/*
- * Copyright (c) 2002 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2002-2008 Apple Inc. All rights reserved.
*
- * @APPLE_LICENSE_HEADER_START@
- *
- * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved.
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
- * compliance with the License. Please obtain a copy of the License at
- * http://www.opensource.apple.com/apsl/ and read it before using this
- * file.
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
+ *
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* Please see the License for the specific language governing rights and
* limitations under the License.
*
- * @APPLE_LICENSE_HEADER_END@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mount.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
+#include <sys/time.h>
#include <sys/ubc.h>
#include <sys/quota.h>
+#include <sys/kdebug.h>
+#include <libkern/OSByteOrder.h>
+
+#include <kern/locks.h>
#include <miscfs/specfs/specdev.h>
#include <miscfs/fifofs/fifo.h>
#include <hfs/hfs_catalog.h>
#include <hfs/hfs_cnode.h>
#include <hfs/hfs_quota.h>
+#include <hfs/hfs_format.h>
extern int prtactive;
+extern lck_attr_t * hfs_lock_attr;
+extern lck_grp_t * hfs_mutex_group;
+extern lck_grp_t * hfs_rwlock_group;
+
+static void hfs_reclaim_cnode(struct cnode *);
+static int hfs_cnode_teardown (struct vnode *vp, vfs_context_t ctx, int reclaim);
+static int hfs_isordered(struct cnode *, struct cnode *);
-extern void hfs_relnamehints(struct cnode *dcp);
+__inline__ int hfs_checkdeleted (struct cnode *cp) {
+ return ((cp->c_flag & (C_DELETED | C_NOEXISTS)) ? ENOENT : 0);
+}
/*
- * Last reference to an cnode. If necessary, write or delete it.
+ * Function used by a special fcntl() that decorates a cnode/vnode that
+ * indicates it is backing another filesystem, like a disk image.
+ *
+ * the argument 'val' indicates whether or not to set the bit in the cnode flags
+ *
+ * Returns non-zero on failure. 0 on success
*/
-__private_extern__
-int
-hfs_inactive(ap)
- struct vop_inactive_args /* {
- struct vnode *a_vp;
- } */ *ap;
-{
- struct vnode *vp = ap->a_vp;
- struct cnode *cp = VTOC(vp);
- struct hfsmount *hfsmp = VTOHFS(vp);
- struct proc *p = ap->a_p;
- struct timeval tv;
- int error = 0;
- int recycle = 0;
- int forkcount = 0;
- int truncated = 0;
- int started_tr = 0, grabbed_lock = 0;
+int hfs_set_backingstore (struct vnode *vp, int val) {
+ struct cnode *cp = NULL;
+ int err = 0;
+
+ cp = VTOC(vp);
+ if (!vnode_isreg(vp) && !vnode_isdir(vp)) {
+ return EINVAL;
+ }
+
+ /* lock the cnode */
+ err = hfs_lock (cp, HFS_EXCLUSIVE_LOCK);
+ if (err) {
+ return err;
+ }
+
+ if (val) {
+ cp->c_flag |= C_BACKINGSTORE;
+ }
+ else {
+ cp->c_flag &= ~C_BACKINGSTORE;
+ }
- if (prtactive && vp->v_usecount != 0)
- vprint("hfs_inactive: pushing active", vp);
+ /* unlock everything */
+ hfs_unlock (cp);
- /*
- * Ignore nodes related to stale file handles.
- */
- if (cp->c_mode == 0)
- goto out;
+ return err;
+}
+
+/*
+ * Function used by a special fcntl() that check to see if a cnode/vnode
+ * indicates it is backing another filesystem, like a disk image.
+ *
+ * the argument 'val' is an output argument for whether or not the bit is set
+ *
+ * Returns non-zero on failure. 0 on success
+ */
+
+int hfs_is_backingstore (struct vnode *vp, int *val) {
+ struct cnode *cp = NULL;
+ int err = 0;
+
+ if (!vnode_isreg(vp) && !vnode_isdir(vp)) {
+ *val = 0;
+ return 0;
+ }
+
+ cp = VTOC(vp);
+
+ /* lock the cnode */
+ err = hfs_lock (cp, HFS_SHARED_LOCK);
+ if (err) {
+ return err;
+ }
+
+ if (cp->c_flag & C_BACKINGSTORE) {
+ *val = 1;
+ }
+ else {
+ *val = 0;
+ }
+
+ /* unlock everything */
+ hfs_unlock (cp);
+
+ return err;
+}
- if (vp->v_mount->mnt_flag & MNT_RDONLY)
- goto out;
- if (cp->c_datafork)
+/*
+ * hfs_cnode_teardown
+ *
+ * This is an internal function that is invoked from both hfs_vnop_inactive
+ * and hfs_vnop_reclaim. As VNOP_INACTIVE is not necessarily called from vnodes
+ * being recycled and reclaimed, it is important that we do any post-processing
+ * necessary for the cnode in both places. Important tasks include things such as
+ * releasing the blocks from an open-unlinked file when all references to it have dropped,
+ * and handling resource forks separately from data forks.
+ *
+ * Note that we take only the vnode as an argument here (rather than the cnode).
+ * Recall that each cnode supports two forks (rsrc/data), and we can always get the right
+ * cnode from either of the vnodes, but the reverse is not true -- we can't determine which
+ * vnode we need to reclaim if only the cnode is supplied.
+ *
+ * This function is idempotent and safe to call from both hfs_vnop_inactive and hfs_vnop_reclaim
+ * if both are invoked right after the other. In the second call, most of this function's if()
+ * conditions will fail, since they apply generally to cnodes still marked with C_DELETED.
+ * As a quick check to see if this function is necessary, determine if the cnode is already
+ * marked C_NOEXISTS. If it is, then it is safe to skip this function. The only tasks that
+ * remain for cnodes marked in such a fashion is to teardown their fork references and
+ * release all directory hints and hardlink origins. However, both of those are done
+ * in hfs_vnop_reclaim. hfs_update, by definition, is not necessary if the cnode's catalog
+ * entry is no longer there.
+ *
+ * 'reclaim' argument specifies whether or not we were called from hfs_vnop_reclaim. If we are
+ * invoked from hfs_vnop_reclaim, we can not call functions that cluster_push since the UBC info
+ * is totally gone by that point.
+ *
+ * Assumes that both truncate and cnode locks for 'cp' are held.
+ */
+static
+int hfs_cnode_teardown (struct vnode *vp, vfs_context_t ctx, int reclaim) {
+
+ int forkcount = 0;
+ enum vtype v_type;
+ struct cnode *cp;
+ int error = 0;
+ int started_tr = 0;
+ struct hfsmount *hfsmp = VTOHFS(vp);
+ struct proc *p = vfs_context_proc(ctx);
+ int truncated = 0;
+ cat_cookie_t cookie;
+ int cat_reserve = 0;
+ int lockflags;
+ int ea_error = 0;
+
+ v_type = vnode_vtype(vp);
+ cp = VTOC(vp);
+
+ if (cp->c_datafork) {
++forkcount;
- if (cp->c_rsrcfork)
+ }
+ if (cp->c_rsrcfork) {
++forkcount;
-
- /* If needed, get rid of any fork's data for a deleted file */
- if ((vp->v_type == VREG) && (cp->c_flag & C_DELETED)) {
+ }
+
+
+ /*
+ * Skip the call to ubc_setsize if we're being invoked on behalf of reclaim.
+ * The dirty regions would have already been synced to disk, so informing UBC
+ * that they can toss the pages doesn't help anyone at this point.
+ *
+ * Note that this is a performance problem if the vnode goes straight to reclaim
+ * (and skips inactive), since there would be no way for anyone to notify the UBC
+ * that all pages in this file are basically useless.
+ */
+ if (reclaim == 0) {
+ /*
+ * Check whether we are tearing down a cnode with only one remaining fork.
+ * If there are blocks in its filefork, then we need to unlock the cnode
+ * before calling ubc_setsize. The cluster layer may re-enter the filesystem
+ * (i.e. VNOP_BLOCKMAP), and if we retain the cnode lock, we could double-lock
+ * panic.
+ */
+
+ if ((v_type == VREG || v_type == VLNK) &&
+ (cp->c_flag & C_DELETED) &&
+ (VTOF(vp)->ff_blocks != 0) && (forkcount == 1)) {
+ hfs_unlock(cp);
+ /* ubc_setsize just fails if we were to call this from VNOP_RECLAIM */
+ ubc_setsize(vp, 0);
+ (void) hfs_lock(cp, HFS_FORCE_LOCK);
+ }
+ }
+
+ /*
+ * Push file data out for normal files that haven't been evicted from
+ * the namespace. We only do this if this function was not called from reclaim,
+ * because by that point the UBC information has been totally torn down.
+ *
+ * There should also be no way that a normal file that has NOT been deleted from
+ * the namespace to skip INACTIVE and go straight to RECLAIM. That race only happens
+ * when the file becomes open-unlinked.
+ */
+ if ((v_type == VREG) &&
+ (!ISSET(cp->c_flag, C_DELETED)) &&
+ (!ISSET(cp->c_flag, C_NOEXISTS)) &&
+ (VTOF(vp)->ff_blocks) &&
+ (reclaim == 0)) {
+ hfs_filedone(vp, ctx);
+ }
+ /*
+ * Remove any directory hints or cached origins
+ */
+ if (v_type == VDIR) {
+ hfs_reldirhints(cp, 0);
+ }
+ if (cp->c_flag & C_HARDLINK) {
+ hfs_relorigins(cp);
+ }
+
+ /*
+ * This check is slightly complicated. We should only truncate data
+ * in very specific cases for open-unlinked files. This is because
+ * we want to ensure that the resource fork continues to be available
+ * if the caller has the data fork open. However, this is not symmetric;
+ * someone who has the resource fork open need not be able to access the data
+ * fork once the data fork has gone inactive.
+ *
+ * If we're the last fork, then we have cleaning up to do.
+ *
+ * A) last fork, and vp == c_vp
+ * Truncate away own fork data. If rsrc fork is not in core, truncate it too.
+ *
+ * B) last fork, and vp == c_rsrc_vp
+ * Truncate ourselves, assume data fork has been cleaned due to C).
+ *
+ * If we're not the last fork, then things are a little different:
+ *
+ * C) not the last fork, vp == c_vp
+ * Truncate ourselves. Once the file has gone out of the namespace,
+ * it cannot be further opened. Further access to the rsrc fork may
+ * continue, however.
+ *
+ * D) not the last fork, vp == c_rsrc_vp
+ * Don't enter the block below, just clean up vnode and push it out of core.
+ */
+
+ if ((v_type == VREG || v_type == VLNK) &&
+ (cp->c_flag & C_DELETED) &&
+ ((forkcount == 1) || (!VNODE_IS_RSRC(vp)))) {
+
+ /* Truncate away our own fork data. (Case A, B, C above) */
if (VTOF(vp)->ff_blocks != 0) {
- error = VOP_TRUNCATE(vp, (off_t)0, IO_NDELAY, NOCRED, p);
- if (error)
+ /*
+ * Since we're already inside a transaction,
+ * tell hfs_truncate to skip the ubc_setsize.
+ *
+ * This truncate call (and the one below) is fine from VNOP_RECLAIM's
+ * context because we're only removing blocks, not zero-filling new
+ * ones. The C_DELETED check above makes things much simpler.
