* cpu routines common to all supported arm variants
*/
-#include <kern/kalloc.h>
#include <kern/machine.h>
#include <kern/cpu_number.h>
#include <kern/thread.h>
+#include <kern/percpu.h>
#include <kern/timer_queue.h>
+#include <kern/locks.h>
#include <arm/cpu_data.h>
#include <arm/cpuid.h>
#include <arm/caches_internal.h>
#include <pexpert/device_tree.h>
#include <sys/kdebug.h>
#include <arm/machine_routines.h>
+#include <arm/proc_reg.h>
#include <libkern/OSAtomic.h>
-#if KPERF
-void kperf_signal_handler(unsigned int cpu_number);
-#endif
-
-cpu_data_t BootCpuData;
+SECURITY_READ_ONLY_LATE(struct percpu_base) percpu_base;
+vm_address_t percpu_base_cur;
+cpu_data_t PERCPU_DATA(cpu_data);
cpu_data_entry_t CpuDataEntries[MAX_CPUS];
-struct processor BootProcessor;
+static LCK_GRP_DECLARE(cpu_lck_grp, "cpu_lck_grp");
+static LCK_RW_DECLARE(cpu_state_lock, &cpu_lck_grp);
unsigned int real_ncpus = 1;
boolean_t idle_enable = FALSE;
uint64_t wake_abstime = 0x0ULL;
+extern uint64_t xcall_ack_timeout_abstime;
+
+#if defined(HAS_IPI)
+extern unsigned int gFastIPI;
+#endif /* defined(HAS_IPI) */
cpu_data_t *
cpu_datap(int cpu)
{
- assert(cpu < MAX_CPUS);
+ assert(cpu <= ml_get_max_cpu_number());
return CpuDataEntries[cpu].cpu_data_vaddr;
}
intr = ml_set_interrupts_enabled(FALSE);
cpu_data_ptr = getCpuDatap();
- if (cpu_data_ptr->idle_timer_notify != (void *)NULL) {
- ((idle_timer_t)cpu_data_ptr->idle_timer_notify)(cpu_data_ptr->idle_timer_refcon, &new_idle_timeout_ticks);
+ if (cpu_data_ptr->idle_timer_notify != NULL) {
+ cpu_data_ptr->idle_timer_notify(cpu_data_ptr->idle_timer_refcon, &new_idle_timeout_ticks);
if (new_idle_timeout_ticks != 0x0ULL) {
/* if a new idle timeout was requested set the new idle timer deadline */
clock_absolutetime_interval_to_deadline(new_idle_timeout_ticks, &cpu_data_ptr->idle_timer_deadline);
* added SIGPxcall to the pending mask, but hasn't yet assigned the call params.*/
if (cpu_data_ptr->cpu_xcall_p0 != NULL && cpu_data_ptr->cpu_xcall_p1 != NULL) {
xfunc = cpu_data_ptr->cpu_xcall_p0;
+ INTERRUPT_MASKED_DEBUG_START(xfunc, DBG_INTR_TYPE_IPI);
xparam = cpu_data_ptr->cpu_xcall_p1;
cpu_data_ptr->cpu_xcall_p0 = NULL;
cpu_data_ptr->cpu_xcall_p1 = NULL;
os_atomic_thread_fence(acq_rel);
os_atomic_andnot(&cpu_data_ptr->cpu_signal, SIGPxcall, relaxed);
xfunc(xparam);
+ INTERRUPT_MASKED_DEBUG_END();
}
if (cpu_data_ptr->cpu_imm_xcall_p0 != NULL && cpu_data_ptr->cpu_imm_xcall_p1 != NULL) {
xfunc = cpu_data_ptr->cpu_imm_xcall_p0;
+ INTERRUPT_MASKED_DEBUG_START(xfunc, DBG_INTR_TYPE_IPI);
xparam = cpu_data_ptr->cpu_imm_xcall_p1;
cpu_data_ptr->cpu_imm_xcall_p0 = NULL;
cpu_data_ptr->cpu_imm_xcall_p1 = NULL;
