#include <corecrypto/ccn.h>
#include <corecrypto/ccrng.h>
-/*
- Don't use cczp_hd struct directly, except in static tables such as eliptic curve parameter definitions.
-
- Declare cczp objects using cczp_decl_n(). It allocates cc_unit arrays of the length returned by either cczp_nof_n() or cczp_short_nof_n().
+/*
+ Don't use cczp_hd struct directly, except in static tables such as eliptic curve parameter
+ definitions.
+
+ Declare cczp objects using cczp_decl_n(). It allocates cc_unit arrays of the length returned by
+ either cczp_nof_n() or cczp_short_nof_n().
*/
struct cczp;
-#if CORECRYPTO_USE_TRANSPARENT_UNION
-
-typedef union {
- cc_unit *u;
- struct cczp *zp;
- //cczp_const_t czp; //for automatic type cast
- //struct cczp_prime *prime;
-} cczp_t __attribute__((transparent_union));
-
-typedef union {
- const cc_unit *u;
- const struct cczp *zp;
- //const struct cczp_prime *prime;
- cczp_t _nczp;
-} cczp_const_t __attribute__((transparent_union));
-
-#else
- typedef struct cczp* cczp_t;
- typedef const struct cczp* cczp_const_t;
-#endif
+
+typedef struct cczp *cczp_t;
+typedef const struct cczp *cczp_const_t;
+
typedef void (*ccmod_func_t)(cc_ws_t ws, cczp_const_t zp, cc_unit *r, const cc_unit *s);
// keep cczp_hd and cczp structures consistent
// cczp_hd is typecasted to cczp to read EC curve params
// options field is to specify Montgomery arithmetic, bit field, etc
-// make sure n is the first element see ccrsa_ctx_n macro
+// make sure n is the first element see ccrsa_ctx_n macro
#define __CCZP_HEADER_ELEMENTS_DEFINITIONS(pre) \
-cc_size pre ## n;\
-cc_unit pre ## options;\
-ccmod_func_t pre ## mod_prime;
+ cc_size pre##n; \
+ cc_unit pre##options; \
+ ccmod_func_t pre##mod_prime;
-#define __CCZP_ELEMENTS_DEFINITIONS(pre) \
-__CCZP_HEADER_ELEMENTS_DEFINITIONS(pre) \
-cc_unit pre ## ccn[];
+#define __CCZP_ELEMENTS_DEFINITIONS(pre) \
+ __CCZP_HEADER_ELEMENTS_DEFINITIONS(pre) \
+ cc_unit pre##ccn[];
-//cczp_hd must be defined separetly without variable length array ccn[], because it is used in sructures such as ccdh_gp_decl_n
-struct cczp_hd{
+// cczp_hd must be defined separetly without variable length array ccn[], because it is used in
+// sructures such as ccdh_gp_decl_n
+struct cczp_hd {
__CCZP_HEADER_ELEMENTS_DEFINITIONS()
-} CC_ALIGNED(CCN_UNIT_SIZE);
+} CC_ALIGNED(CCN_UNIT_SIZE);
struct cczp {
__CCZP_ELEMENTS_DEFINITIONS()
} CC_ALIGNED(CCN_UNIT_SIZE);
-
/* Return the size of an cczp where each ccn is _size_ bytes. */
#define cczp_size(_size_) (sizeof(struct cczp) + ccn_sizeof_n(1) + 2 * (_size_))
with cczp_add, cczp_sub, cczp_div2, cczp_mod_inv. */
#define cczp_short_nof_n(_n_) (ccn_nof_size(sizeof(struct cczp)) + (_n_))
-#define cczp_decl_n(_n_, _name_) cc_ctx_decl(struct cczp, ccn_sizeof_n(cczp_nof_n(_n_)), _name_)
-#define cczp_short_decl_n(_n_, _name_) cc_ctx_decl(struct cczp_short, ccn_sizeof_n(cczp_short_nof_n(_n_)), _name_)
-
-#define cczp_clear_n(_n_, _name_) cc_clear(ccn_sizeof_n(cczp_nof_n(_n_)), _name_)
-#define cczp_short_clear_n(_n_, _name_) cc_clear(ccn_sizeof_n(cczp_short_nof_n(_n_)), _name_)
-
-#if CORECRYPTO_USE_TRANSPARENT_UNION
- #define CCZP_N(ZP) (((cczp_t)(ZP)).zp->n)
