]> git.saurik.com Git - apple/xnu.git/blobdiff - osfmk/arm/cpu_common.c
xnu-7195.101.1.tar.gz
[apple/xnu.git] / osfmk / arm / cpu_common.c
index 327434ece8c53a963414d7afbd9471b7cefd21a9..faa3b1e80be0e8e6d2146ed4f9cb4c3a18a1e907 100644 (file)
  *     cpu routines common to all supported arm variants
  */
 
-#include <kern/kalloc.h>
 #include <kern/machine.h>
 #include <kern/cpu_number.h>
 #include <kern/thread.h>
+#include <kern/percpu.h>
 #include <kern/timer_queue.h>
+#include <kern/locks.h>
 #include <arm/cpu_data.h>
 #include <arm/cpuid.h>
 #include <arm/caches_internal.h>
 #include <pexpert/device_tree.h>
 #include <sys/kdebug.h>
 #include <arm/machine_routines.h>
+#include <arm/proc_reg.h>
 #include <libkern/OSAtomic.h>
 
-#if KPERF
-void kperf_signal_handler(unsigned int cpu_number);
-#endif
-
-cpu_data_t BootCpuData;
+SECURITY_READ_ONLY_LATE(struct percpu_base) percpu_base;
+vm_address_t     percpu_base_cur;
+cpu_data_t       PERCPU_DATA(cpu_data);
 cpu_data_entry_t CpuDataEntries[MAX_CPUS];
 
-struct processor BootProcessor;
+static LCK_GRP_DECLARE(cpu_lck_grp, "cpu_lck_grp");
+static LCK_RW_DECLARE(cpu_state_lock, &cpu_lck_grp);
 
 unsigned int    real_ncpus = 1;
 boolean_t       idle_enable = FALSE;
 uint64_t        wake_abstime = 0x0ULL;
 
+extern uint64_t xcall_ack_timeout_abstime;
+
+#if defined(HAS_IPI)
+extern unsigned int gFastIPI;
+#endif /* defined(HAS_IPI) */
 
 cpu_data_t *
 cpu_datap(int cpu)
 {
-       assert(cpu < MAX_CPUS);
+       assert(cpu <= ml_get_max_cpu_number());
        return CpuDataEntries[cpu].cpu_data_vaddr;
 }
 
@@ -189,8 +195,8 @@ cpu_idle_tickle(void)
        intr = ml_set_interrupts_enabled(FALSE);
        cpu_data_ptr = getCpuDatap();
 
-       if (cpu_data_ptr->idle_timer_notify != (void *)NULL) {
-               ((idle_timer_t)cpu_data_ptr->idle_timer_notify)(cpu_data_ptr->idle_timer_refcon, &new_idle_timeout_ticks);
+       if (cpu_data_ptr->idle_timer_notify != NULL) {
+               cpu_data_ptr->idle_timer_notify(cpu_data_ptr->idle_timer_refcon, &new_idle_timeout_ticks);
                if (new_idle_timeout_ticks != 0x0ULL) {
                        /* if a new idle timeout was requested set the new idle timer deadline */
                        clock_absolutetime_interval_to_deadline(new_idle_timeout_ticks, &cpu_data_ptr->idle_timer_deadline);
@@ -214,21 +220,25 @@ cpu_handle_xcall(cpu_data_t *cpu_data_ptr)
        * added SIGPxcall to the pending mask, but hasn't yet assigned the call params.*/
        if (cpu_data_ptr->cpu_xcall_p0 != NULL && cpu_data_ptr->cpu_xcall_p1 != NULL) {
                xfunc = cpu_data_ptr->cpu_xcall_p0;
+               INTERRUPT_MASKED_DEBUG_START(xfunc, DBG_INTR_TYPE_IPI);
                xparam = cpu_data_ptr->cpu_xcall_p1;
                cpu_data_ptr->cpu_xcall_p0 = NULL;
                cpu_data_ptr->cpu_xcall_p1 = NULL;
                os_atomic_thread_fence(acq_rel);
                os_atomic_andnot(&cpu_data_ptr->cpu_signal, SIGPxcall, relaxed);
                xfunc(xparam);
+               INTERRUPT_MASKED_DEBUG_END();
        }
        if (cpu_data_ptr->cpu_imm_xcall_p0 != NULL && cpu_data_ptr->cpu_imm_xcall_p1 != NULL) {
                xfunc = cpu_data_ptr->cpu_imm_xcall_p0;
+               INTERRUPT_MASKED_DEBUG_START(xfunc, DBG_INTR_TYPE_IPI);
                xparam = cpu_data_ptr->cpu_imm_xcall_p1;
                cpu_data_ptr->cpu_imm_xcall_p0 = NULL;
                cpu_data_ptr->cpu_imm_xcall_p1 = NULL;
                os_atomic_thread_fence(acq_rel);
                os_atomic_andnot(&cpu_data_ptr->cpu_signal, SIGPxcallImm, relaxed);
                xfunc(xparam);
+               INTERRUPT_MASKED_DEBUG_END();
        }
 }
 