+ */
+ error = hfs_truncate(vp, (off_t)0, IO_NDELAY, 1, 0, ctx);
+ if (error) {
goto out;
+ }
truncated = 1;
}
- recycle = 1;
+
+ /*
+ * Truncate away the resource fork, if we represent the data fork and
+ * it is the last fork. That means, by definition, the rsrc fork is not in
+ * core. So we bring it into core, and then truncate it away.
+ *
+ * This is invoked via case A above only.
+ */
+ if ((cp->c_blocks > 0) && (forkcount == 1) && (vp != cp->c_rsrc_vp)) {
+ struct vnode *rvp = NULLVP;
+
+ /*
+ * It is safe for us to pass FALSE to the argument can_drop_lock
+ * on this call to hfs_vgetrsrc. We know that the resource fork does not
+ * exist in core, so we'll have to go to the catalog to retrieve its
+ * information. That will attach the resource fork vnode to our cnode.
+ */
+ error = hfs_vgetrsrc(hfsmp, vp, &rvp, FALSE, FALSE);
+ if (error) {
+ goto out;
+ }
+ /*
+ * Defer the vnode_put and ubc_setsize on rvp until hfs_unlock().
+ *
+ * By bringing the vnode into core above, we may force hfs_vnop_reclaim
+ * to only partially finish if that's what called us. Bringing the
+ * resource fork into core results in a new rsrc vnode that will get
+ * immediately marked for termination below. It will get recycled/reclaimed
+ * as soon as possible, but that could cause another round of inactive and reclaim.
+ */
+ cp->c_flag |= C_NEED_RVNODE_PUT | C_NEED_RSRC_SETSIZE;
+ error = hfs_truncate(rvp, (off_t)0, IO_NDELAY, 1, 0, ctx);
+ if (error) {
+ goto out;
+ }
+
+ /*
+ * Note that the following call to vnode_recycle is safe from within the
+ * context of hfs_vnop_inactive or hfs_vnop_reclaim. It is being invoked
+ * on the RSRC fork vp (which is not our current vnode) As such, we hold
+ * an iocount on it and vnode_recycle will just add the MARKTERM bit at this
+ * point.
+ */
+ vnode_recycle(rvp); /* all done with this vnode */
+ }
}
-
+
/*
- * Check for a postponed deletion.
- * (only delete cnode when the last fork goes inactive)
+ * If we represent the last fork (or none in the case of a dir),
+ * and the cnode has become open-unlinked,
+ * AND it has EA's, then we need to get rid of them.
+ *
+ * Note that this must happen outside of any other transactions
+ * because it starts/ends its own transactions and grabs its
+ * own locks. This is to prevent a file with a lot of attributes
+ * from creating a transaction that is too large (which panics).
*/
- if ((cp->c_flag & C_DELETED) && (forkcount <= 1)) {
- /*
- * Mark cnode in transit so that one can get this
- * cnode from cnode hash.
- */
- SET(cp->c_flag, C_TRANSIT);
- cp->c_flag &= ~C_DELETED;
- cp->c_rdev = 0;
+ if ((cp->c_attr.ca_recflags & kHFSHasAttributesMask) != 0 &&
+ (cp->c_flag & C_DELETED) &&
+ (forkcount <= 1)) {
+
+ ea_error = hfs_removeallattr(hfsmp, cp->c_fileid);
+ }
+
+
+ /*
+ * If the cnode represented an open-unlinked file, then now
+ * actually remove the cnode's catalog entry and release all blocks
+ * it may have been using.
+ */
+ if ((cp->c_flag & C_DELETED) && (forkcount <= 1)) {
+ /*
+ * Mark cnode in transit so that no one can get this
+ * cnode from cnode hash.
+ */
+ // hfs_chash_mark_in_transit(hfsmp, cp);
+ // XXXdbg - remove the cnode from the hash table since it's deleted
+ // otherwise someone could go to sleep on the cnode and not
+ // be woken up until this vnode gets recycled which could be
+ // a very long time...
+ hfs_chashremove(hfsmp, cp);
+
+ cp->c_flag |= C_NOEXISTS; // XXXdbg
+ cp->c_rdev = 0;
- // XXXdbg
- hfs_global_shared_lock_acquire(hfsmp);
- grabbed_lock = 1;
- if (hfsmp->jnl) {
- if (journal_start_transaction(hfsmp->jnl) != 0) {
+ if (started_tr == 0) {
+ if (hfs_start_transaction(hfsmp) != 0) {
error = EINVAL;
goto out;
- }
- started_tr = 1;
- }
-
- /* Lock catalog b-tree */
- error = hfs_metafilelocking(hfsmp, kHFSCatalogFileID, LK_EXCLUSIVE, p);
- if (error) goto out;
-
- if (cp->c_blocks > 0)
- printf("hfs_inactive: attempting to delete a non-empty file!");
-
- /*
- * The descriptor name may be zero,
- * in which case the fileid is used.
- */
- error = cat_delete(hfsmp, &cp->c_desc, &cp->c_attr);
+ }
+ started_tr = 1;
+ }
- if (error && truncated && (error != ENXIO))
- printf("hfs_inactive: couldn't delete a truncated file!");
-
- /* Update HFS Private Data dir */
- if (error == 0) {
- hfsmp->hfs_privdir_attr.ca_entries--;
- (void)cat_update(hfsmp, &hfsmp->hfs_privdir_desc,
- &hfsmp->hfs_privdir_attr, NULL, NULL);
+ /*
+ * Reserve some space in the Catalog file.
+ */
+ if ((error = cat_preflight(hfsmp, CAT_DELETE, &cookie, p))) {
+ goto out;
+ }
+ cat_reserve = 1;
+
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_ATTRIBUTE, HFS_EXCLUSIVE_LOCK);
+
+ if (cp->c_blocks > 0) {
+ printf("hfs_inactive: deleting non-empty%sfile %d, "
+ "blks %d\n", VNODE_IS_RSRC(vp) ? " rsrc " : " ",
+ (int)cp->c_fileid, (int)cp->c_blocks);
+ }
+
+ //
+ // release the name pointer in the descriptor so that
+ // cat_delete() will use the file-id to do the deletion.
+ // in the case of hard links this is imperative (in the
+ // case of regular files the fileid and cnid are the
+ // same so it doesn't matter).
+ //
+ cat_releasedesc(&cp->c_desc);
+
+ /*
+ * The descriptor name may be zero,
+ * in which case the fileid is used.
+ */
+ error = cat_delete(hfsmp, &cp->c_desc, &cp->c_attr);
+
+ if (error && truncated && (error != ENXIO))
+ printf("hfs_inactive: couldn't delete a truncated file!");
+
+ /* Update HFS Private Data dir */
+ if (error == 0) {
+ hfsmp->hfs_private_attr[FILE_HARDLINKS].ca_entries--;
+ if (vnode_isdir(vp)) {
+ DEC_FOLDERCOUNT(hfsmp, hfsmp->hfs_private_attr[FILE_HARDLINKS]);
+ }
+ (void)cat_update(hfsmp, &hfsmp->hfs_private_desc[FILE_HARDLINKS],
+ &hfsmp->hfs_private_attr[FILE_HARDLINKS], NULL, NULL);
+ }
+
+ hfs_systemfile_unlock(hfsmp, lockflags);
+
+ if (error) {
+ goto out;
}
-
- /* Unlock catalog b-tree */
- (void) hfs_metafilelocking(hfsmp, kHFSCatalogFileID, LK_RELEASE, p);
- if (error) goto out;
-
+
#if QUOTA
- (void)hfs_chkiq(cp, -1, NOCRED, 0);
+ if (hfsmp->hfs_flags & HFS_QUOTAS)
+ (void)hfs_chkiq(cp, -1, NOCRED, 0);
#endif /* QUOTA */
+
+ /* Already set C_NOEXISTS at the beginning of this block */
+ cp->c_flag &= ~C_DELETED;
+ cp->c_touch_chgtime = TRUE;
+ cp->c_touch_modtime = TRUE;
+
+ if (error == 0)
+ hfs_volupdate(hfsmp, (v_type == VDIR) ? VOL_RMDIR : VOL_RMFILE, 0);
+ }
+
+ /*
+ * A file may have had delayed allocations, in which case hfs_update
+ * would not have updated the catalog record (cat_update). We need
+ * to do that now, before we lose our fork data. We also need to
+ * force the update, or hfs_update will again skip the cat_update.
+ *
+ * If the file has C_NOEXISTS set, then we can skip the hfs_update call
+ * because the catalog entry has already been removed. There would be no point
+ * to looking up the entry in the catalog to modify it when we already know it's gone
+ */
+ if ((!ISSET(cp->c_flag, C_NOEXISTS)) &&
+ ((cp->c_flag & C_MODIFIED) || cp->c_touch_acctime ||
+ cp->c_touch_chgtime || cp->c_touch_modtime)) {
+
+ if ((cp->c_flag & C_MODIFIED) || cp->c_touch_modtime){
+ cp->c_flag |= C_FORCEUPDATE;
+ }
+ hfs_update(vp, 0);
+ }
+
+out:
+ if (cat_reserve)
+ cat_postflight(hfsmp, &cookie, p);
+
+ // XXXdbg - have to do this because a goto could have come here
+ if (started_tr) {
+ hfs_end_transaction(hfsmp);
+ started_tr = 0;
+ }
+
+
+ return error;
+}
- cp->c_mode = 0;
- cp->c_flag |= C_NOEXISTS | C_CHANGE | C_UPDATE;
- if (error == 0)
- hfs_volupdate(hfsmp, VOL_RMFILE, 0);
- }
- /* Push any defered access times to disk */
- if (cp->c_flag & C_ATIMEMOD) {
- cp->c_flag &= ~C_ATIMEMOD;
- if (HFSTOVCB(hfsmp)->vcbSigWord == kHFSPlusSigWord)
- cp->c_flag |= C_MODIFIED;
+/*
+ * hfs_vnop_inactive
+ *
+ * The last usecount on the vnode has gone away, so we need to tear down
+ * any remaining data still residing in the cnode. If necessary, write out
+ * remaining blocks or delete the cnode's entry in the catalog.
+ */
+int
+hfs_vnop_inactive(struct vnop_inactive_args *ap)
+{
+ struct vnode *vp = ap->a_vp;
+ struct cnode *cp;
+ struct hfsmount *hfsmp = VTOHFS(vp);
+ struct proc *p = vfs_context_proc(ap->a_context);
+ int error = 0;
+ int took_trunc_lock = 0;
+ enum vtype v_type;
+
+ v_type = vnode_vtype(vp);
+ cp = VTOC(vp);
+
+ if ((hfsmp->hfs_flags & HFS_READ_ONLY) || vnode_issystem(vp) ||
+ (hfsmp->hfs_freezing_proc == p)) {
+ error = 0;
+ goto inactive_done;
+ }
+
+ /*
+ * For safety, do NOT call vnode_recycle from inside this function. This can cause
+ * problems in the following scenario:
+ *
+ * vnode_create -> vnode_reclaim_internal -> vclean -> VNOP_INACTIVE
+ *
+ * If we're being invoked as a result of a reclaim that was already in-flight, then we
+ * cannot call vnode_recycle again. Being in reclaim means that there are no usecounts or
+ * iocounts by definition. As a result, if we were to call vnode_recycle, it would immediately
+ * try to re-enter reclaim again and panic.
+ *
+ * Currently, there are three things that can cause us (VNOP_INACTIVE) to get called.
