]> git.saurik.com Git - apple/xnu.git/blobdiff - osfmk/kern/zalloc.c
xnu-7195.101.1.tar.gz
[apple/xnu.git] / osfmk / kern / zalloc.c
index f8ac4c12fd8bbf2a39a123dc25174a365390c688..9d33499119e11ea6b5fd45b16e7b2f95be0cb09b 100644 (file)
@@ -1,8 +1,8 @@
 /*
 /*
- * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
+ * Copyright (c) 2000-2020 Apple Inc. All rights reserved.
  *
  * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
  *
  * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
- * 
+ *
  * This file contains Original Code and/or Modifications of Original Code
  * as defined in and that are subject to the Apple Public Source License
  * Version 2.0 (the 'License'). You may not use this file except in
  * This file contains Original Code and/or Modifications of Original Code
  * as defined in and that are subject to the Apple Public Source License
  * Version 2.0 (the 'License'). You may not use this file except in
  * unlawful or unlicensed copies of an Apple operating system, or to
  * circumvent, violate, or enable the circumvention or violation of, any
  * terms of an Apple operating system software license agreement.
  * unlawful or unlicensed copies of an Apple operating system, or to
  * circumvent, violate, or enable the circumvention or violation of, any
  * terms of an Apple operating system software license agreement.
- * 
+ *
  * Please obtain a copy of the License at
  * http://www.opensource.apple.com/apsl/ and read it before using this file.
  * Please obtain a copy of the License at
  * http://www.opensource.apple.com/apsl/ and read it before using this file.
- * 
+ *
  * The Original Code and all software distributed under the License are
  * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
  * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
  * The Original Code and all software distributed under the License are
  * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
  * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
  * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
  * Please see the License for the specific language governing rights and
  * limitations under the License.
  * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
  * Please see the License for the specific language governing rights and
  * limitations under the License.
- * 
+ *
  * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
  */
 /*
  * @OSF_COPYRIGHT@
  */
  * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
  */
 /*
  * @OSF_COPYRIGHT@
  */
-/* 
+/*
  * Mach Operating System
  * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
  * All Rights Reserved.
  * Mach Operating System
  * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
  * All Rights Reserved.
- * 
+ *
  * Permission to use, copy, modify and distribute this software and its
  * documentation is hereby granted, provided that both the copyright
  * notice and this permission notice appear in all copies of the
  * software, derivative works or modified versions, and any portions
  * thereof, and that both notices appear in supporting documentation.
  * Permission to use, copy, modify and distribute this software and its
  * documentation is hereby granted, provided that both the copyright
  * notice and this permission notice appear in all copies of the
  * software, derivative works or modified versions, and any portions
  * thereof, and that both notices appear in supporting documentation.
- * 
+ *
  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
  * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
  * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
- * 
+ *
  * Carnegie Mellon requests users of this software to return to
  * Carnegie Mellon requests users of this software to return to
- * 
+ *
  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
  *  School of Computer Science
  *  Carnegie Mellon University
  *  Pittsburgh PA 15213-3890
  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
  *  School of Computer Science
  *  Carnegie Mellon University
  *  Pittsburgh PA 15213-3890
- * 
+ *
  * any improvements or extensions that they make and grant Carnegie Mellon
  * the rights to redistribute these changes.
  */
  * any improvements or extensions that they make and grant Carnegie Mellon
  * the rights to redistribute these changes.
  */
  *     Zone-based memory allocator.  A zone is a collection of fixed size
  *     data blocks for which quick allocation/deallocation is possible.
  */
  *     Zone-based memory allocator.  A zone is a collection of fixed size
  *     data blocks for which quick allocation/deallocation is possible.
  */
-#include <zone_debug.h>
-#include <zone_alias_addr.h>
-#include <norma_vm.h>
-#include <mach_kdb.h>
 
 
+#define ZALLOC_ALLOW_DEPRECATED 1
+#if !ZALLOC_TEST
 #include <mach/mach_types.h>
 #include <mach/vm_param.h>
 #include <mach/kern_return.h>
 #include <mach/mach_host_server.h>
 #include <mach/mach_types.h>
 #include <mach/vm_param.h>
 #include <mach/kern_return.h>
 #include <mach/mach_host_server.h>
+#include <mach/task_server.h>
 #include <mach/machine/vm_types.h>
 #include <mach/machine/vm_types.h>
-#include <mach_debug/zone_info.h>
+#include <mach/vm_map.h>
+#include <mach/sdt.h>
 
 
+#include <kern/bits.h>
+#include <kern/startup.h>
 #include <kern/kern_types.h>
 #include <kern/assert.h>
 #include <kern/kern_types.h>
 #include <kern/assert.h>
+#include <kern/backtrace.h>
 #include <kern/host.h>
 #include <kern/macro_help.h>
 #include <kern/sched.h>
 #include <kern/host.h>
 #include <kern/macro_help.h>
 #include <kern/sched.h>
-#include <kern/lock.h>
+#include <kern/locks.h>
 #include <kern/sched_prim.h>
 #include <kern/misc_protos.h>
 #include <kern/thread_call.h>
 #include <kern/sched_prim.h>
 #include <kern/misc_protos.h>
 #include <kern/thread_call.h>
-#include <kern/zalloc.h>
+#include <kern/zalloc_internal.h>
 #include <kern/kalloc.h>
 
 #include <kern/kalloc.h>
 
+#include <prng/random.h>
+
 #include <vm/pmap.h>
 #include <vm/vm_map.h>
 #include <vm/vm_kern.h>
 #include <vm/vm_page.h>
 #include <vm/pmap.h>
 #include <vm/vm_map.h>
 #include <vm/vm_kern.h>
 #include <vm/vm_page.h>
+#include <vm/vm_pageout.h>
+#include <vm/vm_compressor.h> /* C_SLOT_PACKED_PTR* */
+
+#include <pexpert/pexpert.h>
 
 #include <machine/machparam.h>
 
 #include <machine/machparam.h>
+#include <machine/machine_routines.h>  /* ml_cpu_get_info */
+
+#include <os/atomic.h>
 
 #include <libkern/OSDebug.h>
 
 #include <libkern/OSDebug.h>
+#include <libkern/OSAtomic.h>
+#include <libkern/section_keywords.h>
 #include <sys/kdebug.h>
 
 #include <sys/kdebug.h>
 
-#if defined(__ppc__)
-/* for fake zone stat routines */
-#include <ppc/savearea.h>
-#include <ppc/mappings.h>
-#endif
-
-
-/* 
- * Zone Corruption Debugging
- *
- * We provide three methods to detect use of a zone element after it's been freed.  These
- * checks are enabled by specifying "-zc" and/or "-zp" in the boot-args:
- *
- * (1) Range-check the free-list "next" ptr for sanity.
- * (2) Store the ptr in two different words, and compare them against
- *     each other when re-using the zone element, to detect modifications.
- * (3) poison the freed memory by overwriting it with 0xdeadbeef.
- *
- * The first two checks are farily light weight and are enabled by specifying "-zc" 
- * in the boot-args.  If you want more aggressive checking for use-after-free bugs
- * and you don't mind the additional overhead, then turn on poisoning by adding
- * "-zp" to the boot-args in addition to "-zc".  If you specify -zp without -zc,
- * it still poisons the memory when it's freed, but doesn't check if the memory
- * has been altered later when it's reallocated.
- */
-
-boolean_t check_freed_element = FALSE;         /* enabled by -zc in boot-args */
-boolean_t zfree_clear = FALSE;                 /* enabled by -zp in boot-args */
-
-#define is_kernel_data_addr(a) (!(a) || ((a) >= vm_min_kernel_address && !((a) & 0x3)))
-
-#define ADD_TO_ZONE(zone, element)                                     \
-MACRO_BEGIN                                                            \
-       if (zfree_clear)                                                \
-       {   unsigned int i;                                             \
-           for (i=0;                                                   \
-                i < zone->elem_size/sizeof(uint32_t);                  \
-                i++)                                                   \
-           ((uint32_t *)(element))[i] = 0xdeadbeef;                    \
-       }                                                               \
-       *((vm_offset_t *)(element)) = (zone)->free_elements;            \
-       if (check_freed_element) {                                      \
-               if ((zone)->elem_size >= (2 * sizeof(vm_offset_t)))     \
-                       ((vm_offset_t *)(element))[((zone)->elem_size/sizeof(vm_offset_t))-1] = \
-                               (zone)->free_elements;                  \
-       }                                                               \
-       (zone)->free_elements = (vm_offset_t) (element);                \
-       (zone)->count--;                                                \
-MACRO_END
-
-#define REMOVE_FROM_ZONE(zone, ret, type)                                      \
-MACRO_BEGIN                                                                    \
-       (ret) = (type) (zone)->free_elements;                                   \
-       if ((ret) != (type) 0) {                                                \
-               if (check_freed_element) {                                      \
-                       if (!is_kernel_data_addr(((vm_offset_t *)(ret))[0]) ||  \
-                           ((zone)->elem_size >= (2 * sizeof(vm_offset_t)) &&  \
-                           ((vm_offset_t *)(ret))[((zone)->elem_size/sizeof(vm_offset_t))-1] != \
-                           ((vm_offset_t *)(ret))[0]))                         \
-                               panic("a freed zone element has been modified");\
-                       if (zfree_clear) {                                      \
-                               unsigned int ii;                                \
-                               for (ii = sizeof(vm_offset_t) / sizeof(uint32_t); \
-                                        ii < zone->elem_size/sizeof(uint32_t) - sizeof(vm_offset_t) / sizeof(uint32_t); \
-                                        ii++)                                  \
-                                       if (((uint32_t *)(ret))[ii] != (uint32_t)0xdeadbeef) \
-                                               panic("a freed zone element has been modified");\
-                       }                                                       \
-               }                                                               \
-               (zone)->count++;                                                \
-               (zone)->free_elements = *((vm_offset_t *)(ret));                \
-       }                                                                       \
-MACRO_END
-
-#if    ZONE_DEBUG
-#define zone_debug_enabled(z) z->active_zones.next
-#define        ROUNDUP(x,y)            ((((x)+(y)-1)/(y))*(y))
-#define ZONE_DEBUG_OFFSET      ROUNDUP(sizeof(queue_chain_t),16) 
-#endif /* ZONE_DEBUG */
+#include <san/kasan.h>
 
 
+#if KASAN_ZALLOC
 /*
 /*
- * Support for garbage collection of unused zone pages:
+ * Set to 0 to debug poisoning and ZC_ZFREE_CLEARMEM validation under kasan.
+ * Otherwise they are double-duty with what kasan already does.
  */
  */
+#define ZALLOC_ENABLE_POISONING 0
+#define ZONE_ENABLE_LOGGING 0
+#elif DEBUG || DEVELOPMENT
+#define ZALLOC_ENABLE_POISONING 1
+#define ZONE_ENABLE_LOGGING 1
+#else
+#define ZALLOC_ENABLE_POISONING 1
+#define ZONE_ENABLE_LOGGING 0
+#endif
 
 
-struct zone_page_table_entry {
-       struct zone_page_table_entry    *link;
-       short   alloc_count;
-       short   collect_count;
-};
-
-/* Forwards */
-void           zone_page_init(
-                               vm_offset_t     addr,
-                               vm_size_t       size,
-                               int             value);
+#if __LP64__
+#define ZALLOC_EARLY_GAPS 1
+#else
+#define ZALLOC_EARLY_GAPS 0
+#endif
 
 
-void           zone_page_alloc(
-                               vm_offset_t     addr,
-                               vm_size_t       size);
+#if DEBUG
+#define z_debug_assert(expr)  assert(expr)
+#else
+#define z_debug_assert(expr)  (void)(expr)
+#endif
 
 
-void           zone_page_free_element(
-                               struct zone_page_table_entry    **free_pages,
-                               vm_offset_t     addr,
-                               vm_size_t       size);
+extern void vm_pageout_garbage_collect(int collect);
 
 
-void           zone_page_collect(
-                               vm_offset_t     addr,
-                               vm_size_t       size);
+/* Returns pid of the task with the largest number of VM map entries.  */
+extern pid_t find_largest_process_vm_map_entries(void);
 
 
-boolean_t      zone_page_collectable(
-                               vm_offset_t     addr,
-                               vm_size_t       size);
+/*
+ * Callout to jetsam. If pid is -1, we wake up the memorystatus thread to do asynchronous kills.
+ * For any other pid we try to kill that process synchronously.
+ */
+extern boolean_t memorystatus_kill_on_zone_map_exhaustion(pid_t pid);
 
 
-void           zone_page_keep(
-                               vm_offset_t     addr,
-                               vm_size_t       size);
+extern zone_t vm_map_entry_zone;
+extern zone_t vm_object_zone;
 
 
-void           zalloc_async(
-                               thread_call_param_t     p0,  
-                               thread_call_param_t     p1);
+#define ZONE_MIN_ELEM_SIZE      sizeof(uint64_t)
+#define ZONE_MAX_ALLOC_SIZE     (32 * 1024)
 
 
+struct zone_page_metadata {
+       /* The index of the zone this metadata page belongs to */
+       zone_id_t       zm_index : 11;
 
 
-#if    ZONE_DEBUG && MACH_KDB
-int            zone_count(
-                               zone_t          z,
-                               int             tail);
-#endif /* ZONE_DEBUG && MACH_KDB */
+       /* Whether `zm_bitmap` is an inline bitmap or a packed bitmap reference */
+       uint16_t        zm_inline_bitmap : 1;
 
 
-vm_map_t       zone_map = VM_MAP_NULL;
+       /*
+        * Zones allocate in "chunks" of zone_t::z_chunk_pages consecutive
+        * pages, or zpercpu_count() pages if the zone is percpu.
+        *
+        * The first page of it has its metadata set with:
+        * - 0 if none of the pages are currently wired
+        * - the number of wired pages in the chunk (not scaled for percpu).
+        *
+        * Other pages in the chunk have their zm_chunk_len set to
+        * ZM_SECONDARY_PAGE or ZM_SECONDARY_PCPU_PAGE depending on whether
+        * the zone is percpu or not. For those, zm_page_index holds the
+        * index of that page in the run.
+        */
+       uint16_t        zm_chunk_len : 4;
+#define ZM_CHUNK_LEN_MAX        0x8
+#define ZM_SECONDARY_PAGE       0xe
+#define ZM_SECONDARY_PCPU_PAGE  0xf
+
+       union {
+#define ZM_ALLOC_SIZE_LOCK      1u
+               uint16_t zm_alloc_size; /* first page only */
+               uint16_t zm_page_index; /* secondary pages only */
+       };
+       union {
+               uint32_t zm_bitmap;     /* most zones */
+               uint32_t zm_bump;       /* permanent zones */
+       };
+
+       zone_pva_t      zm_page_next;
+       zone_pva_t      zm_page_prev;
+};
+static_assert(sizeof(struct zone_page_metadata) == 16, "validate packing");
 
 
-zone_t         zone_zone = ZONE_NULL;  /* the zone containing other zones */
+__enum_closed_decl(zone_addr_kind_t, bool, {
+       ZONE_ADDR_FOREIGN,
+       ZONE_ADDR_NATIVE,
+});
+#define ZONE_ADDR_KIND_COUNT 2
 
 
-/*
- *     The VM system gives us an initial chunk of memory.
- *     It has to be big enough to allocate the zone_zone
+/*!
+ * @typedef zone_element_t
+ *
+ * @brief
+ * Type that represents a "resolved" zone element.
+ *
+ * @description
+ * This type encodes an element pointer as a tuple of:
+ * { chunk base, element index, element protection }.
+ *
+ * The chunk base is extracted with @c trunc_page()
+ * as it is always page aligned, and occupies the bits above @c PAGE_SHIFT.
+ *
+ * The low two bits encode the protection mode (see @c zprot_mode_t).
+ *
+ * The other bits encode the element index in the chunk rather than its address.
  */
  */
+typedef struct zone_element {
+       vm_offset_t                 ze_value;
+} zone_element_t;
 
 
-vm_offset_t    zdata;
-vm_size_t      zdata_size;
-
-#define lock_zone(zone)                                        \
-MACRO_BEGIN                                            \
-       lck_mtx_lock(&(zone)->lock);                    \
-MACRO_END
+/*!
+ * @typedef zone_magazine_t
+ *
+ * @brief
+ * Magazine of cached allocations.
+ *
+ * @field zm_cur        how many elements this magazine holds (unused while loaded).
+ * @field zm_link       linkage used by magazine depots.
+ * @field zm_elems      an array of @c zc_mag_size() elements.
+ */
+typedef struct zone_magazine {
+       uint16_t                    zm_cur;
+       STAILQ_ENTRY(zone_magazine) zm_link;
+       zone_element_t              zm_elems[0];
+} *zone_magazine_t;
+
+/*!
+ * @typedef zone_cache_t
+ *
+ * @brief
+ * Magazine of cached allocations.
+ *
+ * @discussion
+ * Below is a diagram of the caching system. This design is inspired by the
+ * paper "Magazines and Vmem: Extending the Slab Allocator to Many CPUs and
+ * Arbitrary Resources" by Jeff Bonwick and Jonathan Adams and the FreeBSD UMA
+ * zone allocator (itself derived from this seminal work).
+ *
+ * It is divided into 3 layers:
+ * - the per-cpu layer,
+ * - the recirculation depot layer,
+ * - the Zone Allocator.
+ *
+ * The per-cpu and recirculation depot layer use magazines (@c zone_magazine_t),
+ * which are stacks of up to @c zc_mag_size() elements.
+ *
+ * <h2>CPU layer</h2>
+ *
+ * The CPU layer (@c zone_cache_t) looks like this:
+ *
+ *      â•­â”€ a â”€ f â”€â”¬â”€â”€â”€â”€â”€â”€â”€â”€â”€ zm_depot â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â•®
+ *      â”‚ â•­â”€â•® â•­â”€â•® â”‚ â•­â”€â•® â•­â”€â•® â•­â”€â•® â•­â”€â•® â•­â”€â•®         â”‚
+ *      â”‚ â”‚#│ â”‚#│ â”‚ â”‚#│ â”‚#│ â”‚#│ â”‚#│ â”‚#│         â”‚
+ *      â”‚ â”‚#│ â”‚ â”‚ â”‚ â”‚#│ â”‚#│ â”‚#│ â”‚#│ â”‚#│         â”‚
+ *      â”‚ â”‚ â”‚ â”‚ â”‚ â”‚ â”‚#│ â”‚#│ â”‚#│ â”‚#│ â”‚#│         â”‚
+ *      â”‚ â•°â”€â•¯ â•°â”€â•¯ â”‚ â•°â”€â•¯ â•°â”€â•¯ â•°â”€â•¯ â•°â”€â•¯ â•°â”€â•¯         â”‚
+ *      â•°â”€â”€â”€â”€â”€â”€â”€â”€â”€â”´â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â•¯
+ *
+ * It has two pre-loaded magazines (a)lloc and (f)ree which we allocate from,
+ * or free to. Serialization is achieved through disabling preemption, and only
+ * the current CPU can acces those allocations. This is represented on the left
+ * hand side of the diagram above.
+ *
+ * The right hand side is the per-cpu depot. It consists of @c zm_depot_count
+ * full magazines, and is protected by the @c zm_depot_lock for access.
+ * The lock is expected to absolutely never be contended, as only the local CPU
+ * tends to access the local per-cpu depot in regular operation mode.
+ *
+ * However unlike UMA, our implementation allows for the zone GC to reclaim
+ * per-CPU magazines aggresively, which is serialized with the @c zm_depot_lock.
+ *
+ *
+ * <h2>Recirculation Depot</h2>
+ *
+ * The recirculation depot layer is a list similar to the per-cpu depot,
+ * however it is different in two fundamental ways:
+ *
+ * - it is protected by the regular zone lock,
+ * - elements referenced by the magazines in that layer appear free
+ *   to the zone layer.
+ *
+ *
+ * <h2>Magazine circulation and sizing</h2>
+ *
+ * The caching system sizes itself dynamically. Operations that allocate/free
+ * a single element call @c zone_lock_nopreempt_check_contention() which records
+ * contention on the lock by doing a trylock and recording its success.
+ *
+ * This information is stored in the @c z_contention_cur field of the zone,
+ * and a windoed moving average is maintained in @c z_contention_wma.
+ * Each time a CPU registers any contention, it will also allow its own per-cpu
+ * cache to grow, incrementing @c zc_depot_max, which is how the per-cpu layer
+ * might grow into using its local depot.
+ *
+ * Note that @c zc_depot_max assume that the (a) and (f) pre-loaded magazines
+ * on average contain @c zc_mag_size() elements.
+ *
+ * When a per-cpu layer cannot hold more full magazines in its depot,
+ * then it will overflow about 1/3 of its depot into the recirculation depot
+ * (see @c zfree_cached_slow().  Conversely, when a depot is empty, then it will
+ * refill its per-cpu depot to about 1/3 of its size from the recirculation
+ * depot (see @c zalloc_cached_slow()).
+ *
+ * Lastly, the zone layer keeps track of the high and low watermark of how many
+ * elements have been free per period of time (including being part of the
+ * recirculation depot) in the @c z_elems_free_min and @c z_elems_free_max
+ * fields. A weighted moving average of the amplitude of this is maintained in
+ * the @c z_elems_free_wss which informs the zone GC on how to gently trim
+ * zones without hurting performance.
+ *
+ *
+ * <h2>Security considerations</h2>
+ *
+ * The zone caching layer has been designed to avoid returning elements in
+ * a strict LIFO behavior: @c zalloc() will allocate from the (a) magazine,
+ * and @c zfree() free to the (f) magazine, and only swap them when the
+ * requested operation cannot be fulfilled.
+ *
+ * The per-cpu overflow depot or the recirculation depots are similarly used
+ * in FIFO order.
+ *
+ * More importantly, when magazines flow through the recirculation depot,
+ * the elements they contain are marked as "free" in the zone layer bitmaps.
+ * Because allocations out of per-cpu caches verify the bitmaps at allocation
+ * time, this acts as a poor man's double-free quarantine. The magazines
+ * allow to avoid the cost of the bit-scanning involved in the zone-level
+ * @c zalloc_item() codepath.
+ *
+ *
+ * @field zc_alloc_cur      denormalized number of elements in the (a) magazine
+ * @field zc_free_cur       denormalized number of elements in the (f) magazine
+ * @field zc_alloc_elems    a pointer to the array of elements in (a)
+ * @field zc_free_elems     a pointer to the array of elements in (f)
+ *
+ * @field zc_depot_lock     a lock to access @c zc_depot, @c zc_depot_cur.
+ * @field zc_depot          a list of @c zc_depot_cur full magazines
+ * @field zc_depot_cur      number of magazines in @c zc_depot
+ * @field zc_depot_max      the maximum number of elements in @c zc_depot,
+ *                          protected by the zone lock.
+ */
+typedef struct zone_cache {
+       uint16_t                   zc_alloc_cur;
+       uint16_t                   zc_free_cur;
+       uint16_t                   zc_depot_cur;
+       uint16_t                   __zc_padding;
+       zone_element_t            *zc_alloc_elems;
+       zone_element_t            *zc_free_elems;
+       hw_lock_bit_t              zc_depot_lock;
+       uint32_t                   zc_depot_max;
+       struct zone_depot          zc_depot;
+} *zone_cache_t;
+
+static __security_const_late struct {
+       struct zone_map_range      zi_map_range[ZONE_ADDR_KIND_COUNT];
+       struct zone_map_range      zi_meta_range; /* debugging only */
+       struct zone_map_range      zi_bits_range; /* bits buddy allocator */
 
 
-#define unlock_zone(zone)                              \
-MACRO_BEGIN                                            \
-       lck_mtx_unlock(&(zone)->lock);                  \
-MACRO_END
+       /*
+        * The metadata lives within the zi_meta_range address range.
+        *
+        * The correct formula to find a metadata index is:
+        *     absolute_page_index - page_index(MIN(zi_map_range[*].min_address))
+        *
+        * And then this index is used to dereference zi_meta_range.min_address
+        * as a `struct zone_page_metadata` array.
+        *
+        * To avoid doing that substraction all the time in the various fast-paths,
+        * zi_meta_base are pre-offset with that minimum page index to avoid redoing
+        * that math all the time.
+        *
+        * Do note that the array might have a hole punched in the middle,
+        * see zone_metadata_init().
+        */
+       struct zone_page_metadata *zi_meta_base;
+} zone_info;
 
 
-#define zone_wakeup(zone) thread_wakeup((event_t)(zone))
-#define zone_sleep(zone)                               \
-       (void) lck_mtx_sleep(&(zone)->lock, 0, (event_t)(zone), THREAD_UNINT);
+/*
+ * Initial array of metadata for stolen memory.
+ *
+ * The numbers here have to be kept in sync with vm_map_steal_memory()
+ * so that we have reserved enough metadata.
+ *
+ * After zone_init() has run (which happens while the kernel is still single
+ * threaded), the metadata is moved to its final dynamic location, and
+ * this array is unmapped with the rest of __startup_data at lockdown.
+ */
+#if CONFIG_GZALLOC
+#define ZONE_FOREIGN_META_INLINE_COUNT    20032
+#else
+#define ZONE_FOREIGN_META_INLINE_COUNT    64
+#endif
+__startup_data
+static struct zone_page_metadata
+    zone_foreign_meta_array_startup[ZONE_FOREIGN_META_INLINE_COUNT];
 
 
+/*
+ *     The zone_locks_grp allows for collecting lock statistics.
+ *     All locks are associated to this group in zinit.
+ *     Look at tools/lockstat for debugging lock contention.
+ */
+static LCK_GRP_DECLARE(zone_locks_grp, "zone_locks");
+static LCK_MTX_EARLY_DECLARE(zone_metadata_region_lck, &zone_locks_grp);
 
 
-#define lock_zone_init(zone)                           \
-MACRO_BEGIN                                            \
-       char _name[32];                                 \
-       (void) snprintf(_name, sizeof (_name), "zone.%s", (zone)->zone_name); \
-       lck_grp_attr_setdefault(&(zone)->lock_grp_attr);                \
-       lck_grp_init(&(zone)->lock_grp, _name, &(zone)->lock_grp_attr); \
-       lck_attr_setdefault(&(zone)->lock_attr);                        \
-       lck_mtx_init_ext(&(zone)->lock, &(zone)->lock_ext,              \
-           &(zone)->lock_grp, &(zone)->lock_attr);                     \
-MACRO_END
+/*
+ *     Exclude more than one concurrent garbage collection
+ */
+static LCK_GRP_DECLARE(zone_gc_lck_grp, "zone_gc");
+static LCK_MTX_EARLY_DECLARE(zone_gc_lock, &zone_gc_lck_grp);
 
 
-#define lock_try_zone(zone)    lck_mtx_try_lock(&zone->lock)
+bool panic_include_zprint = FALSE;
+mach_memory_info_t *panic_kext_memory_info = NULL;
+vm_size_t panic_kext_memory_size = 0;
 
 
-kern_return_t          zget_space(
-                               vm_offset_t size,
-                               vm_offset_t *result);
+/*
+ *      Protects zone_array, num_zones, num_zones_in_use, and
+ *      zone_destroyed_bitmap
+ */
+static SIMPLE_LOCK_DECLARE(all_zones_lock, 0);
+static zone_id_t        num_zones_in_use;
+zone_id_t _Atomic       num_zones;
+SECURITY_READ_ONLY_LATE(unsigned int) zone_view_count;
 
 
-decl_simple_lock_data(,zget_space_lock)
-vm_offset_t    zalloc_next_space;
-vm_offset_t    zalloc_end_of_space;
-vm_size_t      zalloc_wasted_space;
+#if KASAN_ZALLOC
+#define MAX_ZONES       566
+#else /* !KASAN_ZALLOC */
+#define MAX_ZONES       402
+#endif/* !KASAN_ZALLOC */
 
 /*
 
 /*
- *     Garbage collection map information
+ * Initial globals for zone stats until we can allocate the real ones.
+ * Those get migrated inside the per-CPU ones during zone_init() and
+ * this array is unmapped with the rest of __startup_data at lockdown.
  */
  */
-struct zone_page_table_entry * zone_page_table;
-vm_offset_t                    zone_map_min_address;
-vm_offset_t                    zone_map_max_address;
-unsigned int                   zone_pages;
 
 
+/* zone to allocate zone_magazine structs from */
+static SECURITY_READ_ONLY_LATE(zone_t) zc_magazine_zone;
 /*
 /*
- *     Exclude more than one concurrent garbage collection
+ * Until pid1 is made, zone caching is off,
+ * until compute_zone_working_set_size() runs for the firt time.
+ *
+ * -1 represents the "never enabled yet" value.
  */
  */
-decl_mutex_data(,              zone_gc_lock)
+static int8_t zone_caching_disabled = -1;
 
 
-#if    !ZONE_ALIAS_ADDR
-#define from_zone_map(addr, size) \
-       ((vm_offset_t)(addr) >= zone_map_min_address && \
-        ((vm_offset_t)(addr) + size -1) <  zone_map_max_address)
-#else
-#define from_zone_map(addr, size) \
-       ((vm_offset_t)(zone_virtual_addr((vm_map_address_t)addr)) >= zone_map_min_address && \
-        ((vm_offset_t)(zone_virtual_addr((vm_map_address_t)addr)) + size -1) <  zone_map_max_address)
-#endif
+__startup_data
+static struct zone_cache zone_cache_startup[MAX_ZONES];
+__startup_data
+static struct zone_stats zone_stats_startup[MAX_ZONES];
+struct zone              zone_array[MAX_ZONES];
 
 
-#define        ZONE_PAGE_USED  0
-#define ZONE_PAGE_UNUSED -1
+/* Initialized in zone_bootstrap(), how many "copies" the per-cpu system does */
+static SECURITY_READ_ONLY_LATE(unsigned) zpercpu_early_count;
 
 
+/* Used to keep track of destroyed slots in the zone_array */
+static bitmap_t zone_destroyed_bitmap[BITMAP_LEN(MAX_ZONES)];
+
+/* number of zone mapped pages used by all zones */
+static long _Atomic zones_phys_page_mapped_count;
 
 /*
 
 /*
- *     Protects first_zone, last_zone, num_zones,
- *     and the next_zone field of zones.
+ * Turn ZSECURITY_OPTIONS_STRICT_IOKIT_FREE off on x86 so as not
+ * not break third party kexts that haven't yet been recompiled
+ * to use the new iokit macros.
  */
  */
-decl_simple_lock_data(,        all_zones_lock)
-zone_t                 first_zone;
-zone_t                 *last_zone;
-unsigned int           num_zones;
+#if XNU_TARGET_OS_OSX && __x86_64__
+#define ZSECURITY_OPTIONS_STRICT_IOKIT_FREE_DEFAULT 0
+#else
+#define ZSECURITY_OPTIONS_STRICT_IOKIT_FREE_DEFAULT \
+  ZSECURITY_OPTIONS_STRICT_IOKIT_FREE
+#endif
 
 
-boolean_t zone_gc_allowed = TRUE;
-boolean_t zone_gc_forced = FALSE;
-boolean_t panic_include_zprint = FALSE;
-unsigned zone_gc_last_tick = 0;
-unsigned zone_gc_max_rate = 0;         /* in ticks */
+#define ZSECURITY_DEFAULT ( \
+               ZSECURITY_OPTIONS_SEQUESTER | \
+               ZSECURITY_OPTIONS_SUBMAP_USER_DATA | \
+               ZSECURITY_OPTIONS_SEQUESTER_KEXT_KALLOC | \
+               ZSECURITY_OPTIONS_STRICT_IOKIT_FREE_DEFAULT | \
+               0)
+TUNABLE(zone_security_options_t, zsecurity_options, "zs", ZSECURITY_DEFAULT);
+
+#if VM_MAX_TAG_ZONES
+/* enable tags for zones that ask for it */
+static TUNABLE(bool, zone_tagging_on, "-zt", false);
+#endif /* VM_MAX_TAG_ZONES */
+
+#if DEBUG || DEVELOPMENT
+TUNABLE(bool, zalloc_disable_copyio_check, "-no-copyio-zalloc-check", false);
+#endif /* DEBUG || DEVELOPMENT */
+#if CONFIG_ZLEAKS
+/* Making pointer scanning leaks detection possible for all zones */
+static TUNABLE(bool, zone_leaks_scan_enable, "-zl", false);
+#else
+#define zone_leaks_scan_enable false
+#endif
 
 
-/*
- * Zone leak debugging code
+/*! @enum zprot_mode_t
  *
  *
- * When enabled, this code keeps a log to track allocations to a particular zone that have not
- * yet been freed.  Examining this log will reveal the source of a zone leak.  The log is allocated
- * only when logging is enabled, so there is no effect on the system when it's turned off.  Logging is
- * off by default.
+ * @brief
+ * Zone element corruption detection mode.
  *
  *
- * Enable the logging via the boot-args. Add the parameter "zlog=<zone>" to boot-args where <zone>
- * is the name of the zone you wish to log.  
+ * @discussion
+ * We use four techniques to detect modification of a zone element
+ * after it's been freed.
  *
  *
- * This code only tracks one zone, so you need to identify which one is leaking first.
- * Generally, you'll know you have a leak when you get a "zalloc retry failed 3" panic from the zone
- * garbage collector.  Note that the zone name printed in the panic message is not necessarily the one
- * containing the leak.  So do a zprint from gdb and locate the zone with the bloated size.  This
- * is most likely the problem zone, so set zlog in boot-args to this zone name, reboot and re-run the test.  The
- * next time it panics with this message, examine the log using the kgmacros zstack, findoldest and countpcs.
- * See the help in the kgmacros for usage info.
+ * Elements that are in zones can be in 3 possible states:
+ * - zeroed out (@c ZPM_ZERO)
+ * - poisoned (@c ZPM_POISON) with the @c ZONE_POISON pattern
+ * - with a left and right canary (@c ZPM_CANARY).
  *
  *
+ * @c ZPM_AUTO is used when the actual protection for the element is unknown,
+ * and will be detected looking at the last word of the allocation at validation
+ * time.
  *
  *
- * Zone corruption logging
+ * The mode of an element in zones is discovered by looking at its last
+ * pointer-sized value:
+ * - 0 means that it is zeroed out
+ * - @c ZONE_POISON means it is poisoned
+ * - any other value means it is using canaries.
  *
  *
- * Logging can also be used to help identify the source of a zone corruption.  First, identify the zone
- * that is being corrupted, then add "-zc zlog=<zone name>" to the boot-args.  When -zc is used in conjunction
- * with zlog, it changes the logging style to track both allocations and frees to the zone.  So when the
- * corruption is detected, examining the log will show you the stack traces of the callers who last allocated
- * and freed any particular element in the zone.  Use the findelem kgmacro with the address of the element that's been
- * corrupted to examine its history.  This should lead to the source of the corruption.
+ * Elements are zeroed if:
+ * - the element size is smaller than @c zp_min_size,
+ * - the owning zone has the @c z_free_zeroes flag set,
+ * - the chunk backing store is fresh (and was just allocated).
+ *
+ * Elements are poisoned periodically for every N frees (counted per-zone),
+ * if the elements aren't otherwise zeroed out.
+ * If -zp is passed as a boot arg, poisoning occurs for every free.
+ *
+ * Else elements use canaries. When canaries are used, the first and last
+ * pointer sized values in the allocation are set to values derived from the
+ * element address and the @c zp_canary nonce. The first @c zp_min_size
+ * bytes of the elment are also cleared.
+ *
+ * Performance slowdown is inversely proportional to the frequency of poisoning,
+ * with a 4-5% hit around N=1, down to ~0.3% at N=16 and just "noise" at N=32
+ * and higher. You can expect to find a 100% reproducible bug in an average of
+ * N tries, with a standard deviation of about N, but you will want to set
+ * "-zp" to always poison every free if you are attempting to reproduce
+ * a known bug.
+ *
+ * For a more heavyweight, but finer-grained method of detecting misuse
+ * of zone memory, look up the "Guard mode" zone allocator in gzalloc.c.
  */
  */
+__enum_closed_decl(zprot_mode_t, vm_offset_t, {
+       ZPM_AUTO,       /* element is indeterminate          */
+       ZPM_ZERO,       /* element is zeroed                 */
+       ZPM_POISON,     /* element is poisoned               */
+       ZPM_CANARY,     /* element extremities have a canary */
+});
+#define ZPM_MASK ((zprot_mode_t)0x3)
 
 
-static int log_records;        /* size of the log, expressed in number of records */
-
-#define MAX_ZONE_NAME  32      /* max length of a zone name we can take from the boot-args */
-
-static char zone_name_to_log[MAX_ZONE_NAME] = "";      /* the zone name we're logging, if any */
 
 /*
 
 /*
- * The number of records in the log is configurable via the zrecs parameter in boot-args.  Set this to 
- * the number of records you want in the log.  For example, "zrecs=1000" sets it to 1000 records.  Note
- * that the larger the size of the log, the slower the system will run due to linear searching in the log,
- * but one doesn't generally care about performance when tracking down a leak.  The log is capped at 8000
- * records since going much larger than this tends to make the system unresponsive and unbootable on small
- * memory configurations.  The default value is 4000 records.
+ * set by zp-factor=N boot arg
  *
  *
- * MAX_DEPTH configures how deep of a stack trace is taken on each zalloc in the zone of interrest.  15
- * levels is usually enough to get past all the layers of code in kalloc and IOKit and see who the actual
- * caller is up above these lower levels.
+ * A zp_factor of 0 indicates zone poisoning is disabled and can also be set by
+ * passing the -no-zp boot-arg.
+ *
+ * A zp_factor of 1 indicates zone poisoning is on for all elements and can be
+ * set by passing the -zp boot-arg.
  */
  */
+static TUNABLE(uint32_t, zp_factor, "zp-factor", 16);
 
 
-#define ZRECORDS_MAX           8000            /* Max records allowed in the log */
-#define ZRECORDS_DEFAULT       4000            /* default records in log if zrecs is not specificed in boot-args */
-#define MAX_DEPTH              15              /* number of levels of the stack trace to record */
+/* set by zp-scale=N boot arg, scales zp_factor by zone size */
+static TUNABLE(uint32_t, zp_scale, "zp-scale", 4);
 
 /*
 
 /*
- * Each record in the log contains a pointer to the zone element it refers to, a "time" number that allows
- * the records to be ordered chronologically, and a small array to hold the pc's from the stack trace.  A
- * record is added to the log each time a zalloc() is done in the zone_of_interest.  For leak debugging,
- * the record is cleared when a zfree() is done.  For corruption debugging, the log tracks both allocs and frees.
- * If the log fills, old records are replaced as if it were a circular buffer.
+ * Zone caching tunables
+ *
+ * zc_mag_size():
+ *   size of magazines, larger to reduce contention at the expense of memory
+ *
+ * zc_auto_enable_threshold
+ *   number of contentions per second after which zone caching engages
+ *   automatically.
+ *
+ *   0 to disable.
+ *
+ * zc_grow_threshold
+ *   numer of contentions per second after which the per-cpu depot layer
+ *   grows at each newly observed contention without restriction.
+ *
+ *   0 to disable.
+ *
+ * zc_recirc_denom
+ *   denominator of the fraction of per-cpu depot to migrate to/from
+ *   the recirculation depot layer at a time. Default 3 (1/3).
+ *
+ * zc_defrag_ratio
+ *   percentage of the working set to recirc size below which
+ *   the zone is defragmented. Default is 50%.
+ *
+ * zc_free_batch_size
+ *   The size of batches of frees/reclaim that can be done keeping
+ *   the zone lock held (and preemption disabled).
  */
  */
-
-struct zrecord {
-        void           *z_element;             /* the element that was zalloc'ed of zfree'ed */
-        uint32_t       z_opcode:1,             /* whether it was a zalloc or zfree */
-                       z_time:31;              /* time index when operation was done */
-        void           *z_pc[MAX_DEPTH];       /* stack trace of caller */
-};
-
+static TUNABLE(uint16_t, zc_magazine_size, "zc_mag_size()", 8);
+static TUNABLE(uint32_t, zc_auto_threshold, "zc_auto_enable_threshold", 20);
+static TUNABLE(uint32_t, zc_grow_threshold, "zc_grow_threshold", 8);
+static TUNABLE(uint32_t, zc_recirc_denom, "zc_recirc_denom", 3);
+static TUNABLE(uint32_t, zc_defrag_ratio, "zc_defrag_ratio", 50);
+static TUNABLE(uint32_t, zc_free_batch_size, "zc_free_batch_size", 1024);
+
+static SECURITY_READ_ONLY_LATE(uintptr_t) zp_canary;
 /*
 /*
- * Opcodes for the z_opcode field:
+ * Perf results for zeroing all non data zones and 2K of data zones
+ * showed little regression, therefore setting zp_min_size to 2048
  */
  */
+static TUNABLE(uint32_t, zp_min_size, "zclear_size", 2048);
+static SECURITY_READ_ONLY_LATE(uint32_t)  zone_phys_mapped_max_pages;
+static SECURITY_READ_ONLY_LATE(vm_map_t)  zone_submaps[Z_SUBMAP_IDX_COUNT];
+static SECURITY_READ_ONLY_LATE(uint32_t)  zone_last_submap_idx;
 
 
-#define ZOP_ALLOC      1
-#define ZOP_FREE       0
-
-/*
- * The allocation log and all the related variables are protected by the zone lock for the zone_of_interest
- */
+static zone_t zone_find_largest(void);
 
 
-static struct zrecord *zrecords;               /* the log itself, dynamically allocated when logging is enabled  */
-static int zcurrent  = 0;                      /* index of the next slot in the log to use */
-static int zrecorded = 0;                      /* number of allocations recorded in the log */
-static unsigned int ztime = 0;                 /* a timestamp of sorts */
-static zone_t  zone_of_interest = NULL;                /* the zone being watched; corresponds to zone_name_to_log */
+#endif /* !ZALLOC_TEST */
+#pragma mark Zone metadata
+#if !ZALLOC_TEST
 
 
-/*
- * Decide if we want to log this zone by doing a string compare between a zone name and the name
- * of the zone to log. Return true if the strings are equal, false otherwise.  Because it's not
- * possible to include spaces in strings passed in via the boot-args, a period in the logname will
- * match a space in the zone name.
- */
+static inline zone_id_t
+zone_index(zone_t z)
+{
+       return (zone_id_t)(z - zone_array);
+}
 
 
-static int
-log_this_zone(const char *zonename, const char *logname) 
+static inline bool
+zone_has_index(zone_t z, zone_id_t zid)
 {
 {
-       int len;
-       const char *zc = zonename;
-       const char *lc = logname;
+       return zone_array + zid == z;
+}
 
 
-       /*
-        * Compare the strings.  We bound the compare by MAX_ZONE_NAME.
-        */
+static zone_element_t
+zone_element_encode(vm_offset_t base, vm_offset_t eidx, zprot_mode_t zpm)
+{
+       return (zone_element_t){ .ze_value = base | (eidx << 2) | zpm };
+}
 
 
-       for (len = 1; len <= MAX_ZONE_NAME; zc++, lc++, len++) {
+static vm_offset_t
+zone_element_base(zone_element_t ze)
+{
+       return trunc_page(ze.ze_value);
+}
 
 
-               /*
-                * If the current characters don't match, check for a space in
-                * in the zone name and a corresponding period in the log name.
-                * If that's not there, then the strings don't match.
-                */
+static vm_offset_t
+zone_element_idx(zone_element_t ze)
+{
+       return (ze.ze_value & PAGE_MASK) >> 2;
+}
 
 
-               if (*zc != *lc && !(*zc == ' ' && *lc == '.')) 
-                       break;
+#if ZALLOC_ENABLE_POISONING
+static zprot_mode_t
+zone_element_prot(zone_element_t ze)
+{
+       return (zprot_mode_t)(ze.ze_value & ZPM_MASK);
+}
+#endif
 
 
-               /*
-                * The strings are equal so far.  If we're at the end, then it's a match.
-                */
+static vm_offset_t
+zone_element_addr(zone_element_t ze, vm_offset_t esize)
+{
+       return zone_element_base(ze) + esize * zone_element_idx(ze);
+}
 
 
-               if (*zc == '\0')
-                       return TRUE;
-       }
+__abortlike
+static void
+zone_metadata_corruption(zone_t zone, struct zone_page_metadata *meta,
+    const char *kind)
+{
+       panic("zone metadata corruption: %s (meta %p, zone %s%s)",
+           kind, meta, zone_heap_name(zone), zone->z_name);
+}
 
 
-       return FALSE;
+__abortlike
+static void
+zone_invalid_element_addr_panic(zone_t zone, vm_offset_t addr)
+{
+       panic("zone element pointer validation failed (addr: %p, zone %s%s)",
+           (void *)addr, zone_heap_name(zone), zone->z_name);
 }
 
 }
 
+__abortlike
+static void
+zone_invalid_element_panic(zone_t zone, zone_element_t ze)
+{
+       panic("zone element pointer validation failed (elem: %p,%d, zone %s%s)",
+           (void *)zone_element_base(ze), (int)zone_element_idx(ze),
+           zone_heap_name(zone), zone->z_name);
+}
 
 
-/*
- * Test if we want to log this zalloc/zfree event.  We log if this is the zone we're interested in and
- * the buffer for the records has been allocated.
- */
+__abortlike
+static void
+zone_page_metadata_index_confusion_panic(zone_t zone, vm_offset_t addr,
+    struct zone_page_metadata *meta)
+{
+       panic("%p not in the expected zone %s%s (%d != %d)",
+           (void *)addr, zone_heap_name(zone), zone->z_name,
+           meta->zm_index, zone_index(zone));
+}
 
 
-#define DO_LOGGING(z)          (zrecords && (z) == zone_of_interest)
+__abortlike
+static void
+zone_page_metadata_native_queue_corruption(zone_t zone, zone_pva_t *queue)
+{
+       panic("foreign metadata index %d enqueued in native head %p from zone %s%s",
+           queue->packed_address, queue, zone_heap_name(zone),
+           zone->z_name);
+}
 
 
-extern boolean_t zlog_ready;
+__abortlike
+static void
+zone_page_metadata_list_corruption(zone_t zone, struct zone_page_metadata *meta)
+{
+       panic("metadata list corruption through element %p detected in zone %s%s",
+           meta, zone_heap_name(zone), zone->z_name);
+}
 
 
-       
-/*
- *     zinit initializes a new zone.  The zone data structures themselves
- *     are stored in a zone, which is initially a static structure that
- *     is initialized by zone_init.
- */
-zone_t
-zinit(
-       vm_size_t       size,           /* the size of an element */
-       vm_size_t       max,            /* maximum memory to use */
-       vm_size_t       alloc,          /* allocation size */
-       const char      *name)          /* a name for the zone */
-{
-       zone_t          z;
-
-       if (zone_zone == ZONE_NULL) {
-               if (zget_space(sizeof(struct zone), (vm_offset_t *)&z)
-                   != KERN_SUCCESS)
-                       return(ZONE_NULL);
-       } else
-               z = (zone_t) zalloc(zone_zone);
-       if (z == ZONE_NULL)
-               return(ZONE_NULL);
-
-       /*
-        *      Round off all the parameters appropriately.
-        */
-       if (size < sizeof(z->free_elements))
-               size = sizeof(z->free_elements);
-       size = ((size-1)  + sizeof(z->free_elements)) -
-               ((size-1) % sizeof(z->free_elements));
-       if (alloc == 0)
-               alloc = PAGE_SIZE;
-       alloc = round_page(alloc);
-       max   = round_page(max);
-       /*
-        * we look for an allocation size with less than 1% waste
-        * up to 5 pages in size...
-        * otherwise, we look for an allocation size with least fragmentation
-        * in the range of 1 - 5 pages
-        * This size will be used unless
-        * the user suggestion is larger AND has less fragmentation
-        */
-#if    ZONE_ALIAS_ADDR
-       if ((size < PAGE_SIZE) && (PAGE_SIZE % size <= PAGE_SIZE / 10))
-               alloc = PAGE_SIZE;
-       else
-#endif
-       {       vm_size_t best, waste; unsigned int i;
-               best  = PAGE_SIZE;
-               waste = best % size;
+__abortlike __unused
+static void
+zone_invalid_foreign_addr_panic(zone_t zone, vm_offset_t addr)
+{
+       panic("addr %p being freed to foreign zone %s%s not from foreign range",
+           (void *)addr, zone_heap_name(zone), zone->z_name);
+}
 
 
-               for (i = 1; i <= 5; i++) {
-                       vm_size_t tsize, twaste;
+__abortlike
+static void
+zone_page_meta_accounting_panic(zone_t zone, struct zone_page_metadata *meta,
+    const char *kind)
+{
+       panic("accounting mismatch (%s) for zone %s%s, meta %p", kind,
+           zone_heap_name(zone), zone->z_name, meta);
+}
 
 
-                       tsize = i * PAGE_SIZE;
+__abortlike
+static void
+zone_meta_double_free_panic(zone_t zone, zone_element_t ze, const char *caller)
+{
+       panic("%s: double free of %p to zone %s%s", caller,
+           (void *)zone_element_addr(ze, zone_elem_size(zone)),
+           zone_heap_name(zone), zone->z_name);
+}
 
 
-                       if ((tsize % size) < (tsize / 100)) {
-                               alloc = tsize;
-                               goto use_this_allocation;
-                       }
-                       twaste = tsize % size;
-                       if (twaste < waste)
-                               best = tsize, waste = twaste;
-               }
-               if (alloc <= best || (alloc % size >= waste))
-                       alloc = best;
-       }
-use_this_allocation:
-       if (max && (max < alloc))
-               max = alloc;
-
-       z->free_elements = 0;
-       z->cur_size = 0;
-       z->max_size = max;
-       z->elem_size = size;
-       z->alloc_size = alloc;
-       z->zone_name = name;
-       z->count = 0;
-       z->doing_alloc = FALSE;
-       z->doing_gc = FALSE;
-       z->exhaustible = FALSE;
-       z->collectable = TRUE;
-       z->allows_foreign = FALSE;
-       z->expandable  = TRUE;
-       z->waiting = FALSE;
-       z->async_pending = FALSE;
-
-#if    ZONE_DEBUG
-       z->active_zones.next = z->active_zones.prev = NULL;     
-       zone_debug_enable(z);
-#endif /* ZONE_DEBUG */
-       lock_zone_init(z);
-
-       /*
-        *      Add the zone to the all-zones list.
-        */
-
-       z->next_zone = ZONE_NULL;
-       thread_call_setup(&z->call_async_alloc, zalloc_async, z);
-       simple_lock(&all_zones_lock);
-       *last_zone = z;
-       last_zone = &z->next_zone;
-       num_zones++;
-       simple_unlock(&all_zones_lock);
+__abortlike
+static void
+zone_accounting_panic(zone_t zone, const char *kind)
+{
+       panic("accounting mismatch (%s) for zone %s%s", kind,
+           zone_heap_name(zone), zone->z_name);
+}
 
