+
/*
- * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2002 Apple Computer, Inc. All rights reserved.
*
* @APPLE_LICENSE_HEADER_START@
*
#define CL_READ 0x01
#define CL_ASYNC 0x02
#define CL_COMMIT 0x04
-#define CL_NOMAP 0x08
#define CL_PAGEOUT 0x10
#define CL_AGE 0x20
#define CL_DUMP 0x40
#define CL_PAGEIN 0x100
#define CL_DEV_MEMORY 0x200
+static void cluster_zero(upl_t upl, vm_offset_t upl_offset,
+ int size, struct buf *bp);
+static int cluster_read_x(struct vnode *vp, struct uio *uio,
+ off_t filesize, int devblocksize, int flags);
+static int cluster_write_x(struct vnode *vp, struct uio *uio,
+ off_t oldEOF, off_t newEOF, off_t headOff,
+ off_t tailOff, int devblocksize, int flags);
+static int cluster_nocopy_read(struct vnode *vp, struct uio *uio,
+ off_t filesize, int devblocksize, int flags);
+static int cluster_nocopy_write(struct vnode *vp, struct uio *uio,
+ off_t newEOF, int devblocksize, int flags);
+static int cluster_phys_read(struct vnode *vp, struct uio *uio,
+ off_t filesize);
+static int cluster_phys_write(struct vnode *vp, struct uio *uio, off_t newEOF);
+static int cluster_push_x(struct vnode *vp, off_t EOF, daddr_t first, daddr_t last, int can_delay);
+static int cluster_try_push(struct vnode *vp, off_t newEOF, int can_delay, int push_all);
+
+
/*
* throttle the number of async writes that
* can be outstanding on a single vnode
int total_size;
int total_resid;
int upl_offset;
+ int zero_offset;
upl_t upl;
struct buf *cbp;
struct buf *cbp_head;
cbp_head = (struct buf *)(bp->b_trans_head);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_START,
- cbp_head, bp->b_lblkno, bp->b_bcount, bp->b_flags, 0);
+ (int)cbp_head, bp->b_lblkno, bp->b_bcount, bp->b_flags, 0);
for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) {
/*
if ( !(cbp->b_flags & B_DONE)) {
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
- cbp_head, cbp, cbp->b_bcount, cbp->b_flags, 0);
+ (int)cbp_head, (int)cbp, cbp->b_bcount, cbp->b_flags, 0);
return 0;
}
b_flags = cbp->b_flags;
real_bp = cbp->b_real_bp;
vp = cbp->b_vp;
+ zero_offset= cbp->b_validend;
while (cbp) {
if (cbp->b_vectorcount > 1)
vp->v_flag &= ~VTHROTTLED;
wakeup((caddr_t)&vp->v_numoutput);
}
+ if (zero_offset)
+ cluster_zero(upl, zero_offset, PAGE_SIZE - (zero_offset & PAGE_MASK), real_bp);
+
if ((b_flags & B_NEED_IODONE) && real_bp) {
if (error) {
real_bp->b_flags |= B_ERROR;
if (error || (b_flags & B_NOCACHE)) {
int upl_abort_code;
- if (b_flags & B_PAGEOUT)
+ if ((b_flags & B_PAGEOUT) && (error != ENXIO)) /* transient error */
upl_abort_code = UPL_ABORT_FREE_ON_EMPTY;
else if (b_flags & B_PGIN)
upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR;
upl_abort_code);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
- upl, upl_offset - pg_offset, commit_size,
+ (int)upl, upl_offset - pg_offset, commit_size,
0x80000000|upl_abort_code, 0);
} else {
upl_commit_flags);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
- upl, upl_offset - pg_offset, commit_size,
+ (int)upl, upl_offset - pg_offset, commit_size,
upl_commit_flags, 0);
}
} else
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
- upl, upl_offset, 0, error, 0);
+ (int)upl, upl_offset, 0, error, 0);
return (error);
}
static void
-cluster_zero(upl, upl_offset, size, flags, bp)
+cluster_zero(upl, upl_offset, size, bp)
upl_t upl;
vm_offset_t upl_offset;
int size;
- int flags;
struct buf *bp;
{
vm_offset_t io_addr = 0;
+ int must_unmap = 0;
kern_return_t kret;
- if ( !(flags & CL_NOMAP)) {
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_NONE,
+ upl_offset, size, (int)bp, 0, 0);
+
+ if (bp == NULL || bp->b_data == NULL) {
kret = ubc_upl_map(upl, &io_addr);
if (kret != KERN_SUCCESS)
panic("cluster_zero: ubc_upl_map() failed with (%d)", kret);
if (io_addr == 0)
panic("cluster_zero: ubc_upl_map() mapped 0");
+
+ must_unmap = 1;
} else
io_addr = (vm_offset_t)bp->b_data;
bzero((caddr_t)(io_addr + upl_offset), size);
- if ( !(flags & CL_NOMAP)) {
+ if (must_unmap) {
kret = ubc_upl_unmap(upl);
if (kret != KERN_SUCCESS)
}
static int
-cluster_io(vp, upl, upl_offset, f_offset, size, flags, real_bp)
+cluster_io(vp, upl, upl_offset, f_offset, non_rounded_size, devblocksize, flags, real_bp)
struct vnode *vp;
upl_t upl;
vm_offset_t upl_offset;
off_t f_offset;
- int size;
+ int non_rounded_size;
+ int devblocksize;
int flags;
struct buf *real_bp;
{
struct buf *cbp;
struct iovec *iovp;
+ u_int size;
int io_flags;
int error = 0;
int retval = 0;
struct buf *cbp_head = 0;
struct buf *cbp_tail = 0;
upl_page_info_t *pl;
+ int buf_count = 0;
int pg_count;
int pg_offset;
- int max_iosize;
- int max_vectors;
+ u_int max_iosize;
+ u_int max_vectors;
int priv;
+ int zero_offset = 0;
if (flags & CL_READ) {
io_flags = (B_VECTORLIST | B_READ);
if (flags & CL_PAGEIN)
io_flags |= B_PGIN;
+ if (devblocksize)
+ size = (non_rounded_size + (devblocksize - 1)) & ~(devblocksize - 1);
+ else
+ size = non_rounded_size;
+
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_START,
(int)f_offset, size, upl_offset, flags, 0);
- if ((flags & CL_READ) && ((upl_offset + size) & PAGE_MASK) && (!(flags & CL_NOZERO))) {
+ if ((flags & CL_READ) && ((upl_offset + non_rounded_size) & PAGE_MASK) && (!(flags & CL_NOZERO))) {
/*
* then we are going to end up
* with a page that we can't complete (the file size wasn't a multiple
* so we'll go ahead and zero out the portion of the page we can't
* read in from the file
*/
- cluster_zero(upl, upl_offset + size, PAGE_SIZE - ((upl_offset + size) & PAGE_MASK), flags, real_bp);
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_NONE,
- upl_offset + size, PAGE_SIZE - ((upl_offset + size) & PAGE_MASK),
- flags, real_bp, 0);
+ zero_offset = upl_offset + non_rounded_size;
}
while (size) {
size_t io_size;
}
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 24)) | DBG_FUNC_NONE,
- (int)f_offset, (int)blkno, io_size, 0, 0);
+ (int)f_offset, (int)blkno, io_size, zero_offset, 0);
if ( (!(flags & CL_READ) && (long)blkno == -1) || io_size == 0) {
if (flags & CL_PAGEOUT) {
pg_count = 1;
}
if ((flags & CL_READ) && (long)blkno == -1) {
+ int bytes_to_zero;
+
/*
* if we're reading and blkno == -1, then we've got a
* 'hole' in the file that we need to deal with by zeroing
* out the affected area in the upl
*/
- cluster_zero(upl, upl_offset, io_size, flags, real_bp);
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_NONE,
- upl_offset, io_size, flags, real_bp, 0);
+ if (zero_offset && io_size == size) {
+ /*
+ * if this upl contains the EOF and it is not a multiple of PAGE_SIZE
+ * than 'zero_offset' will be non-zero
+ * if the 'hole' returned by VOP_CMAP extends all the way to the eof
+ * (indicated by the io_size finishing off the I/O request for this UPL)
+ * than we're not going to issue an I/O for the
+ * last page in this upl... we need to zero both the hole and the tail
+ * of the page beyond the EOF, since the delayed zero-fill won't kick in
+ */
+ bytes_to_zero = (((upl_offset + io_size) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - upl_offset;
- pg_count = (io_size - pg_offset) / PAGE_SIZE;
+ zero_offset = 0;
+ } else
+ bytes_to_zero = io_size;
+ cluster_zero(upl, upl_offset, bytes_to_zero, real_bp);
+
+ if (cbp_head)
+ /*
+ * if there is a current I/O chain pending
+ * then the first page of the group we just zero'd
+ * will be handled by the I/O completion if the zero
+ * fill started in the middle of the page
+ */
+ pg_count = (io_size - pg_offset) / PAGE_SIZE;
+ else {
+ /*
+ * no pending I/O to pick up that first page
+ * so, we have to make sure it gets committed
+ * here.