+ * 1) last usecount goes away on the vnode (vnode_rele)
+ * 2) last iocount goes away on a vnode that previously had usecounts but didn't have
+ * vnode_recycle called (vnode_put)
+ * 3) vclean by way of reclaim
+ *
+ * In this function we would generally want to call vnode_recycle to speed things
+ * along to ensure that we don't leak blocks due to open-unlinked files. However, by
+ * virtue of being in this function already, we can call hfs_cnode_teardown, which
+ * will release blocks held by open-unlinked files, and mark them C_NOEXISTS so that
+ * there's no entry in the catalog and no backing store anymore. If that's the case,
+ * then we really don't care all that much when the vnode actually goes through reclaim.
+ * Further, the HFS VNOPs that manipulated the namespace in order to create the open-
+ * unlinked file in the first place should have already called vnode_recycle on the vnode
+ * to guarantee that it would go through reclaim in a speedy way.
+ */
+
+ if (cp->c_flag & C_NOEXISTS) {
+ /*
+ * If the cnode has already had its cat entry removed, then
+ * just skip to the end. We don't need to do anything here.
+ */
+ error = 0;
+ goto inactive_done;
}
-
- if (cp->c_flag & (C_ACCESS | C_CHANGE | C_MODIFIED | C_UPDATE)) {
- tv = time;
- VOP_UPDATE(vp, &tv, &tv, 0);
+
+ if ((v_type == VREG || v_type == VLNK)) {
+ hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK);
+ took_trunc_lock = 1;
}
-out:
- // XXXdbg - have to do this because a goto could have come here
- if (started_tr) {
- journal_end_transaction(hfsmp->jnl);
- started_tr = 0;
+
+ (void) hfs_lock(cp, HFS_FORCE_LOCK);
+
+ /*
+ * Call cnode_teardown to push out dirty blocks to disk, release open-unlinked
+ * files' blocks from being in use, and move the cnode from C_DELETED to C_NOEXISTS.
+ */
+ error = hfs_cnode_teardown (vp, ap->a_context, 0);
+
+ /*
+ * Drop the truncate lock before unlocking the cnode
+ * (which can potentially perform a vnode_put and
+ * recycle the vnode which in turn might require the
+ * truncate lock)
+ */
+ if (took_trunc_lock) {
+ hfs_unlock_truncate(cp, 0);
}
- if (grabbed_lock) {
- hfs_global_shared_lock_release(hfsmp);
+
+ hfs_unlock(cp);
+
+inactive_done:
+
+ return error;
+}
+
+
+/*
+ * File clean-up (zero fill and shrink peof).
+ */
+
+int
+hfs_filedone(struct vnode *vp, vfs_context_t context)
+{
+ struct cnode *cp;
+ struct filefork *fp;
+ struct hfsmount *hfsmp;
+ struct rl_entry *invalid_range;
+ off_t leof;
+ u_int32_t blks, blocksize;
+ int cluster_flags = IO_CLOSE;
+ int cluster_zero_flags = IO_HEADZEROFILL | IO_NOZERODIRTY | IO_NOCACHE;
+
+ cp = VTOC(vp);
+ fp = VTOF(vp);
+ hfsmp = VTOHFS(vp);
+ leof = fp->ff_size;
+
+ if ((hfsmp->hfs_flags & HFS_READ_ONLY) || (fp->ff_blocks == 0))
+ return (0);
+
+ /*
+ * If we are being invoked from F_SWAPDATAEXTENTS, then we
+ * need to issue synchronous IO; Unless we are sure that all
+ * of the data has been written to the disk, we won't know
+ * that all of the blocks have been allocated properly.
+ */
+ if (cp->c_flag & C_SWAPINPROGRESS) {
+ cluster_flags |= IO_SYNC;
}
- VOP_UNLOCK(vp, 0, p);
+ hfs_unlock(cp);
+ (void) cluster_push(vp, cluster_flags);
+ hfs_lock(cp, HFS_FORCE_LOCK);
+
/*
- * If we are done with the vnode, reclaim it
- * so that it can be reused immediately.
+ * Explicitly zero out the areas of file
+ * that are currently marked invalid.
*/
- if (cp->c_mode == 0 || recycle)
- vrecycle(vp, (struct slock *)0, p);
+ while ((invalid_range = TAILQ_FIRST(&fp->ff_invalidranges))) {
+ off_t start = invalid_range->rl_start;
+ off_t end = invalid_range->rl_end;
+
+ /* The range about to be written must be validated
+ * first, so that VNOP_BLOCKMAP() will return the
+ * appropriate mapping for the cluster code:
+ */
+ rl_remove(start, end, &fp->ff_invalidranges);
- return (error);
+ hfs_unlock(cp);
+ (void) cluster_write(vp, (struct uio *) 0,
+ leof, end + 1, start, (off_t)0, cluster_zero_flags);
+ hfs_lock(cp, HFS_FORCE_LOCK);
+ cp->c_flag |= C_MODIFIED;
+ }
+ cp->c_flag &= ~C_ZFWANTSYNC;
+ cp->c_zftimeout = 0;
+ blocksize = VTOVCB(vp)->blockSize;
+ blks = leof / blocksize;
+ if (((off_t)blks * (off_t)blocksize) != leof)
+ blks++;
+ /*
+ * Shrink the peof to the smallest size neccessary to contain the leof.
+ */
+ if (blks < fp->ff_blocks)
+ (void) hfs_truncate(vp, leof, IO_NDELAY, 0, 0, context);
+ hfs_unlock(cp);
+ (void) cluster_push(vp, cluster_flags);
+ hfs_lock(cp, HFS_FORCE_LOCK);
+
+ /*
+ * If the hfs_truncate didn't happen to flush the vnode's
+ * information out to disk, force it to be updated now that
+ * all invalid ranges have been zero-filled and validated:
+ */
+ if (cp->c_flag & C_MODIFIED) {
+ hfs_update(vp, 0);
+ }
+ return (0);
}
/*
* Reclaim a cnode so that it can be used for other purposes.
*/
-__private_extern__
int
-hfs_reclaim(ap)
- struct vop_reclaim_args /* {
- struct vnode *a_vp;
- } */ *ap;
+hfs_vnop_reclaim(struct vnop_reclaim_args *ap)
{
struct vnode *vp = ap->a_vp;
- struct cnode *cp = VTOC(vp);
- struct vnode *devvp = NULL;
+ struct cnode *cp;
struct filefork *fp = NULL;
struct filefork *altfp = NULL;
- int i;
+ struct hfsmount *hfsmp = VTOHFS(vp);
+ vfs_context_t ctx = ap->a_context;
+ int reclaim_cnode = 0;
+ int err = 0;
+ enum vtype v_type;
+
+ v_type = vnode_vtype(vp);
+ cp = VTOC(vp);
+
+ /*
+ * We don't take the truncate lock since by the time reclaim comes along,
+ * all dirty pages have been synced and nobody should be competing
+ * with us for this thread.
+ */
+ (void) hfs_lock (cp, HFS_FORCE_LOCK);
- if (prtactive && vp->v_usecount != 0)
- vprint("hfs_reclaim(): pushing active", vp);
+ /*
+ * Sync to disk any remaining data in the cnode/vnode. This includes
+ * a call to hfs_update if the cnode has outbound data.
+ *
+ * If C_NOEXISTS is set on the cnode, then there's nothing teardown needs to do
+ * because the catalog entry for this cnode is already gone.
+ */
+ if (!ISSET(cp->c_flag, C_NOEXISTS)) {
+ err = hfs_cnode_teardown(vp, ctx, 1);
+ }
- devvp = cp->c_devvp; /* For later releasing */
+ /*
+ * Keep track of an inactive hot file.
+ */
+ if (!vnode_isdir(vp) &&
+ !vnode_issystem(vp) &&
+ !(cp->c_flag & (C_DELETED | C_NOEXISTS)) ) {
+ (void) hfs_addhotfile(vp);
+ }
+ vnode_removefsref(vp);
/*
* Find file fork for this vnode (if any)
* Also check if another fork is active
*/
- if ((fp = cp->c_datafork) && (cp->c_vp == vp)) {
+ if (cp->c_vp == vp) {
+ fp = cp->c_datafork;
+ altfp = cp->c_rsrcfork;
+
cp->c_datafork = NULL;
cp->c_vp = NULL;
- altfp = cp->c_rsrcfork;
- } else if ((fp = cp->c_rsrcfork) && (cp->c_rsrc_vp == vp)) {
+ } else if (cp->c_rsrc_vp == vp) {
+ fp = cp->c_rsrcfork;
+ altfp = cp->c_datafork;
+
cp->c_rsrcfork = NULL;
cp->c_rsrc_vp = NULL;
- altfp = cp->c_datafork;
} else {
- cp->c_vp = NULL;
- fp = NULL;
- altfp = NULL;
+ panic("hfs_vnop_reclaim: vp points to wrong cnode (vp=%p cp->c_vp=%p cp->c_rsrc_vp=%p)\n", vp, cp->c_vp, cp->c_rsrc_vp);
}
-
/*
* On the last fork, remove the cnode from its hash chain.
*/
- if (altfp == NULL)
- hfs_chashremove(cp);
-
- /* Release the file fork and related data (can block) */
+ if (altfp == NULL) {
+ /* If we can't remove it then the cnode must persist! */
+ if (hfs_chashremove(hfsmp, cp) == 0)
+ reclaim_cnode = 1;
+ /*
+ * Remove any directory hints
+ */
+ if (vnode_isdir(vp)) {
+ hfs_reldirhints(cp, 0);
+ }
+
+ if(cp->c_flag & C_HARDLINK) {
+ hfs_relorigins(cp);
+ }
+ }
+ /* Release the file fork and related data */
if (fp) {
- fp->ff_cp = NULL;
/* Dump cached symlink data */
- if ((vp->v_type == VLNK) && (fp->ff_symlinkptr != NULL)) {
+ if (vnode_islnk(vp) && (fp->ff_symlinkptr != NULL)) {
FREE(fp->ff_symlinkptr, M_TEMP);
- fp->ff_symlinkptr = NULL;
- }
+ }
FREE_ZONE(fp, sizeof(struct filefork), M_HFSFORK);
- fp = NULL;
- }
-
- /*
- * Purge old data structures associated with the cnode.
- */
- cache_purge(vp);
- if (devvp && altfp == NULL) {
- cp->c_devvp = NULL;
- vrele(devvp);
}
- vp->v_data = NULL;
-
/*
* If there was only one active fork then we can release the cnode.
*/
- if (altfp == NULL) {
-#if QUOTA
- for (i = 0; i < MAXQUOTAS; i++) {
- if (cp->c_dquot[i] != NODQUOT) {
- dqreclaim(vp, cp->c_dquot[i]);
- cp->c_dquot[i] = NODQUOT;
- }
- }
-#endif /* QUOTA */
- /*
- * Free any left over directory indices
- */
- if (vp->v_type == VDIR)
- hfs_relnamehints(cp);
-
+ if (reclaim_cnode) {
+ hfs_chashwakeup(hfsmp, cp, H_ALLOC | H_TRANSIT);
+ hfs_reclaim_cnode(cp);
+ }
+ else {
/*
- * If the descriptor has a name then release it
+ * cnode in use. If it is a directory, it could have
+ * no live forks. Just release the lock.