@@ -246,6 +256,10 @@ cpu_broadcast_xcall_internal(unsigned int signal,
        int             cpu;
        int             max_cpu = ml_get_max_cpu_number() + 1;
 
+       //yes, param ALSO cannot be NULL
+       assert(func);
+       assert(parm);
+
        intr = ml_set_interrupts_enabled(FALSE);
        cpu_data_ptr = getCpuDatap();
 
@@ -300,6 +314,38 @@ cpu_broadcast_xcall(uint32_t *synch,
        return cpu_broadcast_xcall_internal(SIGPxcall, synch, self_xcall, func, parm);
 }
 
+struct cpu_broadcast_xcall_simple_data {
+       broadcastFunc func;
+       void* parm;
+       uint32_t sync;
+};
+
+static void
+cpu_broadcast_xcall_simple_cbk(void *parm)
+{
+       struct cpu_broadcast_xcall_simple_data *data = (struct cpu_broadcast_xcall_simple_data*)parm;
+
+       data->func(data->parm);
+
+       if (os_atomic_dec(&data->sync, relaxed) == 0) {
+               thread_wakeup((event_t)&data->sync);
+       }
+}
+
+static unsigned int
+cpu_xcall_simple(boolean_t self_xcall,
+    broadcastFunc func,
+    void *parm,
+    bool immediate)
+{
+       struct cpu_broadcast_xcall_simple_data data = {};
+
+       data.func = func;
+       data.parm = parm;
+
+       return cpu_broadcast_xcall_internal(immediate ? SIGPxcallImm : SIGPxcall, &data.sync, self_xcall, cpu_broadcast_xcall_simple_cbk, &data);
+}
+
 unsigned int
 cpu_broadcast_immediate_xcall(uint32_t *synch,
     boolean_t self_xcall,
@@ -309,6 +355,22 @@ cpu_broadcast_immediate_xcall(uint32_t *synch,
        return cpu_broadcast_xcall_internal(SIGPxcallImm, synch, self_xcall, func, parm);
 }
 
+unsigned int
+cpu_broadcast_xcall_simple(boolean_t self_xcall,
+    broadcastFunc func,
+    void *parm)
+{
+       return cpu_xcall_simple(self_xcall, func, parm, false);
+}
+
+unsigned int
+cpu_broadcast_immediate_xcall_simple(boolean_t self_xcall,
+    broadcastFunc func,
+    void *parm)
+{
+       return cpu_xcall_simple(self_xcall, func, parm, true);
+}
+
 static kern_return_t
 cpu_xcall_internal(unsigned int signal, int cpu_number, broadcastFunc func, void *param)
 {
@@ -367,6 +429,11 @@ cpu_signal_internal(cpu_data_t *target_proc,
        }
 