+ * set the pg_offset to 0 so that the upl_commit_range
+ * starts with this page
+ */
+ pg_count = (io_size + pg_offset) / PAGE_SIZE;
+ pg_offset = 0;
+ }
if (io_size == size && ((upl_offset + io_size) & PAGE_MASK))
+ /*
+ * if we're done with the request for this UPL
+ * then we have to make sure to commit the last page
+ * even if we only partially zero-filled it
+ */
pg_count++;
if (pg_count) {
pg_resid = PAGE_SIZE - pg_offset;
else
pg_resid = 0;
+
if (flags & CL_COMMIT)
ubc_upl_commit_range(upl,
- upl_offset + pg_resid,
+ (upl_offset + pg_resid) & ~PAGE_MASK,
pg_count * PAGE_SIZE,
UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY);
}
f_offset += io_size;
size -= io_size;
- if (cbp_head && pg_count)
+ if (cbp_head && pg_count)
goto start_io;
continue;
+
} else if (real_bp && (real_bp->b_blkno == real_bp->b_lblkno)) {
real_bp->b_blkno = blkno;
}
cbp_tail = cbp;
}
(struct buf *)(cbp->b_trans_head) = cbp_head;
+ buf_count++;
upl_offset += io_size;
f_offset += io_size;
size -= io_size;
- if ( (!(upl_offset & PAGE_MASK) && !(flags & CL_DEV_MEMORY)) || size == 0) {
+ if ( (!(upl_offset & PAGE_MASK) && !(flags & CL_DEV_MEMORY) && ((flags & CL_ASYNC) || buf_count > 8)) || size == 0) {
/*
* if we have no more I/O to issue or
* the current I/O we've prepared fully
* completes the last page in this request
- * or it's been completed via a zero-fill
- * due to a 'hole' in the file
+ * and it's either an ASYNC request or
+ * we've already accumulated more than 8 I/O's into
+ * this transaction and it's not an I/O directed to
+ * special DEVICE memory
* then go ahead and issue the I/O
*/
start_io:
if (real_bp) {
cbp_head->b_flags |= B_NEED_IODONE;
cbp_head->b_real_bp = real_bp;
- }
+ } else
+ cbp_head->b_real_bp = (struct buf *)NULL;
+ if (size == 0) {
+ /*
+ * we're about to issue the last I/O for this upl
+ * if this was a read to the eof and the eof doesn't
+ * finish on a page boundary, than we need to zero-fill
+ * the rest of the page....
+ */
+ cbp_head->b_validend = zero_offset;
+ } else
+ cbp_head->b_validend = 0;
+
for (cbp = cbp_head; cbp;) {
struct buf * cbp_next;
cbp->b_vp->v_numoutput++;
cbp_next = cbp->b_trans_next;
-
+
(void) VOP_STRATEGY(cbp);
cbp = cbp_next;
}
biowait(cbp);
if (error = cluster_iodone(cbp_head)) {
- retval = error;
+ if ((flags & CL_PAGEOUT) && (error == ENXIO))
+ retval = 0; /* drop the error */
+ else
+ retval = error;
error = 0;
}
}
cbp_head = (struct buf *)0;
cbp_tail = (struct buf *)0;
+
+ buf_count = 0;
}
}
if (error) {
if (flags & CL_COMMIT) {
int upl_abort_code;
- if (flags & CL_PAGEOUT)
+ if ((flags & CL_PAGEOUT) && (error != ENXIO)) /* transient error */
upl_abort_code = UPL_ABORT_FREE_ON_EMPTY;
else if (flags & CL_PAGEIN)
upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR;
upl_abort_code);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 28)) | DBG_FUNC_NONE,
- upl, upl_offset - pg_offset, abort_size, error, 0);
+ (int)upl, upl_offset - pg_offset, abort_size, error, 0);
}
if (real_bp) {
real_bp->b_flags |= B_ERROR;
off_t filesize;
int devblocksize;
{
- upl_t upl;
- upl_page_info_t *pl;
- int pages_in_upl;
- int start_pg;
- int last_pg;
- int last_valid;
- int io_size;
-
+ int pages_to_fetch;
+ int skipped_pages;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_START,
(int)f_offset, size, (int)filesize, 0, 0);
(int)f_offset, 0, 0, 0, 0);
return(0);
}
- if (ubc_page_op(vp, f_offset, 0, 0, 0) == KERN_SUCCESS) {
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END,
- (int)f_offset, 0, 0, 0, 0);
- return(1);
- }
if (size > (MAX_UPL_TRANSFER * PAGE_SIZE))
size = MAX_UPL_TRANSFER * PAGE_SIZE;
else
size = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
- if ((off_t)size > (filesize - f_offset))
- size = ((filesize - f_offset) + (devblocksize - 1)) & ~(devblocksize - 1);
+ if ((off_t)size > (filesize - f_offset))
+ size = filesize - f_offset;
- pages_in_upl = (size + (PAGE_SIZE - 1)) / PAGE_SIZE;
-
- ubc_create_upl(vp,
- f_offset,
- pages_in_upl * PAGE_SIZE,
- &upl,
- &pl,
- UPL_FLAGS_NONE);
+ pages_to_fetch = (size + (PAGE_SIZE - 1)) / PAGE_SIZE;
- if (upl == (upl_t) 0)
- return(0);
-
- /*
- * scan from the beginning of the upl looking for the first
- * non-valid page.... this will become the first page in
- * the request we're going to make to 'cluster_io'... if all
- * of the pages are valid, we won't call through to 'cluster_io'
- */
- for (start_pg = 0; start_pg < pages_in_upl; start_pg++) {
- if (!upl_valid_page(pl, start_pg))
+ for (skipped_pages = 0; skipped_pages < pages_to_fetch; skipped_pages++) {
+ if (ubc_page_op(vp, f_offset, 0, 0, 0) != KERN_SUCCESS)
break;
+ f_offset += PAGE_SIZE;
+ size -= PAGE_SIZE;
}
-
- /*
- * scan from the starting invalid page looking for a valid
- * page before the end of the upl is reached, if we
- * find one, then it will be the last page of the request to
- * 'cluster_io'
- */
- for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) {
- if (upl_valid_page(pl, last_pg))
- break;
- }
-
- /*
- * if we find any more free valid pages at the tail of the upl
- * than update maxra accordingly....
