/*
- * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
+ * Copyright (c) 2000-2009 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
#include <mach/machine.h>
#include <mach/policy.h>
#include <mach/sync_policy.h>
+#include <mach/thread_act.h>
#include <machine/machine_routines.h>
#include <machine/sched_param.h>
#include <machine/machine_cpu.h>
+#include <machine/machlimits.h>
#include <kern/kern_types.h>
#include <kern/clock.h>
#include <vm/vm_kern.h>
#include <vm/vm_map.h>
+#include <mach/sdt.h>
+
#include <sys/kdebug.h>
#include <kern/pms.h>
-struct run_queue rt_runq;
+struct rt_queue rt_runq;
#define RT_RUNQ ((processor_t)-1)
decl_simple_lock_data(static,rt_lock);
+#if defined(CONFIG_SCHED_TRADITIONAL) || defined(CONFIG_SCHED_PROTO) || defined(CONFIG_SCHED_GRRR) || defined(CONFIG_SCHED_FIXEDPRIORITY)
+static struct fairshare_queue fs_runq;
+#define FS_RUNQ ((processor_t)-2)
+decl_simple_lock_data(static,fs_lock);
+#endif
+
#define DEFAULT_PREEMPTION_RATE 100 /* (1/s) */
int default_preemption_rate = DEFAULT_PREEMPTION_RATE;
#define SCHED_POLL_YIELD_SHIFT 4 /* 1/16 */
int sched_poll_yield_shift = SCHED_POLL_YIELD_SHIFT;
-uint64_t max_unsafe_computation;
-uint32_t sched_safe_duration;
uint64_t max_poll_computation;
+uint64_t max_unsafe_computation;
+uint64_t sched_safe_duration;
+
+#if defined(CONFIG_SCHED_TRADITIONAL)
+
uint32_t std_quantum;
uint32_t min_std_quantum;
uint32_t std_quantum_us;
+#endif /* CONFIG_SCHED_TRADITIONAL */
+
+uint32_t thread_depress_time;
+uint32_t default_timeshare_computation;
+uint32_t default_timeshare_constraint;
+
uint32_t max_rt_quantum;
uint32_t min_rt_quantum;
uint32_t sched_cswtime;
+#if defined(CONFIG_SCHED_TRADITIONAL)
+
unsigned sched_tick;
uint32_t sched_tick_interval;
uint32_t sched_pri_shift = INT8_MAX;
uint32_t sched_fixed_shift;
+static boolean_t sched_traditional_use_pset_runqueue = FALSE;
+
+__attribute__((always_inline))
+static inline run_queue_t runq_for_processor(processor_t processor)
+{
+ if (sched_traditional_use_pset_runqueue)
+ return &processor->processor_set->pset_runq;
+ else
+ return &processor->runq;
+}
+
+__attribute__((always_inline))
+static inline void runq_consider_incr_bound_count(processor_t processor, thread_t thread)
+{
+ if (thread->bound_processor == PROCESSOR_NULL)
+ return;
+
+ assert(thread->bound_processor == processor);
+
+ if (sched_traditional_use_pset_runqueue)
+ processor->processor_set->pset_runq_bound_count++;
+
+ processor->runq_bound_count++;
+}
+
+__attribute__((always_inline))
+static inline void runq_consider_decr_bound_count(processor_t processor, thread_t thread)
+{
+ if (thread->bound_processor == PROCESSOR_NULL)
+ return;
+
+ assert(thread->bound_processor == processor);
+
+ if (sched_traditional_use_pset_runqueue)
+ processor->processor_set->pset_runq_bound_count--;
+
+ processor->runq_bound_count--;
+}
+
+#endif /* CONFIG_SCHED_TRADITIONAL */
+
+uint64_t sched_one_second_interval;
+
uint32_t sched_run_count, sched_share_count;
uint32_t sched_load_average, sched_mach_factor;
/* Forwards */
-void wait_queues_init(void) __attribute__((section("__TEXT, initcode")));
+
+#if defined(CONFIG_SCHED_TRADITIONAL)
static void load_shift_init(void) __attribute__((section("__TEXT, initcode")));
static void preempt_pri_init(void) __attribute__((section("__TEXT, initcode")));
-static thread_t thread_select_idle(
+#endif /* CONFIG_SCHED_TRADITIONAL */
+
+static thread_t thread_select(
thread_t thread,
processor_t processor);
-static thread_t processor_idle(
+#if CONFIG_SCHED_IDLE_IN_PLACE
+static thread_t thread_select_idle(
thread_t thread,
processor_t processor);
+#endif
-static thread_t choose_thread(
+thread_t processor_idle(
+ thread_t thread,
processor_t processor);
+#if defined(CONFIG_SCHED_TRADITIONAL)
+
static thread_t steal_thread(
processor_set_t pset);
+static thread_t steal_thread_disabled(
+ processor_set_t pset) __attribute__((unused));
+
+
static thread_t steal_processor_thread(
processor_t processor);
static void thread_update_scan(void);
+static void processor_setrun(
+ processor_t processor,
+ thread_t thread,
+ integer_t options);
+
+static boolean_t
+processor_enqueue(
+ processor_t processor,
+ thread_t thread,
+ integer_t options);
+
+static boolean_t
+processor_queue_remove(
+ processor_t processor,
+ thread_t thread);
+
+static boolean_t processor_queue_empty(processor_t processor);
+
+static boolean_t priority_is_urgent(int priority);
+
+static ast_t processor_csw_check(processor_t processor);
+
+static boolean_t processor_queue_has_priority(processor_t processor,
+ int priority,
+ boolean_t gte);
+
+static boolean_t should_current_thread_rechoose_processor(processor_t processor);
+
+static int sched_traditional_processor_runq_count(processor_t processor);
+
+static boolean_t sched_traditional_with_pset_runqueue_processor_queue_empty(processor_t processor);
+
+static uint64_t sched_traditional_processor_runq_stats_count_sum(processor_t processor);
+
+static uint64_t sched_traditional_with_pset_runqueue_processor_runq_stats_count_sum(processor_t processor);
+#endif
+
+
+#if defined(CONFIG_SCHED_TRADITIONAL)
+
+static void
+sched_traditional_init(void);
+
+static void
+sched_traditional_timebase_init(void);
+
+static void
+sched_traditional_processor_init(processor_t processor);
+
+static void
+sched_traditional_pset_init(processor_set_t pset);
+
+static void
+sched_traditional_with_pset_runqueue_init(void);
+
+#endif
+
+static void
+sched_realtime_init(void) __attribute__((section("__TEXT, initcode")));
+
+static void
+sched_realtime_timebase_init(void);
+
+#if defined(CONFIG_SCHED_TRADITIONAL)
+static void
+sched_traditional_tick_continue(void);
+
+static uint32_t
+sched_traditional_initial_quantum_size(thread_t thread);
+
+static sched_mode_t
+sched_traditional_initial_thread_sched_mode(task_t parent_task);
+
+static boolean_t
+sched_traditional_supports_timeshare_mode(void);
+
+static thread_t
+sched_traditional_choose_thread(
+ processor_t processor,
+ int priority);
+
+#endif
+
#if DEBUG
extern int debug_task;
#define TLOG(a, fmt, args...) if(debug_task & a) kprintf(fmt, ## args)
*
*/
+#if defined(CONFIG_SCHED_TRADITIONAL)
+int8_t sched_load_shifts[NRQS];
+int sched_preempt_pri[NRQBM];
+#endif
+
+
+#if defined(CONFIG_SCHED_TRADITIONAL)
+
+const struct sched_dispatch_table sched_traditional_dispatch = {
+ sched_traditional_init,
+ sched_traditional_timebase_init,
+ sched_traditional_processor_init,
+ sched_traditional_pset_init,
+ sched_traditional_tick_continue,
+ sched_traditional_choose_thread,
+ steal_thread,
+ compute_priority,
+ choose_processor,
+ processor_enqueue,
+ processor_queue_shutdown,
+ processor_queue_remove,
+ processor_queue_empty,
+ priority_is_urgent,
+ processor_csw_check,
+ processor_queue_has_priority,
+ sched_traditional_initial_quantum_size,
+ sched_traditional_initial_thread_sched_mode,
+ sched_traditional_supports_timeshare_mode,
+ can_update_priority,
+ update_priority,
+ lightweight_update_priority,
+ sched_traditional_quantum_expire,
+ should_current_thread_rechoose_processor,
+ sched_traditional_processor_runq_count,
+ sched_traditional_processor_runq_stats_count_sum,
+ sched_traditional_fairshare_init,
+ sched_traditional_fairshare_runq_count,
+ sched_traditional_fairshare_runq_stats_count_sum,
+ sched_traditional_fairshare_enqueue,
+ sched_traditional_fairshare_dequeue,
+ sched_traditional_fairshare_queue_remove,
+ TRUE /* direct_dispatch_to_idle_processors */
+};
+
+const struct sched_dispatch_table sched_traditional_with_pset_runqueue_dispatch = {
+ sched_traditional_with_pset_runqueue_init,
+ sched_traditional_timebase_init,
+ sched_traditional_processor_init,
+ sched_traditional_pset_init,
+ sched_traditional_tick_continue,
+ sched_traditional_choose_thread,
+ steal_thread,
+ compute_priority,
+ choose_processor,
+ processor_enqueue,
+ processor_queue_shutdown,
+ processor_queue_remove,
+ sched_traditional_with_pset_runqueue_processor_queue_empty,
+ priority_is_urgent,
+ processor_csw_check,
+ processor_queue_has_priority,
+ sched_traditional_initial_quantum_size,
+ sched_traditional_initial_thread_sched_mode,
+ sched_traditional_supports_timeshare_mode,
+ can_update_priority,
+ update_priority,
+ lightweight_update_priority,
+ sched_traditional_quantum_expire,
+ should_current_thread_rechoose_processor,
+ sched_traditional_processor_runq_count,
+ sched_traditional_with_pset_runqueue_processor_runq_stats_count_sum,
+ sched_traditional_fairshare_init,
+ sched_traditional_fairshare_runq_count,
+ sched_traditional_fairshare_runq_stats_count_sum,
+ sched_traditional_fairshare_enqueue,
+ sched_traditional_fairshare_dequeue,
+ sched_traditional_fairshare_queue_remove,
+ FALSE /* direct_dispatch_to_idle_processors */
+};
+
+#endif
+
+const struct sched_dispatch_table *sched_current_dispatch = NULL;
+
/*
- * Waiting protocols and implementation:
- *
- * Each thread may be waiting for exactly one event; this event
- * is set using assert_wait(). That thread may be awakened either
- * by performing a thread_wakeup_prim() on its event,
- * or by directly waking that thread up with clear_wait().
+ * Statically allocate a buffer to hold the longest possible
+ * scheduler description string, as currently implemented.
+ * bsd/kern/kern_sysctl.c has a corresponding definition in bsd/
+ * to export to userspace via sysctl(3). If either version
+ * changes, update the other.
*
- * The implementation of wait events uses a hash table. Each
- * bucket is queue of threads having the same hash function
- * value; the chain for the queue (linked list) is the run queue
- * field. [It is not possible to be waiting and runnable at the
- * same time.]
- *
- * Locks on both the thread and on the hash buckets govern the
- * wait event field and the queue chain field. Because wakeup
- * operations only have the event as an argument, the event hash
- * bucket must be locked before any thread.
- *
- * Scheduling operations may also occur at interrupt level; therefore,
- * interrupts below splsched() must be prevented when holding
- * thread or hash bucket locks.
- *
- * The wait event hash table declarations are as follows:
+ * Note that in addition to being an upper bound on the strings
+ * in the kernel, it's also an exact parameter to PE_get_default(),
+ * which interrogates the device tree on some platforms. That
+ * API requires the caller know the exact size of the device tree
+ * property, so we need both a legacy size (32) and the current size
+ * (48) to deal with old and new device trees. The device tree property
+ * is similarly padded to a fixed size so that the same kernel image
+ * can run on multiple devices with different schedulers configured
+ * in the device tree.