        if ((signal == SIGPxcall) || (signal == SIGPxcallImm)) {
+               uint64_t start_mabs_time, max_mabs_time, current_mabs_time;
+               current_mabs_time = start_mabs_time = mach_absolute_time();
+               max_mabs_time = xcall_ack_timeout_abstime + current_mabs_time;
+               assert(max_mabs_time > current_mabs_time);
+
                do {
                        current_signals = target_proc->cpu_signal;
                        if ((current_signals & SIGPdisabled) == SIGPdisabled) {
@@ -387,7 +454,20 @@ cpu_signal_internal(cpu_data_t *target_proc,
                        if (!swap_success && (current_proc->cpu_signal & signal)) {
                                cpu_handle_xcall(current_proc);
                        }
-               } while (!swap_success);
+               } while (!swap_success && ((current_mabs_time = mach_absolute_time()) < max_mabs_time));
+
+               /*
+                * If we time out while waiting for the target CPU to respond, it's possible that no
+                * other CPU is available to handle the watchdog interrupt that would eventually trigger
+                * a panic. To prevent this from happening, we just panic here to flag this condition.
+                */
+               if (__improbable(current_mabs_time >= max_mabs_time)) {
+                       uint64_t end_time_ns, xcall_ack_timeout_ns;
+                       absolutetime_to_nanoseconds(current_mabs_time - start_mabs_time, &end_time_ns);
+                       absolutetime_to_nanoseconds(xcall_ack_timeout_abstime, &xcall_ack_timeout_ns);
+                       panic("CPU%u has failed to respond to cross-call after %llu nanoseconds (timeout = %llu ns)",
+                           target_proc->cpu_number, end_time_ns, xcall_ack_timeout_ns);
+               }
 
                if (signal == SIGPxcallImm) {
                        target_proc->cpu_imm_xcall_p0 = p0;
@@ -419,9 +499,25 @@ cpu_signal_internal(cpu_data_t *target_proc,
 
        if (!(target_proc->cpu_signal & SIGPdisabled)) {
                if (defer) {
+#if defined(HAS_IPI)
+                       if (gFastIPI) {
+                               ml_cpu_signal_deferred(target_proc->cpu_phys_id);
+                       } else {
+                               PE_cpu_signal_deferred(getCpuDatap()->cpu_id, target_proc->cpu_id);
+                       }
+#else
                        PE_cpu_signal_deferred(getCpuDatap()->cpu_id, target_proc->cpu_id);
+#endif /* defined(HAS_IPI) */
                } else {
+#if defined(HAS_IPI)
+                       if (gFastIPI) {
+                               ml_cpu_signal(target_proc->cpu_phys_id);
+                       } else {
+                               PE_cpu_signal(getCpuDatap()->cpu_id, target_proc->cpu_id);
+                       }
+#else
                        PE_cpu_signal(getCpuDatap()->cpu_id, target_proc->cpu_id);
+#endif /* defined(HAS_IPI) */
                }
        }
 
@@ -449,7 +545,15 @@ cpu_signal_cancel(cpu_data_t *target_proc)
 {
        /* TODO: Should we care about the state of a core as far as squashing deferred IPIs goes? */
        if (!(target_proc->cpu_signal & SIGPdisabled)) {
+#if defined(HAS_IPI)
+               if (gFastIPI) {
+                       ml_cpu_signal_retract(target_proc->cpu_phys_id);
+               } else {
+                       PE_cpu_signal_cancel(getCpuDatap()->cpu_id, target_proc->cpu_id);
+               }
+#else
                PE_cpu_signal_cancel(getCpuDatap()->cpu_id, target_proc->cpu_id);
+#endif /* defined(HAS_IPI) */
        }
 }
 
@@ -465,11 +569,9 @@ cpu_signal_handler_internal(boolean_t disable_signal)
        cpu_data_t     *cpu_data_ptr = getCpuDatap();
        unsigned int    cpu_signal;
 
-
        cpu_data_ptr->cpu_stat.ipi_cnt++;
        cpu_data_ptr->cpu_stat.ipi_cnt_wake++;
-
-       SCHED_STATS_IPI(current_processor());
+       SCHED_STATS_INC(ipi_count);
 
        cpu_signal = os_atomic_or(&cpu_data_ptr->cpu_signal, 0, relaxed);
 