- */
- for (last_valid = last_pg; last_valid < pages_in_upl; last_valid++) {
- if (!upl_valid_page(pl, last_valid))
- break;
- }
- if (start_pg < last_pg) {
- vm_offset_t upl_offset;
-
- /*
- * we found a range of 'invalid' pages that must be filled
- * 'size' has already been clipped to the LEOF
- * make sure it's at least a multiple of the device block size
- */
- upl_offset = start_pg * PAGE_SIZE;
- io_size = (last_pg - start_pg) * PAGE_SIZE;
-
- if ((upl_offset + io_size) > size) {
- io_size = size - upl_offset;
-
- KERNEL_DEBUG(0xd001000, upl_offset, size, io_size, 0, 0);
- }
- cluster_io(vp, upl, upl_offset, f_offset + upl_offset, io_size,
- CL_READ | CL_COMMIT | CL_ASYNC | CL_AGE, (struct buf *)0);
- }
- if (start_pg) {
- /*
- * start_pg of non-zero indicates we found some already valid pages
- * at the beginning of the upl.... we need to release these without
- * modifying there state
- */
- ubc_upl_abort_range(upl, 0, start_pg * PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY);
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 50)) | DBG_FUNC_NONE,
- upl, 0, start_pg * PAGE_SIZE, 0, 0);
- }
- if (last_pg < pages_in_upl) {
- /*
- * the set of pages that we issued an I/O for did not extend all the
- * way to the end of the upl... so just release them without modifying
- * there state
- */
- ubc_upl_abort_range(upl, last_pg * PAGE_SIZE, (pages_in_upl - last_pg) * PAGE_SIZE,
- UPL_ABORT_FREE_ON_EMPTY);
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 50)) | DBG_FUNC_NONE,
- upl, last_pg * PAGE_SIZE, (pages_in_upl - last_pg) * PAGE_SIZE, 0, 0);
- }
+ if (skipped_pages < pages_to_fetch)
+ advisory_read(vp, filesize, f_offset, size, devblocksize);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END,
- (int)f_offset + (last_valid * PAGE_SIZE), 0, 0, 0, 0);
+ (int)f_offset + (pages_to_fetch * PAGE_SIZE), skipped_pages, 0, 1, 0);
- return(last_valid);
+ return (pages_to_fetch);
}
return;
}
- if (vp->v_lastr == -1 || (b_lblkno != vp->v_lastr && b_lblkno != (vp->v_lastr + 1) && b_lblkno != (vp->v_maxra + 1))) {
+ if (vp->v_lastr == -1 || (b_lblkno != vp->v_lastr && b_lblkno != (vp->v_lastr + 1) &&
+ (b_lblkno != (vp->v_maxra + 1) || vp->v_ralen == 0))) {
vp->v_ralen = 0;
vp->v_maxra = 0;
vp->v_ralen = min(max_pages, (e_lblkno + 1) - b_lblkno);
if (e_lblkno < vp->v_maxra) {
- if ((vp->v_maxra - e_lblkno) > (max_pages / 4)) {
+ if ((vp->v_maxra - e_lblkno) > max(max_pages / 16, 4)) {
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
vp->v_ralen, vp->v_maxra, vp->v_lastr, 2, 0);
r_lblkno = max(e_lblkno, vp->v_maxra) + 1;
f_offset = (off_t)r_lblkno * PAGE_SIZE_64;
- size_of_prefetch = cluster_rd_prefetch(vp, f_offset, vp->v_ralen * PAGE_SIZE, filesize, devblocksize);
-
- if (size_of_prefetch)
- vp->v_maxra = r_lblkno + (size_of_prefetch - 1);
+ if (f_offset < filesize) {
+ size_of_prefetch = cluster_rd_prefetch(vp, f_offset, vp->v_ralen * PAGE_SIZE, filesize, devblocksize);
+ if (size_of_prefetch)
+ vp->v_maxra = (r_lblkno + size_of_prefetch) - 1;
+ }
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
vp->v_ralen, vp->v_maxra, vp->v_lastr, 3, 0);
}
-
+int
cluster_pageout(vp, upl, upl_offset, f_offset, size, filesize, devblocksize, flags)
struct vnode *vp;
upl_t upl;
if ((flags & UPL_NOCOMMIT) == 0)
local_flags |= CL_COMMIT;
- if (upl == (upl_t) 0)
- panic("cluster_pageout: can't handle NULL upl yet\n");
-
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 52)) | DBG_FUNC_NONE,
(int)f_offset, size, (int)filesize, local_flags, 0);
if (vp->v_mount->mnt_flag & MNT_RDONLY) {
if (local_flags & CL_COMMIT)
- ubc_upl_abort_range(upl, upl_offset, size,
- UPL_ABORT_FREE_ON_EMPTY);
+ ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY);
return (EROFS);
}
/*
if (size < max_size)
io_size = size;
else
- io_size = (max_size + (devblocksize - 1)) & ~(devblocksize - 1);
+ io_size = max_size;
pg_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
tsleep((caddr_t)&vp->v_numoutput, PRIBIO + 1, "cluster_pageout", 0);
}
- return (cluster_io(vp, upl, upl_offset, f_offset, io_size,
+ return (cluster_io(vp, upl, upl_offset, f_offset, io_size, devblocksize,
local_flags, (struct buf *)0));
}
-
+int
cluster_pagein(vp, upl, upl_offset, f_offset, size, filesize, devblocksize, flags)
struct vnode *vp;
upl_t upl;
int flags;
{
u_int io_size;
- int pg_size;
+ int rounded_size;
off_t max_size;
int retval;
int local_flags = 0;
+ if (upl == NULL || size < 0)
+ panic("cluster_pagein: NULL upl passed in");
- /*
- * If they didn't ask for any data, then we are done...
- * we can't issue an abort because we don't know how
- * big the upl really is
- */
- if (size <= 0)
- return (EINVAL);
-
+ if ((flags & UPL_IOSYNC) == 0)
+ local_flags |= CL_ASYNC;
if ((flags & UPL_NOCOMMIT) == 0)
- local_flags = CL_COMMIT;
+ local_flags |= CL_COMMIT;
+
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 56)) | DBG_FUNC_NONE,
(int)f_offset, size, (int)filesize, local_flags, 0);
* or the size requested isn't a multiple of PAGE_SIZE
*/
if (f_offset < 0 || f_offset >= filesize ||
- (f_offset & PAGE_MASK_64) || (size & PAGE_MASK)) {
- if (local_flags & CL_COMMIT)
- ubc_upl_abort_range(upl, upl_offset, size,
- UPL_ABORT_ERROR | UPL_ABORT_FREE_ON_EMPTY);
+ (f_offset & PAGE_MASK_64) || (size & PAGE_MASK) || (upl_offset & PAGE_MASK)) {
+ if (local_flags & CL_COMMIT)
+ ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR);
return (EINVAL);
}
max_size = filesize - f_offset;
if (size < max_size)
io_size = size;
else
- io_size = (max_size + (devblocksize - 1)) & ~(devblocksize - 1);
+ io_size = max_size;
- pg_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
+ rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
- if (upl == (upl_t) 0) {
- ubc_create_upl( vp,
- f_offset,
- pg_size,
- &upl,
- NULL,
- UPL_FLAGS_NONE);
-
- if (upl == (upl_t) 0)
- return (EINVAL);
-
- upl_offset = (vm_offset_t)0;
- size = pg_size;
- }
- if (size > pg_size) {
- if (local_flags & CL_COMMIT)
- ubc_upl_abort_range(upl, upl_offset + pg_size, size - pg_size,
- UPL_ABORT_FREE_ON_EMPTY);
- }
-
- retval = cluster_io(vp, upl, upl_offset, f_offset, io_size,
- local_flags | CL_READ | CL_PAGEIN, (struct buf *)0);
+ if (size > rounded_size && (local_flags & CL_COMMIT))
+ ubc_upl_abort_range(upl, upl_offset + rounded_size,
+ size - (upl_offset + rounded_size), UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR);
+
+ retval = cluster_io(vp, upl, upl_offset, f_offset, io_size, devblocksize,
+ local_flags | CL_READ | CL_PAGEIN, (struct buf *)0);
if (retval == 0) {
int b_lblkno;
e_lblkno = (int)
((f_offset + ((off_t)io_size - 1)) / PAGE_SIZE_64);