*/
+#define SCHED_STRING_MAX_LENGTH (48)
-#define NUMQUEUES 59
-
-struct wait_queue wait_queues[NUMQUEUES];
+char sched_string[SCHED_STRING_MAX_LENGTH];
+static enum sched_enum _sched_enum = sched_enum_unknown;
-#define wait_hash(event) \
- ((((int)(event) < 0)? ~(int)(event): (int)(event)) % NUMQUEUES)
+void
+sched_init(void)
+{
+ char sched_arg[SCHED_STRING_MAX_LENGTH] = { '\0' };
+
+ /* Check for runtime selection of the scheduler algorithm */
+ if (!PE_parse_boot_argn("sched", sched_arg, sizeof (sched_arg))) {
+ /* If no boot-args override, look in device tree */
+ if (!PE_get_default("kern.sched", sched_arg,
+ SCHED_STRING_MAX_LENGTH)) {
+ sched_arg[0] = '\0';
+ }
+ }
-int8_t sched_load_shifts[NRQS];
-int sched_preempt_pri[NRQBM];
+ if (strlen(sched_arg) > 0) {
+ if (0) {
+ /* Allow pattern below */
+#if defined(CONFIG_SCHED_TRADITIONAL)
+ } else if (0 == strcmp(sched_arg, kSchedTraditionalString)) {
+ sched_current_dispatch = &sched_traditional_dispatch;
+ _sched_enum = sched_enum_traditional;
+ strlcpy(sched_string, kSchedTraditionalString, sizeof(sched_string));
+ kprintf("Scheduler: Runtime selection of %s\n", kSchedTraditionalString);
+ } else if (0 == strcmp(sched_arg, kSchedTraditionalWithPsetRunqueueString)) {
+ sched_current_dispatch = &sched_traditional_with_pset_runqueue_dispatch;
+ _sched_enum = sched_enum_traditional_with_pset_runqueue;
+ strlcpy(sched_string, kSchedTraditionalWithPsetRunqueueString, sizeof(sched_string));
+ kprintf("Scheduler: Runtime selection of %s\n", kSchedTraditionalWithPsetRunqueueString);
+#endif
+#if defined(CONFIG_SCHED_PROTO)
+ } else if (0 == strcmp(sched_arg, kSchedProtoString)) {
+ sched_current_dispatch = &sched_proto_dispatch;
+ _sched_enum = sched_enum_proto;
+ strlcpy(sched_string, kSchedProtoString, sizeof(sched_string));
+ kprintf("Scheduler: Runtime selection of %s\n", kSchedProtoString);
+#endif
+#if defined(CONFIG_SCHED_GRRR)
+ } else if (0 == strcmp(sched_arg, kSchedGRRRString)) {
+ sched_current_dispatch = &sched_grrr_dispatch;
+ _sched_enum = sched_enum_grrr;
+ strlcpy(sched_string, kSchedGRRRString, sizeof(sched_string));
+ kprintf("Scheduler: Runtime selection of %s\n", kSchedGRRRString);
+#endif
+#if defined(CONFIG_SCHED_FIXEDPRIORITY)
+ } else if (0 == strcmp(sched_arg, kSchedFixedPriorityString)) {
+ sched_current_dispatch = &sched_fixedpriority_dispatch;
+ _sched_enum = sched_enum_fixedpriority;
+ strlcpy(sched_string, kSchedFixedPriorityString, sizeof(sched_string));
+ kprintf("Scheduler: Runtime selection of %s\n", kSchedFixedPriorityString);
+ } else if (0 == strcmp(sched_arg, kSchedFixedPriorityWithPsetRunqueueString)) {
+ sched_current_dispatch = &sched_fixedpriority_with_pset_runqueue_dispatch;
+ _sched_enum = sched_enum_fixedpriority_with_pset_runqueue;
+ strlcpy(sched_string, kSchedFixedPriorityWithPsetRunqueueString, sizeof(sched_string));
+ kprintf("Scheduler: Runtime selection of %s\n", kSchedFixedPriorityWithPsetRunqueueString);
+#endif
+ } else {
+ panic("Unrecognized scheduler algorithm: %s", sched_arg);
+ }
+ } else {
+#if defined(CONFIG_SCHED_TRADITIONAL)
+ sched_current_dispatch = &sched_traditional_dispatch;
+ _sched_enum = sched_enum_traditional;
+ strlcpy(sched_string, kSchedTraditionalString, sizeof(sched_string));
+ kprintf("Scheduler: Default of %s\n", kSchedTraditionalString);
+#elif defined(CONFIG_SCHED_PROTO)
+ sched_current_dispatch = &sched_proto_dispatch;
+ _sched_enum = sched_enum_proto;
+ strlcpy(sched_string, kSchedProtoString, sizeof(sched_string));
+ kprintf("Scheduler: Default of %s\n", kSchedProtoString);
+#elif defined(CONFIG_SCHED_GRRR)
+ sched_current_dispatch = &sched_grrr_dispatch;
+ _sched_enum = sched_enum_grrr;
+ strlcpy(sched_string, kSchedGRRRString, sizeof(sched_string));
+ kprintf("Scheduler: Default of %s\n", kSchedGRRRString);
+#elif defined(CONFIG_SCHED_FIXEDPRIORITY)
+ sched_current_dispatch = &sched_fixedpriority_dispatch;
+ _sched_enum = sched_enum_fixedpriority;
+ strlcpy(sched_string, kSchedFixedPriorityString, sizeof(sched_string));
+ kprintf("Scheduler: Default of %s\n", kSchedFixedPriorityString);
+#else
+#error No default scheduler implementation
+#endif
+ }
+
+ SCHED(init)();
+ SCHED(fairshare_init)();
+ sched_realtime_init();
+ ast_init();
+
+ SCHED(pset_init)(&pset0);
+ SCHED(processor_init)(master_processor);
+}
void
-sched_init(void)
+sched_timebase_init(void)
+{
+ uint64_t abstime;
+
+ clock_interval_to_absolutetime_interval(1, NSEC_PER_SEC, &abstime);
+ sched_one_second_interval = abstime;
+
+ SCHED(timebase_init)();
+ sched_realtime_timebase_init();
+}
+
+#if defined(CONFIG_SCHED_TRADITIONAL)
+
+static void
+sched_traditional_init(void)
{
/*
* Calculate the timeslicing quantum
printf("standard timeslicing quantum is %d us\n", std_quantum_us);
- sched_safe_duration = (2 * max_unsafe_quanta / default_preemption_rate) *
- (1 << SCHED_TICK_SHIFT);
-
- wait_queues_init();
load_shift_init();
preempt_pri_init();
- simple_lock_init(&rt_lock, 0);
- run_queue_init(&rt_runq);
sched_tick = 0;
- ast_init();
}
-void
-sched_timebase_init(void)
+static void
+sched_traditional_timebase_init(void)
{
uint64_t abstime;
uint32_t shift;
clock_interval_to_absolutetime_interval(
std_quantum_us, NSEC_PER_USEC, &abstime);
assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
- std_quantum = abstime;
+ std_quantum = (uint32_t)abstime;
/* smallest remaining quantum (250 us) */
clock_interval_to_absolutetime_interval(250, NSEC_PER_USEC, &abstime);
assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
- min_std_quantum = abstime;
-
- /* smallest rt computaton (50 us) */
- clock_interval_to_absolutetime_interval(50, NSEC_PER_USEC, &abstime);
- assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
- min_rt_quantum = abstime;
-
- /* maximum rt computation (50 ms) */
- clock_interval_to_absolutetime_interval(
- 50, 1000*NSEC_PER_USEC, &abstime);
- assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
- max_rt_quantum = abstime;
+ min_std_quantum = (uint32_t)abstime;
/* scheduler tick interval */
clock_interval_to_absolutetime_interval(USEC_PER_SEC >> SCHED_TICK_SHIFT,
NSEC_PER_USEC, &abstime);
assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
- sched_tick_interval = abstime;
+ sched_tick_interval = (uint32_t)abstime;
/*
* Compute conversion factor from usage to
sched_fixed_shift = shift;
max_unsafe_computation = max_unsafe_quanta * std_quantum;
+ sched_safe_duration = 2 * max_unsafe_quanta * std_quantum;
+
max_poll_computation = max_poll_quanta * std_quantum;
+ thread_depress_time = 1 * std_quantum;
+ default_timeshare_computation = std_quantum / 2;
+ default_timeshare_constraint = std_quantum;
+
}
-void
-wait_queues_init(void)
+static void
+sched_traditional_processor_init(processor_t processor)
{
- register int i;
+ if (!sched_traditional_use_pset_runqueue) {
+ run_queue_init(&processor->runq);
+ }
+ processor->runq_bound_count = 0;
+}
- for (i = 0; i < NUMQUEUES; i++) {
- wait_queue_init(&wait_queues[i], SYNC_POLICY_FIFO);
+static void
+sched_traditional_pset_init(processor_set_t pset)
+{
+ if (sched_traditional_use_pset_runqueue) {
+ run_queue_init(&pset->pset_runq);
}
+ pset->pset_runq_bound_count = 0;
+}
+
+static void
+sched_traditional_with_pset_runqueue_init(void)
+{
+ sched_traditional_init();
+ sched_traditional_use_pset_runqueue = TRUE;
+}
+
+#endif /* CONFIG_SCHED_TRADITIONAL */
+
+#if defined(CONFIG_SCHED_TRADITIONAL) || defined(CONFIG_SCHED_PROTO) || defined(CONFIG_SCHED_GRRR) || defined(CONFIG_SCHED_FIXEDPRIORITY)
+void
+sched_traditional_fairshare_init(void)
+{
+ simple_lock_init(&fs_lock, 0);
+
+ fs_runq.count = 0;
+ queue_init(&fs_runq.queue);
+}
+#endif
+
+static void
+sched_realtime_init(void)
+{
+ simple_lock_init(&rt_lock, 0);
+
+ rt_runq.count = 0;
+ queue_init(&rt_runq.queue);
+}
+
+static void
+sched_realtime_timebase_init(void)
+{
+ uint64_t abstime;
+
+ /* smallest rt computaton (50 us) */
+ clock_interval_to_absolutetime_interval(50, NSEC_PER_USEC, &abstime);
+ assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
+ min_rt_quantum = (uint32_t)abstime;
+
+ /* maximum rt computation (50 ms) */
+ clock_interval_to_absolutetime_interval(
+ 50, 1000*NSEC_PER_USEC, &abstime);
+ assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
+ max_rt_quantum = (uint32_t)abstime;
+
}
+#if defined(CONFIG_SCHED_TRADITIONAL)
+
/*
* Set up values for timeshare
* loading factors.
setbit(i, p);
}
+#endif /* CONFIG_SCHED_TRADITIONAL */
+
/*
* Thread wait timer expiration.
*/
splx(s);
}
+#ifndef __LP64__
+
/*
* thread_set_timer:
*
thread_lock(thread);
if ((thread->state & TH_WAIT) != 0) {
clock_interval_to_deadline(interval, scale_factor, &deadline);
- if (!timer_call_enter(&thread->wait_timer, deadline))
+ if (!timer_call_enter(&thread->wait_timer, deadline, thread->sched_pri >= BASEPRI_RTQUEUES ? TIMER_CALL_CRITICAL : 0))
thread->wait_timer_active++;
thread->wait_timer_is_set = TRUE;
}
s = splsched();
thread_lock(thread);
if ((thread->state & TH_WAIT) != 0) {
- if (!timer_call_enter(&thread->wait_timer, deadline))
+ if (!timer_call_enter(&thread->wait_timer, deadline, thread->sched_pri >= BASEPRI_RTQUEUES ? TIMER_CALL_CRITICAL : 0))
thread->wait_timer_active++;
thread->wait_timer_is_set = TRUE;
}
splx(s);
}
+#endif /* __LP64__ */
+
/*
* thread_unblock:
*
* Update run counts.
*/
sched_run_incr();
- if (thread->sched_mode & TH_MODE_TIMESHARE)
+ if (thread->sched_mode == TH_MODE_TIMESHARE)
sched_share_incr();
}
else {
/*
* Signal if idling on another processor.
*/
+#if CONFIG_SCHED_IDLE_IN_PLACE
if (thread->state & TH_IDLE) {
processor_t processor = thread->last_processor;
if (processor != current_processor())
machine_signal_idle(processor);
}
+#else
+ assert((thread->state & TH_IDLE) == 0);
+#endif
result = TRUE;
}
/*
* Calculate deadline for real-time threads.
*/
- if (thread->sched_mode & TH_MODE_REALTIME) {
+ if (thread->sched_mode == TH_MODE_REALTIME) {
thread->realtime.deadline = mach_absolute_time();
thread->realtime.deadline += thread->realtime.constraint;
}
KERNEL_DEBUG_CONSTANT(
MACHDBG_CODE(DBG_MACH_SCHED,MACH_MAKE_RUNNABLE) | DBG_FUNC_NONE,
- (int)thread, (int)thread->sched_pri, 0, 0, 0);
+ (uintptr_t)thread_tid(thread), thread->sched_pri, 0, 0, 0);
+
+ DTRACE_SCHED2(wakeup, struct thread *, thread, struct proc *, thread->task->bsd_info);
return (result);
}
{
boolean_t at_safe_point;
+ assert(thread == current_thread());
+
/*
* The thread may have certain types of interrupts/aborts masked
* off. Even if the wait location says these types of interrupts
at_safe_point = (interruptible == THREAD_ABORTSAFE);
if ( interruptible == THREAD_UNINT ||
- !(thread->sched_mode & TH_MODE_ABORT) ||
+ !(thread->sched_flags & TH_SFLAG_ABORT) ||
(!at_safe_point &&
- (thread->sched_mode & TH_MODE_ABORTSAFELY))) {
+ (thread->sched_flags & TH_SFLAG_ABORTSAFELY))) {
+
+ DTRACE_SCHED(sleep);
+
thread->state |= (interruptible) ? TH_WAIT : (TH_WAIT | TH_UNINT);
thread->at_safe_point = at_safe_point;
return (thread->wait_result = THREAD_WAITING);
}
else
- if (thread->sched_mode & TH_MODE_ABORTSAFELY)
- thread->sched_mode &= ~TH_MODE_ISABORTED;
+ if (thread->sched_flags & TH_SFLAG_ABORTSAFELY)
+ thread->sched_flags &= ~TH_SFLAG_ABORTED_MASK;
return (thread->wait_result = THREAD_INTERRUPTED);
}
thread_lock(thread);
clock_interval_to_deadline(interval, scale_factor, &deadline);
- wresult = wait_queue_assert_wait64_locked(wqueue, (uint32_t)event,
+ wresult = wait_queue_assert_wait64_locked(wqueue, CAST_DOWN(event64_t, event),
interruptible, deadline, thread);
thread_unlock(thread);
wait_queue_lock(wqueue);
thread_lock(thread);
- wresult = wait_queue_assert_wait64_locked(wqueue, (uint32_t)event,
+ wresult = wait_queue_assert_wait64_locked(wqueue, CAST_DOWN(event64_t,event),
interruptible, deadline, thread);
thread_unlock(thread);
return res;
}
-/*
- * thread_sleep_mutex:
- *
- * Cause the current thread to wait until the specified event
- * occurs. The specified mutex is unlocked before releasing
- * the cpu. The mutex will be re-acquired before returning.