 
-       /*
-        * Check if we should be logging this zone.  If so, remember the zone pointer.
-        */
+#define zone_counter_sub(z, stat, value)  ({ \
+       if (os_sub_overflow((z)->stat, value, &(z)->stat)) { \
+           zone_accounting_panic(z, #stat " wrap-around"); \
+       } \
+       (z)->stat; \
+})
 
 
-        if (log_this_zone(z->zone_name, zone_name_to_log)) {
-               zone_of_interest = z;
+static inline void
+zone_elems_free_add(zone_t z, uint32_t count)
+{
+       uint32_t n = (z->z_elems_free += count);
+       if (z->z_elems_free_max < n) {
+               z->z_elems_free_max = n;
        }
        }
+}
 
 
-       /*
-        * If we want to log a zone, see if we need to allocate buffer space for the log.  Some vm related zones are
-        * zinit'ed before we can do a kmem_alloc, so we have to defer allocation in that case.  zlog_ready is set to
-        * TRUE once enough of the VM system is up and running to allow a kmem_alloc to work.  If we want to log one
-        * of the VM related zones that's set up early on, we will skip allocation of the log until zinit is called again
-        * later on some other zone.  So note we may be allocating a buffer to log a zone other than the one being initialized
-        * right now.
-        */
-
-       if (zone_of_interest != NULL && zrecords == NULL && zlog_ready) {
-               if (kmem_alloc(kernel_map, (vm_offset_t *)&zrecords, log_records * sizeof(struct zrecord)) == KERN_SUCCESS) {
+static inline void
+zone_elems_free_sub(zone_t z, uint32_t count)
+{
+       uint32_t n = zone_counter_sub(z, z_elems_free, count);
 
 
-                       /*
-                        * We got the memory for the log.  Zero it out since the code needs this to identify unused records.
-                        * At this point, everything is set up and we're ready to start logging this zone.
-                        */
-       
-                       bzero((void *)zrecords, log_records * sizeof(struct zrecord));
-                       printf("zone: logging started for zone %s (%p)\n", zone_of_interest->zone_name, zone_of_interest);
+       if (z->z_elems_free_min > n) {
+               z->z_elems_free_min = n;
+       }
+}
 
 
-               } else {
-                       printf("zone: couldn't allocate memory for zrecords, turning off zleak logging\n");
-                       zone_of_interest = NULL;
-               }
+static inline uint16_t
+zone_meta_alloc_size_add(zone_t z, struct zone_page_metadata *m,
+    vm_offset_t esize)
+{
+       if (os_add_overflow(m->zm_alloc_size, (uint16_t)esize, &m->zm_alloc_size)) {
+               zone_page_meta_accounting_panic(z, m, "alloc_size wrap-around");
        }
        }
+       return m->zm_alloc_size;
+}
 
 
-       return(z);
+static inline uint16_t
+zone_meta_alloc_size_sub(zone_t z, struct zone_page_metadata *m,
+    vm_offset_t esize)
+{
+       if (os_sub_overflow(m->zm_alloc_size, esize, &m->zm_alloc_size)) {
+               zone_page_meta_accounting_panic(z, m, "alloc_size wrap-around");
+       }
+       return m->zm_alloc_size;
 }
 
 }
 
-/*
- *     Cram the given memory into the specified zone.
- */
-void
-zcram(
-       register zone_t         zone,
-       void                    *newaddr,
-       vm_size_t               size)
+__abortlike
+static void
+zone_nofail_panic(zone_t zone)
 {
 {
-       register vm_size_t      elem_size;
-       vm_offset_t             newmem = (vm_offset_t) newaddr;
+       panic("zalloc(Z_NOFAIL) can't be satisfied for zone %s%s (potential leak)",
+           zone_heap_name(zone), zone->z_name);
+}
 
 
-       /* Basic sanity checks */
-       assert(zone != ZONE_NULL && newmem != (vm_offset_t)0);
-       assert(!zone->collectable || zone->allows_foreign
-               || (from_zone_map(newmem, size)));
+#if __arm64__
+// <rdar://problem/48304934> arm64 doesn't use ldp when I'd expect it to
+#define zone_range_load(r, rmin, rmax) \
+       asm("ldp %[rmin], %[rmax], [%[range]]" \
+           : [rmin] "=r"(rmin), [rmax] "=r"(rmax) \
+           : [range] "r"(r))
+#else
+#define zone_range_load(r, rmin, rmax) \
+       ({ rmin = (r)->min_address; rmax = (r)->max_address; })
+#endif
 
 
-       elem_size = zone->elem_size;
+__header_always_inline bool
+zone_range_contains(const struct zone_map_range *r, vm_offset_t addr, vm_offset_t size)
+{
+       vm_offset_t rmin, rmax;
 
 
-       lock_zone(zone);
-       while (size >= elem_size) {
-               ADD_TO_ZONE(zone, newmem);
-               if (from_zone_map(newmem, elem_size))
-                       zone_page_alloc(newmem, elem_size);
-               zone->count++;  /* compensate for ADD_TO_ZONE */
-               size -= elem_size;
-               newmem += elem_size;
-               zone->cur_size += elem_size;
-       }
-       unlock_zone(zone);
+       /*
+        * The `&` is not a typo: we really expect the check to pass,
+        * so encourage the compiler to eagerly load and test without branches
+        */
+       zone_range_load(r, rmin, rmax);
+       return (addr >= rmin) & (addr + size >= rmin) & (addr + size <= rmax);
 }
 
 }
 
-/*
- * Contiguous space allocator for non-paged zones. Allocates "size" amount
- * of memory from zone_map.
- */
-
-kern_return_t
-zget_space(
-       vm_offset_t size,
-       vm_offset_t *result)
+__header_always_inline vm_size_t
+zone_range_size(const struct zone_map_range *r)
 {
 {
-       vm_offset_t     new_space = 0;
-       vm_size_t       space_to_add = 0;
+       vm_offset_t rmin, rmax;
 
 
-       simple_lock(&zget_space_lock);
-       while ((zalloc_next_space + size) > zalloc_end_of_space) {
-               /*
-                *      Add at least one page to allocation area.
-                */
+       zone_range_load(r, rmin, rmax);
+       return rmax - rmin;
+}
 
 
-               space_to_add = round_page(size);
+#define from_zone_map(addr, size, kind) \
+       zone_range_contains(&zone_info.zi_map_range[kind], \
+           (vm_offset_t)(addr), size)
 
 
-               if (new_space == 0) {
-                       kern_return_t retval;
-                       /*
-                        *      Memory cannot be wired down while holding
-                        *      any locks that the pageout daemon might
-                        *      need to free up pages.  [Making the zget_space
-                        *      lock a complex lock does not help in this
-                        *      regard.]
-                        *
-                        *      Unlock and allocate memory.  Because several
-                        *      threads might try to do this at once, don't
-                        *      use the memory before checking for available
-                        *      space again.
-                        */
+#define zone_native_size() \
+       zone_range_size(&zone_info.zi_map_range[ZONE_ADDR_NATIVE])
 
 
-                       simple_unlock(&zget_space_lock);
+#define zone_foreign_size() \
+       zone_range_size(&zone_info.zi_map_range[ZONE_ADDR_FOREIGN])
 
 
-                       retval = kernel_memory_allocate(zone_map, &new_space,
-                               space_to_add, 0, KMA_KOBJECT|KMA_NOPAGEWAIT);
-                       if (retval != KERN_SUCCESS)
-                               return(retval);
-#if    ZONE_ALIAS_ADDR
-                       if (space_to_add == PAGE_SIZE)
-                               new_space = zone_alias_addr(new_space);
-#endif
-                       zone_page_init(new_space, space_to_add,
-                                                       ZONE_PAGE_USED);
-                       simple_lock(&zget_space_lock);
-                       continue;
-               }
+__header_always_inline bool
+zone_pva_is_null(zone_pva_t page)
+{
+       return page.packed_address == 0;
+}
 
 
-               
-               /*
-                *      Memory was allocated in a previous iteration.
-                *
-                *      Check whether the new region is contiguous
-                *      with the old one.
-                */
+__header_always_inline bool
+zone_pva_is_queue(zone_pva_t page)
+{
+       // actual kernel pages have the top bit set
+       return (int32_t)page.packed_address > 0;
+}
 
 
-               if (new_space != zalloc_end_of_space) {
-                       /*
-                        *      Throw away the remainder of the
-                        *      old space, and start a new one.
-                        */
-                       zalloc_wasted_space +=
-                               zalloc_end_of_space - zalloc_next_space;
-                       zalloc_next_space = new_space;
-               }
+__header_always_inline bool
+zone_pva_is_equal(zone_pva_t pva1, zone_pva_t pva2)
+{
+       return pva1.packed_address == pva2.packed_address;
+}
 
 
-               zalloc_end_of_space = new_space + space_to_add;
+__header_always_inline void
+zone_queue_set_head(zone_t z, zone_pva_t queue, zone_pva_t oldv,
+    struct zone_page_metadata *meta)
+{
+       zone_pva_t *queue_head = &((zone_pva_t *)zone_array)[queue.packed_address];
 
 
-               new_space = 0;
+       if (!zone_pva_is_equal(*queue_head, oldv)) {
+               zone_page_metadata_list_corruption(z, meta);
        }
        }
-       *result = zalloc_next_space;
-       zalloc_next_space += size;              
-       simple_unlock(&zget_space_lock);
+       *queue_head = meta->zm_page_next;
+}
 
 
-       if (new_space != 0)
-               kmem_free(zone_map, new_space, space_to_add);
+__header_always_inline zone_pva_t
+zone_queue_encode(zone_pva_t *headp)
+{
+       return (zone_pva_t){ (uint32_t)(headp - (zone_pva_t *)zone_array) };
+}
 
 
-       return(KERN_SUCCESS);
+__header_always_inline zone_pva_t
+zone_pva_from_addr(vm_address_t addr)
+{
+       // cannot use atop() because we want to maintain the sign bit
+       return (zone_pva_t){ (uint32_t)((intptr_t)addr >> PAGE_SHIFT) };
 }
 
 }
 
+__header_always_inline zone_pva_t
+zone_pva_from_element(zone_element_t ze)
+{
+       return zone_pva_from_addr(ze.ze_value);
+}
 
 
-/*
- *     Steal memory for the zone package.  Called from
- *     vm_page_bootstrap().
- */
-void
-zone_steal_memory(void)
+__header_always_inline vm_address_t
+zone_pva_to_addr(zone_pva_t page)
 {
 {
-       zdata_size = round_page(128*sizeof(struct zone));
-       zdata = (vm_offset_t)((char *)pmap_steal_memory(zdata_size) - (char *)0);
+       // cause sign extension so that we end up with the right address
+       return (vm_offset_t)(int32_t)page.packed_address << PAGE_SHIFT;
 }
 
 }
 
+__header_always_inline struct zone_page_metadata *
+zone_pva_to_meta(zone_pva_t page)
+{
+       return &zone_info.zi_meta_base[page.packed_address];
+}
 
 
-/*
- * Fill a zone with enough memory to contain at least nelem elements.
- * Memory is obtained with kmem_alloc_wired from the kernel_map.
- * Return the number of elements actually put into the zone, which may
- * be more than the caller asked for since the memory allocation is
- * rounded up to a full page.
- */
-int
-zfill(
-       zone_t  zone,
-       int     nelem)
+__header_always_inline zone_pva_t
+zone_pva_from_meta(struct zone_page_metadata *meta)
 {
 {
-       kern_return_t   kr;
-       vm_size_t       size;
-       vm_offset_t     memory;
-       int             nalloc;
+       return (zone_pva_t){ (uint32_t)(meta - zone_info.zi_meta_base) };
+}
 
 
-       assert(nelem > 0);
-       if (nelem <= 0)
-               return 0;
-       size = nelem * zone->elem_size;
-       size = round_page(size);
-       kr = kmem_alloc_wired(kernel_map, &memory, size);
-       if (kr != KERN_SUCCESS)
-               return 0;
+__header_always_inline struct zone_page_metadata *
+zone_meta_from_addr(vm_offset_t addr)
+{
+       return zone_pva_to_meta(zone_pva_from_addr(addr));
+}
 
 
-       zone_change(zone, Z_FOREIGN, TRUE);
-       zcram(zone, (void *)memory, size);
-       nalloc = size / zone->elem_size;
-       assert(nalloc >= nelem);
+__header_always_inline struct zone_page_metadata *
+zone_meta_from_element(zone_element_t ze)
+{
+       return zone_pva_to_meta(zone_pva_from_element(ze));
+}
 
 
-       return nalloc;
+__header_always_inline zone_id_t
+zone_index_from_ptr(const void *ptr)
+{
+       return zone_pva_to_meta(zone_pva_from_addr((vm_offset_t)ptr))->zm_index;
 }
 
 }
 
-/*
- *     Initialize the "zone of zones" which uses fixed memory allocated
- *     earlier in memory initialization.  zone_bootstrap is called
- *     before zone_init.
- */
-void
-zone_bootstrap(void)
+__header_always_inline vm_offset_t
+zone_meta_to_addr(struct zone_page_metadata *meta)
 {
 {
-       vm_size_t zone_zone_size;
-       vm_offset_t zone_zone_space;
-       char temp_buf[16];
+       return ptoa((int32_t)(meta - zone_info.zi_meta_base));
+}
 
 
-       /* see if we want freed zone element checking and/or poisoning */
-       if (PE_parse_boot_argn("-zc", temp_buf, sizeof (temp_buf))) {
-               check_freed_element = TRUE;
+__header_always_inline void
+zone_meta_queue_push(zone_t z, zone_pva_t *headp,
+    struct zone_page_metadata *meta)
+{
+       zone_pva_t head = *headp;
+       zone_pva_t queue_pva = zone_queue_encode(headp);
+       struct zone_page_metadata *tmp;
+
+       meta->zm_page_next = head;
+       if (!zone_pva_is_null(head)) {
+               tmp = zone_pva_to_meta(head);
+               if (!zone_pva_is_equal(tmp->zm_page_prev, queue_pva)) {
+                       zone_page_metadata_list_corruption(z, meta);
+               }
+               tmp->zm_page_prev = zone_pva_from_meta(meta);
        }
        }
+       meta->zm_page_prev = queue_pva;
+       *headp = zone_pva_from_meta(meta);
+}
 
 
-       if (PE_parse_boot_argn("-zp", temp_buf, sizeof (temp_buf))) {
-               zfree_clear = TRUE;
+__header_always_inline struct zone_page_metadata *
+zone_meta_queue_pop_native(zone_t z, zone_pva_t *headp, vm_offset_t *page_addrp)
+{
+       zone_pva_t head = *headp;
+       struct zone_page_metadata *meta = zone_pva_to_meta(head);
+       vm_offset_t page_addr = zone_pva_to_addr(head);
+       struct zone_page_metadata *tmp;
+
+       if (!from_zone_map(page_addr, 1, ZONE_ADDR_NATIVE)) {
+               zone_page_metadata_native_queue_corruption(z, headp);
        }
 
        }
 
-       /*
-        * Check for and set up zone leak detection if requested via boot-args.  We recognized two
-        * boot-args:
-        *
-        *      zlog=<zone_to_log>
-        *      zrecs=<num_records_in_log>
-        *
-        * The zlog arg is used to specify the zone name that should be logged, and zrecs is used to
-        * control the size of the log.  If zrecs is not specified, a default value is used.
-        */
+       if (!zone_pva_is_null(meta->zm_page_next)) {
+               tmp = zone_pva_to_meta(meta->zm_page_next);
+               if (!zone_pva_is_equal(tmp->zm_page_prev, head)) {
+                       zone_page_metadata_list_corruption(z, meta);
+               }
+               tmp->zm_page_prev = meta->zm_page_prev;
+       }
+       *headp = meta->zm_page_next;
 
 
-       if (PE_parse_boot_argn("zlog", zone_name_to_log, sizeof(zone_name_to_log)) == TRUE) {
-               if (PE_parse_boot_argn("zrecs", &log_records, sizeof(log_records)) == TRUE) {
+       meta->zm_page_next = meta->zm_page_prev = (zone_pva_t){ 0 };
+       *page_addrp = page_addr;
 
 
-                       /*
-                        * Don't allow more than ZRECORDS_MAX records even if the user asked for more.
-                        * This prevents accidentally hogging too much kernel memory and making the system
-                        * unusable.
-                        */
+       if (!zone_has_index(z, meta->zm_index)) {
+               zone_page_metadata_index_confusion_panic(z,
+                   zone_meta_to_addr(meta), meta);
+       }
+       return meta;
+}
 
 
-                       log_records = MIN(ZRECORDS_MAX, log_records);
+__header_always_inline void
+zone_meta_remqueue(zone_t z, struct zone_page_metadata *meta)
+{
+       zone_pva_t meta_pva = zone_pva_from_meta(meta);
+       struct zone_page_metadata *tmp;
 
 
-               } else {
-                       log_records = ZRECORDS_DEFAULT;
+       if (!zone_pva_is_null(meta->zm_page_next)) {
+               tmp = zone_pva_to_meta(meta->zm_page_next);
+               if (!zone_pva_is_equal(tmp->zm_page_prev, meta_pva)) {
+                       zone_page_metadata_list_corruption(z, meta);
+               }
+               tmp->zm_page_prev = meta->zm_page_prev;
+       }
+       if (zone_pva_is_queue(meta->zm_page_prev)) {
+               zone_queue_set_head(z, meta->zm_page_prev, meta_pva, meta);
+       } else {
+               tmp = zone_pva_to_meta(meta->zm_page_prev);
+               if (!zone_pva_is_equal(tmp->zm_page_next, meta_pva)) {
+                       zone_page_metadata_list_corruption(z, meta);
                }
                }
+               tmp->zm_page_next = meta->zm_page_next;
        }
 
        }
 
-       simple_lock_init(&all_zones_lock, 0);
+       meta->zm_page_next = meta->zm_page_prev = (zone_pva_t){ 0 };
+}
 
 
-       first_zone = ZONE_NULL;
-       last_zone = &first_zone;
-       num_zones = 0;
+__header_always_inline void
+zone_meta_requeue(zone_t z, zone_pva_t *headp,
+    struct zone_page_metadata *meta)
+{
+       zone_meta_remqueue(z, meta);
+       zone_meta_queue_push(z, headp, meta);
+}
 
 
-       simple_lock_init(&zget_space_lock, 0);
-       zalloc_next_space = zdata;
-       zalloc_end_of_space = zdata + zdata_size;
-       zalloc_wasted_space = 0;
+/* prevents a given metadata from ever reaching the z_pageq_empty queue */
+static inline void
+zone_meta_lock_in_partial(zone_t z, struct zone_page_metadata *m, uint32_t len)
+{
+       uint16_t new_size = zone_meta_alloc_size_add(z, m, ZM_ALLOC_SIZE_LOCK);
 
 
-       /* assertion: nobody else called zinit before us */
-       assert(zone_zone == ZONE_NULL);
-       zone_zone = zinit(sizeof(struct zone), 128 * sizeof(struct zone),
-                         sizeof(struct zone), "zones");
-       zone_change(zone_zone, Z_COLLECT, FALSE);
-       zone_zone_size = zalloc_end_of_space - zalloc_next_space;
-       zget_space(zone_zone_size, &zone_zone_space);
-       zcram(zone_zone, (void *)zone_zone_space, zone_zone_size);
+       assert(new_size % sizeof(vm_offset_t) == ZM_ALLOC_SIZE_LOCK);
+       if (new_size == ZM_ALLOC_SIZE_LOCK) {
+               zone_meta_requeue(z, &z->z_pageq_partial, m);
+               zone_counter_sub(z, z_wired_empty, len);
+       }
 }
 
 }
 
-void
-zone_init(
-       vm_size_t max_zonemap_size)
+/* allows a given metadata to reach the z_pageq_empty queue again */
+static inline void
+zone_meta_unlock_from_partial(zone_t z, struct zone_page_metadata *m, uint32_t len)
 {
 {
-       kern_return_t   retval;
-       vm_offset_t     zone_min;
-       vm_offset_t     zone_max;
-       vm_size_t       zone_table_size;
-
-       retval = kmem_suballoc(kernel_map, &zone_min, max_zonemap_size,
-                                               FALSE, VM_FLAGS_ANYWHERE, &zone_map);
+       uint16_t new_size = zone_meta_alloc_size_sub(z, m, ZM_ALLOC_SIZE_LOCK);
 
 
-       if (retval != KERN_SUCCESS)
-               panic("zone_init: kmem_suballoc failed");
-       zone_max = zone_min + round_page(max_zonemap_size);
-       /*
-        * Setup garbage collection information:
-        */
-       zone_table_size = atop_32(zone_max - zone_min) * 
-                               sizeof(struct zone_page_table_entry);
-       if (kmem_alloc_wired(zone_map, (vm_offset_t *) &zone_page_table,
-                            zone_table_size) != KERN_SUCCESS)
-               panic("zone_init");
-       zone_min = (vm_offset_t)zone_page_table + round_page(zone_table_size);
-       zone_pages = atop_32(zone_max - zone_min);
-       zone_map_min_address = zone_min;
-       zone_map_max_address = zone_max;
-       mutex_init(&zone_gc_lock, 0);
-       zone_page_init(zone_min, zone_max - zone_min, ZONE_PAGE_UNUSED);
+       assert(new_size % sizeof(vm_offset_t) == 0);
+       if (new_size == 0) {
+               zone_meta_requeue(z, &z->z_pageq_empty, m);
+               z->z_wired_empty += len;
+       }
 }
 
 }
 
-
 /*
 /*
- *     zalloc returns an element from the specified zone.
+ * Routine to populate a page backing metadata in the zone_metadata_region.
+ * Must be called without the zone lock held as it might potentially block.
  */
  */
-void *
-zalloc_canblock(
-       register zone_t zone,
-       boolean_t canblock)
+static void
+zone_meta_populate(vm_offset_t base, vm_size_t size)
 {
 {
-       vm_offset_t     addr;
-       kern_return_t retval;
-       void            *bt[MAX_DEPTH];         /* only used if zone logging is enabled */
-       int             numsaved = 0;
-       int             i;
-
-       assert(zone != ZONE_NULL);
+       struct zone_page_metadata *from = zone_meta_from_addr(base);
+       struct zone_page_metadata *to   = from + atop(size);
+       vm_offset_t page_addr = trunc_page(from);
 
 
-       /*
-        * If zone logging is turned on and this is the zone we're tracking, grab a backtrace.
-        */
-
-       if (DO_LOGGING(zone))
-               numsaved = OSBacktrace(&bt[0], MAX_DEPTH);
+       for (; page_addr < (vm_offset_t)to; page_addr += PAGE_SIZE) {
+#if !KASAN_ZALLOC
+               /*
+                * This can race with another thread doing a populate on the same metadata
+                * page, where we see an updated pmap but unmapped KASan shadow, causing a
+                * fault in the shadow when we first access the metadata page. Avoid this
+                * by always synchronizing on the zone_metadata_region lock with KASan.
+                */
+               if (pmap_find_phys(kernel_pmap, page_addr)) {
+                       continue;
+               }
+#endif
 
 
-       lock_zone(zone);
+               for (;;) {
+                       kern_return_t ret = KERN_SUCCESS;
 
 
-       REMOVE_FROM_ZONE(zone, addr, vm_offset_t);
+                       /* All updates to the zone_metadata_region are done under the zone_metadata_region_lck */
+                       lck_mtx_lock(&zone_metadata_region_lck);
+                       if (0 == pmap_find_phys(kernel_pmap, page_addr)) {
+                               ret = kernel_memory_populate(kernel_map, page_addr,
+                                   PAGE_SIZE, KMA_NOPAGEWAIT | KMA_KOBJECT | KMA_ZERO,
+                                   VM_KERN_MEMORY_OSFMK);
+                       }
+                       lck_mtx_unlock(&zone_metadata_region_lck);
 
 
-       while ((addr == 0) && canblock && (zone->doing_gc)) {
-               zone->waiting = TRUE;
-               zone_sleep(zone);
-               REMOVE_FROM_ZONE(zone, addr, vm_offset_t);
-       }
+                       if (ret == KERN_SUCCESS) {
+                               break;
+                       }
 
 
-       while ((addr == 0) && canblock) {
-               /*
-                *      If nothing was there, try to get more
-                */
-               if (zone->doing_alloc) {
                        /*
                        /*
-                        *      Someone is allocating memory for this zone.
-                        *      Wait for it to show up, then try again.
+                        * We can't pass KMA_NOPAGEWAIT under a global lock as it leads
+                        * to bad system deadlocks, so if the allocation failed,
+                        * we need to do the VM_PAGE_WAIT() outside of the lock.
                         */
                         */
-                       zone->waiting = TRUE;
-                       zone_sleep(zone);
-               }
-               else {
-                       if ((zone->cur_size + zone->elem_size) >
-                           zone->max_size) {
-                               if (zone->exhaustible)
-                                       break;
-                               if (zone->expandable) {
-                                       /*
-                                        * We're willing to overflow certain
-                                        * zones, but not without complaining.
-                                        *
-                                        * This is best used in conjunction
-                                        * with the collectable flag. What we
-                                        * want is an assurance we can get the
-                                        * memory back, assuming there's no
-                                        * leak. 
-                                        */
-                                       zone->max_size += (zone->max_size >> 1);
-                               } else {
-                                       unlock_zone(zone);
-
-                                       panic("zalloc: zone \"%s\" empty.", zone->zone_name);
-                               }
-                       }
-                       zone->doing_alloc = TRUE;
-                       unlock_zone(zone);
-
-                       if (zone->collectable) {
-                               vm_offset_t space;
-                               vm_size_t alloc_size;
-                               int retry = 0;
-
-                               for (;;) {
-
-                                       if (vm_pool_low() || retry >= 1)
-                                               alloc_size = 
-                                                 round_page(zone->elem_size);
-                                       else
-                                               alloc_size = zone->alloc_size;
-
-                                       retval = kernel_memory_allocate(zone_map,
-                                                                       &space, alloc_size, 0,
-                                                                       KMA_KOBJECT|KMA_NOPAGEWAIT);
-                                       if (retval == KERN_SUCCESS) {
-#if    ZONE_ALIAS_ADDR
-                                               if (alloc_size == PAGE_SIZE)
-                                                       space = zone_alias_addr(space);
-#endif
-                                               zone_page_init(space, alloc_size,
-                                                              ZONE_PAGE_USED);
-                                               zcram(zone, (void *)space, alloc_size);
-
-                                               break;
-                                       } else if (retval != KERN_RESOURCE_SHORTAGE) {
-                                               retry++;
-
-                                               if (retry == 2) {
-                                                       zone_gc();
-                                                       printf("zalloc did gc\n");
-                                               }
-                                               if (retry == 3) {
-                                                       panic_include_zprint = TRUE;
-                                                       panic("zalloc: \"%s\" (%d elements) retry fail %d", zone->zone_name, zone->count, retval);
-                                               }
-                                       } else {
-                                               break;
-                                       }
-                               }
-                               lock_zone(zone);
-                               zone->doing_alloc = FALSE; 
-                               if (zone->waiting) {
-                                       zone->waiting = FALSE;
-                                       zone_wakeup(zone);
-                               }
-                               REMOVE_FROM_ZONE(zone, addr, vm_offset_t);
-                               if (addr == 0 &&
-                                       retval == KERN_RESOURCE_SHORTAGE) {
-                                       unlock_zone(zone);
-                                       
-                                       VM_PAGE_WAIT();
-                                       lock_zone(zone);
-                               }
-                       } else {
-                               vm_offset_t space;
-                               retval = zget_space(zone->elem_size, &space);
-
-                               lock_zone(zone);
-                               zone->doing_alloc = FALSE; 
-                               if (zone->waiting) {
-                                       zone->waiting = FALSE;
-                                       thread_wakeup((event_t)zone);
-                               }
-                               if (retval == KERN_SUCCESS) {
-                                       zone->count++;
-                                       zone->cur_size += zone->elem_size;
-#if    ZONE_DEBUG
-                                       if (zone_debug_enabled(zone)) {
-                                           enqueue_tail(&zone->active_zones, (queue_entry_t)space);
-                                       }
-#endif
-                                       unlock_zone(zone);
-                                       zone_page_alloc(space, zone->elem_size);
-#if    ZONE_DEBUG
-                                       if (zone_debug_enabled(zone))
-                                               space += ZONE_DEBUG_OFFSET;
-#endif
-                                       addr = space;
-                                       goto success;
-                               }
-                               if (retval == KERN_RESOURCE_SHORTAGE) {
-                                       unlock_zone(zone);
-                                       
-                                       VM_PAGE_WAIT();
-                                       lock_zone(zone);
-                               } else {
-                                       panic("zalloc: \"%s\" (%d elements) zget_space returned %d", zone->zone_name, zone->count, retval);
-                               }
-                       }
+                       VM_PAGE_WAIT();
                }
                }
-               if (addr == 0)
-                       REMOVE_FROM_ZONE(zone, addr, vm_offset_t);
        }
        }
+}
 
 
-       /*
-        * See if we should be logging allocations in this zone.  Logging is rarely done except when a leak is
-        * suspected, so this code rarely executes.  We need to do this code while still holding the zone lock
-        * since it protects the various log related data structures.
-        */
+__header_always_inline
+struct zone_page_metadata *
+zone_element_validate(zone_t zone, zone_element_t ze)
+{
+       struct zone_page_metadata *meta;
+       vm_offset_t page = zone_element_base(ze);
 
 
-       if (DO_LOGGING(zone) && addr) {
+       if (!from_zone_map(page, 1, ZONE_ADDR_NATIVE) &&
+           !from_zone_map(page, 1, ZONE_ADDR_FOREIGN)) {
+               zone_invalid_element_panic(zone, ze);
+       }
+       meta = zone_meta_from_addr(page);
 
 
-               /*
-                * Look for a place to record this new allocation.  We implement two different logging strategies
-                * depending on whether we're looking for the source of a zone leak or a zone corruption.  When looking
-                * for a leak, we want to log as many allocations as possible in order to clearly identify the leaker
-                * among all the records.  So we look for an unused slot in the log and fill that in before overwriting
-                * an old entry.  When looking for a corrution however, it's better to have a chronological log of all
-                * the allocations and frees done in the zone so that the history of operations for a specific zone 
-                * element can be inspected.  So in this case, we treat the log as a circular buffer and overwrite the
-                * oldest entry whenever a new one needs to be added.
-                *
-                * The check_freed_element flag tells us what style of logging to do.  It's set if we're supposed to be
-                * doing corruption style logging (indicated via -zc in the boot-args).
-                */
+       if (meta->zm_chunk_len > ZM_CHUNK_LEN_MAX) {
+               zone_invalid_element_panic(zone, ze);
+       }
+       if (zone_element_idx(ze) >= zone->z_chunk_elems) {
+               zone_invalid_element_panic(zone, ze);
+       }
 
 
-               if (!check_freed_element && zrecords[zcurrent].z_element && zrecorded < log_records) {
+       if (!zone_has_index(zone, meta->zm_index)) {
+               vm_offset_t addr = zone_element_addr(ze, zone_elem_size(zone));
+               zone_page_metadata_index_confusion_panic(zone, addr, meta);
+       }
 
 
-                       /*
-                        * If we get here, we're doing leak style logging and there's still some unused entries in
-                        * the log (since zrecorded is smaller than the size of the log).  Look for an unused slot
-                        * starting at zcurrent and wrap-around if we reach the end of the buffer.  If the buffer
-                        * is already full, we just fall through and overwrite the element indexed by zcurrent.
-                        */
-       
-                      for (i = zcurrent; i < log_records; i++) {
-                               if (zrecords[i].z_element == NULL) {
-                                       zcurrent = i;
-                                       goto empty_slot;
-                               }
-                       }
+       return meta;
+}
 
 
-                       for (i = 0; i < zcurrent; i++) {
-                               if (zrecords[i].z_element == NULL) {
-                                       zcurrent = i;
-                                       goto empty_slot;
-                               }
-                       }
-                }
-       
-               /*
-                * Save a record of this allocation
-                */
-       
-empty_slot:
-                 if (zrecords[zcurrent].z_element == NULL)
-                       zrecorded++;
-       
-                 zrecords[zcurrent].z_element = (void *)addr;
-                 zrecords[zcurrent].z_time = ztime++;
-                 zrecords[zcurrent].z_opcode = ZOP_ALLOC;
-                       
-                 for (i = 0; i < numsaved; i++)
-                       zrecords[zcurrent].z_pc[i] = bt[i];
-
-                 for (; i < MAX_DEPTH; i++)
-                       zrecords[zcurrent].z_pc[i] = 0;
-       
-                 zcurrent++;
-       
-                 if (zcurrent >= log_records)
-                         zcurrent = 0;
-       }
-
-       if ((addr == 0) && !canblock && (zone->async_pending == FALSE) && (zone->exhaustible == FALSE) && (!vm_pool_low())) {
-               zone->async_pending = TRUE;
-               unlock_zone(zone);
-               thread_call_enter(&zone->call_async_alloc);
-               lock_zone(zone);
-               REMOVE_FROM_ZONE(zone, addr, vm_offset_t);
-       }
-
-#if    ZONE_DEBUG
-       if (addr && zone_debug_enabled(zone)) {
-               enqueue_tail(&zone->active_zones, (queue_entry_t)addr);
-               addr += ZONE_DEBUG_OFFSET;
-       }
-#endif
+__attribute__((always_inline))
+static struct zone_page_metadata *
+zone_element_resolve(zone_t zone, vm_offset_t addr, vm_offset_t esize,
+    zone_element_t *ze)
+{
+       struct zone_page_metadata *meta;
+       vm_offset_t page, eidx;
 
 
-       unlock_zone(zone);
+       if (!from_zone_map(addr, esize, ZONE_ADDR_NATIVE) &&
+           !from_zone_map(addr, esize, ZONE_ADDR_FOREIGN)) {
+               zone_invalid_element_addr_panic(zone, addr);
+       }
+       page = trunc_page(addr);
+       meta = zone_meta_from_addr(addr);
 
 
-success:
-       TRACE_MACHLEAKS(ZALLOC_CODE, ZALLOC_CODE_2, zone->elem_size, addr);
+       if (meta->zm_chunk_len == ZM_SECONDARY_PCPU_PAGE) {
+               zone_invalid_element_addr_panic(zone, addr);
+       }
+       if (meta->zm_chunk_len == ZM_SECONDARY_PAGE) {
+               page -= ptoa(meta->zm_page_index);
+               meta -= meta->zm_page_index;
+       }
 
 
-       return((void *)addr);
-}
+       eidx = (addr - page) / esize;
+       if ((addr - page) % esize) {
+               zone_invalid_element_addr_panic(zone, addr);
+       }
 
 
+       if (!zone_has_index(zone, meta->zm_index)) {
+               zone_page_metadata_index_confusion_panic(zone, addr, meta);
+       }
 
 
-void *
-zalloc(
-       register zone_t zone)
-{
-  return( zalloc_canblock(zone, TRUE) );
+       *ze = zone_element_encode(page, eidx, ZPM_AUTO);
+       return meta;
 }
 
 }
 
-void *
-zalloc_noblock(
-              register zone_t zone)
+/* Routine to get the size of a zone allocated address.
+ * If the address doesnt belong to the zone maps, returns 0.
+ */
+vm_size_t
+zone_element_size(void *addr, zone_t *z)
 {
 {
-  return( zalloc_canblock(zone, FALSE) );
+       struct zone *src_zone;
+
+       if (from_zone_map(addr, sizeof(void *), ZONE_ADDR_NATIVE) ||
+           from_zone_map(addr, sizeof(void *), ZONE_ADDR_FOREIGN)) {
+               src_zone = &zone_array[zone_index_from_ptr(addr)];
+               if (z) {
+                       *z = src_zone;
+               }
+               return zone_elem_size(src_zone);
+       }
+
+#if CONFIG_GZALLOC
+       if (__improbable(gzalloc_enabled())) {
+               vm_size_t gzsize;
+               if (gzalloc_element_size(addr, z, &gzsize)) {
+                       return gzsize;
+               }
+       }
+#endif /* CONFIG_GZALLOC */
+
+       return 0;
 }
 
 }
 
-void
-zalloc_async(
-       thread_call_param_t          p0,
-       __unused thread_call_param_t p1)
+/* This function just formats the reason for the panics by redoing the checks */
+__abortlike
+static void
+zone_require_panic(zone_t zone, void *addr)
 {
 {
-       void *elt;
+       uint32_t zindex;
+       zone_t other;
+
+       if (!from_zone_map(addr, zone_elem_size(zone), ZONE_ADDR_NATIVE)) {
+               panic("zone_require failed: address not in a zone (addr: %p)", addr);
+       }
 
 
-       elt = zalloc_canblock((zone_t)p0, TRUE);
-       zfree((zone_t)p0, elt);
-       lock_zone(((zone_t)p0));
-       ((zone_t)p0)->async_pending = FALSE;
-       unlock_zone(((zone_t)p0));
+       zindex = zone_index_from_ptr(addr);
+       other = &zone_array[zindex];
+       if (zindex >= os_atomic_load(&num_zones, relaxed) || !other->z_self) {
+               panic("zone_require failed: invalid zone index %d "
+                   "(addr: %p, expected: %s%s)", zindex,
+                   addr, zone_heap_name(zone), zone->z_name);
+       } else {
+               panic("zone_require failed: address in unexpected zone id %d (%s%s) "
+                   "(addr: %p, expected: %s%s)",
+                   zindex, zone_heap_name(other), other->z_name,
+                   addr, zone_heap_name(zone), zone->z_name);
+       }
 }
 
 }
 
+__abortlike
+static void
+zone_id_require_panic(zone_id_t zid, void *addr)
+{
+       zone_require_panic(&zone_array[zid], addr);
+}
 
 /*
 
 /*
- *     zget returns an element from the specified zone
- *     and immediately returns nothing if there is nothing there.
+ * Routines to panic if a pointer is not mapped to an expected zone.
+ * This can be used as a means of pinning an object to the zone it is expected
+ * to be a part of.  Causes a panic if the address does not belong to any
+ * specified zone, does not belong to any zone, has been freed and therefore
+ * unmapped from the zone, or the pointer contains an uninitialized value that
+ * does not belong to any zone.
  *
  *
- *     This form should be used when you can not block (like when
- *     processing an interrupt).
+ * Note that this can only work with collectable zones without foreign pages.
  */
  */
-void *
-zget(
-       register zone_t zone)
+void
+zone_require(zone_t zone, void *addr)
 {
 {
-       register vm_offset_t    addr;
-
-       assert( zone != ZONE_NULL );
-
-       if (!lock_try_zone(zone))
-               return NULL;
+       vm_size_t esize = zone_elem_size(zone);
 
 
-       REMOVE_FROM_ZONE(zone, addr, vm_offset_t);
-#if    ZONE_DEBUG
-       if (addr && zone_debug_enabled(zone)) {
-               enqueue_tail(&zone->active_zones, (queue_entry_t)addr);
-               addr += ZONE_DEBUG_OFFSET;
+       if (__probable(from_zone_map(addr, esize, ZONE_ADDR_NATIVE))) {
+               if (zone_has_index(zone, zone_index_from_ptr(addr))) {
+                       return;
+               }
+#if CONFIG_GZALLOC
+       } else if (__probable(zone->gzalloc_tracked)) {
+               return;
+#endif
        }
        }
-#endif /* ZONE_DEBUG */
-       unlock_zone(zone);
-
-       return((void *) addr);
+       zone_require_panic(zone, addr);
 }
 
 }
 
-/* Keep this FALSE by default.  Large memory machine run orders of magnitude
-   slower in debug mode when true.  Use debugger to enable if needed */
-/* static */ boolean_t zone_check = FALSE;
-
-static zone_t zone_last_bogus_zone = ZONE_NULL;
-static vm_offset_t zone_last_bogus_elem = 0;
-
 void
 void
-zfree(
-       register zone_t zone,
-       void            *addr)
+zone_id_require(zone_id_t zid, vm_size_t esize, void *addr)
 {
 {
-       vm_offset_t     elem = (vm_offset_t) addr;
-       void            *bt[MAX_DEPTH];                 /* only used if zone logging is enable via boot-args */
-       int             numsaved = 0;
-
-       assert(zone != ZONE_NULL);
-
-       /*
-        * If zone logging is turned on and this is the zone we're tracking, grab a backtrace.
-        */
-
-       if (DO_LOGGING(zone))
-               numsaved = OSBacktrace(&bt[0], MAX_DEPTH);
-
-#if MACH_ASSERT
-       /* Basic sanity checks */
-       if (zone == ZONE_NULL || elem == (vm_offset_t)0)
-               panic("zfree: NULL");
-       /* zone_gc assumes zones are never freed */
-       if (zone == zone_zone)
-               panic("zfree: freeing to zone_zone breaks zone_gc!");
+       if (__probable(from_zone_map(addr, esize, ZONE_ADDR_NATIVE))) {
+               if (zid == zone_index_from_ptr(addr)) {
+                       return;
+               }
+#if CONFIG_GZALLOC
+       } else if (__probable(zone_array[zid].gzalloc_tracked)) {
+               return;
 #endif
 #endif
+       }
+       zone_id_require_panic(zid, addr);
+}
 
 
-       TRACE_MACHLEAKS(ZFREE_CODE, ZFREE_CODE_2, zone->elem_size, (int)addr);
-
-       if (zone->collectable && !zone->allows_foreign &&
-           !from_zone_map(elem, zone->elem_size)) {
-#if MACH_ASSERT
-               panic("zfree: non-allocated memory in collectable zone!");
-#endif
-               zone_last_bogus_zone = zone;
-               zone_last_bogus_elem = elem;
+void
+zone_id_require_allow_foreign(zone_id_t zid, vm_size_t esize, void *addr)
+{
+       if (__probable(from_zone_map(addr, esize, ZONE_ADDR_NATIVE) ||
+           from_zone_map(addr, esize, ZONE_ADDR_FOREIGN))) {
+               if (zid == zone_index_from_ptr(addr)) {
+                       return;
+               }
+#if CONFIG_GZALLOC
+       } else if (__probable(zone_array[zid].gzalloc_tracked)) {
                return;
                return;
+#endif
        }
        }
+       zone_id_require_panic(zid, addr);
+}
 
 
-       lock_zone(zone);
+bool
+zone_owns(zone_t zone, void *addr)
+{
+       vm_size_t esize = zone_elem_size(zone);
 
 
-       /*
-        * See if we're doing logging on this zone.  There are two styles of logging used depending on
-        * whether we're trying to catch a leak or corruption.  See comments above in zalloc for details.
-        */
+       if (__probable(from_zone_map(addr, esize, ZONE_ADDR_NATIVE))) {
+               return zone_has_index(zone, zone_index_from_ptr(addr));
+#if CONFIG_GZALLOC
+       } else if (__probable(zone->gzalloc_tracked)) {
+               return true;
+#endif
+       }
+       return false;
+}
 
 
-       if (DO_LOGGING(zone)) {
-               int  i;
+#endif /* !ZALLOC_TEST */
+#pragma mark Zone bits allocator
 
 
-               if (check_freed_element) {
+/*!
+ * @defgroup Zone Bitmap allocator
+ * @{
+ *
+ * @brief
+ * Functions implementing the zone bitmap allocator
+ *
+ * @discussion
+ * The zone allocator maintains which elements are allocated or free in bitmaps.
+ *
+ * When the number of elements per page is smaller than 32, it is stored inline
+ * on the @c zone_page_metadata structure (@c zm_inline_bitmap is set,
+ * and @c zm_bitmap used for storage).
+ *
+ * When the number of elements is larger, then a bitmap is allocated from
+ * a buddy allocator (impelemented under the @c zba_* namespace). Pointers
+ * to bitmaps are implemented as a packed 32 bit bitmap reference, stored in
+ * @c zm_bitmap. The low 3 bits encode the scale (order) of the allocation in
+ * @c ZBA_GRANULE units, and hence actual allocations encoded with that scheme
+ * cannot be larger than 1024 bytes (8192 bits).
+ *
+ * This buddy allocator can actually accomodate allocations as large
+ * as 8k on 16k systems and 2k on 4k systems.
+ *
+ * Note: @c zba_* functions are implementation details not meant to be used
+ * outside of the allocation of the allocator itself. Interfaces to the rest of
+ * the zone allocator are documented and not @c zba_* prefixed.
+ */
 
 
-                       /*
-                        * We're logging to catch a corruption.  Add a record of this zfree operation
-                        * to log.
-                        */
+#define ZBA_CHUNK_SIZE          PAGE_MAX_SIZE
+#define ZBA_GRANULE             sizeof(uint64_t)
+#define ZBA_GRANULE_BITS        (8 * sizeof(uint64_t))
+#define ZBA_MAX_ORDER           (PAGE_MAX_SHIFT - 4)
+#define ZBA_MAX_ALLOC_ORDER     7
+#define ZBA_SLOTS               (ZBA_CHUNK_SIZE / ZBA_GRANULE)
+static_assert(2ul * ZBA_GRANULE << ZBA_MAX_ORDER == ZBA_CHUNK_SIZE, "chunk sizes");
+static_assert(ZBA_MAX_ALLOC_ORDER <= ZBA_MAX_ORDER, "ZBA_MAX_ORDER is enough");
+
+struct zone_bits_chain {
+       uint32_t zbc_next;
+       uint32_t zbc_prev;
+} __attribute__((aligned(ZBA_GRANULE)));
+
+struct zone_bits_head {
+       uint32_t zbh_next;
+       uint32_t zbh_unused;
+} __attribute__((aligned(ZBA_GRANULE)));
+
+static_assert(sizeof(struct zone_bits_chain) == ZBA_GRANULE, "zbc size");
+static_assert(sizeof(struct zone_bits_head) == ZBA_GRANULE, "zbh size");
+
+struct zone_bits_allocator_meta {
+       uint32_t zbam_chunks;
+       uint32_t __zbam_padding;
+       struct zone_bits_head zbam_lists[ZBA_MAX_ORDER + 1];
+};
 
 
-                       if (zrecords[zcurrent].z_element == NULL)
-                               zrecorded++;
+struct zone_bits_allocator_header {
+       uint64_t zbah_bits[ZBA_SLOTS / (8 * sizeof(uint64_t))];
+};
 
 
-                       zrecords[zcurrent].z_element = (void *)addr;
-                       zrecords[zcurrent].z_time = ztime++;
-                       zrecords[zcurrent].z_opcode = ZOP_FREE;
+#if ZALLOC_TEST
+static struct zalloc_bits_allocator_test_setup {
+       vm_offset_t zbats_base;
+       void      (*zbats_populate)(vm_address_t addr, vm_size_t size);
+} zba_test_info;
 
 
-                       for (i = 0; i < numsaved; i++)
-                               zrecords[zcurrent].z_pc[i] = bt[i];
+static struct zone_bits_allocator_header *
+zba_base_header(void)
+{
+       return (struct zone_bits_allocator_header *)zba_test_info.zbats_base;
+}
 
 
-                       for (; i < MAX_DEPTH; i++)
-                               zrecords[zcurrent].z_pc[i] = 0;
+static void
+zba_populate(uint32_t n)
+{
+       vm_address_t base = zba_test_info.zbats_base;
+       zba_test_info.zbats_populate(base + n * ZBA_CHUNK_SIZE, ZBA_CHUNK_SIZE);
+}
+#else
+__startup_data
+static uint8_t zba_chunk_startup[ZBA_CHUNK_SIZE]
+__attribute__((aligned(ZBA_CHUNK_SIZE)));
+static LCK_MTX_EARLY_DECLARE(zba_mtx, &zone_locks_grp);
 
 
-                       zcurrent++;
+static struct zone_bits_allocator_header *
+zba_base_header(void)
+{
+       return (struct zone_bits_allocator_header *)zone_info.zi_bits_range.min_address;
+}
 
 
-                       if (zcurrent >= log_records)
-                               zcurrent = 0;
+static void
+zba_lock(void)
+{
+       lck_mtx_lock(&zba_mtx);
+}
 
 
-               } else {
+static void
+zba_unlock(void)
+{
+       lck_mtx_unlock(&zba_mtx);
+}
 
 
-                       /*
-                        * We're logging to catch a leak. Remove any record we might have for this
-                        * element since it's being freed.  Note that we may not find it if the buffer
-                        * overflowed and that's OK.  Since the log is of a limited size, old records
-                        * get overwritten if there are more zallocs than zfrees.
-                        */
-       
-                       for (i = 0; i < log_records; i++) {
-                               if (zrecords[i].z_element == addr) {
-                                       zrecords[i].z_element = NULL;
-                                       zcurrent = i;
-                                       zrecorded--;
-                                       break;
-                               }
-                       }
-               }
+static void
+zba_populate(uint32_t n)
+{
+       vm_size_t size = ZBA_CHUNK_SIZE;
+       vm_address_t addr;
+
+       addr = zone_info.zi_bits_range.min_address + n * size;
+       if (addr >= zone_info.zi_bits_range.max_address) {
+               zone_t z = zone_find_largest();
+               panic("zba_populate: out of bitmap space, "
+                   "likely due to memory leak in zone [%s%s] "
+                   "(%luM, %d elements allocated)",
+                   zone_heap_name(z), zone_name(z),
+                   (unsigned long)zone_size_wired(z) >> 20,
+                   zone_count_allocated(z));
        }
 
        }
 
+       for (;;) {
+               kern_return_t kr = KERN_SUCCESS;
 
 
-#if    ZONE_DEBUG
-       if (zone_debug_enabled(zone)) {
-               queue_t tmp_elem;
-
-               elem -= ZONE_DEBUG_OFFSET;
-               if (zone_check) {
-                       /* check the zone's consistency */
-
-                       for (tmp_elem = queue_first(&zone->active_zones);
-                            !queue_end(tmp_elem, &zone->active_zones);
-                            tmp_elem = queue_next(tmp_elem))
-                               if (elem == (vm_offset_t)tmp_elem)
-                                       break;
-                       if (elem != (vm_offset_t)tmp_elem)
-                               panic("zfree()ing element from wrong zone");
+               if (0 == pmap_find_phys(kernel_pmap, addr)) {
+                       kr = kernel_memory_populate(kernel_map, addr, size,
+                           KMA_NOPAGEWAIT | KMA_KOBJECT | KMA_ZERO,
+                           VM_KERN_MEMORY_OSFMK);
                }
                }
-               remqueue(&zone->active_zones, (queue_t) elem);
-       }
-#endif /* ZONE_DEBUG */
-       if (zone_check) {
-               vm_offset_t this;
 
 
-               /* check the zone's consistency */
-
-               for (this = zone->free_elements;
-                    this != 0;
-                    this = * (vm_offset_t *) this)
-                       if (!pmap_kernel_va(this) || this == elem)
-                               panic("zfree");
-       }
-       ADD_TO_ZONE(zone, elem);
+               if (kr == KERN_SUCCESS) {
+                       return;
+               }
 