- if (!(flags & UPL_NORDAHEAD) && !(vp->v_flag & VRAOFF)) {
+ if (!(flags & UPL_NORDAHEAD) && !(vp->v_flag & VRAOFF) && rounded_size == PAGE_SIZE) {
/*
* we haven't read the last page in of the file yet
* so let's try to read ahead if we're in
return (retval);
}
-
+int
cluster_bp(bp)
struct buf *bp;
{
off_t f_offset;
int flags;
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 19)) | DBG_FUNC_START,
+ (int)bp, bp->b_lblkno, bp->b_bcount, bp->b_flags, 0);
+
if (bp->b_pagelist == (upl_t) 0)
panic("cluster_bp: can't handle NULL upl yet\n");
if (bp->b_flags & B_READ)
- flags = CL_ASYNC | CL_NOMAP | CL_READ;
+ flags = CL_ASYNC | CL_READ;
else
- flags = CL_ASYNC | CL_NOMAP;
+ flags = CL_ASYNC;
f_offset = ubc_blktooff(bp->b_vp, bp->b_lblkno);
- return (cluster_io(bp->b_vp, bp->b_pagelist, 0, f_offset, bp->b_bcount, flags, bp));
+ return (cluster_io(bp->b_vp, bp->b_pagelist, 0, f_offset, bp->b_bcount, 0, flags, bp));
}
-
+int
cluster_write(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags)
struct vnode *vp;
struct uio *uio;
return(retval);
}
- retval = cluster_phys_write(vp, uio);
+ retval = cluster_phys_write(vp, uio, newEOF);
if (uio->uio_resid == 0 && (flags & IO_TAILZEROFILL))
{
return(retval);
}
-static
+static int
cluster_nocopy_write(vp, uio, newEOF, devblocksize, flags)
struct vnode *vp;
struct uio *uio;
* -- the resid is a page multiple
* -- the resid will not exceed iov_len
*/
+ cluster_try_push(vp, newEOF, 0, 1);
iov = uio->uio_iov;
upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_START,
- (int)upl_offset, upl_needed_size, iov->iov_base, io_size, 0);
+ (int)upl_offset, upl_needed_size, (int)iov->iov_base, io_size, 0);
for (force_data_sync = 0; force_data_sync < 3; force_data_sync++)
{
pages_in_pl = 0;
upl_size = upl_needed_size;
- upl_flags = UPL_COPYOUT_FROM | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL;
+ upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC |
+ UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL;
kret = vm_map_get_upl(current_map(),
(vm_offset_t)iov->iov_base & ~PAGE_MASK,
io_size = (upl_size - (int)upl_offset) & ~PAGE_MASK;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END,
- (int)upl_offset, upl_size, iov->iov_base, io_size, 0);
+ (int)upl_offset, upl_size, (int)iov->iov_base, io_size, 0);
if (io_size == 0)
{
(int)upl_offset, (int)uio->uio_offset, io_size, 0, 0);
error = cluster_io(vp, upl, upl_offset, uio->uio_offset,
- io_size, 0, (struct buf *)0);
+ io_size, devblocksize, 0, (struct buf *)0);
if (error == 0) {
/*
return (error);
}
-static
-cluster_phys_write(vp, uio)
+static int
+cluster_phys_write(vp, uio, newEOF)
struct vnode *vp;
struct uio *uio;
+ off_t newEOF;
{
upl_t upl;
vm_offset_t upl_offset;
* -- the resid will not exceed iov_len
* -- the vector target address is physcially contiguous
*/
+ cluster_try_push(vp, newEOF, 0, 1);
iov = uio->uio_iov;
io_size = iov->iov_len;
pages_in_pl = 0;
upl_size = upl_needed_size;
- upl_flags = UPL_COPYOUT_FROM | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL;
+ upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC |
+ UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL;
kret = vm_map_get_upl(current_map(),
(vm_offset_t)iov->iov_base & ~PAGE_MASK,
*/
error = cluster_io(vp, upl, upl_offset, uio->uio_offset,
- io_size, CL_DEV_MEMORY, (struct buf *)0);
+ io_size, 0, CL_DEV_MEMORY, (struct buf *)0);
if (error == 0) {
/*
return (error);
}
-static
+static int
cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags)
struct vnode *vp;
struct uio *uio;
int start_offset;
int xfer_resid;
int io_size;
- int io_size_before_rounding;
int io_flags;
vm_offset_t io_address;
int io_offset;
panic("cluster_write: failed to get pagelist");
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_NONE,
- upl, (int)upl_f_offset, upl_size, start_offset, 0);
+ (int)upl, (int)upl_f_offset, upl_size, start_offset, 0);
if (start_offset && !upl_valid_page(pl, 0)) {
int read_size;
*/
read_size = PAGE_SIZE;
- if ((upl_f_offset + read_size) > newEOF) {
+ if ((upl_f_offset + read_size) > newEOF)
read_size = newEOF - upl_f_offset;
- read_size = (read_size + (devblocksize - 1)) & ~(devblocksize - 1);
- }
- retval = cluster_io(vp, upl, 0, upl_f_offset, read_size,
+
+ retval = cluster_io(vp, upl, 0, upl_f_offset, read_size, devblocksize,
CL_READ, (struct buf *)0);
if (retval) {
/*
* there state and mark the failed page in error
*/
ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES);
- ubc_upl_abort(upl, 0);
+ ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE,
- upl, 0, 0, retval, 0);
+ (int)upl, 0, 0, retval, 0);
break;
}
}
read_size = PAGE_SIZE;
- if ((upl_f_offset + upl_offset + read_size) > newEOF) {
+ if ((upl_f_offset + upl_offset + read_size) > newEOF)
read_size = newEOF - (upl_f_offset + upl_offset);
- read_size = (read_size + (devblocksize - 1)) & ~(devblocksize - 1);
- }
- retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, read_size,
+
+ retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, read_size, devblocksize,
CL_READ, (struct buf *)0);
if (retval) {
/*
* need to release the rest of the pages in the upl without
* modifying there state and mark the failed page in error
*/
- ubc_upl_abort_range(upl, upl_offset, PAGE_SIZE,
- UPL_ABORT_DUMP_PAGES);
- ubc_upl_abort(upl, 0);
+ ubc_upl_abort_range(upl, upl_offset, PAGE_SIZE, UPL_ABORT_DUMP_PAGES);
+ ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE,
- upl, 0, 0, retval, 0);
+ (int)upl, 0, 0, retval, 0);
break;
}
}
else
bytes_to_zero = xfer_resid;
- if ( !(flags & IO_NOZEROVALID)) {
+ if ( !(flags & (IO_NOZEROVALID | IO_NOZERODIRTY))) {
bzero((caddr_t)(io_address + io_offset), bytes_to_zero);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE,
(int)upl_f_offset + io_offset, bytes_to_zero,
- (int)zero_cnt, xfer_resid, 0);
+ (int)io_offset, xfer_resid, 0);
} else {
+ int zero_pg_index;
+
bytes_to_zero = min(bytes_to_zero, PAGE_SIZE - (int)(zero_off & PAGE_MASK_64));
+ zero_pg_index = (int)((zero_off - upl_f_offset) / PAGE_SIZE_64);
+
+ if ( !upl_valid_page(pl, zero_pg_index)) {
+ bzero((caddr_t)(io_address + io_offset), bytes_to_zero);
+
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE,
+ (int)upl_f_offset + io_offset, bytes_to_zero,
+ (int)io_offset, xfer_resid, 0);
- if ( !upl_valid_page(pl, (int)(zero_off / PAGE_SIZE_64))) {
+ } else if ((flags & (IO_NOZERODIRTY | IO_NOZEROVALID)) == IO_NOZERODIRTY &&
+ !upl_dirty_page(pl, zero_pg_index)) {
bzero((caddr_t)(io_address + io_offset), bytes_to_zero);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE,
(int)upl_f_offset + io_offset, bytes_to_zero,
- (int)zero_cnt, xfer_resid, 0);