- *
- * JMM - Add hint to make sure mutex is available before rousting
- */
-wait_result_t
-thread_sleep_mutex(
- event_t event,
- mutex_t *mutex,
- wait_interrupt_t interruptible)
-{
- wait_result_t res;
-
- res = assert_wait(event, interruptible);
- if (res == THREAD_WAITING) {
- mutex_unlock(mutex);
- res = thread_block(THREAD_CONTINUE_NULL);
- mutex_lock(mutex);
- }
- return res;
-}
-
-/*
- * thread_sleep_mutex_deadline:
- *
- * Cause the current thread to wait until the specified event
- * (or deadline) occurs. The specified mutex is unlocked before
- * releasing the cpu. The mutex will be re-acquired before returning.
- */
-wait_result_t
-thread_sleep_mutex_deadline(
- event_t event,
- mutex_t *mutex,
- uint64_t deadline,
- wait_interrupt_t interruptible)
-{
- wait_result_t res;
-
- res = assert_wait_deadline(event, interruptible, deadline);
- if (res == THREAD_WAITING) {
- mutex_unlock(mutex);
- res = thread_block(THREAD_CONTINUE_NULL);
- mutex_lock(mutex);
- }
- return res;
-}
-
/*
* thread_sleep_lock_write:
*
wait_result_t wresult)
{
wait_queue_t wq = thread->wait_queue;
- int i = LockTimeOut;
+ uint32_t i = LockTimeOut;
do {
if (wresult == THREAD_INTERRUPTED && (thread->state & TH_UNINT))
}
return (thread_go(thread, wresult));
- } while (--i > 0);
+ } while ((--i > 0) || machine_timeout_suspended());
panic("clear_wait_internal: deadlock: thread=%p, wq=%p, cpu=%d\n",
thread, wq, cpu_number());
thread_wakeup_prim(
event_t event,
boolean_t one_thread,
- wait_result_t result)
+ wait_result_t result)
+{
+ return (thread_wakeup_prim_internal(event, one_thread, result, -1));
+}
+
+
+kern_return_t
+thread_wakeup_prim_internal(
+ event_t event,
+ boolean_t one_thread,
+ wait_result_t result,
+ int priority)
{
register wait_queue_t wq;
register int index;
index = wait_hash(event);
wq = &wait_queues[index];
if (one_thread)
- return (wait_queue_wakeup_one(wq, event, result));
+ return (wait_queue_wakeup_one(wq, event, result, priority));
else
- return (wait_queue_wakeup_all(wq, event, result));
+ return (wait_queue_wakeup_all(wq, event, result));
}
/*
{
processor_set_t pset = processor->processor_set;
thread_t new_thread = THREAD_NULL;
- boolean_t other_runnable;
+ boolean_t inactive_state;
+
+ assert(processor == current_processor());
do {
/*
* Update the priority.
*/
- if (thread->sched_stamp != sched_tick)
- update_priority(thread);
-
+ if (SCHED(can_update_priority)(thread))
+ SCHED(update_priority)(thread);
+
processor->current_pri = thread->sched_pri;
+ processor->current_thmode = thread->sched_mode;
pset_lock(pset);
- simple_lock(&rt_lock);
+ assert(pset->low_count);
+ assert(pset->low_pri);
- /*
- * Check for other runnable threads.
- */
- other_runnable = processor->runq.count > 0 || rt_runq.count > 0;
+ inactive_state = processor->state != PROCESSOR_SHUTDOWN && machine_processor_is_inactive(processor);
+
+ simple_lock(&rt_lock);
/*
* Test to see if the current thread should continue
* bound to a different processor, nor be in the wrong
* processor set.
*/
- if ( thread->state == TH_RUN &&
+ if ( ((thread->state & ~TH_SUSP) == TH_RUN) &&
+ (thread->sched_pri >= BASEPRI_RTQUEUES ||
+ processor->processor_meta == PROCESSOR_META_NULL ||
+ processor->processor_meta->primary == processor) &&
(thread->bound_processor == PROCESSOR_NULL ||
thread->bound_processor == processor) &&
(thread->affinity_set == AFFINITY_SET_NULL ||
thread->affinity_set->aset_pset == pset) ) {
if ( thread->sched_pri >= BASEPRI_RTQUEUES &&
first_timeslice(processor) ) {
- if (rt_runq.highq >= BASEPRI_RTQUEUES) {
- register run_queue_t runq = &rt_runq;
+ if (rt_runq.count > 0) {
register queue_t q;
- q = runq->queues + runq->highq;
+ q = &rt_runq.queue;
if (((thread_t)q->next)->realtime.deadline <
processor->deadline) {
- thread = (thread_t)q->next;
- ((queue_entry_t)thread)->next->prev = q;
- q->next = ((queue_entry_t)thread)->next;
+ thread = (thread_t)dequeue_head(q);
thread->runq = PROCESSOR_NULL;
- runq->count--; runq->urgency--;
- assert(runq->urgency >= 0);
- if (queue_empty(q)) {
- if (runq->highq != IDLEPRI)
- clrbit(MAXPRI - runq->highq, runq->bitmap);
- runq->highq = MAXPRI - ffsbit(runq->bitmap);
- }
+ SCHED_STATS_RUNQ_CHANGE(&rt_runq.runq_stats, rt_runq.count);
+ rt_runq.count--;
}
}
return (thread);
}
- if ( (!other_runnable ||
- (processor->runq.highq < thread->sched_pri &&
- rt_runq.highq < thread->sched_pri)) ) {
+ if (!inactive_state && (thread->sched_mode != TH_MODE_FAIRSHARE || SCHED(fairshare_runq_count)() == 0) && (rt_runq.count == 0 || BASEPRI_RTQUEUES < thread->sched_pri) &&
+ (new_thread = SCHED(choose_thread)(processor, thread->sched_mode == TH_MODE_FAIRSHARE ? MINPRI : thread->sched_pri)) == THREAD_NULL) {
simple_unlock(&rt_lock);
pset_pri_hint(pset, processor, processor->current_pri);
+ pset_count_hint(pset, processor, SCHED(processor_runq_count)(processor));
+
processor->deadline = UINT64_MAX;
pset_unlock(pset);
}
}
- if (other_runnable)
- return choose_thread(processor);
-
- simple_unlock(&rt_lock);
-
- /*
- * No runnable threads, attempt to steal
- * from other processors.
- */
- new_thread = steal_thread(pset);
- if (new_thread != THREAD_NULL)
- return (new_thread);
+ if (new_thread != THREAD_NULL ||
+ (SCHED(processor_queue_has_priority)(processor, rt_runq.count == 0 ? IDLEPRI : BASEPRI_RTQUEUES, TRUE) &&
+ (new_thread = SCHED(choose_thread)(processor, MINPRI)) != THREAD_NULL)) {
+ simple_unlock(&rt_lock);
- /*
- * If other threads have appeared, shortcut
- * around again.
- */
- if (processor->runq.count > 0 || rt_runq.count > 0)
- continue;
+ if (!inactive_state) {
+ pset_pri_hint(pset, processor, new_thread->sched_pri);
- pset_lock(pset);
+ pset_count_hint(pset, processor, SCHED(processor_runq_count)(processor));
+ }
- /*
- * Nothing is runnable, so set this processor idle if it
- * was running.
- */
- if (processor->state == PROCESSOR_RUNNING) {
- remqueue(&pset->active_queue, (queue_entry_t)processor);
- processor->state = PROCESSOR_IDLE;
+ processor->deadline = UINT64_MAX;
+ pset_unlock(pset);
- enqueue_head(&pset->idle_queue, (queue_entry_t)processor);
- pset->low_pri = processor;
- pset->idle_count++;
+ return (new_thread);
}
+ if (rt_runq.count > 0) {
+ thread = (thread_t)dequeue_head(&rt_runq.queue);
+
+ thread->runq = PROCESSOR_NULL;
+ SCHED_STATS_RUNQ_CHANGE(&rt_runq.runq_stats, rt_runq.count);
+ rt_runq.count--;
+
+ simple_unlock(&rt_lock);
+
+ processor->deadline = thread->realtime.deadline;
+ pset_unlock(pset);
+
+ return (thread);
+ }
+
+ simple_unlock(&rt_lock);
+
+ /* No realtime threads and no normal threads on the per-processor
+ * runqueue. Finally check for global fairshare threads.
+ */
+ if ((new_thread = SCHED(fairshare_dequeue)()) != THREAD_NULL) {
+
+ processor->deadline = UINT64_MAX;
+ pset_unlock(pset);
+
+ return (new_thread);
+ }
+
processor->deadline = UINT64_MAX;
+ /*
+ * Set processor inactive based on
+ * indication from the platform code.
+ */
+ if (inactive_state) {
+ if (processor->state == PROCESSOR_RUNNING)
+ remqueue((queue_entry_t)processor);
+ else
+ if (processor->state == PROCESSOR_IDLE)
+ remqueue((queue_entry_t)processor);
+
+ processor->state = PROCESSOR_INACTIVE;
+
+ pset_unlock(pset);
+
+ return (processor->idle_thread);
+ }
+
+ /*
+ * No runnable threads, attempt to steal
+ * from other processors.
+ */
+ new_thread = SCHED(steal_thread)(pset);
+ if (new_thread != THREAD_NULL) {
+ return (new_thread);
+ }
+
+ /*
+ * If other threads have appeared, shortcut
+ * around again.
+ */
+ if (!SCHED(processor_queue_empty)(processor) || rt_runq.count > 0 || SCHED(fairshare_runq_count)() > 0)
+ continue;
+
+ pset_lock(pset);
+
+ /*
+ * Nothing is runnable, so set this processor idle if it
+ * was running.
+ */
+ if (processor->state == PROCESSOR_RUNNING) {
+ remqueue((queue_entry_t)processor);
+ processor->state = PROCESSOR_IDLE;
+
+ if (processor->processor_meta == PROCESSOR_META_NULL || processor->processor_meta->primary == processor) {
+ enqueue_head(&pset->idle_queue, (queue_entry_t)processor);
+ pset_pri_init_hint(pset, processor);
+ pset_count_init_hint(pset, processor);
+ }
+ else {
+ enqueue_head(&processor->processor_meta->idle_queue, (queue_entry_t)processor);
+ pset_unlock(pset);
+ return (processor->idle_thread);
+ }
+ }
+
pset_unlock(pset);
+#if CONFIG_SCHED_IDLE_IN_PLACE
/*
* Choose idle thread if fast idle is not possible.
*/
- if ((thread->state & (TH_IDLE|TH_TERMINATE|TH_SUSP)) || !(thread->state & TH_WAIT) || thread->wake_active)
+ if ((thread->state & (TH_IDLE|TH_TERMINATE|TH_SUSP)) || !(thread->state & TH_WAIT) || thread->wake_active || thread->sched_pri >= BASEPRI_RTQUEUES)
return (processor->idle_thread);
/*
*/
new_thread = thread_select_idle(thread, processor);
+#else /* !CONFIG_SCHED_IDLE_IN_PLACE */
+
+ /*
+ * Do a full context switch to idle so that the current
+ * thread can start running on another processor without
+ * waiting for the fast-idled processor to wake up.
+ */
+ return (processor->idle_thread);
+
+#endif /* !CONFIG_SCHED_IDLE_IN_PLACE */
+
} while (new_thread == THREAD_NULL);
return (new_thread);
}
+#if CONFIG_SCHED_IDLE_IN_PLACE
/*
* thread_select_idle:
*
{
thread_t new_thread;
- if (thread->sched_mode & TH_MODE_TIMESHARE)
+ if (thread->sched_mode == TH_MODE_TIMESHARE)
sched_share_decr();
sched_run_decr();
thread->state |= TH_IDLE;
processor->current_pri = IDLEPRI;
+ processor->current_thmode = TH_MODE_NONE;
thread_unlock(thread);
* Switch execution timing to processor idle thread.
*/
processor->last_dispatch = mach_absolute_time();
+ thread->last_run_time = processor->last_dispatch;
thread_timer_event(processor->last_dispatch, &processor->idle_thread->system_timer);
PROCESSOR_DATA(processor, kernel_timer) = &processor->idle_thread->system_timer;
(*thread->sched_call)(SCHED_CALL_BLOCK, thread);
+ thread_tell_urgency(THREAD_URGENCY_NONE, 0, 0);
+
/*
* Enable interrupts and perform idling activities. No
* preemption due to TH_IDLE being set.
thread_lock(thread);
+ /*
+ * If we idled in place, simulate a context switch back
+ * to the original priority of the thread so that the
+ * platform layer cannot distinguish this from a true
+ * switch to the idle thread.
