+ // up-cast from a 32-bit version of the struct
+ tmp_user_access.flags = accessp->flags;
+ tmp_user_access.num_files = accessp->num_files;
+ tmp_user_access.map_size = accessp->map_size;
+ tmp_user_access.num_parents = accessp->num_parents;
+
+ tmp_user_access.file_ids = CAST_USER_ADDR_T(accessp->file_ids);
+ tmp_user_access.bitmap = CAST_USER_ADDR_T(accessp->bitmap);
+ tmp_user_access.access = CAST_USER_ADDR_T(accessp->access);
+ tmp_user_access.parents = CAST_USER_ADDR_T(accessp->parents);
+
+ user_access_structp = &tmp_user_access;
+ } else {
+ error = EINVAL;
+ goto err_exit_bulk_access;
+ }
+
+ map_size = user_access_structp->map_size;
+
+ num_files = user_access_structp->num_files;
+
+ num_parents= user_access_structp->num_parents;
+
+ if (num_files < 1) {
+ goto err_exit_bulk_access;
+ }
+ if (num_files > 1024) {
+ error = EINVAL;
+ goto err_exit_bulk_access;
+ }
+
+ if (num_parents > 1024) {
+ error = EINVAL;
+ goto err_exit_bulk_access;
+ }
+
+ file_ids = (int *) kalloc(sizeof(int) * num_files);
+ access = (short *) kalloc(sizeof(short) * num_files);
+ if (map_size) {
+ bitmap = (char *) kalloc(sizeof(char) * map_size);
+ }
+
+ if (num_parents) {
+ parents = (cnid_t *) kalloc(sizeof(cnid_t) * num_parents);
+ }
+
+ cache.acache = (unsigned int *) kalloc(sizeof(int) * NUM_CACHE_ENTRIES);
+ cache.haveaccess = (unsigned char *) kalloc(sizeof(unsigned char) * NUM_CACHE_ENTRIES);
+
+ if (file_ids == NULL || access == NULL || (map_size != 0 && bitmap == NULL) || cache.acache == NULL || cache.haveaccess == NULL) {
+ if (file_ids) {
+ kfree(file_ids, sizeof(int) * num_files);
+ }
+ if (bitmap) {
+ kfree(bitmap, sizeof(char) * map_size);
+ }
+ if (access) {
+ kfree(access, sizeof(short) * num_files);
+ }
+ if (cache.acache) {
+ kfree(cache.acache, sizeof(int) * NUM_CACHE_ENTRIES);
+ }
+ if (cache.haveaccess) {
+ kfree(cache.haveaccess, sizeof(unsigned char) * NUM_CACHE_ENTRIES);
+ }
+ if (parents) {
+ kfree(parents, sizeof(cnid_t) * num_parents);
+ }
+ return ENOMEM;
+ }
+
+ // make sure the bitmap is zero'ed out...
+ if (bitmap) {
+ bzero(bitmap, (sizeof(char) * map_size));
+ }
+
+ if ((error = copyin(user_access_structp->file_ids, (caddr_t)file_ids,
+ num_files * sizeof(int)))) {
+ goto err_exit_bulk_access;
+ }
+
+ if (num_parents) {
+ if ((error = copyin(user_access_structp->parents, (caddr_t)parents,
+ num_parents * sizeof(cnid_t)))) {
+ goto err_exit_bulk_access;
+ }
+ }
+
+ flags = user_access_structp->flags;
+ if ((flags & (F_OK | R_OK | W_OK | X_OK)) == 0) {
+ flags = R_OK;
+ }
+
+ /* check if we've been passed leaf node ids or parent ids */
+ if (flags & PARENT_IDS_FLAG) {
+ check_leaf = false;
+ }
+
+ /* Check access to each file_id passed in */
+ for (i = 0; i < num_files; i++) {
+ leaf_index=-1;
+ cnid = (cnid_t) file_ids[i];
+
+ /* root always has access */
+ if ((!parents) && (!suser(cred, NULL))) {
+ access[i] = 0;
+ continue;
+ }
+
+ if (check_leaf) {
+ /* do the lookup (checks the cnode hash, then the catalog) */
+ error = do_attr_lookup(hfsmp, &cache, cnid, skip_cp, &catkey, &cnattr);
+ if (error) {
+ access[i] = (short) error;
+ continue;
+ }
+
+ if (parents) {