+ (int)io_offset, xfer_resid, 0);
}
}
xfer_resid -= bytes_to_zero;
retval = uiomove((caddr_t)(io_address + io_offset), bytes_to_move, uio);
+
if (retval) {
if ((kret = ubc_upl_unmap(upl)) != KERN_SUCCESS)
panic("cluster_write: kernel_upl_unmap failed\n");
- ubc_upl_abort(upl, UPL_ABORT_DUMP_PAGES);
+
+ ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE,
- upl, 0, 0, retval, 0);
+ (int)upl, 0, 0, retval, 0);
} else {
uio_resid -= bytes_to_move;
xfer_resid -= bytes_to_move;
else
bytes_to_zero = xfer_resid;
- if ( !(flags & IO_NOZEROVALID)) {
+ if ( !(flags & (IO_NOZEROVALID | IO_NOZERODIRTY))) {
bzero((caddr_t)(io_address + io_offset), bytes_to_zero);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE,
(int)upl_f_offset + io_offset,
- bytes_to_zero, (int)zero_cnt1, xfer_resid, 0);
+ bytes_to_zero, (int)io_offset, xfer_resid, 0);
} else {
+ int zero_pg_index;
+
bytes_to_zero = min(bytes_to_zero, PAGE_SIZE - (int)(zero_off1 & PAGE_MASK_64));
- if ( !upl_valid_page(pl, (int)(zero_off1 / PAGE_SIZE_64))) {
+ zero_pg_index = (int)((zero_off1 - upl_f_offset) / PAGE_SIZE_64);
+
+ if ( !upl_valid_page(pl, zero_pg_index)) {
bzero((caddr_t)(io_address + io_offset), bytes_to_zero);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE,
(int)upl_f_offset + io_offset,
- bytes_to_zero, (int)zero_cnt1, xfer_resid, 0);
+ bytes_to_zero, (int)io_offset, xfer_resid, 0);
+
+ } else if ((flags & (IO_NOZERODIRTY | IO_NOZEROVALID)) == IO_NOZERODIRTY &&
+ !upl_dirty_page(pl, zero_pg_index)) {
+ bzero((caddr_t)(io_address + io_offset), bytes_to_zero);
+
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE,
+ (int)upl_f_offset + io_offset,
+ bytes_to_zero, (int)io_offset, xfer_resid, 0);
}
}
xfer_resid -= bytes_to_zero;
}
if (retval == 0) {
- int must_push;
+ int cl_index;
int can_delay;
io_size += start_offset;
- if ((upl_f_offset + io_size) == newEOF && io_size < upl_size) {
+ if ((upl_f_offset + io_size) >= newEOF && io_size < upl_size) {
/*
* if we're extending the file with this write
* we'll zero fill the rest of the page so that
if ((kret = ubc_upl_unmap(upl)) != KERN_SUCCESS)
panic("cluster_write: kernel_upl_unmap failed\n");
- io_size_before_rounding = io_size;
-
- if (io_size & (devblocksize - 1))
- io_size = (io_size + (devblocksize - 1)) & ~(devblocksize - 1);
+ if (flags & IO_SYNC)
+ /*
+ * if the IO_SYNC flag is set than we need to
+ * bypass any clusters and immediately issue
+ * the I/O
+ */
+ goto issue_io;
- must_push = 0;
- can_delay = 0;
+ if (vp->v_clen == 0)
+ /*
+ * no clusters currently present
+ */
+ goto start_new_cluster;
- if (vp->v_clen) {
- int newsize;
+ /*
+ * keep track of the overall dirty page
+ * range we've developed
+ * in case we have to fall back to the
+ * VHASDIRTY method of flushing
+ */
+ if (vp->v_flag & VHASDIRTY)
+ goto delay_io;
+ for (cl_index = 0; cl_index < vp->v_clen; cl_index++) {
/*
* we have an existing cluster... see if this write will extend it nicely
*/
- if (start_blkno >= vp->v_cstart) {
- if (last_blkno <= (vp->v_cstart + vp->v_clen)) {
+ if (start_blkno >= vp->v_clusters[cl_index].start_pg) {
+ /*
+ * the current write starts at or after the current cluster
+ */
+ if (last_blkno <= (vp->v_clusters[cl_index].start_pg + MAX_UPL_TRANSFER)) {
/*
* we have a write that fits entirely
* within the existing cluster limits
*/
- if (last_blkno >= vp->v_lastw) {
+ if (last_blkno > vp->v_clusters[cl_index].last_pg)
/*
- * if we're extending the dirty region within the cluster
- * we need to update the cluster info... we check for blkno
- * equality because we may be extending the file with a
- * partial write.... this in turn changes our idea of how
- * much data to write out (v_ciosiz) for the last page
+ * update our idea of where the cluster ends
*/
- vp->v_lastw = last_blkno;
- newsize = io_size + ((start_blkno - vp->v_cstart) * PAGE_SIZE);
-
- if (newsize > vp->v_ciosiz)
- vp->v_ciosiz = newsize;
- }
- can_delay = 1;
- goto finish_io;
+ vp->v_clusters[cl_index].last_pg = last_blkno;
+ break;
}
- if (start_blkno < (vp->v_cstart + vp->v_clen)) {
+ if (start_blkno < (vp->v_clusters[cl_index].start_pg + MAX_UPL_TRANSFER)) {
/*
* we have a write that starts in the middle of the current cluster
* but extends beyond the cluster's limit
* we'll clip the current cluster if we actually
- * overlap with the new write and then push it out
+ * overlap with the new write
* and start a new cluster with the current write
*/
- if (vp->v_lastw > start_blkno) {
- vp->v_lastw = start_blkno;
- vp->v_ciosiz = (vp->v_lastw - vp->v_cstart) * PAGE_SIZE;
- }
+ if (vp->v_clusters[cl_index].last_pg > start_blkno)
+ vp->v_clusters[cl_index].last_pg = start_blkno;
}
/*
* we also get here for the case where the current write starts
* beyond the limit of the existing cluster
+ *
+ * in either case, we'll check the remaining clusters before
+ * starting a new one
*/
- must_push = 1;
- goto check_delay;
- }
- /*
- * the current write starts in front of the current cluster
- */
- if (last_blkno > vp->v_cstart) {
+ } else {
/*
- * the current write extends into the existing cluster
+ * the current write starts in front of the current cluster
*/
- if ((vp->v_lastw - start_blkno) > vp->v_clen) {
+ if ((vp->v_clusters[cl_index].last_pg - start_blkno) <= MAX_UPL_TRANSFER) {
/*
- * if we were to combine this write with the current cluster
- * we would exceed the cluster size limit....
- * clip the current cluster by moving the start position
- * to where the current write ends, and then push it
- */
- vp->v_ciosiz -= (last_blkno - vp->v_cstart) * PAGE_SIZE;
- vp->v_cstart = last_blkno;
-
- /*
- * round up the io_size to the nearest page size
- * since we've coalesced with at least 1 pre-existing
- * page in the current cluster... this write may have ended in the
- * middle of the page which would cause io_size to give us an
- * inaccurate view of how much I/O we actually need to do
+ * we can just merge the old cluster
+ * with the new request and leave it
+ * in the cache
*/
- io_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
+ vp->v_clusters[cl_index].start_pg = start_blkno;
- must_push = 1;
- goto check_delay;
+ if (last_blkno > vp->v_clusters[cl_index].last_pg) {
+ /*
+ * the current write completely
+ * envelops the existing cluster
+ */
+ vp->v_clusters[cl_index].last_pg = last_blkno;
+ }
+ break;
}
+
/*
- * we can coalesce the current write with the existing cluster
- * adjust the cluster info to reflect this
+ * if we were to combine this write with the current cluster
+ * we would exceed the cluster size limit.... so,
+ * let's see if there's any overlap of the new I/O with
+ * the existing cluster...