- #define CCZP_MOD(ZP) (((cczp_t)(ZP)).zp->mod_prime)
- #define CCZP_PRIME(ZP) (((cczp_t)(ZP)).zp->ccn)
- #define CCZP_RECIP(ZP) (((cczp_t)(ZP)).zp->ccn + cczp_n(ZP))
- #define CCZP_OPS(ZP) ((ZP).zp->options)
- #define CCZP_MOD_PRIME(ZP) CCZP_MOD(ZP)
-
-CC_CONST CC_NONNULL_TU((1))
-static inline cc_size cczp_n(cczp_const_t zp) {
- return zp.zp->n;
-}
-
-CC_CONST CC_NONNULL_TU((1))
-static inline cc_unit cczp_options(cczp_const_t zp) {
- return zp.zp->options;
-}
-
-CC_CONST CC_NONNULL_TU((1))
-static inline ccmod_func_t cczp_mod_prime(cczp_const_t zp) {
- return zp.zp->mod_prime;
-}
-
-CC_CONST CC_NONNULL_TU((1))
-static inline const cc_unit *cczp_prime(cczp_const_t zp) {
- return zp.zp->ccn;
-}
-
-/* Return a pointer to the Reciprocal or Montgomery constant of zp, which is
- allocated cczp_n(zp) + 1 units long. */
-CC_CONST CC_NONNULL_TU((1))
-
-static inline const cc_unit *cczp_recip(cczp_const_t zp) {
- return zp.zp->ccn + zp.zp->n;
-}
-
-#else
- #define CCZP_N(ZP) ((ZP)->n)
- #define CCZP_MOD(ZP) ((ZP)->mod_prime)
- #define CCZP_MOD_PRIME(ZP) CCZP_MOD(ZP)
- #define CCZP_PRIME(ZP) ((ZP)->ccn)
- #define CCZP_RECIP(ZP) ((ZP)->ccn + CCZP_N(ZP))
- #define CCZP_OPS(ZP) ((ZP)->options)
-CC_CONST CC_NONNULL_TU((1))
-static inline cc_size cczp_n(cczp_const_t zp) {
+#define cczp_decl_n(_n_, _name_) cc_ctx_decl(struct cczp, ccn_sizeof_n(cczp_nof_n(_n_)), _name_)
+#define cczp_short_decl_n(_n_, _name_) \
+ cc_ctx_decl(struct cczp_short, ccn_sizeof_n(cczp_short_nof_n(_n_)), _name_)
+
+#define cczp_clear_n(_n_, _name_) cc_clear(ccn_sizeof_n(cczp_nof_n(_n_)), _name_)
+#define cczp_short_clear_n(_n_, _name_) cc_clear(ccn_sizeof_n(cczp_short_nof_n(_n_)), _name_)
+
+#define CCZP_N(ZP) ((ZP)->n)
+#define CCZP_MOD(ZP) ((ZP)->mod_prime)
+#define CCZP_MOD_PRIME(ZP) CCZP_MOD(ZP)
+#define CCZP_PRIME(ZP) ((ZP)->ccn)
+#define CCZP_RECIP(ZP) ((ZP)->ccn + CCZP_N(ZP))
+#define CCZP_OPS(ZP) ((ZP)->options)
+CC_CONST CC_NONNULL((1)) static inline cc_size cczp_n(cczp_const_t zp)
+{
return zp->n;
}
-CC_CONST CC_NONNULL_TU((1))
-static inline cc_unit cczp_options(cczp_const_t zp) {
+CC_CONST CC_NONNULL((1)) static inline cc_unit cczp_options(cczp_const_t zp)
+{
return zp->options;
}
-CC_CONST CC_NONNULL_TU((1))
-static inline ccmod_func_t cczp_mod_prime(cczp_const_t zp) {
+CC_CONST CC_NONNULL((1)) static inline ccmod_func_t cczp_mod_prime(cczp_const_t zp)
+{
return zp->mod_prime;
}
-CC_CONST CC_NONNULL_TU((1))
-static inline const cc_unit *cczp_prime(cczp_const_t zp) {
+CC_CONST CC_NONNULL((1)) static inline const cc_unit *cczp_prime(cczp_const_t zp)
+{
return zp->ccn;
}
/* Return a pointer to the Reciprocal or Montgomery constant of zp, which is
allocated cczp_n(zp) + 1 units long. */
-CC_CONST CC_NONNULL_TU((1))
+CC_CONST CC_NONNULL((1))
-static inline const cc_unit *cczp_recip(cczp_const_t zp) {
+ static inline const cc_unit *cczp_recip(cczp_const_t zp)
+{
return zp->ccn + zp->n;
}
-#endif
-
-
-CC_CONST CC_NONNULL_TU((1))
-CC_INLINE size_t cczp_bitlen(cczp_const_t zp) {
+CC_CONST CC_NONNULL((1)) CC_INLINE size_t cczp_bitlen(cczp_const_t zp)
+{
return ccn_bitlen(cczp_n(zp), cczp_prime(zp));
}
-