 
-       /*
-        * If elements have one or more pages, and memory is low,
-        * request to run the garbage collection in the zone  the next 
-        * time the pageout thread runs.
-        */
-       if (zone->elem_size >= PAGE_SIZE && 
-           vm_pool_low()){
-               zone_gc_forced = TRUE;
+               zba_unlock();
+               VM_PAGE_WAIT();
+               zba_lock();
        }
        }
-       unlock_zone(zone);
 }
 }
+#endif
 
 
+__pure2
+static struct zone_bits_allocator_meta *
+zba_meta(void)
+{
+       return (struct zone_bits_allocator_meta *)&zba_base_header()[1];
+}
 
 
-/*     Change a zone's flags.
- *     This routine must be called immediately after zinit.
- */
-void
-zone_change(
-       zone_t          zone,
-       unsigned int    item,
-       boolean_t       value)
+__pure2
+static uint64_t *
+zba_slot_base(void)
 {
 {
-       assert( zone != ZONE_NULL );
-       assert( value == TRUE || value == FALSE );
+       return (uint64_t *)zba_base_header();
+}
 
 
-       switch(item){
-               case Z_EXHAUST:
-                       zone->exhaustible = value;
-                       break;
-               case Z_COLLECT:
-                       zone->collectable = value;
-                       break;
-               case Z_EXPAND:
-                       zone->expandable = value;
-                       break;
-               case Z_FOREIGN:
-                       zone->allows_foreign = value;
-                       break;
-#if MACH_ASSERT
-               default:
-                       panic("Zone_change: Wrong Item Type!");
-                       /* break; */
-#endif
-       }
+__pure2
+static vm_address_t
+zba_page_addr(uint32_t n)
+{
+       return (vm_address_t)zba_base_header() + n * ZBA_CHUNK_SIZE;
 }
 
 }
 
-/*
- * Return the expected number of free elements in the zone.
- * This calculation will be incorrect if items are zfree'd that
- * were never zalloc'd/zget'd. The correct way to stuff memory
- * into a zone is by zcram.
- */
+__pure2
+static struct zone_bits_head *
+zba_head(uint32_t order)
+{
+       return &zba_meta()->zbam_lists[order];
+}
 
 
-integer_t
-zone_free_count(zone_t zone)
+__pure2
+static uint32_t
+zba_head_index(uint32_t order)
 {
 {
-       integer_t free_count;
+       uint32_t hdr_size = sizeof(struct zone_bits_allocator_header) +
+           offsetof(struct zone_bits_allocator_meta, zbam_lists);
+       return (hdr_size / ZBA_GRANULE) + order;
+}
 
 
-       lock_zone(zone);
-       free_count = zone->cur_size/zone->elem_size - zone->count;
-       unlock_zone(zone);
+__pure2
+static struct zone_bits_chain *
+zba_chain_for_index(uint32_t index)
+{
+       return (struct zone_bits_chain *)(zba_slot_base() + index);
+}
 
 
-       assert(free_count >= 0);
+__pure2
+static uint32_t
+zba_chain_to_index(const struct zone_bits_chain *zbc)
+{
+       return (uint32_t)((const uint64_t *)zbc - zba_slot_base());
+}
 
 
-       return(free_count);
+__abortlike
+static void
+zba_head_corruption_panic(uint32_t order)
+{
+       panic("zone bits allocator head[%d:%p] is corrupt", order,
+           zba_head(order));
 }
 
 }
 
-/*
- *     zprealloc preallocates wired memory, exanding the specified
- *      zone to the specified size
- */
-void
-zprealloc(
-       zone_t  zone,
-       vm_size_t size)
+__abortlike
+static void
+zba_chain_corruption_panic(struct zone_bits_chain *a, struct zone_bits_chain *b)
 {
 {
-        vm_offset_t addr;
+       panic("zone bits allocator freelist is corrupt (%p <-> %p)", a, b);
+}
 
 
-       if (size != 0) {
-               if (kmem_alloc_wired(zone_map, &addr, size) != KERN_SUCCESS)
-                 panic("zprealloc");
-               zone_page_init(addr, size, ZONE_PAGE_USED);
-               zcram(zone, (void *)addr, size);
+static void
+zba_push_block(struct zone_bits_chain *zbc, uint32_t order)
+{
+       struct zone_bits_head *hd = zba_head(order);
+       uint32_t hd_index = zba_head_index(order);
+       uint32_t index = zba_chain_to_index(zbc);
+       struct zone_bits_chain *next;
+
+       if (hd->zbh_next) {
+               next = zba_chain_for_index(hd->zbh_next);
+               if (next->zbc_prev != hd_index) {
+                       zba_head_corruption_panic(order);
+               }
+               next->zbc_prev = index;
        }
        }
+       zbc->zbc_next = hd->zbh_next;
+       zbc->zbc_prev = hd_index;
+       hd->zbh_next = index;
 }
 
 }
 
-/*
- *  Zone garbage collection subroutines
- */
-
-boolean_t
-zone_page_collectable(
-       vm_offset_t     addr,
-       vm_size_t       size)
+static void
+zba_remove_block(struct zone_bits_chain *zbc)
 {
 {
-       struct zone_page_table_entry    *zp;
-       natural_t i, j;
-
-#if    ZONE_ALIAS_ADDR
-       addr = zone_virtual_addr(addr);
-#endif
-#if MACH_ASSERT
-       if (!from_zone_map(addr, size))
-               panic("zone_page_collectable");
-#endif
-
-       i = atop_32(addr-zone_map_min_address);
-       j = atop_32((addr+size-1) - zone_map_min_address);
+       struct zone_bits_chain *prev = zba_chain_for_index(zbc->zbc_prev);
+       uint32_t index = zba_chain_to_index(zbc);
 
 
-       for (zp = zone_page_table + i; i <= j; zp++, i++)
-               if (zp->collect_count == zp->alloc_count)
-                       return (TRUE);
+       if (prev->zbc_next != index) {
+               zba_chain_corruption_panic(prev, zbc);
+       }
+       if ((prev->zbc_next = zbc->zbc_next)) {
+               struct zone_bits_chain *next = zba_chain_for_index(zbc->zbc_next);
+               if (next->zbc_prev != index) {
+                       zba_chain_corruption_panic(zbc, next);
+               }
+               next->zbc_prev = zbc->zbc_prev;
+       }
+}
+
+static vm_address_t
+zba_try_pop_block(uint32_t order)
+{
+       struct zone_bits_head *hd = zba_head(order);
+       struct zone_bits_chain *zbc;
+
+       if (hd->zbh_next == 0) {
+               return 0;
+       }
 
 
-       return (FALSE);
+       zbc = zba_chain_for_index(hd->zbh_next);
+       zba_remove_block(zbc);
+       return (vm_address_t)zbc;
 }
 
 }
 
-void
-zone_page_keep(
-       vm_offset_t     addr,
-       vm_size_t       size)
+static struct zone_bits_allocator_header *
+zba_header(vm_offset_t addr)
 {
 {
-       struct zone_page_table_entry    *zp;
-       natural_t i, j;
+       addr &= -(vm_offset_t)ZBA_CHUNK_SIZE;
+       return (struct zone_bits_allocator_header *)addr;
+}
 
 
-#if    ZONE_ALIAS_ADDR
-       addr = zone_virtual_addr(addr);
-#endif
-#if MACH_ASSERT
-       if (!from_zone_map(addr, size))
-               panic("zone_page_keep");
-#endif
+static size_t
+zba_node_parent(size_t node)
+{
+       return (node - 1) / 2;
+}
 
 
-       i = atop_32(addr-zone_map_min_address);
-       j = atop_32((addr+size-1) - zone_map_min_address);
+static size_t
+zba_node_left_child(size_t node)
+{
+       return node * 2 + 1;
+}
 
 
-       for (zp = zone_page_table + i; i <= j; zp++, i++)
-               zp->collect_count = 0;
+static size_t
+zba_node_buddy(size_t node)
+{
+       return ((node - 1) ^ 1) + 1;
 }
 
 }
 
-void
-zone_page_collect(
-       vm_offset_t     addr,
-       vm_size_t       size)
+static size_t
+zba_node(vm_offset_t addr, uint32_t order)
 {
 {
-       struct zone_page_table_entry    *zp;
-       natural_t i, j;
+       vm_offset_t offs = (addr % ZBA_CHUNK_SIZE) / ZBA_GRANULE;
+       return (offs >> order) + (1 << (ZBA_MAX_ORDER - order + 1)) - 1;
+}
 
 
-#if    ZONE_ALIAS_ADDR
-       addr = zone_virtual_addr(addr);
-#endif
-#if MACH_ASSERT
-       if (!from_zone_map(addr, size))
-               panic("zone_page_collect");
-#endif
+static struct zone_bits_chain *
+zba_chain_for_node(struct zone_bits_allocator_header *zbah, size_t node, uint32_t order)
+{
+       vm_offset_t offs = (node - (1 << (ZBA_MAX_ORDER - order + 1)) + 1) << order;
+       return (struct zone_bits_chain *)((vm_offset_t)zbah + offs * ZBA_GRANULE);
+}
 
 
-       i = atop_32(addr-zone_map_min_address);
-       j = atop_32((addr+size-1) - zone_map_min_address);
+static void
+zba_node_flip_split(struct zone_bits_allocator_header *zbah, size_t node)
+{
+       zbah->zbah_bits[node / 64] ^= 1ull << (node % 64);
+}
 
 
-       for (zp = zone_page_table + i; i <= j; zp++, i++)
-               ++zp->collect_count;
+static bool
+zba_node_is_split(struct zone_bits_allocator_header *zbah, size_t node)
+{
+       return zbah->zbah_bits[node / 64] & (1ull << (node % 64));
 }
 
 }
 
-void
-zone_page_init(
-       vm_offset_t     addr,
-       vm_size_t       size,
-       int             value)
+static void
+zba_free(vm_offset_t addr, uint32_t order)
 {
 {
-       struct zone_page_table_entry    *zp;
-       natural_t i, j;
+       struct zone_bits_allocator_header *zbah = zba_header(addr);
+       struct zone_bits_chain *zbc;
+       size_t node = zba_node(addr, order);
 
 
-#if    ZONE_ALIAS_ADDR
-       addr = zone_virtual_addr(addr);
-#endif
-#if MACH_ASSERT
-       if (!from_zone_map(addr, size))
-               panic("zone_page_init");
-#endif
+       while (node) {
+               size_t parent = zba_node_parent(node);
+
+               zba_node_flip_split(zbah, parent);
+               if (zba_node_is_split(zbah, parent)) {
+                       break;
+               }
+
+               zbc = zba_chain_for_node(zbah, zba_node_buddy(node), order);
+               zba_remove_block(zbc);
+               order++;
+               node = parent;
+       }
 
 
-       i = atop_32(addr-zone_map_min_address);
-       j = atop_32((addr+size-1) - zone_map_min_address);
+       zba_push_block(zba_chain_for_node(zbah, node, order), order);
+}
 
 
-       for (zp = zone_page_table + i; i <= j; zp++, i++) {
-               zp->alloc_count = value;
-               zp->collect_count = 0;
+static vm_size_t
+zba_chunk_header_size(uint32_t n)
+{
+       vm_size_t hdr_size = sizeof(struct zone_bits_allocator_header);
+       if (n == 0) {
+               hdr_size += sizeof(struct zone_bits_allocator_meta);
        }
        }
+       return hdr_size;
 }
 
 }
 
-void
-zone_page_alloc(
-       vm_offset_t     addr,
-       vm_size_t       size)
+static void
+zba_init_chunk(uint32_t n)
 {
 {
-       struct zone_page_table_entry    *zp;
-       natural_t i, j;
+       vm_size_t hdr_size = zba_chunk_header_size(n);
+       vm_offset_t page = zba_page_addr(n);
+       struct zone_bits_allocator_header *zbah = zba_header(page);
+       vm_size_t size = ZBA_CHUNK_SIZE;
+       size_t node;
+
+       for (uint32_t o = ZBA_MAX_ORDER + 1; o-- > 0;) {
+               if (size < hdr_size + (ZBA_GRANULE << o)) {
+                       continue;
+               }
+               size -= ZBA_GRANULE << o;
+               node = zba_node(page + size, o);
+               zba_node_flip_split(zbah, zba_node_parent(node));
+               zba_push_block(zba_chain_for_node(zbah, node, o), o);
+       }
 
 
-#if    ZONE_ALIAS_ADDR
-       addr = zone_virtual_addr(addr);
-#endif
-#if MACH_ASSERT
-       if (!from_zone_map(addr, size))
-               panic("zone_page_alloc");
-#endif
+       zba_meta()->zbam_chunks = n + 1;
+}
 
 
-       i = atop_32(addr-zone_map_min_address);
-       j = atop_32((addr+size-1) - zone_map_min_address);
+__attribute__((noinline))
+static void
+zba_grow(void)
+{
+       uint32_t chunk = zba_meta()->zbam_chunks;
 
 
-       for (zp = zone_page_table + i; i <= j; zp++, i++) {
-               /*
-                * Set alloc_count to (ZONE_PAGE_USED + 1) if
-                * it was previously set to ZONE_PAGE_UNUSED.
-                */
-               if (zp->alloc_count == ZONE_PAGE_UNUSED)
-                       zp->alloc_count = 1;
-               else
-                       ++zp->alloc_count;
+       zba_populate(chunk);
+       if (zba_meta()->zbam_chunks == chunk) {
+               zba_init_chunk(chunk);
        }
 }
 
        }
 }
 
-void
-zone_page_free_element(
-       struct zone_page_table_entry    **free_pages,
-       vm_offset_t     addr,
-       vm_size_t       size)
+static vm_offset_t
+zba_alloc(uint32_t order)
 {
 {
-       struct zone_page_table_entry    *zp;
-       natural_t i, j;
+       struct zone_bits_allocator_header *zbah;
+       uint32_t cur = order;
+       vm_address_t addr;
+       size_t node;
+
+       while ((addr = zba_try_pop_block(cur)) == 0) {
+               if (cur++ >= ZBA_MAX_ORDER) {
+                       zba_grow();
+                       cur = order;
+               }
+       }
 
 
-#if    ZONE_ALIAS_ADDR
-       addr = zone_virtual_addr(addr);
-#endif
-#if MACH_ASSERT
-       if (!from_zone_map(addr, size))
-               panic("zone_page_free_element");
-#endif
+       zbah = zba_header(addr);
+       node = zba_node(addr, cur);
+       zba_node_flip_split(zbah, zba_node_parent(node));
+       while (cur > order) {
+               cur--;
+               zba_node_flip_split(zbah, node);
+               node = zba_node_left_child(node);
+               zba_push_block(zba_chain_for_node(zbah, node + 1, cur), cur);
+       }
+
+       return addr;
+}
+
+#define zba_map_index(type, n)    (n / (8 * sizeof(type)))
+#define zba_map_bit(type, n)      ((type)1 << (n % (8 * sizeof(type))))
+#define zba_map_mask_lt(type, n)  (zba_map_bit(type, n) - 1)
+#define zba_map_mask_ge(type, n)  ((type)-zba_map_bit(type, n))
 
 
-       i = atop_32(addr-zone_map_min_address);
-       j = atop_32((addr+size-1) - zone_map_min_address);
+#if !ZALLOC_TEST
+static uint32_t
+zba_bits_ref_order(uint32_t bref)
+{
+       return bref & 0x7;
+}
+
+static bitmap_t *
+zba_bits_ref_ptr(uint32_t bref)
+{
+       return zba_slot_base() + (bref >> 3);
+}
 
 
-       for (zp = zone_page_table + i; i <= j; zp++, i++) {
-               if (zp->collect_count > 0)
-                       --zp->collect_count;
-               if (--zp->alloc_count == 0) {
-                       zp->alloc_count  = ZONE_PAGE_UNUSED;
-                       zp->collect_count = 0;
+static vm_offset_t
+zba_scan_bitmap_inline(zone_t zone, struct zone_page_metadata *meta,
+    vm_offset_t eidx)
+{
+       size_t i = eidx / 32;
+       uint32_t map;
+
+       if (eidx % 32) {
+               map = meta[i].zm_bitmap & zba_map_mask_ge(uint32_t, eidx);
+               if (map) {
+                       eidx = __builtin_ctz(map);
+                       meta[i].zm_bitmap ^= 1u << eidx;
+                       return i * 32 + eidx;
+               }
+               i++;
+       }
 
 
-                       zp->link = *free_pages;
-                       *free_pages = zp;
+       uint32_t chunk_len = meta->zm_chunk_len;
+       if (chunk_len == 1 && zone->z_percpu) {
+               chunk_len = zpercpu_count();
+       }
+       for (int j = 0; j < chunk_len; j++, i++) {
+               if (i >= chunk_len) {
+                       i = 0;
+               }
+               if (__probable(map = meta[i].zm_bitmap)) {
+                       meta[i].zm_bitmap &= map - 1;
+                       return i * 32 + __builtin_ctz(map);
                }
        }
                }
        }
+
+       zone_page_meta_accounting_panic(zone, meta, "zm_bitmap");
 }
 
 }
 
+static vm_offset_t
+zba_scan_bitmap_ref(zone_t zone, struct zone_page_metadata *meta,
+    vm_offset_t eidx)
+{
+       uint32_t bits_size = 1 << zba_bits_ref_order(meta->zm_bitmap);
+       bitmap_t *bits = zba_bits_ref_ptr(meta->zm_bitmap);
+       size_t i = eidx / 64;
+       uint64_t map;
+
+       if (eidx % 64) {
+               map = bits[i] & zba_map_mask_ge(uint64_t, eidx);
+               if (map) {
+                       eidx = __builtin_ctzll(map);
+                       bits[i] ^= 1ull << eidx;
+                       return i * 64 + eidx;
+               }
+               i++;
+       }
+
+       for (int j = 0; j < bits_size; i++, j++) {
+               if (i >= bits_size) {
+                       i = 0;
+               }
+               if (__probable(map = bits[i])) {
+                       bits[i] &= map - 1;
+                       return i * 64 + __builtin_ctzll(map);
+               }
+       }
+
+       zone_page_meta_accounting_panic(zone, meta, "zm_bitmap");
+}
 
 
-/* This is used for walking through a zone's free element list.
+/*!
+ * @function zone_meta_find_and_clear_bit
+ *
+ * @brief
+ * The core of the bitmap allocator: find a bit set in the bitmaps.
+ *
+ * @discussion
+ * This method will round robin through available allocations,
+ * with a per-core memory of the last allocated element index allocated.
+ *
+ * This is done in order to avoid a fully LIFO behavior which makes exploiting
+ * double-free bugs way too practical.
+ *
+ * @param zone          The zone we're allocating from.
+ * @param meta          The main metadata for the chunk being allocated from.
  */
  */
-struct zone_free_element {
-       struct zone_free_element * next;
-};
+static vm_offset_t
+zone_meta_find_and_clear_bit(zone_t zone, struct zone_page_metadata *meta)
+{
+       zone_stats_t zs = zpercpu_get(zone->z_stats);
+       vm_offset_t eidx = zs->zs_alloc_rr + 1;
 
 
-/*
- * Add a linked list of pages starting at base back into the zone
- * free list. Tail points to the last element on the list.
+       if (meta->zm_inline_bitmap) {
+               eidx = zba_scan_bitmap_inline(zone, meta, eidx);
+       } else {
+               eidx = zba_scan_bitmap_ref(zone, meta, eidx);
+       }
+       zs->zs_alloc_rr = (uint16_t)eidx;
+       return eidx;
+}
+
+/*!
+ * @function zone_meta_bits_init
+ *
+ * @brief
+ * Initializes the zm_bitmap field(s) for a newly assigned chunk.
+ *
+ * @param meta          The main metadata for the initialized chunk.
+ * @param count         The number of elements the chunk can hold
+ *                      (which might be partial for partially populated chunks).
+ * @param nbits         The maximum nuber of bits that will be used.
  */
  */
+static void
+zone_meta_bits_init(struct zone_page_metadata *meta,
+    uint32_t count, uint32_t nbits)
+{
+       static_assert(ZONE_MAX_ALLOC_SIZE / ZONE_MIN_ELEM_SIZE <=
+           ZBA_GRANULE_BITS << ZBA_MAX_ORDER, "bitmaps will be large enough");
+
+       if (meta->zm_inline_bitmap) {
+               /*
+                * We're called with the metadata zm_bitmap fields already
+                * zeroed out.
+                */
+               for (size_t i = 0; 32 * i < count; i++) {
+                       if (32 * i + 32 <= count) {
+                               meta[i].zm_bitmap = ~0u;
+                       } else {
+                               meta[i].zm_bitmap = zba_map_mask_lt(uint32_t, count);
+                       }
+               }
+       } else {
+               uint32_t order = flsll((nbits - 1) / ZBA_GRANULE_BITS);
+               uint64_t *bits;
 
 
-#define ADD_LIST_TO_ZONE(zone, base, tail)                             \
-MACRO_BEGIN                                                            \
-       (tail)->next = (void *)((zone)->free_elements);                 \
-       if (check_freed_element) {                                      \
-               if ((zone)->elem_size >= (2 * sizeof(vm_offset_t)))     \
-                       ((vm_offset_t *)(tail))[((zone)->elem_size/sizeof(vm_offset_t))-1] = \
-                                        (zone)->free_elements;         \
-       }                                                               \
-       (zone)->free_elements = (unsigned long)(base);                  \
-MACRO_END
+               assert(order <= ZBA_MAX_ALLOC_ORDER);
+               assert(count <= ZBA_GRANULE_BITS << order);
 
 
-/*
- * Add an element to the chain pointed to by prev.
+               zba_lock();
+               bits = (uint64_t *)zba_alloc(order);
+               zba_unlock();
+
+               for (size_t i = 0; i < 1u << order; i++) {
+                       if (64 * i + 64 <= count) {
+                               bits[i] = ~0ull;
+                       } else if (64 * i < count) {
+                               bits[i] = zba_map_mask_lt(uint64_t, count);
+                       } else {
+                               bits[i] = 0ull;
+                       }
+               }
+
+               meta->zm_bitmap = (uint32_t)((vm_offset_t)bits -
+                   (vm_offset_t)zba_slot_base()) + order;
+       }
+}
+
+/*!
+ * @function zone_meta_bits_merge
+ *
+ * @brief
+ * Adds elements <code>[start, end)</code> to a chunk being extended.
+ *
+ * @param meta          The main metadata for the extended chunk.
+ * @param start         The index of the first element to add to the chunk.
+ * @param end           The index of the last (exclusive) element to add.
  */
  */
+static void
+zone_meta_bits_merge(struct zone_page_metadata *meta,
+    uint32_t start, uint32_t end)
+{
+       if (meta->zm_inline_bitmap) {
+               while (start < end) {
+                       size_t s_i = start / 32;
+                       size_t s_e = end / 32;
+
+                       if (s_i == s_e) {
+                               meta[s_i].zm_bitmap |= zba_map_mask_lt(uint32_t, end) &
+                                   zba_map_mask_ge(uint32_t, start);
+                               break;
+                       }
 
 
-#define ADD_ELEMENT(zone, prev, elem)                                          \
-MACRO_BEGIN                                                            \
-       (prev)->next = (elem);                                          \
-       if (check_freed_element) {                                      \
-               if ((zone)->elem_size >= (2 * sizeof(vm_offset_t)))     \
-                       ((vm_offset_t *)(prev))[((zone)->elem_size/sizeof(vm_offset_t))-1] = \
-                                       (vm_offset_t)(elem);            \
-        }                                                              \
-MACRO_END
+                       meta[s_i].zm_bitmap |= zba_map_mask_ge(uint32_t, start);
+                       start += 32 - (start % 32);
+               }
+       } else {
+               uint64_t *bits = zba_bits_ref_ptr(meta->zm_bitmap);
 
 
-struct {
-       uint32_t        pgs_freed;
+               while (start < end) {
+                       size_t s_i = start / 64;
+                       size_t s_e = end / 64;
 
 
-       uint32_t        elems_collected,
-                               elems_freed,
-                               elems_kept;
-} zgc_stats;
+                       if (s_i == s_e) {
+                               bits[s_i] |= zba_map_mask_lt(uint64_t, end) &
+                                   zba_map_mask_ge(uint64_t, start);
+                               break;
+                       }
+                       bits[s_i] |= zba_map_mask_ge(uint64_t, start);
+                       start += 64 - (start % 64);
+               }
+       }
+}
 
 
-/*     Zone garbage collection
+/*!
+ * @function zone_bits_free
  *
  *
- *     zone_gc will walk through all the free elements in all the
- *     zones that are marked collectable looking for reclaimable
- *     pages.  zone_gc is called by consider_zone_gc when the system
- *     begins to run out of memory.
+ * @brief
+ * Frees a bitmap to the zone bitmap allocator.
+ *
+ * @param bref
+ * A bitmap reference set by @c zone_meta_bits_init() in a @c zm_bitmap field.
  */
  */
-void
-zone_gc(void)
+static void
+zone_bits_free(uint32_t bref)
 {
 {
-       unsigned int    max_zones;
-       zone_t                  z;
-       unsigned int    i;
-       struct zone_page_table_entry    *zp, *zone_free_pages;
+       zba_lock();
+       zba_free((vm_offset_t)zba_bits_ref_ptr(bref), zba_bits_ref_order(bref));
+       zba_unlock();
+}
 
 
-       mutex_lock(&zone_gc_lock);
+/*!
+ * @function zone_meta_is_free
+ *
+ * @brief
+ * Returns whether a given element appears free.
+ */
+static bool
+zone_meta_is_free(struct zone_page_metadata *meta, zone_element_t ze)
+{
+       vm_offset_t eidx = zone_element_idx(ze);
+       if (meta->zm_inline_bitmap) {
+               uint32_t bit = zba_map_bit(uint32_t, eidx);
+               return meta[zba_map_index(uint32_t, eidx)].zm_bitmap & bit;
+       } else {
+               bitmap_t *bits = zba_bits_ref_ptr(meta->zm_bitmap);
+               uint64_t bit = zba_map_bit(uint64_t, eidx);
+               return bits[zba_map_index(uint64_t, eidx)] & bit;
+       }
+}
 
 
-       simple_lock(&all_zones_lock);
-       max_zones = num_zones;
-       z = first_zone;
-       simple_unlock(&all_zones_lock);
+/*!
+ * @function zone_meta_mark_free
+ *
+ * @brief
+ * Marks an element as free and returns whether it was marked as used.
+ */
+static bool
+zone_meta_mark_free(struct zone_page_metadata *meta, zone_element_t ze)
+{
+       vm_offset_t eidx = zone_element_idx(ze);
 
 
-#if MACH_ASSERT
-       for (i = 0; i < zone_pages; i++)
-               assert(zone_page_table[i].collect_count == 0);
-#endif /* MACH_ASSERT */
+       if (meta->zm_inline_bitmap) {
+               uint32_t bit = zba_map_bit(uint32_t, eidx);
+               if (meta[zba_map_index(uint32_t, eidx)].zm_bitmap & bit) {
+                       return false;
+               }
+               meta[zba_map_index(uint32_t, eidx)].zm_bitmap ^= bit;
+       } else {
+               bitmap_t *bits = zba_bits_ref_ptr(meta->zm_bitmap);
+               uint64_t bit = zba_map_bit(uint64_t, eidx);
+               if (bits[zba_map_index(uint64_t, eidx)] & bit) {
+                       return false;
+               }
+               bits[zba_map_index(uint64_t, eidx)] ^= bit;
+       }
+       return true;
+}
 
 
-       zone_free_pages = NULL;
+/*!
+ * @function zone_meta_mark_used
+ *
+ * @brief
+ * Marks an element as used and returns whether it was marked as free
+ */
+static bool
+zone_meta_mark_used(struct zone_page_metadata *meta, zone_element_t ze)
+{
+       vm_offset_t eidx = zone_element_idx(ze);
 
 
-       for (i = 0; i < max_zones; i++, z = z->next_zone) {
-               unsigned int                            n, m;
-               vm_size_t                                       elt_size, size_freed;
-               struct zone_free_element        *elt, *base_elt, *base_prev, *prev, *scan, *keep, *tail;
+       if (meta->zm_inline_bitmap) {
+               uint32_t bit = zba_map_bit(uint32_t, eidx);
+               if (meta[zba_map_index(uint32_t, eidx)].zm_bitmap & bit) {
+                       meta[zba_map_index(uint32_t, eidx)].zm_bitmap ^= bit;
+                       return true;
+               }
+       } else {
+               bitmap_t *bits = zba_bits_ref_ptr(meta->zm_bitmap);
+               uint64_t bit = zba_map_bit(uint64_t, eidx);
+               if (bits[zba_map_index(uint64_t, eidx)] & bit) {
+                       bits[zba_map_index(uint64_t, eidx)] ^= bit;
+                       return true;
+               }
+       }
+       return false;
+}
 
 
-               assert(z != ZONE_NULL);
+#endif /* !ZALLOC_TEST */
+/*! @} */
+#pragma mark ZTAGS
+#if !ZALLOC_TEST
+#if VM_MAX_TAG_ZONES
+/*
+ * Zone tagging allows for per "tag" accounting of allocations for the kalloc
+ * zones only.
+ *
+ * There are 3 kinds of tags that can be used:
+ * - pre-registered VM_KERN_MEMORY_*
+ * - dynamic tags allocated per call sites in core-kernel (using vm_tag_alloc())
+ * - per-kext tags computed by IOKit (using the magic VM_TAG_BT marker).
+ *
+ * The VM tracks the statistics in lazily allocated structures.
+ * See vm_tag_will_update_zone(), vm_tag_update_zone_size().
+ *
+ * If for some reason the requested tag cannot be accounted for,
+ * the tag is forced to VM_KERN_MEMORY_KALLOC which is pre-allocated.
+ *
+ * Each allocated element also remembers the tag it was assigned,
+ * in its ztSlot() which lets zalloc/zfree update statistics correctly.
+ */
 
 
-               if (!z->collectable)
-                       continue;
+// for zones with tagging enabled:
 
 
-               lock_zone(z);
+// calculate a pointer to the tag base entry,
+// holding either a uint32_t the first tag offset for a page in the zone map,
+// or two uint16_t tags if the page can only hold one or two elements
 
 
-               elt_size = z->elem_size;
+#define ZTAGBASE(zone, element) \
+       (&((uint32_t *)zone_tagbase_min)[atop((element) - \
+           zone_info.zi_map_range[ZONE_ADDR_NATIVE].min_address)])
 
 
-               /*
-                * Do a quick feasability check before we scan the zone: 
-                * skip unless there is likelihood of getting pages back
-                * (i.e we need a whole allocation block's worth of free
-                * elements before we can garbage collect) and
-                * the zone has more than 10 percent of it's elements free
-                * or the element size is a multiple of the PAGE_SIZE 
-                */
-               if ((elt_size & PAGE_MASK) && 
-                    (((z->cur_size - z->count * elt_size) <= (2 * z->alloc_size)) ||
-                     ((z->cur_size - z->count * elt_size) <= (z->cur_size / 10)))) {
-                       unlock_zone(z);         
-                       continue;
-               }
+static vm_offset_t  zone_tagbase_min;
+static vm_offset_t  zone_tagbase_max;
+static vm_offset_t  zone_tagbase_map_size;
+static vm_map_t     zone_tagbase_map;
 
 
-               z->doing_gc = TRUE;
+static vm_offset_t  zone_tags_min;
+static vm_offset_t  zone_tags_max;
+static vm_offset_t  zone_tags_map_size;
+static vm_map_t     zone_tags_map;
 
 
-               /*
-                * Snatch all of the free elements away from the zone.
-                */
+// simple heap allocator for allocating the tags for new memory
 
 
-               scan = (void *)z->free_elements;
-               z->free_elements = 0;
+static LCK_MTX_EARLY_DECLARE(ztLock, &zone_locks_grp); /* heap lock */
 
 
-               unlock_zone(z);
+enum{
+       ztFreeIndexCount = 8,
+       ztFreeIndexMax   = (ztFreeIndexCount - 1),
+       ztTagsPerBlock   = 4
+};
 
 
-               /*
-                * Pass 1:
-                *
-                * Determine which elements we can attempt to collect
-                * and count them up in the page table.  Foreign elements
-                * are returned to the zone.
-                */
+struct ztBlock {
+#if __LITTLE_ENDIAN__
+       uint64_t free:1,
+           next:21,
+           prev:21,
+           size:21;
+#else
+// ztBlock needs free bit least significant
+#error !__LITTLE_ENDIAN__
+#endif
+};
+typedef struct ztBlock ztBlock;
 
 
-               prev = (void *)&scan;
-               elt = scan;
-               n = 0; tail = keep = NULL;
-               while (elt != NULL) {
-                       if (from_zone_map(elt, elt_size)) {
-                               zone_page_collect((vm_offset_t)elt, elt_size);
+static ztBlock * ztBlocks;
+static uint32_t  ztBlocksCount;
+static uint32_t  ztBlocksFree;
 
 
-                               prev = elt;
-                               elt = elt->next;
+static uint32_t
+ztLog2up(uint32_t size)
+{
+       if (1 == size) {
+               size = 0;
+       } else {
+               size = 32 - __builtin_clz(size - 1);
+       }
+       return size;
+}
 
 
-                               ++zgc_stats.elems_collected;
-                       }
-                       else {
-                               if (keep == NULL)
-                                       keep = tail = elt;
-                               else {
-                                       ADD_ELEMENT(z, tail, elt);
-                                       tail = elt;
-                               }
+// pointer to the tag for an element
+static vm_tag_t *
+ztSlot(zone_t zone, vm_offset_t element)
+{
+       vm_tag_t *result;
+       if (zone->tags_inline) {
+               result = (vm_tag_t *)ZTAGBASE(zone, element);
+               if ((PAGE_MASK & element) >= zone_elem_size(zone)) {
+                       result++;
+               }
+       } else {
+               result = &((vm_tag_t *)zone_tags_min)[ZTAGBASE(zone, element)[0] +
+                   (element & PAGE_MASK) / zone_elem_size(zone)];
+       }
+       return result;
+}
+
+static uint32_t
+ztLog2down(uint32_t size)
+{
+       size = 31 - __builtin_clz(size);
+       return size;
+}
+
+static void
+ztFault(vm_map_t map, const void * address, size_t size, uint32_t flags)
+{
+       vm_map_offset_t addr = (vm_map_offset_t) address;
+       vm_map_offset_t page, end;
+
+       page = trunc_page(addr);
+       end  = round_page(addr + size);
+
+       for (; page < end; page += page_size) {
+               if (!pmap_find_phys(kernel_pmap, page)) {
+                       kern_return_t __unused
+                       ret = kernel_memory_populate(map, page, PAGE_SIZE,
+                           KMA_KOBJECT | flags, VM_KERN_MEMORY_DIAG);
+                       assert(ret == KERN_SUCCESS);
+               }
+       }
+}
+
+static boolean_t
+ztPresent(const void * address, size_t size)
+{
+       vm_map_offset_t addr = (vm_map_offset_t) address;
+       vm_map_offset_t page, end;
+       boolean_t       result;
+
+       page = trunc_page(addr);
+       end  = round_page(addr + size);
+       for (result = TRUE; (page < end); page += page_size) {
+               result = pmap_find_phys(kernel_pmap, page);
+               if (!result) {
+                       break;
+               }
+       }
+       return result;
+}
 
 
-                               ADD_ELEMENT(z, prev, elt->next);
-                               elt = elt->next;
-                               ADD_ELEMENT(z, tail, NULL);
+
+void __unused
+ztDump(boolean_t sanity);
+void __unused
+ztDump(boolean_t sanity)
+{
+       uint32_t q, cq, p;
+
+       for (q = 0; q <= ztFreeIndexMax; q++) {
+               p = q;
+               do{
+                       if (sanity) {
+                               cq = ztLog2down(ztBlocks[p].size);
+                               if (cq > ztFreeIndexMax) {
+                                       cq = ztFreeIndexMax;
+                               }
+                               if (!ztBlocks[p].free
+                                   || ((p != q) && (q != cq))
+                                   || (ztBlocks[ztBlocks[p].next].prev != p)
+                                   || (ztBlocks[ztBlocks[p].prev].next != p)) {
+                                       kprintf("zterror at %d", p);
+                                       ztDump(FALSE);
+                                       kprintf("zterror at %d", p);
+                                       assert(FALSE);
+                               }
+                               continue;
                        }
                        }
+                       kprintf("zt[%03d]%c %d, %d, %d\n",
+                           p, ztBlocks[p].free ? 'F' : 'A',
+                           ztBlocks[p].next, ztBlocks[p].prev,
+                           ztBlocks[p].size);
+                       p = ztBlocks[p].next;
+                       if (p == q) {
+                               break;
+                       }
+               }while (p != q);
+               if (!sanity) {
+                       printf("\n");
+               }
+       }
+       if (!sanity) {
+               printf("-----------------------\n");
+       }
+}
 
 
-                       /*
-                        * Dribble back the elements we are keeping.
-                        */
 
 
-                       if (++n >= 50) {
-                               if (z->waiting == TRUE) {
-                                       lock_zone(z);
-
-                                       if (keep != NULL) {
-                                               ADD_LIST_TO_ZONE(z, keep, tail);
-                                               tail = keep = NULL;
-                                       } else {
-                                               m =0;
-                                               base_elt = elt;
-                                               base_prev = prev;
-                                               while ((elt != NULL) && (++m < 50)) { 
-                                                       prev = elt;
-                                                       elt = elt->next;
-                                               }
-                                               if (m !=0 ) {
-                                                       ADD_LIST_TO_ZONE(z, base_elt, prev);
-                                                       ADD_ELEMENT(z, base_prev, elt);
-                                                       prev = base_prev;
-                                               }
-                                       }
-
-                                       if (z->waiting) {
-                                               z->waiting = FALSE;
-                                               zone_wakeup(z);
-                                       }
-
-                                       unlock_zone(z);
+
+#define ZTBDEQ(idx)                                                 \
+    ztBlocks[ztBlocks[(idx)].prev].next = ztBlocks[(idx)].next;     \
+    ztBlocks[ztBlocks[(idx)].next].prev = ztBlocks[(idx)].prev;
+
+static void
+ztFree(zone_t zone __unused, uint32_t index, uint32_t count)
+{
+       uint32_t q, w, p, size, merge;
+
+       assert(count);
+       ztBlocksFree += count;
+
+       // merge with preceding
+       merge = (index + count);
+       if ((merge < ztBlocksCount)
+           && ztPresent(&ztBlocks[merge], sizeof(ztBlocks[merge]))
+           && ztBlocks[merge].free) {
+               ZTBDEQ(merge);
+               count += ztBlocks[merge].size;
+       }
+
+       // merge with following
+       merge = (index - 1);
+       if ((merge > ztFreeIndexMax)
+           && ztPresent(&ztBlocks[merge], sizeof(ztBlocks[merge]))
+           && ztBlocks[merge].free) {
+               size = ztBlocks[merge].size;
+               count += size;
+               index -= size;
+               ZTBDEQ(index);
+       }
+
+       q = ztLog2down(count);
+       if (q > ztFreeIndexMax) {
+               q = ztFreeIndexMax;
+       }
+       w = q;
+       // queue in order of size
+       while (TRUE) {
+               p = ztBlocks[w].next;
+               if (p == q) {
+                       break;
+               }
+               if (ztBlocks[p].size >= count) {
+                       break;
+               }
+               w = p;
+       }
+       ztBlocks[p].prev = index;
+       ztBlocks[w].next = index;
+
+       // fault in first
+       ztFault(zone_tags_map, &ztBlocks[index], sizeof(ztBlocks[index]), 0);
+
+       // mark first & last with free flag and size
+       ztBlocks[index].free = TRUE;
+       ztBlocks[index].size = count;
+       ztBlocks[index].prev = w;
+       ztBlocks[index].next = p;
+       if (count > 1) {
+               index += (count - 1);
+               // fault in last
+               ztFault(zone_tags_map, &ztBlocks[index], sizeof(ztBlocks[index]), 0);
+               ztBlocks[index].free = TRUE;
+               ztBlocks[index].size = count;
+       }
+}
+
+static uint32_t
+ztAlloc(zone_t zone, uint32_t count)
+{
+       uint32_t q, w, p, leftover;
+
+       assert(count);
+
+       q = ztLog2up(count);
+       if (q > ztFreeIndexMax) {
+               q = ztFreeIndexMax;
+       }
+       do{
+               w = q;
+               while (TRUE) {
+                       p = ztBlocks[w].next;
+                       if (p == q) {
+                               break;
+                       }
+                       if (ztBlocks[p].size >= count) {
+                               // dequeue, mark both ends allocated
+                               ztBlocks[w].next = ztBlocks[p].next;
+                               ztBlocks[ztBlocks[p].next].prev = w;
+                               ztBlocks[p].free = FALSE;
+                               ztBlocksFree -= ztBlocks[p].size;
+                               if (ztBlocks[p].size > 1) {
+                                       ztBlocks[p + ztBlocks[p].size - 1].free = FALSE;
+                               }
+
+                               // fault all the allocation
+                               ztFault(zone_tags_map, &ztBlocks[p], count * sizeof(ztBlocks[p]), 0);
+                               // mark last as allocated
+                               if (count > 1) {
+                                       ztBlocks[p + count - 1].free = FALSE;
+                               }
+                               // free remainder
+                               leftover = ztBlocks[p].size - count;
+                               if (leftover) {
+                                       ztFree(zone, p + ztBlocks[p].size - leftover, leftover);
                                }
                                }
-                               n =0;
+
+                               return p;
                        }
                        }
+                       w = p;
                }
                }
+               q++;
+       }while (q <= ztFreeIndexMax);
 
 
-               /*
-                * Return any remaining elements.
-                */
+       return -1U;
+}
+
+__startup_func
+static void
+zone_tagging_init(vm_size_t max_zonemap_size)
+{
+       kern_return_t         ret;
+       vm_map_kernel_flags_t vmk_flags;
+       uint32_t              idx;
+
+       // allocate submaps VM_KERN_MEMORY_DIAG
+
+       zone_tagbase_map_size = atop(max_zonemap_size) * sizeof(uint32_t);
+       vmk_flags = VM_MAP_KERNEL_FLAGS_NONE;
+       vmk_flags.vmkf_permanent = TRUE;
+       ret = kmem_suballoc(kernel_map, &zone_tagbase_min, zone_tagbase_map_size,
+           FALSE, VM_FLAGS_ANYWHERE, vmk_flags, VM_KERN_MEMORY_DIAG,
+           &zone_tagbase_map);
+
+       if (ret != KERN_SUCCESS) {
+               panic("zone_init: kmem_suballoc failed");
+       }
+       zone_tagbase_max = zone_tagbase_min + round_page(zone_tagbase_map_size);
+
+       zone_tags_map_size = 2048 * 1024 * sizeof(vm_tag_t);
+       vmk_flags = VM_MAP_KERNEL_FLAGS_NONE;
+       vmk_flags.vmkf_permanent = TRUE;
+       ret = kmem_suballoc(kernel_map, &zone_tags_min, zone_tags_map_size,
+           FALSE, VM_FLAGS_ANYWHERE, vmk_flags, VM_KERN_MEMORY_DIAG,
+           &zone_tags_map);
+
+       if (ret != KERN_SUCCESS) {
+               panic("zone_init: kmem_suballoc failed");
+       }
+       zone_tags_max = zone_tags_min + round_page(zone_tags_map_size);
+
+       ztBlocks = (ztBlock *) zone_tags_min;
+       ztBlocksCount = (uint32_t)(zone_tags_map_size / sizeof(ztBlock));
 
 
-               if (keep != NULL) {
-                       lock_zone(z);
+       // initialize the qheads
+       lck_mtx_lock(&ztLock);
 
 
-                       ADD_LIST_TO_ZONE(z, keep, tail);
+       ztFault(zone_tags_map, &ztBlocks[0], sizeof(ztBlocks[0]), 0);
+       for (idx = 0; idx < ztFreeIndexCount; idx++) {
+               ztBlocks[idx].free = TRUE;
+               ztBlocks[idx].next = idx;
+               ztBlocks[idx].prev = idx;
+               ztBlocks[idx].size = 0;
+       }
+       // free remaining space
+       ztFree(NULL, ztFreeIndexCount, ztBlocksCount - ztFreeIndexCount);
+
+       lck_mtx_unlock(&ztLock);
+}
+
+static void
+ztMemoryAdd(zone_t zone, vm_offset_t mem, vm_size_t size)
+{
+       uint32_t * tagbase;
+       uint32_t   count, block, blocks, idx;
+       size_t     pages;
+
+       pages = atop(size);
+       tagbase = ZTAGBASE(zone, mem);
+
+       lck_mtx_lock(&ztLock);
+
+       // fault tagbase
+       ztFault(zone_tagbase_map, tagbase, pages * sizeof(uint32_t), 0);
 
 
-                       unlock_zone(z);
+       if (!zone->tags_inline) {
+               // allocate tags
+               count = (uint32_t)(size / zone_elem_size(zone));
+               blocks = ((count + ztTagsPerBlock - 1) / ztTagsPerBlock);
+               block = ztAlloc(zone, blocks);
+               if (-1U == block) {
+                       ztDump(false);
                }
                }
+               assert(-1U != block);
+       }
 
