) goto out;
+ /*
+ * Remove the cnode's catalog entry and release all blocks it
+ * may have been using.
+ */
-#if QUOTA
- (void)hfs_chkiq(cp, -1, NOCRED, 0);
-#endif /* QUOTA */
+ /*
+ * Mark cnode in transit so that no one can get this
+ * cnode from cnode hash.
+ */
+ // hfs_chash_mark_in_transit(hfsmp, cp);
+ // XXXdbg - remove the cnode from the hash table since it's deleted
+ // otherwise someone could go to sleep on the cnode and not
+ // be woken up until this vnode gets recycled which could be
+ // a very long time...
+ hfs_chashremove(hfsmp, cp);
+
+ cp->c_flag |= C_NOEXISTS; // XXXdbg
+ cp->c_rdev = 0;
+
+ if (!started_tr) {
+ if (hfs_start_transaction(hfsmp) != 0) {
+ error = EINVAL;
+ goto out;
+ }
+ started_tr = true;
+ }
+
+ /*
+ * Reserve some space in the Catalog file.
+ */
+ if ((error = cat_preflight(hfsmp, CAT_DELETE, &cookie, p))) {
+ goto out;
+ }
+ cat_reserve = 1;
+
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_ATTRIBUTE, HFS_EXCLUSIVE_LOCK);
+
+ if (cp->c_blocks > 0) {
+ printf("hfs_inactive: deleting non-empty%sfile %d, "
+ "blks %d\n", VNODE_IS_RSRC(vp) ? " rsrc " : " ",
+ (int)cp->c_fileid, (int)cp->c_blocks);
+ }
+
+ //
+ // release the name pointer in the descriptor so that
+ // cat_delete() will use the file-id to do the deletion.
+ // in the case of hard links this is imperative (in the
+ // case of regular files the fileid and cnid are the
+ // same so it doesn't matter).
+ //
+ cat_releasedesc(&cp->c_desc);
+
+ /*
+ * The descriptor name may be zero,
+ * in which case the fileid is used.
+ */
+ error = cat_delete(hfsmp, &cp->c_desc, &cp->c_attr);
+
+ if (error && truncated && (error != ENXIO)) {
+ printf("hfs_inactive: couldn't delete a truncated file!");
+ }
+
+ /* Update HFS Private Data dir */
+ if (error == 0) {
+ hfsmp->hfs_private_attr[FILE_HARDLINKS].ca_entries--;
+ if (vnode_isdir(vp)) {
+ DEC_FOLDERCOUNT(hfsmp, hfsmp->hfs_private_attr[FILE_HARDLINKS]);
+ }
+ (void)cat_update(hfsmp, &hfsmp->hfs_private_desc[FILE_HARDLINKS],
+ &hfsmp->hfs_private_attr[FILE_HARDLINKS], NULL, NULL);
+ }
+
+ hfs_systemfile_unlock(hfsmp, lockflags);
+
+ if (error) {
+ goto out;
+ }
+
+ #if QUOTA
+ if (hfsmp->hfs_flags & HFS_QUOTAS)
+ (void)hfs_chkiq(cp, -1, NOCRED, 0);
+ #endif /* QUOTA */
+
+ /* Already set C_NOEXISTS at the beginning of this block */
+ cp->c_flag &= ~C_DELETED;
+ cp->c_touch_chgtime = TRUE;
+ cp->c_touch_modtime = TRUE;
+
+ if (error == 0)
+ hfs_volupdate(hfsmp, (v_type == VDIR) ? VOL_RMDIR : VOL_RMFILE, 0);
+ }
+ } // if <open unlinked>
- cp->c_mode = 0;
- cp->c_flag |= C_NOEXISTS | C_CHANGE | C_UPDATE;
+ hfs_update(vp, reclaim ? HFS_UPDATE_FORCE : 0);
- if (error == 0)
- hfs_volupdate(hfsmp, VOL_RMFILE, 0);
+ /*
+ * Since we are about to finish what might be an inactive call, propagate
+ * any remaining modified or touch bits from the cnode to the vnode. This
+ * serves as a hint to vnode recycling that we shouldn't recycle this vnode
+ * synchronously.
+ *
+ * For now, if the node *only* has a dirty atime, we don't mark
+ * the vnode as dirty. VFS's asynchronous recycling can actually
+ * lead to worse performance than having it synchronous. When VFS
+ * is fixed to be more performant, we can be more honest about
+ * marking vnodes as dirty when it's only the atime that's dirty.
+ */
+ if (hfs_is_dirty(cp) == HFS_DIRTY || ISSET(cp->c_flag, C_DELETED)) {
+ vnode_setdirty(vp);
+ } else {
+ vnode_cleardirty(vp);
}
+
+out:
+ if (cat_reserve)
+ cat_postflight(hfsmp, &cookie, p);
+
+ if (started_tr) {
+ hfs_end_transaction(hfsmp);
+ started_tr = false;
+ }
+
+ return error;
+}
- /* Push any defered access times to disk */
- if (cp->c_flag & C_ATIMEMOD) {
- cp->c_flag &= ~C_ATIMEMOD;
- if (HFSTOVCB(hfsmp)->vcbSigWord == kHFSPlusSigWord)
- cp->c_flag |= C_MODIFIED;
- }
- if (cp->c_flag & (C_ACCESS | C_CHANGE | C_MODIFIED | C_UPDATE)) {
- tv = time;
- VOP_UPDATE(vp, &tv, &tv, 0);
+/*
+ * hfs_vnop_inactive
+ *
+ * The last usecount on the vnode has gone away, so we need to tear down
+ * any remaining data still residing in the cnode. If necessary, write out
+ * remaining blocks or delete the cnode's entry in the catalog.
+ */
+int
+hfs_vnop_inactive(struct vnop_inactive_args *ap)
+{
+ struct vnode *vp = ap->a_vp;
+ struct cnode *cp;
+ struct hfsmount *hfsmp = VTOHFS(vp);
+ struct proc *p = vfs_context_proc(ap->a_context);
+ int error = 0;
+ int took_trunc_lock = 0;
+ enum vtype v_type;
+
+ v_type = vnode_vtype(vp);
+ cp = VTOC(vp);
+
+ if ((hfsmp->hfs_flags & HFS_READ_ONLY) || vnode_issystem(vp) ||
+ (hfsmp->hfs_freezing_proc == p)) {
+ error = 0;
+ goto inactive_done;
+ }
+
+ /*
+ * For safety, do NOT call vnode_recycle from inside this function. This can cause
+ * problems in the following scenario:
+ *
+ * vnode_create -> vnode_reclaim_internal -> vclean -> VNOP_INACTIVE
+ *
+ * If we're being invoked as a result of a reclaim that was already in-flight, then we
+ * cannot call vnode_recycle again. Being in reclaim means that there are no usecounts or
+ * iocounts by definition. As a result, if we were to call vnode_recycle, it would immediately
+ * try to re-enter reclaim again and panic.
+ *
+ * Currently, there are three things that can cause us (VNOP_INACTIVE) to get called.
+ * 1) last usecount goes away on the vnode (vnode_rele)
+ * 2) last iocount goes away on a vnode that previously had usecounts but didn't have
+ * vnode_recycle called (vnode_put)
+ * 3) vclean by way of reclaim
+ *
+ * In this function we would generally want to call vnode_recycle to speed things
+ * along to ensure that we don't leak blocks due to open-unlinked files. However, by
+ * virtue of being in this function already, we can call hfs_cnode_teardown, which
+ * will release blocks held by open-unlinked files, and mark them C_NOEXISTS so that
+ * there's no entry in the catalog and no backing store anymore. If that's the case,
+ * then we really don't care all that much when the vnode actually goes through reclaim.
+ * Further, the HFS VNOPs that manipulated the namespace in order to create the open-
+ * unlinked file in the first place should have already called vnode_recycle on the vnode
+ * to guarantee that it would go through reclaim in a speedy way.
+ */
+
+ if (cp->c_flag & C_NOEXISTS) {
+ /*
+ * If the cnode has already had its cat entry removed, then
+ * just skip to the end. We don't need to do anything here.
+ */
+ error = 0;
+ goto inactive_done;
}
-out:
- // XXXdbg - have to do this because a goto could have come here
- if (started_tr) {
- journal_end_transaction(hfsmp->jnl);
- started_tr = 0;
+
+ if ((v_type == VREG || v_type == VLNK)) {
+ hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
+ took_trunc_lock = 1;
}
- if (grabbed_lock) {
- hfs_global_shared_lock_release(hfsmp);
+
+ (void) hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
+
+ /*
+ * Call cnode_teardown to push out dirty blocks to disk, release open-unlinked
+ * files' blocks from being in use, and move the cnode from C_DELETED to C_NOEXISTS.
+ */
+ error = hfs_cnode_teardown (vp, ap->a_context, 0);
+
+ /*
+ * Drop the truncate lock before unlocking the cnode
+ * (which can potentially perform a vnode_put and
+ * recycle the vnode which in turn might require the
+ * truncate lock)
+ */
+ if (took_trunc_lock) {
+ hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
}
- VOP_UNLOCK(vp, 0, p);
+ hfs_unlock(cp);
+
+inactive_done:
+
+ return error;
+}
+
+
+/*
+ * File clean-up (zero fill and shrink peof).
+ */
+
+int
+hfs_filedone(struct vnode *vp, vfs_context_t context,
+ hfs_file_done_opts_t opts)
+{
+ struct cnode *cp;
+ struct filefork *fp;
+ struct hfsmount *hfsmp;
+ off_t leof;
+ u_int32_t blks, blocksize;
+
+ cp = VTOC(vp);
+ fp = VTOF(vp);
+ hfsmp = VTOHFS(vp);
+ leof = fp->ff_size;
+
+ if ((hfsmp->hfs_flags & HFS_READ_ONLY) || (fp->ff_blocks == 0))
+ return (0);
+
+ hfs_flush_invalid_ranges(vp);
+
+ blocksize = VTOVCB(vp)->blockSize;
+ blks = leof / blocksize;
+ if (((off_t)blks * (off_t)blocksize) != leof)
+ blks++;
/*
- * If we are done with the vnode, reclaim it
- * so that it can be reused immediately.
+ * Shrink the peof to the smallest size neccessary to contain the leof.
*/
- if (cp->c_mode == 0 || recycle)
- vrecycle(vp, (struct slock *)0, p);
+ if (blks < fp->ff_blocks) {
+ (void) hfs_truncate(vp, leof, IO_NDELAY, HFS_TRUNCATE_SKIPTIMES, context);
+ }
+
+ if (!ISSET(opts, HFS_FILE_DONE_NO_SYNC)) {
+ hfs_unlock(cp);
+ cluster_push(vp, IO_CLOSE);
+ hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
+
+ /*
+ * If the hfs_truncate didn't happen to flush the vnode's
+ * information out to disk, force it to be updated now that
+ * all invalid ranges have been zero-filled and validated:
+ */
+ hfs_update(vp, 0);
+ }
- return (error);
+ return (0);
}
/*
* Reclaim a cnode so that it can be used for other purposes.
*/
-__private_extern__
int
-hfs_reclaim(ap)
- struct vop_reclaim_args /* {
- struct vnode *a_vp;
- } */ *ap;
+hfs_vnop_reclaim(struct vnop_reclaim_args *ap)
{
struct vnode *vp = ap->a_vp;
- struct cnode *cp = VTOC(vp);
- struct vnode *devvp = NULL;
+ struct cnode *cp;
struct filefork *fp = NULL;
struct filefork *altfp = NULL;
- int i;
+ struct hfsmount *hfsmp = VTOHFS(vp);
+ vfs_context_t ctx = ap->a_context;
+ int reclaim_cnode = 0;
+ int err = 0;
+ enum vtype v_type;
+
+ v_type = vnode_vtype(vp);
+ cp = VTOC(vp);
+
+ /*
+ * We don't take the truncate lock since by the time reclaim comes along,
+ * all dirty pages have been synced and nobody should be competing
+ * with us for this thread.
+ */
+ (void) hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
- if (prtactive && vp->v_usecount != 0)
- vprint("hfs_reclaim(): pushing active", vp);
+ /*
+ * Sync to disk any remaining data in the cnode/vnode. This includes
+ * a call to hfs_update if the cnode has outbound data.