/* Ensure both cczp_mod_prime(zp) and cczp_recip(zp) are valid. cczp_n and
cczp_prime must have been previously initialized. */
-CC_NONNULL_TU((1))
+CC_NONNULL((1))
int cczp_init(cczp_t zp);
/* Compute r = s2n mod cczp_prime(zp). Will write cczp_n(zp)
identical they must not overlap. Before calling this function either
cczp_init(zp) must have been called or both CCZP_MOD_PRIME((cc_unit *)zp)
and CCZP_RECIP((cc_unit *)zp) must be initialized some other way. */
-CC_NONNULL_TU((1)) CC_NONNULL((2, 3))
-void cczp_mod(cc_ws_t ws, cczp_const_t zp, cc_unit *r, const cc_unit *s2n);
+CC_NONNULL((1, 2, 3)) void cczp_mod(cc_ws_t ws, cczp_const_t zp, cc_unit *r, const cc_unit *s2n);
/* Compute r = sn mod cczp_prime(zp), Will write cczp_n(zp)
units to r and reads sn units units from s. If r and s are not
identical they must not overlap. Before calling this function either
cczp_init(zp) must have been called or both CCZP_MOD_PRIME((cc_unit *)zp)
and CCZP_RECIP((cc_unit *)zp) must be initialized some other way. */
-CC_NONNULL_TU((1)) CC_NONNULL((2, 4))
-int cczp_modn(cczp_const_t zp, cc_unit *r, cc_size ns, const cc_unit *s);
+CC_NONNULL((1, 2, 4)) int cczp_modn(cczp_const_t zp, cc_unit *r, cc_size ns, const cc_unit *s);
/* Compute r = x * y mod cczp_prime(zp). Will write cczp_n(zp) units to r
and reads cczp_n(zp) units units from both x and y. If r and x are not
calling this function either cczp_init(zp) must have been called or both
CCZP_MOD_PRIME((cc_unit *)zp) and CCZP_RECIP((cc_unit *)zp) must be
initialized some other way. */
-CC_NONNULL_TU((1)) CC_NONNULL((2, 3, 4))
+CC_NONNULL((1, 2, 3, 4))
void cczp_mul(cczp_const_t zp, cc_unit *t, const cc_unit *x, const cc_unit *y);
-CC_NONNULL_TU((1)) CC_NONNULL((2, 3, 4, 5))
-void cczp_mul_ws(cc_ws_t ws, cczp_const_t zp, cc_unit *t, const cc_unit *x, const cc_unit *y);
-
-/* Compute r = x * x mod cczp_prime(zp). Will write cczp_n(zp) units to r
- and reads cczp_n(zp) units from x. If r and x are not identical they must
- not overlap. Before calling this function either cczp_init(zp) must have
- been called or both CCZP_MOD_PRIME((cc_unit *)zp) and
- CCZP_RECIP((cc_unit *)zp) must be initialized some other way. */
-CC_NONNULL_TU((1)) CC_NONNULL((2, 3))
-void cczp_sqr(cczp_const_t zp, cc_unit *r, const cc_unit *x);
-
-CC_NONNULL_TU((1)) CC_NONNULL((2, 3, 4))
-void cczp_sqr_ws(cc_ws_t ws, cczp_const_t zp, cc_unit *r, const cc_unit *x);
-
-/* Compute r = x^(1/2) mod cczp_prime(zp). Will write cczp_n(zp) units to r
- and reads cczp_n(zp) units from x. If r and x are not identical they must
- not overlap. Before calling this function either cczp_init(zp) must have
- been called or both CCZP_MOD_PRIME((cc_unit *)zp) and
- CCZP_RECIP((cc_unit *)zp) must be initialized some other way.
- Only support prime = 3 mod 4 */
-CC_NONNULL_TU((1)) CC_NONNULL((2, 3))
-int cczp_sqrt(cczp_const_t zp, cc_unit *r, const cc_unit *x);
-
/* Compute r = m ^ e mod cczp_prime(zp), using Montgomery ladder.
- writes cczp_n(zp) units to r
- reads cczp_n(zp) units units from m and e
- - if r and m are not identical they must not overlap.
+ - if r and m are not identical they must not overlap.