 
-               /*
-                * Pass 2:
-                *
-                * Determine which pages we can reclaim and
-                * free those elements.
-                */
+       lck_mtx_unlock(&ztLock);
+
+       if (!zone->tags_inline) {
+               // set tag base for each page
+               block *= ztTagsPerBlock;
+               for (idx = 0; idx < pages; idx++) {
+                       vm_offset_t esize = zone_elem_size(zone);
+                       tagbase[idx] = block + (uint32_t)((ptoa(idx) + esize - 1) / esize);
+               }
+       }
+}
+
+static void
+ztMemoryRemove(zone_t zone, vm_offset_t mem, vm_size_t size)
+{
+       uint32_t * tagbase;
+       uint32_t   count, block, blocks, idx;
+       size_t     pages;
+
+       // set tag base for each page
+       pages = atop(size);
+       tagbase = ZTAGBASE(zone, mem);
+       block = tagbase[0];
+       for (idx = 0; idx < pages; idx++) {
+               tagbase[idx] = 0xFFFFFFFF;
+       }
+
+       lck_mtx_lock(&ztLock);
+       if (!zone->tags_inline) {
+               count = (uint32_t)(size / zone_elem_size(zone));
+               blocks = ((count + ztTagsPerBlock - 1) / ztTagsPerBlock);
+               assert(block != 0xFFFFFFFF);
+               block /= ztTagsPerBlock;
+               ztFree(NULL /* zone is unlocked */, block, blocks);
+       }
+
+       lck_mtx_unlock(&ztLock);
+}
+
+uint32_t
+zone_index_from_tag_index(uint32_t tag_zone_index, vm_size_t * elem_size)
+{
+       simple_lock(&all_zones_lock, &zone_locks_grp);
+
+       zone_index_foreach(idx) {
+               zone_t z = &zone_array[idx];
+               if (!z->tags) {
+                       continue;
+               }
+               if (tag_zone_index != z->tag_zone_index) {
+                       continue;
+               }
+
+               *elem_size = zone_elem_size(z);
+               simple_unlock(&all_zones_lock);
+               return idx;
+       }
+
+       simple_unlock(&all_zones_lock);
+
+       return -1U;
+}
+
+#endif /* VM_MAX_TAG_ZONES */
+#endif /* !ZALLOC_TEST */
+#pragma mark zalloc helpers
+#if !ZALLOC_TEST
+
+__pure2
+static inline uint16_t
+zc_mag_size(void)
+{
+       return zc_magazine_size;
+}
+
+__attribute__((noinline, cold))
+static void
+zone_lock_was_contended(zone_t zone, zone_cache_t zc)
+{
+       lck_spin_lock_nopreempt(&zone->z_lock);
+
+       /*
+        * If zone caching has been disabled due to memory pressure,
+        * then recording contention is not useful, give the system
+        * time to recover.
+        */
+       if (__improbable(zone_caching_disabled)) {
+               return;
+       }
+
+       zone->z_contention_cur++;
+
+       if (zc == NULL || zc->zc_depot_max >= INT16_MAX * zc_mag_size()) {
+               return;
+       }
+
+       /*
+        * Let the depot grow based on how bad the contention is,
+        * and how populated the zone is.
+        */
+       if (zone->z_contention_wma < 2 * Z_CONTENTION_WMA_UNIT) {
+               if (zc->zc_depot_max * zpercpu_count() * 20u >=
+                   zone->z_elems_avail) {
+                       return;
+               }
+       }
+       if (zone->z_contention_wma < 4 * Z_CONTENTION_WMA_UNIT) {
+               if (zc->zc_depot_max * zpercpu_count() * 10u >=
+                   zone->z_elems_avail) {
+                       return;
+               }
+       }
+       if (!zc_grow_threshold || zone->z_contention_wma <
+           zc_grow_threshold * Z_CONTENTION_WMA_UNIT) {
+               return;
+       }
+
+       zc->zc_depot_max++;
+}
+
+static inline void
+zone_lock_nopreempt_check_contention(zone_t zone, zone_cache_t zc)
+{
+       if (lck_spin_try_lock_nopreempt(&zone->z_lock)) {
+               return;
+       }
+
+       zone_lock_was_contended(zone, zc);
+}
+
+static inline void
+zone_lock_check_contention(zone_t zone, zone_cache_t zc)
+{
+       disable_preemption();
+       zone_lock_nopreempt_check_contention(zone, zc);
+}
+
+static inline void
+zone_unlock_nopreempt(zone_t zone)
+{
+       lck_spin_unlock_nopreempt(&zone->z_lock);
+}
+
+static inline void
+zone_depot_lock_nopreempt(zone_cache_t zc)
+{
+       hw_lock_bit_nopreempt(&zc->zc_depot_lock, 0, &zone_locks_grp);
+}
+
+static inline void
+zone_depot_unlock_nopreempt(zone_cache_t zc)
+{
+       hw_unlock_bit_nopreempt(&zc->zc_depot_lock, 0);
+}
+
+static inline void
+zone_depot_lock(zone_cache_t zc)
+{
+       hw_lock_bit(&zc->zc_depot_lock, 0, &zone_locks_grp);
+}
+
+static inline void
+zone_depot_unlock(zone_cache_t zc)
+{
+       hw_unlock_bit(&zc->zc_depot_lock, 0);
+}
+
+const char *
+zone_name(zone_t z)
+{
+       return z->z_name;
+}
+
+const char *
+zone_heap_name(zone_t z)
+{
+       if (__probable(z->kalloc_heap < KHEAP_ID_COUNT)) {
+               return kalloc_heap_names[z->kalloc_heap];
+       }
+       return "invalid";
+}
+
+static uint32_t
+zone_alloc_pages_for_nelems(zone_t z, vm_size_t max_elems)
+{
+       vm_size_t elem_count, chunks;
+
+       elem_count = ptoa(z->z_percpu ? 1 : z->z_chunk_pages) / zone_elem_size(z);
+       chunks = (max_elems + elem_count - 1) / elem_count;
+
+       return (uint32_t)MIN(UINT32_MAX, chunks * z->z_chunk_pages);
+}
+
+static inline vm_size_t
+zone_submaps_approx_size(void)
+{
+       vm_size_t size = 0;
+
+       for (unsigned idx = 0; idx <= zone_last_submap_idx; idx++) {
+               size += zone_submaps[idx]->size;
+       }
+
+       return size;
+}
+
+static void
+zone_cache_swap_magazines(zone_cache_t cache)
+{
+       uint16_t count_a = cache->zc_alloc_cur;
+       uint16_t count_f = cache->zc_free_cur;
+       zone_element_t *elems_a = cache->zc_alloc_elems;
+       zone_element_t *elems_f = cache->zc_free_elems;
+
+       z_debug_assert(count_a <= zc_mag_size());
+       z_debug_assert(count_f <= zc_mag_size());
+
+       cache->zc_alloc_cur = count_f;
+       cache->zc_free_cur = count_a;
+       cache->zc_alloc_elems = elems_f;
+       cache->zc_free_elems = elems_a;
+}
+
+/*!
+ * @function zone_magazine_load
+ *
+ * @brief
+ * Cache the value of @c zm_cur on the cache to avoid a dependent load
+ * on the allocation fastpath.
+ */
+static void
+zone_magazine_load(uint16_t *count, zone_element_t **elems, zone_magazine_t mag)
+{
+       z_debug_assert(mag->zm_cur <= zc_mag_size());
+       *count = mag->zm_cur;
+       *elems = mag->zm_elems;
+}
+
+/*!
+ * @function zone_magazine_replace
+ *
+ * @brief
+ * Unlod a magazine and load a new one instead.
+ */
+static zone_magazine_t
+zone_magazine_replace(uint16_t *count, zone_element_t **elems,
+    zone_magazine_t mag)
+{
+       zone_magazine_t old;
+
+       old = (zone_magazine_t)((uintptr_t)*elems -
+           offsetof(struct zone_magazine, zm_elems));
+       old->zm_cur = *count;
+       z_debug_assert(old->zm_cur <= zc_mag_size());
+       zone_magazine_load(count, elems, mag);
+
+       return old;
+}
+
+static zone_magazine_t
+zone_magazine_alloc(zalloc_flags_t flags)
+{
+       return zalloc_ext(zc_magazine_zone, zc_magazine_zone->z_stats,
+                  flags | Z_ZERO);
+}
+
+static void
+zone_magazine_free(zone_magazine_t mag)
+{
+       zfree_ext(zc_magazine_zone, zc_magazine_zone->z_stats, mag);
+}
+
+static void
+zone_enable_caching(zone_t zone)
+{
+       zone_cache_t caches;
+
+       caches = zalloc_percpu_permanent_type(struct zone_cache);
+       zpercpu_foreach(zc, caches) {
+               zone_magazine_load(&zc->zc_alloc_cur, &zc->zc_alloc_elems,
+                   zone_magazine_alloc(Z_WAITOK | Z_NOFAIL));
+               zone_magazine_load(&zc->zc_free_cur, &zc->zc_free_elems,
+                   zone_magazine_alloc(Z_WAITOK | Z_NOFAIL));
+               STAILQ_INIT(&zc->zc_depot);
+       }
+
+       if (os_atomic_xchg(&zone->z_pcpu_cache, caches, release)) {
+               panic("allocating caches for zone %s twice", zone->z_name);
+       }
+}
+
+bool
+zone_maps_owned(vm_address_t addr, vm_size_t size)
+{
+       return from_zone_map(addr, size, ZONE_ADDR_NATIVE);
+}
+
+void
+zone_map_sizes(
+       vm_map_size_t    *psize,
+       vm_map_size_t    *pfree,
+       vm_map_size_t    *plargest_free)
+{
+       vm_map_size_t size, free, largest;
+
+       vm_map_sizes(zone_submaps[0], psize, pfree, plargest_free);
+
+       for (uint32_t i = 1; i <= zone_last_submap_idx; i++) {
+               vm_map_sizes(zone_submaps[i], &size, &free, &largest);
+               *psize += size;
+               *pfree += free;
+               *plargest_free = MAX(*plargest_free, largest);
+       }
+}
+
+__attribute__((always_inline))
+vm_map_t
+zone_submap(zone_t zone)
+{
+       return zone_submaps[zone->z_submap_idx];
+}
+
+unsigned
+zpercpu_count(void)
+{
+       return zpercpu_early_count;
+}
+
+int
+track_this_zone(const char *zonename, const char *logname)
+{
+       unsigned int len;
+       const char *zc = zonename;
+       const char *lc = logname;
+
+       /*
+        * Compare the strings.  We bound the compare by MAX_ZONE_NAME.
+        */
+
+       for (len = 1; len <= MAX_ZONE_NAME; zc++, lc++, len++) {
+               /*
+                * If the current characters don't match, check for a space in
+                * in the zone name and a corresponding period in the log name.
+                * If that's not there, then the strings don't match.
+                */
+
+               if (*zc != *lc && !(*zc == ' ' && *lc == '.')) {
+                       break;
+               }
+
+               /*
+                * The strings are equal so far.  If we're at the end, then it's a match.
+                */
+
+               if (*zc == '\0') {
+                       return TRUE;
+               }
+       }
+
+       return FALSE;
+}
+
+#if DEBUG || DEVELOPMENT
+
+vm_size_t
+zone_element_info(void *addr, vm_tag_t * ptag)
+{
+       vm_size_t     size = 0;
+       vm_tag_t      tag = VM_KERN_MEMORY_NONE;
+       struct zone *src_zone;
+
+       if (from_zone_map(addr, sizeof(void *), ZONE_ADDR_NATIVE) ||
+           from_zone_map(addr, sizeof(void *), ZONE_ADDR_FOREIGN)) {
+               src_zone = &zone_array[zone_index_from_ptr(addr)];
+#if VM_MAX_TAG_ZONES
+               if (__improbable(src_zone->tags)) {
+                       tag = *ztSlot(src_zone, (vm_offset_t)addr) >> 1;
+               }
+#endif /* VM_MAX_TAG_ZONES */
+               size = zone_elem_size(src_zone);
+       } else {
+#if CONFIG_GZALLOC
+               gzalloc_element_size(addr, NULL, &size);
+#endif /* CONFIG_GZALLOC */
+       }
+       *ptag = tag;
+       return size;
+}
+
+#endif /* DEBUG || DEVELOPMENT */
+
+/* The backup pointer is stored in the last pointer-sized location in an element. */
+__header_always_inline vm_offset_t *
+get_primary_ptr(vm_offset_t elem)
+{
+       return (vm_offset_t *)elem;
+}
+
+__header_always_inline vm_offset_t *
+get_backup_ptr(vm_offset_t elem, vm_size_t elem_size)
+{
+       return (vm_offset_t *)(elem + elem_size - sizeof(vm_offset_t));
+}
+
+#endif /* !ZALLOC_TEST */
+#pragma mark Zone poisoning/zeroing and early random
+#if !ZALLOC_TEST
+
+#define ZONE_ENTROPY_CNT 2
+static struct zone_bool_gen {
+       struct bool_gen zbg_bg;
+       uint32_t zbg_entropy[ZONE_ENTROPY_CNT];
+} zone_bool_gen[MAX_CPUS];
+
+/*
+ * Initialize zone poisoning
+ * called from zone_bootstrap before any allocations are made from zalloc
+ */
+__startup_func
+static void
+zp_bootstrap(void)
+{
+       char temp_buf[16];
+
+       /*
+        * Initialize canary random cookie.
+        *
+        * Make sure that (zp_canary ^ pointer) have non zero low bits (01)
+        * different from ZONE_POISON (11).
+        *
+        * On LP64, have (zp_canary ^ pointer) have the high bits equal 0xC0FFEE...
+        */
+       static_assert(ZONE_POISON % 4 == 3);
+       zp_canary = (uintptr_t)early_random();
+#if __LP64__
+       zp_canary &= 0x000000fffffffffc;
+       zp_canary |= 0xc0ffee0000000001 ^ 0xffffff0000000000;
+#else
+       zp_canary &= 0xfffffffc;
+       zp_canary |= 0x00000001;
+#endif
+
+       /* -zp: enable poisoning for every alloc and free */
+       if (PE_parse_boot_argn("-zp", temp_buf, sizeof(temp_buf))) {
+               zp_factor = 1;
+       }
+
+       /* -no-zp: disable poisoning */
+       if (PE_parse_boot_argn("-no-zp", temp_buf, sizeof(temp_buf))) {
+               zp_factor = 0;
+               printf("Zone poisoning disabled\n");
+       }
+
+       zpercpu_foreach_cpu(cpu) {
+               random_bool_init(&zone_bool_gen[cpu].zbg_bg);
+       }
+}
+
+static inline uint32_t
+zone_poison_count_init(zone_t zone)
+{
+       return zp_factor + (((uint32_t)zone_elem_size(zone)) >> zp_scale) ^
+              (mach_absolute_time() & 0x7);
+}
+
+/*
+ * Zero the element if zone has z_free_zeroes flag set else poison
+ * the element if zs_poison_seqno hits 0.
+ */
+static zprot_mode_t
+zfree_clear_or_poison(zone_t zone, vm_offset_t addr, vm_offset_t elem_size)
+{
+       if (zone->z_free_zeroes) {
+               if (zone->z_percpu) {
+                       zpercpu_foreach_cpu(i) {
+                               bzero((void *)(addr + ptoa(i)), elem_size);
+                       }
+               } else {
+                       bzero((void *)addr, elem_size);
+               }
+               return ZPM_ZERO;
+       }
+
+       zprot_mode_t poison = ZPM_AUTO;
+#if ZALLOC_ENABLE_POISONING
+       if (__improbable(zp_factor == 1)) {
+               poison = ZPM_POISON;
+       } else if (__probable(zp_factor != 0)) {
+               uint32_t *seqnop = &zpercpu_get(zone->z_stats)->zs_poison_seqno;
+               uint32_t seqno = os_atomic_load(seqnop, relaxed);
+               if (seqno == 0) {
+                       os_atomic_store(seqnop, zone_poison_count_init(zone), relaxed);
+                       poison = ZPM_POISON;
+               } else {
+                       os_atomic_store(seqnop, seqno - 1, relaxed);
+               }
+       }
+       if (poison == ZPM_POISON) {
+               /* memset_pattern{4|8} could help make this faster: <rdar://problem/4662004> */
+               for (size_t i = 0; i < elem_size / sizeof(vm_offset_t); i++) {
+                       ((vm_offset_t *)addr)[i] = ZONE_POISON;
+               }
+       } else {
+               /*
+                * Set a canary at the extremities.
+                *
+                * Zero first zp_min_size bytes of elements that aren't being
+                * poisoned.
+                *
+                * Element size is larger than zp_min_size in this path,
+                * zones with smaller elements have z_free_zeroes set.
+                */
+               *get_primary_ptr(addr) = zp_canary ^ (uintptr_t)addr;
+               bzero((void *)addr + sizeof(vm_offset_t),
+                   zp_min_size - sizeof(vm_offset_t));
+               *get_backup_ptr(addr, elem_size) = zp_canary ^ (uintptr_t)addr;
+
+               poison = ZPM_CANARY;
+       }
+#endif /* ZALLOC_ENABLE_POISONING */
+
+       return poison;
+}
+
+#if ZALLOC_ENABLE_POISONING
+
+__abortlike
+static void
+zalloc_uaf_panic(zone_t z, uintptr_t elem, size_t size, zprot_mode_t zpm)
+{
+       uint32_t esize = (uint32_t)zone_elem_size(z);
+       uint32_t first_offs = ~0u;
+       uintptr_t first_bits = 0, v;
+       char buf[1024];
+       int pos = 0;
+       const char *how;
+
+#if __LP64__
+#define ZPF  "0x%016lx"
+#else
+#define ZPF  "0x%08lx"
+#endif
+
+       buf[0] = '\0';
+
+       if (zpm == ZPM_CANARY) {
+               how = "canaries";
+
+               v = *get_primary_ptr(elem);
+               if (v != (elem ^ zp_canary)) {
+                       pos += scnprintf(buf + pos, sizeof(buf) - pos, "\n"
+                           "%5d: got "ZPF", want "ZPF" (xor: "ZPF")",
+                           0, v, (elem ^ zp_canary), (v ^ elem ^ zp_canary));
+                       if (first_offs > 0) {
+                               first_offs = 0;
+                               first_bits = v;
+                       }
+               }
+
+               v = *get_backup_ptr(elem, esize);
+               if (v != (elem ^ zp_canary)) {
+                       pos += scnprintf(buf + pos, sizeof(buf) - pos, "\n"
+                           "%5d: got "ZPF", want "ZPF" (xor: "ZPF")",
+                           esize - (int)sizeof(v), v, (elem ^ zp_canary),
+                           (v ^ elem ^ zp_canary));
+                       if (first_offs > esize - sizeof(v)) {
+                               first_offs = esize - sizeof(v);
+                               first_bits = v;
+                       }
+               }
+
+               for (uint32_t o = sizeof(v); o < zp_min_size; o += sizeof(v)) {
+                       if ((v = *(uintptr_t *)(elem + o)) == 0) {
+                               continue;
+                       }
+                       pos += scnprintf(buf + pos, sizeof(buf) - pos, "\n"
+                           "%5d: "ZPF, o, v);
+                       if (first_offs > o) {
+                               first_offs = o;
+                               first_bits = v;
+                       }
+               }
+       } else if (zpm == ZPM_ZERO) {
+               how = "zero";
+
+               for (uint32_t o = 0; o < size; o += sizeof(v)) {
+                       if ((v = *(uintptr_t *)(elem + o)) == 0) {
+                               continue;
+                       }
+                       pos += scnprintf(buf + pos, sizeof(buf) - pos, "\n"
+                           "%5d: "ZPF, o, v);
+                       if (first_offs > o) {
+                               first_offs = o;
+                               first_bits = v;
+                       }
+               }
+       } else {
+               how = "poison";
+
+               for (uint32_t o = 0; o < size; o += sizeof(v)) {
+                       if ((v = *(uintptr_t *)(elem + o)) == ZONE_POISON) {
+                               continue;
+                       }
+                       pos += scnprintf(buf + pos, sizeof(buf) - pos, "\n"
+                           "%5d: "ZPF" (xor: "ZPF")",
+                           o, v, (v ^ ZONE_POISON));
+                       if (first_offs > o) {
+                               first_offs = o;
+                               first_bits = v;
+                       }
+               }
+       }
+
+       (panic)("[%s%s]: element modified after free "
+       "(off:%d, val:"ZPF", sz:%d, ptr:%p, prot:%s)%s",
+       zone_heap_name(z), zone_name(z),
+       first_offs, first_bits, esize, (void *)elem, how, buf);
+
+#undef ZPF
+}
+
+static void
+zalloc_validate_element_zero(zone_t zone, vm_offset_t elem, vm_size_t size)
+{
+       if (memcmp_zero_ptr_aligned((void *)elem, size)) {
+               zalloc_uaf_panic(zone, elem, size, ZPM_ZERO);
+       }
+       if (!zone->z_percpu) {
+               return;
+       }
+       for (size_t i = zpercpu_count(); --i > 0;) {
+               elem += PAGE_SIZE;
+               if (memcmp_zero_ptr_aligned((void *)elem, size)) {
+                       zalloc_uaf_panic(zone, elem, size, ZPM_ZERO);
+               }
+       }
+}
+
+#if __arm64__ || __arm__
+typedef __attribute__((ext_vector_type(2))) vm_offset_t zpair_t;
+#else
+typedef struct {
+       vm_offset_t x;
+       vm_offset_t y;
+} zpair_t;
+#endif
+
+
+__attribute__((noinline))
+static void
+zalloc_validate_element_poison(zone_t zone, vm_offset_t elem, vm_size_t size)
+{
+       vm_offset_t p = elem;
+       vm_offset_t end = elem + size;
+
+       const zpair_t poison = { ZONE_POISON, ZONE_POISON };
+       zpair_t a, b;
+
+       a.x = *(const vm_offset_t *)p;
+       a.y = *(const vm_offset_t *)(end - sizeof(vm_offset_t));
+
+       a.x ^= poison.x;
+       a.y ^= poison.y;
+
+       /*
+        * align p to the next double-wide boundary
+        * align end to the previous double-wide boundary
+        */
+       p = (p + sizeof(zpair_t) - 1) & -sizeof(zpair_t);
+       end &= -sizeof(zpair_t);
+
+       if ((end - p) % (2 * sizeof(zpair_t)) == 0) {
+               b.y = 0;
+               b.y = 0;
+       } else {
+               end -= sizeof(zpair_t);
+               b.x = ((zpair_t *)end)[0].x ^ poison.x;
+               b.y = ((zpair_t *)end)[0].y ^ poison.y;
+       }
+
+       for (; p < end; p += 2 * sizeof(zpair_t)) {
+               a.x |= ((zpair_t *)p)[0].x ^ poison.x;
+               a.y |= ((zpair_t *)p)[0].y ^ poison.y;
+               b.x |= ((zpair_t *)p)[1].x ^ poison.x;
+               b.y |= ((zpair_t *)p)[1].y ^ poison.y;
+       }
+
+       a.x |= b.x;
+       a.y |= b.y;
+
+       if (a.x || a.y) {
+               zalloc_uaf_panic(zone, elem, size, ZPM_POISON);
+       }
+}
+
+static void
+zalloc_validate_element(zone_t zone, vm_offset_t elem, vm_size_t size,
+    zprot_mode_t zpm)
+{
+       vm_offset_t *primary = get_primary_ptr(elem);
+       vm_offset_t *backup  = get_backup_ptr(elem, size);
+
+#if CONFIG_GZALLOC
+       if (zone->gzalloc_tracked) {
+               return;
+       }
+#endif /* CONFIG_GZALLOC */
+
+       if (zone->z_free_zeroes) {
+               return zalloc_validate_element_zero(zone, elem, size);
+       }
+
+       switch (zpm) {
+       case ZPM_AUTO:
+               if (*backup == 0) {
+                       size -= sizeof(vm_size_t);
+                       return zalloc_validate_element_zero(zone, elem, size);
+               }
+               if (*backup == ZONE_POISON) {
+                       size -= sizeof(vm_size_t);
+                       return zalloc_validate_element_poison(zone, elem, size);
+               }
+               OS_FALLTHROUGH;
+
+       case ZPM_CANARY:
+               if ((*primary ^ zp_canary) != elem || (*backup ^ zp_canary) != elem) {
+                       zalloc_uaf_panic(zone, elem, size, ZPM_CANARY);
+               }
+               *primary = *backup = 0;
+               size = zp_min_size;
+               OS_FALLTHROUGH;
+
+       case ZPM_ZERO:
+               return zalloc_validate_element_zero(zone, elem, size);
+
+       case ZPM_POISON:
+               return zalloc_validate_element_poison(zone, elem, size);
+       }
+}
+
+#endif /* ZALLOC_ENABLE_POISONING */
+#if ZALLOC_EARLY_GAPS
+
+__attribute__((noinline))
+static void
+zone_early_gap_drop(int n)
+{
+       while (n-- > 0) {
+               zone_t zone0 = &zone_array[0];
+               struct zone_page_metadata *meta = NULL;
+               vm_offset_t addr;
+               uint16_t pages;
+               vm_map_t map;
+
+               lck_mtx_lock(&zone_metadata_region_lck);
+
+               if (!zone_pva_is_null(zone0->z_pageq_va)) {
+                       meta = zone_meta_queue_pop_native(zone0,
+                           &zone0->z_pageq_va, &addr);
+                       map = zone_submaps[meta->zm_chunk_len];
+                       pages = meta->zm_alloc_size;
+                       __builtin_bzero(meta, sizeof(struct zone_page_metadata));
+               }
+
+               lck_mtx_unlock(&zone_metadata_region_lck);
+
+               if (!meta) {
+                       break;
+               }
+
+               kmem_free(map, addr, ptoa(pages));
+       }
+}
+
+static void
+zone_early_gap_add(zone_t z, uint16_t pages)
+{
+       struct zone_page_metadata *meta = NULL;
+       zone_t zone0 = &zone_array[0];
+       kern_return_t kr;
+       vm_offset_t addr;
+
+       kma_flags_t kmaflags = KMA_KOBJECT | KMA_ZERO | KMA_VAONLY;
+       if (z->z_submap_idx == Z_SUBMAP_IDX_GENERAL &&
+           z->kalloc_heap != KHEAP_ID_NONE) {
+               kmaflags |= KMA_KHEAP;
+       }
+
+       kr = kernel_memory_allocate(zone_submap(z), &addr, ptoa(pages), 0,
+           kmaflags, VM_KERN_MEMORY_ZONE);
+
+       if (kr != KERN_SUCCESS) {
+               panic("unable to allocate early gap (%d pages): %d", pages, kr);
+       }
+
+       zone_meta_populate(addr, ptoa(pages));
+
+       meta = zone_meta_from_addr(addr);
+       meta->zm_alloc_size = pages;
+       meta->zm_chunk_len = z->z_submap_idx;
+
+       lck_mtx_lock(&zone_metadata_region_lck);
+       zone_meta_queue_push(zone0, &zone0->z_pageq_va, meta);
+       lck_mtx_unlock(&zone_metadata_region_lck);
+}
+
+/*
+ * Roughly until pd1 is made, introduce random gaps
+ * between allocated pages.
+ *
+ * This way the early boot allocations are not in a completely
+ * predictible order and relative position.
+ *
+ * Those gaps are returned to the maps afterwards.
+ *
+ * We abuse the zone 0 (which is unused) "va" pageq to remember
+ * those ranges.
+ */
+__attribute__((noinline))
+static void
+zone_allocate_random_early_gap(zone_t z)
+{
+       int16_t pages = early_random() % 16;
+
+       /*
+        * 6%  of the time: drop 2 gaps
+        * 25% of the time: drop 1 gap
+        * 37% of the time: do nothing
+        * 18% of the time: add 1 gap
+        * 12% of the time: add 2 gaps
+        */
+       if (pages > 10) {
+               zone_early_gap_drop(pages == 15 ? 2 : 1);
+       }
+       if (pages < 5) {
+               /* values are 6 through 16 */
+               zone_early_gap_add(z, 6 + 2 * pages);
+       }
+       if (pages < 2) {
+               zone_early_gap_add(z, 6 + early_random() % 16);
+       }
+}
+
+static inline void
+zone_cleanup_early_gaps_if_needed(void)
+{
+       if (__improbable(!zone_pva_is_null(zone_array[0].z_pageq_va))) {
+               zone_early_gap_drop(10);
+       }
+}
+
+#endif /* ZALLOC_EARLY_GAPS */
+
+static void
+zone_early_scramble_rr(zone_t zone, zone_stats_t zstats)
+{
+       int cpu = cpu_number();
+       zone_stats_t zs = zpercpu_get_cpu(zstats, cpu);
+       uint32_t bits;
+
+       bits = random_bool_gen_bits(&zone_bool_gen[cpu].zbg_bg,
+           zone_bool_gen[cpu].zbg_entropy, ZONE_ENTROPY_CNT, 8);
+
+       zs->zs_alloc_rr += bits;
+       zs->zs_alloc_rr %= zone->z_chunk_elems;
+}
+
+#endif /* !ZALLOC_TEST */
+#pragma mark Zone Leak Detection
+#if !ZALLOC_TEST
+
+/*
+ * Zone leak debugging code
+ *
+ * When enabled, this code keeps a log to track allocations to a particular zone that have not
+ * yet been freed.  Examining this log will reveal the source of a zone leak.  The log is allocated
+ * only when logging is enabled, so there is no effect on the system when it's turned off.  Logging is
+ * off by default.
+ *
+ * Enable the logging via the boot-args. Add the parameter "zlog=<zone>" to boot-args where <zone>
+ * is the name of the zone you wish to log.
+ *
+ * This code only tracks one zone, so you need to identify which one is leaking first.
+ * Generally, you'll know you have a leak when you get a "zalloc retry failed 3" panic from the zone
+ * garbage collector.  Note that the zone name printed in the panic message is not necessarily the one
+ * containing the leak.  So do a zprint from gdb and locate the zone with the bloated size.  This
+ * is most likely the problem zone, so set zlog in boot-args to this zone name, reboot and re-run the test.  The
+ * next time it panics with this message, examine the log using the kgmacros zstack, findoldest and countpcs.
+ * See the help in the kgmacros for usage info.
+ *
+ *
+ * Zone corruption logging
+ *
+ * Logging can also be used to help identify the source of a zone corruption.  First, identify the zone
+ * that is being corrupted, then add "-zc zlog=<zone name>" to the boot-args.  When -zc is used in conjunction
+ * with zlog, it changes the logging style to track both allocations and frees to the zone.  So when the
+ * corruption is detected, examining the log will show you the stack traces of the callers who last allocated
+ * and freed any particular element in the zone.  Use the findelem kgmacro with the address of the element that's been
+ * corrupted to examine its history.  This should lead to the source of the corruption.
+ */
+
+/* Returns TRUE if we rolled over the counter at factor */
+__header_always_inline bool
+sample_counter(volatile uint32_t *count_p, uint32_t factor)
+{
+       uint32_t old_count, new_count = 0;
+       if (count_p != NULL) {
+               os_atomic_rmw_loop(count_p, old_count, new_count, relaxed, {
+                       new_count = old_count + 1;
+                       if (new_count >= factor) {
+                               new_count = 0;
+                       }
+               });
+       }
+
+       return new_count == 0;
+}
+
+#if ZONE_ENABLE_LOGGING
+/* Log allocations and frees to help debug a zone element corruption */
+static TUNABLE(bool, corruption_debug_flag, "-zc", false);
+
+#define MAX_NUM_ZONES_ALLOWED_LOGGING   10 /* Maximum 10 zones can be logged at once */
+
+static int  max_num_zones_to_log = MAX_NUM_ZONES_ALLOWED_LOGGING;
+static int  num_zones_logged = 0;
+
+/*
+ * The number of records in the log is configurable via the zrecs parameter in boot-args.  Set this to
+ * the number of records you want in the log.  For example, "zrecs=10" sets it to 10 records. Since this
+ * is the number of stacks suspected of leaking, we don't need many records.
+ */
+
+#if defined(__LP64__)
+#define ZRECORDS_MAX            2560            /* Max records allowed in the log */
+#else
+#define ZRECORDS_MAX            1536            /* Max records allowed in the log */
+#endif
+#define ZRECORDS_DEFAULT        1024            /* default records in log if zrecs is not specificed in boot-args */
+
+static TUNABLE(uint32_t, log_records, "zrecs", ZRECORDS_DEFAULT);
+
+static void
+zone_enable_logging(zone_t z)
+{
+       z->zlog_btlog = btlog_create(log_records, MAX_ZTRACE_DEPTH,
+           (corruption_debug_flag == FALSE) /* caller_will_remove_entries_for_element? */);
+
+       if (z->zlog_btlog) {
+               printf("zone: logging started for zone %s%s\n",
+                   zone_heap_name(z), z->z_name);
+       } else {
+               printf("zone: couldn't allocate memory for zrecords, turning off zleak logging\n");
+               z->zone_logging = false;
+       }
+}
+
+/**
+ * @function zone_setup_logging
+ *
+ * @abstract
+ * Optionally sets up a zone for logging.
+ *
+ * @discussion
+ * We recognized two boot-args:
+ *
+ *     zlog=<zone_to_log>
+ *     zrecs=<num_records_in_log>
+ *
+ * The zlog arg is used to specify the zone name that should be logged,
+ * and zrecs is used to control the size of the log.
+ *
+ * If zrecs is not specified, a default value is used.
+ */
+static void
+zone_setup_logging(zone_t z)
+{
+       char zone_name[MAX_ZONE_NAME]; /* Temp. buffer for the zone name */
+       char zlog_name[MAX_ZONE_NAME]; /* Temp. buffer to create the strings zlog1, zlog2 etc... */
+       char zlog_val[MAX_ZONE_NAME];  /* the zone name we're logging, if any */
+
+       /*
+        * Don't allow more than ZRECORDS_MAX records even if the user asked for more.
+        *
+        * This prevents accidentally hogging too much kernel memory
+        * and making the system unusable.
+        */
+       if (log_records > ZRECORDS_MAX) {
+               log_records = ZRECORDS_MAX;
+       }
+
+       /*
+        * Append kalloc heap name to zone name (if zone is used by kalloc)
+        */
+       snprintf(zone_name, MAX_ZONE_NAME, "%s%s", zone_heap_name(z), z->z_name);
+
+       /* zlog0 isn't allowed. */
+       for (int i = 1; i <= max_num_zones_to_log; i++) {
+               snprintf(zlog_name, MAX_ZONE_NAME, "zlog%d", i);
+
+               if (PE_parse_boot_argn(zlog_name, zlog_val, sizeof(zlog_val)) &&
+                   track_this_zone(zone_name, zlog_val)) {
+                       z->zone_logging = true;
+                       num_zones_logged++;
+                       break;
+               }
+       }
+
+       /*
+        * Backwards compat. with the old boot-arg used to specify single zone
+        * logging i.e. zlog Needs to happen after the newer zlogn checks
+        * because the prefix will match all the zlogn
+        * boot-args.
+        */
+       if (!z->zone_logging &&
+           PE_parse_boot_argn("zlog", zlog_val, sizeof(zlog_val)) &&
+           track_this_zone(zone_name, zlog_val)) {
+               z->zone_logging = true;
+               num_zones_logged++;
+       }
+
+
+       /*
+        * If we want to log a zone, see if we need to allocate buffer space for
+        * the log.
+        *
+        * Some vm related zones are zinit'ed before we can do a kmem_alloc, so
+        * we have to defer allocation in that case.
+        *
+        * zone_init() will finish the job.
+        *
+        * If we want to log one of the VM related zones that's set up early on,
+        * we will skip allocation of the log until zinit is called again later
+        * on some other zone.
+        */
+       if (z->zone_logging && startup_phase >= STARTUP_SUB_KMEM_ALLOC) {
+               zone_enable_logging(z);
+       }
+}
+
+/*
+ * Each record in the log contains a pointer to the zone element it refers to,
+ * and a small array to hold the pc's from the stack trace.  A
+ * record is added to the log each time a zalloc() is done in the zone_of_interest.  For leak debugging,
+ * the record is cleared when a zfree() is done.  For corruption debugging, the log tracks both allocs and frees.
+ * If the log fills, old records are replaced as if it were a circular buffer.
+ */
+
+
+/*
+ * Decide if we want to log this zone by doing a string compare between a zone name and the name
+ * of the zone to log. Return true if the strings are equal, false otherwise.  Because it's not
+ * possible to include spaces in strings passed in via the boot-args, a period in the logname will
+ * match a space in the zone name.
+ */
+
+/*
+ * Test if we want to log this zalloc/zfree event.  We log if this is the zone we're interested in and
+ * the buffer for the records has been allocated.
+ */
+
+#define DO_LOGGING(z)           (z->zlog_btlog != NULL)
+#else /* !ZONE_ENABLE_LOGGING */
+#define DO_LOGGING(z)           0
+#endif /* !ZONE_ENABLE_LOGGING */
+#if CONFIG_ZLEAKS
+
+/*
+ * The zone leak detector, abbreviated 'zleak', keeps track of a subset of the currently outstanding
+ * allocations made by the zone allocator.  Every zleak_sample_factor allocations in each zone, we capture a
+ * backtrace.  Every free, we examine the table and determine if the allocation was being tracked,
+ * and stop tracking it if it was being tracked.
+ *
+ * We track the allocations in the zallocations hash table, which stores the address that was returned from
+ * the zone allocator.  Each stored entry in the zallocations table points to an entry in the ztraces table, which
+ * stores the backtrace associated with that allocation.  This provides uniquing for the relatively large
+ * backtraces - we don't store them more than once.
+ *
+ * Data collection begins when the zone map is 50% full, and only occurs for zones that are taking up
+ * a large amount of virtual space.
+ */
+#define ZLEAK_STATE_ENABLED             0x01    /* Zone leak monitoring should be turned on if zone_map fills up. */
+#define ZLEAK_STATE_ACTIVE              0x02    /* We are actively collecting traces. */
+#define ZLEAK_STATE_ACTIVATING          0x04    /* Some thread is doing setup; others should move along. */
+#define ZLEAK_STATE_FAILED              0x08    /* Attempt to allocate tables failed.  We will not try again. */
+static uint32_t        zleak_state = 0;                 /* State of collection, as above */
+static unsigned int    zleak_sample_factor = 1000;      /* Allocations per sample attempt */
+
+bool            panic_include_ztrace    = FALSE;        /* Enable zleak logging on panic */
+vm_size_t       zleak_global_tracking_threshold;        /* Size of zone map at which to start collecting data */
+vm_size_t       zleak_per_zone_tracking_threshold;      /* Size a zone will have before we will collect data on it */
+
+/*
+ * Counters for allocation statistics.
+ */
+
+/* Times two active records want to occupy the same spot */
+static unsigned int z_alloc_collisions = 0;
+static unsigned int z_trace_collisions = 0;
+
+/* Times a new record lands on a spot previously occupied by a freed allocation */
+static unsigned int z_alloc_overwrites = 0;
+static unsigned int z_trace_overwrites = 0;
+
+/* Times a new alloc or trace is put into the hash table */
+static unsigned int z_alloc_recorded   = 0;
+static unsigned int z_trace_recorded   = 0;
+
+/* Times zleak_log returned false due to not being able to acquire the lock */
+static unsigned int z_total_conflicts  = 0;
+
+/*
+ * Structure for keeping track of an allocation
+ * An allocation bucket is in use if its element is not NULL
+ */
+struct zallocation {
+       uintptr_t               za_element;             /* the element that was zalloc'ed or zfree'ed, NULL if bucket unused */
+       vm_size_t               za_size;                        /* how much memory did this allocation take up? */
+       uint32_t                za_trace_index; /* index into ztraces for backtrace associated with allocation */
+       /* TODO: #if this out */
+       uint32_t                za_hit_count;           /* for determining effectiveness of hash function */
+};
+
+/* Size must be a power of two for the zhash to be able to just mask off bits instead of mod */
+static uint32_t zleak_alloc_buckets = CONFIG_ZLEAK_ALLOCATION_MAP_NUM;
+static uint32_t zleak_trace_buckets = CONFIG_ZLEAK_TRACE_MAP_NUM;
+
+vm_size_t zleak_max_zonemap_size;
+
+/* Hashmaps of allocations and their corresponding traces */
+static struct zallocation*      zallocations;
+static struct ztrace*           ztraces;
+
+/* not static so that panic can see this, see kern/debug.c */
+struct ztrace*                          top_ztrace;
+
+/* Lock to protect zallocations, ztraces, and top_ztrace from concurrent modification. */
+static LCK_GRP_DECLARE(zleak_lock_grp, "zleak_lock");
+static LCK_SPIN_DECLARE(zleak_lock, &zleak_lock_grp);
+
+/*
+ * Initializes the zone leak monitor.  Called from zone_init()
+ */
+__startup_func
+static void
+zleak_init(vm_size_t max_zonemap_size)
+{
+       char                    scratch_buf[16];
+       boolean_t               zleak_enable_flag = FALSE;
+
+       zleak_max_zonemap_size = max_zonemap_size;
+       zleak_global_tracking_threshold = max_zonemap_size / 2;
+       zleak_per_zone_tracking_threshold = zleak_global_tracking_threshold / 8;
+
+#if CONFIG_EMBEDDED
+       if (PE_parse_boot_argn("-zleakon", scratch_buf, sizeof(scratch_buf))) {
+               zleak_enable_flag = TRUE;
+               printf("zone leak detection enabled\n");
+       } else {
+               zleak_enable_flag = FALSE;
+               printf("zone leak detection disabled\n");
+       }
+#else /* CONFIG_EMBEDDED */
+       /* -zleakoff (flag to disable zone leak monitor) */
+       if (PE_parse_boot_argn("-zleakoff", scratch_buf, sizeof(scratch_buf))) {
+               zleak_enable_flag = FALSE;
+               printf("zone leak detection disabled\n");
+       } else {
+               zleak_enable_flag = TRUE;
+               printf("zone leak detection enabled\n");
+       }
+#endif /* CONFIG_EMBEDDED */
+
+       /* zfactor=XXXX (override how often to sample the zone allocator) */
+       if (PE_parse_boot_argn("zfactor", &zleak_sample_factor, sizeof(zleak_sample_factor))) {
+               printf("Zone leak factor override: %u\n", zleak_sample_factor);
+       }
+
+       /* zleak-allocs=XXXX (override number of buckets in zallocations) */
+       if (PE_parse_boot_argn("zleak-allocs", &zleak_alloc_buckets, sizeof(zleak_alloc_buckets))) {
+               printf("Zone leak alloc buckets override: %u\n", zleak_alloc_buckets);
+               /* uses 'is power of 2' trick: (0x01000 & 0x00FFF == 0) */
+               if (zleak_alloc_buckets == 0 || (zleak_alloc_buckets & (zleak_alloc_buckets - 1))) {
+                       printf("Override isn't a power of two, bad things might happen!\n");
+               }
+       }
+
+       /* zleak-traces=XXXX (override number of buckets in ztraces) */
+       if (PE_parse_boot_argn("zleak-traces", &zleak_trace_buckets, sizeof(zleak_trace_buckets))) {
+               printf("Zone leak trace buckets override: %u\n", zleak_trace_buckets);
+               /* uses 'is power of 2' trick: (0x01000 & 0x00FFF == 0) */
+               if (zleak_trace_buckets == 0 || (zleak_trace_buckets & (zleak_trace_buckets - 1))) {
+                       printf("Override isn't a power of two, bad things might happen!\n");
+               }
+       }
+
+       if (zleak_enable_flag) {
+               zleak_state = ZLEAK_STATE_ENABLED;
+       }
+}
+
+/*
+ * Support for kern.zleak.active sysctl - a simplified
+ * version of the zleak_state variable.
+ */
+int
+get_zleak_state(void)
+{
+       if (zleak_state & ZLEAK_STATE_FAILED) {
+               return -1;
+       }
+       if (zleak_state & ZLEAK_STATE_ACTIVE) {
+               return 1;
+       }
+       return 0;
+}
+
+kern_return_t
+zleak_activate(void)
+{
+       kern_return_t retval;
+       vm_size_t z_alloc_size = zleak_alloc_buckets * sizeof(struct zallocation);
+       vm_size_t z_trace_size = zleak_trace_buckets * sizeof(struct ztrace);
+       void *allocations_ptr = NULL;
+       void *traces_ptr = NULL;
+
+       /* Only one thread attempts to activate at a time */
+       if (zleak_state & (ZLEAK_STATE_ACTIVE | ZLEAK_STATE_ACTIVATING | ZLEAK_STATE_FAILED)) {
+               return KERN_SUCCESS;
+       }
+
+       /* Indicate that we're doing the setup */
+       lck_spin_lock(&zleak_lock);
+       if (zleak_state & (ZLEAK_STATE_ACTIVE | ZLEAK_STATE_ACTIVATING | ZLEAK_STATE_FAILED)) {
+               lck_spin_unlock(&zleak_lock);
+               return KERN_SUCCESS;
+       }
+
+       zleak_state |= ZLEAK_STATE_ACTIVATING;
+       lck_spin_unlock(&zleak_lock);
+
+       /* Allocate and zero tables */
+       retval = kmem_alloc_kobject(kernel_map, (vm_offset_t*)&allocations_ptr, z_alloc_size, VM_KERN_MEMORY_DIAG);
+       if (retval != KERN_SUCCESS) {
+               goto fail;
+       }
+
+       retval = kmem_alloc_kobject(kernel_map, (vm_offset_t*)&traces_ptr, z_trace_size, VM_KERN_MEMORY_DIAG);
+       if (retval != KERN_SUCCESS) {
+               goto fail;
+       }
+
+       bzero(allocations_ptr, z_alloc_size);
+       bzero(traces_ptr, z_trace_size);
+
+       /* Everything's set.  Install tables, mark active. */
+       zallocations = allocations_ptr;
+       ztraces = traces_ptr;
+
+       /*
+        * Initialize the top_ztrace to the first entry in ztraces,
+        * so we don't have to check for null in zleak_log
+        */
+       top_ztrace = &ztraces[0];
+
+       /*
+        * Note that we do need a barrier between installing
+        * the tables and setting the active flag, because the zfree()
+        * path accesses the table without a lock if we're active.
+        */
+       lck_spin_lock(&zleak_lock);
+       zleak_state |= ZLEAK_STATE_ACTIVE;
+       zleak_state &= ~ZLEAK_STATE_ACTIVATING;
+       lck_spin_unlock(&zleak_lock);
+
+       return 0;
+
+fail:
+       /*
+        * If we fail to allocate memory, don't further tax
+        * the system by trying again.
+        */
+       lck_spin_lock(&zleak_lock);
+       zleak_state |= ZLEAK_STATE_FAILED;
+       zleak_state &= ~ZLEAK_STATE_ACTIVATING;
+       lck_spin_unlock(&zleak_lock);
+
+       if (allocations_ptr != NULL) {
+               kmem_free(kernel_map, (vm_offset_t)allocations_ptr, z_alloc_size);
+       }
+
+       if (traces_ptr != NULL) {
+               kmem_free(kernel_map, (vm_offset_t)traces_ptr, z_trace_size);
+       }
+
+       return retval;
+}
+
+static inline void
+zleak_activate_if_needed(void)
+{
+       if (__probable((zleak_state & ZLEAK_STATE_ENABLED) == 0)) {
+               return;
+       }
+       if (zleak_state & ZLEAK_STATE_ACTIVE) {
+               return;
+       }
+       if (zone_submaps_approx_size() < zleak_global_tracking_threshold) {
+               return;
+       }
+
+       kern_return_t kr = zleak_activate();
+       if (kr != KERN_SUCCESS) {
+               printf("Failed to activate live zone leak debugging (%d).\n", kr);
+       }
+}
+
+static inline void
+zleak_track_if_needed(zone_t z)
+{
+       if (__improbable(zleak_state & ZLEAK_STATE_ACTIVE)) {
+               if (!z->zleak_on &&
+                   zone_size_wired(z) >= zleak_per_zone_tracking_threshold) {
+                       z->zleak_on = true;
+               }
+       }
+}
+
+/*
+ * TODO: What about allocations that never get deallocated,
+ * especially ones with unique backtraces? Should we wait to record
+ * until after boot has completed?
+ * (How many persistent zallocs are there?)
+ */
+
+/*
+ * This function records the allocation in the allocations table,
+ * and stores the associated backtrace in the traces table
+ * (or just increments the refcount if the trace is already recorded)
+ * If the allocation slot is in use, the old allocation is replaced with the new allocation, and
+ * the associated trace's refcount is decremented.
+ * If the trace slot is in use, it returns.
+ * The refcount is incremented by the amount of memory the allocation consumes.
+ * The return value indicates whether to try again next time.
+ */
+static boolean_t
+zleak_log(uintptr_t* bt,
+    uintptr_t addr,
+    uint32_t depth,
+    vm_size_t allocation_size)
+{
+       /* Quit if there's someone else modifying the hash tables */
+       if (!lck_spin_try_lock(&zleak_lock)) {
+               z_total_conflicts++;
+               return FALSE;
+       }
+
+       struct zallocation* allocation  = &zallocations[hashaddr(addr, zleak_alloc_buckets)];
+
+       uint32_t trace_index = hashbacktrace(bt, depth, zleak_trace_buckets);
+       struct ztrace* trace = &ztraces[trace_index];
+
+       allocation->za_hit_count++;
+       trace->zt_hit_count++;
+
+       /*
+        * If the allocation bucket we want to be in is occupied, and if the occupier
+        * has the same trace as us, just bail.
+        */
+       if (allocation->za_element != (uintptr_t) 0 && trace_index == allocation->za_trace_index) {
+               z_alloc_collisions++;
+
+               lck_spin_unlock(&zleak_lock);
+               return TRUE;
+       }
+
+       /* STEP 1: Store the backtrace in the traces array. */
+       /* A size of zero indicates that the trace bucket is free. */
+
+       if (trace->zt_size > 0 && bcmp(trace->zt_stack, bt, (depth * sizeof(uintptr_t))) != 0) {
+               /*
+                * Different unique trace with same hash!
+                * Just bail - if we're trying to record the leaker, hopefully the other trace will be deallocated
+                * and get out of the way for later chances
+                */
+               trace->zt_collisions++;
+               z_trace_collisions++;
+
+               lck_spin_unlock(&zleak_lock);
+               return TRUE;
+       } else if (trace->zt_size > 0) {
+               /* Same trace, already added, so increment refcount */
+               trace->zt_size += allocation_size;
+       } else {
+               /* Found an unused trace bucket, record the trace here! */
+               if (trace->zt_depth != 0) { /* if this slot was previously used but not currently in use */
+                       z_trace_overwrites++;
+               }
+
+               z_trace_recorded++;
+               trace->zt_size                  = allocation_size;
+               memcpy(trace->zt_stack, bt, (depth * sizeof(uintptr_t)));
+
+               trace->zt_depth         = depth;
+               trace->zt_collisions    = 0;
+       }
+
+       /* STEP 2: Store the allocation record in the allocations array. */
+
+       if (allocation->za_element != (uintptr_t) 0) {
+               /*
+                * Straight up replace any allocation record that was there.  We don't want to do the work
+                * to preserve the allocation entries that were there, because we only record a subset of the
+                * allocations anyways.
+                */
+
+               z_alloc_collisions++;
+
+               struct ztrace* associated_trace = &ztraces[allocation->za_trace_index];
+               /* Knock off old allocation's size, not the new allocation */
+               associated_trace->zt_size -= allocation->za_size;
+       } else if (allocation->za_trace_index != 0) {
+               /* Slot previously used but not currently in use */
+               z_alloc_overwrites++;
+       }
+
+       allocation->za_element          = addr;
+       allocation->za_trace_index      = trace_index;
+       allocation->za_size             = allocation_size;
+
+       z_alloc_recorded++;
+
+       if (top_ztrace->zt_size < trace->zt_size) {
+               top_ztrace = trace;
+       }
+
+       lck_spin_unlock(&zleak_lock);
+       return TRUE;
+}
+
+/*
+ * Free the allocation record and release the stacktrace.
+ * This should be as fast as possible because it will be called for every free.
+ */
+__attribute__((noinline))
+static void
+zleak_free(uintptr_t addr,
+    vm_size_t allocation_size)
+{
+       if (addr == (uintptr_t) 0) {
+               return;
+       }
+
+       struct zallocation* allocation = &zallocations[hashaddr(addr, zleak_alloc_buckets)];
+
+       /* Double-checked locking: check to find out if we're interested, lock, check to make
+        * sure it hasn't changed, then modify it, and release the lock.
+        */
+
+       if (allocation->za_element == addr && allocation->za_trace_index < zleak_trace_buckets) {
+               /* if the allocation was the one, grab the lock, check again, then delete it */
+               lck_spin_lock(&zleak_lock);
+
+               if (allocation->za_element == addr && allocation->za_trace_index < zleak_trace_buckets) {
+                       struct ztrace *trace;
+
+                       /* allocation_size had better match what was passed into zleak_log - otherwise someone is freeing into the wrong zone! */
+                       if (allocation->za_size != allocation_size) {
+                               panic("Freeing as size %lu memory that was allocated with size %lu\n",
+                                   (uintptr_t)allocation_size, (uintptr_t)allocation->za_size);
+                       }
+
+                       trace = &ztraces[allocation->za_trace_index];
+
+                       /* size of 0 indicates trace bucket is unused */
+                       if (trace->zt_size > 0) {
+                               trace->zt_size -= allocation_size;
+                       }
+
+                       /* A NULL element means the allocation bucket is unused */
+                       allocation->za_element = 0;
+               }
+               lck_spin_unlock(&zleak_lock);
+       }
+}
+
+#else
+static inline void
+zleak_activate_if_needed(void)
+{
+}
+
+static inline void
+zleak_track_if_needed(__unused zone_t z)
+{
+}
+#endif /* CONFIG_ZLEAKS */
+#if ZONE_ENABLE_LOGGING || CONFIG_ZLEAKS
+
+__attribute__((noinline))
+static void
+zalloc_log_or_trace_leaks(zone_t zone, vm_offset_t addr, void *fp)
+{
+       uintptr_t       zbt[MAX_ZTRACE_DEPTH];  /* used in zone leak logging and zone leak detection */
+       unsigned int    numsaved = 0;
+
+#if ZONE_ENABLE_LOGGING
+       if (DO_LOGGING(zone)) {
+               numsaved = backtrace(zbt, MAX_ZTRACE_DEPTH, NULL);
+               btlog_add_entry(zone->zlog_btlog, (void *)addr,
+                   ZOP_ALLOC, (void **)zbt, numsaved);
+       }
+#endif /* ZONE_ENABLE_LOGGING */
+
+#if CONFIG_ZLEAKS
+       /*
+        * Zone leak detection: capture a backtrace every zleak_sample_factor
+        * allocations in this zone.
+        */
+       if (__improbable(zone->zleak_on)) {
+               if (sample_counter(&zone->zleak_capture, zleak_sample_factor)) {
+                       /* Avoid backtracing twice if zone logging is on */
+                       if (numsaved == 0) {
+                               numsaved = backtrace_frame(zbt, MAX_ZTRACE_DEPTH, fp, NULL);
+                       }
+                       /* Sampling can fail if another sample is happening at the same time in a different zone. */
+                       if (!zleak_log(zbt, addr, numsaved, zone_elem_size(zone))) {
+                               /* If it failed, roll back the counter so we sample the next allocation instead. */
+                               zone->zleak_capture = zleak_sample_factor;
+                       }
+               }
+       }
+
+       if (__improbable(zone_leaks_scan_enable &&
+           !(zone_elem_size(zone) & (sizeof(uintptr_t) - 1)))) {
+               unsigned int count, idx;
+               /* Fill element, from tail, with backtrace in reverse order */
+               if (numsaved == 0) {
+                       numsaved = backtrace_frame(zbt, MAX_ZTRACE_DEPTH, fp, NULL);
+               }
+               count = (unsigned int)(zone_elem_size(zone) / sizeof(uintptr_t));
+               if (count >= numsaved) {
+                       count = numsaved - 1;
+               }
+               for (idx = 0; idx < count; idx++) {
+                       ((uintptr_t *)addr)[count - 1 - idx] = zbt[idx + 1];
+               }
+       }
+#endif /* CONFIG_ZLEAKS */
+}
+
+static inline bool
+zalloc_should_log_or_trace_leaks(zone_t zone, vm_size_t elem_size)
+{
+#if ZONE_ENABLE_LOGGING
+       if (DO_LOGGING(zone)) {
+               return true;
+       }
+#endif /* ZONE_ENABLE_LOGGING */
+#if CONFIG_ZLEAKS
+       /*
+        * Zone leak detection: capture a backtrace every zleak_sample_factor
+        * allocations in this zone.
+        */
+       if (zone->zleak_on) {
+               return true;
+       }
+       if (zone_leaks_scan_enable && !(elem_size & (sizeof(uintptr_t) - 1))) {
+               return true;
+       }
+#endif /* CONFIG_ZLEAKS */
+       return false;
+}
+
+#endif /* ZONE_ENABLE_LOGGING || CONFIG_ZLEAKS */
+#if ZONE_ENABLE_LOGGING
+
+__attribute__((noinline))
+static void
+zfree_log_trace(zone_t zone, vm_offset_t addr, void *fp)
+{
+       /*
+        * See if we're doing logging on this zone.
+        *
+        * There are two styles of logging used depending on
+        * whether we're trying to catch a leak or corruption.
+        */
+       if (__improbable(DO_LOGGING(zone))) {
+               if (corruption_debug_flag) {
+                       uintptr_t       zbt[MAX_ZTRACE_DEPTH];
+                       unsigned int    numsaved;
+                       /*
+                        * We're logging to catch a corruption.
+                        *
+                        * Add a record of this zfree operation to log.
+                        */
+                       numsaved = backtrace_frame(zbt, MAX_ZTRACE_DEPTH, fp, NULL);
+                       btlog_add_entry(zone->zlog_btlog, (void *)addr, ZOP_FREE,
+                           (void **)zbt, numsaved);
+               } else {
+                       /*
+                        * We're logging to catch a leak.
+                        *
+                        * Remove any record we might have for this element
+                        * since it's being freed.  Note that we may not find it
+                        * if the buffer overflowed and that's OK.
+                        *
+                        * Since the log is of a limited size, old records get
+                        * overwritten if there are more zallocs than zfrees.
+                        */
+                       btlog_remove_entries_for_element(zone->zlog_btlog, (void *)addr);
+               }
+       }
+}
+
+#endif /* ZONE_ENABLE_LOGGING */
+
+/*  These functions outside of CONFIG_ZLEAKS because they are also used in
+ *  mbuf.c for mbuf leak-detection.  This is why they lack the z_ prefix.
+ */
+
+/* "Thomas Wang's 32/64 bit mix functions."  http://www.concentric.net/~Ttwang/tech/inthash.htm */
+uintptr_t
+hash_mix(uintptr_t x)
+{
+#ifndef __LP64__
+       x += ~(x << 15);
+       x ^=  (x >> 10);
+       x +=  (x << 3);
+       x ^=  (x >> 6);
+       x += ~(x << 11);
+       x ^=  (x >> 16);
+#else
+       x += ~(x << 32);
+       x ^=  (x >> 22);
+       x += ~(x << 13);
+       x ^=  (x >> 8);
+       x +=  (x << 3);
+       x ^=  (x >> 15);
+       x += ~(x << 27);
+       x ^=  (x >> 31);
+#endif
+       return x;
+}
+
+uint32_t
+hashbacktrace(uintptr_t* bt, uint32_t depth, uint32_t max_size)
+{
+       uintptr_t hash = 0;
+       uintptr_t mask = max_size - 1;
+
+       while (depth) {
+               hash += bt[--depth];
+       }
+
+       hash = hash_mix(hash) & mask;
+
+       assert(hash < max_size);
+
+       return (uint32_t) hash;
+}
+
+/*
+ *  TODO: Determine how well distributed this is
+ *      max_size must be a power of 2. i.e 0x10000 because 0x10000-1 is 0x0FFFF which is a great bitmask
+ */
+uint32_t
+hashaddr(uintptr_t pt, uint32_t max_size)
+{
+       uintptr_t hash = 0;
+       uintptr_t mask = max_size - 1;
+
+       hash = hash_mix(pt) & mask;
+
+       assert(hash < max_size);
+
+       return (uint32_t) hash;
+}
+
+#endif /* !ZALLOC_TEST */
+#pragma mark zone (re)fill
+#if !ZALLOC_TEST
+
+/*!
+ * @defgroup Zone Refill
+ * @{
+ *
+ * @brief
+ * Functions handling The zone refill machinery.
+ *
+ * @discussion
+ * Zones are refilled based on 3 mechanisms: direct expansion, async expansion,
+ * VM-specific replenishment. Zones using VM-specific replenishment are marked
+ * with the @c z_replenishes property set.
+ *
+ * @c zalloc_ext() is the codepath that kicks the zone refill when the zone is
+ * dropping below half of its @c z_elems_rsv (0 for most zones) and will:
+ *
+ * - call @c zone_expand_locked() directly if the caller is allowed to block,
+ *
+ * - wakeup the asynchroous expansion thread call if the caller is not allowed
+ *   to block.
+ *
+ * - call @c zone_replenish_locked() to kick the replenish state machine.
+ *
+ *
+ * <h2>Synchronous expansion</h2>
+ *
+ * This mechanism is actually the only one that may refill a zone, and all the
+ * other ones funnel through this one eventually.
+ *
+ * @c zone_expand_locked() implements the core of the expansion mechanism,
+ * and will do so while a caller specified predicate is true.
+ *
+ * Zone expansion allows for up to 2 threads to concurrently refill the zone:
+ * - one VM privileged thread,
+ * - one regular thread.
+ *
+ * Regular threads that refill will put down their identity in @c z_expander,
+ * so that priority inversion avoidance can be implemented.
+ *
+ * However, VM privileged threads are allowed to use VM page reserves,
+ * which allows for the system to recover from extreme memory pressure
+ * situations, allowing for the few allocations that @c zone_gc() or
+ * killing processes require.
+ *
+ * When a VM privileged thread is also expanding, the @c z_expander_vm_priv bit
+ * is set. @c z_expander is not necessarily the identity of this VM privileged
+ * thread (it is if the VM privileged thread came in first, but wouldn't be, and
+ * could even be @c THREAD_NULL otherwise).
+ *
+ * Note that the pageout-scan daemon might be BG and is VM privileged. To avoid
+ * spending a whole pointer on priority inheritance for VM privileged threads
+ * (and other issues related to having two owners), we use the rwlock boost as
+ * a stop gap to avoid priority inversions.
+ *
+ *
+ * <h2>Chunk wiring policies</h2>
+ *
+ * Zones allocate memory in chunks of @c zone_t::z_chunk_pages pages at a time
+ * to try to minimize fragmentation relative to element sizes not aligning with
+ * a chunk size well.  However, this can grow large and be hard to fulfill on
+ * a system under a lot of memory pressure (chunks can be as long as 8 pages on
+ * 4k page systems).
+ *
+ * This is why, when under memory pressure the system allows chunks to be
+ * partially populated. The metadata of the first page in the chunk maintains
+ * the count of actually populated pages.
+ *
+ * The metadata for addresses assigned to a zone are found of 4 queues:
+ * - @c z_pageq_empty has chunk heads with populated pages and no allocated
+ *   elements (those can be targeted by @c zone_gc()),
+ * - @c z_pageq_partial has chunk heads with populated pages that are partially
+ *   used,
+ * - @c z_pageq_full has chunk heads with populated pages with no free elements
+ *   left,
+ * - @c z_pageq_va has either chunk heads for sequestered VA space assigned to
+ *   the zone forever (if @c z_va_sequester is enabled), or the first secondary
+ *   metadata for a chunk whose corresponding page is not populated in the
+ *   chunk.
+ *
+ * When new pages need to be wired/populated, chunks from the @c z_pageq_va
+ * queues are preferred.
+ *
+ *
+ * <h2>Asynchronous expansion</h2>
+ *
+ * This mechanism allows for refilling zones used mostly with non blocking
+ * callers. It relies on a thread call (@c zone_expand_callout) which will
+ * iterate all zones and refill the ones marked with @c z_async_refilling.
+ *
+ * NOTE: If the calling thread for zalloc_noblock is lower priority than
+ *       the thread_call, then zalloc_noblock to an empty zone may succeed.
+ *
+ *
+ * <h2>Dealing with zone allocations from the mach VM code</h2>
+ *
+ * The implementation of the mach VM itself uses the zone allocator
+ * for things like the vm_map_entry data structure. In order to prevent
+ * an infinite recursion problem when adding more pages to a zone, @c zalloc
+ * uses a replenish thread to refill the VM layer's zones before they have
+ * too few remaining free entries. The reserved remaining free entries
+ * guarantee that the VM routines can get entries from already mapped pages.
+ *
+ * In order for that to work, the amount of allocations in the nested
+ * case have to be bounded. There are currently 2 replenish zones, and
+ * if each needs 1 element of each zone to add a new page to itself, that
+ * gives us a minumum reserve of 2 elements.
+ *
+ * There is also a deadlock issue with the zone garbage collection thread,
+ * or any thread that is trying to free zone pages. While holding
+ * the kernel's map lock they may need to allocate new VM map entries, hence
+ * we need enough reserve to allow them to get past the point of holding the
+ * map lock. After freeing that page, the GC thread will wait in
+ * @c zone_reclaim() until the replenish threads can finish.
+ * Since there's only 1 GC thread at a time, that adds a minimum of 1 to the
+ * reserve size.
+ *
+ * Since the minumum amount you can add to a zone is 1 page,
+ * we'll use 16K (from ARM) as the refill size on all platforms.
+ *
+ * When a refill zone drops to half that available, i.e. REFILL_SIZE / 2,
+ * @c zalloc_ext() will wake the replenish thread. The replenish thread runs
+ * until at least REFILL_SIZE worth of free elements exist, before sleeping again.
+ * In the meantime threads may continue to use the reserve until there are only
+ * REFILL_SIZE / 4 elements left. Below that point only the replenish threads
+ * themselves and the GC thread may continue to use from the reserve.
+ */
+
+static thread_call_data_t zone_expand_callout;
+
+static inline kma_flags_t
+zone_kma_flags(zone_t z, zalloc_flags_t flags)
+{
+       kma_flags_t kmaflags = KMA_KOBJECT | KMA_ZERO;
+
+       if (z->z_noencrypt) {
+               kmaflags |= KMA_NOENCRYPT;
+       }
+       if (flags & Z_NOPAGEWAIT) {
+               kmaflags |= KMA_NOPAGEWAIT;
+       }
+       if (z->z_permanent || (!z->z_destructible && z->z_va_sequester)) {
+               kmaflags |= KMA_PERMANENT;
+       }
+       if (z->z_submap_idx == Z_SUBMAP_IDX_GENERAL &&
+           z->kalloc_heap != KHEAP_ID_NONE) {
+               kmaflags |= KMA_KHEAP;
+       }
+
+       return kmaflags;
+}
+
+/*!
+ * @function zcram_and_lock()
+ *
+ * @brief
+ * Prepare some memory for being usable for allocation purposes.
+ *
+ * @discussion
+ * Prepare memory in <code>[addr + ptoa(pg_start), addr + ptoa(pg_end))</code>
+ * to be usable in the zone.
+ *
+ * This function assumes the metadata is already populated for the range.
+ *
+ * Calling this function with @c pg_start being 0 means that the memory
+ * is either a partial chunk, or a full chunk, that isn't published anywhere
+ * and the initialization can happen without locks held.
+ *
+ * Calling this function with a non zero @c pg_start means that we are extending
+ * an existing chunk: the memory in <code>[addr, addr + ptoa(pg_start))</code>,
+ * is already usable and published in the zone, so extending it requires holding
+ * the zone lock.
+ *
+ * @param zone          The zone to cram new populated pages into
+ * @param addr          The base address for the chunk(s)
+ * @param pg_va_new     The number of virtual pages newly assigned to the zone
+ * @param pg_start      The first newly populated page relative to @a addr.
+ * @param pg_end        The after-last newly populated page relative to @a addr.
+ * @param kind          The kind of memory assigned to the zone.
+ */
+static void