+ *
*/
- if (last_blkno > vp->v_lastw) {
+ if (last_blkno > vp->v_clusters[cl_index].start_pg)
/*
- * the current write completey overlaps
- * the existing cluster
+ * the current write extends into the existing cluster
+ * clip the current cluster by moving the start position
+ * to where the current write ends
*/
- vp->v_lastw = last_blkno;
- vp->v_ciosiz = io_size;
- } else {
- vp->v_ciosiz += (vp->v_cstart - start_blkno) * PAGE_SIZE;
-
- if (io_size > vp->v_ciosiz)
- vp->v_ciosiz = io_size;
- }
- vp->v_cstart = start_blkno;
- can_delay = 1;
- goto finish_io;
+ vp->v_clusters[cl_index].start_pg = last_blkno;
+ /*
+ * if we get here, there was no way to merge
+ * the new I/O with this cluster and
+ * keep it under our maximum cluster length
+ * we'll check the remaining clusters before starting a new one
+ */
}
- /*
- * this I/O range is entirely in front of the current cluster
- * so we need to push the current cluster out before beginning
+ }
+ if (cl_index < vp->v_clen)
+ /*
+ * we found an existing cluster that we
+ * could merger this I/O into
+ */
+ goto delay_io;
+
+ if (vp->v_clen < MAX_CLUSTERS && !(vp->v_flag & VNOCACHE_DATA))
+ /*
+ * we didn't find an existing cluster to
+ * merge into, but there's room to start
* a new one
*/
- must_push = 1;
- }
-check_delay:
- if (must_push)
- cluster_push(vp);
+ goto start_new_cluster;
- if (io_size_before_rounding < (MAX_UPL_TRANSFER * PAGE_SIZE) && !(flags & IO_SYNC)) {
- vp->v_clen = MAX_UPL_TRANSFER;
+ /*
+ * no exisitng cluster to merge with and no
+ * room to start a new one... we'll try
+ * pushing the existing ones... if none of
+ * them are able to be pushed, we'll have
+ * to fall back on the VHASDIRTY mechanism
+ * cluster_try_push will set v_clen to the
+ * number of remaining clusters if it is
+ * unable to push all of them
+ */
+ if (vp->v_flag & VNOCACHE_DATA)
+ can_delay = 0;
+ else
+ can_delay = 1;
+
+ if (cluster_try_push(vp, newEOF, 0, 0) == 0) {
+ vp->v_flag |= VHASDIRTY;
+ goto delay_io;
+ }
+start_new_cluster:
+ if (vp->v_clen == 0) {
+ vp->v_ciosiz = devblocksize;
vp->v_cstart = start_blkno;
vp->v_lastw = last_blkno;
- vp->v_ciosiz = io_size;
-
- can_delay = 1;
}
-finish_io:
- if (can_delay) {
- ubc_upl_commit_range(upl, 0, upl_size,
- UPL_COMMIT_SET_DIRTY | UPL_COMMIT_FREE_ON_EMPTY);
- continue;
+ vp->v_clusters[vp->v_clen].start_pg = start_blkno;
+ vp->v_clusters[vp->v_clen].last_pg = last_blkno;
+ vp->v_clen++;
+delay_io:
+ /*
+ * make sure we keep v_cstart and v_lastw up to
+ * date in case we have to fall back on the
+ * V_HASDIRTY mechanism (or we've already entered it)
+ */
+ if (start_blkno < vp->v_cstart)
+ vp->v_cstart = start_blkno;
+ if (last_blkno > vp->v_lastw)
+ vp->v_lastw = last_blkno;
+
+ ubc_upl_commit_range(upl, 0, upl_size, UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY);
+ continue;
+issue_io:
+ /*
+ * in order to maintain some semblance of coherency with mapped writes
+ * we need to write the cluster back out as a multiple of the PAGESIZE
+ * unless the cluster encompasses the last page of the file... in this
+ * case we'll round out to the nearest device block boundary
+ */
+ io_size = upl_size;
+
+ if ((upl_f_offset + io_size) > newEOF) {
+ io_size = newEOF - upl_f_offset;
+ io_size = (io_size + (devblocksize - 1)) & ~(devblocksize - 1);
}
+
if (flags & IO_SYNC)
io_flags = CL_COMMIT | CL_AGE;
else
vp->v_flag |= VTHROTTLED;
tsleep((caddr_t)&vp->v_numoutput, PRIBIO + 1, "cluster_write", 0);
}
- retval = cluster_io(vp, upl, 0, upl_f_offset, io_size,
+ retval = cluster_io(vp, upl, 0, upl_f_offset, io_size, devblocksize,
io_flags, (struct buf *)0);
}
}
return (retval);
}
+int
cluster_read(vp, uio, filesize, devblocksize, flags)
struct vnode *vp;
struct uio *uio;
return(retval);
}
-static
+static int
cluster_read_x(vp, uio, filesize, devblocksize, flags)
struct vnode *vp;
struct uio *uio;
io_size = uio->uio_resid;
else
io_size = max_size;
-#ifdef ppc
+
if (uio->uio_segflg == UIO_USERSPACE && !(vp->v_flag & VNOCACHE_DATA)) {
segflg = uio->uio_segflg;
}
max_size = filesize - uio->uio_offset;
}
-#endif
upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
if (upl_size > (MAX_UPL_TRANSFER * PAGE_SIZE))
upl_size = MAX_UPL_TRANSFER * PAGE_SIZE;
pages_in_upl = upl_size / PAGE_SIZE;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_START,
- upl, (int)upl_f_offset, upl_size, start_offset, 0);
+ (int)upl, (int)upl_f_offset, upl_size, start_offset, 0);
kret = ubc_create_upl(vp,
upl_f_offset,
panic("cluster_read: failed to get pagelist");
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_END,
- upl, (int)upl_f_offset, upl_size, start_offset, 0);
+ (int)upl, (int)upl_f_offset, upl_size, start_offset, 0);
/*
* scan from the beginning of the upl looking for the first
upl_offset = start_pg * PAGE_SIZE;
io_size = (last_pg - start_pg) * PAGE_SIZE;
- if ((upl_f_offset + upl_offset + io_size) > filesize) {
+ if ((upl_f_offset + upl_offset + io_size) > filesize)
io_size = filesize - (upl_f_offset + upl_offset);
- io_size = (io_size + (devblocksize - 1)) & ~(devblocksize - 1);
- }
+
/*
* issue a synchronous read to cluster_io
*/
error = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset,
- io_size, CL_READ, (struct buf *)0);
+ io_size, devblocksize, CL_READ, (struct buf *)0);
}
if (error == 0) {
/*
cluster_rd_ahead(vp, b_lblkno, e_lblkno, filesize, devblocksize);
vp->v_lastr = e_lblkno;
}
-#ifdef ppc
if (uio->uio_segflg == UIO_USERSPACE) {
int offset;
(int)uio->uio_offset, val_size, uio->uio_resid, 0, 0);
uio->uio_segflg = segflg;
- } else
-#endif
+ }
+ else
{
if ((kret = ubc_upl_map(upl, &io_address)) != KERN_SUCCESS)
panic("cluster_read: ubc_upl_map() failed\n");
io_size = (last_pg - start_pg) * PAGE_SIZE;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START,
- upl, start_pg * PAGE_SIZE, io_size, error, 0);
+ (int)upl, start_pg * PAGE_SIZE, io_size, error, 0);
if (error || (vp->v_flag & VNOCACHE_DATA))
ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, io_size,
| UPL_COMMIT_INACTIVATE);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END,
- upl, start_pg * PAGE_SIZE, io_size, error, 0);
+ (int)upl, start_pg * PAGE_SIZE, io_size, error, 0);
}
if ((last_pg - start_pg) < pages_in_upl) {
int cur_pg;
* there state
*/
if (error)
- ubc_upl_abort(upl, 0);
+ ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
else {
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START,
- upl, -1, pages_in_upl - (last_pg - start_pg), 0, 0);
+ (int)upl, -1, pages_in_upl - (last_pg - start_pg), 0, 0);
if (start_pg) {
/*
* that we didn't issue an I/O for, just release them
* unchanged
*/
- ubc_upl_abort(upl, 0);
+ ubc_upl_abort_range(upl, uio_last * PAGE_SIZE,
+ (pages_in_upl - uio_last) * PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY);
}