+ */
+ if (thread->sched_mode == TH_MODE_REALTIME)
+ thread_tell_urgency(THREAD_URGENCY_REAL_TIME, thread->realtime.period, thread->realtime.deadline);
+ /* Identify non-promoted threads which have requested a
+ * "background" priority.
+ */
+ else if ((thread->sched_pri <= MAXPRI_THROTTLE) &&
+ (thread->priority <= MAXPRI_THROTTLE))
+ thread_tell_urgency(THREAD_URGENCY_BACKGROUND, thread->sched_pri, thread->priority);
+ else
+ thread_tell_urgency(THREAD_URGENCY_NORMAL, thread->sched_pri, thread->priority);
+
/*
* If awakened, switch to thread timer and start a new quantum.
* Otherwise skip; we will context switch to another thread or return here.
PROCESSOR_DATA(processor, kernel_timer) = &thread->system_timer;
thread_quantum_init(thread);
+ thread->last_quantum_refill_time = processor->last_dispatch;
processor->quantum_end = processor->last_dispatch + thread->current_quantum;
- timer_call_enter1(&processor->quantum_timer, thread, processor->quantum_end);
+ timer_call_enter1(&processor->quantum_timer, thread, processor->quantum_end, 0);
processor->timeslice = 1;
thread->computation_epoch = processor->last_dispatch;
thread->state &= ~TH_IDLE;
sched_run_incr();
- if (thread->sched_mode & TH_MODE_TIMESHARE)
+ if (thread->sched_mode == TH_MODE_TIMESHARE)
sched_share_incr();
return (new_thread);
}
+#endif /* CONFIG_SCHED_IDLE_IN_PLACE */
+
+#if defined(CONFIG_SCHED_TRADITIONAL)
+static thread_t
+sched_traditional_choose_thread(
+ processor_t processor,
+ int priority)
+{
+ thread_t thread;
+
+ thread = choose_thread(processor, runq_for_processor(processor), priority);
+ if (thread != THREAD_NULL) {
+ runq_consider_decr_bound_count(processor, thread);
+ }
+
+ return thread;
+}
+
+#endif /* defined(CONFIG_SCHED_TRADITIONAL) */
+
+#if defined(CONFIG_SCHED_TRADITIONAL) || defined(CONFIG_SCHED_FIXEDPRIORITY)
+
+/*
+ * choose_thread:
+ *
+ * Locate a thread to execute from the processor run queue
+ * and return it. Only choose a thread with greater or equal
+ * priority.
+ *
+ * Associated pset must be locked. Returns THREAD_NULL
+ * on failure.
+ */
+thread_t
+choose_thread(
+ processor_t processor,
+ run_queue_t rq,
+ int priority)
+{
+ queue_t queue = rq->queues + rq->highq;
+ int pri = rq->highq, count = rq->count;
+ thread_t thread;
+
+ while (count > 0 && pri >= priority) {
+ thread = (thread_t)queue_first(queue);
+ while (!queue_end(queue, (queue_entry_t)thread)) {
+ if (thread->bound_processor == PROCESSOR_NULL ||
+ thread->bound_processor == processor) {
+ remqueue((queue_entry_t)thread);
+
+ thread->runq = PROCESSOR_NULL;
+ SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count);
+ rq->count--;
+ if (SCHED(priority_is_urgent)(pri)) {
+ rq->urgency--; assert(rq->urgency >= 0);
+ }
+ if (queue_empty(queue)) {
+ if (pri != IDLEPRI)
+ clrbit(MAXPRI - pri, rq->bitmap);
+ rq->highq = MAXPRI - ffsbit(rq->bitmap);
+ }
+
+ return (thread);
+ }
+ count--;
+
+ thread = (thread_t)queue_next((queue_entry_t)thread);
+ }
+
+ queue--; pri--;
+ }
+
+ return (THREAD_NULL);
+}
+
+#endif /* defined(CONFIG_SCHED_TRADITIONAL) || defined(CONFIG_SCHED_FIXEDPRIORITY) */
/*
* Perform a context switch and start executing the new thread.
void *parameter = self->parameter;
processor_t processor;
- if (get_preemption_level() != 0)
- panic("thread_invoke: preemption_level %d\n",
- get_preemption_level());
+ if (get_preemption_level() != 0) {
+ int pl = get_preemption_level();
+ panic("thread_invoke: preemption_level %d, possible cause: %s",
+ pl, (pl < 0 ? "unlocking an unlocked mutex or spinlock" :
+ "blocking while holding a spinlock, or within interrupt context"));
+ }
assert(self == current_thread());
* Allow time constraint threads to hang onto
* a stack.
*/
- if ((self->sched_mode & TH_MODE_REALTIME) && !self->reserved_stack)
+ if ((self->sched_mode == TH_MODE_REALTIME) && !self->reserved_stack)
self->reserved_stack = self->kernel_stack;
if (continuation != NULL) {
processor = current_processor();
processor->active_thread = thread;
processor->current_pri = thread->sched_pri;
+ processor->current_thmode = thread->sched_mode;
if (thread->last_processor != processor && thread->last_processor != NULL) {
if (thread->last_processor->processor_set != processor->processor_set)
thread->ps_switch++;
self->reason = reason;
processor->last_dispatch = mach_absolute_time();
+ self->last_run_time = processor->last_dispatch;
thread_timer_event(processor->last_dispatch, &thread->system_timer);
PROCESSOR_DATA(processor, kernel_timer) = &thread->system_timer;
KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_HANDOFF)|DBG_FUNC_NONE,
- self->reason, (int)thread, self->sched_pri, thread->sched_pri, 0);
+ self->reason, (uintptr_t)thread_tid(thread), self->sched_pri, thread->sched_pri, 0);
-TLOG(1, "thread_invoke: calling machine_stack_handoff\n");
- machine_stack_handoff(self, thread);
+ if ((thread->chosen_processor != processor) && (thread->chosen_processor != NULL)) {
+ KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_MOVED)|DBG_FUNC_NONE,
+ (uintptr_t)thread_tid(thread), (uintptr_t)thread->chosen_processor->cpu_id, 0, 0, 0);
+ }
+
+ DTRACE_SCHED2(off__cpu, struct thread *, thread, struct proc *, thread->task->bsd_info);
+
+ SCHED_STATS_CSW(processor, self->reason, self->sched_pri, thread->sched_pri);
+
+ TLOG(1, "thread_invoke: calling stack_handoff\n");
+ stack_handoff(self, thread);
+
+ DTRACE_SCHED(on__cpu);
thread_dispatch(self, thread);
counter(++c_thread_invoke_same);
thread_unlock(self);
+ KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED,MACH_SCHED) | DBG_FUNC_NONE,
+ self->reason, (uintptr_t)thread_tid(thread), self->sched_pri, thread->sched_pri, 0);
+
self->continuation = self->parameter = NULL;
funnel_refunnel_check(self, 3);
ast_context(self);
counter(++c_thread_invoke_same);
thread_unlock(self);
+
+ KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED,MACH_SCHED) | DBG_FUNC_NONE,
+ self->reason, (uintptr_t)thread_tid(thread), self->sched_pri, thread->sched_pri, 0);
+
return (TRUE);
}
}
processor = current_processor();
processor->active_thread = thread;
processor->current_pri = thread->sched_pri;
+ processor->current_thmode = thread->sched_mode;
if (thread->last_processor != processor && thread->last_processor != NULL) {
if (thread->last_processor->processor_set != processor->processor_set)
thread->ps_switch++;
self->reason = reason;
processor->last_dispatch = mach_absolute_time();
+ self->last_run_time = processor->last_dispatch;
thread_timer_event(processor->last_dispatch, &thread->system_timer);
PROCESSOR_DATA(processor, kernel_timer) = &thread->system_timer;
KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED,MACH_SCHED) | DBG_FUNC_NONE,
- (int)self->reason, (int)thread, self->sched_pri, thread->sched_pri, 0);
+ self->reason, (uintptr_t)thread_tid(thread), self->sched_pri, thread->sched_pri, 0);
+
+ if ((thread->chosen_processor != processor) && (thread->chosen_processor != NULL)) {
+ KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_MOVED)|DBG_FUNC_NONE,
+ (uintptr_t)thread_tid(thread), (uintptr_t)thread->chosen_processor->cpu_id, 0, 0, 0);
+ }
+
+ DTRACE_SCHED2(off__cpu, struct thread *, thread, struct proc *, thread->task->bsd_info);
+
+ SCHED_STATS_CSW(processor, self->reason, self->sched_pri, thread->sched_pri);
/*
* This is where we actually switch register context,
* as a result of a subsequent context switch.
*/
thread = machine_switch_context(self, continuation, thread);
-TLOG(1,"thread_invoke: returning machine_switch_context: self %p continuation %p thread %p\n", self, continuation, thread);
+ TLOG(1,"thread_invoke: returning machine_switch_context: self %p continuation %p thread %p\n", self, continuation, thread);
+
+ DTRACE_SCHED(on__cpu);
/*
* We have been resumed and are set to run.
*/
if ( first_timeslice(processor) &&
processor->quantum_end > processor->last_dispatch )
- thread->current_quantum = (processor->quantum_end - processor->last_dispatch);
+ thread->current_quantum = (uint32_t)(processor->quantum_end - processor->last_dispatch);
else
thread->current_quantum = 0;
- if (thread->sched_mode & TH_MODE_REALTIME) {
+ if (thread->sched_mode == TH_MODE_REALTIME) {
/*
* Cancel the deadline if the thread has
* consumed the entire quantum.
thread->realtime.deadline = UINT64_MAX;
thread->reason |= AST_QUANTUM;
}
- }
- else {
+ } else {
+#if defined(CONFIG_SCHED_TRADITIONAL)
/*
* For non-realtime threads treat a tiny
* remaining quantum as an expired quantum
thread->reason |= AST_QUANTUM;
thread->current_quantum += std_quantum;
}
+#endif
}
/*
thread->current_quantum = 0;
}
- thread->last_switch = processor->last_dispatch;
-
- thread->computation_metered += (thread->last_switch - thread->computation_epoch);
+ thread->computation_metered += (processor->last_dispatch - thread->computation_epoch);
if (!(thread->state & TH_WAIT)) {
/*
/*
* Waiting.
*/
+ boolean_t should_terminate = FALSE;
+
+ /* Only the first call to thread_dispatch
+ * after explicit termination should add
+ * the thread to the termination queue
+ */
+ if ((thread->state & (TH_TERMINATE|TH_TERMINATE2)) == TH_TERMINATE) {
+ should_terminate = TRUE;
+ thread->state |= TH_TERMINATE2;
+ }
+
thread->state &= ~TH_RUN;
- if (thread->sched_mode & TH_MODE_TIMESHARE)
+ if (thread->sched_mode == TH_MODE_TIMESHARE)
sched_share_decr();
sched_run_decr();
+ (*thread->sched_call)(SCHED_CALL_BLOCK, thread);
+
if (thread->wake_active) {
thread->wake_active = FALSE;
thread_unlock(thread);
wake_unlock(thread);
- (*thread->sched_call)(SCHED_CALL_BLOCK, thread);
-
- if (thread->state & TH_TERMINATE)
+ if (should_terminate)
thread_terminate_enqueue(thread);
}
}
}
if (!(self->state & TH_IDLE)) {
+
+ if (self->sched_mode == TH_MODE_REALTIME)
+ thread_tell_urgency(THREAD_URGENCY_REAL_TIME, self->realtime.period, self->realtime.deadline);
+ /* Identify non-promoted threads which have requested a
+ * "background" priority.
+ */
+ else if ((self->sched_pri <= MAXPRI_THROTTLE) &&
+ (self->priority <= MAXPRI_THROTTLE))
+ thread_tell_urgency(THREAD_URGENCY_BACKGROUND, self->sched_pri, self->priority);
+ else
+ thread_tell_urgency(THREAD_URGENCY_NORMAL, self->sched_pri, self->priority);
/*
* Get a new quantum if none remaining.
*/
- if (self->current_quantum == 0)
+ if (self->current_quantum == 0) {
thread_quantum_init(self);
+ self->last_quantum_refill_time = processor->last_dispatch;
+ }
/*
* Set up quantum timer and timeslice.