+ *
+ * If C_NOEXISTS is set on the cnode, then there's nothing teardown needs to do
+ * because the catalog entry for this cnode is already gone.
+ */
+ if (!ISSET(cp->c_flag, C_NOEXISTS)) {
+ err = hfs_cnode_teardown(vp, ctx, 1);
+ }
- devvp = cp->c_devvp; /* For later releasing */
+ /*
+ * Keep track of an inactive hot file. Don't bother on ssd's since
+ * the tracking is done differently (it's done at read() time)
+ */
+ if (!vnode_isdir(vp) &&
+ !vnode_issystem(vp) &&
+ !(cp->c_flag & (C_DELETED | C_NOEXISTS)) &&
+ !(hfsmp->hfs_flags & HFS_CS_HOTFILE_PIN)) {
+ (void) hfs_addhotfile(vp);
+ }
+ vnode_removefsref(vp);
/*
* Find file fork for this vnode (if any)
* Also check if another fork is active
*/
- if ((fp = cp->c_datafork) && (cp->c_vp == vp)) {
+ if (cp->c_vp == vp) {
+ fp = cp->c_datafork;
+ altfp = cp->c_rsrcfork;
+
cp->c_datafork = NULL;
cp->c_vp = NULL;
- altfp = cp->c_rsrcfork;
- } else if ((fp = cp->c_rsrcfork) && (cp->c_rsrc_vp == vp)) {
+ } else if (cp->c_rsrc_vp == vp) {
+ fp = cp->c_rsrcfork;
+ altfp = cp->c_datafork;
+
cp->c_rsrcfork = NULL;
cp->c_rsrc_vp = NULL;
- altfp = cp->c_datafork;
} else {
- cp->c_vp = NULL;
- fp = NULL;
- altfp = NULL;
+ panic("hfs_vnop_reclaim: vp points to wrong cnode (vp=%p cp->c_vp=%p cp->c_rsrc_vp=%p)\n", vp, cp->c_vp, cp->c_rsrc_vp);
}
-
/*
* On the last fork, remove the cnode from its hash chain.
*/
- if (altfp == NULL)
- hfs_chashremove(cp);
-
- /* Release the file fork and related data (can block) */
+ if (altfp == NULL) {
+ /* If we can't remove it then the cnode must persist! */
+ if (hfs_chashremove(hfsmp, cp) == 0)
+ reclaim_cnode = 1;
+ /*
+ * Remove any directory hints
+ */
+ if (vnode_isdir(vp)) {
+ hfs_reldirhints(cp, 0);
+ }
+
+ if(cp->c_flag & C_HARDLINK) {
+ hfs_relorigins(cp);
+ }
+ }
+ /* Release the file fork and related data */
if (fp) {
- fp->ff_cp = NULL;
/* Dump cached symlink data */
- if ((vp->v_type == VLNK) && (fp->ff_symlinkptr != NULL)) {
+ if (vnode_islnk(vp) && (fp->ff_symlinkptr != NULL)) {
FREE(fp->ff_symlinkptr, M_TEMP);
- fp->ff_symlinkptr = NULL;
}
+ rl_remove_all(&fp->ff_invalidranges);
FREE_ZONE(fp, sizeof(struct filefork), M_HFSFORK);
- fp = NULL;
- }
-
- /*
- * Purge old data structures associated with the cnode.
- */
- cache_purge(vp);
- if (devvp && altfp == NULL) {
- cp->c_devvp = NULL;
- vrele(devvp);
}
- vp->v_data = NULL;
-
/*
* If there was only one active fork then we can release the cnode.
*/
- if (altfp == NULL) {
-#if QUOTA
- for (i = 0; i < MAXQUOTAS; i++) {
- if (cp->c_dquot[i] != NODQUOT) {
- dqreclaim(vp, cp->c_dquot[i]);
- cp->c_dquot[i] = NODQUOT;
- }
- }
-#endif /* QUOTA */
+ if (reclaim_cnode) {
+ hfs_chashwakeup(hfsmp, cp, H_ALLOC | H_TRANSIT);
+ hfs_unlock(cp);
+ hfs_reclaim_cnode(hfsmp, cp);
+ }
+ else {
/*
- * Free any left over directory indices
+ * cnode in use. If it is a directory, it could have
+ * no live forks. Just release the lock.
*/
- if (vp->v_type == VDIR)
- hfs_relnamehints(cp);
-
- /*
- * If the descriptor has a name then release it
- */
- if (cp->c_desc.cd_flags & CD_HASBUF) {
- char *nameptr;
-
- nameptr = cp->c_desc.cd_nameptr;
- cp->c_desc.cd_nameptr = 0;
- cp->c_desc.cd_flags &= ~CD_HASBUF;
- cp->c_desc.cd_namelen = 0;
- FREE(nameptr, M_TEMP);
- }
- CLR(cp->c_flag, (C_ALLOC | C_TRANSIT));
- if (ISSET(cp->c_flag, C_WALLOC) || ISSET(cp->c_flag, C_WTRANSIT))
- wakeup(cp);
- FREE_ZONE(cp, sizeof(struct cnode), M_HFSNODE);
-
+ hfs_unlock(cp);
}
+ vnode_clearfsnode(vp);
return (0);
}
+extern int (**hfs_vnodeop_p) (void *);
+extern int (**hfs_specop_p) (void *);
+#if FIFO
+extern int (**hfs_fifoop_p) (void *);
+#endif
+
+#if CONFIG_HFS_STD
+extern int (**hfs_std_vnodeop_p) (void *);
+#endif
+
/*
- * get a cnode
+ * hfs_getnewvnode - get new default vnode
+ *
+ * The vnode is returned with an iocount and the cnode locked.
+ * The cnode of the parent vnode 'dvp' may or may not be locked, depending on
+ * the circumstances. The cnode in question (if acquiring the resource fork),
+ * may also already be locked at the time we enter this function.
*
- * called by hfs_lookup and hfs_vget (descp == NULL)
+ * Note that there are both input and output flag arguments to this function.
+ * If one of the input flags (specifically, GNV_USE_VP), is set, then
+ * hfs_getnewvnode will use the parameter *vpp, which is traditionally only
+ * an output parameter, as both an input and output parameter. It will use
+ * the vnode provided in the output, and pass it to vnode_create with the
+ * proper flavor so that a new vnode is _NOT_ created on our behalf when
+ * we dispatch to VFS. This may be important in various HFS vnode creation
+ * routines, such a create or get-resource-fork, because we risk deadlock if
+ * jetsam is involved.
*
- * returns a locked vnode for cnode for given cnid/fileid
+ * Deadlock potential exists if jetsam is synchronously invoked while we are waiting
+ * for a vnode to be recycled in order to give it the identity we want. If jetsam
+ * happens to target a process for termination that is blocked in-kernel, waiting to
+ * acquire the cnode lock on our parent 'dvp', while our current thread has it locked,
+ * neither side will make forward progress and the watchdog timer will eventually fire.
+ * To prevent this, a caller of hfs_getnewvnode may choose to proactively force
+ * any necessary vnode reclamation/recycling while it is not holding any locks and
+ * thus not prone to deadlock. If this is the case, GNV_USE_VP will be set and
+ * the parameter will be used as described above.
+ *
+ * !!! <NOTE> !!!!
+ * In circumstances when GNV_USE_VP is set, this function _MUST_ clean up and either consume
+ * or dispose of the provided vnode. We funnel all errors to a single return value so that
+ * if provided_vp is still non-NULL, then we will dispose of the vnode. This will occur in
+ * all error cases of this function -- anywhere we zero/NULL out the *vpp parameter. It may
+ * also occur if the current thread raced with another to create the same vnode, and we
+ * find the entry already present in the cnode hash.
+ * !!! </NOTE> !!!
*/
-__private_extern__
int
-hfs_getcnode(struct hfsmount *hfsmp, cnid_t cnid, struct cat_desc *descp, int wantrsrc,
- struct cat_attr *attrp, struct cat_fork *forkp, struct vnode **vpp)
+hfs_getnewvnode(
+ struct hfsmount *hfsmp,
+ struct vnode *dvp,
+ struct componentname *cnp,
+ struct cat_desc *descp,
+ int flags,
+ struct cat_attr *attrp,
+ struct cat_fork *forkp,
+ struct vnode **vpp,
+ int *out_flags)
{
- dev_t dev = hfsmp->hfs_raw_dev;
+ struct mount *mp = HFSTOVFS(hfsmp);
struct vnode *vp = NULL;
- struct vnode *rvp = NULL;
- struct vnode *new_vp = NULL;
+ struct vnode **cvpp;
+ struct vnode *tvp = NULLVP;
struct cnode *cp = NULL;
- struct proc *p = current_proc();
- int retval = E_NONE;
+ struct filefork *fp = NULL;
+ int hfs_standard = 0;
+ int retval = 0;
+ int issystemfile;
+ int wantrsrc;
+ int hflags = 0;
+ int need_update_identity = 0;
+ struct vnode_fsparam vfsp;
+ enum vtype vtype;
- /* Check if unmount in progress */
- if (HFSTOVFS(hfsmp)->mnt_kern_flag & MNTK_UNMOUNT) {
- *vpp = NULL;
- return (EPERM);
+ struct vnode *provided_vp = NULL;
+
+
+#if QUOTA
+ int i;
+#endif /* QUOTA */
+
+ hfs_standard = (hfsmp->hfs_flags & HFS_STANDARD);
+
+ if (flags & GNV_USE_VP) {
+ /* Store the provided VP for later use */
+ provided_vp = *vpp;
}
- /*
- * Check the hash for an active cnode
- */
- cp = hfs_chashget(dev, cnid, wantrsrc, &vp, &rvp);
- if (cp != NULL) {
- /* hide open files that have been deleted */
- if ((hfsmp->hfs_private_metadata_dir != 0)
- && (cp->c_parentcnid == hfsmp->hfs_private_metadata_dir)
- && (cp->c_nlink == 0)) {
- retval = ENOENT;
- goto exit;
- }
-
- /* Hide private journal files */
- if (hfsmp->jnl &&
- (cp->c_parentcnid == kRootDirID) &&
- ((cp->c_cnid == hfsmp->hfs_jnlfileid) ||
- (cp->c_cnid == hfsmp->hfs_jnlinfoblkid))) {
- retval = ENOENT;
- goto exit;
- }
-
- if (wantrsrc && rvp != NULL) {
- vp = rvp;
- rvp = NULL;
- goto done;
- }
- if (!wantrsrc && vp != NULL) {
- /* Hardlinks need an updated catalog descriptor */
- if (descp && cp->c_flag & C_HARDLINK) {
- replace_desc(cp, descp);
- }
- /* We have a vnode so we're done. */
- goto done;
- }
+ /* Zero out the vpp regardless of provided input */
+ *vpp = NULL;
+
+ /* Zero out the out_flags */
+ *out_flags = 0;
+
+ if (attrp->ca_fileid == 0) {
+ retval = ENOENT;
+ goto gnv_exit;
}
+#if !FIFO
+ if (IFTOVT(attrp->ca_mode) == VFIFO) {
+ retval = ENOTSUP;
+ goto gnv_exit;
+ }
+#endif /* !FIFO */
+ vtype = IFTOVT(attrp->ca_mode);
+ issystemfile = (descp->cd_flags & CD_ISMETA) && (vtype == VREG);
+ wantrsrc = flags & GNV_WANTRSRC;
+
+ /* Sanity check the vtype and mode */
+ if (vtype == VBAD) {
+ /* Mark the FS as corrupt and bail out */
+ hfs_mark_inconsistent(hfsmp, HFS_INCONSISTENCY_DETECTED);
+ retval = EINVAL;
+ goto gnv_exit;
+ }
+
+#ifdef HFS_CHECK_LOCK_ORDER
/*
- * There was no active vnode so get a new one.
- * Use the existing cnode (if any).
+ * The only case where it's permissible to hold the parent cnode
+ * lock is during a create operation (hfs_makenode) or when
+ * we don't need the cnode lock (GNV_SKIPLOCK).
