/*
- * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
+ * Copyright (c) 2000-2009 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
#include <ipc/ipc_port.h>
#include <kern/kalloc.h>
+#include <security/mac_mach_internal.h>
+
/*
* Exported interface
*/
decl_simple_lock_data(static,pset_node_lock)
queue_head_t tasks;
+queue_head_t terminated_tasks; /* To be used ONLY for stackshot. */
+queue_head_t corpse_tasks;
int tasks_count;
+int terminated_tasks_count;
queue_head_t threads;
int threads_count;
-decl_mutex_data(,tasks_threads_lock)
+decl_lck_mtx_data(,tasks_threads_lock)
+decl_lck_mtx_data(,tasks_corpse_lock)
processor_t processor_list;
unsigned int processor_count;
uint32_t processor_avail_count;
-processor_t master_processor;
-int master_cpu = 0;
-
-/* Forwards */
-kern_return_t processor_set_things(
- processor_set_t pset,
- mach_port_t **thing_list,
- mach_msg_type_number_t *count,
- int type);
+processor_t master_processor;
+int master_cpu = 0;
+boolean_t sched_stats_active = FALSE;
void
processor_bootstrap(void)
simple_lock_init(&pset_node_lock, 0);
- mutex_init(&tasks_threads_lock, 0);
queue_init(&tasks);
+ queue_init(&terminated_tasks);
queue_init(&threads);
+ queue_init(&corpse_tasks);
simple_lock_init(&processor_list_lock, 0);
/*
* Initialize the given processor for the cpu
- * indicated by slot_num, and assign to the
+ * indicated by cpu_id, and assign to the
* specified processor set.
*/
void
processor_init(
- processor_t p,
- int slot_num,
- processor_set_t pset)
+ processor_t processor,
+ int cpu_id,
+ processor_set_t pset)
{
- run_queue_init(&p->runq);
-
- p->state = PROCESSOR_OFF_LINE;
- p->active_thread = p->next_thread = p->idle_thread = THREAD_NULL;
- p->processor_set = pset;
- p->current_pri = MINPRI;
- timer_call_setup(&p->quantum_timer, thread_quantum_expire, p);
- p->deadline = UINT64_MAX;
- p->timeslice = 0;
- p->processor_self = IP_NULL;
- simple_lock_init(&p->lock, 0);
- processor_data_init(p);
- PROCESSOR_DATA(p, slot_num) = slot_num;
- p->processor_list = NULL;
+ spl_t s;
+
+ if (processor != master_processor) {
+ /* Scheduler state deferred until sched_init() */
+ SCHED(processor_init)(processor);
+ }
+
+ processor->state = PROCESSOR_OFF_LINE;
+ processor->active_thread = processor->next_thread = processor->idle_thread = THREAD_NULL;
+ processor->processor_set = pset;
+ processor->current_pri = MINPRI;
+ processor->current_thmode = TH_MODE_NONE;
+ processor->current_sfi_class = SFI_CLASS_KERNEL;
+ processor->starting_pri = MINPRI;
+ processor->cpu_id = cpu_id;
+ timer_call_setup(&processor->quantum_timer, thread_quantum_expire, processor);
+ processor->quantum_end = UINT64_MAX;
+ processor->deadline = UINT64_MAX;
+ processor->first_timeslice = FALSE;
+ processor->processor_primary = processor; /* no SMT relationship known at this point */
+ processor->processor_secondary = NULL;
+ processor->is_SMT = FALSE;
+ processor->is_recommended = (pset->recommended_bitmask & (1ULL << cpu_id)) ? TRUE : FALSE;
+ processor->processor_self = IP_NULL;
+ processor_data_init(processor);
+ processor->processor_list = NULL;
+
+ s = splsched();
+ pset_lock(pset);
+ if (pset->cpu_set_count++ == 0)
+ pset->cpu_set_low = pset->cpu_set_hi = cpu_id;
+ else {
+ pset->cpu_set_low = (cpu_id < pset->cpu_set_low)? cpu_id: pset->cpu_set_low;
+ pset->cpu_set_hi = (cpu_id > pset->cpu_set_hi)? cpu_id: pset->cpu_set_hi;
+ }
+ pset_unlock(pset);
+ splx(s);
simple_lock(&processor_list_lock);
if (processor_list == NULL)
- processor_list = p;
+ processor_list = processor;
else
- processor_list_tail->processor_list = p;
- processor_list_tail = p;
+ processor_list_tail->processor_list = processor;
+ processor_list_tail = processor;
processor_count++;
simple_unlock(&processor_list_lock);
}
+void
+processor_set_primary(
+ processor_t processor,
+ processor_t primary)
+{
+ assert(processor->processor_primary == primary || processor->processor_primary == processor);
+ /* Re-adjust primary point for this (possibly) secondary processor */
+ processor->processor_primary = primary;
+
+ assert(primary->processor_secondary == NULL || primary->processor_secondary == processor);
+ if (primary != processor) {
+ /* Link primary to secondary, assumes a 2-way SMT model
+ * We'll need to move to a queue if any future architecture
+ * requires otherwise.