*/
- if (cp->c_desc.cd_flags & CD_HASBUF) {
- char *nameptr;
-
- nameptr = cp->c_desc.cd_nameptr;
- cp->c_desc.cd_nameptr = 0;
- cp->c_desc.cd_flags &= ~CD_HASBUF;
- cp->c_desc.cd_namelen = 0;
- FREE(nameptr, M_TEMP);
- }
- CLR(cp->c_flag, (C_ALLOC | C_TRANSIT));
- if (ISSET(cp->c_flag, C_WALLOC) || ISSET(cp->c_flag, C_WTRANSIT))
- wakeup(cp);
- FREE_ZONE(cp, sizeof(struct cnode), M_HFSNODE);
-
+ hfs_unlock(cp);
}
+ vnode_clearfsnode(vp);
return (0);
}
+extern int (**hfs_vnodeop_p) (void *);
+extern int (**hfs_std_vnodeop_p) (void *);
+extern int (**hfs_specop_p) (void *);
+#if FIFO
+extern int (**hfs_fifoop_p) (void *);
+#endif
+
/*
- * get a cnode
- *
- * called by hfs_lookup and hfs_vget (descp == NULL)
+ * hfs_getnewvnode - get new default vnode
*
- * returns a locked vnode for cnode for given cnid/fileid
+ * The vnode is returned with an iocount and the cnode locked
*/
-__private_extern__
int
-hfs_getcnode(struct hfsmount *hfsmp, cnid_t cnid, struct cat_desc *descp, int wantrsrc,
- struct cat_attr *attrp, struct cat_fork *forkp, struct vnode **vpp)
+hfs_getnewvnode(
+ struct hfsmount *hfsmp,
+ struct vnode *dvp,
+ struct componentname *cnp,
+ struct cat_desc *descp,
+ int flags,
+ struct cat_attr *attrp,
+ struct cat_fork *forkp,
+ struct vnode **vpp,
+ int *out_flags)
{
- dev_t dev = hfsmp->hfs_raw_dev;
+ struct mount *mp = HFSTOVFS(hfsmp);
struct vnode *vp = NULL;
- struct vnode *rvp = NULL;
- struct vnode *new_vp = NULL;
+ struct vnode **cvpp;
+ struct vnode *tvp = NULLVP;
struct cnode *cp = NULL;
- struct proc *p = current_proc();
- int retval = E_NONE;
+ struct filefork *fp = NULL;
+ int hfs_standard = 0;
+ int retval;
+ int issystemfile;
+ int wantrsrc;
+ int hflags = 0;
+ struct vnode_fsparam vfsp;
+ enum vtype vtype;
+#if QUOTA
+ int i;
+#endif /* QUOTA */
+
+ hfs_standard = (hfsmp->hfs_flags & HFS_STANDARD);
- /* Check if unmount in progress */
- if (HFSTOVFS(hfsmp)->mnt_kern_flag & MNTK_UNMOUNT) {
+ if (attrp->ca_fileid == 0) {
*vpp = NULL;
- return (EPERM);
+ return (ENOENT);
}
- /*
- * Check the hash for an active cnode
- */
- cp = hfs_chashget(dev, cnid, wantrsrc, &vp, &rvp);
- if (cp != NULL) {
- /* hide open files that have been deleted */
- if ((hfsmp->hfs_private_metadata_dir != 0)
- && (cp->c_parentcnid == hfsmp->hfs_private_metadata_dir)
- && (cp->c_nlink == 0)) {
- retval = ENOENT;
- goto exit;
- }
-
- /* Hide private journal files */
- if (hfsmp->jnl &&
- (cp->c_parentcnid == kRootDirID) &&
- ((cp->c_cnid == hfsmp->hfs_jnlfileid) ||
- (cp->c_cnid == hfsmp->hfs_jnlinfoblkid))) {
- retval = ENOENT;
- goto exit;
- }
-
- if (wantrsrc && rvp != NULL) {
- vp = rvp;
- rvp = NULL;
- goto done;
- }
- if (!wantrsrc && vp != NULL) {
- /* Hardlinks need an updated catalog descriptor */
- if (descp && cp->c_flag & C_HARDLINK) {
- replace_desc(cp, descp);
- }
- /* We have a vnode so we're done. */
- goto done;
- }
- }
-
- /*
- * There was no active vnode so get a new one.
- * Use the existing cnode (if any).
- */
- if (descp != NULL) {
- /*
- * hfs_lookup case, use descp, attrp and forkp
- */
- retval = hfs_getnewvnode(hfsmp, cp, descp, wantrsrc, attrp,
- forkp, &new_vp);
- } else {
- struct cat_desc cndesc = {0};
- struct cat_attr cnattr = {0};
- struct cat_fork cnfork = {0};
-
- /*
- * hfs_vget case, need to lookup entry (by file id)
- */
- if (cnid == kRootParID) {
- static char hfs_rootname[] = "/";
-
- cndesc.cd_nameptr = &hfs_rootname[0];
- cndesc.cd_namelen = 1;
- cndesc.cd_parentcnid = kRootParID;
- cndesc.cd_cnid = kRootParID;
- cndesc.cd_flags = CD_ISDIR;
-
- cnattr.ca_fileid = kRootParID;
- cnattr.ca_nlink = 2;
- cnattr.ca_mode = (S_IFDIR | S_IRWXU | S_IRWXG | S_IRWXO);
- } else {
- /* Lock catalog b-tree */
- retval = hfs_metafilelocking(hfsmp, kHFSCatalogFileID, LK_SHARED, p);
- if (retval)
- goto exit;
-
- retval = cat_idlookup(hfsmp, cnid, &cndesc, &cnattr, &cnfork);
-
- /* Unlock catalog b-tree */
- (void) hfs_metafilelocking(hfsmp, kHFSCatalogFileID, LK_RELEASE, p);
- if (retval)
- goto exit;
-
- /* Hide open files that have been deleted */
- if ((hfsmp->hfs_private_metadata_dir != 0) &&
- (cndesc.cd_parentcnid == hfsmp->hfs_private_metadata_dir)) {
- cat_releasedesc(&cndesc);
- retval = ENOENT;
- goto exit;
- }
- }
-
- retval = hfs_getnewvnode(hfsmp, cp, &cndesc, 0, &cnattr, &cnfork, &new_vp);
-
- /* Hardlinks may need an updated catalog descriptor */
- if (retval == 0
- && new_vp
- && (VTOC(new_vp)->c_flag & C_HARDLINK)
- && cndesc.cd_nameptr
- && cndesc.cd_namelen > 0) {
- replace_desc(VTOC(new_vp), &cndesc);
- }
- cat_releasedesc(&cndesc);
- }
-exit:
- /* Release reference taken on opposite vnode (if any). */
- if (vp)
- vput(vp);
- else if (rvp)
- vput(rvp);
-
- if (retval) {
+#if !FIFO
+ if (IFTOVT(attrp->ca_mode) == VFIFO) {
*vpp = NULL;
- return (retval);
+ return (ENOTSUP);
}
- vp = new_vp;
-done:
- /* The cnode's vnode should be in vp. */
- if (vp == NULL)
- panic("hfs_getcnode: missing vp!");
-
- UBCINFOCHECK("hfs_getcnode", vp);
- *vpp = vp;
- return (0);
-}
-
-
-/*
- * hfs_getnewvnode - get new default vnode
- *
- * the vnode is returned locked
- */
-extern int (**hfs_vnodeop_p) (void *);
-extern int (**hfs_specop_p) (void *);
-extern int (**hfs_fifoop_p) (void *);
+#endif /* !FIFO */
+ vtype = IFTOVT(attrp->ca_mode);
+ issystemfile = (descp->cd_flags & CD_ISMETA) && (vtype == VREG);
+ wantrsrc = flags & GNV_WANTRSRC;
-__private_extern__
-int
-hfs_getnewvnode(struct hfsmount *hfsmp, struct cnode *cp,
- struct cat_desc *descp, int wantrsrc,
- struct cat_attr *attrp, struct cat_fork *forkp,
- struct vnode **vpp)
-{
- struct mount *mp = HFSTOVFS(hfsmp);
- struct vnode *vp = NULL;
- struct vnode *rvp = NULL;
- struct vnode *new_vp = NULL;
- struct cnode *cp2 = NULL;
- struct filefork *fp = NULL;
- int allocated = 0;
- int i;
- int retval;
- dev_t dev;
- struct proc *p = current_proc();
+ /* Zero out the out_flags */
+ *out_flags = 0;
- /* Bail when unmount is in progress */
- if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
- *vpp = NULL;
- return (EPERM);
+#ifdef HFS_CHECK_LOCK_ORDER
+ /*
+ * The only case were its permissible to hold the parent cnode
+ * lock is during a create operation (hfs_makenode) or when
+ * we don't need the cnode lock (GNV_SKIPLOCK).
+ */
+ if ((dvp != NULL) &&
+ (flags & (GNV_CREATE | GNV_SKIPLOCK)) == 0 &&
+ VTOC(dvp)->c_lockowner == current_thread()) {
+ panic("hfs_getnewvnode: unexpected hold of parent cnode %p", VTOC(dvp));
}
+#endif /* HFS_CHECK_LOCK_ORDER */
-#if !FIFO
- if (IFTOVT(attrp->ca_mode) == VFIFO) {
- *vpp = NULL;
- return (EOPNOTSUPP);
- }
-#endif
- dev = hfsmp->hfs_raw_dev;
+ /*
+ * Get a cnode (new or existing)
+ */
+ cp = hfs_chash_getcnode(hfsmp, attrp->ca_fileid, vpp, wantrsrc,
+ (flags & GNV_SKIPLOCK), out_flags, &hflags);
- /* If no cnode was passed in then create one */
+ /*
+ * If the id is no longer valid for lookups we'll get back a NULL cp.
+ */
if (cp == NULL) {
- MALLOC_ZONE(cp2, struct cnode *, sizeof(struct cnode),
- M_HFSNODE, M_WAITOK);
- bzero(cp2, sizeof(struct cnode));
- allocated = 1;
- SET(cp2->c_flag, C_ALLOC);
- cp2->c_cnid = descp->cd_cnid;
- cp2->c_fileid = attrp->ca_fileid;
- cp2->c_dev = dev;
- lockinit(&cp2->c_lock, PINOD, "cnode", 0, 0);
- (void) lockmgr(&cp2->c_lock, LK_EXCLUSIVE, (struct slock *)0, p);
- /*
- * There were several blocking points since we first
- * checked the hash. Now that we're through blocking,
- * check the hash again in case we're racing for the
- * same cnode.
- */
- cp = hfs_chashget(dev, attrp->ca_fileid, wantrsrc, &vp, &rvp);
- if (cp != NULL) {
- /* We lost the race - use the winner's cnode */
- FREE_ZONE(cp2, sizeof(struct cnode), M_HFSNODE);
- allocated = 0;
- if (wantrsrc && rvp != NULL) {
- *vpp = rvp;
- return (0);
+ return (ENOENT);
+ }
+
+ /*
+ * If we get a cnode/vnode pair out of hfs_chash_getcnode, then update the
+ * descriptor in the cnode as needed if the cnode represents a hardlink.
+ * We want the caller to get the most up-to-date copy of the descriptor
+ * as possible. However, we only do anything here if there was a valid vnode.
+ * If there isn't a vnode, then the cnode is brand new and needs to be initialized
+ * as it doesn't have a descriptor or cat_attr yet.
+ *
+ * If we are about to replace the descriptor with the user-supplied one, then validate
+ * that the descriptor correctly acknowledges this item is a hardlink. We could be
+ * subject to a race where the calling thread invoked cat_lookup, got a valid lookup
+ * result but the file was not yet a hardlink. With sufficient delay between there
+ * and here, we might accidentally copy in the raw inode ID into the descriptor in the
+ * call below. If the descriptor's CNID is the same as the fileID then it must
+ * not yet have been a hardlink when the lookup occurred.