*/
- if (descp != NULL) {
- /*
- * hfs_lookup case, use descp, attrp and forkp
- */
- retval = hfs_getnewvnode(hfsmp, cp, descp, wantrsrc, attrp,
- forkp, &new_vp);
- } else {
- struct cat_desc cndesc = {0};
- struct cat_attr cnattr = {0};
- struct cat_fork cnfork = {0};
+ if ((dvp != NULL) &&
+ (flags & (GNV_CREATE | GNV_SKIPLOCK)) == 0 &&
+ VTOC(dvp)->c_lockowner == current_thread()) {
+ panic("hfs_getnewvnode: unexpected hold of parent cnode %p", VTOC(dvp));
+ }
+#endif /* HFS_CHECK_LOCK_ORDER */
- /*
- * hfs_vget case, need to lookup entry (by file id)
- */
- if (cnid == kRootParID) {
- static char hfs_rootname[] = "/";
-
- cndesc.cd_nameptr = &hfs_rootname[0];
- cndesc.cd_namelen = 1;
- cndesc.cd_parentcnid = kRootParID;
- cndesc.cd_cnid = kRootParID;
- cndesc.cd_flags = CD_ISDIR;
-
- cnattr.ca_fileid = kRootParID;
- cnattr.ca_nlink = 2;
- cnattr.ca_mode = (S_IFDIR | S_IRWXU | S_IRWXG | S_IRWXO);
- } else {
- /* Lock catalog b-tree */
- retval = hfs_metafilelocking(hfsmp, kHFSCatalogFileID, LK_SHARED, p);
- if (retval)
- goto exit;
-
- retval = cat_idlookup(hfsmp, cnid, &cndesc, &cnattr, &cnfork);
-
- /* Unlock catalog b-tree */
- (void) hfs_metafilelocking(hfsmp, kHFSCatalogFileID, LK_RELEASE, p);
- if (retval)
- goto exit;
-
- /* Hide open files that have been deleted */
- if ((hfsmp->hfs_private_metadata_dir != 0) &&
- (cndesc.cd_parentcnid == hfsmp->hfs_private_metadata_dir)) {
- cat_releasedesc(&cndesc);
- retval = ENOENT;
- goto exit;
- }
- }
-
- retval = hfs_getnewvnode(hfsmp, cp, &cndesc, 0, &cnattr, &cnfork, &new_vp);
+ /*
+ * Get a cnode (new or existing)
+ */
+ cp = hfs_chash_getcnode(hfsmp, attrp->ca_fileid, vpp, wantrsrc,
+ (flags & GNV_SKIPLOCK), out_flags, &hflags);
- /* Hardlinks may need an updated catalog descriptor */
- if (retval == 0
- && new_vp
- && (VTOC(new_vp)->c_flag & C_HARDLINK)
- && cndesc.cd_nameptr
- && cndesc.cd_namelen > 0) {
- replace_desc(VTOC(new_vp), &cndesc);
- }
- cat_releasedesc(&cndesc);
+ /*
+ * If the id is no longer valid for lookups we'll get back a NULL cp.
+ */
+ if (cp == NULL) {
+ retval = ENOENT;
+ goto gnv_exit;
}
-exit:
- /* Release reference taken on opposite vnode (if any). */
- if (vp)
- vput(vp);
- else if (rvp)
- vput(rvp);
+ /*
+ * We may have been provided a vnode via
+ * GNV_USE_VP. In this case, we have raced with
+ * a 2nd thread to create the target vnode. The provided
+ * vnode that was passed in will be dealt with at the
+ * end of the function, as we don't zero out the field
+ * until we're ready to pass responsibility to VFS.
+ */
- if (retval) {
- *vpp = NULL;
- return (retval);
- }
- vp = new_vp;
-done:
- /* The cnode's vnode should be in vp. */
- if (vp == NULL)
- panic("hfs_getcnode: missing vp!");
- UBCINFOCHECK("hfs_getcnode", vp);
- *vpp = vp;
- return (0);
-}
-
-
-/*
- * hfs_getnewvnode - get new default vnode
- *
- * the vnode is returned locked
- */
-extern int (**hfs_vnodeop_p) (void *);
-extern int (**hfs_specop_p) (void *);
-extern int (**hfs_fifoop_p) (void *);
-
-__private_extern__
-int
-hfs_getnewvnode(struct hfsmount *hfsmp, struct cnode *cp,
- struct cat_desc *descp, int wantrsrc,
- struct cat_attr *attrp, struct cat_fork *forkp,
- struct vnode **vpp)
-{
- struct mount *mp = HFSTOVFS(hfsmp);
- struct vnode *vp = NULL;
- struct vnode *rvp = NULL;
- struct vnode *new_vp = NULL;
- struct cnode *cp2 = NULL;
- struct filefork *fp = NULL;
- int allocated = 0;
- int i;
- int retval;
- dev_t dev;
- struct proc *p = current_proc();
-
- /* Bail when unmount is in progress */
- if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
- *vpp = NULL;
- return (EPERM);
- }
-
-#if !FIFO
- if (IFTOVT(attrp->ca_mode) == VFIFO) {
- *vpp = NULL;
- return (EOPNOTSUPP);
- }
+ /*
+ * If we get a cnode/vnode pair out of hfs_chash_getcnode, then update the
+ * descriptor in the cnode as needed if the cnode represents a hardlink.
+ * We want the caller to get the most up-to-date copy of the descriptor
+ * as possible. However, we only do anything here if there was a valid vnode.
+ * If there isn't a vnode, then the cnode is brand new and needs to be initialized
+ * as it doesn't have a descriptor or cat_attr yet.
+ *
+ * If we are about to replace the descriptor with the user-supplied one, then validate
+ * that the descriptor correctly acknowledges this item is a hardlink. We could be
+ * subject to a race where the calling thread invoked cat_lookup, got a valid lookup
+ * result but the file was not yet a hardlink. With sufficient delay between there
+ * and here, we might accidentally copy in the raw inode ID into the descriptor in the
+ * call below. If the descriptor's CNID is the same as the fileID then it must
+ * not yet have been a hardlink when the lookup occurred.
+ */
+
+ if (!(hfs_checkdeleted(cp))) {
+ //
+ // If the bytes of the filename in the descp do not match the bytes in the
+ // cnp (and we're not looking up the resource fork), then we want to update
+ // the vnode identity to contain the bytes that HFS stores so that when an
+ // fsevent gets generated, it has the correct filename. otherwise daemons
+ // that match filenames produced by fsevents with filenames they have stored
+ // elsewhere (e.g. bladerunner, backupd, mds), the filenames will not match.
+ // See: <rdar://problem/8044697> FSEvents doesn't always decompose diacritical unicode chars in the paths of the changed directories
+ // for more details.
+ //
+#ifdef CN_WANTSRSRCFORK
+ if (*vpp && cnp && cnp->cn_nameptr && !(cnp->cn_flags & CN_WANTSRSRCFORK) && descp && descp->cd_nameptr && strncmp((const char *)cnp->cn_nameptr, (const char *)descp->cd_nameptr, descp->cd_namelen) != 0) {
+#else
+ if (*vpp && cnp && cnp->cn_nameptr && descp && descp->cd_nameptr && strncmp((const char *)cnp->cn_nameptr, (const char *)descp->cd_nameptr, descp->cd_namelen) != 0) {
#endif
- dev = hfsmp->hfs_raw_dev;
-
- /* If no cnode was passed in then create one */
- if (cp == NULL) {
- MALLOC_ZONE(cp2, struct cnode *, sizeof(struct cnode),
- M_HFSNODE, M_WAITOK);
- bzero(cp2, sizeof(struct cnode));
- allocated = 1;
- SET(cp2->c_flag, C_ALLOC);
- cp2->c_cnid = descp->cd_cnid;
- cp2->c_fileid = attrp->ca_fileid;
- cp2->c_dev = dev;
- lockinit(&cp2->c_lock, PINOD, "cnode", 0, 0);
- (void) lockmgr(&cp2->c_lock, LK_EXCLUSIVE, (struct slock *)0, p);
- /*
- * There were several blocking points since we first
- * checked the hash. Now that we're through blocking,
- * check the hash again in case we're racing for the
- * same cnode.
- */
- cp = hfs_chashget(dev, attrp->ca_fileid, wantrsrc, &vp, &rvp);
- if (cp != NULL) {
- /* We lost the race - use the winner's cnode */
- FREE_ZONE(cp2, sizeof(struct cnode), M_HFSNODE);
- allocated = 0;
- if (wantrsrc && rvp != NULL) {
- *vpp = rvp;
- return (0);
+ vnode_update_identity (*vpp, dvp, (const char *)descp->cd_nameptr, descp->cd_namelen, 0, VNODE_UPDATE_NAME);
+ }
+ if ((cp->c_flag & C_HARDLINK) && descp->cd_nameptr && descp->cd_namelen > 0) {
+ /* If cnode is uninitialized, its c_attr will be zeroed out; cnids wont match. */
+ if ((descp->cd_cnid == cp->c_attr.ca_fileid) &&
+ (attrp->ca_linkcount != cp->c_attr.ca_linkcount)){
+
+ if ((flags & GNV_SKIPLOCK) == 0) {
+ /*
+ * Then we took the lock. Drop it before calling
+ * vnode_put, which may invoke hfs_vnop_inactive and need to take
+ * the cnode lock again.
+ */
+ hfs_unlock(cp);
+ }
+
+ /*
+ * Emit ERECYCLE and GNV_CAT_ATTRCHANGED to
+ * force a re-drive in the lookup routine.
+ * Drop the iocount on the vnode obtained from
+ * chash_getcnode if needed.
+ */
+ if (*vpp != NULL) {
+ vnode_put (*vpp);
+ *vpp = NULL;
+ }
+
+ /*
+ * If we raced with VNOP_RECLAIM for this vnode, the hash code could
+ * have observed it after the c_vp or c_rsrc_vp fields had been torn down;
+ * the hash code peeks at those fields without holding the cnode lock because
+ * it needs to be fast. As a result, we may have set H_ATTACH in the chash
+ * call above. Since we're bailing out, unset whatever flags we just set, and
+ * wake up all waiters for this cnode.
+ */
+ if (hflags) {
+ hfs_chashwakeup(hfsmp, cp, hflags);
+ }
+
+ *out_flags = GNV_CAT_ATTRCHANGED;
+ retval = ERECYCLE;
+ goto gnv_exit;
}
- if (!wantrsrc && vp != NULL) {
- *vpp = vp;
- return (0);
+ else {
+ /*
+ * Otherwise, CNID != fileid. Go ahead and copy in the new descriptor.
+ *
+ * Replacing the descriptor here is fine because we looked up the item without
+ * a vnode in hand before. If a vnode existed, its identity must be attached to this
+ * item. We are not susceptible to the lookup fastpath issue at this point.
+ */
+ replace_desc(cp, descp);
+
+ /*
+ * This item was a hardlink, and its name needed to be updated. By replacing the
+ * descriptor above, we've now updated the cnode's internal representation of
+ * its link ID/CNID, parent ID, and its name. However, VFS must now be alerted
+ * to the fact that this vnode now has a new parent, since we cannot guarantee
+ * that the new link lived in the same directory as the alternative name for
+ * this item.
+ */
+ if ((*vpp != NULL) && (cnp || cp->c_desc.cd_nameptr)) {
+ /* we could be requesting the rsrc of a hardlink file... */
+#ifdef CN_WANTSRSRCFORK
+ if (cp->c_desc.cd_nameptr && (cnp == NULL || !(cnp->cn_flags & CN_WANTSRSRCFORK))) {
+#else
+ if (cp->c_desc.cd_nameptr) {
+#endif
+ //
+ // Update the identity with what we have stored on disk as
+ // the name of this file. This is related to:
+ // <rdar://problem/8044697> FSEvents doesn't always decompose diacritical unicode chars in the paths of the changed directories
+ //
+ vnode_update_identity (*vpp, dvp, (const char *)cp->c_desc.cd_nameptr, cp->c_desc.cd_namelen, 0,
+ (VNODE_UPDATE_PARENT | VNODE_UPDATE_NAME));
+ } else if (cnp) {
+ vnode_update_identity (*vpp, dvp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_hash,
+ (VNODE_UPDATE_PARENT | VNODE_UPDATE_NAME));
+ }
+ }
}
- } else /* allocated */ {
- cp = cp2;
- hfs_chashinsert(cp);
}
}
+
+ /*
+ * At this point, we have performed hardlink and open-unlinked checks
+ * above. We have now validated the state of the vnode that was given back
+ * to us from the cnode hash code and find it safe to return.