+ // Check if the leaf matches one of the parent scopes
+ leaf_index = cache_binSearch(parents, num_parents-1, cnid, NULL);
+ if (leaf_index >= 0 && parents[leaf_index] == cnid)
+ prev_parent_check_ok = 0;
+ else if (leaf_index >= 0)
+ prev_parent_check_ok = 1;
+ }
+
+ // if the thing has acl's, do the full permission check
+ if ((cnattr.ca_recflags & kHFSHasSecurityMask) != 0) {
+ struct vnode *cvp;
+ int myErr = 0;
+ /* get the vnode for this cnid */
+ myErr = hfs_vget(hfsmp, cnid, &cvp, 0);
+ if ( myErr ) {
+ access[i] = myErr;
+ continue;
+ }
+
+ hfs_unlock(VTOC(cvp));
+
+ if (vnode_vtype(cvp) == VDIR) {
+ myErr = vnode_authorize(cvp, NULL, (KAUTH_VNODE_SEARCH | KAUTH_VNODE_LIST_DIRECTORY), context);
+ } else {
+ myErr = vnode_authorize(cvp, NULL, KAUTH_VNODE_READ_DATA, context);
+ }
+
+ vnode_put(cvp);
+ if (myErr) {
+ access[i] = myErr;
+ continue;
+ }
+ } else {
+ /* before calling CheckAccess(), check the target file for read access */
+ myPerms = DerivePermissionSummary(cnattr.ca_uid, cnattr.ca_gid,
+ cnattr.ca_mode, hfsmp->hfs_mp, cred, p);
+
+ /* fail fast if no access */
+ if ((myPerms & flags) == 0) {
+ access[i] = EACCES;
+ continue;
+ }
+ }
+ } else {
+ /* we were passed an array of parent ids */
+ catkey.hfsPlus.parentID = cnid;
+ }
+
+ /* if the last guy had the same parent and had access, we're done */
+ if (i > 0 && catkey.hfsPlus.parentID == prevParent_cnid && access[i-1] == 0 && prev_parent_check_ok) {
+ cache.cachehits++;
+ access[i] = 0;
+ continue;
+ }
+
+ myaccess = do_access_check(hfsmp, &error, &cache, catkey.hfsPlus.parentID,
+ skip_cp, p, cred, context,bitmap, map_size, parents, num_parents);
+
+ if (myaccess || (error == ESRCH && leaf_index != -1)) {
+ access[i] = 0; // have access.. no errors to report
+ } else {
+ access[i] = (error != 0 ? (short) error : EACCES);
+ }
+
+ prevParent_cnid = catkey.hfsPlus.parentID;
+ }
+
+ /* copyout the access array */
+ if ((error = copyout((caddr_t)access, user_access_structp->access,
+ num_files * sizeof (short)))) {
+ goto err_exit_bulk_access;
+ }
+ if (map_size && bitmap) {
+ if ((error = copyout((caddr_t)bitmap, user_access_structp->bitmap,
+ map_size * sizeof (char)))) {
+ goto err_exit_bulk_access;
+ }
+ }
+
+
+ err_exit_bulk_access:
+
+ //printf("hfs: on exit (err %d), numfiles/numcached/cachehits/lookups is %d/%d/%d/%d\n", error, num_files, cache.numcached, cache.cachehits, cache.lookups);
+
+ if (file_ids)
+ kfree(file_ids, sizeof(int) * num_files);
+ if (parents)
+ kfree(parents, sizeof(cnid_t) * num_parents);
+ if (bitmap)
+ kfree(bitmap, sizeof(char) * map_size);
+ if (access)
+ kfree(access, sizeof(short) * num_files);
+ if (cache.acache)
+ kfree(cache.acache, sizeof(int) * NUM_CACHE_ENTRIES);
+ if (cache.haveaccess)
+ kfree(cache.haveaccess, sizeof(unsigned char) * NUM_CACHE_ENTRIES);
+
+ return (error);
+}
+
+
+/* end "bulk-access" support */
+
+
+/*
+ * Callback for use with freeze ioctl.
+ */
+static int
+hfs_freezewrite_callback(struct vnode *vp, __unused void *cargs)
+{
+ vnode_waitforwrites(vp, 0, 0, 0, "hfs freeze");
+
+ return 0;
+}
+
+/*
+ * Control filesystem operating characteristics.