+zcram_and_lock(zone_t zone, vm_offset_t addr, uint32_t pg_va_new,
+    uint32_t pg_start, uint32_t pg_end, zone_addr_kind_t kind)
+{
+       zone_id_t zindex = zone_index(zone);
+       vm_offset_t elem_size = zone_elem_size(zone);
+       uint32_t free_start = 0, free_end = 0;
+
+       struct zone_page_metadata *meta = zone_meta_from_addr(addr);
+       uint32_t chunk_pages = zone->z_chunk_pages;
+
+       assert(pg_start < pg_end && pg_end <= chunk_pages);
+
+       if (pg_start == 0) {
+               uint16_t chunk_len = (uint16_t)pg_end;
+               uint16_t secondary_len = ZM_SECONDARY_PAGE;
+               bool inline_bitmap = false;
+
+               if (zone->z_percpu) {
+                       chunk_len = 1;
+                       secondary_len = ZM_SECONDARY_PCPU_PAGE;
+                       assert(pg_end == zpercpu_count());
+               }
+               if (!zone->z_permanent) {
+                       inline_bitmap = zone->z_chunk_elems <= 32 * chunk_pages;
+               }
+
+               meta[0] = (struct zone_page_metadata){
+                       .zm_index         = zindex,
+                       .zm_inline_bitmap = inline_bitmap,
+                       .zm_chunk_len     = chunk_len,
+               };
+               if (kind == ZONE_ADDR_FOREIGN) {
+                       /* Never hit z_pageq_empty */
+                       meta[0].zm_alloc_size = ZM_ALLOC_SIZE_LOCK;
+               }
+
+               for (uint16_t i = 1; i < chunk_pages; i++) {
+                       meta[i] = (struct zone_page_metadata){
+                               .zm_index          = zindex,
+                               .zm_inline_bitmap  = inline_bitmap,
+                               .zm_chunk_len      = secondary_len,
+                               .zm_page_index     = i,
+                       };
+               }
+
+               free_end = (uint32_t)ptoa(chunk_len) / elem_size;
+               if (!zone->z_permanent) {
+                       zone_meta_bits_init(meta, free_end, zone->z_chunk_elems);
+               }
+       } else {
+               assert(!zone->z_percpu && !zone->z_permanent);
+
+               free_end = (uint32_t)ptoa(pg_end) / elem_size;
+               free_start = (uint32_t)ptoa(pg_start) / elem_size;
+       }
+
+#if VM_MAX_TAG_ZONES
+       if (__improbable(zone->tags)) {
+               assert(kind == ZONE_ADDR_NATIVE && !zone->z_percpu);
+               ztMemoryAdd(zone, addr + ptoa(pg_start),
+                   ptoa(pg_end - pg_start));
+       }
+#endif /* VM_MAX_TAG_ZONES */
+
+       /*
+        * Insert the initialized pages / metadatas into the right lists.
+        */
+
+       zone_lock(zone);
+       assert(zone->z_self == zone);
+
+       if (pg_start != 0) {
+               assert(meta->zm_chunk_len == pg_start);
+
+               zone_meta_bits_merge(meta, free_start, free_end);
+               meta->zm_chunk_len = (uint16_t)pg_end;
+
+               /*
+                * consume the zone_meta_lock_in_partial()
+                * done in zone_expand_locked()
+                */
+               zone_meta_alloc_size_sub(zone, meta, ZM_ALLOC_SIZE_LOCK);
+               zone_meta_remqueue(zone, meta);
+       }
+
+       if (zone->z_permanent || meta->zm_alloc_size) {
+               zone_meta_queue_push(zone, &zone->z_pageq_partial, meta);
+       } else {
+               zone_meta_queue_push(zone, &zone->z_pageq_empty, meta);
+               zone->z_wired_empty += zone->z_percpu ? 1 : pg_end;
+       }
+       if (pg_end < chunk_pages) {
+               /* push any non populated residual VA on z_pageq_va */
+               zone_meta_queue_push(zone, &zone->z_pageq_va, meta + pg_end);
+       }
+
+       zone_elems_free_add(zone, free_end - free_start);
+       zone->z_elems_avail += free_end - free_start;
+       zone->z_wired_cur   += zone->z_percpu ? 1 : pg_end - pg_start;
+       if (pg_va_new) {
+               zone->z_va_cur += zone->z_percpu ? 1 : pg_va_new;
+       }
+       if (zone->z_wired_hwm < zone->z_wired_cur) {
+               zone->z_wired_hwm = zone->z_wired_cur;
+       }
+
+       os_atomic_add(&zones_phys_page_mapped_count, pg_end - pg_start, relaxed);
+}
+
+static void
+zcram(zone_t zone, vm_offset_t addr, uint32_t pages, zone_addr_kind_t kind)
+{
+       uint32_t chunk_pages = zone->z_chunk_pages;
+
+       assert(pages % chunk_pages == 0);
+       for (; pages > 0; pages -= chunk_pages, addr += ptoa(chunk_pages)) {
+               zcram_and_lock(zone, addr, chunk_pages, 0, chunk_pages, kind);
+               zone_unlock(zone);
+       }
+}
+
+void
+zone_cram_foreign(zone_t zone, vm_offset_t newmem, vm_size_t size)
+{
+       uint32_t pages = (uint32_t)atop(size);
+
+       if (!from_zone_map(newmem, size, ZONE_ADDR_FOREIGN)) {
+               panic("zone_cram_foreign: foreign memory [%p] being crammed is "
+                   "outside of expected range", (void *)newmem);
+       }
+       if (!zone->z_allows_foreign) {
+               panic("zone_cram_foreign: foreign memory [%p] being crammed in "
+                   "zone '%s%s' not expecting it", (void *)newmem,
+                   zone_heap_name(zone), zone_name(zone));
+       }
+       if (size % ptoa(zone->z_chunk_pages)) {
+               panic("zone_cram_foreign: foreign memory [%p] being crammed has "
+                   "invalid size %zx", (void *)newmem, (size_t)size);
+       }
+       if (startup_phase >= STARTUP_SUB_ZALLOC) {
+               panic("zone_cram_foreign: foreign memory [%p] being crammed "
+                   "after zalloc is initialized", (void *)newmem);
+       }
+
+       bzero((void *)newmem, size);
+       zcram(zone, newmem, pages, ZONE_ADDR_FOREIGN);
+}
+
+void
+zone_fill_initially(zone_t zone, vm_size_t nelems)
+{
+       kma_flags_t kmaflags;
+       kern_return_t kr;
+       vm_offset_t addr;
+       uint32_t pages;
+
+       assert(!zone->z_permanent && !zone->collectable && !zone->z_destructible);
+       assert(zone->z_elems_avail == 0);
+
+       kmaflags = zone_kma_flags(zone, Z_WAITOK) | KMA_PERMANENT;
+       pages = zone_alloc_pages_for_nelems(zone, nelems);
+       kr = kernel_memory_allocate(zone_submap(zone), &addr, ptoa(pages),
+           0, kmaflags, VM_KERN_MEMORY_ZONE);
+       if (kr != KERN_SUCCESS) {
+               panic("kernel_memory_allocate() of %u pages failed", pages);
+       }
+
+       zone_meta_populate(addr, ptoa(pages));
+       zcram(zone, addr, pages, ZONE_ADDR_NATIVE);
+}
+
+static vm_offset_t
+zone_allocate_va(zone_t z, zalloc_flags_t flags)
+{
+       kma_flags_t kmaflags = zone_kma_flags(z, flags) | KMA_VAONLY;
+       vm_size_t size = ptoa(z->z_chunk_pages);
+       kern_return_t kr;
+       vm_offset_t addr;
+
+       kr = kernel_memory_allocate(zone_submap(z), &addr, size, 0,
+           kmaflags, VM_KERN_MEMORY_ZONE);
+
+#if !__LP64__
+       if (kr == KERN_NO_SPACE && z->z_replenishes) {
+               /*
+                * On 32bit the zone submaps do not have as much VA
+                * available, so use the VA reserved map for this
+                * purpose.
+                */
+               vm_map_t map = zone_submaps[Z_SUBMAP_IDX_VA_RESERVE];
+               kr = kernel_memory_allocate(map, &addr, size, 0,
+                   kmaflags, VM_KERN_MEMORY_ZONE);
+       }
+#endif
+
+       if (kr == KERN_SUCCESS) {
+#if ZALLOC_EARLY_GAPS
+               if (__improbable(zone_caching_disabled < 0)) {
+                       zone_allocate_random_early_gap(z);
+               }
+#endif /* ZALLOC_EARLY_GAPS */
+               zone_meta_populate(addr, size);
+               return addr;
+       }
+
+       panic_include_zprint = TRUE;
+#if CONFIG_ZLEAKS
+       if ((zleak_state & ZLEAK_STATE_ACTIVE)) {
+               panic_include_ztrace = TRUE;
+       }
+#endif /* CONFIG_ZLEAKS */
+       zone_t zone_largest = zone_find_largest();
+       panic("zalloc: zone map exhausted while allocating from zone [%s%s], "
+           "likely due to memory leak in zone [%s%s] "
+           "(%luM, %d elements allocated)",
+           zone_heap_name(z), zone_name(z),
+           zone_heap_name(zone_largest), zone_name(zone_largest),
+           (unsigned long)zone_size_wired(zone_largest) >> 20,
+           zone_count_allocated(zone_largest));
+}
+
+static bool
+zone_expand_pred_nope(__unused zone_t z)
+{
+       return false;
+}
+
+static inline void
+ZONE_TRACE_VM_KERN_REQUEST_START(vm_size_t size)
+{
+#if DEBUG || DEVELOPMENT
+       VM_DEBUG_CONSTANT_EVENT(vm_kern_request, VM_KERN_REQUEST, DBG_FUNC_START,
+           size, 0, 0, 0);
+#else
+       (void)size;
+#endif
+}
+
+static inline void
+ZONE_TRACE_VM_KERN_REQUEST_END(uint32_t pages)
+{
+#if DEBUG || DEVELOPMENT
+       task_t task = current_task();
+       if (pages && task) {
+               ledger_credit(task->ledger, task_ledgers.pages_grabbed_kern, pages);
+       }
+       VM_DEBUG_CONSTANT_EVENT(vm_kern_request, VM_KERN_REQUEST, DBG_FUNC_END,
+           pages, 0, 0, 0);
+#else
+       (void)pages;
+#endif
+}
+
+static void
+zone_expand_locked(zone_t z, zalloc_flags_t flags, bool (*pred)(zone_t))
+{
+       thread_t self = current_thread();
+       bool vm_priv = (self->options & TH_OPT_VMPRIV);
+       bool clear_vm_priv;
+
+       for (;;) {
+               if (!pred) {
+                       /* NULL pred means "try just once" */
+                       pred = zone_expand_pred_nope;
+               } else if (!pred(z)) {
+                       return;
+               }
+
+               if (vm_priv && !z->z_expander_vm_priv) {
+                       /*
+                        * Claim the vm priv overcommit slot
+                        *
+                        * We do not track exact ownership for VM privileged
+                        * threads, so use the rwlock boost as a stop-gap
+                        * just in case.
+                        */
+                       set_thread_rwlock_boost();
+                       z->z_expander_vm_priv = true;
+                       clear_vm_priv = true;
+               } else {
+                       clear_vm_priv = false;
+               }
+
+               if (z->z_expander == NULL) {
+                       z->z_expander = self;
+                       break;
+               }
+               if (clear_vm_priv) {
+                       break;
+               }
+
+               if (flags & Z_NOPAGEWAIT) {
+                       return;
+               }
+
+               z->z_expanding_wait = true;
+               lck_spin_sleep_with_inheritor(&z->z_lock, LCK_SLEEP_DEFAULT,
+                   &z->z_expander, z->z_expander,
+                   TH_UNINT, TIMEOUT_WAIT_FOREVER);
+       }
+
+       do {
+               struct zone_page_metadata *meta = NULL;
+               uint32_t new_va = 0, cur_pages = 0, min_pages = 0, pages = 0;
+               vm_page_t page_list = NULL;
+               vm_offset_t addr = 0;
+               int waited = 0;
+
+               /*
+                * While we hold the zone lock, look if there's VA we can:
+                * - complete from partial pages,
+                * - reuse from the sequester list.
+                *
+                * When the page is being populated we pretend we allocated
+                * an extra element so that zone_gc() can't attempt to free
+                * the chunk (as it could become empty while we wait for pages).
+                */
+               if (!zone_pva_is_null(z->z_pageq_va)) {
+                       meta = zone_meta_queue_pop_native(z,
+                           &z->z_pageq_va, &addr);
+                       if (meta->zm_chunk_len == ZM_SECONDARY_PAGE) {
+                               cur_pages = meta->zm_page_index;
+                               meta -= cur_pages;
+                               addr -= ptoa(cur_pages);
+                               zone_meta_lock_in_partial(z, meta, cur_pages);
+                       }
+               }
+               zone_unlock(z);
+
+               /*
+                * Do the zone leak activation here because zleak_activate()
+                * may block, and can't be done on the way out.
+                *
+                * Trigger jetsams via the vm_pageout_garbage_collect thread if
+                * we're running out of zone memory
+                */
+               zleak_activate_if_needed();
+               if (zone_map_nearing_exhaustion()) {
+                       thread_wakeup((event_t)&vm_pageout_garbage_collect);
+               }
+
+               /*
+                * And now allocate pages to populate our VA.
+                */
+               if (z->z_percpu) {
+                       min_pages = z->z_chunk_pages;
+               } else {
+                       min_pages = (uint32_t)atop(round_page(zone_elem_size(z)));
+               }
+
+               ZONE_TRACE_VM_KERN_REQUEST_START(ptoa(z->z_chunk_pages - cur_pages));
+
+               while (pages < z->z_chunk_pages - cur_pages) {
+                       vm_page_t m = vm_page_grab();
+
+                       if (m) {
+                               pages++;
+                               m->vmp_snext = page_list;
+                               page_list = m;
+                               vm_page_zero_fill(m);
+                               continue;
+                       }
+
+                       if (pages >= min_pages && (vm_pool_low() || waited)) {
+                               break;
+                       }
+
+                       if ((flags & Z_NOPAGEWAIT) == 0) {
+                               waited++;
+                               VM_PAGE_WAIT();
+                               continue;
+                       }
+
+                       /*
+                        * Undo everything and bail out:
+                        *
+                        * - free pages
+                        * - undo the fake allocation if any
+                        * - put the VA back on the VA page queue.
+                        */
+                       vm_page_free_list(page_list, FALSE);
+                       ZONE_TRACE_VM_KERN_REQUEST_END(pages);
+
+                       zone_lock(z);
+
+                       if (cur_pages) {
+                               zone_meta_unlock_from_partial(z, meta, cur_pages);
+                       }
+                       if (meta) {
+                               zone_meta_queue_push(z, &z->z_pageq_va,
+                                   meta + cur_pages);
+                       }
+                       goto page_shortage;
+               }
+
+               /*
+                * If we didn't find pre-allocated VA, then allocate a chunk
+                * of VA here.
+                */
+               if (addr == 0) {
+                       addr = zone_allocate_va(z, flags);
+                       meta = zone_meta_from_addr(addr);
+                       new_va = z->z_chunk_pages;
+               }
+
+               kernel_memory_populate_with_pages(zone_submap(z),
+                   addr + ptoa(cur_pages), ptoa(pages), page_list,
+                   zone_kma_flags(z, flags), VM_KERN_MEMORY_ZONE);
+
+               ZONE_TRACE_VM_KERN_REQUEST_END(pages);
+
+               zcram_and_lock(z, addr, new_va, cur_pages, cur_pages + pages,
+                   ZONE_ADDR_NATIVE);
+       } while (pred(z));
+
+page_shortage:
+       zleak_track_if_needed(z);
+
+       if (clear_vm_priv) {
+               z->z_expander_vm_priv = false;
+               clear_thread_rwlock_boost();
+       }
+       if (z->z_expander == self) {
+               z->z_expander = THREAD_NULL;
+       }
+       if (z->z_expanding_wait) {
+               z->z_expanding_wait = false;
+               wakeup_all_with_inheritor(&z->z_expander, THREAD_AWAKENED);
+       }
+}
+
+static bool
+zalloc_needs_refill(zone_t zone)
+{
+       if (zone->z_elems_free > zone->z_elems_rsv) {
+               return false;
+       }
+       if (zone->z_wired_cur < zone->z_wired_max) {
+               return true;
+       }
+       if (zone->exhaustible) {
+               return false;
+       }
+       if (zone->expandable) {
+               /*
+                * If we're expandable, just don't go through this again.
+                */
+               zone->z_wired_max = ~0u;
+               return true;
+       }
+       zone_unlock(zone);
+
+       panic_include_zprint = true;
+#if CONFIG_ZLEAKS
+       if (zleak_state & ZLEAK_STATE_ACTIVE) {
+               panic_include_ztrace = true;
+       }
+#endif /* CONFIG_ZLEAKS */
+       panic("zone '%s%s' exhausted", zone_heap_name(zone), zone_name(zone));
+}
+
+static void
+zone_expand_async(__unused thread_call_param_t p0, __unused thread_call_param_t p1)
+{
+       zone_foreach(z) {
+               if (z->no_callout) {
+                       /* z_async_refilling will never be set */
+                       continue;
+               }
+
+               if (z->z_replenishes) {
+                       /* those use the zone_replenish_thread */
+                       continue;
+               }
+
+               zone_lock(z);
+               if (z->z_self && z->z_async_refilling) {
+                       z->z_async_refilling = false;
+                       zone_expand_locked(z, Z_WAITOK, zalloc_needs_refill);
+               }
+               zone_unlock(z);
+       }
+}
+
+static inline void
+zone_expand_async_schedule_if_needed(zone_t zone)
+{
+       if (zone->z_elems_free > zone->z_elems_rsv || zone->z_async_refilling ||
+           zone->no_callout) {
+               return;
+       }
+
+       if (!zone->expandable && zone->z_wired_cur >= zone->z_wired_max) {
+               return;
+       }
+
+       if (zone->z_elems_free == 0 || !vm_pool_low()) {
+               zone->z_async_refilling = true;
+               thread_call_enter(&zone_expand_callout);
+       }
+}
+
+#endif /* !ZALLOC_TEST */
+#pragma mark zone replenishing (VM allocations)
+#if !ZALLOC_TEST
+
+/*
+ * Tracks how many zone_replenish threads are active, because zone_gc() wants
+ * for those to be finished before it proceeds.
+ *
+ * This counts how many replenish threads are active in
+ * ZONE_REPLENISH_ACTIVE_INC increments,
+ * and uses the low bit to track if there are any waiters.
+ */
+#define ZONE_REPLENISH_ACTIVE_NONE        0u
+#define ZONE_REPLENISH_ACTIVE_WAITER_BIT  1u
+#define ZONE_REPLENISH_ACTIVE_INC         2u
+#define ZONE_REPLENISH_ACTIVE_MASK        (~ZONE_REPLENISH_ACTIVE_WAITER_BIT)
+static unsigned _Atomic zone_replenish_active;
+static unsigned zone_replenish_wakeups;
+static unsigned zone_replenish_wakeups_initiated;
+static unsigned zone_replenish_throttle_count;
+
+#define ZONE_REPLENISH_TARGET (16 * 1024)
+
+static void
+zone_replenish_wait_if_needed(void)
+{
+       /*
+        * This check can be racy, the reserves ought to be enough
+        * to compensate for a little race
+        */
+       while (os_atomic_load(&zone_replenish_active, relaxed) !=
+           ZONE_REPLENISH_ACTIVE_NONE) {
+               unsigned o_active, n_active;
+
+               assert_wait(&zone_replenish_active, THREAD_UNINT);
+
+               os_atomic_rmw_loop(&zone_replenish_active, o_active, n_active, relaxed, {
+                       if (o_active == ZONE_REPLENISH_ACTIVE_NONE) {
+                               os_atomic_rmw_loop_give_up({
+                                       clear_wait(current_thread(), THREAD_AWAKENED);
+                                       return;
+                               });
+                       }
+                       if (o_active & ZONE_REPLENISH_ACTIVE_WAITER_BIT) {
+                               os_atomic_rmw_loop_give_up(break);
+                       }
+                       n_active = o_active | ZONE_REPLENISH_ACTIVE_WAITER_BIT;
+               });
+               thread_block(THREAD_CONTINUE_NULL);
+       }
+}
+
+__attribute__((noinline))
+static void
+zone_replenish_locked(zone_t zone)
+{
+       thread_t thr = current_thread();
+       uint32_t min_free;
+
+       zone_replenish_wakeups++;
+
+       /*
+        * We'll let threads continue to allocate under the reserve:
+        * - until it depleted to 50% for regular threads,
+        * - until it depleted to 25% for VM_PRIV threads.
+        *
+        * After that only TH_OPT_ZONE_PRIV threads may continue.
+        */
+       if (thr->options & TH_OPT_VMPRIV) {
+               min_free = zone->z_elems_rsv / 4;
+       } else {
+               min_free = zone->z_elems_rsv / 2;
+       }
+
+       while (zone->z_elems_free <= zone->z_elems_rsv) {
+               /*
+                * Wakeup the replenish thread if not running.
+                */
+               if (!zone->z_async_refilling) {
+                       os_atomic_add(&zone_replenish_active,
+                           ZONE_REPLENISH_ACTIVE_INC, relaxed);
+                       zone->z_async_refilling = true;
+                       zone_replenish_wakeups_initiated++;
+                       thread_wakeup(&zone->z_elems_rsv);
+               }
+
+               if (zone->z_elems_free > min_free) {
+                       break;
+               }
+
+               /*
+                * TH_OPT_ZONE_PRIV threads are the GC thread and a replenish
+                * thread itself.
+                *
+                * Replenish threads *need* to use the reserve. GC threads need
+                * to get through the current allocation, but then will wait at
+                * a higher level after they've dropped any locks which would
+                * deadlock the replenish thread.
+                *
+                * The value of (refill_level / 2) in the previous bit of code
+                * should have given us headroom even though this thread didn't
+                * wait.
+                */
+               if (thr->options & TH_OPT_ZONE_PRIV) {
+                       assert(zone->z_elems_free != 0);
+                       break;
+               }
+
+               if (startup_phase < STARTUP_SUB_MACH_IPC) {
+                       panic("vm_map_steal_memory didn't steal enough memory: "
+                           "trying to grow [%s%s] before the scheduler has started",
+                           zone_heap_name(zone), zone_name(zone));
+               }
+
+               /*
+                * Wait for the replenish threads to add more elements
+                * for us to allocate from.
+                */
+               zone_replenish_throttle_count++;
+               zone->z_replenish_wait = true;
+               assert_wait_timeout(zone, THREAD_UNINT, 1, NSEC_PER_MSEC);
+               zone_unlock(zone);
+               thread_block(THREAD_CONTINUE_NULL);
+               zone_lock(zone);
+               zone->z_replenish_wait = false;
+
+               assert(zone->z_self == zone);
+       }
+}
+
+static bool
+zone_replenish_needed(zone_t z)
+{
+       return z->z_elems_free <= z->z_elems_rsv;
+}
+
+/*
+ * High priority VM privileged thread used to asynchronously refill a given zone.
+ * These are needed for data structures used by the lower level VM itself. The
+ * replenish thread maintains a reserve of elements, so that the VM will never
+ * block in the zone allocator.
+ */
+__dead2
+static void
+zone_replenish_thread(void *_z, wait_result_t __unused wr)
+{
+       unsigned o_active, n_active;
+       zone_t z = _z;
+
+       zone_lock(z);
+       assert(z->z_self == z);
+       assert(z->z_async_refilling && z->z_replenishes);
+
+       zone_expand_locked(z, Z_WAITOK, zone_replenish_needed);
+
+       if (z->z_replenish_wait) {
+               /* Wakeup any potentially throttled allocations */
+               z->z_replenish_wait = false;
+               thread_wakeup(z);
+       }
+
+       /* wakeup zone_reclaim() callers that were possibly waiting */
+       os_atomic_rmw_loop(&zone_replenish_active, o_active, n_active, relaxed, {
+               if (os_sub_overflow(o_active, ZONE_REPLENISH_ACTIVE_INC, &n_active)) {
+                       panic("zone_replenish_active corrupt: %d", o_active);
+               }
+               if ((n_active & ZONE_REPLENISH_ACTIVE_MASK) == 0) {
+                       n_active = ZONE_REPLENISH_ACTIVE_NONE;
+               }
+       });
+
+       if (n_active == ZONE_REPLENISH_ACTIVE_NONE &&
+           (o_active & ZONE_REPLENISH_ACTIVE_WAITER_BIT)) {
+               thread_wakeup(&zone_replenish_active);
+       }
+
+       z->z_async_refilling = false;
+       assert_wait(&z->z_elems_rsv, THREAD_UNINT);
+
+       zone_unlock(z);
+
+       thread_block_parameter(zone_replenish_thread, z);
+       __builtin_unreachable();
+}
+
+void
+zone_replenish_configure(zone_t z)
+{
+       thread_t th;
+       kern_return_t kr;
+       char name[MAXTHREADNAMESIZE];
+
+       zone_lock(z);
+       assert(!z->z_replenishes && !z->z_destructible);
+       z->z_elems_rsv = (uint16_t)(ZONE_REPLENISH_TARGET / zone_elem_size(z));
+       z->z_replenishes = true;
+       os_atomic_add(&zone_replenish_active, ZONE_REPLENISH_ACTIVE_INC, relaxed);
+       z->z_async_refilling = true;
+       zone_unlock(z);
+
+       kr = kernel_thread_create(zone_replenish_thread, z, MAXPRI_KERNEL, &th);
+       if (kr != KERN_SUCCESS) {
+               panic("zone_replenish_configure, thread create: 0x%x", kr);
+       }
+       /* make sure this thread can't lose its stack */
+       assert(th->reserved_stack == th->kernel_stack);
+
+       snprintf(name, sizeof(name), "z_replenish(%s)", zone_name(z));
+       thread_set_thread_name(th, name);
+
+       thread_mtx_lock(th);
+       th->options |= TH_OPT_VMPRIV | TH_OPT_ZONE_PRIV;
+       thread_start(th);
+       thread_mtx_unlock(th);
+
+       thread_deallocate(th);
+}
+
+/*! @} */
+#endif /* !ZALLOC_TEST */
+#pragma mark zone jetsam integration
+#if !ZALLOC_TEST
+
+/*
+ * We're being very conservative here and picking a value of 95%. We might need to lower this if
+ * we find that we're not catching the problem and are still hitting zone map exhaustion panics.
+ */
+#define ZONE_MAP_JETSAM_LIMIT_DEFAULT 95
+
+/*
+ * Trigger zone-map-exhaustion jetsams if the zone map is X% full, where X=zone_map_jetsam_limit.
+ * Can be set via boot-arg "zone_map_jetsam_limit". Set to 95% by default.
+ */
+TUNABLE_WRITEABLE(unsigned int, zone_map_jetsam_limit, "zone_map_jetsam_limit",
+    ZONE_MAP_JETSAM_LIMIT_DEFAULT);
+
+void
+get_zone_map_size(uint64_t *current_size, uint64_t *capacity)
+{
+       vm_offset_t phys_pages = os_atomic_load(&zones_phys_page_mapped_count, relaxed);
+       *current_size = ptoa_64(phys_pages);
+       *capacity = ptoa_64(zone_phys_mapped_max_pages);
+}
+
+void
+get_largest_zone_info(char *zone_name, size_t zone_name_len, uint64_t *zone_size)
+{
+       zone_t largest_zone = zone_find_largest();
+
+       /*
+        * Append kalloc heap name to zone name (if zone is used by kalloc)
+        */
+       snprintf(zone_name, zone_name_len, "%s%s",
+           zone_heap_name(largest_zone), largest_zone->z_name);
+
+       *zone_size = zone_size_wired(largest_zone);
+}
+
+bool
+zone_map_nearing_exhaustion(void)
+{
+       uint64_t phys_pages = os_atomic_load(&zones_phys_page_mapped_count, relaxed);
+       return phys_pages * 100 > zone_phys_mapped_max_pages * zone_map_jetsam_limit;
+}
+
+
+#define VMENTRY_TO_VMOBJECT_COMPARISON_RATIO 98
+
+/*
+ * Tries to kill a single process if it can attribute one to the largest zone. If not, wakes up the memorystatus thread
+ * to walk through the jetsam priority bands and kill processes.
+ */
+static void
+kill_process_in_largest_zone(void)
+{
+       pid_t pid = -1;
+       zone_t largest_zone = zone_find_largest();
+
+       printf("zone_map_exhaustion: Zone mapped %lld of %lld, used %lld, capacity %lld [jetsam limit %d%%]\n",
+           ptoa_64(os_atomic_load(&zones_phys_page_mapped_count, relaxed)),
+           ptoa_64(zone_phys_mapped_max_pages),
+           (uint64_t)zone_submaps_approx_size(),
+           (uint64_t)(zone_foreign_size() + zone_native_size()),
+           zone_map_jetsam_limit);
+       printf("zone_map_exhaustion: Largest zone %s%s, size %lu\n", zone_heap_name(largest_zone),
+           largest_zone->z_name, (uintptr_t)zone_size_wired(largest_zone));
+
+       /*
+        * We want to make sure we don't call this function from userspace.
+        * Or we could end up trying to synchronously kill the process
+        * whose context we're in, causing the system to hang.
+        */
+       assert(current_task() == kernel_task);
+
+       /*
+        * If vm_object_zone is the largest, check to see if the number of
+        * elements in vm_map_entry_zone is comparable.
+        *
+        * If so, consider vm_map_entry_zone as the largest. This lets us target
+        * a specific process to jetsam to quickly recover from the zone map
+        * bloat.
+        */
+       if (largest_zone == vm_object_zone) {
+               unsigned int vm_object_zone_count = zone_count_allocated(vm_object_zone);
+               unsigned int vm_map_entry_zone_count = zone_count_allocated(vm_map_entry_zone);
+               /* Is the VM map entries zone count >= 98% of the VM objects zone count? */
+               if (vm_map_entry_zone_count >= ((vm_object_zone_count * VMENTRY_TO_VMOBJECT_COMPARISON_RATIO) / 100)) {
+                       largest_zone = vm_map_entry_zone;
+                       printf("zone_map_exhaustion: Picking VM map entries as the zone to target, size %lu\n",
+                           (uintptr_t)zone_size_wired(largest_zone));
+               }
+       }
+
+       /* TODO: Extend this to check for the largest process in other zones as well. */
+       if (largest_zone == vm_map_entry_zone) {
+               pid = find_largest_process_vm_map_entries();
+       } else {
+               printf("zone_map_exhaustion: Nothing to do for the largest zone [%s%s]. "
+                   "Waking up memorystatus thread.\n", zone_heap_name(largest_zone),
+                   largest_zone->z_name);
+       }
+       if (!memorystatus_kill_on_zone_map_exhaustion(pid)) {
+               printf("zone_map_exhaustion: Call to memorystatus failed, victim pid: %d\n", pid);
+       }
+}
+
+#endif /* !ZALLOC_TEST */
+#pragma mark zfree
+#if !ZALLOC_TEST
+#if KASAN_ZALLOC
+
+/*!
+ * @defgroup zfree
+ * @{
+ *
+ * @brief
+ * The codepath for zone frees.
+ *
+ * @discussion
+ * There are 4 major ways to allocate memory that end up in the zone allocator:
+ * - @c zfree()
+ * - @c zfree_percpu()
+ * - @c kfree*()
+ * - @c zfree_permanent()
+ *
+ * While permanent zones have their own allocation scheme, all other codepaths
+ * will eventually go through the @c zfree_ext() choking point.
+ *
+ * Ignoring the @c gzalloc_free() codepath, the decision tree looks like this:
+ * <code>
+ * zfree_ext()
+ *      â”œâ”€â”€â”€> zfree_cached() â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â•®
+ *      â”‚       â”‚                            â”‚
+ *      â”‚       â”‚                            â”‚
+ *      â”‚       â”œâ”€â”€â”€> zfree_cached_slow() â”€â”€â”€â”¤
+ *      â”‚       â”‚            â”‚               â”‚
+ *      â”‚       â”‚            v               â”‚
+ *      â•°â”€â”€â”€â”€â”€â”€â”€â”´â”€â”€â”€> zfree_item() â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”´â”€â”€â”€>
+ * </code>
+ *
+ * @c zfree_ext() takes care of all the generic work to perform on an element
+ * before it is freed (zeroing, logging, tagging, ...) then will hand it off to:
+ * - @c zfree_item() if zone caching is off
+ * - @c zfree_cached() if zone caching is on.
+ *
+ * @c zfree_cached can take a number of decisions:
+ * - a fast path if the (f) or (a) magazines have space (preemption disabled),
+ * - using the cpu local or recirculation depot calling @c zfree_cached_slow(),
+ * - falling back to @c zfree_item() when CPU caching has been disabled.
+ */
+
+/*
+ * Called from zfree() to add the element being freed to the KASan quarantine.
+ *
+ * Returns true if the newly-freed element made it into the quarantine without
+ * displacing another, false otherwise. In the latter case, addrp points to the
+ * address of the displaced element, which will be freed by the zone.
+ */
+static bool
+kasan_quarantine_freed_element(
+       zone_t          *zonep,         /* the zone the element is being freed to */
+       void            **addrp)        /* address of the element being freed */
+{
+       zone_t zone = *zonep;
+       void *addr = *addrp;
+
+       /*
+        * Resize back to the real allocation size and hand off to the KASan
+        * quarantine. `addr` may then point to a different allocation, if the
+        * current element replaced another in the quarantine. The zone then
+        * takes ownership of the swapped out free element.
+        */
+       vm_size_t usersz = zone_elem_size(zone) - 2 * zone->z_kasan_redzone;
+       vm_size_t sz = usersz;
+
+       if (addr && zone->z_kasan_redzone) {
+               kasan_check_free((vm_address_t)addr, usersz, KASAN_HEAP_ZALLOC);
+               addr = (void *)kasan_dealloc((vm_address_t)addr, &sz);
+               assert(sz == zone_elem_size(zone));
+       }
+       if (addr && !zone->kasan_noquarantine) {
+               kasan_free(&addr, &sz, KASAN_HEAP_ZALLOC, zonep, usersz, true);
+               if (!addr) {
+                       return TRUE;
+               }
+       }
+       if (addr && zone->kasan_noquarantine) {
+               kasan_unpoison(addr, zone_elem_size(zone));
+       }
+       *addrp = addr;
+       return FALSE;
+}
+
+#endif /* KASAN_ZALLOC */
+
+__header_always_inline void
+zfree_drop(zone_t zone, struct zone_page_metadata *meta, zone_element_t ze,
+    bool recirc)
+{
+       vm_offset_t esize = zone_elem_size(zone);
+
+       if (zone_meta_mark_free(meta, ze) == recirc) {
+               zone_meta_double_free_panic(zone, ze, __func__);
+       }
+
+       vm_offset_t old_size = meta->zm_alloc_size;
+       vm_offset_t max_size = ptoa(meta->zm_chunk_len) + ZM_ALLOC_SIZE_LOCK;
+       vm_offset_t new_size = zone_meta_alloc_size_sub(zone, meta, esize);
+
+       if (new_size == 0) {
+               /* whether the page was on the intermediate or all_used, queue, move it to free */
+               zone_meta_requeue(zone, &zone->z_pageq_empty, meta);
+               zone->z_wired_empty += meta->zm_chunk_len;
+       } else if (old_size + esize > max_size) {
+               /* first free element on page, move from all_used */
+               zone_meta_requeue(zone, &zone->z_pageq_partial, meta);
+       }
+}
+
+static void
+zfree_item(zone_t zone, struct zone_page_metadata *meta, zone_element_t ze)
+{
+       /* transfer preemption count to lock */
+       zone_lock_nopreempt_check_contention(zone, NULL);
+
+       zfree_drop(zone, meta, ze, false);
+       zone_elems_free_add(zone, 1);
+
+       zone_unlock(zone);
+}
+
+__attribute__((noinline))
+static void
+zfree_cached_slow(zone_t zone, struct zone_page_metadata *meta,
+    zone_element_t ze, zone_cache_t cache)
+{
+       struct zone_depot mags = STAILQ_HEAD_INITIALIZER(mags);
+       zone_magazine_t mag = NULL;
+       uint16_t n = 0;
+
+       if (zone_meta_is_free(meta, ze)) {
+               zone_meta_double_free_panic(zone, ze, __func__);
+       }
+
+       if (zone == zc_magazine_zone) {
+               mag = (zone_magazine_t)zone_element_addr(ze,
+                   zone_elem_size(zone));
+#if KASAN_ZALLOC
+               kasan_poison_range((vm_offset_t)mag, zone_elem_size(zone),
+                   ASAN_VALID);
+#endif
+       } else {
+               mag = zone_magazine_alloc(Z_NOWAIT);
+               if (__improbable(mag == NULL)) {
+                       return zfree_item(zone, meta, ze);
+               }
+               mag->zm_cur = 1;
+               mag->zm_elems[0] = ze;
+       }
+
+       mag = zone_magazine_replace(&cache->zc_free_cur,
+           &cache->zc_free_elems, mag);
+
+       z_debug_assert(cache->zc_free_cur <= 1);
+       z_debug_assert(mag->zm_cur == zc_mag_size());
+
+       STAILQ_INSERT_HEAD(&mags, mag, zm_link);
+       n = 1;
+
+       if (cache->zc_depot_max >= 2 * zc_mag_size()) {
+               /*
+                * If we can use the local depot (zc_depot_max allows for
+                * 2 magazines worth of elements) then:
+                *
+                * 1. if we have space for an extra depot locally,
+                *    push it, and leave.
+                *
+                * 2. if we overflow, then take (1 / zc_recirc_denom)
+                *    of the depot out, in order to migrate it to the
+                *    recirculation depot.
+                */
+               zone_depot_lock_nopreempt(cache);
+
+               if ((cache->zc_depot_cur + 2) * zc_mag_size() <=
+                   cache->zc_depot_max) {
+                       cache->zc_depot_cur++;
+                       STAILQ_INSERT_TAIL(&cache->zc_depot, mag, zm_link);
+                       return zone_depot_unlock(cache);
+               }
+
+               while (zc_recirc_denom * cache->zc_depot_cur * zc_mag_size() >=
+                   (zc_recirc_denom - 1) * cache->zc_depot_max) {
+                       mag = STAILQ_FIRST(&cache->zc_depot);
+                       STAILQ_REMOVE_HEAD(&cache->zc_depot, zm_link);
+                       STAILQ_INSERT_TAIL(&mags, mag, zm_link);
+                       cache->zc_depot_cur--;
+                       n++;
+               }
+
+               zone_depot_unlock(cache);
+       } else {
+               enable_preemption();
+       }
+
+       /*
+        * Preflight validity of all the elements before we touch the zone
+        * metadata, and then insert them into the recirculation depot.
+        */
+       STAILQ_FOREACH(mag, &mags, zm_link) {
+               for (uint16_t i = 0; i < zc_mag_size(); i++) {
+                       zone_element_validate(zone, mag->zm_elems[i]);
+               }
+       }
+
+       zone_lock_check_contention(zone, cache);
+
+       STAILQ_FOREACH(mag, &mags, zm_link) {
+               for (uint16_t i = 0; i < zc_mag_size(); i++) {
+                       zone_element_t e = mag->zm_elems[i];
+
+                       if (!zone_meta_mark_free(zone_meta_from_element(e), e)) {
+                               zone_meta_double_free_panic(zone, e, __func__);
+                       }
+               }
+       }
+       STAILQ_CONCAT(&zone->z_recirc, &mags);
+       zone->z_recirc_cur += n;
+
+       zone_elems_free_add(zone, n * zc_mag_size());
+
+       zone_unlock(zone);
+}
+
+static void
+zfree_cached(zone_t zone, struct zone_page_metadata *meta, zone_element_t ze)
+{
+       zone_cache_t cache = zpercpu_get(zone->z_pcpu_cache);
+
+       if (cache->zc_free_cur >= zc_mag_size()) {
+               if (cache->zc_alloc_cur >= zc_mag_size()) {
+                       return zfree_cached_slow(zone, meta, ze, cache);
+               }
+               zone_cache_swap_magazines(cache);
+       }
+
+       if (__improbable(cache->zc_alloc_elems == NULL)) {
+               return zfree_item(zone, meta, ze);
+       }
+
+       if (zone_meta_is_free(meta, ze)) {
+               zone_meta_double_free_panic(zone, ze, __func__);
+       }
+
+       uint16_t idx = cache->zc_free_cur++;
+       if (idx >= zc_mag_size()) {
+               zone_accounting_panic(zone, "zc_free_cur overflow");
+       }
+       cache->zc_free_elems[idx] = ze;
+
+       enable_preemption();
+}
+
+/*
+ *     The function is noinline when zlog can be used so that the backtracing can
+ *     reliably skip the zfree_ext() and zfree_log_trace()
+ *     boring frames.
+ */
+#if ZONE_ENABLE_LOGGING
+__attribute__((noinline))
+#endif /* ZONE_ENABLE_LOGGING */
+void
+zfree_ext(zone_t zone, zone_stats_t zstats, void *addr)
+{
+       struct zone_page_metadata *page_meta;
+       vm_offset_t     elem = (vm_offset_t)addr;
+       vm_size_t       elem_size = zone_elem_size(zone);
+       zone_element_t  ze;
+
+       DTRACE_VM2(zfree, zone_t, zone, void*, addr);
+       TRACE_MACHLEAKS(ZFREE_CODE, ZFREE_CODE_2, elem_size, elem);
+#if VM_MAX_TAG_ZONES
+       if (__improbable(zone->tags)) {
+               vm_tag_t tag = *ztSlot(zone, elem) >> 1;
+               // set the tag with b0 clear so the block remains inuse
+               *ztSlot(zone, elem) = 0xFFFE;
+               vm_tag_update_zone_size(tag, zone->tag_zone_index,
+                   -(long)elem_size);
+       }
+#endif /* VM_MAX_TAG_ZONES */
+
+#if KASAN_ZALLOC
+       if (kasan_quarantine_freed_element(&zone, &addr)) {
+               return;
+       }
+       /*
+        * kasan_quarantine_freed_element() might return a different
+        * {zone, addr} than the one being freed for kalloc heaps.
+        *
+        * Make sure we reload everything.
+        */
+       elem = (vm_offset_t)addr;
+       elem_size = zone_elem_size(zone);
+#endif
+#if CONFIG_ZLEAKS
+       /*
+        * Zone leak detection: un-track the allocation
+        */
+       if (__improbable(zone->zleak_on)) {
+               zleak_free(elem, elem_size);
+       }
+#endif /* CONFIG_ZLEAKS */
+#if ZONE_ENABLE_LOGGING
+       if (__improbable(DO_LOGGING(zone))) {
+               zfree_log_trace(zone, elem, __builtin_frame_address(0));
+       }
+#endif /* ZONE_ENABLE_LOGGING */
+#if CONFIG_GZALLOC
+       if (__improbable(zone->gzalloc_tracked)) {
+               return gzalloc_free(zone, zstats, addr);
+       }
+#endif /* CONFIG_GZALLOC */
+
+       page_meta = zone_element_resolve(zone, elem, elem_size, &ze);
+       ze.ze_value |= zfree_clear_or_poison(zone, elem, elem_size);
+#if KASAN_ZALLOC
+       if (zone->z_percpu) {
+               zpercpu_foreach_cpu(i) {
+                       kasan_poison_range(elem + ptoa(i), elem_size,
+                           ASAN_HEAP_FREED);
+               }
+       } else {
+               kasan_poison_range(elem, elem_size, ASAN_HEAP_FREED);
+       }
+#endif
+
+       disable_preemption();
+       zpercpu_get(zstats)->zs_mem_freed += elem_size;
+
+       if (zone->z_pcpu_cache) {
+               return zfree_cached(zone, page_meta, ze);
+       }
+
+       return zfree_item(zone, page_meta, ze);
+}
+
+void
+(zfree)(union zone_or_view zov, void *addr)
+{
+       zone_t zone = zov.zov_view->zv_zone;
+       zone_stats_t zstats = zov.zov_view->zv_stats;
+       assert(!zone->z_percpu);
+       zfree_ext(zone, zstats, addr);
+}
+
+void
+zfree_percpu(union zone_or_view zov, void *addr)
+{
+       zone_t zone = zov.zov_view->zv_zone;
+       zone_stats_t zstats = zov.zov_view->zv_stats;
+       assert(zone->z_percpu);
+       zfree_ext(zone, zstats, (void *)__zpcpu_demangle(addr));
+}
+
+/*! @} */
+#endif /* !ZALLOC_TEST */
+#pragma mark zalloc
+#if !ZALLOC_TEST
+
+/*!
+ * @defgroup zalloc
+ * @{
+ *
+ * @brief
+ * The codepath for zone allocations.
+ *
+ * @discussion
+ * There are 4 major ways to allocate memory that end up in the zone allocator:
+ * - @c zalloc(), @c zalloc_flags(), ...
+ * - @c zalloc_percpu()
+ * - @c kalloc*()
+ * - @c zalloc_permanent()
+ *
+ * While permanent zones have their own allocation scheme, all other codepaths
+ * will eventually go through the @c zalloc_ext() choking point.
+ *
+ * Ignoring the @c zalloc_gz() codepath, the decision tree looks like this:
+ * <code>
+ * zalloc_ext()
+ *      â”‚
+ *      â”œâ”€â”€â”€> zalloc_cached() â”€â”€â”€â”€â”€â”€> zalloc_cached_fast() â”€â”€â”€â•®
+ *      â”‚         â”‚                             ^             â”‚
+ *      â”‚         â”‚                             â”‚             â”‚
+ *      â”‚         â•°â”€â”€â”€> zalloc_cached_slow() â”€â”€â”€â•¯             â”‚
+ *      â”‚                         â”‚                           â”‚
+ *      â”‚<─────────────────╮      â”œâ”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â•®             â”‚
+ *      â”‚                  â”‚      â”‚             â”‚             â”‚
+ *      â”‚                  â”‚      v             â”‚             â”‚
+ *      â”‚<───────╮  â•­â”€â”€> zalloc_item_slow() â”€â”€â”€â”€â”¤             â”‚
+ *      â”‚        â”‚  â”‚                           â”‚             â”‚
+ *      â”‚        â”‚  â”‚                           v             â”‚
+ *      â•°â”€â”€â”€> zalloc_item() â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€> zalloc_item_fast() â”€â”€â”€â”¤
+ *                                                            â”‚
+ *                                                            v
+ *                                                     zalloc_return()
+ * </code>
+ *
+ *
+ * The @c zalloc_item() track is used when zone caching is off:
+ * - @c zalloc_item_fast() is used when there are enough elements available,
+ * - @c zalloc_item_slow() is used when a refill is needed, which can cause
+ *   the zone to grow. This is the only codepath that refills.
+ *
+ * This track uses the zone lock for serialization:
+ * - taken in @c zalloc_item(),
+ * - maintained during @c zalloc_item_slow() (possibly dropped and re-taken),
+ * - dropped in @c zalloc_item_fast().
+ *
+ *
+ * The @c zalloc_cached() track is used when zone caching is on:
+ * - @c zalloc_cached_fast() is taken when the cache has elements,
+ * - @c zalloc_cached_slow() is taken if a cache refill is needed.
+ *   It can chose many strategies:
+ *    ~ @c zalloc_cached_from_depot() to try to reuse cpu stashed magazines,
+ *    ~ using the global recirculation depot @c z_recirc,
+ *    ~ using zalloc_import() if the zone has enough elements,
+ *    ~ falling back to the @c zalloc_item() track if zone caching is disabled
+ *      due to VM pressure or the zone has no available elements.
+ *
+ * This track disables preemption for serialization:
+ * - preemption is disabled in @c zalloc_cached(),
+ * - kept disabled during @c zalloc_cached_slow(), converted into a zone lock
+ *   if switching to @c zalloc_item_slow(),
+ * - preemption is reenabled in @c zalloc_cached_fast().
+ *
+ * @c zalloc_cached_from_depot() also takes depot locks (taken by the caller,
+ * released by @c zalloc_cached_from_depot().
+ *
+ * In general the @c zalloc_*_slow() codepaths deal with refilling and will
+ * tail call into the @c zalloc_*_fast() code to perform the actual allocation.
+ *
+ * @c zalloc_return() is the final function everyone tail calls into,
+ * which prepares the element for consumption by the caller and deals with
+ * common treatment (zone logging, tags, kasan, validation, ...).
+ */
+
+/*!
+ * @function zalloc_import
+ *
+ * @brief
+ * Import @c n elements in the specified array, opposite of @c zfree_drop().
+ *
+ * @param zone          The zone to import elements from
+ * @param elems         The array to import into
+ * @param n             The number of elements to import. Must be non zero,
+ *                      and smaller than @c zone->z_elems_free.
+ */
+__header_always_inline void
+zalloc_import(zone_t zone, zone_element_t *elems, uint32_t n)
+{
+       vm_size_t esize = zone_elem_size(zone);
+       uint32_t i = 0;
+
+       assertf(STAILQ_EMPTY(&zone->z_recirc),
+           "Trying to import from zone %p [%s%s] with non empty recirc",
+           zone, zone_heap_name(zone), zone_name(zone));
+
+       do {
+               vm_offset_t page, eidx, size = 0;
+               struct zone_page_metadata *meta;
+
+               if (!zone_pva_is_null(zone->z_pageq_partial)) {
+                       meta = zone_pva_to_meta(zone->z_pageq_partial);
+                       page = zone_pva_to_addr(zone->z_pageq_partial);
+               } else if (!zone_pva_is_null(zone->z_pageq_empty)) {
+                       meta = zone_pva_to_meta(zone->z_pageq_empty);
+                       page = zone_pva_to_addr(zone->z_pageq_empty);
+                       zone_counter_sub(zone, z_wired_empty, meta->zm_chunk_len);
+               } else {
+                       zone_accounting_panic(zone, "z_elems_free corruption");
+               }
+
+               if (!zone_has_index(zone, meta->zm_index)) {
+                       zone_page_metadata_index_confusion_panic(zone, page, meta);
+               }
+
+               vm_offset_t old_size = meta->zm_alloc_size;
+               vm_offset_t max_size = ptoa(meta->zm_chunk_len) + ZM_ALLOC_SIZE_LOCK;
+
+               do {
+                       eidx = zone_meta_find_and_clear_bit(zone, meta);
+                       elems[i++] = zone_element_encode(page, eidx, ZPM_AUTO);
+                       size += esize;
+               } while (i < n && old_size + size + esize <= max_size);
+
+               vm_offset_t new_size = zone_meta_alloc_size_add(zone, meta, size);
+
+               if (new_size + esize > max_size) {
+                       zone_meta_requeue(zone, &zone->z_pageq_full, meta);
+               } else if (old_size == 0) {
+                       /* remove from free, move to intermediate */
+                       zone_meta_requeue(zone, &zone->z_pageq_partial, meta);
+               }
+       } while (i < n);
+}
+
+/*!
+ * @function zalloc_return
+ *
+ * @brief
+ * Performs the tail-end of the work required on allocations before the caller
+ * uses them.
+ *
+ * @discussion
+ * This function is called without any zone lock held,
+ * and preemption back to the state it had when @c zalloc_ext() was called.
+ *
+ * @param zone          The zone we're allocating from.
+ * @param ze            The encoded element we just allocated.
+ * @param flags         The flags passed to @c zalloc_ext() (for Z_ZERO).
+ * @param elem_size     The element size for this zone.
+ * @param freemag       An optional magazine that needs to be freed.
+ */
+__attribute__((noinline))
+static void *
+zalloc_return(zone_t zone, zone_element_t ze, zalloc_flags_t flags,
+    vm_offset_t elem_size, zone_magazine_t freemag)
+{
+       vm_offset_t addr = zone_element_addr(ze, elem_size);
+
+#if KASAN_ZALLOC
+       if (zone->z_percpu) {
+               zpercpu_foreach_cpu(i) {
+                       kasan_poison_range(addr + ptoa(i), elem_size,
+                           ASAN_VALID);
+               }
+       } else {
+               kasan_poison_range(addr, elem_size, ASAN_VALID);
+       }
+#endif
+#if ZALLOC_ENABLE_POISONING
+       zalloc_validate_element(zone, addr, elem_size, zone_element_prot(ze));
+#endif /* ZALLOC_ENABLE_POISONING */
+#if ZONE_ENABLE_LOGGING || CONFIG_ZLEAKS
+       if (__improbable(zalloc_should_log_or_trace_leaks(zone, elem_size))) {
+               zalloc_log_or_trace_leaks(zone, addr, __builtin_frame_address(0));
+       }
+#endif /* ZONE_ENABLE_LOGGING || CONFIG_ZLEAKS */
+#if KASAN_ZALLOC
+       if (zone->z_kasan_redzone) {
+               addr = kasan_alloc(addr, elem_size,
+                   elem_size - 2 * zone->z_kasan_redzone,
+                   zone->z_kasan_redzone);
+               elem_size -= 2 * zone->z_kasan_redzone;
+       }
+       /*
+        * Initialize buffer with unique pattern only if memory
+        * wasn't expected to be zeroed.
+        */
+       if (!zone->z_free_zeroes && !(flags & Z_ZERO)) {
+               kasan_leak_init(addr, elem_size);
+       }
+#endif /* KASAN_ZALLOC */
+       if ((flags & Z_ZERO) && !zone->z_free_zeroes) {
+               bzero((void *)addr, elem_size);
+       }
+
+#if VM_MAX_TAG_ZONES
+       if (__improbable(zone->tags)) {
+               vm_tag_t tag = zalloc_flags_get_tag(flags);
+               if (tag == VM_KERN_MEMORY_NONE) {
+                       tag = VM_KERN_MEMORY_KALLOC;
+               }
+               // set the tag with b0 clear so the block remains inuse
+               *ztSlot(zone, addr) = (vm_tag_t)(tag << 1);
+               vm_tag_update_zone_size(tag, zone->tag_zone_index,
+                   (long)elem_size);
+       }
+#endif /* VM_MAX_TAG_ZONES */
+
+       TRACE_MACHLEAKS(ZALLOC_CODE, ZALLOC_CODE_2, elem_size, addr);
+       DTRACE_VM2(zalloc, zone_t, zone, void*, addr);
+       if (freemag) {
+               zone_magazine_free(freemag);
+       }
+       return (void *)addr;
+}
+
+#if CONFIG_GZALLOC
+/*!
+ * @function zalloc_gz
+ *
+ * @brief
+ * Performs allocations for zones using gzalloc.
+ *
+ * @discussion
+ * This function is noinline so that it doesn't affect the codegen
+ * of the fastpath.
+ */
+__attribute__((noinline))
+static void *
+zalloc_gz(zone_t zone, zone_stats_t zstats, zalloc_flags_t flags)
+{
+       vm_offset_t addr = gzalloc_alloc(zone, zstats, flags);
+       return zalloc_return(zone, zone_element_encode(addr, 0, ZPM_AUTO),
+                  flags, zone_elem_size(zone), NULL);
+}
+#endif /* CONFIG_GZALLOC */
+
+static void *
+zalloc_item_fast(zone_t zone, zone_stats_t zstats, zalloc_flags_t flags)
+{
+       vm_size_t esize = zone_elem_size(zone);
+       zone_element_t ze;
+
+       zalloc_import(zone, &ze, 1);
+       zone_elems_free_sub(zone, 1);
+       zpercpu_get(zstats)->zs_mem_allocated += esize;
+       zone_unlock(zone);
+
+       return zalloc_return(zone, ze, flags, esize, NULL);
+}
+
+/*!
+ * @function zalloc_item_slow
+ *
+ * @brief
+ * Performs allocations when the zone is out of elements.
+ *
+ * @discussion
+ * This function might drop the lock and reenable preemption,
+ * which means the per-CPU caching layer or recirculation depot
+ * might have received elements.
+ */
+__attribute__((noinline))
+static void *
+zalloc_item_slow(zone_t zone, zone_stats_t zstats, zalloc_flags_t flags)
+{
+       if (zone->z_replenishes) {
+               zone_replenish_locked(zone);
+       } else {
+               if ((flags & Z_NOWAIT) == 0) {
+                       zone_expand_locked(zone, flags, zalloc_needs_refill);
+               }
+               if (flags & (Z_NOWAIT | Z_NOPAGEWAIT)) {
+                       zone_expand_async_schedule_if_needed(zone);
+               }
+               if (__improbable(zone->z_elems_free == 0)) {
+                       zone_unlock(zone);
+                       if (__improbable(flags & Z_NOFAIL)) {
+                               zone_nofail_panic(zone);
+                       }
+                       DTRACE_VM2(zalloc, zone_t, zone, void*, NULL);
+                       return NULL;
+               }
+       }
+
+       /*
+        * We might have changed core or got preempted/blocked while expanding
+        * the zone. Allocating from the zone when the recirculation depot
+        * is not empty is not allowed.
+        *
+        * It will be rare but possible for the depot to refill while we were
+        * waiting for pages. If that happens we need to start over.
+        */
+       if (!STAILQ_EMPTY(&zone->z_recirc)) {
+               zone_unlock(zone);
+               return zalloc_ext(zone, zstats, flags);
+       }
+
+       return zalloc_item_fast(zone, zstats, flags);
+}
+
+/*!
+ * @function zalloc_item
+ *
+ * @brief
+ * Performs allocations when zone caching is off.
+ *
+ * @discussion
+ * This function calls @c zalloc_item_slow() when refilling the zone
+ * is needed, or @c zalloc_item_fast() if the zone has enough free elements.
+ */
+static void *
+zalloc_item(zone_t zone, zone_stats_t zstats, zalloc_flags_t flags)
+{
+       zone_lock_check_contention(zone, NULL);
+
+       /*
+        * When we commited to the zalloc_item() path,
+        * zone caching might have been flipped/enabled.
+        *
+        * If we got preempted for long enough, the recirculation layer
+        * can have been populated, and allocating from the zone would be
+        * incorrect.
+        *
+        * So double check for this extremely rare race here.
+        */
+       if (__improbable(!STAILQ_EMPTY(&zone->z_recirc))) {
+               zone_unlock(zone);
+               return zalloc_ext(zone, zstats, flags);
+       }
+
+       if (__improbable(zone->z_elems_free <= zone->z_elems_rsv)) {
+               return zalloc_item_slow(zone, zstats, flags);
+       }
+
+       return zalloc_item_fast(zone, zstats, flags);
+}
+
+static void *
+zalloc_cached_fast(zone_t zone, zone_stats_t zstats, zalloc_flags_t flags,
+    zone_cache_t cache, zone_magazine_t freemag)
+{
+       vm_offset_t esize = zone_elem_size(zone);
+       zone_element_t ze;
+       uint32_t index;
+
+       index = --cache->zc_alloc_cur;
+       if (index >= zc_mag_size()) {
+               zone_accounting_panic(zone, "zc_alloc_cur wrap around");
+       }
+       ze = cache->zc_alloc_elems[index];
+       cache->zc_alloc_elems[index].ze_value = 0;
+
+       zpercpu_get(zstats)->zs_mem_allocated += esize;
+       enable_preemption();
+
+       if (zone_meta_is_free(zone_meta_from_element(ze), ze)) {
+               zone_meta_double_free_panic(zone, ze, __func__);
+       }
+
+       return zalloc_return(zone, ze, flags, esize, freemag);
+}
+
+static void *
+zalloc_cached_from_depot(zone_t zone, zone_stats_t zstats, zalloc_flags_t flags,
+    zone_cache_t cache, zone_cache_t depot, zone_magazine_t mag)
+{
+       STAILQ_REMOVE_HEAD(&depot->zc_depot, zm_link);
+       if (depot->zc_depot_cur-- == 0) {
+               zone_accounting_panic(zone, "zc_depot_cur wrap-around");
+       }
+       zone_depot_unlock_nopreempt(depot);
+
+       mag = zone_magazine_replace(&cache->zc_alloc_cur,
+           &cache->zc_alloc_elems, mag);
+
+       z_debug_assert(cache->zc_alloc_cur == zc_mag_size());
+       z_debug_assert(mag->zm_cur == 0);
+
+       if (zone == zc_magazine_zone) {
+               enable_preemption();
+               bzero(mag, zone_elem_size(zone));
+               return mag;
+       }
+
+       return zalloc_cached_fast(zone, zstats, flags, cache, mag);
+}
+
+__attribute__((noinline))
+static void *
+zalloc_cached_slow(zone_t zone, zone_stats_t zstats, zalloc_flags_t flags,
+    zone_cache_t cache)
+{
+       zone_magazine_t mag = NULL;
+       struct zone_depot mags = STAILQ_HEAD_INITIALIZER(mags);
+
+       /*
+        * Try to allocate from our local depot, if there's one.
+        */
+       if (STAILQ_FIRST(&cache->zc_depot)) {
+               zone_depot_lock_nopreempt(cache);
+
+               if ((mag = STAILQ_FIRST(&cache->zc_depot)) != NULL) {
+                       return zalloc_cached_from_depot(zone, zstats, flags,
+                                  cache, cache, mag);
+               }
+
+               zone_depot_unlock_nopreempt(cache);
+       }
+
+       zone_lock_nopreempt_check_contention(zone, cache);
+
+       /*
+        * If the recirculation depot is empty, we'll need to import.
+        * The system is tuned for this to be extremely rare.
+        */
+       if (__improbable(STAILQ_EMPTY(&zone->z_recirc))) {
+               uint16_t n_elems = zc_mag_size();
+
+               if (zone->z_elems_free < n_elems + zone->z_elems_rsv / 2 &&
+                   os_sub_overflow(zone->z_elems_free,
+                   zone->z_elems_rsv / 2, &n_elems)) {
+                       n_elems = 0;
+               }
+
+               z_debug_assert(n_elems <= zc_mag_size());
+
+               if (__improbable(n_elems == 0)) {
+                       /*
+                        * If importing elements would deplete the zone,
+                        * call zalloc_item_slow()
+                        */
+                       return zalloc_item_slow(zone, zstats, flags);
+               }
+
+               if (__improbable(zone_caching_disabled)) {
+                       if (__improbable(zone_caching_disabled < 0)) {
+                               /*
+                                * In the first 10s after boot, mess with
+                                * the scan position in order to make early
+                                * allocations patterns less predictible.
+                                */
+                               zone_early_scramble_rr(zone, zstats);
+                       }
+                       return zalloc_item_fast(zone, zstats, flags);
+               }
+
+               zalloc_import(zone, cache->zc_alloc_elems, n_elems);
+
+               cache->zc_alloc_cur = n_elems;
+               zone_elems_free_sub(zone, n_elems);
+
+               zone_unlock_nopreempt(zone);
+
+               return zalloc_cached_fast(zone, zstats, flags, cache, NULL);
+       }
+
+       uint16_t n_mags = 0;
+
+       /*
+        * If the recirculation depot has elements, then try to fill
+        * the local per-cpu depot to (1 / zc_recirc_denom)
+        */
+       do {
+               mag = STAILQ_FIRST(&zone->z_recirc);
+               STAILQ_REMOVE_HEAD(&zone->z_recirc, zm_link);
+               STAILQ_INSERT_TAIL(&mags, mag, zm_link);
+               n_mags++;
+
+               for (uint16_t i = 0; i < zc_mag_size(); i++) {
+                       zone_element_t e = mag->zm_elems[i];
+
+                       if (!zone_meta_mark_used(zone_meta_from_element(e), e)) {
+                               zone_meta_double_free_panic(zone, e, __func__);
+                       }
+               }
+       } while (!STAILQ_EMPTY(&zone->z_recirc) &&
+           zc_recirc_denom * n_mags * zc_mag_size() <= cache->zc_depot_max);
+
+       zone_elems_free_sub(zone, n_mags * zc_mag_size());
+       zone_counter_sub(zone, z_recirc_cur, n_mags);
+
+       zone_unlock_nopreempt(zone);
+
+       /*
+        * And then incorporate everything into our per-cpu layer.
+        */
+       mag = STAILQ_FIRST(&mags);
+       STAILQ_REMOVE_HEAD(&mags, zm_link);
+       mag = zone_magazine_replace(&cache->zc_alloc_cur,
+           &cache->zc_alloc_elems, mag);
+       z_debug_assert(cache->zc_alloc_cur == zc_mag_size());
+       z_debug_assert(mag->zm_cur == 0);
+
+       if (--n_mags > 0) {
+               zone_depot_lock_nopreempt(cache);
+               cache->zc_depot_cur += n_mags;
+               STAILQ_CONCAT(&cache->zc_depot, &mags);
+               zone_depot_unlock_nopreempt(cache);
+       }
+
+       return zalloc_cached_fast(zone, zstats, flags, cache, mag);
+}
+
+/*!
+ * @function zalloc_cached
+ *
+ * @brief
+ * Performs allocations when zone caching is on.
+ *
+ * @discussion
+ * This function calls @c zalloc_cached_fast() when the caches have elements
+ * ready.
+ *
+ * Else it will call @c zalloc_cached_slow() so that the cache is refilled,
+ * which might switch to the @c zalloc_item_slow() track when the backing zone
+ * needs to be refilled.
+ */
+static void *
+zalloc_cached(zone_t zone, zone_stats_t zstats, zalloc_flags_t flags)
+{
+       zone_cache_t cache;
+
+       disable_preemption();
+       cache = zpercpu_get(zone->z_pcpu_cache);
+
+       if (cache->zc_alloc_cur == 0) {
+               if (__improbable(cache->zc_free_cur == 0)) {
+                       return zalloc_cached_slow(zone, zstats, flags, cache);
+               }
+               zone_cache_swap_magazines(cache);
+       }
+
+       return zalloc_cached_fast(zone, zstats, flags, cache, NULL);
+}
+
+/*!
+ * @function zalloc_ext
+ *
+ * @brief
+ * The core implementation of @c zalloc(), @c zalloc_flags(), @c zalloc_percpu().
+ */
+void *
+zalloc_ext(zone_t zone, zone_stats_t zstats, zalloc_flags_t flags)
+{
+       /*
+        * KASan uses zalloc() for fakestack, which can be called anywhere.
+        * However, we make sure these calls can never block.
+        */
+       assert(zone->kasan_fakestacks ||
+           ml_get_interrupts_enabled() ||
+           ml_is_quiescing() ||
+           debug_mode_active() ||
+           startup_phase < STARTUP_SUB_EARLY_BOOT);
+
+       /*
+        * Make sure Z_NOFAIL was not obviously misused
+        */
+       if (zone->z_replenishes) {
+               assert((flags & (Z_NOWAIT | Z_NOPAGEWAIT)) == 0);
+       } else if (flags & Z_NOFAIL) {
+               assert(!zone->exhaustible &&
+                   (flags & (Z_NOWAIT | Z_NOPAGEWAIT)) == 0);
+       }
+
+#if CONFIG_GZALLOC
+       if (__improbable(zone->gzalloc_tracked)) {
+               return zalloc_gz(zone, zstats, flags);
+       }
+#endif /* CONFIG_GZALLOC */
+
+       if (zone->z_pcpu_cache) {
+               return zalloc_cached(zone, zstats, flags);
+       }
+
+       return zalloc_item(zone, zstats, flags);
+}
+
+void *
+zalloc(union zone_or_view zov)
+{
+       return zalloc_flags(zov, Z_WAITOK);
+}
+
+void *
+zalloc_noblock(union zone_or_view zov)
+{
+       return zalloc_flags(zov, Z_NOWAIT);
+}
+
+void *
+zalloc_flags(union zone_or_view zov, zalloc_flags_t flags)
+{
+       zone_t zone = zov.zov_view->zv_zone;
+       zone_stats_t zstats = zov.zov_view->zv_stats;
+       assert(!zone->z_percpu);
+       return zalloc_ext(zone, zstats, flags);
+}
+
+void *
+zalloc_percpu(union zone_or_view zov, zalloc_flags_t flags)
+{
+       zone_t zone = zov.zov_view->zv_zone;
+       zone_stats_t zstats = zov.zov_view->zv_stats;
+       assert(zone->z_percpu);
+       return (void *)__zpcpu_mangle(zalloc_ext(zone, zstats, flags));
+}
+
+static void *
+_zalloc_permanent(zone_t zone, vm_size_t size, vm_offset_t mask)