*/
processor->quantum_end = (processor->last_dispatch + self->current_quantum);
- timer_call_enter1(&processor->quantum_timer, self, processor->quantum_end);
+ timer_call_enter1(&processor->quantum_timer, self, processor->quantum_end, 0);
processor->timeslice = 1;
- self->last_switch = processor->last_dispatch;
-
- self->computation_epoch = self->last_switch;
+ self->computation_epoch = processor->last_dispatch;
}
else {
timer_call_cancel(&processor->quantum_timer);
processor->timeslice = 0;
+
+ thread_tell_urgency(THREAD_URGENCY_NONE, 0, 0);
}
}
+#include <libkern/OSDebug.h>
+
+uint32_t kdebug_thread_block = 0;
+
+
/*
* thread_block_reason:
*
self->continuation = continuation;
self->parameter = parameter;
+ if (__improbable(kdebug_thread_block && kdebug_enable && self->state != TH_RUN)) {
+ uint32_t bt[8];
+
+ OSBacktrace((void **)&bt[0], 8);
+
+ KERNEL_DEBUG_CONSTANT(0x140004c | DBG_FUNC_START, bt[0], bt[1], bt[2], bt[3], 0);
+ KERNEL_DEBUG_CONSTANT(0x140004c | DBG_FUNC_END, bt[4], bt[5], bt[6], bt[7], 0);
+ }
+
do {
thread_lock(self);
new_thread = thread_select(self, processor);
register thread_t self = current_thread();
register thread_continue_t continuation;
register void *parameter;
-
+
+ DTRACE_SCHED(on__cpu);
+
continuation = self->continuation;
parameter = self->parameter;
/*NOTREACHED*/
}
+void
+thread_quantum_init(thread_t thread)
+{
+ if (thread->sched_mode == TH_MODE_REALTIME) {
+ thread->current_quantum = thread->realtime.computation;
+ } else {
+ thread->current_quantum = SCHED(initial_quantum_size)(thread);
+ }
+}
+
+#if defined(CONFIG_SCHED_TRADITIONAL)
+static uint32_t
+sched_traditional_initial_quantum_size(thread_t thread __unused)
+{
+ return std_quantum;
+}
+
+static sched_mode_t
+sched_traditional_initial_thread_sched_mode(task_t parent_task)
+{
+ if (parent_task == kernel_task)
+ return TH_MODE_FIXED;
+ else
+ return TH_MODE_TIMESHARE;
+}
+
+static boolean_t
+sched_traditional_supports_timeshare_mode(void)
+{
+ return TRUE;
+}
+
+#endif /* CONFIG_SCHED_TRADITIONAL */
+
/*
* run_queue_init:
*
queue_init(&rq->queues[i]);
}
+#if defined(CONFIG_SCHED_TRADITIONAL) || defined(CONFIG_SCHED_PROTO) || defined(CONFIG_SCHED_GRRR) || defined(CONFIG_SCHED_FIXEDPRIORITY)
+int
+sched_traditional_fairshare_runq_count(void)
+{
+ return fs_runq.count;
+}
+
+uint64_t
+sched_traditional_fairshare_runq_stats_count_sum(void)
+{
+ return fs_runq.runq_stats.count_sum;
+}
+
+void
+sched_traditional_fairshare_enqueue(thread_t thread)
+{
+ queue_t queue = &fs_runq.queue;
+
+ simple_lock(&fs_lock);
+
+ enqueue_tail(queue, (queue_entry_t)thread);
+
+ thread->runq = FS_RUNQ;
+ SCHED_STATS_RUNQ_CHANGE(&fs_runq.runq_stats, fs_runq.count);
+ fs_runq.count++;
+
+ simple_unlock(&fs_lock);
+}
+
+thread_t
+sched_traditional_fairshare_dequeue(void)
+{
+ thread_t thread;
+
+ simple_lock(&fs_lock);
+ if (fs_runq.count > 0) {
+ thread = (thread_t)dequeue_head(&fs_runq.queue);
+
+ thread->runq = PROCESSOR_NULL;
+ SCHED_STATS_RUNQ_CHANGE(&fs_runq.runq_stats, fs_runq.count);
+ fs_runq.count--;
+
+ simple_unlock(&fs_lock);
+
+ return (thread);
+ }
+ simple_unlock(&fs_lock);
+
+ return THREAD_NULL;
+}
+
+boolean_t
+sched_traditional_fairshare_queue_remove(thread_t thread)
+{
+ queue_t q;
+
+ simple_lock(&fs_lock);
+ q = &fs_runq.queue;
+
+ if (FS_RUNQ == thread->runq) {
+ remqueue((queue_entry_t)thread);
+ SCHED_STATS_RUNQ_CHANGE(&fs_runq.runq_stats, fs_runq.count);
+ fs_runq.count--;
+
+ thread->runq = PROCESSOR_NULL;
+ simple_unlock(&fs_lock);
+ return (TRUE);
+ }
+ else {
+ /*
+ * The thread left the run queue before we could
+ * lock the run queue.
+ */
+ assert(thread->runq == PROCESSOR_NULL);
+ simple_unlock(&fs_lock);
+ return (FALSE);
+ }
+}
+
+#endif /* defined(CONFIG_SCHED_TRADITIONAL) || defined(CONFIG_SCHED_PROTO) || defined(CONFIG_SCHED_GRRR) || defined(CONFIG_SCHED_FIXEDPRIORITY) */
+
/*
* run_queue_dequeue:
*
* Perform a dequeue operation on a run queue,
* and return the resulting thread.
*
- * The run queue must be locked (see run_queue_remove()
+ * The run queue must be locked (see thread_run_queue_remove()
* for more info), and not empty.
*/
-static thread_t
+thread_t
run_queue_dequeue(
run_queue_t rq,
integer_t options)
queue_t queue = rq->queues + rq->highq;
if (options & SCHED_HEADQ) {
- thread = (thread_t)queue->next;
- ((queue_entry_t)thread)->next->prev = queue;
- queue->next = ((queue_entry_t)thread)->next;
+ thread = (thread_t)dequeue_head(queue);
}
else {
- thread = (thread_t)queue->prev;
- ((queue_entry_t)thread)->prev->next = queue;
- queue->prev = ((queue_entry_t)thread)->prev;
+ thread = (thread_t)dequeue_tail(queue);
}
thread->runq = PROCESSOR_NULL;
+ SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count);
rq->count--;
- if (testbit(rq->highq, sched_preempt_pri)) {
+ if (SCHED(priority_is_urgent)(rq->highq)) {
rq->urgency--; assert(rq->urgency >= 0);
}
if (queue_empty(queue)) {
return (thread);
}
+/*
+ * run_queue_enqueue:
+ *
+ * Perform a enqueue operation on a run queue.
+ *
+ * The run queue must be locked (see thread_run_queue_remove()
+ * for more info).
+ */
+boolean_t
+run_queue_enqueue(
+ run_queue_t rq,
+ thread_t thread,
+ integer_t options)
+{
+ queue_t queue = rq->queues + thread->sched_pri;
+ boolean_t result = FALSE;
+
+ if (queue_empty(queue)) {
+ enqueue_tail(queue, (queue_entry_t)thread);
+
+ setbit(MAXPRI - thread->sched_pri, rq->bitmap);
+ if (thread->sched_pri > rq->highq) {
+ rq->highq = thread->sched_pri;
+ result = TRUE;
+ }
+ }
+ else
+ if (options & SCHED_TAILQ)
+ enqueue_tail(queue, (queue_entry_t)thread);
+ else
+ enqueue_head(queue, (queue_entry_t)thread);
+
+ if (SCHED(priority_is_urgent)(thread->sched_pri))
+ rq->urgency++;
+ SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count);
+ rq->count++;
+
+ return (result);
+
+}
+
+/*
+ * run_queue_remove:
+ *
+ * Remove a specific thread from a runqueue.
+ *
+ * The run queue must be locked.
+ */
+void
+run_queue_remove(
+ run_queue_t rq,
+ thread_t thread)
+{
+
+ remqueue((queue_entry_t)thread);
+ SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count);
+ rq->count--;
+ if (SCHED(priority_is_urgent)(thread->sched_pri)) {
+ rq->urgency--; assert(rq->urgency >= 0);
+ }
+
+ if (queue_empty(rq->queues + thread->sched_pri)) {
+ /* update run queue status */
+ if (thread->sched_pri != IDLEPRI)
+ clrbit(MAXPRI - thread->sched_pri, rq->bitmap);
+ rq->highq = MAXPRI - ffsbit(rq->bitmap);
+ }
+
+ thread->runq = PROCESSOR_NULL;
+}
+
+/*
+ * fairshare_setrun:
+ *
+ * Dispatch a thread for round-robin execution.
+ *
+ * Thread must be locked. Associated pset must
+ * be locked, and is returned unlocked.
+ */
+static void
+fairshare_setrun(
+ processor_t processor,
+ thread_t thread)
+{
+ processor_set_t pset = processor->processor_set;
+
+ thread->chosen_processor = processor;
+
+ SCHED(fairshare_enqueue)(thread);
+
+ if (processor != current_processor())
+ machine_signal_idle(processor);
+
+ pset_unlock(pset);
+
+}
+
/*
* realtime_queue_insert:
*
realtime_queue_insert(
thread_t thread)
{
- run_queue_t rq = &rt_runq;
- queue_t queue = rq->queues + thread->sched_pri;
+ queue_t queue = &rt_runq.queue;
uint64_t deadline = thread->realtime.deadline;
boolean_t preempt = FALSE;
if (queue_empty(queue)) {
enqueue_tail(queue, (queue_entry_t)thread);
-
- setbit(MAXPRI - thread->sched_pri, rq->bitmap);
- if (thread->sched_pri > rq->highq)
- rq->highq = thread->sched_pri;
preempt = TRUE;
}
else {
}
thread->runq = RT_RUNQ;
- rq->count++; rq->urgency++;
+ SCHED_STATS_RUNQ_CHANGE(&rt_runq.runq_stats, rt_runq.count);
+ rt_runq.count++;
simple_unlock(&rt_lock);
{
processor_set_t pset = processor->processor_set;
+ thread->chosen_processor = processor;
+
/*
* Dispatch directly onto idle processor.
*/
- if (processor->state == PROCESSOR_IDLE) {
- remqueue(&pset->idle_queue, (queue_entry_t)processor);
- pset->idle_count--;
+ if ( (thread->bound_processor == processor)
+ && processor->state == PROCESSOR_IDLE) {
+ remqueue((queue_entry_t)processor);
enqueue_tail(&pset->active_queue, (queue_entry_t)processor);
processor->next_thread = thread;
}
if (realtime_queue_insert(thread)) {
+ int prstate = processor->state;
if (processor == current_processor())
ast_on(AST_PREEMPT | AST_URGENT);
+ else if ((prstate == PROCESSOR_DISPATCHING) || (prstate == PROCESSOR_IDLE))
+ machine_signal_idle(processor);
else
cause_ast_check(processor);
}
pset_unlock(pset);
}
+#if defined(CONFIG_SCHED_TRADITIONAL)
+
+static boolean_t
+priority_is_urgent(int priority)
+{
+ return testbit(priority, sched_preempt_pri) ? TRUE : FALSE;
+}
+
/*
* processor_enqueue:
*
* Returns TRUE if a preemption is indicated based on the state
* of the run queue.
*
- * The run queue must be locked (see run_queue_remove()
+ * The run queue must be locked (see thread_run_queue_remove()
* for more info).
*/
static boolean_t
thread_t thread,
integer_t options)
{
- run_queue_t rq = &processor->runq;
- queue_t queue = rq->queues + thread->sched_pri;
- boolean_t result = FALSE;
+ run_queue_t rq = runq_for_processor(processor);
+ boolean_t result;
- if (queue_empty(queue)) {
- enqueue_tail(queue, (queue_entry_t)thread);
-
- setbit(MAXPRI - thread->sched_pri, rq->bitmap);
- if (thread->sched_pri > rq->highq) {
- rq->highq = thread->sched_pri;
- result = TRUE;
- }
- }
- else
- if (options & SCHED_TAILQ)
- enqueue_tail(queue, (queue_entry_t)thread);
- else
- enqueue_head(queue, (queue_entry_t)thread);
-
+ result = run_queue_enqueue(rq, thread, options);
thread->runq = processor;
- if (testbit(thread->sched_pri, sched_preempt_pri))
- rq->urgency++;
- rq->count++;
+ runq_consider_incr_bound_count(processor, thread);
return (result);
}
+#endif /* CONFIG_SCHED_TRADITIONAL */
+
/*
* processor_setrun:
*
processor_set_t pset = processor->processor_set;
ast_t preempt;
+ thread->chosen_processor = processor;
+
/*
* Dispatch directly onto idle processor.
*/
- if (processor->state == PROCESSOR_IDLE) {
- remqueue(&pset->idle_queue, (queue_entry_t)processor);
- pset->idle_count--;
+ if ( (SCHED(direct_dispatch_to_idle_processors) ||
+ thread->bound_processor == processor)
+ && processor->state == PROCESSOR_IDLE) {
+ remqueue((queue_entry_t)processor);
enqueue_tail(&pset->active_queue, (queue_entry_t)processor);
processor->next_thread = thread;
/*
* Set preemption mode.