+ */
+int
+hfs_vnop_ioctl( struct vnop_ioctl_args /* {
+ vnode_t a_vp;
+ int a_command;
+ caddr_t a_data;
+ int a_fflag;
+ vfs_context_t a_context;
+ } */ *ap)
+{
+ struct vnode * vp = ap->a_vp;
+ struct hfsmount *hfsmp = VTOHFS(vp);
+ vfs_context_t context = ap->a_context;
+ kauth_cred_t cred = vfs_context_ucred(context);
+ proc_t p = vfs_context_proc(context);
+ struct vfsstatfs *vfsp;
+ boolean_t is64bit;
+ off_t jnl_start, jnl_size;
+ struct hfs_journal_info *jip;
+#if HFS_COMPRESSION
+ int compressed = 0;
+ off_t uncompressed_size = -1;
+ int decmpfs_error = 0;
+
+ if (ap->a_command == F_RDADVISE) {
+ /* we need to inspect the decmpfs state of the file as early as possible */
+ compressed = hfs_file_is_compressed(VTOC(vp), 0);
+ if (compressed) {
+ if (VNODE_IS_RSRC(vp)) {
+ /* if this is the resource fork, treat it as if it were empty */
+ uncompressed_size = 0;
+ } else {
+ decmpfs_error = hfs_uncompressed_size_of_compressed_file(NULL, vp, 0, &uncompressed_size, 0);
+ if (decmpfs_error != 0) {
+ /* failed to get the uncompressed size, we'll check for this later */
+ uncompressed_size = -1;
+ }
+ }
+ }
+ }
+#endif /* HFS_COMPRESSION */
+
+ is64bit = proc_is64bit(p);
+
+ switch (ap->a_command) {
+
+ case HFS_GETPATH:
+ {
+ struct vnode *file_vp;
+ cnid_t cnid;
+ int outlen;
+ char *bufptr;
+ int error;
+
+ /* Caller must be owner of file system. */
+ vfsp = vfs_statfs(HFSTOVFS(hfsmp));
+ if (suser(cred, NULL) &&
+ kauth_cred_getuid(cred) != vfsp->f_owner) {
+ return (EACCES);
+ }
+ /* Target vnode must be file system's root. */
+ if (!vnode_isvroot(vp)) {
+ return (EINVAL);
+ }
+ bufptr = (char *)ap->a_data;
+ cnid = strtoul(bufptr, NULL, 10);
+
+ /* We need to call hfs_vfs_vget to leverage the code that will
+ * fix the origin list for us if needed, as opposed to calling
+ * hfs_vget, since we will need the parent for build_path call.
+ */
+
+ if ((error = hfs_vfs_vget(HFSTOVFS(hfsmp), cnid, &file_vp, context))) {
+ return (error);
+ }
+ error = build_path(file_vp, bufptr, sizeof(pathname_t), &outlen, 0, context);
+ vnode_put(file_vp);
+
+ return (error);
+ }
+
+ case HFS_PREV_LINK:
+ case HFS_NEXT_LINK:
+ {
+ cnid_t linkfileid;
+ cnid_t nextlinkid;
+ cnid_t prevlinkid;
+ int error;
+
+ /* Caller must be owner of file system. */
+ vfsp = vfs_statfs(HFSTOVFS(hfsmp));
+ if (suser(cred, NULL) &&
+ kauth_cred_getuid(cred) != vfsp->f_owner) {
+ return (EACCES);
+ }
+ /* Target vnode must be file system's root. */
+ if (!vnode_isvroot(vp)) {
+ return (EINVAL);
+ }
+ linkfileid = *(cnid_t *)ap->a_data;
+ if (linkfileid < kHFSFirstUserCatalogNodeID) {
+ return (EINVAL);
+ }
+ if ((error = hfs_lookuplink(hfsmp, linkfileid, &prevlinkid, &nextlinkid))) {
+ return (error);
+ }
+ if (ap->a_command == HFS_NEXT_LINK) {
+ *(cnid_t *)ap->a_data = nextlinkid;
+ } else {
+ *(cnid_t *)ap->a_data = prevlinkid;
+ }
+ return (0);
+ }
+
+ case HFS_RESIZE_PROGRESS: {
+
+ vfsp = vfs_statfs(HFSTOVFS(hfsmp));
+ if (suser(cred, NULL) &&
+ kauth_cred_getuid(cred) != vfsp->f_owner) {
+ return (EACCES); /* must be owner of file system */
+ }
+ if (!vnode_isvroot(vp)) {
+ return (EINVAL);
+ }
+ /* file system must not be mounted read-only */
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return (EROFS);
+ }
+
+ return hfs_resize_progress(hfsmp, (u_int32_t *)ap->a_data);
+ }
+
+ case HFS_RESIZE_VOLUME: {
+ u_int64_t newsize;
+ u_int64_t cursize;
+
+ vfsp = vfs_statfs(HFSTOVFS(hfsmp));
+ if (suser(cred, NULL) &&
+ kauth_cred_getuid(cred) != vfsp->f_owner) {
+ return (EACCES); /* must be owner of file system */
+ }
+ if (!vnode_isvroot(vp)) {
+ return (EINVAL);
+ }
+
+ /* filesystem must not be mounted read only */
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return (EROFS);
+ }
+ newsize = *(u_int64_t *)ap->a_data;
+ cursize = (u_int64_t)hfsmp->totalBlocks * (u_int64_t)hfsmp->blockSize;
+
+ if (newsize > cursize) {
+ return hfs_extendfs(hfsmp, *(u_int64_t *)ap->a_data, context);
+ } else if (newsize < cursize) {
+ return hfs_truncatefs(hfsmp, *(u_int64_t *)ap->a_data, context);
+ } else {
+ return (0);
+ }
+ }
+ case HFS_CHANGE_NEXT_ALLOCATION: {
+ int error = 0; /* Assume success */
+ u_int32_t location;
+
+ if (vnode_vfsisrdonly(vp)) {
+ return (EROFS);
+ }
+ vfsp = vfs_statfs(HFSTOVFS(hfsmp));
+ if (suser(cred, NULL) &&
+ kauth_cred_getuid(cred) != vfsp->f_owner) {
+ return (EACCES); /* must be owner of file system */
+ }
+ if (!vnode_isvroot(vp)) {
+ return (EINVAL);
+ }
+ HFS_MOUNT_LOCK(hfsmp, TRUE);
+ location = *(u_int32_t *)ap->a_data;
+ if ((location >= hfsmp->allocLimit) &&
+ (location != HFS_NO_UPDATE_NEXT_ALLOCATION)) {
+ error = EINVAL;
+ goto fail_change_next_allocation;
+ }
+ /* Return previous value. */
+ *(u_int32_t *)ap->a_data = hfsmp->nextAllocation;
+ if (location == HFS_NO_UPDATE_NEXT_ALLOCATION) {
+ /* On magic value for location, set nextAllocation to next block
+ * after metadata zone and set flag in mount structure to indicate
+ * that nextAllocation should not be updated again.