+ */
+ assert(processor->processor_secondary == NULL);
+ primary->processor_secondary = processor;
+ /* Mark both processors as SMT siblings */
+ primary->is_SMT = TRUE;
+ processor->is_SMT = TRUE;
+ }
+}
+
processor_set_t
processor_pset(
processor_t processor)
pset_create(
pset_node_t node)
{
+ /* some schedulers do not support multiple psets */
+ if (SCHED(multiple_psets_enabled) == FALSE)
+ return processor_pset(master_processor);
+
processor_set_t *prev, pset = kalloc(sizeof (*pset));
if (pset != PROCESSOR_SET_NULL) {
processor_set_t pset,
pset_node_t node)
{
+ if (pset != &pset0) {
+ /* Scheduler state deferred until sched_init() */
+ SCHED(pset_init)(pset);
+ }
+
queue_init(&pset->active_queue);
queue_init(&pset->idle_queue);
- pset->idle_count = 0;
- pset->processor_count = 0;
- pset->low_pri = PROCESSOR_NULL;
+ queue_init(&pset->idle_secondary_queue);
+ pset->online_processor_count = 0;
+ pset->cpu_set_low = pset->cpu_set_hi = 0;
+ pset->cpu_set_count = 0;
+ pset->recommended_bitmask = ~0ULL;
+ pset->pending_AST_cpu_mask = 0;
+#if defined(CONFIG_SCHED_DEFERRED_AST)
+ pset->pending_deferred_AST_cpu_mask = 0;
+#endif
pset_lock_init(pset);
pset->pset_self = IP_NULL;
pset->pset_name_self = IP_NULL;
kern_return_t
processor_info(
- register processor_t processor,
+ processor_t processor,
processor_flavor_t flavor,
host_t *host,
processor_info_t info,
mach_msg_type_number_t *count)
{
- register int slot_num, state;
+ int cpu_id, state;
kern_return_t result;
if (processor == PROCESSOR_NULL)
return (KERN_INVALID_ARGUMENT);
- slot_num = PROCESSOR_DATA(processor, slot_num);
+ cpu_id = processor->cpu_id;
switch (flavor) {
case PROCESSOR_BASIC_INFO:
{
- register processor_basic_info_t basic_info;
+ processor_basic_info_t basic_info;
if (*count < PROCESSOR_BASIC_INFO_COUNT)
return (KERN_FAILURE);
basic_info = (processor_basic_info_t) info;
- basic_info->cpu_type = slot_type(slot_num);
- basic_info->cpu_subtype = slot_subtype(slot_num);
+ basic_info->cpu_type = slot_type(cpu_id);
+ basic_info->cpu_subtype = slot_subtype(cpu_id);
state = processor->state;
if (state == PROCESSOR_OFF_LINE)
basic_info->running = FALSE;
else
basic_info->running = TRUE;
- basic_info->slot_num = slot_num;
+ basic_info->slot_num = cpu_id;
if (processor == master_processor)
basic_info->is_master = TRUE;
else
case PROCESSOR_CPU_LOAD_INFO:
{
- register processor_cpu_load_info_t cpu_load_info;
-
- if (*count < PROCESSOR_CPU_LOAD_INFO_COUNT)
+ processor_cpu_load_info_t cpu_load_info;
+ timer_t idle_state;
+ uint64_t idle_time_snapshot1, idle_time_snapshot2;
+ uint64_t idle_time_tstamp1, idle_time_tstamp2;
+
+ /*
+ * We capture the accumulated idle time twice over
+ * the course of this function, as well as the timestamps
+ * when each were last updated. Since these are
+ * all done using non-atomic racy mechanisms, the
+ * most we can infer is whether values are stable.
