/*
- * Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2020 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
- *
+ *
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
- *
+ *
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
- *
+ *
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
- *
+ *
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_COPYRIGHT@
*/
-#include <platforms.h>
-#include <mach_kdb.h>
#include <vm/vm_page.h>
#include <pexpert/pexpert.h>
-#include "cpuid.h"
-#if MACH_KDB
-#include <i386/db_machdep.h>
-#include <ddb/db_aout.h>
-#include <ddb/db_access.h>
-#include <ddb/db_sym.h>
-#include <ddb/db_variables.h>
-#include <ddb/db_command.h>
-#include <ddb/db_output.h>
-#include <ddb/db_expr.h>
+#include <i386/cpu_threads.h>
+#include <i386/cpuid.h>
+#include <i386/machine_routines.h>
+
+int force_tecs_at_idle;
+int tecs_mode_supported;
+
+static boolean_t cpuid_dbg
+#if DEBUG
+ = TRUE;
+#else
+ = FALSE;
#endif
+#define DBG(x...) \
+ do { \
+ if (cpuid_dbg) \
+ kprintf(x); \
+ } while (0) \
+
+#define min(a, b) ((a) < (b) ? (a) : (b))
+#define quad(hi, lo) (((uint64_t)(hi)) << 32 | (lo))
+
+/*
+ * Leaf 2 cache descriptor encodings.
+ */
+typedef enum {
+ _NULL_, /* NULL (empty) descriptor */
+ CACHE, /* Cache */
+ TLB, /* TLB */
+ STLB, /* Shared second-level unified TLB */
+ PREFETCH /* Prefetch size */
+} cpuid_leaf2_desc_type_t;
+
+typedef enum {
+ NA, /* Not Applicable */
+ FULLY, /* Fully-associative */
+ TRACE, /* Trace Cache (P4 only) */
+ INST, /* Instruction TLB */
+ DATA, /* Data TLB */
+ DATA0, /* Data TLB, 1st level */
+ DATA1, /* Data TLB, 2nd level */
+ L1, /* L1 (unified) cache */
+ L1_INST, /* L1 Instruction cache */
+ L1_DATA, /* L1 Data cache */
+ L2, /* L2 (unified) cache */
+ L3, /* L3 (unified) cache */
+ L2_2LINESECTOR, /* L2 (unified) cache with 2 lines per sector */
+ L3_2LINESECTOR, /* L3(unified) cache with 2 lines per sector */
+ SMALL, /* Small page TLB */
+ LARGE, /* Large page TLB */
+ BOTH /* Small and Large page TLB */
+} cpuid_leaf2_qualifier_t;
+
+typedef struct cpuid_cache_descriptor {
+ uint8_t value; /* descriptor code */
+ uint8_t type; /* cpuid_leaf2_desc_type_t */
+ uint8_t level; /* level of cache/TLB hierachy */
+ uint8_t ways; /* wayness of cache */
+ uint16_t size; /* cachesize or TLB pagesize */
+ uint16_t entries; /* number of TLB entries or linesize */
+} cpuid_cache_descriptor_t;
+
+/*
+ * These multipliers are used to encode 1*K .. 64*M in a 16 bit size field
+ */
+#define K (1)
+#define M (1024)
+
+/*
+ * Intel cache descriptor table:
+ */
+static cpuid_cache_descriptor_t intel_cpuid_leaf2_descriptor_table[] = {
+// -------------------------------------------------------
+// value type level ways size entries
+// -------------------------------------------------------
+ { 0x00, _NULL_, NA, NA, NA, NA },
+ { 0x01, TLB, INST, 4, SMALL, 32 },
+ { 0x02, TLB, INST, FULLY, LARGE, 2 },
+ { 0x03, TLB, DATA, 4, SMALL, 64 },
+ { 0x04, TLB, DATA, 4, LARGE, 8 },
+ { 0x05, TLB, DATA1, 4, LARGE, 32 },