+ */
+ if (hfsmp->hfs_metazone_end != 0) {
+ HFS_UPDATE_NEXT_ALLOCATION(hfsmp, hfsmp->hfs_metazone_end + 1);
+ }
+ hfsmp->hfs_flags |= HFS_SKIP_UPDATE_NEXT_ALLOCATION;
+ } else {
+ hfsmp->hfs_flags &= ~HFS_SKIP_UPDATE_NEXT_ALLOCATION;
+ HFS_UPDATE_NEXT_ALLOCATION(hfsmp, location);
+ }
+ MarkVCBDirty(hfsmp);
+fail_change_next_allocation:
+ HFS_MOUNT_UNLOCK(hfsmp, TRUE);
+ return (error);
+ }
+
+#ifdef HFS_SPARSE_DEV
+ case HFS_SETBACKINGSTOREINFO: {
+ struct vnode * bsfs_rootvp;
+ struct vnode * di_vp;
+ struct hfs_backingstoreinfo *bsdata;
+ int error = 0;
+
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return (EROFS);
+ }
+ if (hfsmp->hfs_flags & HFS_HAS_SPARSE_DEVICE) {
+ return (EALREADY);
+ }
+ vfsp = vfs_statfs(HFSTOVFS(hfsmp));
+ if (suser(cred, NULL) &&
+ kauth_cred_getuid(cred) != vfsp->f_owner) {
+ return (EACCES); /* must be owner of file system */
+ }
+ bsdata = (struct hfs_backingstoreinfo *)ap->a_data;
+ if (bsdata == NULL) {
+ return (EINVAL);
+ }
+ if ((error = file_vnode(bsdata->backingfd, &di_vp))) {
+ return (error);
+ }
+ if ((error = vnode_getwithref(di_vp))) {
+ file_drop(bsdata->backingfd);
+ return(error);
+ }
+
+ if (vnode_mount(vp) == vnode_mount(di_vp)) {
+ (void)vnode_put(di_vp);
+ file_drop(bsdata->backingfd);
+ return (EINVAL);
+ }
+
+ /*
+ * Obtain the backing fs root vnode and keep a reference
+ * on it. This reference will be dropped in hfs_unmount.
+ */
+ error = VFS_ROOT(vnode_mount(di_vp), &bsfs_rootvp, NULL); /* XXX use context! */
+ if (error) {
+ (void)vnode_put(di_vp);
+ file_drop(bsdata->backingfd);
+ return (error);
+ }
+ vnode_ref(bsfs_rootvp);
+ vnode_put(bsfs_rootvp);
+
+ hfsmp->hfs_backingfs_rootvp = bsfs_rootvp;
+ hfsmp->hfs_flags |= HFS_HAS_SPARSE_DEVICE;
+ hfsmp->hfs_sparsebandblks = bsdata->bandsize / HFSTOVCB(hfsmp)->blockSize;
+ hfsmp->hfs_sparsebandblks *= 4;
+
+ vfs_markdependency(hfsmp->hfs_mp);
+
+ /*
+ * If the sparse image is on a sparse image file (as opposed to a sparse
+ * bundle), then we may need to limit the free space to the maximum size
+ * of a file on that volume. So we query (using pathconf), and if we get
+ * a meaningful result, we cache the number of blocks for later use in
+ * hfs_freeblks().