+ * timer_grab() is the only function that can be
+ * used reliably on another processor's per-processor
+ * data.
+ */
+
+ if (*count < PROCESSOR_CPU_LOAD_INFO_COUNT)
return (KERN_FAILURE);
- cpu_load_info = (processor_cpu_load_info_t) info;
- cpu_load_info->cpu_ticks[CPU_STATE_USER] =
- timer_grab(&PROCESSOR_DATA(processor, user_state)) / hz_tick_interval;
- cpu_load_info->cpu_ticks[CPU_STATE_SYSTEM] =
- timer_grab(&PROCESSOR_DATA(processor, system_state)) / hz_tick_interval;
- cpu_load_info->cpu_ticks[CPU_STATE_IDLE] =
- timer_grab(&PROCESSOR_DATA(processor, idle_state)) / hz_tick_interval;
+ cpu_load_info = (processor_cpu_load_info_t) info;
+ if (precise_user_kernel_time) {
+ cpu_load_info->cpu_ticks[CPU_STATE_USER] =
+ (uint32_t)(timer_grab(&PROCESSOR_DATA(processor, user_state)) / hz_tick_interval);
+ cpu_load_info->cpu_ticks[CPU_STATE_SYSTEM] =
+ (uint32_t)(timer_grab(&PROCESSOR_DATA(processor, system_state)) / hz_tick_interval);
+ } else {
+ uint64_t tval = timer_grab(&PROCESSOR_DATA(processor, user_state)) +
+ timer_grab(&PROCESSOR_DATA(processor, system_state));
+
+ cpu_load_info->cpu_ticks[CPU_STATE_USER] = (uint32_t)(tval / hz_tick_interval);
+ cpu_load_info->cpu_ticks[CPU_STATE_SYSTEM] = 0;
+ }
+
+ idle_state = &PROCESSOR_DATA(processor, idle_state);
+ idle_time_snapshot1 = timer_grab(idle_state);
+ idle_time_tstamp1 = idle_state->tstamp;
+
+ /*
+ * Idle processors are not continually updating their
+ * per-processor idle timer, so it may be extremely
+ * out of date, resulting in an over-representation
+ * of non-idle time between two measurement
+ * intervals by e.g. top(1). If we are non-idle, or
+ * have evidence that the timer is being updated
+ * concurrently, we consider its value up-to-date.