+{
+       struct zone_page_metadata *page_meta;
+       vm_offset_t offs, addr;
+       zone_pva_t pva;
+
+       assert(ml_get_interrupts_enabled() ||
+           ml_is_quiescing() ||
+           debug_mode_active() ||
+           startup_phase < STARTUP_SUB_EARLY_BOOT);
+
+       size = (size + mask) & ~mask;
+       assert(size <= PAGE_SIZE);
+
+       zone_lock(zone);
+       assert(zone->z_self == zone);
+
+       for (;;) {
+               pva = zone->z_pageq_partial;
+               while (!zone_pva_is_null(pva)) {
+                       page_meta = zone_pva_to_meta(pva);
+                       if (page_meta->zm_bump + size <= PAGE_SIZE) {
+                               goto found;
+                       }
+                       pva = page_meta->zm_page_next;
+               }
+
+               zone_expand_locked(zone, Z_WAITOK, NULL);
+       }
+
+found:
+       offs = (uint16_t)((page_meta->zm_bump + mask) & ~mask);
+       page_meta->zm_bump = (uint16_t)(offs + size);
+       page_meta->zm_alloc_size += size;
+       zone->z_elems_free -= size;
+       zpercpu_get(zone->z_stats)->zs_mem_allocated += size;
+
+       if (page_meta->zm_alloc_size >= PAGE_SIZE - sizeof(vm_offset_t)) {
+               zone_meta_requeue(zone, &zone->z_pageq_full, page_meta);
+       }
+
+       zone_unlock(zone);
+
+       addr = offs + zone_pva_to_addr(pva);
+
+       DTRACE_VM2(zalloc, zone_t, zone, void*, addr);
+       return (void *)addr;
+}
+
+static void *
+_zalloc_permanent_large(size_t size, vm_offset_t mask)
+{
+       kern_return_t kr;
+       vm_offset_t addr;
+
+       kr = kernel_memory_allocate(kernel_map, &addr, size, mask,
+           KMA_KOBJECT | KMA_PERMANENT | KMA_ZERO,
+           VM_KERN_MEMORY_KALLOC);
+       if (kr != 0) {
+               panic("zalloc_permanent: unable to allocate %zd bytes (%d)",
+                   size, kr);
+       }
+       return (void *)addr;
+}
+
+void *
+zalloc_permanent(vm_size_t size, vm_offset_t mask)
+{
+       if (size <= PAGE_SIZE) {
+               zone_t zone = &zone_array[ZONE_ID_PERMANENT];
+               return _zalloc_permanent(zone, size, mask);
+       }
+       return _zalloc_permanent_large(size, mask);
+}
+
+void *
+zalloc_percpu_permanent(vm_size_t size, vm_offset_t mask)
+{
+       zone_t zone = &zone_array[ZONE_ID_PERCPU_PERMANENT];
+       return (void *)__zpcpu_mangle(_zalloc_permanent(zone, size, mask));
+}
+
+/*! @} */
+#endif /* !ZALLOC_TEST */
+#pragma mark zone GC / trimming
+#if !ZALLOC_TEST
+
+static thread_call_data_t zone_defrag_callout;
+
+static void
+zone_reclaim_chunk(zone_t z, struct zone_page_metadata *meta, uint32_t free_count)
+{
+       vm_address_t page_addr;
+       vm_size_t    size_to_free;
+       uint32_t     bitmap_ref;
+       uint32_t     page_count;
+       bool         sequester = z->z_va_sequester && !z->z_destroyed;
+
+       zone_meta_queue_pop_native(z, &z->z_pageq_empty, &page_addr);
+
+       page_count = meta->zm_chunk_len;
+
+       if (meta->zm_alloc_size) {
+               zone_metadata_corruption(z, meta, "alloc_size");
+       }
+       if (z->z_percpu) {
+               if (page_count != 1) {
+                       zone_metadata_corruption(z, meta, "page_count");
+               }
+               size_to_free = ptoa(z->z_chunk_pages);
+               os_atomic_sub(&zones_phys_page_mapped_count,
+                   z->z_chunk_pages, relaxed);
+       } else {
+               if (page_count > z->z_chunk_pages) {
+                       zone_metadata_corruption(z, meta, "page_count");
+               }
+               if (page_count < z->z_chunk_pages) {
+                       /* Dequeue non populated VA from z_pageq_va */
+                       zone_meta_remqueue(z, meta + page_count);
+               }
+               size_to_free = ptoa(page_count);
+               os_atomic_sub(&zones_phys_page_mapped_count, page_count, relaxed);
+       }
+
+       zone_counter_sub(z, z_elems_free, free_count);
+       zone_counter_sub(z, z_elems_avail, free_count);
+       zone_counter_sub(z, z_wired_empty, page_count);
+       zone_counter_sub(z, z_wired_cur, page_count);
+       if (z->z_elems_free_min < free_count) {
+               z->z_elems_free_min = 0;
+       } else {
+               z->z_elems_free_min -= free_count;
+       }
+       if (z->z_elems_free_max < free_count) {
+               z->z_elems_free_max = 0;
+       } else {
+               z->z_elems_free_max -= free_count;
+       }
+
+       bitmap_ref = 0;
+       if (sequester) {
+               if (meta->zm_inline_bitmap) {
+                       for (int i = 0; i < meta->zm_chunk_len; i++) {
+                               meta[i].zm_bitmap = 0;
+                       }
+               } else {
+                       bitmap_ref = meta->zm_bitmap;
+                       meta->zm_bitmap = 0;
+               }
+               meta->zm_chunk_len = 0;
+       } else {
+               if (!meta->zm_inline_bitmap) {
+                       bitmap_ref = meta->zm_bitmap;
+               }
+               zone_counter_sub(z, z_va_cur, z->z_percpu ? 1 : z->z_chunk_pages);
+               bzero(meta, sizeof(*meta) * z->z_chunk_pages);
+       }
+
+       zone_unlock(z);
+
+       if (bitmap_ref) {
+               zone_bits_free(bitmap_ref);
+       }
+
+       /* Free the pages for metadata and account for them */
+#if KASAN_ZALLOC
+       kasan_poison_range(page_addr, size_to_free, ASAN_VALID);
+#endif
+#if VM_MAX_TAG_ZONES
+       if (z->tags) {
+               ztMemoryRemove(z, page_addr, size_to_free);
+       }
+#endif /* VM_MAX_TAG_ZONES */
+
+       if (sequester) {
+               kernel_memory_depopulate(zone_submap(z), page_addr,
+                   size_to_free, KMA_KOBJECT, VM_KERN_MEMORY_ZONE);
+       } else {
+               kmem_free(zone_submap(z), page_addr, ptoa(z->z_chunk_pages));
+       }
+
+       /*
+        * Freeing memory sometimes needs some (for example vm map entries
+        * to represent holes).
+        *
+        * If there are any active replenish threads, we need to let them work
+        * while we hold no locks. Only do so right after we just freed memory
+        * once however to give them even more chances to find fresh pages.
+        */
+       zone_replenish_wait_if_needed();
+
+       thread_yield_to_preemption();
+
+       zone_lock(z);
+
+       if (sequester) {
+               zone_meta_queue_push(z, &z->z_pageq_va, meta);
+       }
+}
+
+static uint16_t
+zone_reclaim_elements(zone_t z, uint16_t *count, zone_element_t *elems)
+{
+       uint16_t n = *count;
+
+       z_debug_assert(n <= zc_mag_size());
+
+       for (uint16_t i = 0; i < n; i++) {
+               zone_element_t ze = elems[i];
+               elems[i].ze_value = 0;
+               zfree_drop(z, zone_element_validate(z, ze), ze, false);
+       }
+
+       *count = 0;
+       return n;
+}
+
+static uint16_t
+zone_reclaim_recirc_magazine(zone_t z, struct zone_depot *mags)
+{
+       zone_magazine_t mag = STAILQ_FIRST(&z->z_recirc);
+
+       STAILQ_REMOVE_HEAD(&z->z_recirc, zm_link);
+       STAILQ_INSERT_TAIL(mags, mag, zm_link);
+       zone_counter_sub(z, z_recirc_cur, 1);
+
+       z_debug_assert(mag->zm_cur == zc_mag_size());
+
+       for (uint16_t i = 0; i < zc_mag_size(); i++) {
+               zone_element_t ze = mag->zm_elems[i];
+               mag->zm_elems[i].ze_value = 0;
+               zfree_drop(z, zone_element_validate(z, ze), ze, true);
+       }
+
+       mag->zm_cur = 0;
+
+       return zc_mag_size();
+}
+
+static void
+zone_depot_trim(zone_cache_t zc, struct zone_depot *head)
+{
+       zone_magazine_t mag;
+
+       if (zc->zc_depot_cur == 0 ||
+           2 * (zc->zc_depot_cur + 1) * zc_mag_size() <= zc->zc_depot_max) {
+               return;
+       }
+
+       zone_depot_lock(zc);
+
+       while (zc->zc_depot_cur &&
+           2 * (zc->zc_depot_cur + 1) * zc_mag_size() > zc->zc_depot_max) {
+               mag = STAILQ_FIRST(&zc->zc_depot);
+               STAILQ_REMOVE_HEAD(&zc->zc_depot, zm_link);
+               STAILQ_INSERT_TAIL(head, mag, zm_link);
+               zc->zc_depot_cur--;
+       }
+
+       zone_depot_unlock(zc);
+}
+
+__enum_decl(zone_reclaim_mode_t, uint32_t, {
+       ZONE_RECLAIM_TRIM,
+       ZONE_RECLAIM_DRAIN,
+       ZONE_RECLAIM_DESTROY,
+});
+
+/*!
+ * @function zone_reclaim
+ *
+ * @brief
+ * Drains or trim the zone.
+ *
+ * @discussion
+ * Draining the zone will free it from all its elements.
+ *
+ * Trimming the zone tries to respect the working set size, and avoids draining
+ * the depot when it's not necessary.
+ *
+ * @param z             The zone to reclaim from
+ * @param mode          The purpose of this reclaim.
+ */
+static void
+zone_reclaim(zone_t z, zone_reclaim_mode_t mode)
+{
+       struct zone_depot mags = STAILQ_HEAD_INITIALIZER(mags);
+       zone_magazine_t mag, tmp;
+
+       zone_lock(z);
+
+       if (mode == ZONE_RECLAIM_DESTROY) {
+               if (!z->z_destructible || z->z_pcpu_cache ||
+                   z->z_elems_rsv || z->z_allows_foreign) {
+                       panic("zdestroy: Zone %s%s isn't destructible",
+                           zone_heap_name(z), z->z_name);
+               }
+
+               if (!z->z_self || z->z_expander || z->z_expander_vm_priv ||
+                   z->z_async_refilling || z->z_expanding_wait) {
+                       panic("zdestroy: Zone %s%s in an invalid state for destruction",
+                           zone_heap_name(z), z->z_name);
+               }
+
+#if !KASAN_ZALLOC
+               /*
+                * Unset the valid bit. We'll hit an assert failure on further
+                * operations on this zone, until zinit() is called again.
+                *
+                * Leave the zone valid for KASan as we will see zfree's on
+                * quarantined free elements even after the zone is destroyed.
+                */
+               z->z_self = NULL;
+#endif
+               z->z_destroyed = true;
+       } else if (z->z_destroyed) {
+               return zone_unlock(z);
+       } else if (z->z_replenishes && z->z_async_refilling) {
+               /*
+                * If the zone is replenishing, leave it alone.
+                */
+               return zone_unlock(z);
+       }
+
+       if (z->z_pcpu_cache) {
+               if (mode != ZONE_RECLAIM_TRIM) {
+                       zpercpu_foreach(zc, z->z_pcpu_cache) {
+                               zc->zc_depot_max /= 2;
+                       }
+               } else {
+                       zpercpu_foreach(zc, z->z_pcpu_cache) {
+                               if (zc->zc_depot_max > 0) {
+                                       zc->zc_depot_max--;
+                               }
+                       }
+               }
+
+               zone_unlock(z);
+
+               if (mode == ZONE_RECLAIM_TRIM) {
+                       zpercpu_foreach(zc, z->z_pcpu_cache) {
+                               zone_depot_trim(zc, &mags);
+                       }
+               } else {
+                       zpercpu_foreach(zc, z->z_pcpu_cache) {
+                               zone_depot_lock(zc);
+                               STAILQ_CONCAT(&mags, &zc->zc_depot);
+                               zc->zc_depot_cur = 0;
+                               zone_depot_unlock(zc);
+                       }
+               }
+
+               zone_lock(z);
+
+               uint32_t freed = 0;
+
+               STAILQ_FOREACH(mag, &mags, zm_link) {
+                       freed += zone_reclaim_elements(z,
+                           &mag->zm_cur, mag->zm_elems);
+
+                       if (freed >= zc_free_batch_size) {
+                               z->z_elems_free_min += freed;
+                               z->z_elems_free_max += freed;
+                               z->z_elems_free += freed;
+                               zone_unlock(z);
+                               thread_yield_to_preemption();
+                               zone_lock(z);
+                               freed = 0;
+                       }
+               }
+
+               if (mode == ZONE_RECLAIM_DESTROY) {
+                       zpercpu_foreach(zc, z->z_pcpu_cache) {
+                               freed += zone_reclaim_elements(z,
+                                   &zc->zc_alloc_cur, zc->zc_alloc_elems);
+                               freed += zone_reclaim_elements(z,
+                                   &zc->zc_free_cur, zc->zc_free_elems);
+                       }
+
+                       z->z_elems_free_wss = 0;
+                       z->z_elems_free_min = 0;
+                       z->z_elems_free_max = 0;
+                       z->z_contention_cur = 0;
+                       z->z_contention_wma = 0;
+               } else {
+                       z->z_elems_free_min += freed;
+                       z->z_elems_free_max += freed;
+               }
+               z->z_elems_free += freed;
+       }
+
+       for (;;) {
+               struct zone_page_metadata *meta;
+               uint32_t count, goal, freed = 0;
+
+               goal = z->z_elems_rsv;
+               if (mode == ZONE_RECLAIM_TRIM) {
+                       /*
+                        * When trimming, only free elements in excess
+                        * of the working set estimate.
+                        *
+                        * However if we are in a situation where the working
+                        * set estimate is clearly growing, ignore the estimate
+                        * as the next working set update will grow it and
+                        * we want to avoid churn.
+                        */
+                       goal = MAX(goal, MAX(z->z_elems_free_wss,
+                           z->z_elems_free - z->z_elems_free_min));
+
+                       /*
+                        * Add some slop to account for "the last partial chunk in flight"
+                        * so that we do not deplete the recirculation depot too harshly.
+                        */
+                       goal += z->z_chunk_elems / 2;
+               }
+
+               if (z->z_elems_free <= goal) {
+                       break;
+               }
+
+               /*
+                * If we're above target, but we have no free page, then drain
+                * the recirculation depot until we get a free chunk or exhaust
+                * the depot.
+                *
+                * This is rather abrupt but also somehow will reduce
+                * fragmentation anyway, and the zone code will import
+                * over time anyway.
+                */
+               while (z->z_recirc_cur) {
+                       if (z->z_recirc_cur * zc_mag_size() <= goal &&
+                           !zone_pva_is_null(z->z_pageq_empty)) {
+                               break;
+                       }
+                       if (freed >= zc_free_batch_size) {
+                               zone_unlock(z);
+                               thread_yield_to_preemption();
+                               zone_lock(z);
+                               freed = 0;
+                               /* we dropped the lock, needs to reassess */
+                               continue;
+                       }
+                       freed += zone_reclaim_recirc_magazine(z, &mags);
+               }
+
+               if (zone_pva_is_null(z->z_pageq_empty)) {
+                       break;
+               }
+
+               meta  = zone_pva_to_meta(z->z_pageq_empty);
+               count = (uint32_t)ptoa(meta->zm_chunk_len) / zone_elem_size(z);
+
+               if (z->z_elems_free - count < goal) {
+                       break;
+               }
+
+               zone_reclaim_chunk(z, meta, count);
+       }
+
+       zone_unlock(z);
+
+       STAILQ_FOREACH_SAFE(mag, &mags, zm_link, tmp) {
+               zone_magazine_free(mag);
+       }
+}
+
+static void
+zone_reclam_all(zone_reclaim_mode_t mode)
+{
+       /*
+        * Start with zones with VA sequester since depopulating
+        * pages will not need to allocate vm map entries for holes,
+        * which will give memory back to the system faster.
+        */
+       zone_foreach(z) {
+               if (z == zc_magazine_zone) {
+                       continue;
+               }
+               if (z->z_va_sequester && z->collectable) {
+                       zone_reclaim(z, mode);
+               }
+       }
+
+       zone_foreach(z) {
+               if (z == zc_magazine_zone) {
+                       continue;
+               }
+               if (!z->z_va_sequester && z->collectable) {
+                       zone_reclaim(z, mode);
+               }
+       }
+
+       zone_reclaim(zc_magazine_zone, mode);
+}
+
+void
+zone_gc(zone_gc_level_t level)
+{
+       zone_reclaim_mode_t mode;
+
+       switch (level) {
+       case ZONE_GC_TRIM:
+               mode = ZONE_RECLAIM_TRIM;
+               break;
+       case ZONE_GC_DRAIN:
+               mode = ZONE_RECLAIM_DRAIN;
+               break;
+       case ZONE_GC_JETSAM:
+               kill_process_in_largest_zone();
+               mode = ZONE_RECLAIM_TRIM;
+               break;
+       }
+
+       current_thread()->options |= TH_OPT_ZONE_PRIV;
+       lck_mtx_lock(&zone_gc_lock);
+
+       zone_reclam_all(mode);
+
+       if (level == ZONE_GC_JETSAM && zone_map_nearing_exhaustion()) {
+               /*
+                * If we possibly killed a process, but we're still critical,
+                * we need to drain harder.
+                */
+               zone_reclam_all(ZONE_RECLAIM_DRAIN);
+       }
+
+       lck_mtx_unlock(&zone_gc_lock);
+       current_thread()->options &= ~TH_OPT_ZONE_PRIV;
+}
+
+void
+zone_gc_trim(void)
+{
+       zone_gc(ZONE_GC_TRIM);
+}
+
+void
+zone_gc_drain(void)
+{
+       zone_gc(ZONE_GC_DRAIN);
+}
+
+static bool
+zone_defrag_needed(zone_t z)
+{
+       uint32_t recirc_size = z->z_recirc_cur * zc_mag_size();
+
+       if (recirc_size <= z->z_chunk_elems / 2) {
+               return false;
+       }
+       return recirc_size * zc_defrag_ratio > z->z_elems_free_wss * 100;
+}
+
+/*!
+ * @function zone_defrag_async
+ *
+ * @brief
+ * Resize the recirculation depot to match the working set size.
+ *
+ * @discussion
+ * When zones grow very large due to a spike in usage, and then some of those
+ * elements get freed, the elements in magazines in the recirculation depot
+ * are in no particular order.
+ *
+ * In order to control fragmentation, we need to detect "empty" pages so that
+ * they get onto the @c z_pageq_empty freelist, so that allocations re-pack
+ * naturally.
+ *
+ * This is done very gently, never in excess of the working set and some slop.
+ */
+static void
+zone_defrag_async(__unused thread_call_param_t p0, __unused thread_call_param_t p1)
+{
+       zone_foreach(z) {
+               struct zone_depot mags = STAILQ_HEAD_INITIALIZER(mags);
+               zone_magazine_t mag, tmp;
+               uint32_t freed = 0, goal = 0;
+
+               if (!z->collectable || !zone_defrag_needed(z)) {
+                       continue;
+               }
+
+               zone_lock(z);
+
+               goal = z->z_elems_free_wss + z->z_chunk_elems / 2 +
+                   zc_mag_size() - 1;
+
+               while (z->z_recirc_cur * zc_mag_size() > goal) {
+                       if (freed >= zc_free_batch_size) {
+                               zone_unlock(z);
+                               thread_yield_to_preemption();
+                               zone_lock(z);
+                               freed = 0;
+                               /* we dropped the lock, needs to reassess */
+                               continue;
+                       }
+                       freed += zone_reclaim_recirc_magazine(z, &mags);
+               }
+
+               zone_unlock(z);
+
+               STAILQ_FOREACH_SAFE(mag, &mags, zm_link, tmp) {
+                       zone_magazine_free(mag);
+               }
+       }
+}
+
+void
+compute_zone_working_set_size(__unused void *param)
+{
+       uint32_t zc_auto = zc_auto_threshold;
+       bool kick_defrag = false;
+
+       /*
+        * Keep zone caching disabled until the first proc is made.
+        */
+       if (__improbable(zone_caching_disabled < 0)) {
+               return;
+       }
+
+       zone_caching_disabled = vm_pool_low();
+#if ZALLOC_EARLY_GAPS
+       zone_cleanup_early_gaps_if_needed();
+#endif
+
+       if (os_mul_overflow(zc_auto, Z_CONTENTION_WMA_UNIT, &zc_auto)) {
+               zc_auto = 0;
+       }
+
+       zone_foreach(z) {
+               uint32_t wma;
+               bool needs_caching = false;
+
+               if (z->z_self != z) {
+                       continue;
+               }
+
+               zone_lock(z);
+
+               wma = z->z_elems_free_max - z->z_elems_free_min;
+               wma = (3 * wma + z->z_elems_free_wss) / 4;
+               z->z_elems_free_max = z->z_elems_free_min = z->z_elems_free;
+               z->z_elems_free_wss = wma;
+
+               if (!kick_defrag && zone_defrag_needed(z)) {
+                       kick_defrag = true;
+               }
+
+               /* fixed point decimal of contentions per second */
+               wma = z->z_contention_cur * Z_CONTENTION_WMA_UNIT /
+                   ZONE_WSS_UPDATE_PERIOD;
+               z->z_contention_cur = 0;
+               z->z_contention_wma = (3 * wma + z->z_contention_wma) / 4;
+
+               /*
+                * If the zone seems to be very quiet,
+                * gently lower its cpu-local depot size.
+                */
+               if (z->z_pcpu_cache && wma < Z_CONTENTION_WMA_UNIT / 2 &&
+                   z->z_contention_wma < Z_CONTENTION_WMA_UNIT / 2) {
+                       zpercpu_foreach(zc, z->z_pcpu_cache) {
+                               if (zc->zc_depot_max > zc_mag_size()) {
+                                       zc->zc_depot_max--;
+                               }
+                       }
+               }
+
+               /*
+                * If the zone has been contending like crazy for two periods,
+                * and is eligible, maybe it's time to enable caching.
+                */
+               if (!z->z_nocaching && !z->z_pcpu_cache && !z->exhaustible &&
+                   zc_auto && z->z_contention_wma >= zc_auto && wma >= zc_auto) {
+                       needs_caching = true;
+               }
+
+               zone_unlock(z);
+
+               if (needs_caching) {
+                       zone_enable_caching(z);
+               }
+       }
+
+       if (kick_defrag) {
+               thread_call_enter(&zone_defrag_callout);
+       }
+}
+
+#endif /* !ZALLOC_TEST */
+#pragma mark vm integration, MIG routines
+#if !ZALLOC_TEST
+
+/*
+ * Creates a vm_map_copy_t to return to the caller of mach_* MIG calls
+ * requesting zone information.
+ * Frees unused pages towards the end of the region, and zero'es out unused
+ * space on the last page.
+ */
+static vm_map_copy_t
+create_vm_map_copy(
+       vm_offset_t             start_addr,
+       vm_size_t               total_size,
+       vm_size_t               used_size)
+{
+       kern_return_t   kr;
+       vm_offset_t             end_addr;
+       vm_size_t               free_size;
+       vm_map_copy_t   copy;
+
+       if (used_size != total_size) {
+               end_addr = start_addr + used_size;
+               free_size = total_size - (round_page(end_addr) - start_addr);
+
+               if (free_size >= PAGE_SIZE) {
+                       kmem_free(ipc_kernel_map,
+                           round_page(end_addr), free_size);
+               }
+               bzero((char *) end_addr, round_page(end_addr) - end_addr);
+       }
+
+       kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)start_addr,
+           (vm_map_size_t)used_size, TRUE, &copy);
+       assert(kr == KERN_SUCCESS);
+
+       return copy;
+}
+
+static boolean_t
+get_zone_info(
+       zone_t                   z,
+       mach_zone_name_t        *zn,
+       mach_zone_info_t        *zi)
+{
+       struct zone zcopy;
+       vm_size_t cached = 0;
+
+       assert(z != ZONE_NULL);
+       zone_lock(z);
+       if (!z->z_self) {
+               zone_unlock(z);
+               return FALSE;
+       }
+       zcopy = *z;
+       if (z->z_pcpu_cache) {
+               zpercpu_foreach(zc, z->z_pcpu_cache) {
+                       cached += zc->zc_alloc_cur + zc->zc_free_cur;
+                       cached += zc->zc_depot_cur * zc_mag_size();
+               }
+       }
+       zone_unlock(z);
+
+       if (zn != NULL) {
+               /*
+                * Append kalloc heap name to zone name (if zone is used by kalloc)
+                */
+               char temp_zone_name[MAX_ZONE_NAME] = "";
+               snprintf(temp_zone_name, MAX_ZONE_NAME, "%s%s",
+                   zone_heap_name(z), z->z_name);
+
+               /* assuming here the name data is static */
+               (void) __nosan_strlcpy(zn->mzn_name, temp_zone_name,
+                   strlen(temp_zone_name) + 1);
+       }
+
+       if (zi != NULL) {
+               *zi = (mach_zone_info_t) {
+                       .mzi_count = zone_count_allocated(&zcopy) - cached,
+                       .mzi_cur_size = ptoa_64(zone_scale_for_percpu(&zcopy, zcopy.z_wired_cur)),
+                       // max_size for zprint is now high-watermark of pages used
+                       .mzi_max_size = ptoa_64(zone_scale_for_percpu(&zcopy, zcopy.z_wired_hwm)),
+                       .mzi_elem_size = zone_scale_for_percpu(&zcopy, zcopy.z_elem_size),
+                       .mzi_alloc_size = ptoa_64(zcopy.z_chunk_pages),
+                       .mzi_exhaustible = (uint64_t)zcopy.exhaustible,
+               };
+               zpercpu_foreach(zs, zcopy.z_stats) {
+                       zi->mzi_sum_size += zs->zs_mem_allocated;
+               }
+               if (zcopy.collectable) {
+                       SET_MZI_COLLECTABLE_BYTES(zi->mzi_collectable,
+                           ptoa_64(zone_scale_for_percpu(&zcopy, zcopy.z_wired_empty)));
+                       SET_MZI_COLLECTABLE_FLAG(zi->mzi_collectable, TRUE);
+               }
+       }
+
+       return TRUE;
+}
+
+kern_return_t
+task_zone_info(
+       __unused task_t                                 task,
+       __unused mach_zone_name_array_t *namesp,
+       __unused mach_msg_type_number_t *namesCntp,
+       __unused task_zone_info_array_t *infop,
+       __unused mach_msg_type_number_t *infoCntp)
+{
+       return KERN_FAILURE;
+}
+
+kern_return_t
+mach_zone_info(
+       host_priv_t             host,
+       mach_zone_name_array_t  *namesp,
+       mach_msg_type_number_t  *namesCntp,
+       mach_zone_info_array_t  *infop,
+       mach_msg_type_number_t  *infoCntp)
+{
+       return mach_memory_info(host, namesp, namesCntp, infop, infoCntp, NULL, NULL);
+}
+
+
+kern_return_t
+mach_memory_info(
+       host_priv_t             host,
+       mach_zone_name_array_t  *namesp,
+       mach_msg_type_number_t  *namesCntp,
+       mach_zone_info_array_t  *infop,
+       mach_msg_type_number_t  *infoCntp,
+       mach_memory_info_array_t *memoryInfop,
+       mach_msg_type_number_t   *memoryInfoCntp)
+{
+       mach_zone_name_t        *names;
+       vm_offset_t             names_addr;
+       vm_size_t               names_size;
+
+       mach_zone_info_t        *info;
+       vm_offset_t             info_addr;
+       vm_size_t               info_size;
+
+       mach_memory_info_t      *memory_info;
+       vm_offset_t             memory_info_addr;
+       vm_size_t               memory_info_size;
+       vm_size_t               memory_info_vmsize;
+       unsigned int            num_info;
+
+       unsigned int            max_zones, used_zones, i;
+       mach_zone_name_t        *zn;
+       mach_zone_info_t        *zi;
+       kern_return_t           kr;
+
+       uint64_t                zones_collectable_bytes = 0;
+
+       if (host == HOST_NULL) {
+               return KERN_INVALID_HOST;
+       }
+#if CONFIG_DEBUGGER_FOR_ZONE_INFO
+       if (!PE_i_can_has_debugger(NULL)) {
+               return KERN_INVALID_HOST;
+       }
+#endif
+
+       /*
+        *      We assume that zones aren't freed once allocated.
+        *      We won't pick up any zones that are allocated later.
+        */
+
+       max_zones = os_atomic_load(&num_zones, relaxed);
+
+       names_size = round_page(max_zones * sizeof *names);
+       kr = kmem_alloc_pageable(ipc_kernel_map,
+           &names_addr, names_size, VM_KERN_MEMORY_IPC);
+       if (kr != KERN_SUCCESS) {
+               return kr;
+       }
+       names = (mach_zone_name_t *) names_addr;
+
+       info_size = round_page(max_zones * sizeof *info);
+       kr = kmem_alloc_pageable(ipc_kernel_map,
+           &info_addr, info_size, VM_KERN_MEMORY_IPC);
+       if (kr != KERN_SUCCESS) {
+               kmem_free(ipc_kernel_map,
+                   names_addr, names_size);
+               return kr;
+       }
+       info = (mach_zone_info_t *) info_addr;
+
+       zn = &names[0];
+       zi = &info[0];
+
+       used_zones = max_zones;
+       for (i = 0; i < max_zones; i++) {
+               if (!get_zone_info(&(zone_array[i]), zn, zi)) {
+                       used_zones--;
+                       continue;
+               }
+               zones_collectable_bytes += GET_MZI_COLLECTABLE_BYTES(zi->mzi_collectable);
+               zn++;
+               zi++;
+       }
+
+       *namesp = (mach_zone_name_t *) create_vm_map_copy(names_addr, names_size, used_zones * sizeof *names);
+       *namesCntp = used_zones;
+
+       *infop = (mach_zone_info_t *) create_vm_map_copy(info_addr, info_size, used_zones * sizeof *info);
+       *infoCntp = used_zones;
+
+       num_info = 0;
+       memory_info_addr = 0;
+
+       if (memoryInfop && memoryInfoCntp) {
+               vm_map_copy_t           copy;
+               num_info = vm_page_diagnose_estimate();
+               memory_info_size = num_info * sizeof(*memory_info);
+               memory_info_vmsize = round_page(memory_info_size);
+               kr = kmem_alloc_pageable(ipc_kernel_map,
+                   &memory_info_addr, memory_info_vmsize, VM_KERN_MEMORY_IPC);
+               if (kr != KERN_SUCCESS) {
+                       return kr;
+               }
+
+               kr = vm_map_wire_kernel(ipc_kernel_map, memory_info_addr, memory_info_addr + memory_info_vmsize,
+                   VM_PROT_READ | VM_PROT_WRITE, VM_KERN_MEMORY_IPC, FALSE);
+               assert(kr == KERN_SUCCESS);
+
+               memory_info = (mach_memory_info_t *) memory_info_addr;
+               vm_page_diagnose(memory_info, num_info, zones_collectable_bytes);
+
+               kr = vm_map_unwire(ipc_kernel_map, memory_info_addr, memory_info_addr + memory_info_vmsize, FALSE);
+               assert(kr == KERN_SUCCESS);
+
+               kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)memory_info_addr,
+                   (vm_map_size_t)memory_info_size, TRUE, &copy);
+               assert(kr == KERN_SUCCESS);
+
+               *memoryInfop = (mach_memory_info_t *) copy;
+               *memoryInfoCntp = num_info;
+       }
+
+       return KERN_SUCCESS;
+}
+
+kern_return_t
+mach_zone_info_for_zone(
+       host_priv_t                     host,
+       mach_zone_name_t        name,
+       mach_zone_info_t        *infop)
+{
+       zone_t zone_ptr;
+
+       if (host == HOST_NULL) {
+               return KERN_INVALID_HOST;
+       }
+#if CONFIG_DEBUGGER_FOR_ZONE_INFO
+       if (!PE_i_can_has_debugger(NULL)) {
+               return KERN_INVALID_HOST;
+       }
+#endif
+
+       if (infop == NULL) {
+               return KERN_INVALID_ARGUMENT;
+       }
+
+       zone_ptr = ZONE_NULL;
+       zone_foreach(z) {
+               /*
+                * Append kalloc heap name to zone name (if zone is used by kalloc)
+                */
+               char temp_zone_name[MAX_ZONE_NAME] = "";
+               snprintf(temp_zone_name, MAX_ZONE_NAME, "%s%s",
+                   zone_heap_name(z), z->z_name);
+
+               /* Find the requested zone by name */
+               if (track_this_zone(temp_zone_name, name.mzn_name)) {
+                       zone_ptr = z;
+                       break;
+               }
+       }
+
+       /* No zones found with the requested zone name */
+       if (zone_ptr == ZONE_NULL) {
+               return KERN_INVALID_ARGUMENT;
+       }
+
+       if (get_zone_info(zone_ptr, NULL, infop)) {
+               return KERN_SUCCESS;
+       }
+       return KERN_FAILURE;
+}
+
+kern_return_t
+mach_zone_info_for_largest_zone(
+       host_priv_t                     host,
+       mach_zone_name_t        *namep,
+       mach_zone_info_t        *infop)
+{
+       if (host == HOST_NULL) {
+               return KERN_INVALID_HOST;
+       }
+#if CONFIG_DEBUGGER_FOR_ZONE_INFO
+       if (!PE_i_can_has_debugger(NULL)) {
+               return KERN_INVALID_HOST;
+       }
+#endif
+
+       if (namep == NULL || infop == NULL) {
+               return KERN_INVALID_ARGUMENT;
+       }
+
+       if (get_zone_info(zone_find_largest(), namep, infop)) {
+               return KERN_SUCCESS;
+       }
+       return KERN_FAILURE;
+}
+
+uint64_t
+get_zones_collectable_bytes(void)
+{
+       uint64_t zones_collectable_bytes = 0;
+       mach_zone_info_t zi;
+
+       zone_foreach(z) {
+               if (get_zone_info(z, NULL, &zi)) {
+                       zones_collectable_bytes +=
+                           GET_MZI_COLLECTABLE_BYTES(zi.mzi_collectable);
+               }
+       }
+
+       return zones_collectable_bytes;
+}
+
+kern_return_t
+mach_zone_get_zlog_zones(
+       host_priv_t                             host,
+       mach_zone_name_array_t  *namesp,
+       mach_msg_type_number_t  *namesCntp)
+{
+#if ZONE_ENABLE_LOGGING
+       unsigned int max_zones, logged_zones, i;
+       kern_return_t kr;
+       zone_t zone_ptr;
+       mach_zone_name_t *names;
+       vm_offset_t names_addr;
+       vm_size_t names_size;
+
+       if (host == HOST_NULL) {
+               return KERN_INVALID_HOST;
+       }
+
+       if (namesp == NULL || namesCntp == NULL) {
+               return KERN_INVALID_ARGUMENT;
+       }
+
+       max_zones = os_atomic_load(&num_zones, relaxed);
+
+       names_size = round_page(max_zones * sizeof *names);
+       kr = kmem_alloc_pageable(ipc_kernel_map,
+           &names_addr, names_size, VM_KERN_MEMORY_IPC);
+       if (kr != KERN_SUCCESS) {
+               return kr;
+       }
+       names = (mach_zone_name_t *) names_addr;
+
+       zone_ptr = ZONE_NULL;
+       logged_zones = 0;
+       for (i = 0; i < max_zones; i++) {
+               zone_t z = &(zone_array[i]);
+               assert(z != ZONE_NULL);
+
+               /* Copy out the zone name if zone logging is enabled */
+               if (z->zlog_btlog) {
+                       get_zone_info(z, &names[logged_zones], NULL);
+                       logged_zones++;
+               }
+       }
+
+       *namesp = (mach_zone_name_t *) create_vm_map_copy(names_addr, names_size, logged_zones * sizeof *names);
+       *namesCntp = logged_zones;
+
+       return KERN_SUCCESS;
+
+#else /* ZONE_ENABLE_LOGGING */
+#pragma unused(host, namesp, namesCntp)
+       return KERN_FAILURE;
+#endif /* ZONE_ENABLE_LOGGING */
+}
+
+kern_return_t
+mach_zone_get_btlog_records(
+       host_priv_t                             host,
+       mach_zone_name_t                name,
+       zone_btrecord_array_t   *recsp,
+       mach_msg_type_number_t  *recsCntp)
+{
+#if DEBUG || DEVELOPMENT
+       unsigned int numrecs = 0;
+       zone_btrecord_t *recs;
+       kern_return_t kr;
+       zone_t zone_ptr;
+       vm_offset_t recs_addr;
+       vm_size_t recs_size;
+
+       if (host == HOST_NULL) {
+               return KERN_INVALID_HOST;
+       }
+
+       if (recsp == NULL || recsCntp == NULL) {
+               return KERN_INVALID_ARGUMENT;
+       }
+
+       zone_ptr = ZONE_NULL;
+       zone_foreach(z) {
+               /*
+                * Append kalloc heap name to zone name (if zone is used by kalloc)
+                */
+               char temp_zone_name[MAX_ZONE_NAME] = "";
+               snprintf(temp_zone_name, MAX_ZONE_NAME, "%s%s",
+                   zone_heap_name(z), z->z_name);
+
+               /* Find the requested zone by name */
+               if (track_this_zone(temp_zone_name, name.mzn_name)) {
+                       zone_ptr = z;
+                       break;
+               }
+       }
+
+       /* No zones found with the requested zone name */
+       if (zone_ptr == ZONE_NULL) {
+               return KERN_INVALID_ARGUMENT;
+       }
+
+       /* Logging not turned on for the requested zone */
+       if (!DO_LOGGING(zone_ptr)) {
+               return KERN_FAILURE;
+       }
+
+       /* Allocate memory for btlog records */
+       numrecs = (unsigned int)(get_btlog_records_count(zone_ptr->zlog_btlog));
+       recs_size = round_page(numrecs * sizeof *recs);
+
+       kr = kmem_alloc_pageable(ipc_kernel_map, &recs_addr, recs_size, VM_KERN_MEMORY_IPC);
+       if (kr != KERN_SUCCESS) {
+               return kr;
+       }
+
+       /*
+        * We will call get_btlog_records() below which populates this region while holding a spinlock
+        * (the btlog lock). So these pages need to be wired.
+        */
+       kr = vm_map_wire_kernel(ipc_kernel_map, recs_addr, recs_addr + recs_size,
+           VM_PROT_READ | VM_PROT_WRITE, VM_KERN_MEMORY_IPC, FALSE);
+       assert(kr == KERN_SUCCESS);
+
+       recs = (zone_btrecord_t *)recs_addr;
+       get_btlog_records(zone_ptr->zlog_btlog, recs, &numrecs);
+
+       kr = vm_map_unwire(ipc_kernel_map, recs_addr, recs_addr + recs_size, FALSE);
+       assert(kr == KERN_SUCCESS);
+
+       *recsp = (zone_btrecord_t *) create_vm_map_copy(recs_addr, recs_size, numrecs * sizeof *recs);
+       *recsCntp = numrecs;
+
+       return KERN_SUCCESS;
+
+#else /* DEBUG || DEVELOPMENT */
+#pragma unused(host, name, recsp, recsCntp)
+       return KERN_FAILURE;
+#endif /* DEBUG || DEVELOPMENT */
+}
+
+
+#if DEBUG || DEVELOPMENT
+
+kern_return_t
+mach_memory_info_check(void)
+{
+       mach_memory_info_t * memory_info;
+       mach_memory_info_t * info;
+       unsigned int         num_info;
+       vm_offset_t          memory_info_addr;
+       kern_return_t        kr;
+       size_t               memory_info_size, memory_info_vmsize;
+       uint64_t             top_wired, zonestotal, total;
+
+       num_info = vm_page_diagnose_estimate();
+       memory_info_size = num_info * sizeof(*memory_info);
+       memory_info_vmsize = round_page(memory_info_size);
+       kr = kmem_alloc(kernel_map, &memory_info_addr, memory_info_vmsize, VM_KERN_MEMORY_DIAG);
+       assert(kr == KERN_SUCCESS);
+
+       memory_info = (mach_memory_info_t *) memory_info_addr;
+       vm_page_diagnose(memory_info, num_info, 0);
+
+       top_wired = total = zonestotal = 0;
+       zone_foreach(z) {
+               zonestotal += zone_size_wired(z);
+       }
+
+       for (uint32_t idx = 0; idx < num_info; idx++) {
+               info = &memory_info[idx];
+               if (!info->size) {
+                       continue;
+               }
+               if (VM_KERN_COUNT_WIRED == info->site) {
+                       top_wired = info->size;
+               }
+               if (VM_KERN_SITE_HIDE & info->flags) {
+                       continue;
+               }
+               if (!(VM_KERN_SITE_WIRED & info->flags)) {
+                       continue;
+               }
+               total += info->size;
+       }
+       total += zonestotal;
+
+       printf("vm_page_diagnose_check %qd of %qd, zones %qd, short 0x%qx\n",
+           total, top_wired, zonestotal, top_wired - total);
+
+       kmem_free(kernel_map, memory_info_addr, memory_info_vmsize);
+
+       return kr;
+}
+
+extern boolean_t(*volatile consider_buffer_cache_collect)(int);
+
+#endif /* DEBUG || DEVELOPMENT */
+
+kern_return_t
+mach_zone_force_gc(
+       host_t host)
+{
+       if (host == HOST_NULL) {
+               return KERN_INVALID_HOST;
+       }
+
+#if DEBUG || DEVELOPMENT
+       /* Callout to buffer cache GC to drop elements in the apfs zones */
+       if (consider_buffer_cache_collect != NULL) {
+               (void)(*consider_buffer_cache_collect)(0);
+       }
+       zone_gc(ZONE_GC_DRAIN);
+#endif /* DEBUG || DEVELOPMENT */
+       return KERN_SUCCESS;
+}
+
+zone_t
+zone_find_largest(void)
+{
+       uint32_t    largest_idx  = 0;
+       vm_offset_t largest_size = zone_size_wired(&zone_array[0]);
+
+       zone_index_foreach(i) {
+               vm_offset_t size = zone_size_wired(&zone_array[i]);
+               if (size > largest_size) {
+                       largest_idx = i;
+                       largest_size = size;
+               }
+       }
+
+       return &zone_array[largest_idx];
+}
+
+#endif /* !ZALLOC_TEST */
+#pragma mark zone creation, configuration, destruction
+#if !ZALLOC_TEST
+
+static zone_t
+zone_init_defaults(zone_id_t zid)
+{
+       zone_t z = &zone_array[zid];
+
+       z->z_wired_max = ~0u;
+       z->collectable = true;
+       z->expandable = true;
+       z->z_submap_idx = Z_SUBMAP_IDX_GENERAL;
+
+       lck_spin_init(&z->z_lock, &zone_locks_grp, LCK_ATTR_NULL);
+       STAILQ_INIT(&z->z_recirc);
+       return z;
+}
+
+static bool
+zone_is_initializing(zone_t z)
+{
+       return !z->z_self && !z->z_destroyed;
+}
+
+void
+zone_set_submap_idx(zone_t zone, unsigned int sub_map_idx)
+{
+       if (!zone_is_initializing(zone)) {
+               panic("%s: called after zone_create()", __func__);
+       }
+       if (sub_map_idx > zone_last_submap_idx) {
+               panic("zone_set_submap_idx(%d) > %d", sub_map_idx, zone_last_submap_idx);
+       }
+       zone->z_submap_idx = sub_map_idx;
+}
+
+void
+zone_set_noexpand(zone_t zone, vm_size_t nelems)
+{
+       if (!zone_is_initializing(zone)) {
+               panic("%s: called after zone_create()", __func__);
+       }
+       zone->expandable = false;
+       zone->z_wired_max = zone_alloc_pages_for_nelems(zone, nelems);
+}
+
+void
+zone_set_exhaustible(zone_t zone, vm_size_t nelems)
+{
+       if (!zone_is_initializing(zone)) {
+               panic("%s: called after zone_create()", __func__);
+       }
+       zone->expandable = false;
+       zone->exhaustible = true;
+       zone->z_wired_max = zone_alloc_pages_for_nelems(zone, nelems);
+}
+
+/**
+ * @function zone_create_find
+ *
+ * @abstract
+ * Finds an unused zone for the given name and element size.
+ *
+ * @param name          the zone name
+ * @param size          the element size (including redzones, ...)
+ * @param flags         the flags passed to @c zone_create*
+ * @param zid_inout     the desired zone ID or ZONE_ID_ANY
+ *
+ * @returns             a zone to initialize further.
+ */
+static zone_t
+zone_create_find(
+       const char             *name,
+       vm_size_t               size,
+       zone_create_flags_t     flags,
+       zone_id_t              *zid_inout)
+{
+       zone_id_t nzones, zid = *zid_inout;
+       zone_t z;
+
+       simple_lock(&all_zones_lock, &zone_locks_grp);
+
+       nzones = (zone_id_t)os_atomic_load(&num_zones, relaxed);
+       assert(num_zones_in_use <= nzones && nzones < MAX_ZONES);
+
+       if (__improbable(nzones < ZONE_ID__FIRST_DYNAMIC)) {
+               /*
+                * The first time around, make sure the reserved zone IDs
+                * have an initialized lock as zone_index_foreach() will
+                * enumerate them.
+                */
+               while (nzones < ZONE_ID__FIRST_DYNAMIC) {
+                       zone_init_defaults(nzones++);
+               }
+
+               os_atomic_store(&num_zones, nzones, release);
+       }
+
+       if (zid != ZONE_ID_ANY) {
+               if (zid >= ZONE_ID__FIRST_DYNAMIC) {
+                       panic("zone_create: invalid desired zone ID %d for %s",
+                           zid, name);
+               }
+               if (flags & ZC_DESTRUCTIBLE) {
+                       panic("zone_create: ID %d (%s) must be permanent", zid, name);
+               }
+               if (zone_array[zid].z_self) {
+                       panic("zone_create: creating zone ID %d (%s) twice", zid, name);
+               }
+               z = &zone_array[zid];
+       } else {
+               if (flags & ZC_DESTRUCTIBLE) {
+                       /*
+                        * If possible, find a previously zdestroy'ed zone in the
+                        * zone_array that we can reuse.
+                        */
+                       for (int i = bitmap_first(zone_destroyed_bitmap, MAX_ZONES);
+                           i >= 0; i = bitmap_next(zone_destroyed_bitmap, i)) {
+                               z = &zone_array[i];
+
+                               /*
+                                * If the zone name and the element size are the
+                                * same, we can just reuse the old zone struct.
+                                */
+                               if (strcmp(z->z_name, name) || zone_elem_size(z) != size) {
+                                       continue;
+                               }
+                               bitmap_clear(zone_destroyed_bitmap, i);
+                               z->z_destroyed = false;
+                               z->z_self = z;
+                               zid = (zone_id_t)i;
+                               goto out;
+                       }
+               }
+
+               zid = nzones++;
+               z = zone_init_defaults(zid);
+
+               /*
+                * The release barrier pairs with the acquire in
+                * zone_index_foreach() and makes sure that enumeration loops
+                * always see an initialized zone lock.
+                */
+               os_atomic_store(&num_zones, nzones, release);
+       }
+
+out:
+       num_zones_in_use++;
+       simple_unlock(&all_zones_lock);
+
+       *zid_inout = zid;
+       return z;
+}
+
+__abortlike
+static void
+zone_create_panic(const char *name, const char *f1, const char *f2)
+{
+       panic("zone_create: creating zone %s: flag %s and %s are incompatible",
+           name, f1, f2);
+}
+#define zone_create_assert_not_both(name, flags, current_flag, forbidden_flag) \
+       if ((flags) & forbidden_flag) { \
+               zone_create_panic(name, #current_flag, #forbidden_flag); \
+       }
+
+/*
+ * Adjusts the size of the element based on minimum size, alignment
+ * and kasan redzones
+ */
+static vm_size_t
+zone_elem_adjust_size(
+       const char             *name __unused,
+       vm_size_t               elem_size,
+       zone_create_flags_t     flags __unused,
+       uint32_t               *redzone __unused)
+{
+       vm_size_t size;
+       /*
+        * Adjust element size for minimum size and pointer alignment
+        */
+       size = (elem_size + sizeof(vm_offset_t) - 1) & -sizeof(vm_offset_t);
+       if (size < ZONE_MIN_ELEM_SIZE) {
+               size = ZONE_MIN_ELEM_SIZE;
+       }
+
+#if KASAN_ZALLOC
+       /*
+        * Expand the zone allocation size to include the redzones.
+        *
+        * For page-multiple zones add a full guard page because they
+        * likely require alignment.
+        */
+       uint32_t redzone_tmp;
+       if (flags & (ZC_KASAN_NOREDZONE | ZC_PERCPU)) {
+               redzone_tmp = 0;
+       } else if ((size & PAGE_MASK) == 0) {
+               if (size != PAGE_SIZE && (flags & ZC_ALIGNMENT_REQUIRED)) {
+                       panic("zone_create: zone %s can't provide more than PAGE_SIZE"
+                           "alignment", name);
+               }
+               redzone_tmp = PAGE_SIZE;
+       } else if (flags & ZC_ALIGNMENT_REQUIRED) {
+               redzone_tmp = 0;
+       } else {
+               redzone_tmp = KASAN_GUARD_SIZE;
+       }
+       size += redzone_tmp * 2;
+       if (redzone) {
+               *redzone = redzone_tmp;
+       }
+#endif
+       return size;
+}
+
+/*
+ * Returns the allocation chunk size that has least framentation
+ */
+static vm_size_t
+zone_get_min_alloc_granule(
+       vm_size_t               elem_size,
+       zone_create_flags_t     flags)
+{
+       vm_size_t alloc_granule = PAGE_SIZE;
+       if (flags & ZC_PERCPU) {
+               alloc_granule = PAGE_SIZE * zpercpu_count();
+               if (PAGE_SIZE % elem_size > 256) {
+                       panic("zone_create: per-cpu zone has too much fragmentation");
+               }
+       } else if ((elem_size & PAGE_MASK) == 0) {
+               /* zero fragmentation by definition */
+               alloc_granule = elem_size;
+       } else if (alloc_granule % elem_size == 0) {
+               /* zero fragmentation by definition */
+       } else {
+               vm_size_t frag = (alloc_granule % elem_size) * 100 / alloc_granule;
+               vm_size_t alloc_tmp = PAGE_SIZE;
+               while ((alloc_tmp += PAGE_SIZE) <= ZONE_MAX_ALLOC_SIZE) {
+                       vm_size_t frag_tmp = (alloc_tmp % elem_size) * 100 / alloc_tmp;
+                       if (frag_tmp < frag) {
+                               frag = frag_tmp;
+                               alloc_granule = alloc_tmp;
+                       }
+               }
+       }
+       return alloc_granule;
+}
+
+vm_size_t
+zone_get_foreign_alloc_size(
+       const char             *name __unused,
+       vm_size_t               elem_size,
+       zone_create_flags_t     flags,
+       uint16_t                min_pages)
+{
+       vm_size_t adjusted_size = zone_elem_adjust_size(name, elem_size, flags,
+           NULL);
+       vm_size_t alloc_granule = zone_get_min_alloc_granule(adjusted_size,
+           flags);
+       vm_size_t min_size = min_pages * PAGE_SIZE;
+       /*
+        * Round up min_size to a multiple of alloc_granule
+        */
+       return ((min_size + alloc_granule - 1) / alloc_granule)
+              * alloc_granule;
+}
+
+zone_t
+zone_create_ext(
+       const char             *name,
+       vm_size_t               size,
+       zone_create_flags_t     flags,
+       zone_id_t               zid,
+       void                  (^extra_setup)(zone_t))
+{
+       vm_size_t alloc;
+       uint32_t redzone;
+       zone_t z;
+
+       if (size > ZONE_MAX_ALLOC_SIZE) {
+               panic("zone_create: element size too large: %zd", (size_t)size);
+       }
+
+       if (size < 2 * sizeof(vm_size_t)) {
+               /* Elements are too small for kasan. */
+               flags |= ZC_KASAN_NOQUARANTINE | ZC_KASAN_NOREDZONE;
+       }
+
+       size = zone_elem_adjust_size(name, size, flags, &redzone);
+       /*
+        * Allocate the zone slot, return early if we found an older match.
+        */
+       z = zone_create_find(name, size, flags, &zid);
+       if (__improbable(z->z_self)) {
+               /* We found a zone to reuse */
+               return z;
+       }
+
+       /*
+        * Initialize the zone properly.
+        */
+
+       /*
+        * If the kernel is post lockdown, copy the zone name passed in.
+        * Else simply maintain a pointer to the name string as it can only
+        * be a core XNU zone (no unloadable kext exists before lockdown).
+        */
+       if (startup_phase >= STARTUP_SUB_LOCKDOWN) {
+               size_t nsz = MIN(strlen(name) + 1, MACH_ZONE_NAME_MAX_LEN);
+               char *buf = zalloc_permanent(nsz, ZALIGN_NONE);
+               strlcpy(buf, name, nsz);
+               z->z_name = buf;
+       } else {
+               z->z_name = name;
+       }
+       if (__probable(zone_array[ZONE_ID_PERCPU_PERMANENT].z_self)) {
+               z->z_stats = zalloc_percpu_permanent_type(struct zone_stats);
+       } else {
+               /*
+                * zone_init() hasn't run yet, use the storage provided by
+                * zone_stats_startup(), and zone_init() will replace it
+                * with the final value once the PERCPU zone exists.
+                */
+               z->z_stats = __zpcpu_mangle_for_boot(&zone_stats_startup[zone_index(z)]);
+       }
+
+       alloc = zone_get_min_alloc_granule(size, flags);
+
+       if (flags & ZC_KALLOC_HEAP) {
+               size_t rem = (alloc % size) / (alloc / size);
+
+               /*
+                * Try to grow the elements size and spread them more if the remaining
+                * space is large enough.
+                */
+               size += rem & ~(KALLOC_MINALIGN - 1);
+       }
+
+       z->z_elem_size = (uint16_t)size;
+       z->z_chunk_pages = (uint16_t)atop(alloc);
+       if (flags & ZC_PERCPU) {
+               z->z_chunk_elems = (uint16_t)(PAGE_SIZE / z->z_elem_size);
+       } else {
+               z->z_chunk_elems = (uint16_t)(alloc / z->z_elem_size);
+       }
+       if (zone_element_idx(zone_element_encode(0,
+           z->z_chunk_elems - 1, ZPM_AUTO)) != z->z_chunk_elems - 1) {
+               panic("zone_element_encode doesn't work for zone [%s]", name);
+       }
+
+#if KASAN_ZALLOC
+       z->z_kasan_redzone = redzone;
+       if (strncmp(name, "fakestack.", sizeof("fakestack.") - 1) == 0) {
+               z->kasan_fakestacks = true;
+       }
+#endif
+
+       /*
+        * Handle KPI flags
+        */
+#if __LP64__
+       if (flags & ZC_SEQUESTER) {
+               z->z_va_sequester = true;
+       }
+#endif
+       /* ZC_CACHING applied after all configuration is done */
+       if (flags & ZC_NOCACHING) {
+               z->z_nocaching = true;
+       }
+
+       if (flags & ZC_PERCPU) {
+               /*
+                * ZC_ZFREE_CLEARMEM is forced because per-cpu zones allow for
+                * pointer-sized allocations which poisoning doesn't support.
+                */
+               zone_create_assert_not_both(name, flags, ZC_PERCPU, ZC_ALLOW_FOREIGN);
+               z->z_percpu = true;
+               z->gzalloc_exempt = true;
+               z->z_free_zeroes = true;
+       }
+       if (flags & ZC_ZFREE_CLEARMEM) {
+               z->z_free_zeroes = true;
+       }
+       if (flags & ZC_NOGC) {
+               z->collectable = false;
+       }
+       if (flags & ZC_NOENCRYPT) {
+               z->z_noencrypt = true;
+       }
+       if (flags & ZC_ALIGNMENT_REQUIRED) {
+               z->alignment_required = true;
+       }
+       if (flags & ZC_NOGZALLOC) {
+               z->gzalloc_exempt = true;
+       }
+       if (flags & ZC_NOCALLOUT) {
+               z->no_callout = true;
+       }
+       if (flags & ZC_DESTRUCTIBLE) {
+               zone_create_assert_not_both(name, flags, ZC_DESTRUCTIBLE, ZC_ALLOW_FOREIGN);
+               z->z_destructible = true;
+       }
+
+       /*
+        * Handle Internal flags
+        */
+       if (flags & ZC_ALLOW_FOREIGN) {
+               z->z_allows_foreign = true;
+       }
+       if ((ZSECURITY_OPTIONS_SUBMAP_USER_DATA & zsecurity_options) &&
+           (flags & ZC_DATA_BUFFERS)) {
+               z->z_submap_idx = Z_SUBMAP_IDX_BAG_OF_BYTES;
+       }
+       if (flags & ZC_KASAN_NOQUARANTINE) {
+               z->kasan_noquarantine = true;
+       }
+       /* ZC_KASAN_NOREDZONE already handled */
+
+       /*
+        * Then if there's extra tuning, do it
+        */
+       if (extra_setup) {
+               extra_setup(z);
+       }
+
+       /*
+        * Configure debugging features
+        */
+#if CONFIG_GZALLOC
+       gzalloc_zone_init(z); /* might set z->gzalloc_tracked */
+       if (z->gzalloc_tracked) {
+               z->z_nocaching = true;
+       }
+#endif
+#if ZONE_ENABLE_LOGGING
+       if (!z->gzalloc_tracked && num_zones_logged < max_num_zones_to_log) {
+               /*
+                * Check for and set up zone leak detection if requested via boot-args.
+                * might set z->zone_logging
+                */
+               zone_setup_logging(z);
+       }
+#endif /* ZONE_ENABLE_LOGGING */
+#if VM_MAX_TAG_ZONES
+       if (!z->gzalloc_tracked && z->kalloc_heap && zone_tagging_on) {
+               static int tag_zone_index;
+               vm_offset_t esize = zone_elem_size(z);
+               z->tags = true;
+               z->tags_inline = (((page_size + esize - 1) / esize) <=
+                   (sizeof(uint32_t) / sizeof(uint16_t)));
+               z->tag_zone_index = os_atomic_inc_orig(&tag_zone_index, relaxed);
+               assert(z->tag_zone_index < VM_MAX_TAG_ZONES);
+       }
+#endif
+
+       /*
+        * Finally, fixup properties based on security policies, boot-args, ...
+        */
+       if ((ZSECURITY_OPTIONS_SUBMAP_USER_DATA & zsecurity_options) &&
+           z->kalloc_heap == KHEAP_ID_DATA_BUFFERS) {
+               z->z_submap_idx = Z_SUBMAP_IDX_BAG_OF_BYTES;
+       }
+#if __LP64__
+       if ((ZSECURITY_OPTIONS_SEQUESTER & zsecurity_options) &&
+           (flags & ZC_NOSEQUESTER) == 0 &&
+           z->z_submap_idx == Z_SUBMAP_IDX_GENERAL) {
+               z->z_va_sequester = true;
+       }
+#endif
+       /*
+        * Clear entire element for non data zones and upto zp_min_size for
+        * data zones.
+        */
+       if (z->z_submap_idx != Z_SUBMAP_IDX_BAG_OF_BYTES) {
+               z->z_free_zeroes = true;
+       } else if (size <= zp_min_size) {
+               z->z_free_zeroes = true;
+       }
+
+       if ((flags & ZC_CACHING) && !z->z_nocaching) {
+               /*
+                * If zcache hasn't been initialized yet, remember our decision,
+                *
+                * zone_enable_caching() will be called again by
+                * zcache_bootstrap(), while the system is still single
+                * threaded, to build the missing caches.
+                */
+               if (__probable(zc_magazine_zone)) {
+                       zone_enable_caching(z);
+               } else {
+                       z->z_pcpu_cache =
+                           __zpcpu_mangle_for_boot(&zone_cache_startup[zid]);
+               }
+       }
+
+       if (zp_factor != 0 && !z->z_free_zeroes) {
+               if (__probable(zone_array[ZONE_ID_PERCPU_PERMANENT].z_self)) {
+                       zpercpu_foreach(zs, z->z_stats) {
+                               zs->zs_poison_seqno = zone_poison_count_init(z);
+                       }
+               } else {
+                       zone_stats_startup[zid].zs_poison_seqno =
+                           zone_poison_count_init(z);
+               }
+       }
+
+       zone_lock(z);
+       z->z_self = z;
+       zone_unlock(z);
+
+       return z;
+}
+
+__startup_func
+void
+zone_create_startup(struct zone_create_startup_spec *spec)
+{
+       *spec->z_var = zone_create_ext(spec->z_name, spec->z_size,
+           spec->z_flags, spec->z_zid, spec->z_setup);
+}
+
+/*
+ * The 4 first field of a zone_view and a zone alias, so that the zone_or_view_t
+ * union works. trust but verify.
+ */
+#define zalloc_check_zov_alias(f1, f2) \
+    static_assert(offsetof(struct zone, f1) == offsetof(struct zone_view, f2))
+zalloc_check_zov_alias(z_self, zv_zone);
+zalloc_check_zov_alias(z_stats, zv_stats);
+zalloc_check_zov_alias(z_name, zv_name);
+zalloc_check_zov_alias(z_views, zv_next);
+#undef zalloc_check_zov_alias
+
+__startup_func
+void
+zone_view_startup_init(struct zone_view_startup_spec *spec)
+{
+       struct kalloc_heap *heap = NULL;
+       zone_view_t zv = spec->zv_view;
+       zone_t z;
+
+       switch (spec->zv_heapid) {
+       case KHEAP_ID_DEFAULT:
+               heap = KHEAP_DEFAULT;
+               break;
+       case KHEAP_ID_DATA_BUFFERS:
+               heap = KHEAP_DATA_BUFFERS;
+               break;
+       case KHEAP_ID_KEXT:
+               heap = KHEAP_KEXT;
+               break;
+       default:
+               heap = NULL;
+       }
+
+       if (heap) {
+               z = kalloc_heap_zone_for_size(heap, spec->zv_size);
+               assert(z);
+       } else {
+               z = spec->zv_zone;
+               assert(spec->zv_size <= zone_elem_size(z));
+       }
+
+       zv->zv_zone  = z;
+       zv->zv_stats = zalloc_percpu_permanent_type(struct zone_stats);
+       zv->zv_next  = z->z_views;
+       if (z->z_views == NULL && z->kalloc_heap == KHEAP_ID_NONE) {
+               /*
+                * count the raw view for zones not in a heap,
+                * kalloc_heap_init() already counts it for its members.
+                */
+               zone_view_count += 2;
+       } else {
+               zone_view_count += 1;
+       }
+       z->z_views = zv;
+}
+
+zone_t
+zone_create(
+       const char             *name,
+       vm_size_t               size,
+       zone_create_flags_t     flags)
+{
+       return zone_create_ext(name, size, flags, ZONE_ID_ANY, NULL);
+}
+
+zone_t
+zinit(
+       vm_size_t       size,           /* the size of an element */
+       vm_size_t       max,            /* maximum memory to use */
+       vm_size_t       alloc __unused, /* allocation size */
+       const char      *name)          /* a name for the zone */
+{
+       zone_t z = zone_create(name, size, ZC_DESTRUCTIBLE);
+       z->z_wired_max = zone_alloc_pages_for_nelems(z, max / size);
+       return z;
+}
+
+void
+zdestroy(zone_t z)
+{
+       unsigned int zindex = zone_index(z);
+
+       current_thread()->options |= TH_OPT_ZONE_PRIV;
+       lck_mtx_lock(&zone_gc_lock);
+
+       zone_reclaim(z, ZONE_RECLAIM_DESTROY);
+
+       lck_mtx_unlock(&zone_gc_lock);
+       current_thread()->options &= ~TH_OPT_ZONE_PRIV;
+
+#if CONFIG_GZALLOC
+       if (__improbable(z->gzalloc_tracked)) {
+               /* If the zone is gzalloc managed dump all the elements in the free cache */
+               gzalloc_empty_free_cache(z);
+       }
+#endif
+
+       zone_lock(z);
+
+       while (!zone_pva_is_null(z->z_pageq_va)) {
+               struct zone_page_metadata *meta;
+               vm_offset_t free_addr;
+
+               zone_counter_sub(z, z_va_cur, z->z_percpu ? 1 : z->z_chunk_pages);
+               meta = zone_meta_queue_pop_native(z, &z->z_pageq_va, &free_addr);
+               assert(meta->zm_chunk_len <= ZM_CHUNK_LEN_MAX);
+               bzero(meta, sizeof(*meta) * z->z_chunk_pages);
+               zone_unlock(z);
+               kmem_free(zone_submap(z), free_addr, ptoa(z->z_chunk_pages));
+               zone_lock(z);
+       }
+
+#if !KASAN_ZALLOC
+       /* Assert that all counts are zero */
+       if (z->z_elems_avail || z->z_elems_free ||
+           zone_size_wired(z) || z->z_va_cur) {
+               panic("zdestroy: Zone %s%s isn't empty at zdestroy() time",
+                   zone_heap_name(z), z->z_name);
+       }
+
+       /* consistency check: make sure everything is indeed empty */
+       assert(zone_pva_is_null(z->z_pageq_empty));
+       assert(zone_pva_is_null(z->z_pageq_partial));
+       assert(zone_pva_is_null(z->z_pageq_full));
+       assert(zone_pva_is_null(z->z_pageq_va));
+#endif
+
+       zone_unlock(z);
+
+       simple_lock(&all_zones_lock, &zone_locks_grp);
+
+       assert(!bitmap_test(zone_destroyed_bitmap, zindex));
+       /* Mark the zone as empty in the bitmap */
+       bitmap_set(zone_destroyed_bitmap, zindex);
+       num_zones_in_use--;
+       assert(num_zones_in_use > 0);
+
+       simple_unlock(&all_zones_lock);
+}
+
+#endif /* !ZALLOC_TEST */
+#pragma mark zalloc module init
+#if !ZALLOC_TEST
+
+/*
+ *     Initialize the "zone of zones" which uses fixed memory allocated
+ *     earlier in memory initialization.  zone_bootstrap is called
+ *     before zone_init.
+ */
+__startup_func
+void
+zone_bootstrap(void)
+{
+       /* Validate struct zone_packed_virtual_address expectations */
+       static_assert((intptr_t)VM_MIN_KERNEL_ADDRESS < 0, "the top bit must be 1");
+       if (VM_KERNEL_POINTER_SIGNIFICANT_BITS - PAGE_SHIFT > 31) {
+               panic("zone_pva_t can't pack a kernel page address in 31 bits");
+       }
+
+       zpercpu_early_count = ml_early_cpu_max_number() + 1;
+
+       /* Set up zone element poisoning */
+       zp_bootstrap();
+
+       /*
+        * the KASAN quarantine for kalloc doesn't understand heaps
+        * and trips the heap confusion panics. At the end of the day,
+        * all these security measures are double duty with KASAN.
+        *
+        * On 32bit kernels, these protections are just too expensive.
+        */
+#if !defined(__LP64__) || KASAN_ZALLOC
+       zsecurity_options &= ~ZSECURITY_OPTIONS_SEQUESTER;
+       zsecurity_options &= ~ZSECURITY_OPTIONS_SUBMAP_USER_DATA;
+       zsecurity_options &= ~ZSECURITY_OPTIONS_SEQUESTER_KEXT_KALLOC;
+#endif
 