+ */
+
+ if (!(hfs_checkdeleted(cp))) {
+ if ((cp->c_flag & C_HARDLINK) && descp->cd_nameptr && descp->cd_namelen > 0) {
+ /* If cnode is uninitialized, its c_attr will be zeroed out; cnids wont match. */
+ if ((descp->cd_cnid == cp->c_attr.ca_fileid) &&
+ (attrp->ca_linkcount != cp->c_attr.ca_linkcount)){
+ if ((flags & GNV_SKIPLOCK) == 0) {
+ /*
+ * Then we took the lock. Drop it before calling
+ * vnode_put, which may invoke hfs_vnop_inactive and need to take
+ * the cnode lock again.
+ */
+ hfs_unlock(cp);
+ }
+
+ /*
+ * Emit ERECYCLE and GNV_CAT_ATTRCHANGED to
+ * force a re-drive in the lookup routine.
+ * Drop the iocount on the vnode obtained from
+ * chash_getcnode if needed.
+ */
+ if (*vpp != NULL) {
+ vnode_put (*vpp);
+ *vpp = NULL;
+ }
+
+ /*
+ * If we raced with VNOP_RECLAIM for this vnode, the hash code could
+ * have observed it after the c_vp or c_rsrc_vp fields had been torn down;
+ * the hash code peeks at those fields without holding the cnode lock because
+ * it needs to be fast. As a result, we may have set H_ATTACH in the chash
+ * call above. Since we're bailing out, unset whatever flags we just set, and
+ * wake up all waiters for this cnode.
+ */
+ if (hflags) {
+ hfs_chashwakeup(hfsmp, cp, hflags);
+ }
+
+ *out_flags = GNV_CAT_ATTRCHANGED;
+ return ERECYCLE;
}
- if (!wantrsrc && vp != NULL) {
- *vpp = vp;
- return (0);
+ else {
+ /* Otherwise, CNID != fileid. Go ahead and copy in the new descriptor */
+ replace_desc(cp, descp);
}
- } else /* allocated */ {
- cp = cp2;
- hfs_chashinsert(cp);
}
}
+
+
+ /* Check if we found a matching vnode */
+ if (*vpp != NULL) {
+ return (0);
+ }
+
+ /*
+ * If this is a new cnode then initialize it.
+ */
+ if (ISSET(cp->c_hflag, H_ALLOC)) {
+ lck_rw_init(&cp->c_truncatelock, hfs_rwlock_group, hfs_lock_attr);
+#if HFS_COMPRESSION
+ cp->c_decmp = NULL;
+#endif
- /* Allocate a new vnode. If unsuccesful, leave after freeing memory */
- if ((retval = getnewvnode(VT_HFS, mp, hfs_vnodeop_p, &new_vp))) {
- if (allocated) {
- hfs_chashremove(cp);
- if (ISSET(cp->c_flag, C_WALLOC)) {
- CLR(cp->c_flag, C_WALLOC);
- wakeup(cp);
+ /* Make sure its still valid (ie exists on disk). */
+ if (!(flags & GNV_CREATE)) {
+ int error = 0;
+ if (!hfs_valid_cnode (hfsmp, dvp, (wantrsrc ? NULL : cnp), cp->c_fileid, attrp, &error)) {
+ hfs_chash_abort(hfsmp, cp);
+ hfs_reclaim_cnode(cp);
+ *vpp = NULL;
+ /*
+ * If we hit this case, that means that the entry was there in the catalog when
+ * we did a cat_lookup earlier. Think hfs_lookup. However, in between the time
+ * that we checked the catalog and the time we went to get a vnode/cnode for it,
+ * it had been removed from the namespace and the vnode totally reclaimed. As a result,
+ * it's not there in the catalog during the check in hfs_valid_cnode and we bubble out
+ * an ENOENT. To indicate to the caller that they should really double-check the
+ * entry (it could have been renamed over and gotten a new fileid), we mark a bit
+ * in the output flags.
+ */
+ if (error == ENOENT) {
+ *out_flags = GNV_CAT_DELETED;
+ return ENOENT;
+ }
+
+ /*
+ * Also, we need to protect the cat_attr acquired during hfs_lookup and passed into
+ * this function as an argument because the catalog may have changed w.r.t hardlink
+ * link counts and the firstlink field. If that validation check fails, then let
+ * lookup re-drive itself to get valid/consistent data with the same failure condition below.
+ */
+ if (error == ERECYCLE) {
+ *out_flags = GNV_CAT_ATTRCHANGED;
+ return (ERECYCLE);
+ }
}
- FREE_ZONE(cp2, sizeof(struct cnode), M_HFSNODE);
- allocated = 0;
- } else if (rvp) {
- vput(rvp);
- } else if (vp) {
- vput(vp);
}
- *vpp = NULL;
- return (retval);
- }
- if (allocated) {
bcopy(attrp, &cp->c_attr, sizeof(struct cat_attr));
bcopy(descp, &cp->c_desc, sizeof(struct cat_desc));
- }
- new_vp->v_data = cp;
- if (wantrsrc && S_ISREG(cp->c_mode))
- cp->c_rsrc_vp = new_vp;
- else
- cp->c_vp = new_vp;
-
- /* Release reference taken on opposite vnode (if any). */
- if (rvp)
- vput(rvp);
- if (vp)
- vput(vp);
-
- vp = new_vp;
- vp->v_ubcinfo = UBC_NOINFO;
- /*
- * If this is a new cnode then initialize it using descp and attrp...
- */
- if (allocated) {
/* The name was inherited so clear descriptor state... */
descp->cd_namelen = 0;
descp->cd_nameptr = NULL;
descp->cd_flags &= ~CD_HASBUF;
/* Tag hardlinks */
- if (IFTOVT(cp->c_mode) == VREG &&
- (descp->cd_cnid != attrp->ca_fileid)) {
+ if ((vtype == VREG || vtype == VDIR) &&
+ ((descp->cd_cnid != attrp->ca_fileid) ||
+ (attrp->ca_recflags & kHFSHasLinkChainMask))) {
cp->c_flag |= C_HARDLINK;
}
-
- /* Take one dev reference for each non-directory cnode */
- if (IFTOVT(cp->c_mode) != VDIR) {
- cp->c_devvp = hfsmp->hfs_devvp;
- VREF(cp->c_devvp);
+ /*
+ * Fix-up dir link counts.
+ *
+ * Earlier versions of Leopard used ca_linkcount for posix
+ * nlink support (effectively the sub-directory count + 2).
+ * That is now accomplished using the ca_dircount field with
+ * the corresponding kHFSHasFolderCountMask flag.
+ *
+ * For directories the ca_linkcount is the true link count,
+ * tracking the number of actual hardlinks to a directory.
+ *
+ * We only do this if the mount has HFS_FOLDERCOUNT set;
+ * at the moment, we only set that for HFSX volumes.
+ */
+ if ((hfsmp->hfs_flags & HFS_FOLDERCOUNT) &&
+ (vtype == VDIR) &&
+ !(attrp->ca_recflags & kHFSHasFolderCountMask) &&
+ (cp->c_attr.ca_linkcount > 1)) {
+ if (cp->c_attr.ca_entries == 0)
+ cp->c_attr.ca_dircount = 0;
+ else
+ cp->c_attr.ca_dircount = cp->c_attr.ca_linkcount - 2;
+
+ cp->c_attr.ca_linkcount = 1;
+ cp->c_attr.ca_recflags |= kHFSHasFolderCountMask;
+ if ( !(hfsmp->hfs_flags & HFS_READ_ONLY) )
+ cp->c_flag |= C_MODIFIED;
}
#if QUOTA
- for (i = 0; i < MAXQUOTAS; i++)
- cp->c_dquot[i] = NODQUOT;
+ if (hfsmp->hfs_flags & HFS_QUOTAS) {
+ for (i = 0; i < MAXQUOTAS; i++)
+ cp->c_dquot[i] = NODQUOT;
+ }
#endif /* QUOTA */
+ /* Mark the output flag that we're vending a new cnode */
+ *out_flags |= GNV_NEW_CNODE;
}
- if (IFTOVT(cp->c_mode) != VDIR) {
+ if (vtype == VDIR) {
+ if (cp->c_vp != NULL)
+ panic("hfs_getnewvnode: orphaned vnode (data)");
+ cvpp = &cp->c_vp;
+ } else {
if (forkp && attrp->ca_blocks < forkp->cf_blocks)
panic("hfs_getnewvnode: bad ca_blocks (too small)");
/*
*/
MALLOC_ZONE(fp, struct filefork *, sizeof(struct filefork),
M_HFSFORK, M_WAITOK);
- bzero(fp, sizeof(struct filefork));
fp->ff_cp = cp;
if (forkp)
- bcopy(forkp, &fp->ff_data, sizeof(HFSPlusForkData));
- if (fp->ff_clumpsize == 0)
- fp->ff_clumpsize = HFSTOVCB(hfsmp)->vcbClpSiz;
+ bcopy(forkp, &fp->ff_data, sizeof(struct cat_fork));
+ else
+ bzero(&fp->ff_data, sizeof(struct cat_fork));
rl_init(&fp->ff_invalidranges);
+ fp->ff_sysfileinfo = 0;
+
if (wantrsrc) {
if (cp->c_rsrcfork != NULL)
- panic("stale rsrc fork");
+ panic("hfs_getnewvnode: orphaned rsrc fork");
+ if (cp->c_rsrc_vp != NULL)
+ panic("hfs_getnewvnode: orphaned vnode (rsrc)");
cp->c_rsrcfork = fp;
+ cvpp = &cp->c_rsrc_vp;
+ if ( (tvp = cp->c_vp) != NULLVP )
+ cp->c_flag |= C_NEED_DVNODE_PUT;
} else {
if (cp->c_datafork != NULL)
- panic("stale data fork");
+ panic("hfs_getnewvnode: orphaned data fork");
+ if (cp->c_vp != NULL)
+ panic("hfs_getnewvnode: orphaned vnode (data)");
cp->c_datafork = fp;
+ cvpp = &cp->c_vp;
+ if ( (tvp = cp->c_rsrc_vp) != NULLVP)
+ cp->c_flag |= C_NEED_RVNODE_PUT;
}
}
+ if (tvp != NULLVP) {
+ /*
+ * grab an iocount on the vnode we weren't
+ * interested in (i.e. we want the resource fork
+ * but the cnode already has the data fork)
+ * to prevent it from being
+ * recycled by us when we call vnode_create
+ * which will result in a deadlock when we
+ * try to take the cnode lock in hfs_vnop_fsync or
+ * hfs_vnop_reclaim... vnode_get can be called here
+ * because we already hold the cnode lock which will
+ * prevent the vnode from changing identity until
+ * we drop it.. vnode_get will not block waiting for
+ * a change of state... however, it will return an
+ * error if the current iocount == 0 and we've already
+ * started to terminate the vnode... we don't need/want to
+ * grab an iocount in the case since we can't cause
+ * the fileystem to be re-entered on this thread for this vp
+ *
+ * the matching vnode_put will happen in hfs_unlock
+ * after we've dropped the cnode lock
+ */
+ if ( vnode_get(tvp) != 0)
+ cp->c_flag &= ~(C_NEED_RVNODE_PUT | C_NEED_DVNODE_PUT);
+ }
+ vfsp.vnfs_mp = mp;
+ vfsp.vnfs_vtype = vtype;
+ vfsp.vnfs_str = "hfs";
+ if ((cp->c_flag & C_HARDLINK) && (vtype == VDIR)) {
+ vfsp.vnfs_dvp = NULL; /* no parent for me! */
+ vfsp.vnfs_cnp = NULL; /* no name for me! */
+ } else {
+ vfsp.vnfs_dvp = dvp;
+ vfsp.vnfs_cnp = cnp;
+ }
+ vfsp.vnfs_fsnode = cp;
/*
- * Finish vnode initialization.