os_atomic_thread_fence(acq_rel);
os_atomic_andnot(&cpu_data_ptr->cpu_signal, SIGPxcallImm, relaxed);
xfunc(xparam);
+ INTERRUPT_MASKED_DEBUG_END();
}
}
int cpu;
int max_cpu = ml_get_max_cpu_number() + 1;
+ //yes, param ALSO cannot be NULL
+ assert(func);
+ assert(parm);
+
intr = ml_set_interrupts_enabled(FALSE);
cpu_data_ptr = getCpuDatap();
return cpu_broadcast_xcall_internal(SIGPxcall, synch, self_xcall, func, parm);
}
+struct cpu_broadcast_xcall_simple_data {
+ broadcastFunc func;
+ void* parm;
+ uint32_t sync;
+};
+
+static void
+cpu_broadcast_xcall_simple_cbk(void *parm)
+{
+ struct cpu_broadcast_xcall_simple_data *data = (struct cpu_broadcast_xcall_simple_data*)parm;
+
+ data->func(data->parm);
+
+ if (os_atomic_dec(&data->sync, relaxed) == 0) {
+ thread_wakeup((event_t)&data->sync);
+ }
+}
+
+static unsigned int
+cpu_xcall_simple(boolean_t self_xcall,
+ broadcastFunc func,
+ void *parm,
+ bool immediate)
+{
+ struct cpu_broadcast_xcall_simple_data data = {};
+
+ data.func = func;
+ data.parm = parm;
+
+ return cpu_broadcast_xcall_internal(immediate ? SIGPxcallImm : SIGPxcall, &data.sync, self_xcall, cpu_broadcast_xcall_simple_cbk, &data);
+}
+
unsigned int
cpu_broadcast_immediate_xcall(uint32_t *synch,
boolean_t self_xcall,
return cpu_broadcast_xcall_internal(SIGPxcallImm, synch, self_xcall, func, parm);
}
+unsigned int
+cpu_broadcast_xcall_simple(boolean_t self_xcall,
+ broadcastFunc func,
+ void *parm)
+{
+ return cpu_xcall_simple(self_xcall, func, parm, false);
+}
+
+unsigned int
+cpu_broadcast_immediate_xcall_simple(boolean_t self_xcall,
+ broadcastFunc func,
+ void *parm)
+{
+ return cpu_xcall_simple(self_xcall, func, parm, true);
+}
+
static kern_return_t
cpu_xcall_internal(unsigned int signal, int cpu_number, broadcastFunc func, void *param)
{
}
if ((signal == SIGPxcall) || (signal == SIGPxcallImm)) {
+ uint64_t start_mabs_time, max_mabs_time, current_mabs_time;
+ current_mabs_time = start_mabs_time = mach_absolute_time();
+ max_mabs_time = xcall_ack_timeout_abstime + current_mabs_time;
+ assert(max_mabs_time > current_mabs_time);
+
do {
current_signals = target_proc->cpu_signal;
if ((current_signals & SIGPdisabled) == SIGPdisabled) {
if (!swap_success && (current_proc->cpu_signal & signal)) {
cpu_handle_xcall(current_proc);
}
- } while (!swap_success);
+ } while (!swap_success && ((current_mabs_time = mach_absolute_time()) < max_mabs_time));
+
+ /*
+ * If we time out while waiting for the target CPU to respond, it's possible that no
+ * other CPU is available to handle the watchdog interrupt that would eventually trigger
+ * a panic. To prevent this from happening, we just panic here to flag this condition.