- r and e must not overlap nor be identical.
- before calling this function either cczp_init(zp) must have been called
or both CCZP_MOD_PRIME((cc_unit *)zp) and CCZP_RECIP((cc_unit *)zp) must
be initialized some other way.
*/
-CC_NONNULL_TU((1)) CC_NONNULL((2, 3, 4))
-int cczp_power(cczp_const_t zp, cc_unit *r, const cc_unit *m,
- const cc_unit *e);
+CC_NONNULL((1, 2, 3, 4))
+int cczp_power(cczp_const_t zp, cc_unit *r, const cc_unit *m, const cc_unit *e);
/* Compute r = m ^ e mod cczp_prime(zp), using Square Square Multiply Always.
- writes cczp_n(zp) units to r
- r and e must not overlap nor be identical.
- before calling this function either cczp_init(zp) must have been called
or both CCZP_MOD_PRIME((cc_unit *)zp) and CCZP_RECIP((cc_unit *)zp) must
- be initialized some other way.
-
+ be initialized some other way.
+
Important: This function is intented to be constant time but is more likely
to leak information due to memory cache. Only used with randomized input
*/
-CC_NONNULL_TU((1)) CC_NONNULL((2, 3, 4))
-int cczp_power_ssma(cczp_const_t zp, cc_unit *r, const cc_unit *m,
- const cc_unit *e);
-
-int cczp_power_ssma_ws(cc_ws_t ws, cczp_const_t zp, cc_unit *r, const cc_unit *s, const cc_unit *e);
-
-/* Compute r = m ^ e mod cczp_prime(zp). Will write cczp_n(zp) units to r and
- reads cczp_n(zp) units units from m. Reads ebitlen bits from e.
- m must be <= to cczp_prime(zp). If r and m are not identical they must not
- overlap. r and e must not overlap nor be identical.
- Before calling this function either cczp_init(zp) must have been called
- or both CCZP_MOD_PRIME((cc_unit *)zp) and CCZP_RECIP((cc_unit *)zp) must
- be initialized some other way. */
-CC_NONNULL_TU((1)) CC_NONNULL((2, 3, 5))
-int cczp_powern(cczp_const_t zp, cc_unit *r, const cc_unit *s,
- size_t ebitlen, const cc_unit *e);
-
-/* Compute r = x + y mod cczp_prime(zp). Will write cczp_n(zp) units to r and
- reads cczp_n(zp) units units from x and y. If r and x are not identical
- they must not overlap. Only cczp_n(zp) and cczp_prime(zp) need to be valid.
- Can be used with cczp_short_nof_n sized cc_unit array zp. */
-CC_NONNULL_TU((1)) CC_NONNULL((2, 3, 4))
-void cczp_add(cczp_const_t zp, cc_unit *r, const cc_unit *x,
- const cc_unit *y);
-
-CC_NONNULL_TU((1)) CC_NONNULL((2, 3, 4, 5))
-void cczp_add_ws(cc_ws_t ws, cczp_const_t zp, cc_unit *r, const cc_unit *x,
- const cc_unit *y);
-
-/* Compute r = x - y mod cczp_prime(zp). Will write cczp_n(zp) units to r and
- reads cczp_n(zp) units units from x and y. If r and x are not identical
- they must not overlap. Only cczp_n(zp) and cczp_prime(zp) need to be valid.
- Can be used with cczp_short_nof_n sized cc_unit array zp. */
-CC_NONNULL_TU((1)) CC_NONNULL((2, 3, 4))
-void cczp_sub(cczp_const_t zp, cc_unit *r, const cc_unit *x, const cc_unit *y);
-
-CC_NONNULL_TU((1)) CC_NONNULL((2, 3, 4, 5))
-void cczp_sub_ws(cc_ws_t ws, cczp_const_t zp, cc_unit *r, const cc_unit *x,
- const cc_unit *y);
-
-/* Compute r = x / 2 mod cczp_prime(zp). Will write cczp_n(zp) units to r and
- reads cczp_n(zp) units units from x. If r and x are not identical
- they must not overlap. Only cczp_n(zp) and cczp_prime(zp) need to be valid.
