int bdwrite_internal(buf_t, int);
+extern void disk_conditioner_delay(buf_t, int, int, uint64_t);
+
/* zone allocated buffer headers */
static void bufzoneinit(void);
static void bcleanbuf_thread_init(void);
static lck_grp_attr_t *buf_mtx_grp_attr;
static lck_mtx_t *iobuffer_mtxp;
static lck_mtx_t *buf_mtxp;
+static lck_mtx_t *buf_gc_callout;
static int buf_busycount;
+#define FS_BUFFER_CACHE_GC_CALLOUTS_MAX_SIZE 16
+typedef struct {
+ void (* callout)(int, void *);
+ void *context;
+} fs_buffer_cache_gc_callout_t;
+
+fs_buffer_cache_gc_callout_t fs_callouts[FS_BUFFER_CACHE_GC_CALLOUTS_MAX_SIZE] = { {NULL, NULL} };
+
static __inline__ int
buf_timestamp(void)
{
}
int
+#if !CONFIG_EMBEDDED
bufattr_delayidlesleep(bufattr_t bap)
+#else /* !CONFIG_EMBEDDED */
+bufattr_delayidlesleep(__unused bufattr_t bap)
+#endif /* !CONFIG_EMBEDDED */
{
+#if !CONFIG_EMBEDDED
if ( (bap->ba_flags & BA_DELAYIDLESLEEP) )
return 1;
+#endif /* !CONFIG_EMBEDDED */
return 0;
}
/*
* Attach the file offset to this buffer. The
* bufattr attributes will be passed down the stack
- * until they reach IOFlashStorage. IOFlashStorage
+ * until they reach the storage driver (whether
+ * IOFlashStorage, ASP, or IONVMe). The driver
* will retain the offset in a local variable when it
* issues its I/Os to the NAND controller.
*
* case, LwVM will update this field when it dispatches
* each I/O to IOFlashStorage. But from our perspective
* we have only issued a single I/O.
+ *
+ * In the case of APFS we do not bounce through another
+ * intermediate layer (such as CoreStorage). APFS will
+ * issue the I/Os directly to the block device / IOMedia
+ * via buf_strategy on the specfs node.
*/
buf_setcpoff(bp, f_offset);
CP_DEBUG((CPDBG_OFFSET_IO | DBG_FUNC_NONE), (uint32_t) f_offset, (uint32_t) bp->b_lblkno, (uint32_t) bp->b_blkno, (uint32_t) bp->b_bcount, 0);
*/
buf_mtxp = lck_mtx_alloc_init(buf_mtx_grp, buf_mtx_attr);
iobuffer_mtxp = lck_mtx_alloc_init(buf_mtx_grp, buf_mtx_attr);
+ buf_gc_callout = lck_mtx_alloc_init(buf_mtx_grp, buf_mtx_attr);
if (iobuffer_mtxp == NULL)
panic("couldn't create iobuffer mutex");
if (buf_mtxp == NULL)
panic("couldn't create buf mutex");
+ if (buf_gc_callout == NULL)
+ panic("couldn't create buf_gc_callout mutex");
+
/*
* allocate and initialize cluster specific global locks...