+ { 0x06, CACHE, L1_INST, 4, 8 * K, 32 },
+ { 0x08, CACHE, L1_INST, 4, 16 * K, 32 },
+ { 0x09, CACHE, L1_INST, 4, 32 * K, 64 },
+ { 0x0A, CACHE, L1_DATA, 2, 8 * K, 32 },
+ { 0x0B, TLB, INST, 4, LARGE, 4 },
+ { 0x0C, CACHE, L1_DATA, 4, 16 * K, 32 },
+ { 0x0D, CACHE, L1_DATA, 4, 16 * K, 64 },
+ { 0x0E, CACHE, L1_DATA, 6, 24 * K, 64 },
+ { 0x21, CACHE, L2, 8, 256 * K, 64 },
+ { 0x22, CACHE, L3_2LINESECTOR, 4, 512 * K, 64 },
+ { 0x23, CACHE, L3_2LINESECTOR, 8, 1 * M, 64 },
+ { 0x25, CACHE, L3_2LINESECTOR, 8, 2 * M, 64 },
+ { 0x29, CACHE, L3_2LINESECTOR, 8, 4 * M, 64 },
+ { 0x2C, CACHE, L1_DATA, 8, 32 * K, 64 },
+ { 0x30, CACHE, L1_INST, 8, 32 * K, 64 },
+ { 0x40, CACHE, L2, NA, 0, NA },
+ { 0x41, CACHE, L2, 4, 128 * K, 32 },
+ { 0x42, CACHE, L2, 4, 256 * K, 32 },
+ { 0x43, CACHE, L2, 4, 512 * K, 32 },
+ { 0x44, CACHE, L2, 4, 1 * M, 32 },
+ { 0x45, CACHE, L2, 4, 2 * M, 32 },
+ { 0x46, CACHE, L3, 4, 4 * M, 64 },
+ { 0x47, CACHE, L3, 8, 8 * M, 64 },
+ { 0x48, CACHE, L2, 12, 3 * M, 64 },
+ { 0x49, CACHE, L2, 16, 4 * M, 64 },
+ { 0x4A, CACHE, L3, 12, 6 * M, 64 },
+ { 0x4B, CACHE, L3, 16, 8 * M, 64 },
+ { 0x4C, CACHE, L3, 12, 12 * M, 64 },
+ { 0x4D, CACHE, L3, 16, 16 * M, 64 },
+ { 0x4E, CACHE, L2, 24, 6 * M, 64 },
+ { 0x4F, TLB, INST, NA, SMALL, 32 },
+ { 0x50, TLB, INST, NA, BOTH, 64 },
+ { 0x51, TLB, INST, NA, BOTH, 128 },
+ { 0x52, TLB, INST, NA, BOTH, 256 },
+ { 0x55, TLB, INST, FULLY, BOTH, 7 },
+ { 0x56, TLB, DATA0, 4, LARGE, 16 },
+ { 0x57, TLB, DATA0, 4, SMALL, 16 },
+ { 0x59, TLB, DATA0, FULLY, SMALL, 16 },
+ { 0x5A, TLB, DATA0, 4, LARGE, 32 },
+ { 0x5B, TLB, DATA, NA, BOTH, 64 },
+ { 0x5C, TLB, DATA, NA, BOTH, 128 },
+ { 0x5D, TLB, DATA, NA, BOTH, 256 },
+ { 0x60, CACHE, L1, 16 * K, 8, 64 },
+ { 0x61, CACHE, L1, 4, 8 * K, 64 },
+ { 0x62, CACHE, L1, 4, 16 * K, 64 },
+ { 0x63, CACHE, L1, 4, 32 * K, 64 },
+ { 0x70, CACHE, TRACE, 8, 12 * K, NA },
+ { 0x71, CACHE, TRACE, 8, 16 * K, NA },
+ { 0x72, CACHE, TRACE, 8, 32 * K, NA },
+ { 0x76, TLB, INST, NA, BOTH, 8 },
+ { 0x78, CACHE, L2, 4, 1 * M, 64 },
+ { 0x79, CACHE, L2_2LINESECTOR, 8, 128 * K, 64 },
+ { 0x7A, CACHE, L2_2LINESECTOR, 8, 256 * K, 64 },
+ { 0x7B, CACHE, L2_2LINESECTOR, 8, 512 * K, 64 },
+ { 0x7C, CACHE, L2_2LINESECTOR, 8, 1 * M, 64 },
+ { 0x7D, CACHE, L2, 8, 2 * M, 64 },
+ { 0x7F, CACHE, L2, 2, 512 * K, 64 },
+ { 0x80, CACHE, L2, 8, 512 * K, 64 },
+ { 0x82, CACHE, L2, 8, 256 * K, 32 },
+ { 0x83, CACHE, L2, 8, 512 * K, 32 },
+ { 0x84, CACHE, L2, 8, 1 * M, 32 },
+ { 0x85, CACHE, L2, 8, 2 * M, 32 },
+ { 0x86, CACHE, L2, 4, 512 * K, 64 },
+ { 0x87, CACHE, L2, 8, 1 * M, 64 },
+ { 0xB0, TLB, INST, 4, SMALL, 128 },
+ { 0xB1, TLB, INST, 4, LARGE, 8 },
+ { 0xB2, TLB, INST, 4, SMALL, 64 },
+ { 0xB3, TLB, DATA, 4, SMALL, 128 },
+ { 0xB4, TLB, DATA1, 4, SMALL, 256 },
+ { 0xB5, TLB, DATA1, 8, SMALL, 64 },
+ { 0xB6, TLB, DATA1, 8, SMALL, 128 },
+ { 0xBA, TLB, DATA1, 4, BOTH, 64 },
+ { 0xC1, STLB, DATA1, 8, SMALL, 1024},
+ { 0xCA, STLB, DATA1, 4, SMALL, 512 },
+ { 0xD0, CACHE, L3, 4, 512 * K, 64 },
+ { 0xD1, CACHE, L3, 4, 1 * M, 64 },