+ */
+ if (__improbable(current_mabs_time >= max_mabs_time)) {
+ uint64_t end_time_ns, xcall_ack_timeout_ns;
+ absolutetime_to_nanoseconds(current_mabs_time - start_mabs_time, &end_time_ns);
+ absolutetime_to_nanoseconds(xcall_ack_timeout_abstime, &xcall_ack_timeout_ns);
+ panic("CPU%u has failed to respond to cross-call after %llu nanoseconds (timeout = %llu ns)",
+ target_proc->cpu_number, end_time_ns, xcall_ack_timeout_ns);
+ }
if (signal == SIGPxcallImm) {
target_proc->cpu_imm_xcall_p0 = p0;
if (!(target_proc->cpu_signal & SIGPdisabled)) {
if (defer) {
+#if defined(HAS_IPI)
+ if (gFastIPI) {
+ ml_cpu_signal_deferred(target_proc->cpu_phys_id);
+ } else {
+ PE_cpu_signal_deferred(getCpuDatap()->cpu_id, target_proc->cpu_id);
+ }
+#else
PE_cpu_signal_deferred(getCpuDatap()->cpu_id, target_proc->cpu_id);
+#endif /* defined(HAS_IPI) */
} else {
+#if defined(HAS_IPI)
+ if (gFastIPI) {
+ ml_cpu_signal(target_proc->cpu_phys_id);
+ } else {
+ PE_cpu_signal(getCpuDatap()->cpu_id, target_proc->cpu_id);
+ }
+#else
PE_cpu_signal(getCpuDatap()->cpu_id, target_proc->cpu_id);
+#endif /* defined(HAS_IPI) */
}
}
{
/* TODO: Should we care about the state of a core as far as squashing deferred IPIs goes? */
if (!(target_proc->cpu_signal & SIGPdisabled)) {
+#if defined(HAS_IPI)
+ if (gFastIPI) {
+ ml_cpu_signal_retract(target_proc->cpu_phys_id);
+ } else {
+ PE_cpu_signal_cancel(getCpuDatap()->cpu_id, target_proc->cpu_id);
+ }
+#else
PE_cpu_signal_cancel(getCpuDatap()->cpu_id, target_proc->cpu_id);
+#endif /* defined(HAS_IPI) */
}
}
cpu_data_t *cpu_data_ptr = getCpuDatap();
unsigned int cpu_signal;
-
cpu_data_ptr->cpu_stat.ipi_cnt++;
cpu_data_ptr->cpu_stat.ipi_cnt_wake++;
-
- SCHED_STATS_IPI(current_processor());
+ SCHED_STATS_INC(ipi_count);
cpu_signal = os_atomic_or(&cpu_data_ptr->cpu_signal, 0, relaxed);
while (cpu_signal & ~SIGPdisabled) {
if (cpu_signal & SIGPdec) {
os_atomic_andnot(&cpu_data_ptr->cpu_signal, SIGPdec, relaxed);
+ INTERRUPT_MASKED_DEBUG_START(rtclock_intr, DBG_INTR_TYPE_IPI);
rtclock_intr(FALSE);
+ INTERRUPT_MASKED_DEBUG_END();
}
#if KPERF
- if (cpu_signal & SIGPkptimer) {
- os_atomic_andnot(&cpu_data_ptr->cpu_signal, SIGPkptimer, relaxed);
- kperf_signal_handler((unsigned int)cpu_data_ptr->cpu_number);
+ if (cpu_signal & SIGPkppet) {
+ os_atomic_andnot(&cpu_data_ptr->cpu_signal, SIGPkppet, relaxed);
+ extern void kperf_signal_handler(void);
+ INTERRUPT_MASKED_DEBUG_START(kperf_signal_handler, DBG_INTR_TYPE_IPI);
+ kperf_signal_handler();
+ INTERRUPT_MASKED_DEBUG_END();
}
-#endif
+#endif /* KPERF */
if (cpu_signal & (SIGPxcall | SIGPxcallImm)) {
cpu_handle_xcall(cpu_data_ptr);
}
if (cpu_signal & SIGPast) {
os_atomic_andnot(&cpu_data_ptr->cpu_signal, SIGPast, relaxed);
- ast_check(cpu_data_ptr->cpu_processor);
+ INTERRUPT_MASKED_DEBUG_START(ast_check, DBG_INTR_TYPE_IPI);
+ ast_check(current_processor());
+ INTERRUPT_MASKED_DEBUG_END();
}
if (cpu_signal & SIGPdebug) {
os_atomic_andnot(&cpu_data_ptr->cpu_signal, SIGPdebug, relaxed);
+ INTERRUPT_MASKED_DEBUG_START(DebuggerXCall, DBG_INTR_TYPE_IPI);
DebuggerXCall(cpu_data_ptr->cpu_int_state);
+ INTERRUPT_MASKED_DEBUG_END();
}
-#if __ARM_SMP__ && defined(ARMA7)
+#if defined(ARMA7)
if (cpu_signal & SIGPLWFlush) {
os_atomic_andnot(&cpu_data_ptr->cpu_signal, SIGPLWFlush, relaxed);
+ INTERRUPT_MASKED_DEBUG_START(cache_xcall_handler, DBG_INTR_TYPE_IPI);
cache_xcall_handler(LWFlush);
+ INTERRUPT_MASKED_DEBUG_END();
}
if (cpu_signal & SIGPLWClean) {
os_atomic_andnot(&cpu_data_ptr->cpu_signal, SIGPLWClean, relaxed);
+ INTERRUPT_MASKED_DEBUG_START(cache_xcall_handler, DBG_INTR_TYPE_IPI);
cache_xcall_handler(LWClean);
+ INTERRUPT_MASKED_DEBUG_END();
}
#endif
}
void
-cpu_exit_wait(int cpu)
-{
- if (cpu != master_cpu) {
+cpu_exit_wait(int cpu_id)
+{
+#if USE_APPLEARMSMP
+ if (!ml_is_quiescing()) {
+ // For runtime disable (non S2R) the CPU will shut down immediately.