*/
- if (testbit(thread->sched_pri, sched_preempt_pri))
+ if (SCHED(priority_is_urgent)(thread->sched_pri) && thread->sched_pri > processor->current_pri)
+ preempt = (AST_PREEMPT | AST_URGENT);
+ else if(processor->active_thread && thread_eager_preemption(processor->active_thread))
preempt = (AST_PREEMPT | AST_URGENT);
else
- if (thread->sched_mode & TH_MODE_TIMESHARE && thread->priority < BASEPRI_BACKGROUND)
+ if ((thread->sched_mode == TH_MODE_TIMESHARE) && thread->sched_pri < thread->priority)
preempt = AST_NONE;
else
preempt = (options & SCHED_PREEMPT)? AST_PREEMPT: AST_NONE;
- if (!processor_enqueue(processor, thread, options))
+ if (!SCHED(processor_enqueue)(processor, thread, options))
preempt = AST_NONE;
if (preempt != AST_NONE) {
if (processor == current_processor()) {
- thread_t self = processor->active_thread;
-
- if (csw_needed(self, processor))
+ if (csw_check(processor) != AST_NONE)
ast_on(preempt);
}
else
+ if ( processor->state == PROCESSOR_IDLE || processor->state == PROCESSOR_DISPATCHING) {
+ machine_signal_idle(processor);
+ }
+ else
if ( (processor->state == PROCESSOR_RUNNING ||
processor->state == PROCESSOR_SHUTDOWN) &&
- thread->sched_pri >= processor->current_pri ) {
+ (thread->sched_pri >= processor->current_pri ||
+ processor->current_thmode == TH_MODE_FAIRSHARE)) {
cause_ast_check(processor);
}
}
thread->sched_pri >= processor->current_pri ) {
cause_ast_check(processor);
}
+ else
+ if ( processor->state == PROCESSOR_IDLE &&
+ processor != current_processor() ) {
+ machine_signal_idle(processor);
+ }
+
+ pset_unlock(pset);
+}
+
+#if defined(CONFIG_SCHED_TRADITIONAL)
+
+static boolean_t
+processor_queue_empty(processor_t processor)
+{
+ return runq_for_processor(processor)->count == 0;
+
+}
+
+static boolean_t
+sched_traditional_with_pset_runqueue_processor_queue_empty(processor_t processor)
+{
+ processor_set_t pset = processor->processor_set;
+ int count = runq_for_processor(processor)->count;
+
+ /*
+ * The pset runq contains the count of all runnable threads
+ * for all processors in the pset. However, for threads that
+ * are bound to another processor, the current "processor"
+ * is not eligible to execute the thread. So we only
+ * include bound threads that our bound to the current
+ * "processor". This allows the processor to idle when the
+ * count of eligible threads drops to 0, even if there's
+ * a runnable thread bound to a different processor in the
+ * shared runq.
+ */
+
+ count -= pset->pset_runq_bound_count;
+ count += processor->runq_bound_count;
+
+ return count == 0;
+}
+
+static ast_t
+processor_csw_check(processor_t processor)
+{
+ run_queue_t runq;
+
+ assert(processor->active_thread != NULL);
+
+ runq = runq_for_processor(processor);
+ if (runq->highq > processor->current_pri) {
+ if (runq->urgency > 0)
+ return (AST_PREEMPT | AST_URGENT);
+
+ if (processor->active_thread && thread_eager_preemption(processor->active_thread))
+ return (AST_PREEMPT | AST_URGENT);
+
+ return AST_PREEMPT;
+ }
+
+ return AST_NONE;
+}
+
+static boolean_t
+processor_queue_has_priority(processor_t processor,
+ int priority,
+ boolean_t gte)
+{
+ if (gte)
+ return runq_for_processor(processor)->highq >= priority;
+ else
+ return runq_for_processor(processor)->highq > priority;
+}
+
+static boolean_t
+should_current_thread_rechoose_processor(processor_t processor)
+{
+ return (processor->current_pri < BASEPRI_RTQUEUES
+ && processor->processor_meta != PROCESSOR_META_NULL
+ && processor->processor_meta->primary != processor);
+}
+
+static int
+sched_traditional_processor_runq_count(processor_t processor)
+{
+ return runq_for_processor(processor)->count;
+}
- pset_unlock(pset);
+
+static uint64_t
+sched_traditional_processor_runq_stats_count_sum(processor_t processor)
+{
+ return runq_for_processor(processor)->runq_stats.count_sum;
+}
+
+static uint64_t
+sched_traditional_with_pset_runqueue_processor_runq_stats_count_sum(processor_t processor)
+{
+ if (processor->cpu_id == processor->processor_set->cpu_set_low)
+ return runq_for_processor(processor)->runq_stats.count_sum;
+ else
+ return 0ULL;
}
+#endif /* CONFIG_SCHED_TRADITIONAL */
+
#define next_pset(p) (((p)->pset_list != PROCESSOR_SET_NULL)? (p)->pset_list: (p)->node->psets)
/*
do {
nset = next_pset(nset);
- } while (nset->processor_count < 1 && nset != pset);
+ } while (nset->online_processor_count < 1 && nset != pset);
return (nset);
}
* choose_processor:
*
* Choose a processor for the thread, beginning at
+ * the pset. Accepts an optional processor hint in
* the pset.
*
* Returns a processor, possibly from a different pset.
* The thread must be locked. The pset must be locked,
* and the resulting pset is locked on return.
*/
-static processor_t
+processor_t
choose_processor(
processor_set_t pset,
+ processor_t processor,
thread_t thread)
{
processor_set_t nset, cset = pset;
- processor_t processor = thread->last_processor;
-
+ processor_meta_t pmeta = PROCESSOR_META_NULL;
+ processor_t mprocessor;
+
/*
- * Prefer the last processor, when appropriate.
+ * Prefer the hinted processor, when appropriate.
*/
+
+ if (processor != PROCESSOR_NULL) {
+ if (processor->processor_meta != PROCESSOR_META_NULL)
+ processor = processor->processor_meta->primary;
+ }
+
+ mprocessor = machine_choose_processor(pset, processor);
+ if (mprocessor != PROCESSOR_NULL)
+ processor = mprocessor;
+
if (processor != PROCESSOR_NULL) {
if (processor->processor_set != pset ||
- processor->state == PROCESSOR_SHUTDOWN || processor->state == PROCESSOR_OFF_LINE)
+ processor->state == PROCESSOR_INACTIVE ||
+ processor->state == PROCESSOR_SHUTDOWN ||
+ processor->state == PROCESSOR_OFF_LINE)
processor = PROCESSOR_NULL;
else
- if (processor->state == PROCESSOR_IDLE || processor->current_pri < thread->sched_pri)
- return (processor);
+ if (processor->state == PROCESSOR_IDLE ||
+ ((thread->sched_pri >= BASEPRI_RTQUEUES) &&
+ (processor->current_pri < BASEPRI_RTQUEUES)))
+ return (processor);
}
/*
return ((processor_t)queue_first(&cset->idle_queue));
if (thread->sched_pri >= BASEPRI_RTQUEUES) {
- /*
- * For an RT thread, iterate through active processors, first fit.
- */
+ integer_t lowest_priority = MAXPRI + 1;
+ integer_t lowest_unpaired = MAXPRI + 1;
+ uint64_t furthest_deadline = 1;
+ processor_t lp_processor = PROCESSOR_NULL;
+ processor_t lp_unpaired = PROCESSOR_NULL;
+ processor_t fd_processor = PROCESSOR_NULL;
+
+ lp_processor = cset->low_pri;
+ /* Consider hinted processor */
+ if (lp_processor != PROCESSOR_NULL &&
+ ((lp_processor->processor_meta == PROCESSOR_META_NULL) ||
+ ((lp_processor == lp_processor->processor_meta->primary) &&
+ !queue_empty(&lp_processor->processor_meta->idle_queue))) &&
+ lp_processor->state != PROCESSOR_INACTIVE &&
+ lp_processor->state != PROCESSOR_SHUTDOWN &&
+ lp_processor->state != PROCESSOR_OFF_LINE &&
+ (lp_processor->current_pri < thread->sched_pri))
+ return lp_processor;
+
processor = (processor_t)queue_first(&cset->active_queue);
while (!queue_end(&cset->active_queue, (queue_entry_t)processor)) {
- if (thread->sched_pri > processor->current_pri ||
- thread->realtime.deadline < processor->deadline)
- return (processor);
+ /* Discover the processor executing the
+ * thread with the lowest priority within
+ * this pset, or the one with the furthest
+ * deadline
+ */
+ integer_t cpri = processor->current_pri;
+ if (cpri < lowest_priority) {
+ lowest_priority = cpri;
+ lp_processor = processor;
+ }
+ if ((cpri >= BASEPRI_RTQUEUES) && (processor->deadline > furthest_deadline)) {
+ furthest_deadline = processor->deadline;
+ fd_processor = processor;
+ }
+
+
+ if (processor->processor_meta != PROCESSOR_META_NULL &&
+ !queue_empty(&processor->processor_meta->idle_queue)) {
+ if (cpri < lowest_unpaired) {
+ lowest_unpaired = cpri;
+ lp_unpaired = processor;
+ pmeta = processor->processor_meta;
+ }
+ else
+ if (pmeta == PROCESSOR_META_NULL)
+ pmeta = processor->processor_meta;
+ }
processor = (processor_t)queue_next((queue_entry_t)processor);
}
+ if (thread->sched_pri > lowest_unpaired)
+ return lp_unpaired;
+
+ if (pmeta != PROCESSOR_META_NULL)
+ return ((processor_t)queue_first(&pmeta->idle_queue));
+ if (thread->sched_pri > lowest_priority)
+ return lp_processor;
+ if (thread->realtime.deadline < furthest_deadline)
+ return fd_processor;
+
processor = PROCESSOR_NULL;
}
else {
/*
- * Check the low hint processor in the processor set if available.
+ * Check any hinted processors in the processor set if available.
*/
- if (cset->low_pri != PROCESSOR_NULL &&
- cset->low_pri->state != PROCESSOR_SHUTDOWN && cset->low_pri->state != PROCESSOR_OFF_LINE) {
- if (processor == PROCESSOR_NULL || cset->low_pri->current_pri < thread->sched_pri)
- processor = cset->low_pri;
+ if (cset->low_pri != PROCESSOR_NULL && cset->low_pri->state != PROCESSOR_INACTIVE &&
+ cset->low_pri->state != PROCESSOR_SHUTDOWN && cset->low_pri->state != PROCESSOR_OFF_LINE &&
+ (processor == PROCESSOR_NULL ||
+ (thread->sched_pri > BASEPRI_DEFAULT && cset->low_pri->current_pri < thread->sched_pri))) {
+ processor = cset->low_pri;
+ }
+ else
+ if (cset->low_count != PROCESSOR_NULL && cset->low_count->state != PROCESSOR_INACTIVE &&
+ cset->low_count->state != PROCESSOR_SHUTDOWN && cset->low_count->state != PROCESSOR_OFF_LINE &&
+ (processor == PROCESSOR_NULL || (thread->sched_pri <= BASEPRI_DEFAULT &&
+ SCHED(processor_runq_count)(cset->low_count) < SCHED(processor_runq_count)(processor)))) {
+ processor = cset->low_count;
}
/*
if (processor != PROCESSOR_NULL)
enqueue_tail(&cset->active_queue, (queue_entry_t)processor);
}
+
+ if (processor != PROCESSOR_NULL && pmeta == PROCESSOR_META_NULL) {
+ if (processor->processor_meta != PROCESSOR_META_NULL &&
+ !queue_empty(&processor->processor_meta->idle_queue))
+ pmeta = processor->processor_meta;
+ }
}
/*
* and that the correct processor set is locked.
*/
do {
+ if (pmeta != PROCESSOR_META_NULL) {
+ if (cset != pmeta->primary->processor_set) {
+ pset_unlock(cset);
+
+ cset = pmeta->primary->processor_set;
+ pset_lock(cset);
+ }
+
+ if (!queue_empty(&pmeta->idle_queue))
+ return ((processor_t)queue_first(&pmeta->idle_queue));
+
+ pmeta = PROCESSOR_META_NULL;
+ }
+
/*
* If we haven't been able to choose a processor,
- * pick the current one and return it.
+ * pick the boot processor and return it.
*/
if (processor == PROCESSOR_NULL) {
- processor = current_processor();
+ processor = master_processor;
/*
* Check that the correct processor set is
/*
* We must verify that the chosen processor is still available.
*/
- if (processor->state == PROCESSOR_SHUTDOWN || processor->state == PROCESSOR_OFF_LINE)
+ if (processor->state == PROCESSOR_INACTIVE ||
+ processor->state == PROCESSOR_SHUTDOWN || processor->state == PROCESSOR_OFF_LINE)
processor = PROCESSOR_NULL;
} while (processor == PROCESSOR_NULL);
/*
* Update priority if needed.
*/
- if (thread->sched_stamp != sched_tick)
- update_priority(thread);
+ if (SCHED(can_update_priority)(thread))
+ SCHED(update_priority)(thread);
assert(thread->runq == PROCESSOR_NULL);
pset = thread->affinity_set->aset_pset;
pset_lock(pset);
- processor = choose_processor(pset, thread);
+ processor = SCHED(choose_processor)(pset, PROCESSOR_NULL, thread);
}
else
if (thread->last_processor != PROCESSOR_NULL) {
processor = thread->last_processor;
pset = processor->processor_set;
pset_lock(pset);
+ processor = SCHED(choose_processor)(pset, processor, thread);
- /*
- * Choose a different processor in certain cases.
- */
- if (thread->sched_pri >= BASEPRI_RTQUEUES) {
- /*
- * If the processor is executing an RT thread with
- * an earlier deadline, choose another.