 
-               size_freed = 0;
-               elt = scan;
-               n = 0; tail = keep = NULL;
-               while (elt != NULL) {
-                       if (zone_page_collectable((vm_offset_t)elt, elt_size)) {
-                               size_freed += elt_size;
-                               zone_page_free_element(&zone_free_pages,
-                                                                               (vm_offset_t)elt, elt_size);
+       thread_call_setup_with_options(&zone_expand_callout,
+           zone_expand_async, NULL, THREAD_CALL_PRIORITY_HIGH,
+           THREAD_CALL_OPTIONS_ONCE);
 
 
-                               elt = elt->next;
+       thread_call_setup_with_options(&zone_defrag_callout,
+           zone_defrag_async, NULL, THREAD_CALL_PRIORITY_USER,
+           THREAD_CALL_OPTIONS_ONCE);
+}
 
 
-                               ++zgc_stats.elems_freed;
-                       }
-                       else {
-                               zone_page_keep((vm_offset_t)elt, elt_size);
-
-                               if (keep == NULL)
-                                       keep = tail = elt;
-                               else {
-                                       ADD_ELEMENT(z, tail, elt);
-                                       tail = elt;
-                               }
+#if __LP64__
+#if ARM_LARGE_MEMORY || __x86_64__
+#define ZONE_MAP_VIRTUAL_SIZE_LP64      (128ULL * 1024ULL * 1024 * 1024)
+#else
+#define ZONE_MAP_VIRTUAL_SIZE_LP64      (32ULL * 1024ULL * 1024 * 1024)
+#endif
+#endif /* __LP64__ */
 
 
-                               elt = elt->next;
-                               ADD_ELEMENT(z, tail, NULL);
+#define ZONE_GUARD_SIZE                 (64UL << 10)
 
 
-                               ++zgc_stats.elems_kept;
-                       }
+#if __LP64__
+static inline vm_offset_t
+zone_restricted_va_max(void)
+{
+       vm_offset_t compressor_max = VM_PACKING_MAX_PACKABLE(C_SLOT_PACKED_PTR);
+       vm_offset_t vm_page_max    = VM_PACKING_MAX_PACKABLE(VM_PAGE_PACKED_PTR);
 
 
-                       /*
-                        * Dribble back the elements we are keeping,
-                        * and update the zone size info.
-                        */
+       return trunc_page(MIN(compressor_max, vm_page_max));
+}
+#endif
 
 
-                       if (++n >= 50) {
-                               lock_zone(z);
+__startup_func
+static void
+zone_tunables_fixup(void)
+{
+       if (zone_map_jetsam_limit == 0 || zone_map_jetsam_limit > 100) {
+               zone_map_jetsam_limit = ZONE_MAP_JETSAM_LIMIT_DEFAULT;
+       }
+       if (zc_magazine_size > PAGE_SIZE / ZONE_MIN_ELEM_SIZE) {
+               zc_magazine_size = (uint16_t)(PAGE_SIZE / ZONE_MIN_ELEM_SIZE);
+       }
+}
+STARTUP(TUNABLES, STARTUP_RANK_MIDDLE, zone_tunables_fixup);
 
 
-                               z->cur_size -= size_freed;
-                               size_freed = 0;
+__startup_func
+static vm_size_t
+zone_phys_size_max(void)
+{
+       vm_size_t zsize;
+       vm_size_t zsizearg;
 
 
-                               if (keep != NULL) {
-                                       ADD_LIST_TO_ZONE(z, keep, tail);
-                               }
+       if (PE_parse_boot_argn("zsize", &zsizearg, sizeof(zsizearg))) {
+               zsize = zsizearg * (1024ULL * 1024);
+       } else {
+               /* Set target zone size as 1/4 of physical memory */
+               zsize = (vm_size_t)(sane_size >> 2);
+#if defined(__LP64__)
+               zsize += zsize >> 1;
+#endif /* __LP64__ */
+       }
 
 
-                               if (z->waiting) {
-                                       z->waiting = FALSE;
-                                       zone_wakeup(z);
-                               }
+       if (zsize < CONFIG_ZONE_MAP_MIN) {
+               zsize = CONFIG_ZONE_MAP_MIN;   /* Clamp to min */
+       }
+       if (zsize > sane_size >> 1) {
+               zsize = (vm_size_t)(sane_size >> 1); /* Clamp to half of RAM max */
+       }
+       if (zsizearg == 0 && zsize > ZONE_MAP_MAX) {
+               /* if zsize boot-arg not present and zsize exceeds platform maximum, clip zsize */
+               printf("NOTE: zonemap size reduced from 0x%lx to 0x%lx\n",
+                   (uintptr_t)zsize, (uintptr_t)ZONE_MAP_MAX);
+               zsize = ZONE_MAP_MAX;
+       }
 