- * Setting the v_type 'stamps' the vnode as 'complete',
- * so should be done almost last.
- *
- * At this point the vnode should be locked and fully
- * allocated. And ready to be used or accessed. (though
- * having it locked prevents most of this, it can still
- * be accessed through lists and hashes).
+ * Special Case HFS Standard VNOPs from HFS+, since
+ * HFS standard is readonly/deprecated as of 10.6
*/
- vp->v_type = IFTOVT(cp->c_mode);
+
+#if FIFO
+ if (vtype == VFIFO )
+ vfsp.vnfs_vops = hfs_fifoop_p;
+ else
+#endif
+ if (vtype == VBLK || vtype == VCHR)
+ vfsp.vnfs_vops = hfs_specop_p;
+ else if (hfs_standard)
+ vfsp.vnfs_vops = hfs_std_vnodeop_p;
+ else
+ vfsp.vnfs_vops = hfs_vnodeop_p;
+
+ if (vtype == VBLK || vtype == VCHR)
+ vfsp.vnfs_rdev = attrp->ca_rdev;
+ else
+ vfsp.vnfs_rdev = 0;
+
+ if (forkp)
+ vfsp.vnfs_filesize = forkp->cf_size;
+ else
+ vfsp.vnfs_filesize = 0;
+
+ vfsp.vnfs_flags = VNFS_ADDFSREF;
+ if (dvp == NULLVP || cnp == NULL || !(cnp->cn_flags & MAKEENTRY) || (flags & GNV_NOCACHE))
+ vfsp.vnfs_flags |= VNFS_NOCACHE;
/* Tag system files */
- if ((descp->cd_cnid < kHFSFirstUserCatalogNodeID) && (vp->v_type == VREG))
- vp->v_flag |= VSYSTEM;
+ vfsp.vnfs_marksystem = issystemfile;
+
/* Tag root directory */
- if (cp->c_cnid == kRootDirID)
- vp->v_flag |= VROOT;
+ if (descp->cd_cnid == kHFSRootFolderID)
+ vfsp.vnfs_markroot = 1;
+ else
+ vfsp.vnfs_markroot = 0;
+
+ if ((retval = vnode_create(VNCREATE_FLAVOR, VCREATESIZE, &vfsp, cvpp))) {
+ if (fp) {
+ if (fp == cp->c_datafork)
+ cp->c_datafork = NULL;
+ else
+ cp->c_rsrcfork = NULL;
+
+ FREE_ZONE(fp, sizeof(struct filefork), M_HFSFORK);
+ }
+ /*
+ * If this is a newly created cnode or a vnode reclaim
+ * occurred during the attachment, then cleanup the cnode.
+ */
+ if ((cp->c_vp == NULL) && (cp->c_rsrc_vp == NULL)) {
+ hfs_chash_abort(hfsmp, cp);
+ hfs_reclaim_cnode(cp);
+ }
+ else {
+ hfs_chashwakeup(hfsmp, cp, H_ALLOC | H_ATTACH);
+ if ((flags & GNV_SKIPLOCK) == 0){
+ hfs_unlock(cp);
+ }
+ }
+ *vpp = NULL;
+ return (retval);
+ }
+ vp = *cvpp;
+ vnode_settag(vp, VT_HFS);
+ if (cp->c_flag & C_HARDLINK) {
+ vnode_setmultipath(vp);
+ }
+ /*
+ * Tag resource fork vnodes as needing an VNOP_INACTIVE
+ * so that any deferred removes (open unlinked files)
+ * have the chance to process the resource fork.
+ */
+ if (VNODE_IS_RSRC(vp)) {
+ int err;
+ KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_FSRW, 37)), cp->c_vp, cp->c_rsrc_vp, 0, 0, 0);
+
+ /* Force VL_NEEDINACTIVE on this vnode */
+ err = vnode_ref(vp);
+ if (err == 0) {
+ vnode_rele(vp);
+ }
+ }
+ hfs_chashwakeup(hfsmp, cp, H_ALLOC | H_ATTACH);
+
+ /*
+ * Stop tracking an active hot file.
+ */
+ if (!(flags & GNV_CREATE) && (vtype != VDIR) && !issystemfile) {
+ (void) hfs_removehotfile(vp);
+ }
+
+#if CONFIG_PROTECT
+ if (!issystemfile && (*out_flags & GNV_NEW_CNODE))
+ cp_entry_init(cp, mp);
+#endif
+
+ *vpp = vp;
+ return (0);
+}
+
- if ((vp->v_type == VREG) && !(vp->v_flag & VSYSTEM)
- && (UBCINFOMISSING(vp) || UBCINFORECLAIMED(vp))) {
- ubc_info_init(vp);
+static void
+hfs_reclaim_cnode(struct cnode *cp)
+{
+#if QUOTA
+ int i;
+
+ for (i = 0; i < MAXQUOTAS; i++) {
+ if (cp->c_dquot[i] != NODQUOT) {
+ dqreclaim(cp->c_dquot[i]);
+ cp->c_dquot[i] = NODQUOT;
+ }
+ }
+#endif /* QUOTA */
+
+ /*
+ * If the descriptor has a name then release it
+ */
+ if ((cp->c_desc.cd_flags & CD_HASBUF) && (cp->c_desc.cd_nameptr != 0)) {
+ const char *nameptr;
+
+ nameptr = (const char *) cp->c_desc.cd_nameptr;
+ cp->c_desc.cd_nameptr = 0;
+ cp->c_desc.cd_flags &= ~CD_HASBUF;
+ cp->c_desc.cd_namelen = 0;
+ vfs_removename(nameptr);
+ }
+
+ /*
+ * We only call this function if we are in hfs_vnop_reclaim and
+ * attempting to reclaim a cnode with only one live fork. Because the vnode
+ * went through reclaim, any future attempts to use this item will have to
+ * go through lookup again, which will need to create a new vnode. Thus,
+ * destroying the locks below (while they were still held during our parent
+ * function hfs_vnop_reclaim) is safe.
+ */
+
+ lck_rw_destroy(&cp->c_rwlock, hfs_rwlock_group);
+ lck_rw_destroy(&cp->c_truncatelock, hfs_rwlock_group);
+#if HFS_COMPRESSION
+ if (cp->c_decmp) {
+ decmpfs_cnode_destroy(cp->c_decmp);
+ FREE_ZONE(cp->c_decmp, sizeof(*(cp->c_decmp)), M_DECMPFS_CNODE);
+ }
+#endif
+#if CONFIG_PROTECT
+ cp_entry_destroy(cp);
+#endif
+
+
+ bzero(cp, sizeof(struct cnode));
+ FREE_ZONE(cp, sizeof(struct cnode), M_HFSNODE);
+}
+
+
+/*
+ * hfs_valid_cnode
+ *
+ * This function is used to validate data that is stored in-core against what is contained
+ * in the catalog. Common uses include validating that the parent-child relationship still exist
+ * for a specific directory entry (guaranteeing it has not been renamed into a different spot) at
+ * the point of the check.
+ */
+int
+hfs_valid_cnode(struct hfsmount *hfsmp, struct vnode *dvp, struct componentname *cnp,
+ cnid_t cnid, struct cat_attr *cattr, int *error)
+{
+ struct cat_attr attr;
+ struct cat_desc cndesc;
+ int stillvalid = 0;
+ int lockflags;
+
+ /* System files are always valid */
+ if (cnid < kHFSFirstUserCatalogNodeID) {
+ *error = 0;
+ return (1);
+ }
+
+ /* XXX optimization: check write count in dvp */
+
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
+
+ if (dvp && cnp) {
+ int lookup = 0;
+ struct cat_fork fork;
+
+ bzero(&cndesc, sizeof(cndesc));
+ cndesc.cd_nameptr = (const u_int8_t *)cnp->cn_nameptr;
+ cndesc.cd_namelen = cnp->cn_namelen;
+ cndesc.cd_parentcnid = VTOC(dvp)->c_fileid;
+ cndesc.cd_hint = VTOC(dvp)->c_childhint;
+
+ /*
+ * We have to be careful when calling cat_lookup. The result argument
+ * 'attr' may get different results based on whether or not you ask
+ * for the filefork to be supplied as output. This is because cat_lookupbykey
+ * will attempt to do basic validation/smoke tests against the resident
+ * extents if there are no overflow extent records, but it needs someplace
+ * in memory to store the on-disk fork structures.
+ *
+ * Since hfs_lookup calls cat_lookup with a filefork argument, we should
+ * do the same here, to verify that block count differences are not
+ * due to calling the function with different styles. cat_lookupbykey
+ * will request the volume be fsck'd if there is true on-disk corruption
+ * where the number of blocks does not match the number generated by
+ * summing the number of blocks in the resident extents.
+ */
+
+ lookup = cat_lookup (hfsmp, &cndesc, 0, NULL, &attr, &fork, NULL);
+ if ((lookup == 0) && (cnid == attr.ca_fileid)) {
+ stillvalid = 1;
+ *error = 0;
+ }
+ else {
+ *error = ENOENT;
+ }
+
+ /*
+ * In hfs_getnewvnode, we may encounter a time-of-check vs. time-of-vnode creation
+ * race. Specifically, if there is no vnode/cnode pair for the directory entry
+ * being looked up, we have to go to the catalog. But since we don't hold any locks (aside
+ * from the dvp in 'shared' mode) there is nothing to protect us against the catalog record
+ * changing in between the time we do the cat_lookup there and the time we re-grab the
+ * catalog lock above to do another cat_lookup.
+ *
+ * However, we need to check more than just the CNID and parent-child name relationships above.
+ * Hardlinks can suffer the same race in the following scenario: Suppose we do a
+ * cat_lookup, and find a leaf record and a raw inode for a hardlink. Now, we have
+ * the cat_attr in hand (passed in above). But in between then and now, the vnode was
+ * created by a competing hfs_getnewvnode call, and is manipulated and reclaimed before we get
+ * a chance to do anything. This is possible if there are a lot of threads thrashing around
+ * with the cnode hash. In this case, if we don't check/validate the cat_attr in-hand, we will
+ * blindly stuff it into the cnode, which will make the in-core data inconsistent with what is
+ * on disk. So validate the cat_attr below, if required. This race cannot happen if the cnode/vnode
+ * already exists, as it does in the case of rename and delete.
+ */
+ if (stillvalid && cattr != NULL) {
+ if (cattr->ca_linkcount != attr.ca_linkcount) {
+ stillvalid = 0;
+ *error = ERECYCLE;
+ goto notvalid;
+ }
+
+ if (cattr->ca_union1.cau_linkref != attr.ca_union1.cau_linkref) {
+ stillvalid = 0;
+ *error = ERECYCLE;
+ goto notvalid;
+ }
+
+ if (cattr->ca_union3.cau_firstlink != attr.ca_union3.cau_firstlink) {
+ stillvalid = 0;
+ *error = ERECYCLE;
+ goto notvalid;
+ }
+
+ if (cattr->ca_union2.cau_blocks != attr.ca_union2.cau_blocks) {
+ stillvalid = 0;
+ *error = ERECYCLE;
+ goto notvalid;
+ }
+ }
} else {
- vp->v_ubcinfo = UBC_NOINFO;
+ if (cat_idlookup(hfsmp, cnid, 0, NULL, NULL, NULL) == 0) {
+ stillvalid = 1;
+ *error = 0;
+ }
+ else {
+ *error = ENOENT;
+ }
}
+notvalid:
+ hfs_systemfile_unlock(hfsmp, lockflags);
- if (vp->v_type == VCHR || vp->v_type == VBLK) {
- struct vnode *nvp;
+ return (stillvalid);
+}
- vp->v_op = hfs_specop_p;
- if ((nvp = checkalias(vp, cp->c_rdev, mp))) {
+/*
+ * Per HI and Finder requirements, HFS should add in the
+ * date/time that a particular directory entry was added
+ * to the containing directory.