+ */
+ if (*vpp != NULL) {
+ retval = 0;
+ goto gnv_exit;
+ }
+
+ /*
+ * If this is a new cnode then initialize it.
+ */
+ if (ISSET(cp->c_hflag, H_ALLOC)) {
+ lck_rw_init(&cp->c_truncatelock, hfs_rwlock_group, hfs_lock_attr);
+#if HFS_COMPRESSION
+ cp->c_decmp = NULL;
+#endif
- /* Allocate a new vnode. If unsuccesful, leave after freeing memory */
- if ((retval = getnewvnode(VT_HFS, mp, hfs_vnodeop_p, &new_vp))) {
- if (allocated) {
- hfs_chashremove(cp);
- if (ISSET(cp->c_flag, C_WALLOC)) {
- CLR(cp->c_flag, C_WALLOC);
- wakeup(cp);
+ /* Make sure its still valid (ie exists on disk). */
+ if (!(flags & GNV_CREATE)) {
+ int error = 0;
+ if (!hfs_valid_cnode (hfsmp, dvp, (wantrsrc ? NULL : cnp), cp->c_fileid, attrp, &error)) {
+ hfs_chash_abort(hfsmp, cp);
+ if ((flags & GNV_SKIPLOCK) == 0) {
+ hfs_unlock(cp);
+ }
+ hfs_reclaim_cnode(hfsmp, cp);
+ *vpp = NULL;
+ /*
+ * If we hit this case, that means that the entry was there in the catalog when
+ * we did a cat_lookup earlier. Think hfs_lookup. However, in between the time
+ * that we checked the catalog and the time we went to get a vnode/cnode for it,
+ * it had been removed from the namespace and the vnode totally reclaimed. As a result,
+ * it's not there in the catalog during the check in hfs_valid_cnode and we bubble out
+ * an ENOENT. To indicate to the caller that they should really double-check the
+ * entry (it could have been renamed over and gotten a new fileid), we mark a bit
+ * in the output flags.
+ */
+ if (error == ENOENT) {
+ *out_flags = GNV_CAT_DELETED;
+ retval = ENOENT;
+ goto gnv_exit;
+ }
+
+ /*
+ * Also, we need to protect the cat_attr acquired during hfs_lookup and passed into
+ * this function as an argument because the catalog may have changed w.r.t hardlink
+ * link counts and the firstlink field. If that validation check fails, then let
+ * lookup re-drive itself to get valid/consistent data with the same failure condition below.
+ */
+ if (error == ERECYCLE) {
+ *out_flags = GNV_CAT_ATTRCHANGED;
+ retval = ERECYCLE;
+ goto gnv_exit;
+ }
}
- FREE_ZONE(cp2, sizeof(struct cnode), M_HFSNODE);
- allocated = 0;
- } else if (rvp) {
- vput(rvp);
- } else if (vp) {
- vput(vp);
}
- *vpp = NULL;
- return (retval);
- }
- if (allocated) {
bcopy(attrp, &cp->c_attr, sizeof(struct cat_attr));
bcopy(descp, &cp->c_desc, sizeof(struct cat_desc));
- }
- new_vp->v_data = cp;
- if (wantrsrc && S_ISREG(cp->c_mode))
- cp->c_rsrc_vp = new_vp;
- else
- cp->c_vp = new_vp;
- /* Release reference taken on opposite vnode (if any). */
- if (rvp)
- vput(rvp);
- if (vp)
- vput(vp);
-
- vp = new_vp;
- vp->v_ubcinfo = UBC_NOINFO;
-
- /*
- * If this is a new cnode then initialize it using descp and attrp...
- */
- if (allocated) {
/* The name was inherited so clear descriptor state... */
descp->cd_namelen = 0;
descp->cd_nameptr = NULL;
descp->cd_flags &= ~CD_HASBUF;
/* Tag hardlinks */
- if (IFTOVT(cp->c_mode) == VREG &&
- (descp->cd_cnid != attrp->ca_fileid)) {
+ if ((vtype == VREG || vtype == VDIR
+ || vtype == VSOCK || vtype == VFIFO)
+ && (descp->cd_cnid != attrp->ca_fileid
+ || ISSET(attrp->ca_recflags, kHFSHasLinkChainMask))) {
cp->c_flag |= C_HARDLINK;
}
-
- /* Take one dev reference for each non-directory cnode */
- if (IFTOVT(cp->c_mode) != VDIR) {
- cp->c_devvp = hfsmp->hfs_devvp;
- VREF(cp->c_devvp);
+ /*
+ * Fix-up dir link counts.
+ *
+ * Earlier versions of Leopard used ca_linkcount for posix
+ * nlink support (effectively the sub-directory count + 2).
+ * That is now accomplished using the ca_dircount field with
+ * the corresponding kHFSHasFolderCountMask flag.
+ *
+ * For directories the ca_linkcount is the true link count,
+ * tracking the number of actual hardlinks to a directory.
+ *
+ * We only do this if the mount has HFS_FOLDERCOUNT set;
+ * at the moment, we only set that for HFSX volumes.
+ */
+ if ((hfsmp->hfs_flags & HFS_FOLDERCOUNT) &&
+ (vtype == VDIR) &&
+ !(attrp->ca_recflags & kHFSHasFolderCountMask) &&
+ (cp->c_attr.ca_linkcount > 1)) {
+ if (cp->c_attr.ca_entries == 0)
+ cp->c_attr.ca_dircount = 0;
+ else
+ cp->c_attr.ca_dircount = cp->c_attr.ca_linkcount - 2;
+
+ cp->c_attr.ca_linkcount = 1;
+ cp->c_attr.ca_recflags |= kHFSHasFolderCountMask;
+ if ( !(hfsmp->hfs_flags & HFS_READ_ONLY) )
+ cp->c_flag |= C_MODIFIED;
}
#if QUOTA
- for (i = 0; i < MAXQUOTAS; i++)
- cp->c_dquot[i] = NODQUOT;
+ if (hfsmp->hfs_flags & HFS_QUOTAS) {
+ for (i = 0; i < MAXQUOTAS; i++)
+ cp->c_dquot[i] = NODQUOT;
+ }
#endif /* QUOTA */
+ /* Mark the output flag that we're vending a new cnode */
+ *out_flags |= GNV_NEW_CNODE;
}
- if (IFTOVT(cp->c_mode) != VDIR) {
+ if (vtype == VDIR) {
+ if (cp->c_vp != NULL)
+ panic("hfs_getnewvnode: orphaned vnode (data)");
+ cvpp = &cp->c_vp;
+ } else {
if (forkp && attrp->ca_blocks < forkp->cf_blocks)
panic("hfs_getnewvnode: bad ca_blocks (too small)");
/*
*/
MALLOC_ZONE(fp, struct filefork *, sizeof(struct filefork),
M_HFSFORK, M_WAITOK);
- bzero(fp, sizeof(struct filefork));
fp->ff_cp = cp;
if (forkp)
- bcopy(forkp, &fp->ff_data, sizeof(HFSPlusForkData));
- if (fp->ff_clumpsize == 0)
- fp->ff_clumpsize = HFSTOVCB(hfsmp)->vcbClpSiz;
+ bcopy(forkp, &fp->ff_data, sizeof(struct cat_fork));
+ else
+ bzero(&fp->ff_data, sizeof(struct cat_fork));
rl_init(&fp->ff_invalidranges);
+ fp->ff_sysfileinfo = 0;
+
if (wantrsrc) {
if (cp->c_rsrcfork != NULL)
- panic("stale rsrc fork");
+ panic("hfs_getnewvnode: orphaned rsrc fork");
+ if (cp->c_rsrc_vp != NULL)
+ panic("hfs_getnewvnode: orphaned vnode (rsrc)");
cp->c_rsrcfork = fp;
+ cvpp = &cp->c_rsrc_vp;
+ if ( (tvp = cp->c_vp) != NULLVP )
+ cp->c_flag |= C_NEED_DVNODE_PUT;
} else {
if (cp->c_datafork != NULL)
- panic("stale data fork");
+ panic("hfs_getnewvnode: orphaned data fork");
+ if (cp->c_vp != NULL)
+ panic("hfs_getnewvnode: orphaned vnode (data)");
cp->c_datafork = fp;
+ cvpp = &cp->c_vp;
+ if ( (tvp = cp->c_rsrc_vp) != NULLVP)
+ cp->c_flag |= C_NEED_RVNODE_PUT;
}
}
+ if (tvp != NULLVP) {
+ /*
+ * grab an iocount on the vnode we weren't
+ * interested in (i.e. we want the resource fork
+ * but the cnode already has the data fork)
+ * to prevent it from being
+ * recycled by us when we call vnode_create
+ * which will result in a deadlock when we
+ * try to take the cnode lock in hfs_vnop_fsync or
+ * hfs_vnop_reclaim... vnode_get can be called here
+ * because we already hold the cnode lock which will
+ * prevent the vnode from changing identity until
+ * we drop it.. vnode_get will not block waiting for
+ * a change of state... however, it will return an
+ * error if the current iocount == 0 and we've already
+ * started to terminate the vnode... we don't need/want to
+ * grab an iocount in the case since we can't cause
+ * the fileystem to be re-entered on this thread for this vp
+ *
+ * the matching vnode_put will happen in hfs_unlock
+ * after we've dropped the cnode lock
+ */
+ if ( vnode_get(tvp) != 0)
+ cp->c_flag &= ~(C_NEED_RVNODE_PUT | C_NEED_DVNODE_PUT);
+ }
+ vfsp.vnfs_mp = mp;
+ vfsp.vnfs_vtype = vtype;
+ vfsp.vnfs_str = "hfs";
+ if ((cp->c_flag & C_HARDLINK) && (vtype == VDIR)) {
+ vfsp.vnfs_dvp = NULL; /* no parent for me! */
+ vfsp.vnfs_cnp = NULL; /* no name for me! */
+ } else {
+ vfsp.vnfs_dvp = dvp;
+ vfsp.vnfs_cnp = cnp;
+ }
+
+ vfsp.vnfs_fsnode = cp;
/*
- * Finish vnode initialization.
- * Setting the v_type 'stamps' the vnode as 'complete',
- * so should be done almost last.
- *
- * At this point the vnode should be locked and fully
- * allocated. And ready to be used or accessed. (though
- * having it locked prevents most of this, it can still
- * be accessed through lists and hashes).
+ * Special Case HFS Standard VNOPs from HFS+, since
+ * HFS standard is readonly/deprecated as of 10.6
*/
- vp->v_type = IFTOVT(cp->c_mode);
+
+#if FIFO
+ if (vtype == VFIFO )
+ vfsp.vnfs_vops = hfs_fifoop_p;
+ else
+#endif
+ if (vtype == VBLK || vtype == VCHR)
+ vfsp.vnfs_vops = hfs_specop_p;
+#if CONFIG_HFS_STD
+ else if (hfs_standard)
+ vfsp.vnfs_vops = hfs_std_vnodeop_p;
+#endif
+ else
+ vfsp.vnfs_vops = hfs_vnodeop_p;
+
+ if (vtype == VBLK || vtype == VCHR)
+ vfsp.vnfs_rdev = attrp->ca_rdev;
+ else
+ vfsp.vnfs_rdev = 0;
+
+ if (forkp)
+ vfsp.vnfs_filesize = forkp->cf_size;
+ else
+ vfsp.vnfs_filesize = 0;
+
+ vfsp.vnfs_flags = VNFS_ADDFSREF;
+#ifdef CN_WANTSRSRCFORK
+ if (cnp && cnp->cn_nameptr && !(cnp->cn_flags & CN_WANTSRSRCFORK) && cp->c_desc.cd_nameptr && strncmp((const char *)cnp->cn_nameptr, (const char *)cp->c_desc.cd_nameptr, cp->c_desc.cd_namelen) != 0) {
+#else
+ if (cnp && cnp->cn_nameptr && cp->c_desc.cd_nameptr && strncmp((const char *)cnp->cn_nameptr, (const char *)cp->c_desc.cd_nameptr, cp->c_desc.cd_namelen) != 0) {
+#endif
+ //
+ // We don't want VFS to add an entry for this vnode because the name in the
+ // cnp does not match the bytes stored on disk for this file. Instead we'll
+ // update the identity later after the vnode is created and we'll do so with
+ // the correct bytes for this filename. For more details, see:
+ // <rdar://problem/8044697> FSEvents doesn't always decompose diacritical unicode chars in the paths of the changed directories
+ //
+ vfsp.vnfs_flags |= VNFS_NOCACHE;
+ need_update_identity = 1;
+ } else if (dvp == NULLVP || cnp == NULL || !(cnp->cn_flags & MAKEENTRY) || (flags & GNV_NOCACHE)) {
+ vfsp.vnfs_flags |= VNFS_NOCACHE;
+ }
/* Tag system files */
- if ((descp->cd_cnid < kHFSFirstUserCatalogNodeID) && (vp->v_type == VREG))
- vp->v_flag |= VSYSTEM;
+ vfsp.vnfs_marksystem = issystemfile;
+
/* Tag root directory */
- if (cp->c_cnid == kRootDirID)
- vp->v_flag |= VROOT;
+ if (descp->cd_cnid == kHFSRootFolderID)
+ vfsp.vnfs_markroot = 1;
+ else
+ vfsp.vnfs_markroot = 0;
+
+ /*
+ * If provided_vp was non-NULL, then it is an already-allocated (but not
+ * initialized) vnode. We simply need to initialize it to this identity.