+ */
+ if (PROCESSOR_DATA(processor, current_state) != idle_state) {
+ cpu_load_info->cpu_ticks[CPU_STATE_IDLE] =
+ (uint32_t)(idle_time_snapshot1 / hz_tick_interval);
+ } else if ((idle_time_snapshot1 != (idle_time_snapshot2 = timer_grab(idle_state))) ||
+ (idle_time_tstamp1 != (idle_time_tstamp2 = idle_state->tstamp))){
+ /* Idle timer is being updated concurrently, second stamp is good enough */
+ cpu_load_info->cpu_ticks[CPU_STATE_IDLE] =
+ (uint32_t)(idle_time_snapshot2 / hz_tick_interval);
+ } else {
+ /*
+ * Idle timer may be very stale. Fortunately we have established
+ * that idle_time_snapshot1 and idle_time_tstamp1 are unchanging
+ */
+ idle_time_snapshot1 += mach_absolute_time() - idle_time_tstamp1;
+
+ cpu_load_info->cpu_ticks[CPU_STATE_IDLE] =
+ (uint32_t)(idle_time_snapshot1 / hz_tick_interval);
+ }
+
cpu_load_info->cpu_ticks[CPU_STATE_NICE] = 0;
*count = PROCESSOR_CPU_LOAD_INFO_COUNT;
}
default:
- result = cpu_info(flavor, slot_num, info, count);
+ result = cpu_info(flavor, cpu_id, info, count);
if (result == KERN_SUCCESS)
*host = &realhost;
prev = thread_bind(processor);
thread_block(THREAD_CONTINUE_NULL);
- result = cpu_start(PROCESSOR_DATA(processor, slot_num));
+ result = cpu_start(processor->cpu_id);
thread_bind(prev);
thread->bound_processor = processor;
processor->next_thread = thread;
thread->state = TH_RUN;
+ thread->last_made_runnable_time = mach_absolute_time();
thread_unlock(thread);
splx(s);
if (processor->processor_self == IP_NULL)
ipc_processor_init(processor);
- result = cpu_start(PROCESSOR_DATA(processor, slot_num));
+ result = cpu_start(processor->cpu_id);
if (result != KERN_SUCCESS) {
s = splsched();
pset_lock(pset);
processor->state = PROCESSOR_OFF_LINE;
- timer_call_shutdown(processor);
pset_unlock(pset);
splx(s);
if (processor == PROCESSOR_NULL)
return(KERN_INVALID_ARGUMENT);
- return(cpu_control(PROCESSOR_DATA(processor, slot_num), info, count));
+ return(cpu_control(processor->cpu_id, info, count));
}
kern_return_t
{
int state;
+ if (processor == PROCESSOR_NULL)
+ return(KERN_INVALID_ARGUMENT);
+
state = processor->state;
if (state == PROCESSOR_SHUTDOWN || state == PROCESSOR_OFF_LINE)
return(KERN_FAILURE);
return(KERN_INVALID_ARGUMENT);
if (flavor == PROCESSOR_SET_BASIC_INFO) {
- register processor_set_basic_info_t basic_info;
+ processor_set_basic_info_t basic_info;
if (*count < PROCESSOR_SET_BASIC_INFO_COUNT)
return(KERN_FAILURE);
return(KERN_SUCCESS);
}
else if (flavor == PROCESSOR_SET_TIMESHARE_DEFAULT) {
- register policy_timeshare_base_t ts_base;
+ policy_timeshare_base_t ts_base;
if (*count < POLICY_TIMESHARE_BASE_COUNT)
return(KERN_FAILURE);
return(KERN_SUCCESS);
}
else if (flavor == PROCESSOR_SET_FIFO_DEFAULT) {
- register policy_fifo_base_t fifo_base;
+ policy_fifo_base_t fifo_base;
if (*count < POLICY_FIFO_BASE_COUNT)
return(KERN_FAILURE);
return(KERN_SUCCESS);
}
else if (flavor == PROCESSOR_SET_RR_DEFAULT) {
- register policy_rr_base_t rr_base;
+ policy_rr_base_t rr_base;
if (*count < POLICY_RR_BASE_COUNT)
return(KERN_FAILURE);
return(KERN_SUCCESS);
}
else if (flavor == PROCESSOR_SET_TIMESHARE_LIMITS) {
- register policy_timeshare_limit_t ts_limit;
+ policy_timeshare_limit_t ts_limit;