@@ -482,33 +584,46 @@ cpu_signal_handler_internal(boolean_t disable_signal)
        while (cpu_signal & ~SIGPdisabled) {
                if (cpu_signal & SIGPdec) {
                        os_atomic_andnot(&cpu_data_ptr->cpu_signal, SIGPdec, relaxed);
+                       INTERRUPT_MASKED_DEBUG_START(rtclock_intr, DBG_INTR_TYPE_IPI);
                        rtclock_intr(FALSE);
+                       INTERRUPT_MASKED_DEBUG_END();
                }
 #if KPERF
-               if (cpu_signal & SIGPkptimer) {
-                       os_atomic_andnot(&cpu_data_ptr->cpu_signal, SIGPkptimer, relaxed);
-                       kperf_signal_handler((unsigned int)cpu_data_ptr->cpu_number);
+               if (cpu_signal & SIGPkppet) {
+                       os_atomic_andnot(&cpu_data_ptr->cpu_signal, SIGPkppet, relaxed);
+                       extern void kperf_signal_handler(void);
+                       INTERRUPT_MASKED_DEBUG_START(kperf_signal_handler, DBG_INTR_TYPE_IPI);
+                       kperf_signal_handler();
+                       INTERRUPT_MASKED_DEBUG_END();
                }
-#endif
+#endif /* KPERF */
                if (cpu_signal & (SIGPxcall | SIGPxcallImm)) {
                        cpu_handle_xcall(cpu_data_ptr);
                }
                if (cpu_signal & SIGPast) {
                        os_atomic_andnot(&cpu_data_ptr->cpu_signal, SIGPast, relaxed);
-                       ast_check(cpu_data_ptr->cpu_processor);
+                       INTERRUPT_MASKED_DEBUG_START(ast_check, DBG_INTR_TYPE_IPI);
+                       ast_check(current_processor());
+                       INTERRUPT_MASKED_DEBUG_END();
                }
                if (cpu_signal & SIGPdebug) {
                        os_atomic_andnot(&cpu_data_ptr->cpu_signal, SIGPdebug, relaxed);
+                       INTERRUPT_MASKED_DEBUG_START(DebuggerXCall, DBG_INTR_TYPE_IPI);
                        DebuggerXCall(cpu_data_ptr->cpu_int_state);
+                       INTERRUPT_MASKED_DEBUG_END();
                }
-#if     __ARM_SMP__ && defined(ARMA7)
+#if     defined(ARMA7)
                if (cpu_signal & SIGPLWFlush) {
                        os_atomic_andnot(&cpu_data_ptr->cpu_signal, SIGPLWFlush, relaxed);
+                       INTERRUPT_MASKED_DEBUG_START(cache_xcall_handler, DBG_INTR_TYPE_IPI);
                        cache_xcall_handler(LWFlush);
+                       INTERRUPT_MASKED_DEBUG_END();
                }
                if (cpu_signal & SIGPLWClean) {
                        os_atomic_andnot(&cpu_data_ptr->cpu_signal, SIGPLWClean, relaxed);
+                       INTERRUPT_MASKED_DEBUG_START(cache_xcall_handler, DBG_INTR_TYPE_IPI);
                        cache_xcall_handler(LWClean);
+                       INTERRUPT_MASKED_DEBUG_END();
                }
 #endif
 
@@ -517,12 +632,28 @@ cpu_signal_handler_internal(boolean_t disable_signal)
 }
 
 void
-cpu_exit_wait(int cpu)
-{
-       if (cpu != master_cpu) {
+cpu_exit_wait(int cpu_id)
+{
+#if USE_APPLEARMSMP
+       if (!ml_is_quiescing()) {
+               // For runtime disable (non S2R) the CPU will shut down immediately.
+               ml_topology_cpu_t *cpu = &ml_get_topology_info()->cpus[cpu_id];
+               assert(cpu && cpu->cpu_IMPL_regs);
+               volatile uint64_t *cpu_sts = (void *)(cpu->cpu_IMPL_regs + CPU_PIO_CPU_STS_OFFSET);
+
+               // Poll the "CPU running state" field until it is 0 (off)
+               while ((*cpu_sts & CPU_PIO_CPU_STS_cpuRunSt_mask) != 0x00) {
+                       __builtin_arm_dsb(DSB_ISH);
+               }
+               return;
+       }
+#endif /* USE_APPLEARMSMP */
+
+       if (cpu_id != master_cpu) {
+               // For S2R, ml_arm_sleep() will do some extra polling after setting ARM_CPU_ON_SLEEP_PATH.
                cpu_data_t      *cpu_data_ptr;
 