- */
- if (thread->sched_pri <= processor->current_pri ||
- thread->realtime.deadline >= processor->deadline)
- processor = choose_processor(pset, thread);
+ if ((thread->last_processor != processor) && (thread->last_processor != PROCESSOR_NULL)) {
+ KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_LPA_BROKEN)|DBG_FUNC_NONE,
+ (uintptr_t)thread_tid(thread), (uintptr_t)thread->last_processor->cpu_id, (uintptr_t)processor->cpu_id, thread->last_processor->state, 0);
}
- else
- processor = choose_processor(pset, thread);
+
}
else {
/*
pset = choose_next_pset(pset);
pset_lock(pset);
- processor = choose_processor(pset, thread);
+ processor = SCHED(choose_processor)(pset, PROCESSOR_NULL, thread);
task->pset_hint = processor->processor_set;
}
}
*/
if (thread->sched_pri >= BASEPRI_RTQUEUES)
realtime_setrun(processor, thread);
+ else if (thread->sched_mode == TH_MODE_FAIRSHARE)
+ fairshare_setrun(processor, thread);
else
processor_setrun(processor, thread, options);
}
+processor_set_t
+task_choose_pset(
+ task_t task)
+{
+ processor_set_t pset = task->pset_hint;
+
+ if (pset != PROCESSOR_SET_NULL)
+ pset = choose_next_pset(pset);
+
+ return (pset);
+}
+
+#if defined(CONFIG_SCHED_TRADITIONAL)
+
/*
* processor_queue_shutdown:
*
- * Shutdown a processor run queue by moving
- * non-bound threads to the current processor.
+ * Shutdown a processor run queue by
+ * re-dispatching non-bound threads.
*
* Associated pset must be locked, and is
* returned unlocked.
processor_t processor)
{
processor_set_t pset = processor->processor_set;
- run_queue_t rq = &processor->runq;
+ run_queue_t rq = runq_for_processor(processor);
queue_t queue = rq->queues + rq->highq;
int pri = rq->highq, count = rq->count;
thread_t next, thread;
while (!queue_end(queue, (queue_entry_t)thread)) {
next = (thread_t)queue_next((queue_entry_t)thread);
- if (thread->bound_processor != processor) {
- remqueue(queue, (queue_entry_t)thread);
+ if (thread->bound_processor == PROCESSOR_NULL) {
+ remqueue((queue_entry_t)thread);
thread->runq = PROCESSOR_NULL;
+ SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count);
+ runq_consider_decr_bound_count(processor, thread);
rq->count--;
- if (testbit(pri, sched_preempt_pri)) {
+ if (SCHED(priority_is_urgent)(pri)) {
rq->urgency--; assert(rq->urgency >= 0);
}
if (queue_empty(queue)) {
pset_unlock(pset);
- processor = current_processor();
- pset = processor->processor_set;
-
while ((thread = (thread_t)dequeue_head(&tqueue)) != THREAD_NULL) {
thread_lock(thread);
- thread->last_processor = PROCESSOR_NULL;
-
- pset_lock(pset);
-
- processor_enqueue(processor, thread, SCHED_TAILQ);
- pset_unlock(pset);
+ thread_setrun(thread, SCHED_TAILQ);
thread_unlock(thread);
}
}
+#endif /* CONFIG_SCHED_TRADITIONAL */
+
/*
- * Check for a possible preemption point in
- * the (current) thread.
+ * Check for a preemption point in
+ * the current context.
*
* Called at splsched.
*/
ast_t
csw_check(
- thread_t thread,
processor_t processor)
{
- int current_pri = thread->sched_pri;
ast_t result = AST_NONE;
- run_queue_t runq;
if (first_timeslice(processor)) {
- runq = &rt_runq;
- if (runq->highq >= BASEPRI_RTQUEUES)
+ if (rt_runq.count > 0)
return (AST_PREEMPT | AST_URGENT);
- if (runq->highq > current_pri) {
- if (runq->urgency > 0)
- return (AST_PREEMPT | AST_URGENT);
-
- result |= AST_PREEMPT;
- }
-
- runq = &processor->runq;
- if (runq->highq > current_pri) {
- if (runq->urgency > 0)
- return (AST_PREEMPT | AST_URGENT);
-
- result |= AST_PREEMPT;
- }
+ result |= SCHED(processor_csw_check)(processor);
+ if (result & AST_URGENT)
+ return result;
}
else {
- runq = &rt_runq;
- if (runq->highq >= current_pri) {
- if (runq->urgency > 0)
- return (AST_PREEMPT | AST_URGENT);
-
- result |= AST_PREEMPT;
- }
-
- runq = &processor->runq;
- if (runq->highq >= current_pri) {
- if (runq->urgency > 0)
- return (AST_PREEMPT | AST_URGENT);
+ if (rt_runq.count > 0 && BASEPRI_RTQUEUES >= processor->current_pri)
+ return (AST_PREEMPT | AST_URGENT);
- result |= AST_PREEMPT;
- }
+ result |= SCHED(processor_csw_check)(processor);
+ if (result & AST_URGENT)
+ return result;
}
if (result != AST_NONE)
return (result);
- if (thread->state & TH_SUSP)
- result |= AST_PREEMPT;
+ if (SCHED(should_current_thread_rechoose_processor)(processor))
+ return (AST_PREEMPT);
+
+ if (machine_processor_is_inactive(processor))
+ return (AST_PREEMPT);
- return (result);
+ if (processor->active_thread->state & TH_SUSP)
+ return (AST_PREEMPT);
+
+ return (AST_NONE);
}
/*
thread_t thread,
int priority)
{
- boolean_t removed = run_queue_remove(thread);
+ boolean_t removed = thread_run_queue_remove(thread);
thread->sched_pri = priority;
if (removed)
processor_t processor = thread->last_processor;
if (thread == current_thread()) {
- ast_t preempt = csw_check(thread, processor);
+ ast_t preempt;
- if (preempt != AST_NONE)
- ast_on(preempt);
processor->current_pri = priority;
+ processor->current_thmode = thread->sched_mode;
+ if ((preempt = csw_check(processor)) != AST_NONE)
+ ast_on(preempt);
}
else
if ( processor != PROCESSOR_NULL &&
#endif /* DEBUG */
+#if defined(CONFIG_SCHED_TRADITIONAL)
+
+/* locks the runqueue itself */
+
+static boolean_t
+processor_queue_remove(
+ processor_t processor,
+ thread_t thread)
+{
+ void * rqlock;
+ run_queue_t rq;
+
+ rqlock = &processor->processor_set->sched_lock;
+ rq = runq_for_processor(processor);
+
+ simple_lock(rqlock);
+ if (processor == thread->runq) {
+ /*
+ * Thread is on a run queue and we have a lock on
+ * that run queue.
+ */
+ runq_consider_decr_bound_count(processor, thread);
+ run_queue_remove(rq, thread);
+ }
+ else {
+ /*
+ * The thread left the run queue before we could
+ * lock the run queue.
+ */
+ assert(thread->runq == PROCESSOR_NULL);
+ processor = PROCESSOR_NULL;
+ }
+
+ simple_unlock(rqlock);
+
+ return (processor != PROCESSOR_NULL);
+}
+
+#endif /* CONFIG_SCHED_TRADITIONAL */
+
/*
- * run_queue_remove:
+ * thread_run_queue_remove:
*
* Remove a thread from a current run queue and
* return TRUE if successful.
* Thread must be locked.
*/
boolean_t
-run_queue_remove(
+thread_run_queue_remove(
thread_t thread)
{
processor_t processor = thread->runq;
* and removed.
*/
if (processor != PROCESSOR_NULL) {
- void * rqlock;
- run_queue_t rq;
+ queue_t q;
/*
* The processor run queues are locked by the
* processor set. Real-time priorities use a
* global queue with a dedicated lock.
*/
- if (thread->sched_pri < BASEPRI_RTQUEUES) {
- rqlock = &processor->processor_set->sched_lock;
- rq = &processor->runq;
+ if (thread->sched_mode == TH_MODE_FAIRSHARE) {
+ return SCHED(fairshare_queue_remove)(thread);
}
- else {
- rqlock = &rt_lock; rq = &rt_runq;
+
+ if (thread->sched_pri < BASEPRI_RTQUEUES) {
+ return SCHED(processor_queue_remove)(processor, thread);
}
- simple_lock(rqlock);
+ simple_lock(&rt_lock);
+ q = &rt_runq.queue;
if (processor == thread->runq) {
/*
* Thread is on a run queue and we have a lock on
* that run queue.
*/
- remqueue(&rq->queues[0], (queue_entry_t)thread);
- rq->count--;
- if (testbit(thread->sched_pri, sched_preempt_pri)) {
- rq->urgency--; assert(rq->urgency >= 0);
- }
-
- if (queue_empty(rq->queues + thread->sched_pri)) {
- /* update run queue status */
- if (thread->sched_pri != IDLEPRI)
- clrbit(MAXPRI - thread->sched_pri, rq->bitmap);
- rq->highq = MAXPRI - ffsbit(rq->bitmap);
- }
+ remqueue((queue_entry_t)thread);
+ SCHED_STATS_RUNQ_CHANGE(&rt_runq.runq_stats, rt_runq.count);
+ rt_runq.count--;
thread->runq = PROCESSOR_NULL;
}
processor = PROCESSOR_NULL;
}
- simple_unlock(rqlock);
+ simple_unlock(&rt_lock);
}
return (processor != PROCESSOR_NULL);
}
-/*
- * choose_thread:
- *
- * Choose a thread to execute from the run queues
- * and return it.
- *
- * Called with pset scheduling lock and rt lock held,
- * released on return.
- */
-static thread_t
-choose_thread(
- processor_t processor)
-{
- processor_set_t pset = processor->processor_set;
- thread_t thread;
-
- if (processor->runq.count > 0 && processor->runq.highq >= rt_runq.highq) {
- simple_unlock(&rt_lock);
-
- thread = run_queue_dequeue(&processor->runq, SCHED_HEADQ);
-
- pset_pri_hint(pset, processor, thread->sched_pri);
-
- processor->deadline = UINT64_MAX;
- pset_unlock(pset);
-
- return (thread);
- }
-
- thread = run_queue_dequeue(&rt_runq, SCHED_HEADQ);
- simple_unlock(&rt_lock);
-
- processor->deadline = thread->realtime.deadline;
- pset_unlock(pset);
-
- return (thread);
-}
+#if defined(CONFIG_SCHED_TRADITIONAL)
/*
* steal_processor_thread:
steal_processor_thread(
processor_t processor)
{
- run_queue_t rq = &processor->runq;
+ run_queue_t rq = runq_for_processor(processor);
queue_t queue = rq->queues + rq->highq;
int pri = rq->highq, count = rq->count;
thread_t thread;
while (count > 0) {
thread = (thread_t)queue_first(queue);
while (!queue_end(queue, (queue_entry_t)thread)) {
- if (thread->bound_processor != processor) {
- remqueue(queue, (queue_entry_t)thread);
+ if (thread->bound_processor == PROCESSOR_NULL) {
+ remqueue((queue_entry_t)thread);
thread->runq = PROCESSOR_NULL;
+ SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count);
+ runq_consider_decr_bound_count(processor, thread);
rq->count--;
- if (testbit(pri, sched_preempt_pri)) {
+ if (SCHED(priority_is_urgent)(pri)) {
rq->urgency--; assert(rq->urgency >= 0);
}
if (queue_empty(queue)) {
do {
processor = (processor_t)queue_first(&cset->active_queue);
while (!queue_end(&cset->active_queue, (queue_entry_t)processor)) {
- if (processor->runq.count > 0) {
+ if (runq_for_processor(processor)->count > 0) {
thread = steal_processor_thread(processor);
if (thread != THREAD_NULL) {
- remqueue(&cset->active_queue, (queue_entry_t)processor);
+ remqueue((queue_entry_t)processor);
enqueue_tail(&cset->active_queue, (queue_entry_t)processor);
- processor->deadline = UINT64_MAX;
pset_unlock(cset);
return (thread);
return (THREAD_NULL);
}
+static thread_t steal_thread_disabled(
+ processor_set_t pset)
+{
+ pset_unlock(pset);
+
+ return (THREAD_NULL);
+}
+
+#endif /* CONFIG_SCHED_TRADITIONAL */
+
+
+int
+thread_get_urgency(uint64_t *rt_period, uint64_t *rt_deadline)
+{
+ processor_t processor;
+ thread_t thread;
+
+ processor = current_processor();
+
+ thread = processor->next_thread;
+
+ if (thread != NULL) {
+ if (thread->sched_mode == TH_MODE_REALTIME) {
+
+ if (rt_period != NULL)
+ *rt_period = thread->realtime.period;
+ if (rt_deadline != NULL)
+ *rt_deadline = thread->realtime.deadline;
+
+ KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_GET_URGENCY), THREAD_URGENCY_REAL_TIME, thread->realtime.period,
+ (thread->realtime.deadline >> 32), thread->realtime.deadline, 0);
+
+ return (THREAD_URGENCY_REAL_TIME);
+ } else if ((thread->sched_pri <= MAXPRI_THROTTLE) &&
+ (thread->priority <= MAXPRI_THROTTLE)) {
+ KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_GET_URGENCY), THREAD_URGENCY_BACKGROUND, thread->sched_pri, thread->priority, 0, 0);
+ return (THREAD_URGENCY_BACKGROUND);
+ }
+ else
+ KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_GET_URGENCY), THREAD_URGENCY_NORMAL, 0, 0, 0, 0);
+
+ return (THREAD_URGENCY_NORMAL);
+ }
+ else
+ KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_GET_URGENCY), THREAD_URGENCY_NONE, 0, 0, 0, 0);
+ return (THREAD_URGENCY_NONE);
+}
+
+
/*
* This is the processor idle loop, which just looks for other threads
* to execute. Processor idle threads invoke this without supplying a
*
* Returns a the next thread to execute if dispatched directly.