if (*count < POLICY_TIMESHARE_LIMIT_COUNT)
return(KERN_FAILURE);
return(KERN_SUCCESS);
}
else if (flavor == PROCESSOR_SET_FIFO_LIMITS) {
- register policy_fifo_limit_t fifo_limit;
+ policy_fifo_limit_t fifo_limit;
if (*count < POLICY_FIFO_LIMIT_COUNT)
return(KERN_FAILURE);
return(KERN_SUCCESS);
}
else if (flavor == PROCESSOR_SET_RR_LIMITS) {
- register policy_rr_limit_t rr_limit;
+ policy_rr_limit_t rr_limit;
if (*count < POLICY_RR_LIMIT_COUNT)
return(KERN_FAILURE);
return(KERN_SUCCESS);
}
else if (flavor == PROCESSOR_SET_ENABLED_POLICIES) {
- register int *enabled;
+ int *enabled;
if (*count < (sizeof(*enabled)/sizeof(int)))
return(KERN_FAILURE);
return (KERN_INVALID_PROCESSOR_SET);
if (flavor == PROCESSOR_SET_LOAD_INFO) {
- register processor_set_load_info_t load_info;
+ processor_set_load_info_t load_info;
if (*count < PROCESSOR_SET_LOAD_INFO_COUNT)
return(KERN_FAILURE);
return (KERN_INVALID_ARGUMENT);
}
-#define THING_TASK 0
-#define THING_THREAD 1
-
/*
* processor_set_things:
*
*/
kern_return_t
processor_set_things(
- processor_set_t pset,
- mach_port_t **thing_list,
- mach_msg_type_number_t *count,
- int type)
+ processor_set_t pset,
+ void **thing_list,
+ mach_msg_type_number_t *count,
+ int type)
{
- unsigned int actual; /* this many things */
- unsigned int maxthings;
unsigned int i;
+ task_t task;
+ thread_t thread;
+
+ task_t *task_list;
+ unsigned int actual_tasks;
+ vm_size_t task_size, task_size_needed;
+
+ thread_t *thread_list;
+ unsigned int actual_threads;
+ vm_size_t thread_size, thread_size_needed;
+ void *addr, *newaddr;
vm_size_t size, size_needed;
- void *addr;
if (pset == PROCESSOR_SET_NULL || pset != &pset0)
return (KERN_INVALID_ARGUMENT);
- size = 0;
- addr = NULL;
+ task_size = 0;
+ task_size_needed = 0;
+ task_list = NULL;
+ actual_tasks = 0;
- for (;;) {
- mutex_lock(&tasks_threads_lock);
+ thread_size = 0;
+ thread_size_needed = 0;
+ thread_list = NULL;
+ actual_threads = 0;
- if (type == THING_TASK)
- maxthings = tasks_count;
- else
- maxthings = threads_count;
+ for (;;) {
+ lck_mtx_lock(&tasks_threads_lock);
/* do we have the memory we need? */
+ if (type == PSET_THING_THREAD)
+ thread_size_needed = threads_count * sizeof(void *);
+#if !CONFIG_MACF
+ else
+#endif
+ task_size_needed = tasks_count * sizeof(void *);
- size_needed = maxthings * sizeof (mach_port_t);
- if (size_needed <= size)
+ if (task_size_needed <= task_size &&
+ thread_size_needed <= thread_size)
break;
/* unlock and allocate more memory */
- mutex_unlock(&tasks_threads_lock);
+ lck_mtx_unlock(&tasks_threads_lock);
- if (size != 0)
- kfree(addr, size);
+ /* grow task array */
+ if (task_size_needed > task_size) {
+ if (task_size != 0)
+ kfree(task_list, task_size);
- assert(size_needed > 0);
- size = size_needed;
+ assert(task_size_needed > 0);
+ task_size = task_size_needed;
- addr = kalloc(size);
- if (addr == 0)
- return (KERN_RESOURCE_SHORTAGE);
- }
+ task_list = (task_t *)kalloc(task_size);
+ if (task_list == NULL) {
+ if (thread_size != 0)
+ kfree(thread_list, thread_size);
+ return (KERN_RESOURCE_SHORTAGE);
+ }
+ }
- /* OK, have memory and the list locked */
+ /* grow thread array */
+ if (thread_size_needed > thread_size) {