+ { 0xD2, CACHE, L3, 4, 2 * M, 64 },
+ { 0xD3, CACHE, L3, 4, 4 * M, 64 },
+ { 0xD4, CACHE, L3, 4, 8 * M, 64 },
+ { 0xD6, CACHE, L3, 8, 1 * M, 64 },
+ { 0xD7, CACHE, L3, 8, 2 * M, 64 },
+ { 0xD8, CACHE, L3, 8, 4 * M, 64 },
+ { 0xD9, CACHE, L3, 8, 8 * M, 64 },
+ { 0xDA, CACHE, L3, 8, 12 * M, 64 },
+ { 0xDC, CACHE, L3, 12, 1536 * K, 64 },
+ { 0xDD, CACHE, L3, 12, 3 * M, 64 },
+ { 0xDE, CACHE, L3, 12, 6 * M, 64 },
+ { 0xDF, CACHE, L3, 12, 12 * M, 64 },
+ { 0xE0, CACHE, L3, 12, 18 * M, 64 },
+ { 0xE2, CACHE, L3, 16, 2 * M, 64 },
+ { 0xE3, CACHE, L3, 16, 4 * M, 64 },
+ { 0xE4, CACHE, L3, 16, 8 * M, 64 },
+ { 0xE5, CACHE, L3, 16, 16 * M, 64 },
+ { 0xE6, CACHE, L3, 16, 24 * M, 64 },
+ { 0xF0, PREFETCH, NA, NA, 64, NA },
+ { 0xF1, PREFETCH, NA, NA, 128, NA },
+ { 0xFF, CACHE, NA, NA, 0, NA }
+};
+#define INTEL_LEAF2_DESC_NUM (sizeof(intel_cpuid_leaf2_descriptor_table) / \
+ sizeof(cpuid_cache_descriptor_t))
-#define min(a,b) ((a) < (b) ? (a) : (b))
-#define quad(hi,lo) (((uint64_t)(hi)) << 32 | (lo))
+boolean_t cpuid_tsx_disabled = false; /* true if XNU disabled TSX */
+boolean_t cpuid_tsx_supported = false;
-#define bit(n) (1UL << (n))
-#define bitmask(h,l) ((bit(h)|(bit(h)-1)) & ~(bit(l)-1))
-#define bitfield(x,h,l) (((x) & bitmask(h,l)) >> l)
+static void do_cwas(i386_cpu_info_t *cpuinfo, boolean_t on_slave);
+static void cpuid_do_precpuid_was(void);
+
+#if DEBUG || DEVELOPMENT
+static void cpuid_vmm_detect_pv_interface(i386_vmm_info_t *info_p, const char *signature,
+ bool (*)(i386_vmm_info_t*, const uint32_t, const uint32_t));
+static bool cpuid_vmm_detect_applepv_features(i386_vmm_info_t *info_p, const uint32_t base, const uint32_t max_leaf);
+#endif /* DEBUG || DEVELOPMENT */
+
+static inline cpuid_cache_descriptor_t *
+cpuid_leaf2_find(uint8_t value)
+{
+ unsigned int i;
+
+ for (i = 0; i < INTEL_LEAF2_DESC_NUM; i++) {
+ if (intel_cpuid_leaf2_descriptor_table[i].value == value) {
+ return &intel_cpuid_leaf2_descriptor_table[i];
+ }
+ }
+ return NULL;
+}
/*
* CPU identification routines.
*/
-static i386_cpu_info_t *cpuid_cpu_infop = NULL;
-static i386_cpu_info_t cpuid_cpu_info;
+static i386_cpu_info_t cpuid_cpu_info;
+static i386_cpu_info_t *cpuid_cpu_infop = NULL;
+
+static void
+cpuid_fn(uint32_t selector, uint32_t *result)
+{
+ do_cpuid(selector, result);
+ DBG("cpuid_fn(0x%08x) eax:0x%08x ebx:0x%08x ecx:0x%08x edx:0x%08x\n",
+ selector, result[0], result[1], result[2], result[3]);
+}
+
+static const char *cache_type_str[LCACHE_MAX] = {
+ "Lnone", "L1I", "L1D", "L2U", "L3U"
+};
+
+static void
+do_cwas(i386_cpu_info_t *cpuinfo, boolean_t on_slave)
+{
+ extern int force_thread_policy_tecs;
+ cwa_classifier_e wa_reqd;
+
+ /*
+ * Workaround for reclaiming perf counter 3 due to TSX memory ordering erratum.
+ * This workaround does not support being forcibly set (since an MSR must be
+ * enumerated, lest we #GP when forced to access it.)
+ *
+ * Note that if disabling TSX is supported, disablement is prefered over forcing
+ * TSX transactions to abort.