+ * If it was NULL, then assume that we need to call vnode_create with the
+ * normal arguments/types.
+ */
+ if (provided_vp) {
+ vp = provided_vp;
+ /*
+ * After we assign the value of provided_vp into 'vp' (so that it can be
+ * mutated safely by vnode_initialize), we can NULL it out. At this point, the disposal
+ * and handling of the provided vnode will be the responsibility of VFS, which will
+ * clean it up and vnode_put it properly if vnode_initialize fails.
+ */
+ provided_vp = NULL;
+
+ retval = vnode_initialize (VNCREATE_FLAVOR, VCREATESIZE, &vfsp, &vp);
+ /* See error handling below for resolving provided_vp */
+ }
+ else {
+ /* Do a standard vnode_create */
+ retval = vnode_create (VNCREATE_FLAVOR, VCREATESIZE, &vfsp, &vp);
+ }
+
+ /*
+ * We used a local variable to hold the result of vnode_create/vnode_initialize so that
+ * on error cases in vnode_create we won't accidentally harm the cnode's fields
+ */
+
+ if (retval) {
+ /* Clean up if we encountered an error */
+ if (fp) {
+ if (fp == cp->c_datafork)
+ cp->c_datafork = NULL;
+ else
+ cp->c_rsrcfork = NULL;
+
+ FREE_ZONE(fp, sizeof(struct filefork), M_HFSFORK);
+ }
+ /*
+ * If this is a newly created cnode or a vnode reclaim
+ * occurred during the attachment, then cleanup the cnode.
+ */
+ if ((cp->c_vp == NULL) && (cp->c_rsrc_vp == NULL)) {
+ hfs_chash_abort(hfsmp, cp);
+ hfs_reclaim_cnode(hfsmp, cp);
+ }
+ else {
+ hfs_chashwakeup(hfsmp, cp, H_ALLOC | H_ATTACH);
+ if ((flags & GNV_SKIPLOCK) == 0){
+ hfs_unlock(cp);
+ }
+ }
+ *vpp = NULL;
+ goto gnv_exit;
+ }
+
+ /* If no error, then assign the value into the cnode's fields */
+ *cvpp = vp;
+
+ vnode_settag(vp, VT_HFS);
+ if (cp->c_flag & C_HARDLINK) {
+ vnode_setmultipath(vp);
+ }
+
+ if (cp->c_attr.ca_recflags & kHFSFastDevCandidateMask) {
+ vnode_setfastdevicecandidate(vp);
+ }
+
+ if (cp->c_attr.ca_recflags & kHFSAutoCandidateMask) {
+ vnode_setautocandidate(vp);
+ }
+
+
+
+
+ if (vp && need_update_identity) {
+ //
+ // As above, update the name of the vnode if the bytes stored in hfs do not match
+ // the bytes in the cnp. See this radar:
+ // <rdar://problem/8044697> FSEvents doesn't always decompose diacritical unicode chars in the paths of the changed directories
+ // for more details.
+ //
+ vnode_update_identity (vp, dvp, (const char *)cp->c_desc.cd_nameptr, cp->c_desc.cd_namelen, 0, VNODE_UPDATE_NAME);
+ }
+
+ /*
+ * Tag resource fork vnodes as needing an VNOP_INACTIVE
+ * so that any deferred removes (open unlinked files)
+ * have the chance to process the resource fork.
+ */
+ if (VNODE_IS_RSRC(vp)) {
+ int err;
+
+ KERNEL_DEBUG_CONSTANT(HFSDBG_GETNEWVNODE, VM_KERNEL_ADDRPERM(cp->c_vp), VM_KERNEL_ADDRPERM(cp->c_rsrc_vp), 0, 0, 0);
+
+ /* Force VL_NEEDINACTIVE on this vnode */
+ err = vnode_ref(vp);
+ if (err == 0) {
+ vnode_rele(vp);
+ }
+ }
+ hfs_chashwakeup(hfsmp, cp, H_ALLOC | H_ATTACH);
+
+ /*
+ * Stop tracking an active hot file.
+ */
+ if (!(flags & GNV_CREATE) && (vtype != VDIR) && !issystemfile && !(hfsmp->hfs_flags & HFS_CS_HOTFILE_PIN)) {
+ (void) hfs_removehotfile(vp);
+ }
+
+#if CONFIG_PROTECT
+ /* Initialize the cp data structures. The key should be in place now. */
+ if (!issystemfile && (*out_flags & GNV_NEW_CNODE)) {
+ cp_entry_init(cp, mp);
+ }
+#endif
+
+ *vpp = vp;
+ retval = 0;
+
+gnv_exit:
+ if (provided_vp) {
+ /* Release our empty vnode if it was not used */
+ vnode_put (provided_vp);
+ }
+ return retval;
+}
+
+
+static void
+hfs_reclaim_cnode(hfsmount_t *hfsmp, struct cnode *cp)
+{
+#if QUOTA
+ int i;
+
+ for (i = 0; i < MAXQUOTAS; i++) {
+ if (cp->c_dquot[i] != NODQUOT) {
+ dqreclaim(cp->c_dquot[i]);
+ cp->c_dquot[i] = NODQUOT;
+ }
+ }
+#endif /* QUOTA */
+
+ /*
+ * If the descriptor has a name then release it
+ */
+ if ((cp->c_desc.cd_flags & CD_HASBUF) && (cp->c_desc.cd_nameptr != 0)) {
+ const char *nameptr;
+
+ nameptr = (const char *) cp->c_desc.cd_nameptr;
+ cp->c_desc.cd_nameptr = 0;
+ cp->c_desc.cd_flags &= ~CD_HASBUF;
+ cp->c_desc.cd_namelen = 0;
+ vfs_removename(nameptr);
+ }
+
+ /*
+ * We only call this function if we are in hfs_vnop_reclaim and
+ * attempting to reclaim a cnode with only one live fork. Because the vnode
+ * went through reclaim, any future attempts to use this item will have to
+ * go through lookup again, which will need to create a new vnode. Thus,
+ * destroying the locks below is safe.
+ */
+
+ lck_rw_destroy(&cp->c_rwlock, hfs_rwlock_group);
+ lck_rw_destroy(&cp->c_truncatelock, hfs_rwlock_group);
+#if HFS_COMPRESSION
+ if (cp->c_decmp) {
+ decmpfs_cnode_destroy(cp->c_decmp);
+ FREE_ZONE(cp->c_decmp, sizeof(*(cp->c_decmp)), M_DECMPFS_CNODE);
+ }
+#endif
+#if CONFIG_PROTECT
+ cp_entry_destroy(hfsmp, cp->c_cpentry);
+ cp->c_cpentry = NULL;
+#else
+ (void)hfsmp; // Prevent compiler warning
+#endif
+
+ bzero(cp, sizeof(struct cnode));
+ FREE_ZONE(cp, sizeof(struct cnode), M_HFSNODE);
+}
- if ((vp->v_type == VREG) && !(vp->v_flag & VSYSTEM)
- && (UBCINFOMISSING(vp) || UBCINFORECLAIMED(vp))) {
- ubc_info_init(vp);
+
+/*
+ * hfs_valid_cnode
+ *
+ * This function is used to validate data that is stored in-core against what is contained
+ * in the catalog. Common uses include validating that the parent-child relationship still exist
+ * for a specific directory entry (guaranteeing it has not been renamed into a different spot) at
+ * the point of the check.
+ */
+int
+hfs_valid_cnode(struct hfsmount *hfsmp, struct vnode *dvp, struct componentname *cnp,
+ cnid_t cnid, struct cat_attr *cattr, int *error)
+{
+ struct cat_attr attr;
+ struct cat_desc cndesc;
+ int stillvalid = 0;
+ int lockflags;
+
+ /* System files are always valid */
+ if (cnid < kHFSFirstUserCatalogNodeID) {
+ *error = 0;
+ return (1);
+ }
+
+ /* XXX optimization: check write count in dvp */
+
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
+
+ if (dvp && cnp) {
+ int lookup = 0;
+ struct cat_fork fork;
+ bzero(&cndesc, sizeof(cndesc));
+ cndesc.cd_nameptr = (const u_int8_t *)cnp->cn_nameptr;
+ cndesc.cd_namelen = cnp->cn_namelen;
+ cndesc.cd_parentcnid = VTOC(dvp)->c_fileid;
+ cndesc.cd_hint = VTOC(dvp)->c_childhint;
+
+ /*
+ * We have to be careful when calling cat_lookup. The result argument
+ * 'attr' may get different results based on whether or not you ask
+ * for the filefork to be supplied as output. This is because cat_lookupbykey
+ * will attempt to do basic validation/smoke tests against the resident
+ * extents if there are no overflow extent records, but it needs someplace
+ * in memory to store the on-disk fork structures.
+ *
+ * Since hfs_lookup calls cat_lookup with a filefork argument, we should
+ * do the same here, to verify that block count differences are not
+ * due to calling the function with different styles. cat_lookupbykey
+ * will request the volume be fsck'd if there is true on-disk corruption
+ * where the number of blocks does not match the number generated by
+ * summing the number of blocks in the resident extents.
+ */
+
+ lookup = cat_lookup (hfsmp, &cndesc, 0, 0, NULL, &attr, &fork, NULL);
+
+ if ((lookup == 0) && (cnid == attr.ca_fileid)) {
+ stillvalid = 1;
+ *error = 0;
+ }
+ else {
+ *error = ENOENT;
+ }
+
+ /*
+ * In hfs_getnewvnode, we may encounter a time-of-check vs. time-of-vnode creation
+ * race. Specifically, if there is no vnode/cnode pair for the directory entry
+ * being looked up, we have to go to the catalog. But since we don't hold any locks (aside
+ * from the dvp in 'shared' mode) there is nothing to protect us against the catalog record
+ * changing in between the time we do the cat_lookup there and the time we re-grab the
+ * catalog lock above to do another cat_lookup.
+ *
+ * However, we need to check more than just the CNID and parent-child name relationships above.
+ * Hardlinks can suffer the same race in the following scenario: Suppose we do a
+ * cat_lookup, and find a leaf record and a raw inode for a hardlink. Now, we have
+ * the cat_attr in hand (passed in above). But in between then and now, the vnode was
+ * created by a competing hfs_getnewvnode call, and is manipulated and reclaimed before we get
+ * a chance to do anything. This is possible if there are a lot of threads thrashing around
+ * with the cnode hash. In this case, if we don't check/validate the cat_attr in-hand, we will
+ * blindly stuff it into the cnode, which will make the in-core data inconsistent with what is
+ * on disk. So validate the cat_attr below, if required. This race cannot happen if the cnode/vnode
+ * already exists, as it does in the case of rename and delete.