+ */
+ hfsmp->hfs_backingfs_maxblocks = 0;
+ if (vnode_vtype(di_vp) == VREG) {
+ int terr;
+ int hostbits;
+ terr = vn_pathconf(di_vp, _PC_FILESIZEBITS, &hostbits, context);
+ if (terr == 0 && hostbits != 0 && hostbits < 64) {
+ u_int64_t hostfilesizemax = ((u_int64_t)1) << hostbits;
+
+ hfsmp->hfs_backingfs_maxblocks = hostfilesizemax / hfsmp->blockSize;
+ }
+ }
+
+ (void)vnode_put(di_vp);
+ file_drop(bsdata->backingfd);
+ return (0);
+ }
+ case HFS_CLRBACKINGSTOREINFO: {
+ struct vnode * tmpvp;
+
+ vfsp = vfs_statfs(HFSTOVFS(hfsmp));
+ if (suser(cred, NULL) &&
+ kauth_cred_getuid(cred) != vfsp->f_owner) {
+ return (EACCES); /* must be owner of file system */
+ }
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return (EROFS);
+ }
+
+ if ((hfsmp->hfs_flags & HFS_HAS_SPARSE_DEVICE) &&
+ hfsmp->hfs_backingfs_rootvp) {
+
+ hfsmp->hfs_flags &= ~HFS_HAS_SPARSE_DEVICE;
+ tmpvp = hfsmp->hfs_backingfs_rootvp;
+ hfsmp->hfs_backingfs_rootvp = NULLVP;
+ hfsmp->hfs_sparsebandblks = 0;
+ vnode_rele(tmpvp);
+ }
+ return (0);
+ }
+#endif /* HFS_SPARSE_DEV */
+
+ case F_FREEZE_FS: {
+ struct mount *mp;
+
+ mp = vnode_mount(vp);
+ hfsmp = VFSTOHFS(mp);
+
+ if (!(hfsmp->jnl))
+ return (ENOTSUP);
+
+ vfsp = vfs_statfs(mp);
+
+ if (kauth_cred_getuid(cred) != vfsp->f_owner &&
+ !kauth_cred_issuser(cred))
+ return (EACCES);
+
+ lck_rw_lock_exclusive(&hfsmp->hfs_insync);
+
+ // flush things before we get started to try and prevent
+ // dirty data from being paged out while we're frozen.
+ // note: can't do this after taking the lock as it will
+ // deadlock against ourselves.
+ vnode_iterate(mp, 0, hfs_freezewrite_callback, NULL);
+ hfs_global_exclusive_lock_acquire(hfsmp);
+
+ // DO NOT call hfs_journal_flush() because that takes a
+ // shared lock on the global exclusive lock!
+ journal_flush(hfsmp->jnl);
+
+ // don't need to iterate on all vnodes, we just need to
+ // wait for writes to the system files and the device vnode
+ if (HFSTOVCB(hfsmp)->extentsRefNum)
+ vnode_waitforwrites(HFSTOVCB(hfsmp)->extentsRefNum, 0, 0, 0, "hfs freeze");
+ if (HFSTOVCB(hfsmp)->catalogRefNum)
+ vnode_waitforwrites(HFSTOVCB(hfsmp)->catalogRefNum, 0, 0, 0, "hfs freeze");
+ if (HFSTOVCB(hfsmp)->allocationsRefNum)
+ vnode_waitforwrites(HFSTOVCB(hfsmp)->allocationsRefNum, 0, 0, 0, "hfs freeze");
+ if (hfsmp->hfs_attribute_vp)
+ vnode_waitforwrites(hfsmp->hfs_attribute_vp, 0, 0, 0, "hfs freeze");
+ vnode_waitforwrites(hfsmp->hfs_devvp, 0, 0, 0, "hfs freeze");
+
+ hfsmp->hfs_freezing_proc = current_proc();
+
+ return (0);
+ }
+
+ case F_THAW_FS: {
+ vfsp = vfs_statfs(vnode_mount(vp));
+ if (kauth_cred_getuid(cred) != vfsp->f_owner &&
+ !kauth_cred_issuser(cred))
+ return (EACCES);
+
+ // if we're not the one who froze the fs then we
+ // can't thaw it.
+ if (hfsmp->hfs_freezing_proc != current_proc()) {
+ return EPERM;
+ }
+
+ // NOTE: if you add code here, also go check the
+ // code that "thaws" the fs in hfs_vnop_close()
+ //
+ hfsmp->hfs_freezing_proc = NULL;
+ hfs_global_exclusive_lock_release(hfsmp);
+ lck_rw_unlock_exclusive(&hfsmp->hfs_insync);
+
+ return (0);
+ }
+
+ case HFS_BULKACCESS_FSCTL: {
+ int size;
+
+ if (hfsmp->hfs_flags & HFS_STANDARD) {
+ return EINVAL;
+ }
+
+ if (is64bit) {
+ size = sizeof(struct user64_access_t);
+ } else {
+ size = sizeof(struct user32_access_t);
+ }
+
+ return do_bulk_access_check(hfsmp, vp, ap, size, context);
+ }
+
+ case HFS_EXT_BULKACCESS_FSCTL: {
+ int size;
+
+ if (hfsmp->hfs_flags & HFS_STANDARD) {
+ return EINVAL;
+ }
+
+ if (is64bit) {
+ size = sizeof(struct user64_ext_access_t);
+ } else {
+ size = sizeof(struct user32_ext_access_t);
+ }
+
+ return do_bulk_access_check(hfsmp, vp, ap, size, context);
+ }
+
+ case HFS_SETACLSTATE: {
+ int state;
+
+ if (ap->a_data == NULL) {
+ return (EINVAL);
+ }
+
+ vfsp = vfs_statfs(HFSTOVFS(hfsmp));
+ state = *(int *)ap->a_data;
+
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return (EROFS);
+ }
+ // super-user can enable or disable acl's on a volume.