-               cpu_data_ptr = CpuDataEntries[cpu].cpu_data_vaddr;
+               cpu_data_ptr = CpuDataEntries[cpu_id].cpu_data_vaddr;
                while (!((*(volatile unsigned int*)&cpu_data_ptr->cpu_sleep_token) == ARM_CPU_ON_SLEEP_PATH)) {
                }
                ;
@@ -543,7 +674,7 @@ cpu_machine_init(void)
 
        cpu_data_ptr = getCpuDatap();
        started = ((cpu_data_ptr->cpu_flags & StartedState) == StartedState);
-       if (cpu_data_ptr->cpu_cache_dispatch != (cache_dispatch_t) NULL) {
+       if (cpu_data_ptr->cpu_cache_dispatch != NULL) {
                platform_cache_init();
        }
 
@@ -554,36 +685,10 @@ cpu_machine_init(void)
        ml_init_interrupt();
 }
 
-processor_t
-cpu_processor_alloc(boolean_t is_boot_cpu)
-{
-       processor_t proc;
-
-       if (is_boot_cpu) {
-               return &BootProcessor;
-       }
-
-       proc = kalloc(sizeof(*proc));
-       if (!proc) {
-               return NULL;
-       }
-
-       bzero((void *) proc, sizeof(*proc));
-       return proc;
-}
-
-void
-cpu_processor_free(processor_t proc)
-{
-       if (proc != NULL && proc != &BootProcessor) {
-               kfree(proc, sizeof(*proc));
-       }
-}
-
 processor_t
 current_processor(void)
 {
-       return getCpuDatap()->cpu_processor;
+       return PERCPU_GET(processor);
 }
 
 processor_t
@@ -591,7 +696,7 @@ cpu_to_processor(int cpu)
 {
        cpu_data_t *cpu_data = cpu_datap(cpu);
        if (cpu_data != NULL) {
-               return cpu_data->cpu_processor;
+               return PERCPU_GET_RELATIVE(processor, cpu_data, cpu_data);
        } else {
                return NULL;
        }
@@ -600,44 +705,59 @@ cpu_to_processor(int cpu)
 cpu_data_t *
 processor_to_cpu_datap(processor_t processor)
 {
-       cpu_data_t *target_cpu_datap;
-
-       assert(processor->cpu_id < MAX_CPUS);
+       assert(processor->cpu_id <= ml_get_max_cpu_number());
        assert(CpuDataEntries[processor->cpu_id].cpu_data_vaddr != NULL);
 
-       target_cpu_datap = (cpu_data_t*)CpuDataEntries[processor->cpu_id].cpu_data_vaddr;
-       assert(target_cpu_datap->cpu_processor == processor);
+       return PERCPU_GET_RELATIVE(cpu_data, processor, processor);
+}
+
+__startup_func
+static void
+cpu_data_startup_init(void)
+{
+       vm_size_t size = percpu_section_size() * (ml_get_cpu_count() - 1);
+
+       percpu_base.size = percpu_section_size();
+       if (ml_get_cpu_count() == 1) {
+               percpu_base.start = VM_MAX_KERNEL_ADDRESS;
+               return;
+       }
+
+       /*
+        * The memory needs to be physically contiguous because it contains
+        * cpu_data_t structures sometimes accessed during reset
+        * with the MMU off.
+        *
+        * kmem_alloc_contig() can't be used early, at the time STARTUP_SUB_PERCPU
+        * normally runs, so we instead steal the memory for the PERCPU subsystem
+        * even earlier.
+        */
+       percpu_base.start  = (vm_offset_t)pmap_steal_memory(round_page(size));
+       bzero((void *)percpu_base.start, round_page(size));
 