+ */
+ if (stillvalid && cattr != NULL) {
+ if (cattr->ca_linkcount != attr.ca_linkcount) {
+ stillvalid = 0;
+ *error = ERECYCLE;
+ goto notvalid;
+ }
+
+ if (cattr->ca_union1.cau_linkref != attr.ca_union1.cau_linkref) {
+ stillvalid = 0;
+ *error = ERECYCLE;
+ goto notvalid;
+ }
+
+ if (cattr->ca_union3.cau_firstlink != attr.ca_union3.cau_firstlink) {
+ stillvalid = 0;
+ *error = ERECYCLE;
+ goto notvalid;
+ }
+
+ if (cattr->ca_union2.cau_blocks != attr.ca_union2.cau_blocks) {
+ stillvalid = 0;
+ *error = ERECYCLE;
+ goto notvalid;
+ }
+ }
} else {
- vp->v_ubcinfo = UBC_NOINFO;
+ if (cat_idlookup(hfsmp, cnid, 0, 0, NULL, NULL, NULL) == 0) {
+ stillvalid = 1;
+ *error = 0;
+ }
+ else {
+ *error = ENOENT;
+ }
+ }
+notvalid:
+ hfs_systemfile_unlock(hfsmp, lockflags);
+
+ return (stillvalid);
+}
+
+
+/*
+ * Per HI and Finder requirements, HFS should add in the
+ * date/time that a particular directory entry was added
+ * to the containing directory.
+ * This is stored in the extended Finder Info for the
+ * item in question.
+ *
+ * Note that this field is also set explicitly in the hfs_vnop_setxattr code.
+ * We must ignore user attempts to set this part of the finderinfo, and
+ * so we need to save a local copy of the date added, write in the user
+ * finderinfo, then stuff the value back in.
+ */
+void hfs_write_dateadded (struct cat_attr *attrp, u_int32_t dateadded) {
+ u_int8_t *finfo = NULL;
+
+ /* overlay the FinderInfo to the correct pointer, and advance */
+ finfo = (u_int8_t*)attrp->ca_finderinfo;
+ finfo = finfo + 16;
+
+ /*
+ * Make sure to write it out as big endian, since that's how
+ * finder info is defined.
+ *
+ * NOTE: This is a Unix-epoch timestamp, not a HFS/Traditional Mac timestamp.
+ */
+ if (S_ISREG(attrp->ca_mode)) {
+ struct FndrExtendedFileInfo *extinfo = (struct FndrExtendedFileInfo *)finfo;
+ extinfo->date_added = OSSwapHostToBigInt32(dateadded);
+ attrp->ca_recflags |= kHFSHasDateAddedMask;
+ }
+ else if (S_ISDIR(attrp->ca_mode)) {
+ struct FndrExtendedDirInfo *extinfo = (struct FndrExtendedDirInfo *)finfo;
+ extinfo->date_added = OSSwapHostToBigInt32(dateadded);
+ attrp->ca_recflags |= kHFSHasDateAddedMask;
}
+ /* If it were neither directory/file, then we'd bail out */
+ return;
+}
+
+static u_int32_t
+hfs_get_dateadded_internal(const uint8_t *finderinfo, mode_t mode)
+{
+ const uint8_t *finfo = NULL;
+ u_int32_t dateadded = 0;
+
- if (vp->v_type == VCHR || vp->v_type == VBLK) {
- struct vnode *nvp;
- vp->v_op = hfs_specop_p;
- if ((nvp = checkalias(vp, cp->c_rdev, mp))) {
+ /* overlay the FinderInfo to the correct pointer, and advance */
+ finfo = finderinfo + 16;
+
+ /*
+ * FinderInfo is written out in big endian... make sure to convert it to host
+ * native before we use it.
+ */
+ if (S_ISREG(mode)) {
+ const struct FndrExtendedFileInfo *extinfo = (const struct FndrExtendedFileInfo *)finfo;
+ dateadded = OSSwapBigToHostInt32 (extinfo->date_added);
+ }
+ else if (S_ISDIR(mode)) {
+ const struct FndrExtendedDirInfo *extinfo = (const struct FndrExtendedDirInfo *)finfo;
+ dateadded = OSSwapBigToHostInt32 (extinfo->date_added);
+ }
+
+ return dateadded;
+}
+
+u_int32_t
+hfs_get_dateadded(struct cnode *cp)
+{
+ if ((cp->c_attr.ca_recflags & kHFSHasDateAddedMask) == 0) {
+ /* Date added was never set. Return 0. */
+ return (0);
+ }
+
+ return (hfs_get_dateadded_internal((u_int8_t*)cp->c_finderinfo,
+ cp->c_attr.ca_mode));
+}
+
+u_int32_t
+hfs_get_dateadded_from_blob(const uint8_t *finderinfo, mode_t mode)
+{
+ return (hfs_get_dateadded_internal(finderinfo, mode));
+}
+
+/*
+ * Per HI and Finder requirements, HFS maintains a "write/generation
+ * count" for each file that is incremented on any write & pageout.
+ * It should start at 1 to reserve "0" as a special value. If it
+ * should ever wrap around, it will skip using 0.
+ *
+ * Note that finderinfo is manipulated in hfs_vnop_setxattr and care
+ * is and should be taken to ignore user attempts to set the part of
+ * the finderinfo that records the generation counter.
+ *
+ * Any change to the generation counter *must* not be visible before
+ * the change that caused it (for obvious reasons), and given the
+ * limitations of our current architecture, the change to the
+ * generation counter may occur some time afterwards (particularly in
+ * the case where a file is mapped writable---more on that below).
+ *
+ * We make no guarantees about the consistency of a file. In other
+ * words, a reader that is operating concurrently with a writer might
+ * see some, but not all of writer's changes, and the generation
+ * counter will *not* necessarily tell you this has happened. To
+ * enforce consistency, clients must make their own arrangements
+ * e.g. use file locking.
+ *
+ * We treat files that are mapped writable as a special case: when
+ * that happens, clients requesting the generation count will be told
+ * it has a generation count of zero and they use that knowledge as a
+ * hint that the file is changing and it therefore might be prudent to
+ * wait until it is no longer mapped writable. Clients should *not*
+ * rely on this behaviour however; we might decide that it's better
+ * for us to publish the fact that a file is mapped writable via
+ * alternate means and return the generation counter when it is mapped
+ * writable as it still has some, albeit limited, use. We reserve the
+ * right to make this change.
+ *
+ * Lastly, it's important to realise that because data and metadata
+ * take different paths through the system, it's possible upon crash
+ * or sudden power loss and after a restart, that a change may be
+ * visible to the rest of the system without a corresponding change to
+ * the generation counter. The reverse may also be true, but for all
+ * practical applications this shouldn't be an issue.
+ */
+void hfs_write_gencount (struct cat_attr *attrp, uint32_t gencount) {
+ u_int8_t *finfo = NULL;
+
+ /* overlay the FinderInfo to the correct pointer, and advance */
+ finfo = (u_int8_t*)attrp->ca_finderinfo;
+ finfo = finfo + 16;
+
+ /*
+ * Make sure to write it out as big endian, since that's how
+ * finder info is defined.
+ *
+ * Generation count is only supported for files.
+ */
+ if (S_ISREG(attrp->ca_mode)) {
+ struct FndrExtendedFileInfo *extinfo = (struct FndrExtendedFileInfo *)finfo;
+ extinfo->write_gen_counter = OSSwapHostToBigInt32(gencount);
+ }
+
+ /* If it were neither directory/file, then we'd bail out */
+ return;
+}
+
+/*
+ * Increase the gen count by 1; if it wraps around to 0, increment by
+ * two. The cnode *must* be locked exclusively by the caller.
+ *
+ * You may think holding the lock is unnecessary because we only need
+ * to change the counter, but consider this sequence of events: thread
+ * A calls hfs_incr_gencount and the generation counter is 2 upon
+ * entry. A context switch occurs and thread B increments the counter
+ * to 3, thread C now gets the generation counter (for whatever
+ * purpose), and then another thread makes another change and the
+ * generation counter is incremented again---it's now 4. Now thread A
+ * continues and it sets the generation counter back to 3. So you can
+ * see, thread C would miss the change that caused the generation
+ * counter to increment to 4 and for this reason the cnode *must*
+ * always be locked exclusively.
+ */
+uint32_t hfs_incr_gencount (struct cnode *cp) {
+ u_int8_t *finfo = NULL;
+ u_int32_t gcount = 0;
+
+ /* overlay the FinderInfo to the correct pointer, and advance */
+ finfo = (u_int8_t*)cp->c_finderinfo;
+ finfo = finfo + 16;
+
+ /*
+ * FinderInfo is written out in big endian... make sure to convert it to host
+ * native before we use it.
+ *
+ * NOTE: the write_gen_counter is stored in the same location in both the
+ * FndrExtendedFileInfo and FndrExtendedDirInfo structs (it's the
+ * last 32-bit word) so it is safe to have one code path here.
+ */
+ if (S_ISDIR(cp->c_attr.ca_mode) || S_ISREG(cp->c_attr.ca_mode)) {
+ struct FndrExtendedFileInfo *extinfo = (struct FndrExtendedFileInfo *)finfo;
+ gcount = OSSwapBigToHostInt32 (extinfo->write_gen_counter);
+
+ /* Was it zero to begin with (file originated in 10.8 or earlier?) */
+ if (gcount == 0) {
+ gcount++;
+ }
+
+ /* now bump it */
+ gcount++;
+
+ /* Did it wrap around ? */
+ if (gcount == 0) {
+ gcount++;
+ }
+ extinfo->write_gen_counter = OSSwapHostToBigInt32 (gcount);
+
+ SET(cp->c_flag, C_MINOR_MOD);
+ }
+ else {
+ gcount = 0;
+ }
+
+ return gcount;
+}
+
+/*
+ * There is no need for any locks here (other than an iocount on an
+ * associated vnode) because reading and writing an aligned 32 bit
+ * integer should be atomic on all platforms we support.
+ */
+static u_int32_t
+hfs_get_gencount_internal(const uint8_t *finderinfo, mode_t mode)
+{
+ const uint8_t *finfo = NULL;
+ u_int32_t gcount = 0;
+
+ /* overlay the FinderInfo to the correct pointer, and advance */
+ finfo = finderinfo;
+ finfo = finfo + 16;
+
+ /*
+ * FinderInfo is written out in big endian... make sure to convert it to host
+ * native before we use it.
+ *
+ * NOTE: the write_gen_counter is stored in the same location in both the
+ * FndrExtendedFileInfo and FndrExtendedDirInfo structs (it's the
+ * last 32-bit word) so it is safe to have one code path here.
+ */
+ if (S_ISDIR(mode) || S_ISREG(mode)) {
+ const struct FndrExtendedFileInfo *extinfo = (const struct FndrExtendedFileInfo *)finfo;
+ gcount = OSSwapBigToHostInt32 (extinfo->write_gen_counter);
+
+ /*
+ * Is it zero? File might originate in 10.8 or earlier. We lie and bump it to 1,
+ * since the incrementer code is able to handle this case and will double-increment
+ * for us.
+ */
+ if (gcount == 0) {
+ gcount++;
+ }
+ }
+
+ return gcount;
+}
+
+/* Getter for the gen count */
+u_int32_t hfs_get_gencount (struct cnode *cp) {
+ return hfs_get_gencount_internal(cp->c_finderinfo, cp->c_attr.ca_mode);
+}
+
+/* Getter for the gen count from a buffer (currently pointer to finderinfo)*/
+u_int32_t hfs_get_gencount_from_blob (const uint8_t *finfoblob, mode_t mode) {
+ return hfs_get_gencount_internal(finfoblob, mode);
+}
+
+void hfs_clear_might_be_dirty_flag(cnode_t *cp)
+{
+ /*
+ * If we're about to touch both mtime and ctime, we can clear the
+ * C_MIGHT_BE_DIRTY_FROM_MAPPING since we can guarantee that
+ * subsequent page-outs can only be for data made dirty before
+ * now.