+ * This is stored in the extended Finder Info for the
+ * item in question.
+ *
+ * Note that this field is also set explicitly in the hfs_vnop_setxattr code.
+ * We must ignore user attempts to set this part of the finderinfo, and
+ * so we need to save a local copy of the date added, write in the user
+ * finderinfo, then stuff the value back in.
+ */
+void hfs_write_dateadded (struct cat_attr *attrp, u_int32_t dateadded) {
+ u_int8_t *finfo = NULL;
+
+ /* overlay the FinderInfo to the correct pointer, and advance */
+ finfo = (u_int8_t*)attrp->ca_finderinfo;
+ finfo = finfo + 16;
+
+ /*
+ * Make sure to write it out as big endian, since that's how
+ * finder info is defined.
+ *
+ * NOTE: This is a Unix-epoch timestamp, not a HFS/Traditional Mac timestamp.
+ */
+ if (S_ISREG(attrp->ca_mode)) {
+ struct FndrExtendedFileInfo *extinfo = (struct FndrExtendedFileInfo *)finfo;
+ extinfo->date_added = OSSwapHostToBigInt32(dateadded);
+ attrp->ca_recflags |= kHFSHasDateAddedMask;
+ }
+ else if (S_ISDIR(attrp->ca_mode)) {
+ struct FndrExtendedDirInfo *extinfo = (struct FndrExtendedDirInfo *)finfo;
+ extinfo->date_added = OSSwapHostToBigInt32(dateadded);
+ attrp->ca_recflags |= kHFSHasDateAddedMask;
+ }
+
+ /* If it were neither directory/file, then we'd bail out */
+ return;
+}
+
+u_int32_t hfs_get_dateadded (struct cnode *cp) {
+ u_int8_t *finfo = NULL;
+ u_int32_t dateadded = 0;
+
+ if ((cp->c_attr.ca_recflags & kHFSHasDateAddedMask) == 0) {
+ /* Date added was never set. Return 0. */
+ return dateadded;
+ }
+
+
+ /* overlay the FinderInfo to the correct pointer, and advance */
+ finfo = (u_int8_t*)cp->c_finderinfo;
+ finfo = finfo + 16;
+
+ /*
+ * FinderInfo is written out in big endian... make sure to convert it to host
+ * native before we use it.
+ */
+ if (S_ISREG(cp->c_attr.ca_mode)) {
+ struct FndrExtendedFileInfo *extinfo = (struct FndrExtendedFileInfo *)finfo;
+ dateadded = OSSwapBigToHostInt32 (extinfo->date_added);
+ }
+ else if (S_ISDIR(cp->c_attr.ca_mode)) {
+ struct FndrExtendedDirInfo *extinfo = (struct FndrExtendedDirInfo *)finfo;
+ dateadded = OSSwapBigToHostInt32 (extinfo->date_added);
+ }
+
+ return dateadded;
+}
+
+
+
+/*
+ * Touch cnode times based on c_touch_xxx flags
+ *
+ * cnode must be locked exclusive
+ *
+ * This will also update the volume modify time
+ */
+void
+hfs_touchtimes(struct hfsmount *hfsmp, struct cnode* cp)
+{
+ vfs_context_t ctx;
+ /* don't modify times if volume is read-only */
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ cp->c_touch_acctime = FALSE;
+ cp->c_touch_chgtime = FALSE;
+ cp->c_touch_modtime = FALSE;
+ return;
+ }
+ else if (hfsmp->hfs_flags & HFS_STANDARD) {
+ /* HFS Standard doesn't support access times */
+ cp->c_touch_acctime = FALSE;
+ }
+
+ ctx = vfs_context_current();
+ /*
+ * Skip access time updates if:
+ * . MNT_NOATIME is set
+ * . a file system freeze is in progress
+ * . a file system resize is in progress
+ * . the vnode associated with this cnode is marked for rapid aging
+ */
+ if (cp->c_touch_acctime) {
+ if ((vfs_flags(hfsmp->hfs_mp) & MNT_NOATIME) ||
+ (hfsmp->hfs_freezing_proc != NULL) ||
+ (hfsmp->hfs_flags & HFS_RESIZE_IN_PROGRESS) ||
+ (cp->c_vp && ((vnode_israge(cp->c_vp) || (vfs_ctx_skipatime(ctx)))))) {
+
+ cp->c_touch_acctime = FALSE;
+ }
+ }
+ if (cp->c_touch_acctime || cp->c_touch_chgtime ||
+ cp->c_touch_modtime || (cp->c_flag & C_NEEDS_DATEADDED)) {
+ struct timeval tv;
+ int touchvol = 0;
+
+ microtime(&tv);
+
+ if (cp->c_touch_acctime) {
+ cp->c_atime = tv.tv_sec;
/*
- * Discard unneeded vnode, but save its cnode.
- * Note that the lock is carried over in the
- * cnode to the replacement vnode.
+ * When the access time is the only thing changing
+ * then make sure its sufficiently newer before
+ * committing it to disk.
*/
- nvp->v_data = vp->v_data;
- vp->v_data = NULL;
- vp->v_op = spec_vnodeop_p;
- vrele(vp);
- vgone(vp);
+ if ((((u_int32_t)cp->c_atime - (u_int32_t)(cp)->c_attr.ca_atimeondisk) >
+ ATIME_ONDISK_ACCURACY)) {
+ cp->c_flag |= C_MODIFIED;
+ }
+ cp->c_touch_acctime = FALSE;
+ }
+ if (cp->c_touch_modtime) {
+ cp->c_mtime = tv.tv_sec;
+ cp->c_touch_modtime = FALSE;
+ cp->c_flag |= C_MODIFIED;
+ touchvol = 1;
+#if 1
/*
- * Reinitialize aliased cnode.
- * Assume its not a resource fork.
+ * HFS dates that WE set must be adjusted for DST
*/
- cp->c_vp = nvp;
- vp = nvp;
- }
- } else if (vp->v_type == VFIFO) {
-#if FIFO
- vp->v_op = hfs_fifoop_p;
+ if ((hfsmp->hfs_flags & HFS_STANDARD) && gTimeZone.tz_dsttime) {
+ cp->c_mtime += 3600;
+ }
#endif
+ }
+ if (cp->c_touch_chgtime) {
+ cp->c_ctime = tv.tv_sec;
+ cp->c_touch_chgtime = FALSE;
+ cp->c_flag |= C_MODIFIED;
+ touchvol = 1;
+ }
+
+ if (cp->c_flag & C_NEEDS_DATEADDED) {
+ hfs_write_dateadded (&(cp->c_attr), tv.tv_sec);
+ cp->c_flag |= C_MODIFIED;
+ /* untwiddle the bit */
+ cp->c_flag &= ~C_NEEDS_DATEADDED;
+ touchvol = 1;
+ }
+
+ /* Touch the volume modtime if needed */
+ if (touchvol) {
+ MarkVCBDirty(hfsmp);
+ HFSTOVCB(hfsmp)->vcbLsMod = tv.tv_sec;
+ }
}
+}
+
+/*
+ * Lock a cnode.
+ */
+int
+hfs_lock(struct cnode *cp, enum hfslocktype locktype)
+{
+ void * thread = current_thread();
- /* Vnode is now initialized - see if anyone was waiting for it. */
- CLR(cp->c_flag, C_ALLOC);
- if (ISSET(cp->c_flag, C_WALLOC)) {
- CLR(cp->c_flag, C_WALLOC);
- wakeup((caddr_t)cp);
+ if (cp->c_lockowner == thread) {
+ /*
+ * Only the extents and bitmap file's support lock recursion.
+ */
+ if ((cp->c_fileid == kHFSExtentsFileID) ||
+ (cp->c_fileid == kHFSAllocationFileID)) {
+ cp->c_syslockcount++;
+ } else {
+ panic("hfs_lock: locking against myself!");
+ }
+ } else if (locktype == HFS_SHARED_LOCK) {
+ lck_rw_lock_shared(&cp->c_rwlock);
+ cp->c_lockowner = HFS_SHARED_OWNER;
+
+ } else /* HFS_EXCLUSIVE_LOCK */ {
+ lck_rw_lock_exclusive(&cp->c_rwlock);
+ cp->c_lockowner = thread;
+
+ /*
+ * Only the extents and bitmap file's support lock recursion.
+ */
+ if ((cp->c_fileid == kHFSExtentsFileID) ||
+ (cp->c_fileid == kHFSAllocationFileID)) {
+ cp->c_syslockcount = 1;
+ }
}
- *vpp = vp;
+#ifdef HFS_CHECK_LOCK_ORDER
+ /*
+ * Regular cnodes (non-system files) cannot be locked
+ * while holding the journal lock or a system file lock.
+ */
+ if (!(cp->c_desc.cd_flags & CD_ISMETA) &&
+ ((cp->c_fileid > kHFSFirstUserCatalogNodeID) || (cp->c_fileid == kHFSRootFolderID))) {
+ vnode_t vp = NULLVP;
+
+ /* Find corresponding vnode. */
+ if (cp->c_vp != NULLVP && VTOC(cp->c_vp) == cp) {
+ vp = cp->c_vp;
+ } else if (cp->c_rsrc_vp != NULLVP && VTOC(cp->c_rsrc_vp) == cp) {
+ vp = cp->c_rsrc_vp;
+ }
+ if (vp != NULLVP) {
+ struct hfsmount *hfsmp = VTOHFS(vp);
+
+ if (hfsmp->jnl && (journal_owner(hfsmp->jnl) == thread)) {
+ /* This will eventually be a panic here. */
+ printf("hfs_lock: bad lock order (cnode after journal)\n");
+ }
+ if (hfsmp->hfs_catalog_cp && hfsmp->hfs_catalog_cp->c_lockowner == thread) {
+ panic("hfs_lock: bad lock order (cnode after catalog)");
+ }
+ if (hfsmp->hfs_attribute_cp && hfsmp->hfs_attribute_cp->c_lockowner == thread) {
+ panic("hfs_lock: bad lock order (cnode after attribute)");
+ }
+ if (hfsmp->hfs_extents_cp && hfsmp->hfs_extents_cp->c_lockowner == thread) {
+ panic("hfs_lock: bad lock order (cnode after extents)");
+ }
+ }
+ }
+#endif /* HFS_CHECK_LOCK_ORDER */
+
+ /*
+ * Skip cnodes that no longer exist (were deleted).
+ */
+ if ((locktype != HFS_FORCE_LOCK) &&
+ ((cp->c_desc.cd_flags & CD_ISMETA) == 0) &&
+ (cp->c_flag & C_NOEXISTS)) {
+ hfs_unlock(cp);
+ return (ENOENT);
+ }
+ return (0);
+}
+
+/*
+ * Lock a pair of cnodes.
+ */
+int
+hfs_lockpair(struct cnode *cp1, struct cnode *cp2, enum hfslocktype locktype)
+{
+ struct cnode *first, *last;
+ int error;
+
+ /*
+ * If cnodes match then just lock one.