+ // the volume owner can only enable acl's
+ if (!is_suser() && (state == 0 || kauth_cred_getuid(cred) != vfsp->f_owner)) {
+ return (EPERM);
+ }
+ if (state == 0 || state == 1)
+ return hfs_set_volxattr(hfsmp, HFS_SETACLSTATE, state);
+ else
+ return (EINVAL);
+ }
+
+ case HFS_SET_XATTREXTENTS_STATE: {
+ int state;
+
+ if (ap->a_data == NULL) {
+ return (EINVAL);
+ }
+
+ state = *(int *)ap->a_data;
+
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return (EROFS);
+ }
+
+ /* Super-user can enable or disable extent-based extended
+ * attribute support on a volume
+ */
+ if (!is_suser()) {
+ return (EPERM);
+ }
+ if (state == 0 || state == 1)
+ return hfs_set_volxattr(hfsmp, HFS_SET_XATTREXTENTS_STATE, state);
+ else
+ return (EINVAL);
+ }
+
+ case F_FULLFSYNC: {
+ int error;
+
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return (EROFS);
+ }
+ error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK);
+ if (error == 0) {
+ error = hfs_fsync(vp, MNT_WAIT, TRUE, p);
+ hfs_unlock(VTOC(vp));
+ }
+
+ return error;
+ }
+
+ case F_CHKCLEAN: {
+ register struct cnode *cp;
+ int error;
+
+ if (!vnode_isreg(vp))
+ return EINVAL;
+
+ error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK);
+ if (error == 0) {
+ cp = VTOC(vp);
+ /*
+ * used by regression test to determine if
+ * all the dirty pages (via write) have been cleaned
+ * after a call to 'fsysnc'.
+ */
+ error = is_file_clean(vp, VTOF(vp)->ff_size);
+ hfs_unlock(cp);
+ }
+ return (error);
+ }
+
+ case F_RDADVISE: {
+ register struct radvisory *ra;
+ struct filefork *fp;
+ int error;
+
+ if (!vnode_isreg(vp))
+ return EINVAL;
+
+ ra = (struct radvisory *)(ap->a_data);
+ fp = VTOF(vp);
+
+ /* Protect against a size change. */
+ hfs_lock_truncate(VTOC(vp), TRUE);
+
+#if HFS_COMPRESSION
+ if (compressed && (uncompressed_size == -1)) {
+ /* fetching the uncompressed size failed above, so return the error */
+ error = decmpfs_error;
+ } else if ((compressed && (ra->ra_offset >= uncompressed_size)) ||
+ (!compressed && (ra->ra_offset >= fp->ff_size))) {
+ error = EFBIG;
+ }
+#else /* HFS_COMPRESSION */
+ if (ra->ra_offset >= fp->ff_size) {
+ error = EFBIG;
+ }
+#endif /* HFS_COMPRESSION */
+ else {
+ error = advisory_read(vp, fp->ff_size, ra->ra_offset, ra->ra_count);
+ }
+
+ hfs_unlock_truncate(VTOC(vp), TRUE);
+ return (error);
+ }
+
+ case F_READBOOTSTRAP:
+ case F_WRITEBOOTSTRAP:
+ {
+ struct vnode *devvp = NULL;
+ user_fbootstraptransfer_t *user_bootstrapp;
+ int devBlockSize;
+ int error;
+ uio_t auio;
+ daddr64_t blockNumber;
+ u_int32_t blockOffset;
+ u_int32_t xfersize;
+ struct buf *bp;
+ user_fbootstraptransfer_t user_bootstrap;
+
+ if (!vnode_isvroot(vp))
+ return (EINVAL);
+ /* LP64 - when caller is a 64 bit process then we are passed a pointer
+ * to a user_fbootstraptransfer_t else we get a pointer to a
+ * fbootstraptransfer_t which we munge into a user_fbootstraptransfer_t
+ */
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return (EROFS);
+ }
+ if (is64bit) {
+ user_bootstrapp = (user_fbootstraptransfer_t *)ap->a_data;
+ }
+ else {
+ user32_fbootstraptransfer_t *bootstrapp = (user32_fbootstraptransfer_t *)ap->a_data;
+ user_bootstrapp = &user_bootstrap;
+ user_bootstrap.fbt_offset = bootstrapp->fbt_offset;
+ user_bootstrap.fbt_length = bootstrapp->fbt_length;
+ user_bootstrap.fbt_buffer = CAST_USER_ADDR_T(bootstrapp->fbt_buffer);