-       return target_cpu_datap;
+       percpu_base.start -= percpu_section_start();
+       percpu_base.end    = percpu_base.start + size - 1;
+       percpu_base_cur    = percpu_base.start;
 }
+STARTUP(PMAP_STEAL, STARTUP_RANK_FIRST, cpu_data_startup_init);
 
 cpu_data_t *
 cpu_data_alloc(boolean_t is_boot_cpu)
 {
-       cpu_data_t              *cpu_data_ptr = NULL;
+       cpu_data_t   *cpu_data_ptr = NULL;
+       vm_address_t  base;
 
        if (is_boot_cpu) {
-               cpu_data_ptr = &BootCpuData;
+               cpu_data_ptr = PERCPU_GET_MASTER(cpu_data);
        } else {
-               if ((kmem_alloc(kernel_map, (vm_offset_t *)&cpu_data_ptr, sizeof(cpu_data_t), VM_KERN_MEMORY_CPU)) != KERN_SUCCESS) {
-                       goto cpu_data_alloc_error;
-               }
-
-               bzero((void *)cpu_data_ptr, sizeof(cpu_data_t));
+               base = os_atomic_add_orig(&percpu_base_cur,
+                   percpu_section_size(), relaxed);
 
+               cpu_data_ptr = PERCPU_GET_WITH_BASE(base, cpu_data);
                cpu_stack_alloc(cpu_data_ptr);
        }
 
-       cpu_data_ptr->cpu_processor = cpu_processor_alloc(is_boot_cpu);
-       if (cpu_data_ptr->cpu_processor == (struct processor *)NULL) {
-               goto cpu_data_alloc_error;
-       }
-
        return cpu_data_ptr;
-
-cpu_data_alloc_error:
-       panic("cpu_data_alloc() failed\n");
-       return (cpu_data_t *)NULL;
 }
 
 ast_t *
@@ -688,8 +808,93 @@ cpu_number(void)
        return getCpuDatap()->cpu_number;
 }
 
+vm_offset_t
+current_percpu_base(void)
+{
+       return current_thread()->machine.pcpu_data_base;
+}
+
 uint64_t
 ml_get_wake_timebase(void)
 {
        return wake_abstime;
 }
+
+bool
+ml_cpu_signal_is_enabled(void)
+{
+       return !(getCpuDatap()->cpu_signal & SIGPdisabled);
+}
+
+bool
+ml_cpu_can_exit(__unused int cpu_id)
+{
+       /* processor_exit() is always allowed on the S2R path */
+       if (ml_is_quiescing()) {
+               return true;
+       }
+#if HAS_CLUSTER && USE_APPLEARMSMP
+       /*
+        * Cyprus and newer chips can disable individual non-boot CPUs. The
+        * implementation polls cpuX_IMPL_CPU_STS, which differs on older chips.
+        */
+       if (CpuDataEntries[cpu_id].cpu_data_vaddr != &BootCpuData) {
+               return true;
+       }
+#endif
+       return false;
+}
+
+#ifdef USE_APPLEARMSMP
+
+void
+ml_cpu_begin_state_transition(int cpu_id)
+{
+       lck_rw_lock_exclusive(&cpu_state_lock);
+       CpuDataEntries[cpu_id].cpu_data_vaddr->in_state_transition = true;
+       lck_rw_unlock_exclusive(&cpu_state_lock);
+}
+
+void
+ml_cpu_end_state_transition(int cpu_id)
+{
+       lck_rw_lock_exclusive(&cpu_state_lock);
+       CpuDataEntries[cpu_id].cpu_data_vaddr->in_state_transition = false;
+       lck_rw_unlock_exclusive(&cpu_state_lock);
+}
+
+void
+ml_cpu_begin_loop(void)
+{
+       lck_rw_lock_shared(&cpu_state_lock);
+}
+
+void
+ml_cpu_end_loop(void)
+{
+       lck_rw_unlock_shared(&cpu_state_lock);
+}
+
+#else /* USE_APPLEARMSMP */
+
+void
+ml_cpu_begin_state_transition(__unused int cpu_id)
+{
+}
+
+void
+ml_cpu_end_state_transition(__unused int cpu_id)
+{
+}
+
+void
+ml_cpu_begin_loop(void)
+{
+}
+
+void
+ml_cpu_end_loop(void)
+{
+}
+
+#endif /* USE_APPLEARMSMP */