+ ml_topology_cpu_t *cpu = &ml_get_topology_info()->cpus[cpu_id];
+ assert(cpu && cpu->cpu_IMPL_regs);
+ volatile uint64_t *cpu_sts = (void *)(cpu->cpu_IMPL_regs + CPU_PIO_CPU_STS_OFFSET);
+
+ // Poll the "CPU running state" field until it is 0 (off)
+ while ((*cpu_sts & CPU_PIO_CPU_STS_cpuRunSt_mask) != 0x00) {
+ __builtin_arm_dsb(DSB_ISH);
+ }
+ return;
+ }
+#endif /* USE_APPLEARMSMP */
+
+ if (cpu_id != master_cpu) {
+ // For S2R, ml_arm_sleep() will do some extra polling after setting ARM_CPU_ON_SLEEP_PATH.
cpu_data_t *cpu_data_ptr;
- cpu_data_ptr = CpuDataEntries[cpu].cpu_data_vaddr;
+ cpu_data_ptr = CpuDataEntries[cpu_id].cpu_data_vaddr;
while (!((*(volatile unsigned int*)&cpu_data_ptr->cpu_sleep_token) == ARM_CPU_ON_SLEEP_PATH)) {
}
;
cpu_data_ptr = getCpuDatap();
started = ((cpu_data_ptr->cpu_flags & StartedState) == StartedState);
- if (cpu_data_ptr->cpu_cache_dispatch != (cache_dispatch_t) NULL) {
+ if (cpu_data_ptr->cpu_cache_dispatch != NULL) {
platform_cache_init();
}
ml_init_interrupt();
}
-processor_t
-cpu_processor_alloc(boolean_t is_boot_cpu)
-{
- processor_t proc;
-
- if (is_boot_cpu) {
- return &BootProcessor;
- }
-
- proc = kalloc(sizeof(*proc));
- if (!proc) {
- return NULL;
- }
-
- bzero((void *) proc, sizeof(*proc));
- return proc;
-}
-
-void
-cpu_processor_free(processor_t proc)
-{
- if (proc != NULL && proc != &BootProcessor) {
- kfree(proc, sizeof(*proc));
- }
-}
-
processor_t
current_processor(void)
{
- return getCpuDatap()->cpu_processor;
+ return PERCPU_GET(processor);
}
processor_t
{
cpu_data_t *cpu_data = cpu_datap(cpu);
if (cpu_data != NULL) {
- return cpu_data->cpu_processor;
+ return PERCPU_GET_RELATIVE(processor, cpu_data, cpu_data);
} else {
return NULL;
}
cpu_data_t *
processor_to_cpu_datap(processor_t processor)
{
- cpu_data_t *target_cpu_datap;
-
- assert(processor->cpu_id < MAX_CPUS);
+ assert(processor->cpu_id <= ml_get_max_cpu_number());
assert(CpuDataEntries[processor->cpu_id].cpu_data_vaddr != NULL);
- target_cpu_datap = (cpu_data_t*)CpuDataEntries[processor->cpu_id].cpu_data_vaddr;
- assert(target_cpu_datap->cpu_processor == processor);
+ return PERCPU_GET_RELATIVE(cpu_data, processor, processor);
+}
+
+__startup_func
+static void
+cpu_data_startup_init(void)
+{
+ vm_size_t size = percpu_section_size() * (ml_get_cpu_count() - 1);
+
+ percpu_base.size = percpu_section_size();
+ if (ml_get_cpu_count() == 1) {
+ percpu_base.start = VM_MAX_KERNEL_ADDRESS;
+ return;
+ }
+
+ /*
+ * The memory needs to be physically contiguous because it contains
+ * cpu_data_t structures sometimes accessed during reset
+ * with the MMU off.
+ *
+ * kmem_alloc_contig() can't be used early, at the time STARTUP_SUB_PERCPU
+ * normally runs, so we instead steal the memory for the PERCPU subsystem
+ * even earlier.