+ }
+ if (user_bootstrapp->fbt_offset + user_bootstrapp->fbt_length > 1024)
+ return EINVAL;
+
+ devvp = VTOHFS(vp)->hfs_devvp;
+ auio = uio_create(1, user_bootstrapp->fbt_offset,
+ is64bit ? UIO_USERSPACE64 : UIO_USERSPACE32,
+ (ap->a_command == F_WRITEBOOTSTRAP) ? UIO_WRITE : UIO_READ);
+ uio_addiov(auio, user_bootstrapp->fbt_buffer, user_bootstrapp->fbt_length);
+
+ devBlockSize = vfs_devblocksize(vnode_mount(vp));
+
+ while (uio_resid(auio) > 0) {
+ blockNumber = uio_offset(auio) / devBlockSize;
+ error = (int)buf_bread(devvp, blockNumber, devBlockSize, cred, &bp);
+ if (error) {
+ if (bp) buf_brelse(bp);
+ uio_free(auio);
+ return error;
+ };
+
+ blockOffset = uio_offset(auio) % devBlockSize;
+ xfersize = devBlockSize - blockOffset;
+ error = uiomove((caddr_t)buf_dataptr(bp) + blockOffset, (int)xfersize, auio);
+ if (error) {
+ buf_brelse(bp);
+ uio_free(auio);
+ return error;
+ };
+ if (uio_rw(auio) == UIO_WRITE) {
+ error = VNOP_BWRITE(bp);
+ if (error) {
+ uio_free(auio);
+ return error;
+ }
+ } else {
+ buf_brelse(bp);
+ };
+ };
+ uio_free(auio);
+ };
+ return 0;
+
+ case _IOC(IOC_OUT,'h', 4, 0): /* Create date in local time */
+ {
+ if (is64bit) {
+ *(user_time_t *)(ap->a_data) = (user_time_t) (to_bsd_time(VTOVCB(vp)->localCreateDate));
+ }
+ else {
+ *(user32_time_t *)(ap->a_data) = (user32_time_t) (to_bsd_time(VTOVCB(vp)->localCreateDate));
+ }
+ return 0;
+ }
+
+ case SPOTLIGHT_FSCTL_GET_MOUNT_TIME:
+ *(uint32_t *)ap->a_data = hfsmp->hfs_mount_time;
+ break;
+
+ case SPOTLIGHT_FSCTL_GET_LAST_MTIME:
+ *(uint32_t *)ap->a_data = hfsmp->hfs_last_mounted_mtime;
+ break;
+
+ case HFS_FSCTL_SET_VERY_LOW_DISK:
+ if (*(uint32_t *)ap->a_data >= hfsmp->hfs_freespace_notify_warninglimit) {
+ return EINVAL;
+ }
+
+ hfsmp->hfs_freespace_notify_dangerlimit = *(uint32_t *)ap->a_data;
+ break;
+
+ case HFS_FSCTL_SET_LOW_DISK:
+ if ( *(uint32_t *)ap->a_data >= hfsmp->hfs_freespace_notify_desiredlevel
+ || *(uint32_t *)ap->a_data <= hfsmp->hfs_freespace_notify_dangerlimit) {
+
+ return EINVAL;
+ }
+
+ hfsmp->hfs_freespace_notify_warninglimit = *(uint32_t *)ap->a_data;
+ break;
+
+ case HFS_FSCTL_SET_DESIRED_DISK:
+ if (*(uint32_t *)ap->a_data <= hfsmp->hfs_freespace_notify_warninglimit) {
+ return EINVAL;
+ }
+
+ hfsmp->hfs_freespace_notify_desiredlevel = *(uint32_t *)ap->a_data;
+ break;
+
+ case HFS_VOLUME_STATUS:
+ *(uint32_t *)ap->a_data = hfsmp->hfs_notification_conditions;
+ break;
+
+ case HFS_SET_BOOT_INFO:
+ if (!vnode_isvroot(vp))
+ return(EINVAL);
+ if (!kauth_cred_issuser(cred) && (kauth_cred_getuid(cred) != vfs_statfs(HFSTOVFS(hfsmp))->f_owner))
+ return(EACCES); /* must be superuser or owner of filesystem */
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return (EROFS);
+ }
+ HFS_MOUNT_LOCK(hfsmp, TRUE);
+ bcopy(ap->a_data, &hfsmp->vcbFndrInfo, sizeof(hfsmp->vcbFndrInfo));
+ HFS_MOUNT_UNLOCK(hfsmp, TRUE);
+ (void) hfs_flushvolumeheader(hfsmp, MNT_WAIT, 0);
+ break;
+
+ case HFS_GET_BOOT_INFO:
+ if (!vnode_isvroot(vp))
+ return(EINVAL);
+ HFS_MOUNT_LOCK(hfsmp, TRUE);
+ bcopy(&hfsmp->vcbFndrInfo, ap->a_data, sizeof(hfsmp->vcbFndrInfo));
+ HFS_MOUNT_UNLOCK(hfsmp, TRUE);
+ break;
+
+ case HFS_MARK_BOOT_CORRUPT:
+ /* Mark the boot volume corrupt by setting
+ * kHFSVolumeInconsistentBit in the volume header. This will
+ * force fsck_hfs on next mount.