+ if (thread_size != 0)
+ kfree(thread_list, thread_size);
- actual = 0;
- switch (type) {
+ assert(thread_size_needed > 0);
+ thread_size = thread_size_needed;
- case THING_TASK: {
- task_t task, *task_list = (task_t *)addr;
+ thread_list = (thread_t *)kalloc(thread_size);
+ if (thread_list == 0) {
+ if (task_size != 0)
+ kfree(task_list, task_size);
+ return (KERN_RESOURCE_SHORTAGE);
+ }
+ }
+ }
+
+ /* OK, have memory and the list locked */
+ /* If we need it, get the thread list */
+ if (type == PSET_THING_THREAD) {
+ for (thread = (thread_t)queue_first(&threads);
+ !queue_end(&threads, (queue_entry_t)thread);
+ thread = (thread_t)queue_next(&thread->threads)) {
+#if defined(SECURE_KERNEL)
+ if (thread->task != kernel_task) {
+#endif
+ thread_reference_internal(thread);
+ thread_list[actual_threads++] = thread;
+#if defined(SECURE_KERNEL)
+ }
+#endif
+ }
+ }
+#if !CONFIG_MACF
+ else {
+#endif
+ /* get a list of the tasks */
for (task = (task_t)queue_first(&tasks);
- !queue_end(&tasks, (queue_entry_t)task);
- task = (task_t)queue_next(&task->tasks)) {
+ !queue_end(&tasks, (queue_entry_t)task);
+ task = (task_t)queue_next(&task->tasks)) {
#if defined(SECURE_KERNEL)
if (task != kernel_task) {
#endif
task_reference_internal(task);
- task_list[actual++] = task;
+ task_list[actual_tasks++] = task;
#if defined(SECURE_KERNEL)
}
#endif
}
-
- break;
+#if !CONFIG_MACF
}
+#endif
- case THING_THREAD: {
- thread_t thread, *thread_list = (thread_t *)addr;
-
- for (thread = (thread_t)queue_first(&threads);
- !queue_end(&threads, (queue_entry_t)thread);
- thread = (thread_t)queue_next(&thread->threads)) {
- thread_reference_internal(thread);
- thread_list[actual++] = thread;
- }
-
- break;
- }
-
- }
-
- mutex_unlock(&tasks_threads_lock);
-
- if (actual < maxthings)
- size_needed = actual * sizeof (mach_port_t);
+ lck_mtx_unlock(&tasks_threads_lock);
- if (actual == 0) {
- /* no things, so return null pointer and deallocate memory */
- *thing_list = NULL;
- *count = 0;
+#if CONFIG_MACF
+ unsigned int j, used;
- if (size != 0)
- kfree(addr, size);
+ /* for each task, make sure we are allowed to examine it */
+ for (i = used = 0; i < actual_tasks; i++) {
+ if (mac_task_check_expose_task(task_list[i])) {
+ task_deallocate(task_list[i]);
+ continue;
+ }
+ task_list[used++] = task_list[i];
}
- else {
- /* if we allocated too much, must copy */
+ actual_tasks = used;
+ task_size_needed = actual_tasks * sizeof(void *);
- if (size_needed < size) {
- void *newaddr;
+ if (type == PSET_THING_THREAD) {
- newaddr = kalloc(size_needed);
- if (newaddr == 0) {
- switch (type) {
+ /* for each thread (if any), make sure it's task is in the allowed list */
+ for (i = used = 0; i < actual_threads; i++) {
+ boolean_t found_task = FALSE;
- case THING_TASK: {
- task_t *task_list = (task_t *)addr;
-
- for (i = 0; i < actual; i++)
- task_deallocate(task_list[i]);
- break;
- }
-
- case THING_THREAD: {
- thread_t *thread_list = (thread_t *)addr;
-
- for (i = 0; i < actual; i++)
- thread_deallocate(thread_list[i]);
+ task = thread_list[i]->task;
+ for (j = 0; j < actual_tasks; j++) {
+ if (task_list[j] == task) {
+ found_task = TRUE;
break;
}
-
- }
-
- kfree(addr, size);
- return (KERN_RESOURCE_SHORTAGE);