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END,
- upl, -1, -1, 0, 0);
+ (int)upl, -1, -1, 0, 0);
}
}
if (retval == 0)
return (retval);
}
-static
+static int
cluster_nocopy_read(vp, uio, filesize, devblocksize, flags)
struct vnode *vp;
struct uio *uio;
upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_START,
- (int)upl_offset, upl_needed_size, iov->iov_base, io_size, 0);
+ (int)upl_offset, upl_needed_size, (int)iov->iov_base, io_size, 0);
for (force_data_sync = 0; force_data_sync < 3; force_data_sync++)
{
pages_in_pl = 0;
upl_size = upl_needed_size;
- upl_flags = UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL;
+ upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL;
kret = vm_map_get_upl(current_map(),
(vm_offset_t)iov->iov_base & ~PAGE_MASK,
*/
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_START,
- upl, (int)upl_offset, (int)start_upl_f_offset, io_size, 0);
+ (int)upl, (int)upl_offset, (int)start_upl_f_offset, io_size, 0);
error = cluster_io(vp, upl, upl_offset, start_upl_f_offset,
- io_size, CL_READ| CL_NOZERO, (struct buf *)0);
+ io_size, devblocksize, CL_READ| CL_NOZERO, (struct buf *)0);
if (error == 0) {
/*
}
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_END,
- upl, (int)uio->uio_offset, (int)uio->uio_resid, error, 0);
+ (int)upl, (int)uio->uio_offset, (int)uio->uio_resid, error, 0);
if (retval == 0)
retval = error;
}
-static
+static int
cluster_phys_read(vp, uio, filesize)
struct vnode *vp;
struct uio *uio;
pages_in_pl = 0;
upl_size = upl_needed_size;
- upl_flags = UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL;
+ upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL;
kret = vm_map_get_upl(current_map(),
(vm_offset_t)iov->iov_base & ~PAGE_MASK,
*/
error = cluster_io(vp, upl, upl_offset, uio->uio_offset,
- io_size, CL_READ| CL_NOZERO | CL_DEV_MEMORY, (struct buf *)0);
+ io_size, 0, CL_READ| CL_NOZERO | CL_DEV_MEMORY, (struct buf *)0);
if (error == 0)
{
* generate advisory I/O's in the largest chunks possible
* the completed pages will be released into the VM cache
*/
+int
advisory_read(vp, filesize, f_offset, resid, devblocksize)
struct vnode *vp;
off_t filesize;
int io_size;
kern_return_t kret;
int retval = 0;
-
+ int issued_io;
if (!UBCINFOEXISTS(vp))
return(EINVAL);
upl_size,
&upl,
&pl,
- UPL_FLAGS_NONE);
+ UPL_RET_ONLY_ABSENT);
if (kret != KERN_SUCCESS)
- panic("advisory_read: failed to get pagelist");
-
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_NONE,
- upl, (int)upl_f_offset, upl_size, start_offset, 0);
+ return(retval);
+ issued_io = 0;
/*
- * scan from the beginning of the upl looking for the first
- * non-valid page.... this will become the first page in
- * the request we're going to make to 'cluster_io'... if all
- * of the pages are valid, we won't call through to 'cluster_io'
+ * before we start marching forward, we must make sure we end on
+ * a present page, otherwise we will be working with a freed
+ * upl
*/
- for (start_pg = 0; start_pg < pages_in_upl; start_pg++) {
- if (!upl_valid_page(pl, start_pg))
- break;
+ for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) {
+ if (upl_page_present(pl, last_pg))
+ break;
}
+ pages_in_upl = last_pg + 1;
- /*
- * scan from the starting invalid page looking for a valid
- * page before the end of the upl is reached, if we
- * find one, then it will be the last page of the request to
- * 'cluster_io'
- */
- for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) {
- if (upl_valid_page(pl, last_pg))
- break;
- }
- if (start_pg < last_pg) {
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_NONE,
+ (int)upl, (int)upl_f_offset, upl_size, start_offset, 0);
+
+
+ for (last_pg = 0; last_pg < pages_in_upl; ) {
/*
- * we found a range of 'invalid' pages that must be filled
- * if the last page in this range is the last page of the file
- * we may have to clip the size of it to keep from reading past
- * the end of the last physical block associated with the file
+ * scan from the beginning of the upl looking for the first
+ * page that is present.... this will become the first page in
+ * the request we're going to make to 'cluster_io'... if all
+ * of the pages are absent, we won't call through to 'cluster_io'
*/
- upl_offset = start_pg * PAGE_SIZE;
- io_size = (last_pg - start_pg) * PAGE_SIZE;
-
- if ((upl_f_offset + upl_offset + io_size) > filesize) {
- io_size = filesize - (upl_f_offset + upl_offset);
- io_size = (io_size + (devblocksize - 1)) & ~(devblocksize - 1);
+ for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) {
+ if (upl_page_present(pl, start_pg))
+ break;
}
- /*
- * issue an asynchronous read to cluster_io
- */
- retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size,
- CL_ASYNC | CL_READ | CL_COMMIT | CL_AGE, (struct buf *)0);
- }
- if (start_pg) {
- /*
- * start_pg of non-zero indicates we found some already valid pages
- * at the beginning of the upl.... we need to release these without
- * modifying there state
- */
- ubc_upl_abort_range(upl, 0, start_pg * PAGE_SIZE,
- UPL_ABORT_FREE_ON_EMPTY);
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 62)) | DBG_FUNC_NONE,
- upl, 0, start_pg * PAGE_SIZE, 0, 0);
- }
- if (last_pg < pages_in_upl) {
/*
- * the set of pages that we issued an I/O for did not extend all the
- * way to the end of the upl..so just release them without modifying
- * there state
+ * scan from the starting present page looking for an absent
+ * page before the end of the upl is reached, if we
+ * find one, then it will terminate the range of pages being
+ * presented to 'cluster_io'
*/
- ubc_upl_abort_range(upl, last_pg * PAGE_SIZE, (pages_in_upl - last_pg) * PAGE_SIZE,
- UPL_ABORT_FREE_ON_EMPTY);
+ for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) {
+ if (!upl_page_present(pl, last_pg))
+ break;
+ }
+
+ if (last_pg > start_pg) {
+ /*
+ * we found a range of pages that must be filled
+ * if the last page in this range is the last page of the file
+ * we may have to clip the size of it to keep from reading past
+ * the end of the last physical block associated with the file
+ */
+ upl_offset = start_pg * PAGE_SIZE;
+ io_size = (last_pg - start_pg) * PAGE_SIZE;
+
+ if ((upl_f_offset + upl_offset + io_size) > filesize)
+ io_size = filesize - (upl_f_offset + upl_offset);
+
+ /*
+ * issue an asynchronous read to cluster_io
+ */
+ retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size, devblocksize,
+ CL_ASYNC | CL_READ | CL_COMMIT | CL_AGE, (struct buf *)0);
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 63)) | DBG_FUNC_NONE,
- upl, last_pg * PAGE_SIZE,
- (pages_in_upl - last_pg) * PAGE_SIZE, 0, 0);
+ issued_io = 1;
+ }
}
- io_size = (last_pg * PAGE_SIZE) - start_offset;
+ if (issued_io == 0)
+ ubc_upl_abort(upl, 0);
+
+ io_size = upl_size - start_offset;
if (io_size > resid)
io_size = resid;