+ */
+ if (cpuid_wa_required(CPU_INTEL_TSXDA) == CWA_ON) {
+ /* This must be executed on all logical processors */
+ wrmsr64(MSR_IA32_TSX_CTRL, MSR_IA32_TSXCTRL_TSX_CPU_CLEAR | MSR_IA32_TSXCTRL_RTM_DISABLE);
+ } else if (cpuid_wa_required(CPU_INTEL_TSXFA) == CWA_ON) {
+ /* This must be executed on all logical processors */
+ wrmsr64(MSR_IA32_TSX_FORCE_ABORT,
+ rdmsr64(MSR_IA32_TSX_FORCE_ABORT) | MSR_IA32_TSXFA_RTM_FORCE_ABORT);
+ }
+
+ if (((wa_reqd = cpuid_wa_required(CPU_INTEL_SRBDS)) & CWA_ON) != 0 &&
+ ((wa_reqd & CWA_FORCE_ON) == CWA_ON ||
+ (cpuinfo->cpuid_leaf7_extfeatures & CPUID_LEAF7_EXTFEATURE_SRBDS_CTRL) != 0)) {
+ /* This must be executed on all logical processors */
+ uint64_t mcuoptctrl = rdmsr64(MSR_IA32_MCU_OPT_CTRL);
+ mcuoptctrl |= MSR_IA32_MCUOPTCTRL_RNGDS_MITG_DIS;
+ wrmsr64(MSR_IA32_MCU_OPT_CTRL, mcuoptctrl);
+ }
+
+ if (on_slave) {
+ return;
+ }
+
+ switch (cpuid_wa_required(CPU_INTEL_SEGCHK)) {
+ case CWA_FORCE_ON:
+ force_thread_policy_tecs = 1;
+
+ /* If hyperthreaded, enable idle workaround */
+ if (cpuinfo->thread_count > cpuinfo->core_count) {
+ force_tecs_at_idle = 1;
+ }
+
+ OS_FALLTHROUGH;
+ case CWA_ON:
+ tecs_mode_supported = 1;
+ break;
+
+ case CWA_FORCE_OFF:
+ case CWA_OFF:
+ tecs_mode_supported = 0;
+ force_tecs_at_idle = 0;
+ force_thread_policy_tecs = 0;
+ break;
+
+ default:
+ break;
+ }
+}
+
+void
+cpuid_do_was(void)
+{
+ do_cwas(cpuid_info(), TRUE);
+}
/* this function is Intel-specific */
static void
cpuid_set_cache_info( i386_cpu_info_t * info_p )
{
- uint32_t cpuid_result[4];
- uint32_t reg[4];
- uint32_t index;
- uint32_t linesizes[LCACHE_MAX];
- unsigned int i;
- unsigned int j;
- boolean_t cpuid_deterministic_supported = FALSE;
+ uint32_t cpuid_result[4];
+ uint32_t reg[4];
+ uint32_t index;
+ uint32_t linesizes[LCACHE_MAX];
+ unsigned int i;
+ unsigned int j;
+ boolean_t cpuid_deterministic_supported = FALSE;
- bzero( linesizes, sizeof(linesizes) );
+ DBG("cpuid_set_cache_info(%p)\n", info_p);
+
+ bzero( linesizes, sizeof(linesizes));
/* Get processor cache descriptor info using leaf 2. We don't use
* this internally, but must publish it for KEXTs.
*/
- do_cpuid(2, cpuid_result);
+ cpuid_fn(2, cpuid_result);
for (j = 0; j < 4; j++) {
- if ((cpuid_result[j] >> 31) == 1) /* bit31 is validity */
+ if ((cpuid_result[j] >> 31) == 1) { /* bit31 is validity */
continue;
- ((uint32_t *) info_p->cache_info)[j] = cpuid_result[j];
+ }
+ ((uint32_t *)(void *)info_p->cache_info)[j] = cpuid_result[j];
}
/* first byte gives number of cpuid calls to get all descriptors */
for (i = 1; i < info_p->cache_info[0]; i++) {
- if (i*16 > sizeof(info_p->cache_info))
+ if (i * 16 > sizeof(info_p->cache_info)) {
break;
- do_cpuid(2, cpuid_result);
+ }
+ cpuid_fn(2, cpuid_result);
for (j = 0; j < 4; j++) {
- if ((cpuid_result[j] >> 31) == 1)
+ if ((cpuid_result[j] >> 31) == 1) {
continue;
- ((uint32_t *) info_p->cache_info)[4*i+j] =
- cpuid_result[j];
+ }
+ ((uint32_t *)(void *)info_p->cache_info)[4 * i + j] =
+ cpuid_result[j];
}
}
* Most processors Mac OS X supports implement this flavor of CPUID.
* Loop over each cache on the processor.