+ */
+ CLR(cp->c_flag, C_MIGHT_BE_DIRTY_FROM_MAPPING);
+}
+
+/*
+ * Touch cnode times based on c_touch_xxx flags
+ *
+ * cnode must be locked exclusive
+ *
+ * This will also update the volume modify time
+ */
+void
+hfs_touchtimes(struct hfsmount *hfsmp, struct cnode* cp)
+{
+ vfs_context_t ctx;
+
+ if (ISSET(hfsmp->hfs_flags, HFS_READ_ONLY) || ISSET(cp->c_flag, C_NOEXISTS)) {
+ cp->c_touch_acctime = FALSE;
+ cp->c_touch_chgtime = FALSE;
+ cp->c_touch_modtime = FALSE;
+ CLR(cp->c_flag, C_NEEDS_DATEADDED);
+ return;
+ }
+#if CONFIG_HFS_STD
+ else if (hfsmp->hfs_flags & HFS_STANDARD) {
+ /* HFS Standard doesn't support access times */
+ cp->c_touch_acctime = FALSE;
+ }
+#endif
+
+ ctx = vfs_context_current();
+ /*
+ * Skip access time updates if:
+ * . MNT_NOATIME is set
+ * . a file system freeze is in progress
+ * . a file system resize is in progress
+ * . the vnode associated with this cnode is marked for rapid aging
+ */
+ if (cp->c_touch_acctime) {
+ if ((vfs_flags(hfsmp->hfs_mp) & MNT_NOATIME) ||
+ hfsmp->hfs_freeze_state != HFS_THAWED ||
+ (hfsmp->hfs_flags & HFS_RESIZE_IN_PROGRESS) ||
+ (cp->c_vp && ((vnode_israge(cp->c_vp) || (vfs_ctx_skipatime(ctx)))))) {
+
+ cp->c_touch_acctime = FALSE;
+ }
+ }
+ if (cp->c_touch_acctime || cp->c_touch_chgtime ||
+ cp->c_touch_modtime || (cp->c_flag & C_NEEDS_DATEADDED)) {
+ struct timeval tv;
+ int touchvol = 0;
+
+ if (cp->c_touch_modtime && cp->c_touch_chgtime)
+ hfs_clear_might_be_dirty_flag(cp);
+
+ microtime(&tv);
+
+ if (cp->c_touch_acctime) {
/*
- * Discard unneeded vnode, but save its cnode.
- * Note that the lock is carried over in the
- * cnode to the replacement vnode.
+ * When the access time is the only thing changing, we
+ * won't necessarily write it to disk immediately. We
+ * only do the atime update at vnode recycle time, when
+ * fsync is called or when there's another reason to write
+ * to the metadata.
*/
- nvp->v_data = vp->v_data;
- vp->v_data = NULL;
- vp->v_op = spec_vnodeop_p;
- vrele(vp);
- vgone(vp);
+ cp->c_atime = tv.tv_sec;
+ cp->c_touch_acctime = FALSE;
+ }
+ if (cp->c_touch_modtime) {
+ cp->c_touch_modtime = FALSE;
+ time_t new_time = tv.tv_sec;
+#if CONFIG_HFS_STD
/*
- * Reinitialize aliased cnode.
- * Assume its not a resource fork.
+ * HFS dates that WE set must be adjusted for DST
*/
- cp->c_vp = nvp;
- vp = nvp;
- }
- } else if (vp->v_type == VFIFO) {
-#if FIFO
- vp->v_op = hfs_fifoop_p;
+ if ((hfsmp->hfs_flags & HFS_STANDARD) && gTimeZone.tz_dsttime) {
+ new_time += 3600;
+ }
#endif
+ if (cp->c_mtime != new_time) {
+ cp->c_mtime = new_time;
+ cp->c_flag |= C_MINOR_MOD;
+ touchvol = 1;
+ }
+ }
+ if (cp->c_touch_chgtime) {
+ cp->c_touch_chgtime = FALSE;
+ if (cp->c_ctime != tv.tv_sec) {
+ cp->c_ctime = tv.tv_sec;
+ cp->c_flag |= C_MINOR_MOD;
+ touchvol = 1;
+ }
+ }
+
+ if (cp->c_flag & C_NEEDS_DATEADDED) {
+ hfs_write_dateadded (&(cp->c_attr), tv.tv_sec);
+ cp->c_flag |= C_MINOR_MOD;
+ /* untwiddle the bit */
+ cp->c_flag &= ~C_NEEDS_DATEADDED;
+ touchvol = 1;
+ }
+
+ /* Touch the volume modtime if needed */
+ if (touchvol) {
+ hfs_note_header_minor_change(hfsmp);
+ HFSTOVCB(hfsmp)->vcbLsMod = tv.tv_sec;
+ }
+ }
+}
+
+// Use this if you don't want to check the return code
+void hfs_lock_always(cnode_t *cp, enum hfs_locktype locktype)
+{
+ hfs_lock(cp, locktype, HFS_LOCK_ALWAYS);
+}
+
+/*
+ * Lock a cnode.
+ * N.B. If you add any failure cases, *make* sure hfs_lock_always works
+ */
+int
+hfs_lock(struct cnode *cp, enum hfs_locktype locktype, enum hfs_lockflags flags)
+{
+ thread_t thread = current_thread();
+
+ if (cp->c_lockowner == thread) {
+ /*
+ * Only the extents and bitmap files support lock recursion
+ * here. The other system files support lock recursion in
+ * hfs_systemfile_lock. Eventually, we should change to
+ * handle recursion solely in hfs_systemfile_lock.
+ */
+ if ((cp->c_fileid == kHFSExtentsFileID) ||
+ (cp->c_fileid == kHFSAllocationFileID)) {
+ cp->c_syslockcount++;
+ } else {
+ panic("hfs_lock: locking against myself!");
+ }
+ } else if (locktype == HFS_SHARED_LOCK) {
+ lck_rw_lock_shared(&cp->c_rwlock);
+ cp->c_lockowner = HFS_SHARED_OWNER;
+
+ } else { /* HFS_EXCLUSIVE_LOCK */
+ lck_rw_lock_exclusive(&cp->c_rwlock);
+ cp->c_lockowner = thread;
+
+ /* Only the extents and bitmap files support lock recursion. */
+ if ((cp->c_fileid == kHFSExtentsFileID) ||
+ (cp->c_fileid == kHFSAllocationFileID)) {
+ cp->c_syslockcount = 1;
+ }
}
- /* Vnode is now initialized - see if anyone was waiting for it. */
- CLR(cp->c_flag, C_ALLOC);
- if (ISSET(cp->c_flag, C_WALLOC)) {
- CLR(cp->c_flag, C_WALLOC);
- wakeup((caddr_t)cp);
+#ifdef HFS_CHECK_LOCK_ORDER
+ /*
+ * Regular cnodes (non-system files) cannot be locked
+ * while holding the journal lock or a system file lock.
+ */
+ if (!(cp->c_desc.cd_flags & CD_ISMETA) &&
+ ((cp->c_fileid > kHFSFirstUserCatalogNodeID) || (cp->c_fileid == kHFSRootFolderID))) {
+ vnode_t vp = NULLVP;
+
+ /* Find corresponding vnode. */
+ if (cp->c_vp != NULLVP && VTOC(cp->c_vp) == cp) {
+ vp = cp->c_vp;
+ } else if (cp->c_rsrc_vp != NULLVP && VTOC(cp->c_rsrc_vp) == cp) {
+ vp = cp->c_rsrc_vp;
+ }
+ if (vp != NULLVP) {
+ struct hfsmount *hfsmp = VTOHFS(vp);
+
+ if (hfsmp->jnl && (journal_owner(hfsmp->jnl) == thread)) {
+ /* This will eventually be a panic here. */
+ printf("hfs_lock: bad lock order (cnode after journal)\n");
+ }
+ if (hfsmp->hfs_catalog_cp && hfsmp->hfs_catalog_cp->c_lockowner == thread) {
+ panic("hfs_lock: bad lock order (cnode after catalog)");
+ }
+ if (hfsmp->hfs_attribute_cp && hfsmp->hfs_attribute_cp->c_lockowner == thread) {
+ panic("hfs_lock: bad lock order (cnode after attribute)");
+ }
+ if (hfsmp->hfs_extents_cp && hfsmp->hfs_extents_cp->c_lockowner == thread) {
+ panic("hfs_lock: bad lock order (cnode after extents)");
+ }
+ }
+ }
+#endif /* HFS_CHECK_LOCK_ORDER */
+
+ /*
+ * Skip cnodes for regular files that no longer exist
+ * (marked deleted, catalog entry gone).
+ */
+ if (((flags & HFS_LOCK_ALLOW_NOEXISTS) == 0) &&
+ ((cp->c_desc.cd_flags & CD_ISMETA) == 0) &&
+ (cp->c_flag & C_NOEXISTS)) {
+ hfs_unlock(cp);
+ return (ENOENT);
}
+ return (0);
+}
- *vpp = vp;
+bool hfs_lock_upgrade(cnode_t *cp)
+{
+ if (lck_rw_lock_shared_to_exclusive(&cp->c_rwlock)) {
+ cp->c_lockowner = current_thread();
+ return true;
+ } else
+ return false;
+}
+
+/*
+ * Lock a pair of cnodes.
+ */
+int
+hfs_lockpair(struct cnode *cp1, struct cnode *cp2, enum hfs_locktype locktype)
+{
+ struct cnode *first, *last;
+ int error;
+
+ /*
+ * If cnodes match then just lock one.
+ */
+ if (cp1 == cp2) {
+ return hfs_lock(cp1, locktype, HFS_LOCK_DEFAULT);
+ }
+
+ /*
+ * Lock in cnode address order.
+ */
+ if (cp1 < cp2) {
+ first = cp1;
+ last = cp2;
+ } else {
+ first = cp2;
+ last = cp1;
+ }
+
+ if ( (error = hfs_lock(first, locktype, HFS_LOCK_DEFAULT))) {
+ return (error);
+ }
+ if ( (error = hfs_lock(last, locktype, HFS_LOCK_DEFAULT))) {
+ hfs_unlock(first);
+ return (error);
+ }
return (0);
}
+/*
+ * Check ordering of two cnodes. Return true if they are are in-order.
+ */
+static int
+hfs_isordered(struct cnode *cp1, struct cnode *cp2)
+{
+ if (cp1 == cp2)
+ return (0);
+ if (cp1 == NULL || cp2 == (struct cnode *)0xffffffff)
+ return (1);
+ if (cp2 == NULL || cp1 == (struct cnode *)0xffffffff)
+ return (0);
+ /*
+ * Locking order is cnode address order.
+ */
+ return (cp1 < cp2);
+}
+
+/*
+ * Acquire 4 cnode locks.
+ * - locked in cnode address order (lesser address first).
+ * - all or none of the locks are taken
+ * - only one lock taken per cnode (dup cnodes are skipped)
+ * - some of the cnode pointers may be null
+ */
+int
+hfs_lockfour(struct cnode *cp1, struct cnode *cp2, struct cnode *cp3,
+ struct cnode *cp4, enum hfs_locktype locktype, struct cnode **error_cnode)
+{
+ struct cnode * a[3];
+ struct cnode * b[3];
+ struct cnode * list[4];
+ struct cnode * tmp;
+ int i, j, k;
+ int error;
+ if (error_cnode) {
+ *error_cnode = NULL;
+ }
+
+ if (hfs_isordered(cp1, cp2)) {
+ a[0] = cp1; a[1] = cp2;
+ } else {
+ a[0] = cp2; a[1] = cp1;
+ }
+ if (hfs_isordered(cp3, cp4)) {
+ b[0] = cp3; b[1] = cp4;
+ } else {
+ b[0] = cp4; b[1] = cp3;
+ }
+ a[2] = (struct cnode *)0xffffffff; /* sentinel value */
+ b[2] = (struct cnode *)0xffffffff; /* sentinel value */
+
+ /*
+ * Build the lock list, skipping over duplicates
+ */
+ for (i = 0, j = 0, k = 0; (i < 2 || j < 2); ) {
+ tmp = hfs_isordered(a[i], b[j]) ? a[i++] : b[j++];
+ if (k == 0 || tmp != list[k-1])
+ list[k++] = tmp;
+ }
+
+ /*
+ * Now we can lock using list[0 - k].
+ * Skip over NULL entries.
+ */
+ for (i = 0; i < k; ++i) {
+ if (list[i])
+ if ((error = hfs_lock(list[i], locktype, HFS_LOCK_DEFAULT))) {
+ /* Only stuff error_cnode if requested */
+ if (error_cnode) {
+ *error_cnode = list[i];
+ }
+ /* Drop any locks we acquired. */
+ while (--i >= 0) {
+ if (list[i])
+ hfs_unlock(list[i]);
+ }
+ return (error);
+ }
+ }
+ return (0);
+}
+
+
+/*
+ * Unlock a cnode.