f_offset += io_size;
resid -= io_size;
}
+
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_END,
(int)f_offset, resid, retval, 0, 0);
}
+int
cluster_push(vp)
struct vnode *vp;
+{
+ int retval;
+
+ if (!UBCINFOEXISTS(vp) || vp->v_clen == 0) {
+ vp->v_flag &= ~VHASDIRTY;
+ return(0);
+ }
+
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_START,
+ vp->v_flag & VHASDIRTY, vp->v_clen, 0, 0, 0);
+
+ if (vp->v_flag & VHASDIRTY) {
+ daddr_t start_pg;
+ daddr_t last_pg;
+ daddr_t end_pg;
+
+ start_pg = vp->v_cstart;
+ end_pg = vp->v_lastw;
+
+ vp->v_flag &= ~VHASDIRTY;
+ vp->v_clen = 0;
+
+ while (start_pg < end_pg) {
+ last_pg = start_pg + MAX_UPL_TRANSFER;
+
+ if (last_pg > end_pg)
+ last_pg = end_pg;
+
+ cluster_push_x(vp, ubc_getsize(vp), start_pg, last_pg, 0);
+
+ start_pg = last_pg;
+ }
+ return (1);
+ }
+ retval = cluster_try_push(vp, ubc_getsize(vp), 0, 1);
+
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_END,
+ vp->v_flag & VHASDIRTY, vp->v_clen, retval, 0, 0);
+
+ return (retval);
+}
+
+
+static int
+cluster_try_push(vp, EOF, can_delay, push_all)
+ struct vnode *vp;
+ off_t EOF;
+ int can_delay;
+ int push_all;
+{
+ int cl_index;
+ int cl_index1;
+ int min_index;
+ int cl_len;
+ int cl_total;
+ int cl_pushed;
+ struct v_cluster l_clusters[MAX_CLUSTERS];
+
+ /*
+ * make a local 'sorted' copy of the clusters
+ * and clear vp->v_clen so that new clusters can
+ * be developed
+ */
+ for (cl_index = 0; cl_index < vp->v_clen; cl_index++) {
+ for (min_index = -1, cl_index1 = 0; cl_index1 < vp->v_clen; cl_index1++) {
+ if (vp->v_clusters[cl_index1].start_pg == vp->v_clusters[cl_index1].last_pg)
+ continue;
+ if (min_index == -1)
+ min_index = cl_index1;
+ else if (vp->v_clusters[cl_index1].start_pg < vp->v_clusters[min_index].start_pg)
+ min_index = cl_index1;
+ }
+ if (min_index == -1)
+ break;
+ l_clusters[cl_index].start_pg = vp->v_clusters[min_index].start_pg;
+ l_clusters[cl_index].last_pg = vp->v_clusters[min_index].last_pg;
+
+ vp->v_clusters[min_index].start_pg = vp->v_clusters[min_index].last_pg;
+ }
+ cl_len = cl_index;
+ vp->v_clen = 0;
+
+ for (cl_pushed = 0, cl_index = 0; cl_index < cl_len; cl_index++) {
+ /*
+ * try to push each cluster in turn... cluster_push_x may not
+ * push the cluster if can_delay is TRUE and the cluster doesn't
+ * meet the critera for an immediate push
+ */
+ if (cluster_push_x(vp, EOF, l_clusters[cl_index].start_pg, l_clusters[cl_index].last_pg, can_delay)) {
+ l_clusters[cl_index].start_pg = 0;
+ l_clusters[cl_index].last_pg = 0;
+
+ cl_pushed++;
+
+ if (push_all == 0)
+ break;
+ }
+ }
+ if (cl_len > cl_pushed) {
+ /*
+ * we didn't push all of the clusters, so
+ * lets try to merge them back in to the vnode
+ */
+ if ((MAX_CLUSTERS - vp->v_clen) < (cl_len - cl_pushed)) {
+ /*
+ * we picked up some new clusters while we were trying to
+ * push the old ones (I don't think this can happen because
+ * I'm holding the lock, but just in case)... the sum of the
+ * leftovers plus the new cluster count exceeds our ability
+ * to represent them, so fall back to the VHASDIRTY mechanism
+ */
+ for (cl_index = 0; cl_index < cl_len; cl_index++) {
+ if (l_clusters[cl_index].start_pg == l_clusters[cl_index].last_pg)
+ continue;
+
+ if (l_clusters[cl_index].start_pg < vp->v_cstart)
+ vp->v_cstart = l_clusters[cl_index].start_pg;
+ if (l_clusters[cl_index].last_pg > vp->v_lastw)
+ vp->v_lastw = l_clusters[cl_index].last_pg;
+ }
+ vp->v_flag |= VHASDIRTY;
+ } else {
+ /*
+ * we've got room to merge the leftovers back in
+ * just append them starting at the next 'hole'
+ * represented by vp->v_clen
+ */
+ for (cl_index = 0, cl_index1 = vp->v_clen; cl_index < cl_len; cl_index++) {
+ if (l_clusters[cl_index].start_pg == l_clusters[cl_index].last_pg)
+ continue;
+
+ vp->v_clusters[cl_index1].start_pg = l_clusters[cl_index].start_pg;
+ vp->v_clusters[cl_index1].last_pg = l_clusters[cl_index].last_pg;
+
+ if (cl_index1 == 0) {
+ vp->v_cstart = l_clusters[cl_index].start_pg;
+ vp->v_lastw = l_clusters[cl_index].last_pg;
+ } else {
+ if (l_clusters[cl_index].start_pg < vp->v_cstart)
+ vp->v_cstart = l_clusters[cl_index].start_pg;
+ if (l_clusters[cl_index].last_pg > vp->v_lastw)
+ vp->v_lastw = l_clusters[cl_index].last_pg;
+ }
+ cl_index1++;
+ }
+ /*
+ * update the cluster count
+ */
+ vp->v_clen = cl_index1;
+ }
+ }
+ return(MAX_CLUSTERS - vp->v_clen);
+}
+
+
+
+static int
+cluster_push_x(vp, EOF, first, last, can_delay)
+ struct vnode *vp;
+ off_t EOF;
+ daddr_t first;
+ daddr_t last;
+ int can_delay;
{
upl_page_info_t *pl;
upl_t upl;
kern_return_t kret;
- if (!UBCINFOEXISTS(vp))
- return(0);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_START,
+ vp->v_clen, first, last, EOF, 0);
+
+ if ((pages_in_upl = last - first) == 0) {
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 0, 0, 0, 0);
- if (vp->v_clen == 0 || (pages_in_upl = vp->v_lastw - vp->v_cstart) == 0)
- return (0);
+ return (1);
+ }
upl_size = pages_in_upl * PAGE_SIZE;
- upl_f_offset = ((off_t)vp->v_cstart) * PAGE_SIZE_64;
- size = vp->v_ciosiz;
- vp->v_clen = 0;
+ upl_f_offset = ((off_t)first) * PAGE_SIZE_64;
- if (size > upl_size || (upl_size - size) > PAGE_SIZE)
- panic("cluster_push: v_ciosiz doesn't match size of cluster\n");
+ if (upl_f_offset + upl_size >= EOF) {
+
+ if (upl_f_offset >= EOF) {
+ /*
+ * must have truncated the file and missed
+ * clearing a dangling cluster (i.e. it's completely
+ * beyond the new EOF
+ */
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 1, 0, 0, 0);
+
+ return(1);
+ }
+ size = EOF - upl_f_offset;
+ upl_size = (size + (PAGE_SIZE - 1) ) & ~(PAGE_SIZE - 1);
+ pages_in_upl = upl_size / PAGE_SIZE;
+ } else {
+ if (can_delay && (pages_in_upl < (MAX_UPL_TRANSFER - (MAX_UPL_TRANSFER / 2))))
+ return(0);
+ size = upl_size;
+ }
kret = ubc_create_upl(vp,
upl_f_offset,
upl_size,
&upl,
- &pl,
- UPL_FLAGS_NONE);
+ &pl,
+ UPL_RET_ONLY_DIRTY);
if (kret != KERN_SUCCESS)
panic("cluster_push: failed to get pagelist");
+ if (can_delay) {
+ int num_of_dirty;
+
+ for (num_of_dirty = 0, start_pg = 0; start_pg < pages_in_upl; start_pg++) {
+ if (upl_valid_page(pl, start_pg) && upl_dirty_page(pl, start_pg))
+ num_of_dirty++;
+ }
+ if (num_of_dirty < pages_in_upl / 2) {
+ ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
+
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 0, 2, num_of_dirty, (pages_in_upl / 2), 0);
+
+ return(0);
+ }
+ }
last_pg = 0;
while (size) {
vp->v_flag |= VTHROTTLED;
tsleep((caddr_t)&vp->v_numoutput, PRIBIO + 1, "cluster_push", 0);
}
- cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size, io_flags, (struct buf *)0);
+ cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size, vp->v_ciosiz, io_flags, (struct buf *)0);
size -= io_size;
}
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 3, 0, 0, 0);
+
return(1);
}