*/
- do_cpuid(0, cpuid_result);
- if (cpuid_result[eax] >= 4)
+ cpuid_fn(0, cpuid_result);
+ if (cpuid_result[eax] >= 4) {
cpuid_deterministic_supported = TRUE;
+ }
for (index = 0; cpuid_deterministic_supported; index++) {
- cache_type_t type = Lnone;
- uint32_t cache_type;
- uint32_t cache_level;
- uint32_t cache_sharing;
- uint32_t cache_linesize;
- uint32_t cache_sets;
- uint32_t cache_associativity;
- uint32_t cache_size;
- uint32_t cache_partitions;
- uint32_t colors;
-
- reg[eax] = 4; /* cpuid request 4 */
- reg[ecx] = index; /* index starting at 0 */
+ cache_type_t type = Lnone;
+ uint32_t cache_type;
+ uint32_t cache_level;
+ uint32_t cache_sharing;
+ uint32_t cache_linesize;
+ uint32_t cache_sets;
+ uint32_t cache_associativity;
+ uint32_t cache_size;
+ uint32_t cache_partitions;
+ uint32_t colors;
+
+ reg[eax] = 4; /* cpuid request 4 */
+ reg[ecx] = index; /* index starting at 0 */
cpuid(reg);
-//kprintf("cpuid(4) index=%d eax=%p\n", index, reg[eax]);
- cache_type = bitfield(reg[eax], 4, 0);
- if (cache_type == 0)
- break; /* no more caches */
- cache_level = bitfield(reg[eax], 7, 5);
- cache_sharing = bitfield(reg[eax], 25, 14) + 1;
- info_p->cpuid_cores_per_package
- = bitfield(reg[eax], 31, 26) + 1;
- cache_linesize = bitfield(reg[ebx], 11, 0) + 1;
- cache_partitions = bitfield(reg[ebx], 21, 12) + 1;
- cache_associativity = bitfield(reg[ebx], 31, 22) + 1;
- cache_sets = bitfield(reg[ecx], 31, 0) + 1;
-
+ DBG("cpuid(4) index=%d eax=0x%x\n", index, reg[eax]);
+ cache_type = bitfield32(reg[eax], 4, 0);
+ if (cache_type == 0) {
+ break; /* no more caches */
+ }
+ cache_level = bitfield32(reg[eax], 7, 5);
+ cache_sharing = bitfield32(reg[eax], 25, 14) + 1;
+ info_p->cpuid_cores_per_package
+ = bitfield32(reg[eax], 31, 26) + 1;
+ cache_linesize = bitfield32(reg[ebx], 11, 0) + 1;
+ cache_partitions = bitfield32(reg[ebx], 21, 12) + 1;
+ cache_associativity = bitfield32(reg[ebx], 31, 22) + 1;
+ cache_sets = bitfield32(reg[ecx], 31, 0) + 1;
+
/* Map type/levels returned by CPUID into cache_type_t */
switch (cache_level) {
case 1:
type = cache_type == 1 ? L1D :
- cache_type == 2 ? L1I :
- Lnone;
+ cache_type == 2 ? L1I :
+ Lnone;
break;
case 2:
type = cache_type == 3 ? L2U :
- Lnone;
+ Lnone;
break;
case 3:
type = cache_type == 3 ? L3U :
- Lnone;
+ Lnone;
break;
default:
type = Lnone;
}
-
+
/* The total size of a cache is:
- * ( linesize * sets * associativity )
+ * ( linesize * sets * associativity * partitions )
*/
if (type != Lnone) {
- cache_size = cache_linesize * cache_sets * cache_associativity;
+ cache_size = cache_linesize * cache_sets *
+ cache_associativity * cache_partitions;
info_p->cache_size[type] = cache_size;
info_p->cache_sharing[type] = cache_sharing;
info_p->cache_partitions[type] = cache_partitions;
linesizes[type] = cache_linesize;
-
+
+ DBG(" cache_size[%s] : %d\n",
+ cache_type_str[type], cache_size);
+ DBG(" cache_sharing[%s] : %d\n",
+ cache_type_str[type], cache_sharing);
+ DBG(" cache_partitions[%s]: %d\n",
+ cache_type_str[type], cache_partitions);
+
+ /*
+ * Overwrite associativity determined via
+ * CPUID.0x80000006 -- this leaf is more
+ * accurate
+ */
+ if (type == L2U) {
+ info_p->cpuid_cache_L2_associativity = cache_associativity;
+ }
+ /*
+ * Adjust #sets to account for the N CBos
+ * This is because addresses are hashed across CBos
+ */
+ if (type == L3U && info_p->core_count) {
+ cache_sets = cache_sets / info_p->core_count;
+ }
+
/* Compute the number of page colors for this cache,
* which is:
* ( linesize * sets ) / page_size
* The color is those bits in (set+offset) not covered
* by the page offset.
*/
- colors = ( cache_linesize * cache_sets ) >> 12;
-
- if ( colors > vm_cache_geometry_colors )
+ colors = (cache_linesize * cache_sets) >> 12;
+
+ if (colors > vm_cache_geometry_colors) {
vm_cache_geometry_colors = colors;
+ }
}
- }
-
+ }
+ DBG(" vm_cache_geometry_colors: %d\n", vm_cache_geometry_colors);
+
/*
* If deterministic cache parameters are not available, use
* something else
info_p->cache_partitions[L2U] = 1;
linesizes[L2U] = info_p->cpuid_cache_linesize;
+
+ DBG(" cache_size[L2U] : %d\n",
+ info_p->cache_size[L2U]);
+ DBG(" cache_sharing[L2U] : 1\n");
+ DBG(" cache_partitions[L2U]: 1\n");
+ DBG(" linesizes[L2U] : %d\n",
+ info_p->cpuid_cache_linesize);
}
-
+
/*
* What linesize to publish? We use the L2 linesize if any,
* else the L1D.