+ */
+void
+hfs_unlock(struct cnode *cp)
+{
+ vnode_t rvp = NULLVP;
+ vnode_t vp = NULLVP;
+ u_int32_t c_flag;
+
+ /*
+ * Only the extents and bitmap file's support lock recursion.
+ */
+ if ((cp->c_fileid == kHFSExtentsFileID) ||
+ (cp->c_fileid == kHFSAllocationFileID)) {
+ if (--cp->c_syslockcount > 0) {
+ return;
+ }
+ }
+
+ const thread_t thread = current_thread();
+
+ if (cp->c_lockowner == thread) {
+ c_flag = cp->c_flag;
+
+ // If we have the truncate lock, we must defer the puts
+ if (cp->c_truncatelockowner == thread) {
+ if (ISSET(c_flag, C_NEED_DVNODE_PUT)
+ && !cp->c_need_dvnode_put_after_truncate_unlock) {
+ CLR(c_flag, C_NEED_DVNODE_PUT);
+ cp->c_need_dvnode_put_after_truncate_unlock = true;
+ }
+ if (ISSET(c_flag, C_NEED_RVNODE_PUT)
+ && !cp->c_need_rvnode_put_after_truncate_unlock) {
+ CLR(c_flag, C_NEED_RVNODE_PUT);
+ cp->c_need_rvnode_put_after_truncate_unlock = true;
+ }
+ }
+
+ CLR(cp->c_flag, (C_NEED_DATA_SETSIZE | C_NEED_RSRC_SETSIZE
+ | C_NEED_DVNODE_PUT | C_NEED_RVNODE_PUT));
+
+ if (c_flag & (C_NEED_DVNODE_PUT | C_NEED_DATA_SETSIZE)) {
+ vp = cp->c_vp;
+ }
+ if (c_flag & (C_NEED_RVNODE_PUT | C_NEED_RSRC_SETSIZE)) {
+ rvp = cp->c_rsrc_vp;
+ }
+
+ cp->c_lockowner = NULL;
+ lck_rw_unlock_exclusive(&cp->c_rwlock);
+ } else {
+ lck_rw_unlock_shared(&cp->c_rwlock);
+ }
+
+ /* Perform any vnode post processing after cnode lock is dropped. */
+ if (vp) {
+ if (c_flag & C_NEED_DATA_SETSIZE) {
+ ubc_setsize(vp, VTOF(vp)->ff_size);
+#if HFS_COMPRESSION
+ /*
+ * If this is a compressed file, we need to reset the
+ * compression state. We will have set the size to zero
+ * above and it will get fixed up later (in exactly the
+ * same way that new vnodes are fixed up). Note that we
+ * should only be able to get here if the truncate lock is
+ * held exclusively and so we do the reset when that's
+ * unlocked.
+ */
+ decmpfs_cnode *dp = VTOCMP(vp);
+ if (dp && decmpfs_cnode_get_vnode_state(dp) != FILE_TYPE_UNKNOWN)
+ cp->c_need_decmpfs_reset = true;
+#endif
+ }
+ if (c_flag & C_NEED_DVNODE_PUT)
+ vnode_put(vp);
+ }
+ if (rvp) {
+ if (c_flag & C_NEED_RSRC_SETSIZE)
+ ubc_setsize(rvp, VTOF(rvp)->ff_size);
+ if (c_flag & C_NEED_RVNODE_PUT)
+ vnode_put(rvp);
+ }
+}
+
+/*
+ * Unlock a pair of cnodes.
+ */
+void
+hfs_unlockpair(struct cnode *cp1, struct cnode *cp2)
+{
+ hfs_unlock(cp1);
+ if (cp2 != cp1)
+ hfs_unlock(cp2);
+}
+
+/*
+ * Unlock a group of cnodes.
+ */
+void
+hfs_unlockfour(struct cnode *cp1, struct cnode *cp2, struct cnode *cp3, struct cnode *cp4)
+{
+ struct cnode * list[4];
+ int i, k = 0;
+
+ if (cp1) {
+ hfs_unlock(cp1);
+ list[k++] = cp1;
+ }
+ if (cp2) {
+ for (i = 0; i < k; ++i) {
+ if (list[i] == cp2)
+ goto skip1;
+ }
+ hfs_unlock(cp2);
+ list[k++] = cp2;
+ }
+skip1:
+ if (cp3) {
+ for (i = 0; i < k; ++i) {
+ if (list[i] == cp3)
+ goto skip2;
+ }
+ hfs_unlock(cp3);
+ list[k++] = cp3;
+ }
+skip2:
+ if (cp4) {
+ for (i = 0; i < k; ++i) {
+ if (list[i] == cp4)
+ return;
+ }
+ hfs_unlock(cp4);
+ }
+}
+
+
+/*
+ * Protect a cnode against a truncation.
+ *
+ * Used mainly by read/write since they don't hold the
+ * cnode lock across calls to the cluster layer.
+ *
+ * The process doing a truncation must take the lock
+ * exclusive. The read/write processes can take it
+ * shared. The locktype argument is the same as supplied to
+ * hfs_lock.
+ */
+void
+hfs_lock_truncate(struct cnode *cp, enum hfs_locktype locktype, enum hfs_lockflags flags)
+{
+ thread_t thread = current_thread();
+
+ if (cp->c_truncatelockowner == thread) {
+ /*
+ * Ignore grabbing the lock if it the current thread already
+ * holds exclusive lock.
+ *
+ * This is needed on the hfs_vnop_pagein path where we need to ensure
+ * the file does not change sizes while we are paging in. However,
+ * we may already hold the lock exclusive due to another
+ * VNOP from earlier in the call stack. So if we already hold
+ * the truncate lock exclusive, allow it to proceed, but ONLY if
+ * it's in the recursive case.
+ */
+ if ((flags & HFS_LOCK_SKIP_IF_EXCLUSIVE) == 0) {
+ panic("hfs_lock_truncate: cnode %p locked!", cp);
+ }
+ } else if (locktype == HFS_SHARED_LOCK) {
+ lck_rw_lock_shared(&cp->c_truncatelock);
+ cp->c_truncatelockowner = HFS_SHARED_OWNER;
+ } else { /* HFS_EXCLUSIVE_LOCK */
+ lck_rw_lock_exclusive(&cp->c_truncatelock);
+ cp->c_truncatelockowner = thread;
+ }
+}
+
+bool hfs_truncate_lock_upgrade(struct cnode *cp)
+{
+ assert(cp->c_truncatelockowner == HFS_SHARED_OWNER);
+ if (!lck_rw_lock_shared_to_exclusive(&cp->c_truncatelock))
+ return false;
+ cp->c_truncatelockowner = current_thread();
+ return true;
+}
+
+void hfs_truncate_lock_downgrade(struct cnode *cp)
+{
+ assert(cp->c_truncatelockowner == current_thread());
+ lck_rw_lock_exclusive_to_shared(&cp->c_truncatelock);
+ cp->c_truncatelockowner = HFS_SHARED_OWNER;
+}
+
+/*
+ * Attempt to get the truncate lock. If it cannot be acquired, error out.
+ * This function is needed in the degenerate hfs_vnop_pagein during force unmount
+ * case. To prevent deadlocks while a VM copy object is moving pages, HFS vnop pagein will
+ * temporarily need to disable V2 semantics.
+ */
+int hfs_try_trunclock (struct cnode *cp, enum hfs_locktype locktype, enum hfs_lockflags flags)
+{
+ thread_t thread = current_thread();
+ boolean_t didlock = false;
+
+ if (cp->c_truncatelockowner == thread) {
+ /*
+ * Ignore grabbing the lock if the current thread already
+ * holds exclusive lock.
+ *
+ * This is needed on the hfs_vnop_pagein path where we need to ensure
+ * the file does not change sizes while we are paging in. However,
+ * we may already hold the lock exclusive due to another
+ * VNOP from earlier in the call stack. So if we already hold
+ * the truncate lock exclusive, allow it to proceed, but ONLY if
+ * it's in the recursive case.
+ */
+ if ((flags & HFS_LOCK_SKIP_IF_EXCLUSIVE) == 0) {
+ panic("hfs_lock_truncate: cnode %p locked!", cp);
+ }
+ } else if (locktype == HFS_SHARED_LOCK) {
+ didlock = lck_rw_try_lock(&cp->c_truncatelock, LCK_RW_TYPE_SHARED);
+ if (didlock) {
+ cp->c_truncatelockowner = HFS_SHARED_OWNER;
+ }
+ } else { /* HFS_EXCLUSIVE_LOCK */
+ didlock = lck_rw_try_lock (&cp->c_truncatelock, LCK_RW_TYPE_EXCLUSIVE);
+ if (didlock) {
+ cp->c_truncatelockowner = thread;
+ }
+ }
+
+ return didlock;
+}
+
+
+/*
+ * Unlock the truncate lock, which protects against size changes.
+ *
+ * If HFS_LOCK_SKIP_IF_EXCLUSIVE flag was set, it means that a previous
+ * hfs_lock_truncate() might have skipped grabbing a lock because
+ * the current thread was already holding the lock exclusive and
+ * we may need to return from this function without actually unlocking
+ * the truncate lock.
+ */
+void
+hfs_unlock_truncate(struct cnode *cp, enum hfs_lockflags flags)
+{
+ thread_t thread = current_thread();
+
+ /*
+ * If HFS_LOCK_SKIP_IF_EXCLUSIVE is set in the flags AND the current
+ * lock owner of the truncate lock is our current thread, then
+ * we must have skipped taking the lock earlier by in
+ * hfs_lock_truncate() by setting HFS_LOCK_SKIP_IF_EXCLUSIVE in the
+ * flags (as the current thread was current lock owner).
+ *
+ * If HFS_LOCK_SKIP_IF_EXCLUSIVE is not set (most of the time) then
+ * we check the lockowner field to infer whether the lock was taken
+ * exclusively or shared in order to know what underlying lock
+ * routine to call.
+ */
+ if (flags & HFS_LOCK_SKIP_IF_EXCLUSIVE) {
+ if (cp->c_truncatelockowner == thread) {
+ return;
+ }
+ }
+
+ /* HFS_LOCK_EXCLUSIVE */
+ if (thread == cp->c_truncatelockowner) {
+ vnode_t vp = NULL, rvp = NULL;
+
+ /*
+ * If there are pending set sizes, the cnode lock should be dropped
+ * first.
+ */
+#if DEBUG
+ assert(!(cp->c_lockowner == thread
+ && ISSET(cp->c_flag, C_NEED_DATA_SETSIZE | C_NEED_RSRC_SETSIZE)));
+#elif DEVELOPMENT
+ if (cp->c_lockowner == thread
+ && ISSET(cp->c_flag, C_NEED_DATA_SETSIZE | C_NEED_RSRC_SETSIZE)) {
+ printf("hfs: hfs_unlock_truncate called with C_NEED_DATA/RSRC_SETSIZE set (caller: 0x%llx)\n",
+ (uint64_t)VM_KERNEL_UNSLIDE(__builtin_return_address(0)));
+ }
+#endif
+
+ if (cp->c_need_dvnode_put_after_truncate_unlock) {
+ vp = cp->c_vp;
+ cp->c_need_dvnode_put_after_truncate_unlock = false;
+ }
+ if (cp->c_need_rvnode_put_after_truncate_unlock) {
+ rvp = cp->c_rsrc_vp;
+ cp->c_need_rvnode_put_after_truncate_unlock = false;
+ }
+
+#if HFS_COMPRESSION
+ bool reset_decmpfs = cp->c_need_decmpfs_reset;
+ cp->c_need_decmpfs_reset = false;
+#endif
+
+ cp->c_truncatelockowner = NULL;
+ lck_rw_unlock_exclusive(&cp->c_truncatelock);
+
+#if HFS_COMPRESSION
+ if (reset_decmpfs) {
+ decmpfs_cnode *dp = cp->c_decmp;
+ if (dp && decmpfs_cnode_get_vnode_state(dp) != FILE_TYPE_UNKNOWN)
+ decmpfs_cnode_set_vnode_state(dp, FILE_TYPE_UNKNOWN, 0);
+ }
+#endif
+
+ // Do the puts now
+ if (vp)
+ vnode_put(vp);
+ if (rvp)
+ vnode_put(rvp);
+ } else { /* HFS_LOCK_SHARED */
+ lck_rw_unlock_shared(&cp->c_truncatelock);
+ }
+}