+ */
+ percpu_base.start = (vm_offset_t)pmap_steal_memory(round_page(size));
+ bzero((void *)percpu_base.start, round_page(size));
- return target_cpu_datap;
+ percpu_base.start -= percpu_section_start();
+ percpu_base.end = percpu_base.start + size - 1;
+ percpu_base_cur = percpu_base.start;
}
+STARTUP(PMAP_STEAL, STARTUP_RANK_FIRST, cpu_data_startup_init);
cpu_data_t *
cpu_data_alloc(boolean_t is_boot_cpu)
{
- cpu_data_t *cpu_data_ptr = NULL;
+ cpu_data_t *cpu_data_ptr = NULL;
+ vm_address_t base;
if (is_boot_cpu) {
- cpu_data_ptr = &BootCpuData;
+ cpu_data_ptr = PERCPU_GET_MASTER(cpu_data);
} else {
- if ((kmem_alloc(kernel_map, (vm_offset_t *)&cpu_data_ptr, sizeof(cpu_data_t), VM_KERN_MEMORY_CPU)) != KERN_SUCCESS) {
- goto cpu_data_alloc_error;
- }
-
- bzero((void *)cpu_data_ptr, sizeof(cpu_data_t));
+ base = os_atomic_add_orig(&percpu_base_cur,
+ percpu_section_size(), relaxed);
+ cpu_data_ptr = PERCPU_GET_WITH_BASE(base, cpu_data);
cpu_stack_alloc(cpu_data_ptr);
}
- cpu_data_ptr->cpu_processor = cpu_processor_alloc(is_boot_cpu);
- if (cpu_data_ptr->cpu_processor == (struct processor *)NULL) {
- goto cpu_data_alloc_error;
- }
-
return cpu_data_ptr;
-
-cpu_data_alloc_error:
- panic("cpu_data_alloc() failed\n");
- return (cpu_data_t *)NULL;
}
ast_t *
return getCpuDatap()->cpu_number;
}
+vm_offset_t
+current_percpu_base(void)
+{
+ return current_thread()->machine.pcpu_data_base;
+}
+
uint64_t
ml_get_wake_timebase(void)
{
return wake_abstime;
}
+
+bool
+ml_cpu_signal_is_enabled(void)
+{
+ return !(getCpuDatap()->cpu_signal & SIGPdisabled);
+}
+
+bool
+ml_cpu_can_exit(__unused int cpu_id)
+{
+ /* processor_exit() is always allowed on the S2R path */
+ if (ml_is_quiescing()) {
+ return true;
+ }
+#if HAS_CLUSTER && USE_APPLEARMSMP
+ /*
+ * Cyprus and newer chips can disable individual non-boot CPUs. The
+ * implementation polls cpuX_IMPL_CPU_STS, which differs on older chips.
+ */
+ if (CpuDataEntries[cpu_id].cpu_data_vaddr != &BootCpuData) {
+ return true;
+ }
+#endif
+ return false;
+}
+
+#ifdef USE_APPLEARMSMP
+
+void
+ml_cpu_begin_state_transition(int cpu_id)
+{
+ lck_rw_lock_exclusive(&cpu_state_lock);
+ CpuDataEntries[cpu_id].cpu_data_vaddr->in_state_transition = true;
+ lck_rw_unlock_exclusive(&cpu_state_lock);
+}
+
+void
+ml_cpu_end_state_transition(int cpu_id)
+{
+ lck_rw_lock_exclusive(&cpu_state_lock);
+ CpuDataEntries[cpu_id].cpu_data_vaddr->in_state_transition = false;
+ lck_rw_unlock_exclusive(&cpu_state_lock);
+}
+
+void
+ml_cpu_begin_loop(void)
+{
+ lck_rw_lock_shared(&cpu_state_lock);
+}
+
+void
+ml_cpu_end_loop(void)
+{
+ lck_rw_unlock_shared(&cpu_state_lock);
+}
+
+#else /* USE_APPLEARMSMP */
+
+void
+ml_cpu_begin_state_transition(__unused int cpu_id)
+{
+}
+
+void
+ml_cpu_end_state_transition(__unused int cpu_id)
+{
+}
+
+void
+ml_cpu_begin_loop(void)
+{
+}
+
+void
+ml_cpu_end_loop(void)
+{
+}
+
+#endif /* USE_APPLEARMSMP */