*/
- if ( linesizes[L2U] )
+ if (linesizes[L2U]) {
info_p->cache_linesize = linesizes[L2U];
- else if (linesizes[L1D])
+ } else if (linesizes[L1D]) {
info_p->cache_linesize = linesizes[L1D];
- else panic("no linesize");
+ } else {
+ panic("no linesize");
+ }
+ DBG(" cache_linesize : %d\n", info_p->cache_linesize);
/*
- * Extract and publish TLB information.
+ * Extract and publish TLB information from Leaf 2 descriptors.
*/
+ DBG(" %ld leaf2 descriptors:\n", sizeof(info_p->cache_info));
for (i = 1; i < sizeof(info_p->cache_info); i++) {
- uint8_t desc = info_p->cache_info[i];
+ cpuid_cache_descriptor_t *descp;
+ int id;
+ int level;
+ int page;
+
+ DBG(" 0x%02x", info_p->cache_info[i]);
+ descp = cpuid_leaf2_find(info_p->cache_info[i]);
+ if (descp == NULL) {
+ continue;
+ }
- switch (desc) {
- case CPUID_CACHE_ITLB_4K_32_4:
- info_p->cpuid_itlb_small = 32;
- break;
- case CPUID_CACHE_ITLB_4M_2:
- info_p->cpuid_itlb_large = 2;
- break;
- case CPUID_CACHE_DTLB_4K_64_4:
- info_p->cpuid_dtlb_small = 64;
- break;
- case CPUID_CACHE_DTLB_4M_8_4:
- info_p->cpuid_dtlb_large = 8;
- break;
- case CPUID_CACHE_DTLB_4M_32_4:
- info_p->cpuid_dtlb_large = 32;
- break;
- case CPUID_CACHE_ITLB_64:
- info_p->cpuid_itlb_small = 64;
- info_p->cpuid_itlb_large = 64;
- break;
- case CPUID_CACHE_ITLB_128:
- info_p->cpuid_itlb_small = 128;
- info_p->cpuid_itlb_large = 128;
- break;
- case CPUID_CACHE_ITLB_256:
- info_p->cpuid_itlb_small = 256;
- info_p->cpuid_itlb_large = 256;
- break;
- case CPUID_CACHE_DTLB_64:
- info_p->cpuid_dtlb_small = 64;
- info_p->cpuid_dtlb_large = 64;
- break;
- case CPUID_CACHE_DTLB_128:
- info_p->cpuid_dtlb_small = 128;
- info_p->cpuid_dtlb_large = 128;
- break;
- case CPUID_CACHE_DTLB_256:
- info_p->cpuid_dtlb_small = 256;
- info_p->cpuid_dtlb_large = 256;
- break;
- case CPUID_CACHE_ITLB_4M2M_7:
- info_p->cpuid_itlb_large = 7;
- break;
- case CPUID_CACHE_DTLB_4K_16_4:
- info_p->cpuid_dtlb_small = 16;
- break;
- case CPUID_CACHE_DTLB_4M2M_32_4:
- info_p->cpuid_dtlb_large = 32;
- break;
- case CPUID_CACHE_ITLB_4K_128_4:
- info_p->cpuid_itlb_small = 128;
- break;
- case CPUID_CACHE_ITLB_4M_8:
- info_p->cpuid_itlb_large = 8;
- break;
- case CPUID_CACHE_DTLB_4K_128_4:
- info_p->cpuid_dtlb_small = 128;
- break;
- case CPUID_CACHE_DTLB_4K_256_4:
- info_p->cpuid_dtlb_small = 256;
+ switch (descp->type) {
+ case TLB:
+ page = (descp->size == SMALL) ? TLB_SMALL : TLB_LARGE;
+ /* determine I or D: */
+ switch (descp->level) {
+ case INST:
+ id = TLB_INST;
+ break;
+ case DATA:
+ case DATA0:
+ case DATA1:
+ id = TLB_DATA;
+ break;
+ default:
+ continue;
+ }
+ /* determine level: */
+ switch (descp->level) {
+ case DATA1:
+ level = 1;
+ break;
+ default:
+ level = 0;
+ }
+ info_p->cpuid_tlb[id][page][level] = descp->entries;
break;
+ case STLB:
+ info_p->cpuid_stlb = descp->entries;
}
}
+ DBG("\n");
}
static void
cpuid_set_generic_info(i386_cpu_info_t *info_p)
{
- uint32_t cpuid_reg[4];
- uint32_t max_extid;
- char str[128], *p;
+ uint32_t reg[4];
+ char str[128], *p;
+
+ DBG("cpuid_set_generic_info(%p)\n", info_p);
/* do cpuid 0 to get vendor */
- do_cpuid(0, cpuid_reg);
- bcopy((char *)&cpuid_reg[ebx], &info_p->cpuid_vendor[0], 4); /* ug */
- bcopy((char *)&cpuid_reg[ecx], &info_p->cpuid_vendor[8], 4);
- bcopy((char *)&cpuid_reg[edx], &info_p->cpuid_vendor[4], 4);
+ cpuid_fn(0, reg);
+ info_p->cpuid_max_basic = reg[eax];
+ bcopy((char *)®[ebx], &info_p->cpuid_vendor[0], 4); /* ug */
+ bcopy((char *)®[ecx], &info_p->cpuid_vendor[8], 4);
+ bcopy((char *)®[edx], &info_p->cpuid_vendor[4], 4);
info_p->cpuid_vendor[12] = 0;
/* get extended cpuid results */
- do_cpuid(0x80000000, cpuid_reg);
- max_extid = cpuid_reg[eax];
+ cpuid_fn(0x80000000, reg);
+ info_p->cpuid_max_ext = reg[eax];
/* check to see if we can get brand string */
- if (max_extid >= 0x80000004) {
+ if (info_p->cpuid_max_ext >= 0x80000004) {
/*
* The brand string 48 bytes (max), guaranteed to
* be NUL terminated.