*/
*/
#define MINMETA 512
-#define MAXMETA 8192
+#define MAXMETA 16384
struct meta_zone_entry {
zone_t mz_zone;
{NULL, (MINMETA * 4), 16 * (MINMETA * 4), "buf.2048" },
{NULL, (MINMETA * 8), 512 * (MINMETA * 8), "buf.4096" },
{NULL, (MINMETA * 16), 512 * (MINMETA * 16), "buf.8192" },
+ {NULL, (MINMETA * 32), 512 * (MINMETA * 32), "buf.16384" },
{NULL, 0, 0, "" } /* End */
};
if (upl == NULL) {
if ( !ISSET(bp->b_flags, B_INVAL)) {
- kret = ubc_create_upl(bp->b_vp,
+ kret = ubc_create_upl_kernel(bp->b_vp,
ubc_blktooff(bp->b_vp, bp->b_lblkno),
bp->b_bufsize,
&upl,
NULL,
- UPL_PRECIOUS);
+ UPL_PRECIOUS,
+ VM_KERN_MEMORY_FILE);
if (kret != KERN_SUCCESS)
panic("brelse: Failed to create UPL");
case BLK_READ:
upl_flags |= UPL_PRECIOUS;
if (UBCINFOEXISTS(bp->b_vp) && bp->b_bufsize) {
- kret = ubc_create_upl(vp,
+ kret = ubc_create_upl_kernel(vp,
ubc_blktooff(vp, bp->b_lblkno),
bp->b_bufsize,
&upl,
&pl,
- upl_flags);
+ upl_flags,
+ VM_KERN_MEMORY_FILE);
if (kret != KERN_SUCCESS)
panic("Failed to create UPL");
f_offset = ubc_blktooff(vp, blkno);
upl_flags |= UPL_PRECIOUS;
- kret = ubc_create_upl(vp,
+ kret = ubc_create_upl_kernel(vp,
f_offset,
bp->b_bufsize,
&upl,
&pl,
- upl_flags);
+ upl_flags,
+ VM_KERN_MEMORY_FILE);
if (kret != KERN_SUCCESS)
panic("Failed to create UPL");
{
mount_t mp;
struct bufattr *bap;
+ struct timeval real_elapsed;
+ uint64_t real_elapsed_usec = 0;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 387)) | DBG_FUNC_START,
bp, bp->b_datap, bp->b_flags, 0, 0);
buf_kernel_addrperm_addr(bp), (uintptr_t)VM_KERNEL_ADDRPERM(bp->b_vp), bp->b_resid, bp->b_error, 0);
}
+ microuptime(&real_elapsed);
+ timevalsub(&real_elapsed, &bp->b_timestamp_tv);
+ real_elapsed_usec = real_elapsed.tv_sec * USEC_PER_SEC + real_elapsed.tv_usec;
+ disk_conditioner_delay(bp, 1, bp->b_bcount, real_elapsed_usec);
+
/*
* I/O was done, so don't believe
* the DIRTY state from VM anymore...
upl_flags |= UPL_WILL_MODIFY;
}
- kret = ubc_create_upl(vp,
+ kret = ubc_create_upl_kernel(vp,
ubc_blktooff(vp, bp->b_lblkno),
bp->b_bufsize,
&upl,
&pl,
- upl_flags);
+ upl_flags,
+ VM_KERN_MEMORY_FILE);
if (kret != KERN_SUCCESS)
panic("Failed to create UPL");
return(0);
}
+int
+fs_buffer_cache_gc_register(void (* callout)(int, void *), void *context)
+{
+ lck_mtx_lock(buf_gc_callout);
+ for (int i = 0; i < FS_BUFFER_CACHE_GC_CALLOUTS_MAX_SIZE; i++) {
+ if (fs_callouts[i].callout == NULL) {
+ fs_callouts[i].callout = callout;
+ fs_callouts[i].context = context;
+ lck_mtx_unlock(buf_gc_callout);
+ return 0;
+ }
+ }
+
+ lck_mtx_unlock(buf_gc_callout);
+ return ENOMEM;
+}
+
+int
+fs_buffer_cache_gc_unregister(void (* callout)(int, void *), void *context)
+{
+ lck_mtx_lock(buf_gc_callout);
+ for (int i = 0; i < FS_BUFFER_CACHE_GC_CALLOUTS_MAX_SIZE; i++) {
+ if (fs_callouts[i].callout == callout &&
+ fs_callouts[i].context == context) {
+ fs_callouts[i].callout = NULL;
+ fs_callouts[i].context = NULL;
+ }
+ }
+ lck_mtx_unlock(buf_gc_callout);
+ return 0;
+}
+
+static void
+fs_buffer_cache_gc_dispatch_callouts(int all)
+{
+ lck_mtx_lock(buf_gc_callout);
+ for(int i = 0; i < FS_BUFFER_CACHE_GC_CALLOUTS_MAX_SIZE; i++) {
+ if (fs_callouts[i].callout != NULL) {
+ fs_callouts[i].callout(all, fs_callouts[i].context);
+ }
+ }
+ lck_mtx_unlock(buf_gc_callout);
+}
+
boolean_t
buffer_cache_gc(int all)
{
lck_mtx_unlock(buf_mtxp);
+ fs_buffer_cache_gc_dispatch_callouts(all);
+
return did_large_zfree;
}