+ */
+ if (cp1 == cp2) {
+ return hfs_lock(cp1, locktype);
+ }
+
+ /*
+ * Lock in cnode address order.
+ */
+ if (cp1 < cp2) {
+ first = cp1;
+ last = cp2;
+ } else {
+ first = cp2;
+ last = cp1;
+ }
+
+ if ( (error = hfs_lock(first, locktype))) {
+ return (error);
+ }
+ if ( (error = hfs_lock(last, locktype))) {
+ hfs_unlock(first);
+ return (error);
+ }
+ return (0);
+}
+
+/*
+ * Check ordering of two cnodes. Return true if they are are in-order.
+ */
+static int
+hfs_isordered(struct cnode *cp1, struct cnode *cp2)
+{
+ if (cp1 == cp2)
+ return (0);
+ if (cp1 == NULL || cp2 == (struct cnode *)0xffffffff)
+ return (1);
+ if (cp2 == NULL || cp1 == (struct cnode *)0xffffffff)
+ return (0);
+ /*
+ * Locking order is cnode address order.
+ */
+ return (cp1 < cp2);
+}
+
+/*
+ * Acquire 4 cnode locks.
+ * - locked in cnode address order (lesser address first).
+ * - all or none of the locks are taken
+ * - only one lock taken per cnode (dup cnodes are skipped)
+ * - some of the cnode pointers may be null
+ */
+int
+hfs_lockfour(struct cnode *cp1, struct cnode *cp2, struct cnode *cp3,
+ struct cnode *cp4, enum hfslocktype locktype, struct cnode **error_cnode)
+{
+ struct cnode * a[3];
+ struct cnode * b[3];
+ struct cnode * list[4];
+ struct cnode * tmp;
+ int i, j, k;
+ int error;
+ if (error_cnode) {
+ *error_cnode = NULL;
+ }
+
+ if (hfs_isordered(cp1, cp2)) {
+ a[0] = cp1; a[1] = cp2;
+ } else {
+ a[0] = cp2; a[1] = cp1;
+ }
+ if (hfs_isordered(cp3, cp4)) {
+ b[0] = cp3; b[1] = cp4;
+ } else {
+ b[0] = cp4; b[1] = cp3;
+ }
+ a[2] = (struct cnode *)0xffffffff; /* sentinel value */
+ b[2] = (struct cnode *)0xffffffff; /* sentinel value */
+
+ /*
+ * Build the lock list, skipping over duplicates
+ */
+ for (i = 0, j = 0, k = 0; (i < 2 || j < 2); ) {
+ tmp = hfs_isordered(a[i], b[j]) ? a[i++] : b[j++];
+ if (k == 0 || tmp != list[k-1])
+ list[k++] = tmp;
+ }
+
+ /*
+ * Now we can lock using list[0 - k].
+ * Skip over NULL entries.
+ */
+ for (i = 0; i < k; ++i) {
+ if (list[i])
+ if ((error = hfs_lock(list[i], locktype))) {
+ /* Only stuff error_cnode if requested */
+ if (error_cnode) {
+ *error_cnode = list[i];
+ }
+ /* Drop any locks we acquired. */
+ while (--i >= 0) {
+ if (list[i])
+ hfs_unlock(list[i]);
+ }
+ return (error);
+ }
+ }
return (0);
}
+
+/*
+ * Unlock a cnode.
+ */
+void
+hfs_unlock(struct cnode *cp)
+{
+ vnode_t rvp = NULLVP;
+ vnode_t vp = NULLVP;
+ u_int32_t c_flag;
+ void *lockowner;
+
+ /*
+ * Only the extents and bitmap file's support lock recursion.
+ */
+ if ((cp->c_fileid == kHFSExtentsFileID) ||
+ (cp->c_fileid == kHFSAllocationFileID)) {
+ if (--cp->c_syslockcount > 0) {
+ return;
+ }
+ }
+ c_flag = cp->c_flag;
+ cp->c_flag &= ~(C_NEED_DVNODE_PUT | C_NEED_RVNODE_PUT | C_NEED_DATA_SETSIZE | C_NEED_RSRC_SETSIZE);
+
+ if (c_flag & (C_NEED_DVNODE_PUT | C_NEED_DATA_SETSIZE)) {
+ vp = cp->c_vp;
+ }
+ if (c_flag & (C_NEED_RVNODE_PUT | C_NEED_RSRC_SETSIZE)) {
+ rvp = cp->c_rsrc_vp;
+ }
+
+ lockowner = cp->c_lockowner;
+ if (lockowner == current_thread()) {
+ cp->c_lockowner = NULL;
+ lck_rw_unlock_exclusive(&cp->c_rwlock);
+ } else {
+ lck_rw_unlock_shared(&cp->c_rwlock);
+ }
+
+ /* Perform any vnode post processing after cnode lock is dropped. */
+ if (vp) {
+ if (c_flag & C_NEED_DATA_SETSIZE)
+ ubc_setsize(vp, 0);
+ if (c_flag & C_NEED_DVNODE_PUT)
+ vnode_put(vp);
+ }
+ if (rvp) {
+ if (c_flag & C_NEED_RSRC_SETSIZE)
+ ubc_setsize(rvp, 0);
+ if (c_flag & C_NEED_RVNODE_PUT)
+ vnode_put(rvp);
+ }
+}
+
+/*
+ * Unlock a pair of cnodes.
+ */
+void
+hfs_unlockpair(struct cnode *cp1, struct cnode *cp2)
+{
+ hfs_unlock(cp1);
+ if (cp2 != cp1)
+ hfs_unlock(cp2);
+}
+
+/*
+ * Unlock a group of cnodes.
+ */
+void
+hfs_unlockfour(struct cnode *cp1, struct cnode *cp2, struct cnode *cp3, struct cnode *cp4)
+{
+ struct cnode * list[4];
+ int i, k = 0;
+
+ if (cp1) {
+ hfs_unlock(cp1);
+ list[k++] = cp1;
+ }
+ if (cp2) {
+ for (i = 0; i < k; ++i) {
+ if (list[i] == cp2)
+ goto skip1;
+ }
+ hfs_unlock(cp2);
+ list[k++] = cp2;
+ }
+skip1:
+ if (cp3) {
+ for (i = 0; i < k; ++i) {
+ if (list[i] == cp3)
+ goto skip2;
+ }
+ hfs_unlock(cp3);
+ list[k++] = cp3;
+ }
+skip2:
+ if (cp4) {
+ for (i = 0; i < k; ++i) {
+ if (list[i] == cp4)
+ return;
+ }
+ hfs_unlock(cp4);
+ }
+}
+
+
+/*
+ * Protect a cnode against a truncation.
+ *
+ * Used mainly by read/write since they don't hold the
+ * cnode lock across calls to the cluster layer.
+ *
+ * The process doing a truncation must take the lock
+ * exclusive. The read/write processes can take it
+ * shared. The locktype argument is the same as supplied to
+ * hfs_lock.
+ */
+void
+hfs_lock_truncate(struct cnode *cp, enum hfslocktype locktype)
+{
+ void * thread = current_thread();
+
+ if (cp->c_truncatelockowner == thread) {
+ /*
+ * Only HFS_RECURSE_TRUNCLOCK is allowed to recurse.
+ *
+ * This is needed on the hfs_vnop_pagein path where we need to ensure
+ * the file does not change sizes while we are paging in. However,
+ * we may already hold the lock exclusive due to another
+ * VNOP from earlier in the call stack. So if we already hold
+ * the truncate lock exclusive, allow it to proceed, but ONLY if
+ * it's in the recursive case.
+ */
+ if (locktype != HFS_RECURSE_TRUNCLOCK) {
+ panic("hfs_lock_truncate: cnode %p locked!", cp);
+ }
+ }
+ /* HFS_RECURSE_TRUNCLOCK takes a shared lock if it is not already locked */
+ else if ((locktype == HFS_SHARED_LOCK) || (locktype == HFS_RECURSE_TRUNCLOCK)) {
+ lck_rw_lock_shared(&cp->c_truncatelock);
+ cp->c_truncatelockowner = HFS_SHARED_OWNER;
+ }
+ else { /* must be an HFS_EXCLUSIVE_LOCK */
+ lck_rw_lock_exclusive(&cp->c_truncatelock);
+ cp->c_truncatelockowner = thread;
+ }
+}
+
+
+/*
+ * Attempt to get the truncate lock. If it cannot be acquired, error out.
+ * This function is needed in the degenerate hfs_vnop_pagein during force unmount
+ * case. To prevent deadlocks while a VM copy object is moving pages, HFS vnop pagein will
+ * temporarily need to disable V2 semantics.
+ */
+int hfs_try_trunclock (struct cnode *cp, enum hfslocktype locktype) {
+ void * thread = current_thread();
+ boolean_t didlock = false;
+
+ if (cp->c_truncatelockowner == thread) {
+ /*
+ * Only HFS_RECURSE_TRUNCLOCK is allowed to recurse.
+ *
+ * This is needed on the hfs_vnop_pagein path where we need to ensure
+ * the file does not change sizes while we are paging in. However,
+ * we may already hold the lock exclusive due to another
+ * VNOP from earlier in the call stack. So if we already hold
+ * the truncate lock exclusive, allow it to proceed, but ONLY if
+ * it's in the recursive case.
+ */
+ if (locktype != HFS_RECURSE_TRUNCLOCK) {
+ panic("hfs_lock_truncate: cnode %p locked!", cp);
+ }
+ }
+ /* HFS_RECURSE_TRUNCLOCK takes a shared lock if it is not already locked */
+ else if ((locktype == HFS_SHARED_LOCK) || (locktype == HFS_RECURSE_TRUNCLOCK)) {
+ didlock = lck_rw_try_lock(&cp->c_truncatelock, LCK_RW_TYPE_SHARED);
+ if (didlock) {
+ cp->c_truncatelockowner = HFS_SHARED_OWNER;
+ }
+ }
+ else { /* must be an HFS_EXCLUSIVE_LOCK */
+ didlock = lck_rw_try_lock (&cp->c_truncatelock, LCK_RW_TYPE_EXCLUSIVE);
+ if (didlock) {
+ cp->c_truncatelockowner = thread;
+ }
+ }
+
+ return didlock;
+}
+
+
+/*
+ * Unlock the truncate lock, which protects against size changes.
+ *
+ * The been_recursed argument is used when we may need to return
+ * from this function without actually unlocking the truncate lock.
+ */
+void
+hfs_unlock_truncate(struct cnode *cp, int been_recursed)
+{
+ void *thread = current_thread();
+
+ /*
+ * If been_recursed is nonzero AND the current lock owner of the
+ * truncate lock is our current thread, then we must have recursively
+ * taken the lock earlier on. If the lock were unlocked,
+ * HFS_RECURSE_TRUNCLOCK took a shared lock and it would fall through
+ * to the SHARED case below.
+ *
+ * If been_recursed is zero (most of the time) then we check the
+ * lockowner field to infer whether the lock was taken exclusively or
+ * shared in order to know what underlying lock routine to call.
+ */
+ if (been_recursed) {
+ if (cp->c_truncatelockowner == thread) {
+ return;
+ }
+ }
+
+ /* HFS_LOCK_EXCLUSIVE */
+ if (thread == cp->c_truncatelockowner) {
+ cp->c_truncatelockowner = NULL;
+ lck_rw_unlock_exclusive(&cp->c_truncatelock);
+ }
+ /* HFS_LOCK_SHARED */
+ else {
+ lck_rw_unlock_shared(&cp->c_truncatelock);
+ }
+}