+ */
+ if (!is_suser()) {
+ return EACCES;
+ }
+
+ /* Allowed only on the root vnode of the boot volume */
+ if (!(vfs_flags(HFSTOVFS(hfsmp)) & MNT_ROOTFS) ||
+ !vnode_isvroot(vp)) {
+ return EINVAL;
+ }
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return (EROFS);
+ }
+ printf ("hfs_vnop_ioctl: Marking the boot volume corrupt.\n");
+ hfs_mark_volume_inconsistent(hfsmp);
+ break;
+
+ case HFS_FSCTL_GET_JOURNAL_INFO:
+ jip = (struct hfs_journal_info*)ap->a_data;
+
+ if (vp == NULLVP)
+ return EINVAL;
+
+ if (hfsmp->jnl == NULL) {
+ jnl_start = 0;
+ jnl_size = 0;
+ } else {
+ jnl_start = (off_t)(hfsmp->jnl_start * HFSTOVCB(hfsmp)->blockSize) + (off_t)HFSTOVCB(hfsmp)->hfsPlusIOPosOffset;
+ jnl_size = (off_t)hfsmp->jnl_size;
+ }
+
+ jip->jstart = jnl_start;
+ jip->jsize = jnl_size;
+ break;
+
+ case HFS_SET_ALWAYS_ZEROFILL: {
+ struct cnode *cp = VTOC(vp);
+
+ if (*(int *)ap->a_data) {
+ cp->c_flag |= C_ALWAYS_ZEROFILL;
+ } else {
+ cp->c_flag &= ~C_ALWAYS_ZEROFILL;
+ }
+ break;
+ }
+
+ default:
+ return (ENOTTY);
+ }
+
+ return 0;
+}
+
+/*
+ * select
+ */
+int
+hfs_vnop_select(__unused struct vnop_select_args *ap)
+/*
+ struct vnop_select_args {
+ vnode_t a_vp;
+ int a_which;
+ int a_fflags;
+ void *a_wql;
+ vfs_context_t a_context;
+ };
+*/
+{
+ /*
+ * We should really check to see if I/O is possible.
+ */
+ return (1);
+}
+
+/*
+ * Converts a logical block number to a physical block, and optionally returns
+ * the amount of remaining blocks in a run. The logical block is based on hfsNode.logBlockSize.
+ * The physical block number is based on the device block size, currently its 512.
+ * The block run is returned in logical blocks, and is the REMAINING amount of blocks
+ */
+int
+hfs_bmap(struct vnode *vp, daddr_t bn, struct vnode **vpp, daddr64_t *bnp, unsigned int *runp)
+{
+ struct filefork *fp = VTOF(vp);
+ struct hfsmount *hfsmp = VTOHFS(vp);
+ int retval = E_NONE;
+ u_int32_t logBlockSize;
+ size_t bytesContAvail = 0;
+ off_t blockposition;
+ int lockExtBtree;
+ int lockflags = 0;
+
+ /*
+ * Check for underlying vnode requests and ensure that logical
+ * to physical mapping is requested.
+ */
+ if (vpp != NULL)
+ *vpp = hfsmp->hfs_devvp;
+ if (bnp == NULL)
+ return (0);
+
+ logBlockSize = GetLogicalBlockSize(vp);
+ blockposition = (off_t)bn * logBlockSize;
+
+ lockExtBtree = overflow_extents(fp);
+
+ if (lockExtBtree)
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_EXTENTS, HFS_EXCLUSIVE_LOCK);
+
+ retval = MacToVFSError(
+ MapFileBlockC (HFSTOVCB(hfsmp),
+ (FCB*)fp,
+ MAXPHYSIO,
+ blockposition,
+ bnp,
+ &bytesContAvail));
+
+ if (lockExtBtree)
+ hfs_systemfile_unlock(hfsmp, lockflags);
+
+ if (retval == E_NONE) {
+ /* Figure out how many read ahead blocks there are */
+ if (runp != NULL) {
+ if (can_cluster(logBlockSize)) {
+ /* Make sure this result never goes negative: */
+ *runp = (bytesContAvail < logBlockSize) ? 0 : (bytesContAvail / logBlockSize) - 1;
+ } else {
+ *runp = 0;
+ }
+ }
+ }
+ return (retval);
+}
+
+/*
+ * Convert logical block number to file offset.
+ */
+int
+hfs_vnop_blktooff(struct vnop_blktooff_args *ap)
+/*
+ struct vnop_blktooff_args {
+ vnode_t a_vp;
+ daddr64_t a_lblkno;
+ off_t *a_offset;
+ };
+*/
+{