*/
- do_cpuid(0x80000002, cpuid_reg);
- bcopy((char *)cpuid_reg, &str[0], 16);
- do_cpuid(0x80000003, cpuid_reg);
- bcopy((char *)cpuid_reg, &str[16], 16);
- do_cpuid(0x80000004, cpuid_reg);
- bcopy((char *)cpuid_reg, &str[32], 16);
+ cpuid_fn(0x80000002, reg);
+ bcopy((char *)reg, &str[0], 16);
+ cpuid_fn(0x80000003, reg);
+ bcopy((char *)reg, &str[16], 16);
+ cpuid_fn(0x80000004, reg);
+ bcopy((char *)reg, &str[32], 16);
for (p = str; *p != '\0'; p++) {
- if (*p != ' ') break;
+ if (*p != ' ') {
+ break;
+ }
}
strlcpy(info_p->cpuid_brand_string,
- p, sizeof(info_p->cpuid_brand_string));
-
- if (!strncmp(info_p->cpuid_brand_string, CPUID_STRING_UNKNOWN,
- min(sizeof(info_p->cpuid_brand_string),
- strlen(CPUID_STRING_UNKNOWN) + 1))) {
- /*
- * This string means we have a firmware-programmable brand string,
- * and the firmware couldn't figure out what sort of CPU we have.
- */
- info_p->cpuid_brand_string[0] = '\0';
- }
- }
-
+ p, sizeof(info_p->cpuid_brand_string));
+
+ if (!strncmp(info_p->cpuid_brand_string, CPUID_STRING_UNKNOWN,
+ min(sizeof(info_p->cpuid_brand_string),
+ strlen(CPUID_STRING_UNKNOWN) + 1))) {
+ /*
+ * This string means we have a firmware-programmable brand string,
+ * and the firmware couldn't figure out what sort of CPU we have.
+ */
+ info_p->cpuid_brand_string[0] = '\0';
+ }
+ }
+
/* Get cache and addressing info. */
- if (max_extid >= 0x80000006) {
- do_cpuid(0x80000006, cpuid_reg);
- info_p->cpuid_cache_linesize = bitfield(cpuid_reg[ecx], 7, 0);
- info_p->cpuid_cache_L2_associativity =
- bitfield(cpuid_reg[ecx],15,12);
- info_p->cpuid_cache_size = bitfield(cpuid_reg[ecx],31,16);
- do_cpuid(0x80000008, cpuid_reg);
+ if (info_p->cpuid_max_ext >= 0x80000006) {
+ uint32_t assoc;
+ cpuid_fn(0x80000006, reg);
+ info_p->cpuid_cache_linesize = bitfield32(reg[ecx], 7, 0);
+ assoc = bitfield32(reg[ecx], 15, 12);
+ /*
+ * L2 associativity is encoded, though in an insufficiently
+ * descriptive fashion, e.g. 24-way is mapped to 16-way.
+ * Represent a fully associative cache as 0xFFFF.
+ * Overwritten by associativity as determined via CPUID.4
+ * if available.