- Can be used with cczp_short_nof_n sized cc_unit array zp. */
-CC_NONNULL_TU((1)) CC_NONNULL((2, 3))
-void cczp_div2(cczp_const_t zp, cc_unit *r, const cc_unit *x);
-
-/* Compute q = a_2n / cczp_prime(zd) (mod cczp_prime(zd)) . Will write cczp_n(zd)
- units to q and r. Will read 2 * cczp_n(zd) units units from a. If r and a
- are not identical they must not overlap. Before calling this function
- either cczp_init(zp) must have been called or both
- CCZP_MOD_PRIME((cc_unit *)zp) and CCZP_RECIP((cc_unit *)zp) must be
- initialized some other way. */
-CC_NONNULL_TU((1)) CC_NONNULL((2, 3, 4))
-void cczp_div(cczp_const_t zd, cc_unit *q, cc_unit *r, const cc_unit *a_2n);
-
+CC_NONNULL((1, 2, 3, 4))
+int cczp_power_ssma(cczp_const_t zp, cc_unit *r, const cc_unit *m, const cc_unit *e);
/*!
@brief cczp_inv(zp, r, x) computes r = x^-1 (mod p) , where p=cczp_prime(zp).
- @discussion It is a general function and works for any p. It validates the inputs. r and x can overlap. It writes n =cczp_n(zp) units to r, and read n units units from x and p. The output r is overwriten only if the inverse is correctly computed. This function is not constant time in absolute sense, but it does not have data dependent 'if' statements in the code.
- @param zp The input zp. cczp_n(zp) and cczp_prime(zp) need to be valid. cczp_init(zp) need not to be called before invoking cczp_inv().
+ @discussion It is a general function and works for any p. It validates the inputs. r and x can
+ overlap. It writes n =cczp_n(zp) units to r, and read n units units from x and p. The output r is
+ overwriten only if the inverse is correctly computed. This function is not constant time in
+ absolute sense, but it does not have data dependent 'if' statements in the code.
+ @param zp The input zp. cczp_n(zp) and cczp_prime(zp) need to be valid. cczp_init(zp) need not to
+ be called before invoking cczp_inv().
@param x input big integer
@param r output big integer
@return 0 if inverse exists and correctly computed.
*/
-CC_NONNULL_TU((1)) CC_NONNULL((2, 3))
-
+CC_NONNULL((1, 2, 3))
int cczp_inv(cczp_const_t zp, cc_unit *r, const cc_unit *x);
/*!
@brief cczp_inv_odd(zp, r, x) computes r = x^-1 (mod p) , where p=cczp_prime(zp) is an odd number.
@discussion r and x can overlap.
- @param zp The input zp. cczp_n(zp) and cczp_prime(zp) need to be valid. cczp_init(zp) need not to be called before invoking.
+ @param zp The input zp. cczp_n(zp) and cczp_prime(zp) need to be valid. cczp_init(zp) need not to
+ be called before invoking.
@param x input big integer
@param r output big integer
@return 0 if successful
*/
-CC_NONNULL_TU((1)) CC_NONNULL((2, 3))
-int cczp_inv_odd(cczp_const_t zp, cc_unit *r, const cc_unit *x);
+CC_NONNULL((1, 2, 3)) int cczp_inv_odd(cczp_const_t zp, cc_unit *r, const cc_unit *x);
/*!
- @brief cczp_inv_field(zp, r, x) computes r = x^-1 (mod p) , where p=cczp_prime(zp) is a prime number number.
- @discussion r and x must NOT overlap. The excution time of the function is independent to the value of the input x. It works only if p is a field. That is, when p is a prime. It supports Montgomery and non-Montgomery form of zp. It leaks the value of the prime and should only be used be used for public (not secret) primes (ex. Elliptic Curves)
-
- @param zp The input zp. cczp_n(zp) and cczp_prime(zp) need to be valid. cczp_init(zp) need not to be called before invoking cczp_inv_field().
+ @brief cczp_inv_field(zp, r, x) computes r = x^-1 (mod p) , where p=cczp_prime(zp) is a prime
+ number number.
+ @discussion r and x must NOT overlap. The excution time of the function is independent to the value
+ of the input x. It works only if p is a field. That is, when p is a prime. It supports Montgomery
+ and non-Montgomery form of zp. It leaks the value of the prime and should only be used be used for
+ public (not secret) primes (ex. Elliptic Curves)
+
+ @param zp The input zp. cczp_n(zp) and cczp_prime(zp) need to be valid. cczp_init(zp) need not to
+ be called before invoking cczp_inv_field().
@param x input big unteger
@param r output big integer
@return 0 if inverse exists and correctly computed.
*/
-CC_NONNULL_TU((1)) CC_NONNULL((2, 3))
+CC_NONNULL((1, 2, 3))
int cczp_inv_field(cczp_const_t zp, cc_unit *r, const cc_unit *x);
#endif /* _CORECRYPTO_CCZP_H_ */