 
-                               unlock_zone(z);
+       return (vm_size_t)trunc_page(zsize);
+}
 
 
-                               n = 0; tail = keep = NULL;
-                       }
-               }
+__options_decl(zone_init_allocate_flags_t, unsigned, {
+       ZIA_NONE      = 0x00000000,
+       ZIA_REPLACE   = 0x00000001, /* replace a previous non permanent range */
+       ZIA_RANDOM    = 0x00000002, /* place at a random address              */
+       ZIA_PERMANENT = 0x00000004, /* permanent allocation                   */
+       ZIA_GUARD     = 0x00000008, /* will be used as a guard                */
+});
+
+__startup_func
+static struct zone_map_range
+zone_init_allocate_va(vm_map_address_t addr, vm_size_t size,
+    zone_init_allocate_flags_t flags)
+{
+       vm_map_kernel_flags_t vmk_flags = VM_MAP_KERNEL_FLAGS_NONE;
+       int vm_alloc_flags = 0;
+       struct zone_map_range r;
+       kern_return_t kr;
 
 
-               /*
-                * Return any remaining elements, and update
-                * the zone size info.
-                */
+       if (flags & ZIA_REPLACE) {
+               vm_alloc_flags |= VM_FLAGS_FIXED | VM_FLAGS_OVERWRITE;
+       } else {
+               vm_alloc_flags |= VM_FLAGS_ANYWHERE;
+       }
+       if (flags & ZIA_RANDOM) {
+               vm_alloc_flags |= VM_FLAGS_RANDOM_ADDR;
+       }
+       if (flags & ZIA_PERMANENT) {
+               vmk_flags.vmkf_permanent = true;
+       }
 
 
-               lock_zone(z);
+       vm_object_reference(kernel_object);
 
 
-               if (size_freed > 0 || keep != NULL) {
+       kr = vm_map_enter(kernel_map, &addr, size, 0,
+           vm_alloc_flags, vmk_flags, VM_KERN_MEMORY_ZONE,
+           kernel_object, 0, FALSE,
+           (flags & ZIA_GUARD) ? VM_PROT_NONE : VM_PROT_DEFAULT,
+           (flags & ZIA_GUARD) ? VM_PROT_NONE : VM_PROT_DEFAULT,
+           VM_INHERIT_NONE);
 
 
-                       z->cur_size -= size_freed;
+       if (KERN_SUCCESS != kr) {
+               panic("vm_map_enter(0x%zx) failed: %d", (size_t)size, kr);
+       }
 
 
-                       if (keep != NULL) {
-                               ADD_LIST_TO_ZONE(z, keep, tail);
-                       }
+       r.min_address = (vm_offset_t)addr;
+       r.max_address = (vm_offset_t)addr + size;
+       return r;
+}
 
 
+__startup_func
+static void
+zone_submap_init(
+       vm_offset_t *submap_min,
+       unsigned    idx,
+       uint64_t    zone_sub_map_numer,
+       uint64_t    *remaining_denom,
+       vm_offset_t *remaining_size,
+       vm_size_t   guard_size)
+{
+       vm_offset_t submap_start, submap_end;
+       vm_size_t submap_size;
+       vm_map_t  submap;
+       kern_return_t kr;
+
+       submap_size = trunc_page(zone_sub_map_numer * *remaining_size /
+           *remaining_denom);
+       submap_start = *submap_min;
+       submap_end = submap_start + submap_size;
+
+#if defined(__LP64__)
+       if (idx == Z_SUBMAP_IDX_VA_RESTRICTED) {
+               vm_offset_t restricted_va_max = zone_restricted_va_max();
+               if (submap_end > restricted_va_max) {
+#if DEBUG || DEVELOPMENT
+                       printf("zone_init: submap[%d] clipped to %zdM of %zdM\n", idx,
+                           (size_t)(restricted_va_max - submap_start) >> 20,
+                           (size_t)submap_size >> 20);
+#endif /* DEBUG || DEVELOPMENT */
+                       guard_size += submap_end - restricted_va_max;
+                       *remaining_size -= submap_end - restricted_va_max;
+                       submap_end  = restricted_va_max;
+                       submap_size = restricted_va_max - submap_start;
                }
 
                }
 
-               z->doing_gc = FALSE;
-               if (z->waiting) {
-                       z->waiting = FALSE;
-                       zone_wakeup(z);
-               }
-               unlock_zone(z);
+               vm_packing_verify_range("vm_compressor",
+                   submap_start, submap_end, VM_PACKING_PARAMS(C_SLOT_PACKED_PTR));
+               vm_packing_verify_range("vm_page",
+                   submap_start, submap_end, VM_PACKING_PARAMS(VM_PAGE_PACKED_PTR));
+       }
+#endif /* defined(__LP64__) */
+
+       vm_map_kernel_flags_t vmk_flags = VM_MAP_KERNEL_FLAGS_NONE;
+       vmk_flags.vmkf_permanent = TRUE;
+       kr = kmem_suballoc(kernel_map, submap_min, submap_size,
+           FALSE, VM_FLAGS_FIXED | VM_FLAGS_OVERWRITE, vmk_flags,
+           VM_KERN_MEMORY_ZONE, &submap);
+       if (kr != KERN_SUCCESS) {
+               panic("kmem_suballoc(kernel_map[%d] %p:%p) failed: %d",
+                   idx, (void *)submap_start, (void *)submap_end, kr);
        }
 
        }
 
-       /*
-        * Reclaim the pages we are freeing.
-        */
+#if DEBUG || DEVELOPMENT
+       printf("zone_init: submap[%d] %p:%p (%zuM)\n",
+           idx, (void *)submap_start, (void *)submap_end,
+           (size_t)submap_size >> 20);
+#endif /* DEBUG || DEVELOPMENT */
 
 
-       while ((zp = zone_free_pages) != NULL) {
-               zone_free_pages = zp->link;
-#if    ZONE_ALIAS_ADDR
-               z = zone_virtual_addr((vm_map_address_t)z);
-#endif
-               kmem_free(zone_map, zone_map_min_address + PAGE_SIZE *
-                                                                               (zp - zone_page_table), PAGE_SIZE);
-               ++zgc_stats.pgs_freed;
-       }
+       zone_init_allocate_va(submap_end, guard_size,
+           ZIA_PERMANENT | ZIA_GUARD | ZIA_REPLACE);
 
 
-       mutex_unlock(&zone_gc_lock);
+       zone_submaps[idx] = submap;
+       *submap_min       = submap_end + guard_size;
+       *remaining_size  -= submap_size;
+       *remaining_denom -= zone_sub_map_numer;
 }
 
 /*
 }
 
 /*
- *     consider_zone_gc:
+ * Allocate metadata array and migrate foreign initial metadata.
  *
  *
- *     Called by the pageout daemon when the system needs more free pages.
+ * So that foreign pages and native pages have the same scheme,
+ * we allocate VA space that covers both foreign and native pages.
  */
  */
-
-void
-consider_zone_gc(void)
+__startup_func
+static void
+zone_metadata_init(void)
 {
 {
+       struct zone_map_range r0 = zone_info.zi_map_range[0];
+       struct zone_map_range r1 = zone_info.zi_map_range[1];
+       struct zone_map_range mr, br;
+       vm_size_t meta_size, bits_size, foreign_base;
+       vm_offset_t hstart, hend;
+
+       if (r0.min_address > r1.min_address) {
+               r0 = zone_info.zi_map_range[1];
+               r1 = zone_info.zi_map_range[0];
+       }
+
+       meta_size = round_page(atop(r1.max_address - r0.min_address) *
+           sizeof(struct zone_page_metadata)) + ZONE_GUARD_SIZE * 2;
+
        /*
        /*
-        *      By default, don't attempt zone GC more frequently
-        *      than once / 1 minutes.
+        * Allocations can't be smaller than 8 bytes, which is 128b / 16B per 1k
+        * of physical memory (16M per 1G).
+        *
+        * Let's preallocate for the worst to avoid weird panics.
         */
         */
+       bits_size = round_page(16 * (ptoa(zone_phys_mapped_max_pages) >> 10));
 
 
-       if (zone_gc_max_rate == 0)
-               zone_gc_max_rate = (60 << SCHED_TICK_SHIFT) + 1;
+       /*
+        * Compute the size of the "hole" in the middle of the range.
+        *
+        * If it is smaller than 256k, just leave it be, with this layout:
+        *
+        *   [G][ r0 meta ][ hole ][ r1 meta ][ bits ][G]
+        *
+        * else punch a hole with guard pages around the hole, and place the
+        * bits in the hole if it fits, or after r1 otherwise, yielding either
+        * of the following layouts:
+        *
+        *      |__________________hend____________|
+        *      |__hstart_|                        |
+        *   [G][ r0 meta ][ bits ][G]..........[G][ r1 meta ][G]
+        *   [G][ r0 meta ][G]..................[G][ r1 meta ][ bits ][G]
+        */
+       hstart = round_page(atop(r0.max_address - r0.min_address) *
+           sizeof(struct zone_page_metadata));
+       hend = trunc_page(atop(r1.min_address - r0.min_address) *
+           sizeof(struct zone_page_metadata));
+
+       if (hstart >= hend || hend - hstart < (256ul << 10)) {
+               mr = zone_init_allocate_va(0, meta_size + bits_size,
+                   ZIA_PERMANENT | ZIA_RANDOM);
+               mr.min_address += ZONE_GUARD_SIZE;
+               mr.max_address -= ZONE_GUARD_SIZE;
+               br.max_address  = mr.max_address;
+               mr.max_address -= bits_size;
+               br.min_address  = mr.max_address;
+
+#if DEBUG || DEVELOPMENT
+               printf("zone_init: metadata  %p:%p (%zuK)\n",
+                   (void *)mr.min_address, (void *)mr.max_address,
+                   (size_t)zone_range_size(&mr) >> 10);
+               printf("zone_init: metabits  %p:%p (%zuK)\n",
+                   (void *)br.min_address, (void *)br.max_address,
+                   (size_t)zone_range_size(&br) >> 10);
+#endif /* DEBUG || DEVELOPMENT */
+       } else {
+               vm_size_t size, alloc_size = meta_size;
+               vm_offset_t base;
+               bool bits_in_middle = true;
 
 
-       if (zone_gc_allowed &&
-           ((sched_tick > (zone_gc_last_tick + zone_gc_max_rate)) ||
-            zone_gc_forced)) {
-               zone_gc_forced = FALSE;
-               zone_gc_last_tick = sched_tick;
-               zone_gc();
-       }
-}
+               if (hend - hstart - 2 * ZONE_GUARD_SIZE < bits_size) {
+                       alloc_size += bits_size;
+                       bits_in_middle = false;
+               }
 
 
-struct fake_zone_info {
-       const char* name;
-       void (*func)(int *, vm_size_t *, vm_size_t *, vm_size_t *, vm_size_t *,
-                   int *, int *);
-};
+               mr = zone_init_allocate_va(0, alloc_size, ZIA_RANDOM);
 
 
-static struct fake_zone_info fake_zones[] = {
-       {
-               .name = "kernel_stacks",
-               .func = stack_fake_zone_info,
-       },
-#ifdef ppc
-       {
-               .name = "save_areas",
-               .func = save_fake_zone_info,
-       },
-       {
-               .name = "pmap_mappings",
-               .func = mapping_fake_zone_info,
-       },
-#endif /* ppc */
-#ifdef i386
-       {
-               .name = "page_tables",
-               .func = pt_fake_zone_info,
-       },
-#endif /* i386 */
-       {
-               .name = "kalloc.large",
-               .func = kalloc_fake_zone_info,
-       },
-};
+               base = mr.min_address;
+               size = ZONE_GUARD_SIZE + hstart + ZONE_GUARD_SIZE;
+               if (bits_in_middle) {
+                       size += bits_size;
+                       br.min_address = base + ZONE_GUARD_SIZE + hstart;
+                       br.max_address = br.min_address + bits_size;
+               }
+               zone_init_allocate_va(base, size, ZIA_PERMANENT | ZIA_REPLACE);
+
+               base += size;
+               size = mr.min_address + hend - base;
+               kmem_free(kernel_map, base, size);
+
+               base = mr.min_address + hend;
+               size = mr.max_address - base;
+               zone_init_allocate_va(base, size, ZIA_PERMANENT | ZIA_REPLACE);
+
+               mr.min_address += ZONE_GUARD_SIZE;
+               mr.max_address -= ZONE_GUARD_SIZE;
+               if (!bits_in_middle) {
+                       br.max_address  = mr.max_address;
+                       mr.max_address -= bits_size;
+                       br.min_address  = mr.max_address;
+               }
 
 
-kern_return_t
-host_zone_info(
-       host_t                  host,
-       zone_name_array_t       *namesp,
-       mach_msg_type_number_t  *namesCntp,
-       zone_info_array_t       *infop,
-       mach_msg_type_number_t  *infoCntp)
-{
-       zone_name_t     *names;
-       vm_offset_t     names_addr;
-       vm_size_t       names_size;
-       zone_info_t     *info;
-       vm_offset_t     info_addr;
-       vm_size_t       info_size;
-       unsigned int    max_zones, i;
-       zone_t          z;
-       zone_name_t    *zn;
-       zone_info_t    *zi;
-       kern_return_t   kr;
-       size_t          num_fake_zones;
-
-       if (host == HOST_NULL)
-               return KERN_INVALID_HOST;
+#if DEBUG || DEVELOPMENT
+               printf("zone_init: metadata0 %p:%p (%zuK)\n",
+                   (void *)mr.min_address, (void *)(mr.min_address + hstart),
+                   (size_t)hstart >> 10);
+               printf("zone_init: metadata1 %p:%p (%zuK)\n",
+                   (void *)(mr.min_address + hend), (void *)mr.max_address,
+                   (size_t)(zone_range_size(&mr) - hend) >> 10);
+               printf("zone_init: metabits  %p:%p (%zuK)\n",
+                   (void *)br.min_address, (void *)br.max_address,
+                   (size_t)zone_range_size(&br) >> 10);
+#endif /* DEBUG || DEVELOPMENT */
+       }
+
+       br.min_address = (br.min_address + ZBA_CHUNK_SIZE - 1) & -ZBA_CHUNK_SIZE;
+       br.max_address = br.max_address & -ZBA_CHUNK_SIZE;
 
 
-       num_fake_zones = sizeof fake_zones / sizeof fake_zones[0];
+       zone_info.zi_meta_range = mr;
+       zone_info.zi_bits_range = br;
 
        /*
 
        /*
-        *      We assume that zones aren't freed once allocated.
-        *      We won't pick up any zones that are allocated later.
+        * Migrate the original static metadata into its new location.
         */
         */
+       zone_info.zi_meta_base = (struct zone_page_metadata *)mr.min_address -
+           zone_pva_from_addr(r0.min_address).packed_address;
+       foreign_base = zone_info.zi_map_range[ZONE_ADDR_FOREIGN].min_address;
+       zone_meta_populate(foreign_base, zone_foreign_size());
+       memcpy(zone_meta_from_addr(foreign_base),
+           zone_foreign_meta_array_startup,
+           atop(zone_foreign_size()) * sizeof(struct zone_page_metadata));
+
+       zba_populate(0);
+       memcpy(zba_base_header(), zba_chunk_startup,
+           sizeof(zba_chunk_startup));
+}
 
 
-       simple_lock(&all_zones_lock);
-       max_zones = num_zones + num_fake_zones;
-       z = first_zone;
-       simple_unlock(&all_zones_lock);
-
-       if (max_zones <= *namesCntp) {
-               /* use in-line memory */
-               names_size = *namesCntp * sizeof *names;
-               names = *namesp;
+/* Global initialization of Zone Allocator.
+ * Runs after zone_bootstrap.
+ */
+__startup_func
+static void
+zone_init(void)
+{
+       vm_size_t       zone_map_size;
+       vm_size_t       remaining_size;
+       vm_offset_t     submap_min = 0;
+       uint64_t        denom = 0;
+       uint64_t        submap_ratios[Z_SUBMAP_IDX_COUNT] = {
+#ifdef __LP64__
+               [Z_SUBMAP_IDX_VA_RESTRICTED] = 20,
+#else
+               [Z_SUBMAP_IDX_VA_RESERVE]    = 10,
+#endif /* defined(__LP64__) */
+               [Z_SUBMAP_IDX_GENERAL]       = 40,
+               [Z_SUBMAP_IDX_BAG_OF_BYTES]  = 40,
+       };
+
+       if (ZSECURITY_OPTIONS_SUBMAP_USER_DATA & zsecurity_options) {
+               zone_last_submap_idx = Z_SUBMAP_IDX_BAG_OF_BYTES;
        } else {
        } else {
-               names_size = round_page(max_zones * sizeof *names);
-               kr = kmem_alloc_pageable(ipc_kernel_map,
-                                        &names_addr, names_size);
-               if (kr != KERN_SUCCESS)
-                       return kr;
-               names = (zone_name_t *) names_addr;
+               zone_last_submap_idx = Z_SUBMAP_IDX_GENERAL;
        }
        }
+       zone_phys_mapped_max_pages = (uint32_t)atop(zone_phys_size_max());
 
 
-       if (max_zones <= *infoCntp) {
-               /* use in-line memory */
-               info_size = *infoCntp * sizeof *info;
-               info = *infop;
-       } else {
-               info_size = round_page(max_zones * sizeof *info);
-               kr = kmem_alloc_pageable(ipc_kernel_map,
-                                        &info_addr, info_size);
-               if (kr != KERN_SUCCESS) {
-                       if (names != *namesp)
-                               kmem_free(ipc_kernel_map,
-                                         names_addr, names_size);
-                       return kr;
-               }
-
-               info = (zone_info_t *) info_addr;
+       for (unsigned idx = 0; idx <= zone_last_submap_idx; idx++) {
+#if DEBUG || DEVELOPMENT
+               char submap_name[1 + sizeof("submap")];
+               snprintf(submap_name, sizeof(submap_name), "submap%d", idx);
+               PE_parse_boot_argn(submap_name, &submap_ratios[idx], sizeof(uint64_t));
+#endif
+               denom += submap_ratios[idx];
        }
        }
-       zn = &names[0];
-       zi = &info[0];
-
-       for (i = 0; i < num_zones; i++) {
-               struct zone zcopy;
 
 
-               assert(z != ZONE_NULL);
+#if __LP64__
+       zone_map_size = ZONE_MAP_VIRTUAL_SIZE_LP64;
+#else
+       zone_map_size = ptoa(zone_phys_mapped_max_pages *
+           (denom + submap_ratios[Z_SUBMAP_IDX_VA_RESERVE]) / denom);
+#endif
 
 
-               lock_zone(z);
-               zcopy = *z;
-               unlock_zone(z);
+       remaining_size = zone_map_size -
+           ZONE_GUARD_SIZE * (zone_last_submap_idx + 1);
 
 
-               simple_lock(&all_zones_lock);
-               z = z->next_zone;
-               simple_unlock(&all_zones_lock);
+       /*
+        * And now allocate the various pieces of VA and submaps.
+        *
+        * Make a first allocation of contiguous VA, that we'll deallocate,
+        * and we'll carve-out memory in that range again linearly.
+        * The kernel is stil single threaded at this stage.
+        */
 
 
-               /* assuming here the name data is static */
-               (void) strncpy(zn->zn_name, zcopy.zone_name,
-                              sizeof zn->zn_name);
-               zn->zn_name[sizeof zn->zn_name - 1] = '\0';
-
-               zi->zi_count = zcopy.count;
-               zi->zi_cur_size = zcopy.cur_size;
-               zi->zi_max_size = zcopy.max_size;
-               zi->zi_elem_size = zcopy.elem_size;
-               zi->zi_alloc_size = zcopy.alloc_size;
-               zi->zi_exhaustible = zcopy.exhaustible;
-               zi->zi_collectable = zcopy.collectable;
+       struct zone_map_range *map_range =
+           &zone_info.zi_map_range[ZONE_ADDR_NATIVE];
 
 
-               zn++;
-               zi++;
-       }
+       *map_range = zone_init_allocate_va(0, zone_map_size, ZIA_NONE);
+       submap_min = map_range->min_address;
 
        /*
 
        /*
-        * loop through the fake zones and fill them using the specialized
-        * functions
+        * Allocate the submaps
         */
         */
-       for (i = 0; i < num_fake_zones; i++) {
-               strncpy(zn->zn_name, fake_zones[i].name, sizeof zn->zn_name);
-               zn->zn_name[sizeof zn->zn_name - 1] = '\0';
-               fake_zones[i].func(&zi->zi_count, &zi->zi_cur_size,
-                                  &zi->zi_max_size, &zi->zi_elem_size,
-                                  &zi->zi_alloc_size, &zi->zi_collectable,
-                                  &zi->zi_exhaustible);
-               zn++;
-               zi++;
+       for (unsigned idx = 0; idx <= zone_last_submap_idx; idx++) {
+               zone_submap_init(&submap_min, idx, submap_ratios[idx],
+                   &denom, &remaining_size, ZONE_GUARD_SIZE);
        }
 
        }
 
-       if (names != *namesp) {
-               vm_size_t used;
-               vm_map_copy_t copy;
-
-               used = max_zones * sizeof *names;
+       assert(submap_min == map_range->max_address);
 
 
-               if (used != names_size)
-                       bzero((char *) (names_addr + used), names_size - used);
+       zone_metadata_init();
 
 
-               kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)names_addr,
-                                  (vm_map_size_t)names_size, TRUE, &copy);
-               assert(kr == KERN_SUCCESS);
-
-               *namesp = (zone_name_t *) copy;
+#if VM_MAX_TAG_ZONES
+       if (zone_tagging_on) {
+               zone_tagging_init(zone_map_size);
        }
        }
-       *namesCntp = max_zones;
+#endif
+#if CONFIG_GZALLOC
+       gzalloc_init(zone_map_size);
+#endif
 
 
-       if (info != *infop) {
-               vm_size_t used;
-               vm_map_copy_t copy;
+       zone_create_flags_t kma_flags = ZC_NOCACHING |
+           ZC_NOGC | ZC_NOENCRYPT | ZC_NOGZALLOC | ZC_NOCALLOUT |
+           ZC_KASAN_NOQUARANTINE | ZC_KASAN_NOREDZONE;
 
 
-               used = max_zones * sizeof *info;
+       (void)zone_create_ext("vm.permanent", 1, kma_flags,
+           ZONE_ID_PERMANENT, ^(zone_t z){
+               z->z_permanent = true;
+               z->z_elem_size = 1;
+#if defined(__LP64__)
+               z->z_submap_idx = Z_SUBMAP_IDX_VA_RESTRICTED;
+#endif
+       });
+       (void)zone_create_ext("vm.permanent.percpu", 1, kma_flags | ZC_PERCPU,
+           ZONE_ID_PERCPU_PERMANENT, ^(zone_t z){
+               z->z_permanent = true;
+               z->z_elem_size = 1;
+#if defined(__LP64__)
+               z->z_submap_idx = Z_SUBMAP_IDX_VA_RESTRICTED;
+#endif
+       });
 
 
-               if (used != info_size)
-                       bzero((char *) (info_addr + used), info_size - used);
+       /*
+        * Now migrate the startup statistics into their final storage.
+        */
+       int cpu = cpu_number();
+       zone_index_foreach(idx) {
+               zone_t tz = &zone_array[idx];
+
+               if (tz->z_stats == __zpcpu_mangle_for_boot(&zone_stats_startup[idx])) {
+                       zone_stats_t zs = zalloc_percpu_permanent_type(struct zone_stats);
+
+                       *zpercpu_get_cpu(zs, cpu) = *zpercpu_get_cpu(tz->z_stats, cpu);
+                       tz->z_stats = zs;
+#if ZONE_ENABLE_LOGGING
+                       if (tz->zone_logging && !tz->zlog_btlog) {
+                               zone_enable_logging(tz);
+                       }
+#endif /* ZONE_ENABLE_LOGGING */
+               }
+       }
 
 
-               kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)info_addr,
-                                  (vm_map_size_t)info_size, TRUE, &copy);
-               assert(kr == KERN_SUCCESS);
+#if CONFIG_ZLEAKS
+       /*
+        * Initialize the zone leak monitor
+        */
+       zleak_init(zone_map_size);
+#endif /* CONFIG_ZLEAKS */
 
 
-               *infop = (zone_info_t *) copy;
+#if VM_MAX_TAG_ZONES
+       if (zone_tagging_on) {
+               vm_allocation_zones_init();
        }
        }
-       *infoCntp = max_zones;
-
-       return KERN_SUCCESS;
+#endif
 }
 }
+STARTUP(ZALLOC, STARTUP_RANK_FIRST, zone_init);
+
+__startup_func
+static void
+zone_cache_bootstrap(void)
+{
+       zone_t magzone;
 
 
-#if    MACH_KDB
-#include <ddb/db_command.h>
-#include <ddb/db_output.h>
-#include <kern/kern_print.h>
+       magzone = zone_create("zcc_magazine_zone", sizeof(struct zone_magazine) +
+           zc_mag_size() * sizeof(zone_element_t),
+           ZC_NOGZALLOC | ZC_KASAN_NOREDZONE | ZC_KASAN_NOQUARANTINE |
+           ZC_SEQUESTER | ZC_CACHING | ZC_ZFREE_CLEARMEM);
+       magzone->z_elems_rsv = (uint16_t)(2 * zpercpu_count());
 
 
-const char *zone_labels =
-"ENTRY       COUNT   TOT_SZ   MAX_SZ ELT_SZ ALLOC_SZ NAME";
+       os_atomic_store(&zc_magazine_zone, magzone, compiler_acq_rel);
 
 
-/* Forwards */
-void   db_print_zone(
-               zone_t          addr);
+       /*
+        * Now that we are initialized, we can enable zone caching for zones that
+        * were made before zcache_bootstrap() was called.
+        *
+        * The system is still single threaded so we don't need to take the lock.
+        */
+       zone_index_foreach(i) {
+               zone_t z = &zone_array[i];
+               if (z->z_pcpu_cache) {
+                       z->z_pcpu_cache = NULL;
+                       zone_enable_caching(z);
+               }
+       }
+}
+STARTUP(ZALLOC, STARTUP_RANK_FOURTH, zone_cache_bootstrap);
 
 
-#if    ZONE_DEBUG
-void   db_zone_check_active(
-               zone_t          zone);
-void   db_zone_print_active(
-               zone_t          zone);
-#endif /* ZONE_DEBUG */
-void   db_zone_print_free(
-               zone_t          zone);
 void
 void
-db_print_zone(
-       zone_t          addr)
+zalloc_first_proc_made(void)
 {
 {
-       struct zone zcopy;
-
-       zcopy = *addr;
-
-       db_printf("%8x %8x %8x %8x %6x %8x %s ",
-                 addr, zcopy.count, zcopy.cur_size,
-                 zcopy.max_size, zcopy.elem_size,
-                 zcopy.alloc_size, zcopy.zone_name);
-       if (zcopy.exhaustible)
-               db_printf("H");
-       if (zcopy.collectable)
-               db_printf("C");
-       if (zcopy.expandable)
-               db_printf("X");
-       db_printf("\n");
+       zone_caching_disabled = 0;
 }
 
 }
 
-/*ARGSUSED*/
-void
-db_show_one_zone(db_expr_t addr, boolean_t have_addr,
-                __unused db_expr_t count, __unused char *modif)
+__startup_func
+vm_offset_t
+zone_foreign_mem_init(vm_size_t size)
 {
 {
-       struct zone *z = (zone_t)((char *)0 + addr);
+       vm_offset_t mem;
 
 
-       if (z == ZONE_NULL || !have_addr){
-               db_error("No Zone\n");
-               /*NOTREACHED*/
+       if (atop(size) > ZONE_FOREIGN_META_INLINE_COUNT) {
+               panic("ZONE_FOREIGN_META_INLINE_COUNT has become too small: "
+                   "%d > %d", (int)atop(size), ZONE_FOREIGN_META_INLINE_COUNT);
        }
 
        }
 
-       db_printf("%s\n", zone_labels);
-       db_print_zone(z);
+       mem = (vm_offset_t)pmap_steal_memory(size);
+
+       zone_info.zi_meta_base = zone_foreign_meta_array_startup -
+           zone_pva_from_addr(mem).packed_address;
+       zone_info.zi_map_range[ZONE_ADDR_FOREIGN].min_address = mem;
+       zone_info.zi_map_range[ZONE_ADDR_FOREIGN].max_address = mem + size;
+
+       zone_info.zi_bits_range = (struct zone_map_range){
+               .min_address = (vm_offset_t)zba_chunk_startup,
+               .max_address = (vm_offset_t)zba_chunk_startup +
+           sizeof(zba_chunk_startup),
+       };
+       zba_init_chunk(0);
+
+       return mem;
 }
 
 }
 
-/*ARGSUSED*/
-void
-db_show_all_zones(__unused db_expr_t addr, boolean_t have_addr, db_expr_t count,
-                 __unused char *modif)
+#endif /* !ZALLOC_TEST */
+#pragma mark - tests
+#if DEBUG || DEVELOPMENT
+
+/*
+ * Used for sysctl kern.run_zone_test which is not thread-safe. Ensure only one
+ * thread goes through at a time.  Or we can end up with multiple test zones (if
+ * a second zinit() comes through before zdestroy()),  which could lead us to
+ * run out of zones.
+ */
+static SIMPLE_LOCK_DECLARE(zone_test_lock, 0);
+static boolean_t zone_test_running = FALSE;
+static zone_t test_zone_ptr = NULL;
+
+static uintptr_t *
+zone_copy_allocations(zone_t z, uintptr_t *elems, zone_pva_t page_index)
 {
 {
-       zone_t          z;
-       unsigned total = 0;
+       vm_offset_t elem_size = zone_elem_size(z);
+       vm_offset_t base;
+       struct zone_page_metadata *meta;
 
 
-       /*
-        * Don't risk hanging by unconditionally locking,
-        * risk of incoherent data is small (zones aren't freed).
-        */
-       have_addr = simple_lock_try(&all_zones_lock);
-       count = num_zones;
-       z = first_zone;
-       if (have_addr) {
-               simple_unlock(&all_zones_lock);
-       }
+       while (!zone_pva_is_null(page_index)) {
+               base  = zone_pva_to_addr(page_index);
+               meta  = zone_pva_to_meta(page_index);
 
 
-       db_printf("%s\n", zone_labels);
-       for (  ; count > 0; count--) {
-               if (!z) {
-                       db_error("Mangled Zone List\n");
-                       /*NOTREACHED*/
-               }
-               db_print_zone(z);
-               total += z->cur_size,
+               if (meta->zm_inline_bitmap) {
+                       for (size_t i = 0; i < meta->zm_chunk_len; i++) {
+                               uint32_t map = meta[i].zm_bitmap;
 
 
-               have_addr = simple_lock_try(&all_zones_lock);
-               z = z->next_zone;
-               if (have_addr) {
-                       simple_unlock(&all_zones_lock);
+                               for (; map; map &= map - 1) {
+                                       *elems++ = INSTANCE_PUT(base +
+                                           elem_size * __builtin_clz(map));
+                               }
+                               base += elem_size * 32;
+                       }
+               } else {
+                       uint32_t order = zba_bits_ref_order(meta->zm_bitmap);
+                       bitmap_t *bits = zba_bits_ref_ptr(meta->zm_bitmap);
+                       for (size_t i = 0; i < (1u << order); i++) {
+                               uint64_t map = bits[i];
+
+                               for (; map; map &= map - 1) {
+                                       *elems++ = INSTANCE_PUT(base +
+                                           elem_size * __builtin_clzll(map));
+                               }
+                               base += elem_size * 64;
+                       }
                }
                }
+
+               page_index = meta->zm_page_next;
        }
        }
-       db_printf("\nTotal              %8x", total);
-       db_printf("\n\nzone_gc() has reclaimed %d pages\n", zgc_stats.pgs_freed);
+       return elems;
 }
 
 }
 
-#if    ZONE_DEBUG
-void
-db_zone_check_active(
-       zone_t  zone)
+kern_return_t
+zone_leaks(const char * zoneName, uint32_t nameLen, leak_site_proc proc, void * refCon)
 {
 {
-       int count = 0;
-       queue_t tmp_elem;
-
-       if (!zone_debug_enabled(zone) || !zone_check)
-               return;
-       tmp_elem = queue_first(&zone->active_zones);
-       while (count < zone->count) {
-               count++;
-               if (tmp_elem == 0) {
-                       printf("unexpected zero element, zone=%p, count=%d\n",
-                               zone, count);
-                       assert(FALSE);
+       uintptr_t     zbt[MAX_ZTRACE_DEPTH];
+       zone_t        zone = NULL;
+       uintptr_t *   array;
+       uintptr_t *   next;
+       uintptr_t     element, bt;
+       uint32_t      idx, count, found;
+       uint32_t      btidx, btcount, nobtcount, btfound;
+       uint32_t      elemSize;
+       size_t        maxElems;
+       kern_return_t kr;
+
+       zone_foreach(z) {
+               if (!strncmp(zoneName, z->z_name, nameLen)) {
+                       zone = z;
                        break;
                }
                        break;
                }
-               if (queue_end(tmp_elem, &zone->active_zones)) {
-                       printf("unexpected queue_end, zone=%p, count=%d\n",
-                               zone, count);
-                       assert(FALSE);
-                       break;
-               }
-               tmp_elem = queue_next(tmp_elem);
        }
        }
-       if (!queue_end(tmp_elem, &zone->active_zones)) {
-               printf("not at queue_end, zone=%p, tmp_elem=%p\n",
-                       zone, tmp_elem);
-               assert(FALSE);
+       if (zone == NULL) {
+               return KERN_INVALID_NAME;
        }
        }
-}
 
 
-void
-db_zone_print_active(
-       zone_t  zone)
-{
-       int count = 0;
-       queue_t tmp_elem;
+       elemSize = (uint32_t)zone_elem_size(zone);
+       maxElems = (zone->z_elems_avail + 1) & ~1ul;
 
 
-       if (!zone_debug_enabled(zone)) {
-               printf("zone %p debug not enabled\n", zone);
-               return;
+       if ((ptoa(zone->z_percpu ? 1 : zone->z_chunk_pages) % elemSize) &&
+           !zone_leaks_scan_enable) {
+               return KERN_INVALID_CAPABILITY;
        }
        }
-       if (!zone_check) {
-               printf("zone_check FALSE\n");
-               return;
+
+       kr = kmem_alloc_kobject(kernel_map, (vm_offset_t *) &array,
+           maxElems * sizeof(uintptr_t), VM_KERN_MEMORY_DIAG);
+       if (KERN_SUCCESS != kr) {
+               return kr;
        }
 
        }
 
-       printf("zone %p, active elements %d\n", zone, zone->count);
-       printf("active list:\n");
-       tmp_elem = queue_first(&zone->active_zones);
-       while (count < zone->count) {
-               printf("  %p", tmp_elem);
-               count++;
-               if ((count % 6) == 0)
-                       printf("\n");
-               if (tmp_elem == 0) {
-                       printf("\nunexpected zero element, count=%d\n", count);
-                       break;
-               }
-               if (queue_end(tmp_elem, &zone->active_zones)) {
-                       printf("\nunexpected queue_end, count=%d\n", count);
-                       break;
+       zone_lock(zone);
+
+       next = array;
+       next = zone_copy_allocations(zone, next, zone->z_pageq_partial);
+       next = zone_copy_allocations(zone, next, zone->z_pageq_full);
+       count = (uint32_t)(next - array);
+
+       zone_unlock(zone);
+
+       zone_leaks_scan(array, count, (uint32_t)zone_elem_size(zone), &found);
+       assert(found <= count);
+
+       for (idx = 0; idx < count; idx++) {
+               element = array[idx];
+               if (kInstanceFlagReferenced & element) {
+                       continue;
                }
                }
-               tmp_elem = queue_next(tmp_elem);
+               element = INSTANCE_PUT(element) & ~kInstanceFlags;
        }
        }
-       if (!queue_end(tmp_elem, &zone->active_zones))
-               printf("\nnot at queue_end, tmp_elem=%p\n", tmp_elem);
-       else
-               printf("\n");
-}
-#endif /* ZONE_DEBUG */
 
 
-void
-db_zone_print_free(
-       zone_t  zone)
-{
-       int count = 0;
-       int freecount;
-       vm_offset_t elem;
-
-       freecount = zone_free_count(zone);
-       printf("zone %p, free elements %d\n", zone, freecount);
-       printf("free list:\n");
-       elem = zone->free_elements;
-       while (count < freecount) {
-               printf("  0x%x", elem);
-               count++;
-               if ((count % 6) == 0)
-                       printf("\n");
-               if (elem == 0) {
-                       printf("\nunexpected zero element, count=%d\n", count);
-                       break;
+#if ZONE_ENABLE_LOGGING
+       if (zone->zlog_btlog && !corruption_debug_flag) {
+               // btlog_copy_backtraces_for_elements will set kInstanceFlagReferenced on elements it found
+               btlog_copy_backtraces_for_elements(zone->zlog_btlog, array, &count, elemSize, proc, refCon);
+       }
+#endif /* ZONE_ENABLE_LOGGING */
+
+       for (nobtcount = idx = 0; idx < count; idx++) {
+               element = array[idx];
+               if (!element) {
+                       continue;
+               }
+               if (kInstanceFlagReferenced & element) {
+                       continue;
+               }
+               element = INSTANCE_PUT(element) & ~kInstanceFlags;
+
+               // see if we can find any backtrace left in the element
+               btcount = (typeof(btcount))(zone_elem_size(zone) / sizeof(uintptr_t));
+               if (btcount >= MAX_ZTRACE_DEPTH) {
+                       btcount = MAX_ZTRACE_DEPTH - 1;
+               }
+               for (btfound = btidx = 0; btidx < btcount; btidx++) {
+                       bt = ((uintptr_t *)element)[btcount - 1 - btidx];
+                       if (!VM_KERNEL_IS_SLID(bt)) {
+                               break;
+                       }
+                       zbt[btfound++] = bt;
+               }
+               if (btfound) {
+                       (*proc)(refCon, 1, elemSize, &zbt[0], btfound);
+               } else {
+                       nobtcount++;
                }
                }
-               elem = *((vm_offset_t *)elem);
        }
        }
-       if (elem != 0)
-               printf("\nnot at end of free list, elem=0x%x\n", elem);
-       else
-               printf("\n");
+       if (nobtcount) {
+               // fake backtrace when we found nothing
+               zbt[0] = (uintptr_t) &zalloc;
+               (*proc)(refCon, nobtcount, elemSize, &zbt[0], 1);
+       }
+
+       kmem_free(kernel_map, (vm_offset_t) array, maxElems * sizeof(uintptr_t));
+
+       return KERN_SUCCESS;
 }
 
 }
 
-#endif /* MACH_KDB */
+boolean_t
+run_zone_test(void)
+{
+       unsigned int i = 0, max_iter = 5;
+       void * test_ptr;
+       zone_t test_zone;
+       zone_t test_pcpu_zone;
+       kern_return_t kr;
+
+       simple_lock(&zone_test_lock, &zone_locks_grp);
+       if (!zone_test_running) {
+               zone_test_running = TRUE;
+       } else {
+               simple_unlock(&zone_test_lock);
+               printf("run_zone_test: Test already running.\n");
+               return FALSE;
+       }
+       simple_unlock(&zone_test_lock);
 
 
+       printf("run_zone_test: Testing zinit(), zalloc(), zfree() and zdestroy() on zone \"test_zone_sysctl\"\n");
 
 
-#if    ZONE_DEBUG
+       /* zinit() and zdestroy() a zone with the same name a bunch of times, verify that we get back the same zone each time */
+       do {
+               test_zone = zinit(sizeof(uint64_t), 100 * sizeof(uint64_t), sizeof(uint64_t), "test_zone_sysctl");
+               if (test_zone == NULL) {
+                       printf("run_zone_test: zinit() failed\n");
+                       return FALSE;
+               }
 
 
-/* should we care about locks here ? */
+#if KASAN_ZALLOC
+               if (test_zone_ptr == NULL && test_zone->z_elems_free != 0) {
+#else
+               if (test_zone->z_elems_free != 0) {
+#endif
+                       printf("run_zone_test: free count is not zero\n");
+                       return FALSE;
+               }
 
 
-#if    MACH_KDB
-void *
-next_element(
-       zone_t          z,
-       void            *prev)
-{
-       char            *elt = (char *)prev;
+               if (test_zone_ptr == NULL) {
+                       /* Stash the zone pointer returned on the fist zinit */
+                       printf("run_zone_test: zone created for the first time\n");
+                       test_zone_ptr = test_zone;
+               } else if (test_zone != test_zone_ptr) {
+                       printf("run_zone_test: old zone pointer and new zone pointer don't match\n");
+                       return FALSE;
+               }
 
 
-       if (!zone_debug_enabled(z))
-               return(NULL);
-       elt -= ZONE_DEBUG_OFFSET;
-       elt = (char *) queue_next((queue_t) elt);
-       if ((queue_t) elt == &z->active_zones)
-               return(NULL);
-       elt += ZONE_DEBUG_OFFSET;
-       return(elt);
-}
+               test_ptr = zalloc(test_zone);
+               if (test_ptr == NULL) {
+                       printf("run_zone_test: zalloc() failed\n");
+                       return FALSE;
+               }
+               zfree(test_zone, test_ptr);
+
+               zdestroy(test_zone);
+               i++;
+
+               printf("run_zone_test: Iteration %d successful\n", i);
+       } while (i < max_iter);
+
+       /* test Z_VA_SEQUESTER */
+       if (zsecurity_options & ZSECURITY_OPTIONS_SEQUESTER) {
+               int idx, num_allocs = 8;
+               vm_size_t elem_size = 2 * PAGE_SIZE / num_allocs;
+               void *allocs[num_allocs];
+               void **allocs_pcpu;
+               vm_offset_t phys_pages = os_atomic_load(&zones_phys_page_mapped_count, relaxed);
+
+               test_zone = zone_create("test_zone_sysctl", elem_size,
+                   ZC_DESTRUCTIBLE | ZC_SEQUESTER);
+               assert(test_zone);
+
+               test_pcpu_zone = zone_create("test_zone_sysctl.pcpu", sizeof(uint64_t),
+                   ZC_DESTRUCTIBLE | ZC_SEQUESTER | ZC_PERCPU);
+               assert(test_pcpu_zone);
+
+               for (idx = 0; idx < num_allocs; idx++) {
+                       allocs[idx] = zalloc(test_zone);
+                       assert(NULL != allocs[idx]);
+                       printf("alloc[%d] %p\n", idx, allocs[idx]);
+               }
+               for (idx = 0; idx < num_allocs; idx++) {
+                       zfree(test_zone, allocs[idx]);
+               }
+               assert(!zone_pva_is_null(test_zone->z_pageq_empty));
 
 
-void *
-first_element(
-       zone_t          z)
-{
-       char            *elt;
+               kr = kernel_memory_allocate(kernel_map,
+                   (vm_address_t *)&allocs_pcpu, PAGE_SIZE,
+                   0, KMA_ZERO | KMA_KOBJECT, VM_KERN_MEMORY_DIAG);
+               assert(kr == KERN_SUCCESS);
 
 
-       if (!zone_debug_enabled(z))
-               return(NULL);
-       if (queue_empty(&z->active_zones))
-               return(NULL);
-       elt = (char *)queue_first(&z->active_zones);
-       elt += ZONE_DEBUG_OFFSET;
-       return(elt);
-}
+               for (idx = 0; idx < PAGE_SIZE / sizeof(uint64_t); idx++) {
+                       allocs_pcpu[idx] = zalloc_percpu(test_pcpu_zone,
+                           Z_WAITOK | Z_ZERO);
+                       assert(NULL != allocs_pcpu[idx]);
+               }
+               for (idx = 0; idx < PAGE_SIZE / sizeof(uint64_t); idx++) {
+                       zfree_percpu(test_pcpu_zone, allocs_pcpu[idx]);
+               }
+               assert(!zone_pva_is_null(test_pcpu_zone->z_pageq_empty));
+
+               printf("vm_page_wire_count %d, vm_page_free_count %d, p to v %ld%%\n",
+                   vm_page_wire_count, vm_page_free_count,
+                   100L * phys_pages / zone_phys_mapped_max_pages);
+               zone_gc(ZONE_GC_DRAIN);
+               printf("vm_page_wire_count %d, vm_page_free_count %d, p to v %ld%%\n",
+                   vm_page_wire_count, vm_page_free_count,
+                   100L * phys_pages / zone_phys_mapped_max_pages);
+
+               unsigned int allva = 0;
+
+               zone_foreach(z) {
+                       zone_lock(z);
+                       allva += z->z_wired_cur;
+                       if (zone_pva_is_null(z->z_pageq_va)) {
+                               zone_unlock(z);
+                               continue;
+                       }
+                       unsigned count = 0;
+                       uint64_t size;
+                       zone_pva_t pg = z->z_pageq_va;
+                       struct zone_page_metadata *page_meta;
+                       while (pg.packed_address) {
+                               page_meta = zone_pva_to_meta(pg);
+                               count += z->z_percpu ? 1 : z->z_chunk_pages;
+                               if (page_meta->zm_chunk_len == ZM_SECONDARY_PAGE) {
+                                       count -= page_meta->zm_page_index;
+                               }
+                               pg = page_meta->zm_page_next;
+                       }
+                       assert(z->z_wired_cur + count == z->z_va_cur);
+                       size = zone_size_wired(z);
+                       if (!size) {
+                               size = 1;
+                       }
+                       printf("%s%s: seq %d, res %d, %qd %%\n",
+                           zone_heap_name(z), z->z_name, z->z_va_cur - z->z_wired_cur,
+                           z->z_wired_cur, zone_size_allocated(z) * 100ULL / size);
+                       zone_unlock(z);
+               }
 
 
-/*
- * Second arg controls how many zone elements are printed:
- *   0 => none
- *   n, n < 0 => all
- *   n, n > 0 => last n on active list
- */
-int
-zone_count(
-       zone_t          z,
-       int             tail)
-{
-       void            *elt;
-       int             count = 0;
-       boolean_t       print = (tail != 0);
+               printf("total va: %d\n", allva);
+
+               assert(zone_pva_is_null(test_zone->z_pageq_empty));
+               assert(zone_pva_is_null(test_zone->z_pageq_partial));
+               assert(!zone_pva_is_null(test_zone->z_pageq_va));
+               assert(zone_pva_is_null(test_pcpu_zone->z_pageq_empty));
+               assert(zone_pva_is_null(test_pcpu_zone->z_pageq_partial));
+               assert(!zone_pva_is_null(test_pcpu_zone->z_pageq_va));
+
+               for (idx = 0; idx < num_allocs; idx++) {
+                       assert(0 == pmap_find_phys(kernel_pmap, (addr64_t)(uintptr_t) allocs[idx]));
+               }
+
+               /* make sure the zone is still usable after a GC */
+
+               for (idx = 0; idx < num_allocs; idx++) {
+                       allocs[idx] = zalloc(test_zone);
+                       assert(allocs[idx]);
+                       printf("alloc[%d] %p\n", idx, allocs[idx]);
+               }
+               assert(zone_pva_is_null(test_zone->z_pageq_va));
+               assert(test_zone->z_wired_cur == test_zone->z_va_cur);
+               for (idx = 0; idx < num_allocs; idx++) {
+                       zfree(test_zone, allocs[idx]);
+               }
+
+               for (idx = 0; idx < PAGE_SIZE / sizeof(uint64_t); idx++) {
+                       allocs_pcpu[idx] = zalloc_percpu(test_pcpu_zone,
+                           Z_WAITOK | Z_ZERO);
+                       assert(NULL != allocs_pcpu[idx]);
+               }
+               for (idx = 0; idx < PAGE_SIZE / sizeof(uint64_t); idx++) {
+                       zfree_percpu(test_pcpu_zone, allocs_pcpu[idx]);
+               }
 
 
-       if (tail < 0)
-               tail = z->count;
-       if (z->count < tail)
-               tail = 0;
-       tail = z->count - tail;
-       for (elt = first_element(z); elt; elt = next_element(z, elt)) {
-               if (print && tail <= count)
-                       db_printf("%8x\n", elt);
-               count++;
+               assert(!zone_pva_is_null(test_pcpu_zone->z_pageq_empty));
+               assert(zone_pva_is_null(test_pcpu_zone->z_pageq_va));
+
+               kmem_free(kernel_map, (vm_address_t)allocs_pcpu, PAGE_SIZE);
+
+               zdestroy(test_zone);
+               zdestroy(test_pcpu_zone);
+       } else {
+               printf("run_zone_test: skipping sequester test (not enabled)\n");
        }
        }
-       assert(count == z->count);
-       return(count);
+
+       printf("run_zone_test: Test passed\n");
+
+       simple_lock(&zone_test_lock, &zone_locks_grp);
+       zone_test_running = FALSE;
+       simple_unlock(&zone_test_lock);
+
+       return TRUE;
 }
 }
-#endif /* MACH_KDB */
 
 
-#define zone_in_use(z)         ( z->count || z->free_elements )
+/*
+ * Routines to test that zone garbage collection and zone replenish threads
+ * running at the same time don't cause problems.
+ */
 
 void
 
 void
-zone_debug_enable(
-       zone_t          z)
+zone_gc_replenish_test(void)
 {
 {
-       if (zone_debug_enabled(z) || zone_in_use(z) ||
-           z->alloc_size < (z->elem_size + ZONE_DEBUG_OFFSET))
-               return;
-       queue_init(&z->active_zones);
-       z->elem_size += ZONE_DEBUG_OFFSET;
+       zone_gc(ZONE_GC_DRAIN);
 }
 
 }
 
+
 void
 void
-zone_debug_disable(
-       zone_t          z)
+zone_alloc_replenish_test(void)
 {
 {
-       if (!zone_debug_enabled(z) || zone_in_use(z))
+       zone_t z = NULL;
+       struct data { struct data *next; } *node, *list = NULL;
+
+       /*
+        * Find a zone that has a replenish thread
+        */
+       zone_index_foreach(i) {
+               z = &zone_array[i];
+               if (z->z_replenishes && zone_elem_size(z) >= sizeof(struct data)) {
+                       z = &zone_array[i];
+                       break;
+               }
+       }
+       if (z == NULL) {
+               printf("Couldn't find a replenish zone\n");
                return;
                return;
-       z->elem_size -= ZONE_DEBUG_OFFSET;
-       z->active_zones.next = z->active_zones.prev = NULL;
+       }
+
+       for (uint32_t i = 0; i < 2000; ++i) {      /* something big enough to go past replenishment */
+               node = zalloc(z);
+               node->next = list;
+               list = node;
+       }
+
+       /*
+        * release the memory we allocated
+        */
+       while (list != NULL) {
+               node = list;
+               list = list->next;
+               zfree(z, node);
+       }
 }
 }
-#endif /* ZONE_DEBUG */
+
+#endif /* DEBUG || DEVELOPMENT */