}
-
- bcopy((void *) addr, (void *) newaddr, size_needed);
- kfree(addr, size);
- addr = newaddr;
+ if (found_task)
+ thread_list[used++] = thread_list[i];
+ else
+ thread_deallocate(thread_list[i]);
}
+ actual_threads = used;
+ thread_size_needed = actual_threads * sizeof(void *);
+
+ /* done with the task list */
+ for (i = 0; i < actual_tasks; i++)
+ task_deallocate(task_list[i]);
+ kfree(task_list, task_size);
+ task_size = 0;
+ actual_tasks = 0;
+ task_list = NULL;
+ }
+#endif
- *thing_list = (mach_port_t *)addr;
- *count = actual;
-
- /* do the conversion that Mig should handle */
-
- switch (type) {
-
- case THING_TASK: {
- task_t *task_list = (task_t *)addr;
-
- for (i = 0; i < actual; i++)
- (*thing_list)[i] = convert_task_to_port(task_list[i]);
- break;
+ if (type == PSET_THING_THREAD) {
+ if (actual_threads == 0) {
+ /* no threads available to return */
+ assert(task_size == 0);
+ if (thread_size != 0)
+ kfree(thread_list, thread_size);
+ *thing_list = NULL;
+ *count = 0;
+ return KERN_SUCCESS;
}
+ size_needed = actual_threads * sizeof(void *);
+ size = thread_size;
+ addr = thread_list;
+ } else {
+ if (actual_tasks == 0) {
+ /* no tasks available to return */
+ assert(thread_size == 0);
+ if (task_size != 0)
+ kfree(task_list, task_size);
+ *thing_list = NULL;
+ *count = 0;
+ return KERN_SUCCESS;
+ }
+ size_needed = actual_tasks * sizeof(void *);
+ size = task_size;
+ addr = task_list;
+ }
- case THING_THREAD: {
- thread_t *thread_list = (thread_t *)addr;
-
- for (i = 0; i < actual; i++)
- (*thing_list)[i] = convert_thread_to_port(thread_list[i]);
- break;
+ /* if we allocated too much, must copy */
+ if (size_needed < size) {
+ newaddr = kalloc(size_needed);
+ if (newaddr == 0) {
+ for (i = 0; i < actual_tasks; i++) {
+ if (type == PSET_THING_THREAD)
+ thread_deallocate(thread_list[i]);
+ else
+ task_deallocate(task_list[i]);
+ }
+ if (size)
+ kfree(addr, size);
+ return (KERN_RESOURCE_SHORTAGE);
}
- }
+ bcopy((void *) addr, (void *) newaddr, size_needed);
+ kfree(addr, size);
+
+ addr = newaddr;
+ size = size_needed;
}
+ *thing_list = (void **)addr;
+ *count = (unsigned int)size / sizeof(void *);
+
return (KERN_SUCCESS);
}
task_array_t *task_list,
mach_msg_type_number_t *count)
{
- return(processor_set_things(pset, (mach_port_t **)task_list, count, THING_TASK));
+ kern_return_t ret;
+ mach_msg_type_number_t i;
+
+ ret = processor_set_things(pset, (void **)task_list, count, PSET_THING_TASK);
+ if (ret != KERN_SUCCESS)
+ return ret;
+
+ /* do the conversion that Mig should handle */
+ for (i = 0; i < *count; i++)
+ (*task_list)[i] = (task_t)convert_task_to_port((*task_list)[i]);
+ return KERN_SUCCESS;
}
/*
thread_array_t *thread_list,
mach_msg_type_number_t *count)
{
- return(processor_set_things(pset, (mach_port_t **)thread_list, count, THING_THREAD));
+ kern_return_t ret;
+ mach_msg_type_number_t i;
+
+ ret = processor_set_things(pset, (void **)thread_list, count, PSET_THING_THREAD);
+ if (ret != KERN_SUCCESS)
+ return ret;
+
+ /* do the conversion that Mig should handle */
+ for (i = 0; i < *count; i++)
+ (*thread_list)[i] = (thread_t)convert_thread_to_port((*thread_list)[i]);
+ return KERN_SUCCESS;
}
#endif