*/
-static thread_t
+
+#if 0
+#define IDLE_KERNEL_DEBUG_CONSTANT(...) KERNEL_DEBUG_CONSTANT(__VA_ARGS__)
+#else
+#define IDLE_KERNEL_DEBUG_CONSTANT(...) do { } while(0)
+#endif
+
+thread_t
processor_idle(
thread_t thread,
processor_t processor)
processor_set_t pset = processor->processor_set;
thread_t new_thread;
int state;
-
(void)splsched();
-#ifdef __ppc__
- pmsDown(); /* Step power down */
-#endif
-
KERNEL_DEBUG_CONSTANT(
- MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_START, (int)thread, 0, 0, 0, 0);
+ MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_START, (uintptr_t)thread_tid(thread), 0, 0, 0, 0);
+
+ SCHED_STATS_CPU_IDLE_START(processor);
timer_switch(&PROCESSOR_DATA(processor, system_state),
mach_absolute_time(), &PROCESSOR_DATA(processor, idle_state));
PROCESSOR_DATA(processor, current_state) = &PROCESSOR_DATA(processor, idle_state);
- while (processor->next_thread == THREAD_NULL && processor->runq.count == 0 && rt_runq.count == 0 &&
+ while (processor->next_thread == THREAD_NULL && SCHED(processor_queue_empty)(processor) && rt_runq.count == 0 && SCHED(fairshare_runq_count)() == 0 &&
(thread == THREAD_NULL || ((thread->state & (TH_WAIT|TH_SUSP)) == TH_WAIT && !thread->wake_active))) {
+ IDLE_KERNEL_DEBUG_CONSTANT(
+ MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_NONE, (uintptr_t)thread_tid(thread), rt_runq.count, SCHED(processor_runq_count)(processor), -1, 0);
+
machine_idle();
(void)splsched();
+
+ IDLE_KERNEL_DEBUG_CONSTANT(
+ MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_NONE, (uintptr_t)thread_tid(thread), rt_runq.count, SCHED(processor_runq_count)(processor), -2, 0);
+
+ if (processor->state == PROCESSOR_INACTIVE && !machine_processor_is_inactive(processor))
+ break;
}
timer_switch(&PROCESSOR_DATA(processor, idle_state),
pset_lock(pset);
-#ifdef __ppc__
- pmsStep(0); /* Step up out of idle power */
-#endif
-
state = processor->state;
if (state == PROCESSOR_DISPATCHING) {
/*
processor->next_thread = THREAD_NULL;
processor->state = PROCESSOR_RUNNING;
- if ( processor->runq.highq > new_thread->sched_pri ||
- (rt_runq.highq > 0 && rt_runq.highq >= new_thread->sched_pri) ) {
+ if (SCHED(processor_queue_has_priority)(processor, new_thread->sched_pri, FALSE) ||
+ (rt_runq.count > 0 && BASEPRI_RTQUEUES >= new_thread->sched_pri) ) {
processor->deadline = UINT64_MAX;
pset_unlock(pset);
thread_lock(new_thread);
+ KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_REDISPATCH), (uintptr_t)thread_tid(new_thread), new_thread->sched_pri, rt_runq.count, 0, 0);
thread_setrun(new_thread, SCHED_HEADQ);
thread_unlock(new_thread);
KERNEL_DEBUG_CONSTANT(
- MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_END, (int)thread, (int)state, 0, 0, 0);
-
+ MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_END, (uintptr_t)thread_tid(thread), state, 0, 0, 0);
+
return (THREAD_NULL);
}
pset_unlock(pset);
KERNEL_DEBUG_CONSTANT(
- MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_END, (int)thread, (int)state, (int)new_thread, 0, 0);
-
+ MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_END, (uintptr_t)thread_tid(thread), state, (uintptr_t)thread_tid(new_thread), 0, 0);
+
return (new_thread);
}
else
if (state == PROCESSOR_IDLE) {
- remqueue(&pset->idle_queue, (queue_entry_t)processor);
- pset->idle_count--;
+ remqueue((queue_entry_t)processor);
processor->state = PROCESSOR_RUNNING;
enqueue_tail(&pset->active_queue, (queue_entry_t)processor);
}
else
+ if (state == PROCESSOR_INACTIVE) {
+ processor->state = PROCESSOR_RUNNING;
+ enqueue_tail(&pset->active_queue, (queue_entry_t)processor);
+ }
+ else
if (state == PROCESSOR_SHUTDOWN) {
/*
* Going off-line. Force a
thread_unlock(new_thread);
KERNEL_DEBUG_CONSTANT(
- MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_END, (int)thread, (int)state, 0, 0, 0);
-
+ MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_END, (uintptr_t)thread_tid(thread), state, 0, 0, 0);
+
return (THREAD_NULL);
}
}
pset_unlock(pset);
KERNEL_DEBUG_CONSTANT(
- MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_END, (int)thread, (int)state, 0, 0, 0);
-
+ MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_END, (uintptr_t)thread_tid(thread), state, 0, 0, 0);
+
return (THREAD_NULL);
}
return (KERN_SUCCESS);
}
-static uint64_t sched_tick_deadline;
-
/*
* sched_startup:
*
kern_return_t result;
thread_t thread;
- result = kernel_thread_start_priority((thread_continue_t)sched_tick_thread, NULL, MAXPRI_KERNEL, &thread);
+ result = kernel_thread_start_priority((thread_continue_t)sched_init_thread,
+ (void *)SCHED(maintenance_continuation),
+ MAXPRI_KERNEL, &thread);
if (result != KERN_SUCCESS)
panic("sched_startup");
thread_deallocate(thread);
/*
- * Yield to the sched_tick_thread while it times
+ * Yield to the sched_init_thread while it times
* a series of context switches back. It stores
* the baseline value in sched_cswtime.
*
*/
while (sched_cswtime == 0)
thread_block(THREAD_CONTINUE_NULL);
+}
- thread_daemon_init();
+#if defined(CONFIG_SCHED_TRADITIONAL)
- thread_call_initialize();
-}
+static uint64_t sched_tick_deadline = 0;
/*
- * sched_tick_thread:
+ * sched_init_thread:
*
* Perform periodic bookkeeping functions about ten
* times per second.
*/
static void
-sched_tick_continue(void)
+sched_traditional_tick_continue(void)
{
uint64_t abstime = mach_absolute_time();
*/
thread_update_scan();
+ if (sched_tick_deadline == 0)
+ sched_tick_deadline = abstime;
+
clock_deadline_for_periodic_event(sched_tick_interval, abstime,
&sched_tick_deadline);
- assert_wait_deadline((event_t)sched_tick_thread, THREAD_UNINT, sched_tick_deadline);
- thread_block((thread_continue_t)sched_tick_continue);
+ assert_wait_deadline((event_t)sched_traditional_tick_continue, THREAD_UNINT, sched_tick_deadline);
+ thread_block((thread_continue_t)sched_traditional_tick_continue);
/*NOTREACHED*/
}
+#endif /* CONFIG_SCHED_TRADITIONAL */
+
+static uint32_t
+time_individual_cswitch(void)
+{
+ uint32_t switches = 0;
+ uint64_t newtime, starttime;
+
+ /* Wait for absolute time to increase. */
+ starttime = mach_absolute_time();
+ do {
+ newtime = mach_absolute_time();
+ } while (newtime == starttime);
+
+ /* Measure one or more context switches until time increases again.
+ * This ensures we get non-zero timings even if absolute time
+ * increases very infrequently compared to CPU clock. */
+ starttime = newtime;
+ do {
+ thread_block(THREAD_CONTINUE_NULL);
+ newtime = mach_absolute_time();
+ ++switches;
+ } while (newtime == starttime);
+ /* Round up. */
+ return (uint32_t) ((newtime - starttime + switches - 1) / switches);
+}
+
/*
* Time a series of context switches to determine
* a baseline. Toss the high and low and return
time_cswitch(void)
{
uint32_t new, hi, low, accum;
- uint64_t abstime;
- int i, tries = 7;
+ int i, tries = 7, denom;
accum = hi = low = 0;
for (i = 0; i < tries; ++i) {
- abstime = mach_absolute_time();
- thread_block(THREAD_CONTINUE_NULL);
-
- new = mach_absolute_time() - abstime;
+ new = time_individual_cswitch();
if (i == 0)
accum = hi = low = new;
accum += new;
}
}
-
- return ((accum - hi - low) / (2 * (tries - 2)));
+ /* Round up. */
+ denom = 2 * (tries - 2);
+ return (accum - hi - low + denom - 1) / denom;
}
void
-sched_tick_thread(void)
+sched_init_thread(void (*continuation)(void))
{
sched_cswtime = time_cswitch();
+ assert(sched_cswtime > 0);
- sched_tick_deadline = mach_absolute_time();
+ continuation();
- sched_tick_continue();
/*NOTREACHED*/
}
+#if defined(CONFIG_SCHED_TRADITIONAL)
+
/*
* thread_update_scan / runq_scan:
*
while (count > 0) {
queue_iterate(q, thread, thread_t, links) {
if ( thread->sched_stamp != sched_tick &&
- (thread->sched_mode & TH_MODE_TIMESHARE) ) {
+ (thread->sched_mode == TH_MODE_TIMESHARE) ) {
if (thread_update_count == THREAD_UPDATE_SIZE)
return (TRUE);
s = splsched();
pset_lock(pset);
- restart_needed = runq_scan(&processor->runq);
+ restart_needed = runq_scan(runq_for_processor(processor));
pset_unlock(pset);
splx(s);
s = splsched();
thread_lock(thread);
- if ( !(thread->state & (TH_WAIT|TH_SUSP)) &&
- thread->sched_stamp != sched_tick )
- update_priority(thread);
+ if ( !(thread->state & (TH_WAIT)) ) {
+ if (SCHED(can_update_priority)(thread))
+ SCHED(update_priority)(thread);
+ }
thread_unlock(thread);
splx(s);
}
} while (restart_needed);
}
+
+#endif /* CONFIG_SCHED_TRADITIONAL */
+
+boolean_t
+thread_eager_preemption(thread_t thread)
+{
+ return ((thread->sched_flags & TH_SFLAG_EAGERPREEMPT) != 0);
+}
+
+void
+thread_set_eager_preempt(thread_t thread)
+{
+ spl_t x;
+ processor_t p;
+ ast_t ast = AST_NONE;
+
+ x = splsched();
+ p = current_processor();
+
+ thread_lock(thread);
+ thread->sched_flags |= TH_SFLAG_EAGERPREEMPT;
+
+ if (thread == current_thread()) {
+ thread_unlock(thread);
+
+ ast = csw_check(p);
+ if (ast != AST_NONE) {
+ (void) thread_block_reason(THREAD_CONTINUE_NULL, NULL, ast);
+ }
+ } else {
+ p = thread->last_processor;
+
+ if (p != PROCESSOR_NULL && p->state == PROCESSOR_RUNNING &&
+ p->active_thread == thread) {
+ cause_ast_check(p);
+ }
+ thread_unlock(thread);
+ }
+
+ splx(x);
+}
+
+void
+thread_clear_eager_preempt(thread_t thread)
+{
+ spl_t x;
+
+ x = splsched();
+ thread_lock(thread);
+
+ thread->sched_flags &= ~TH_SFLAG_EAGERPREEMPT;
+
+ thread_unlock(thread);
+ splx(x);
+}
+/*
+ * Scheduling statistics
+ */
+void
+sched_stats_handle_csw(processor_t processor, int reasons, int selfpri, int otherpri)
+{
+ struct processor_sched_statistics *stats;
+ boolean_t to_realtime = FALSE;
+
+ stats = &processor->processor_data.sched_stats;
+ stats->csw_count++;
+
+ if (otherpri >= BASEPRI_REALTIME) {
+ stats->rt_sched_count++;
+ to_realtime = TRUE;
+ }
+
+ if ((reasons & AST_PREEMPT) != 0) {
+ stats->preempt_count++;
+
+ if (selfpri >= BASEPRI_REALTIME) {
+ stats->preempted_rt_count++;
+ }
+
+ if (to_realtime) {
+ stats->preempted_by_rt_count++;
+ }
+
+ }
+}
+
+void
+sched_stats_handle_runq_change(struct runq_stats *stats, int old_count)
+{
+ uint64_t timestamp = mach_absolute_time();
+
+ stats->count_sum += (timestamp - stats->last_change_timestamp) * old_count;
+ stats->last_change_timestamp = timestamp;
+}
+
/*
- * Just in case someone doesn't use the macro
+ * For calls from assembly code
*/
-#undef thread_wakeup
+#undef thread_wakeup
void
thread_wakeup(
- event_t x);
+ event_t x);
void
thread_wakeup(
- event_t x)
+ event_t x)
{
- thread_wakeup_with_result(x, THREAD_AWAKENED);
+ thread_wakeup_with_result(x, THREAD_AWAKENED);
}
boolean_t