+ */
+ if (assoc == 6) {
+ assoc = 8;
+ } else if (assoc == 8) {
+ assoc = 16;
+ } else if (assoc == 0xF) {
+ assoc = 0xFFFF;
+ }
+ info_p->cpuid_cache_L2_associativity = assoc;
+ info_p->cpuid_cache_size = bitfield32(reg[ecx], 31, 16);
+ cpuid_fn(0x80000008, reg);
info_p->cpuid_address_bits_physical =
- bitfield(cpuid_reg[eax], 7, 0);
+ bitfield32(reg[eax], 7, 0);
info_p->cpuid_address_bits_virtual =
- bitfield(cpuid_reg[eax],15, 8);
+ bitfield32(reg[eax], 15, 8);
}
- /* get processor signature and decode */
- do_cpuid(1, cpuid_reg);
- info_p->cpuid_signature = cpuid_reg[eax];
- info_p->cpuid_stepping = bitfield(cpuid_reg[eax], 3, 0);
- info_p->cpuid_model = bitfield(cpuid_reg[eax], 7, 4);
- info_p->cpuid_family = bitfield(cpuid_reg[eax], 11, 8);
- info_p->cpuid_type = bitfield(cpuid_reg[eax], 13, 12);
- info_p->cpuid_extmodel = bitfield(cpuid_reg[eax], 19, 16);
- info_p->cpuid_extfamily = bitfield(cpuid_reg[eax], 27, 20);
- info_p->cpuid_brand = bitfield(cpuid_reg[ebx], 7, 0);
- info_p->cpuid_features = quad(cpuid_reg[ecx], cpuid_reg[edx]);
+ /*
+ * Get processor signature and decode
+ * and bracket this with the approved procedure for reading the
+ * the microcode version number a.k.a. signature a.k.a. BIOS ID
+ */
+ wrmsr64(MSR_IA32_BIOS_SIGN_ID, 0);
+ cpuid_fn(1, reg);
+ info_p->cpuid_microcode_version =
+ (uint32_t) (rdmsr64(MSR_IA32_BIOS_SIGN_ID) >> 32);
+ info_p->cpuid_signature = reg[eax];
+ info_p->cpuid_stepping = bitfield32(reg[eax], 3, 0);
+ info_p->cpuid_model = bitfield32(reg[eax], 7, 4);
+ info_p->cpuid_family = bitfield32(reg[eax], 11, 8);
+ info_p->cpuid_type = bitfield32(reg[eax], 13, 12);
+ info_p->cpuid_extmodel = bitfield32(reg[eax], 19, 16);
+ info_p->cpuid_extfamily = bitfield32(reg[eax], 27, 20);
+ info_p->cpuid_brand = bitfield32(reg[ebx], 7, 0);
+ info_p->cpuid_features = quad(reg[ecx], reg[edx]);
+
+ /* Get "processor flag"; necessary for microcode update matching */
+ info_p->cpuid_processor_flag = (rdmsr64(MSR_IA32_PLATFORM_ID) >> 50) & 0x7;
/* Fold extensions into family/model */
- if (info_p->cpuid_family == 0x0f)
+ if (info_p->cpuid_family == 0x0f) {
info_p->cpuid_family += info_p->cpuid_extfamily;
- if (info_p->cpuid_family == 0x0f || info_p->cpuid_family == 0x06)
+ }
+ if (info_p->cpuid_family == 0x0f || info_p->cpuid_family == 0x06) {
info_p->cpuid_model += (info_p->cpuid_extmodel << 4);
+ }
- if (info_p->cpuid_features & CPUID_FEATURE_HTT)
+ if (info_p->cpuid_features & CPUID_FEATURE_HTT) {
info_p->cpuid_logical_per_package =
- bitfield(cpuid_reg[ebx], 23, 16);
- else
+ bitfield32(reg[ebx], 23, 16);
+ } else {
info_p->cpuid_logical_per_package = 1;
+ }
- if (max_extid >= 0x80000001) {
- do_cpuid(0x80000001, cpuid_reg);
+ if (info_p->cpuid_max_ext >= 0x80000001) {
+ cpuid_fn(0x80000001, reg);
info_p->cpuid_extfeatures =
- quad(cpuid_reg[ecx], cpuid_reg[edx]);
+ quad(reg[ecx], reg[edx]);
}
+ DBG(" max_basic : %d\n", info_p->cpuid_max_basic);
+ DBG(" max_ext : 0x%08x\n", info_p->cpuid_max_ext);
+ DBG(" vendor : %s\n", info_p->cpuid_vendor);
+ DBG(" brand_string : %s\n", info_p->cpuid_brand_string);
+ DBG(" signature : 0x%08x\n", info_p->cpuid_signature);
+ DBG(" stepping : %d\n", info_p->cpuid_stepping);
+ DBG(" model : %d\n", info_p->cpuid_model);
+ DBG(" family : %d\n", info_p->cpuid_family);
+ DBG(" type : %d\n", info_p->cpuid_type);
+ DBG(" extmodel : %d\n", info_p->cpuid_extmodel);
+ DBG(" extfamily : %d\n", info_p->cpuid_extfamily);
+ DBG(" brand : %d\n", info_p->cpuid_brand);
+ DBG(" features : 0x%016llx\n", info_p->cpuid_features);
+ DBG(" extfeatures : 0x%016llx\n", info_p->cpuid_extfeatures);
+ DBG(" logical_per_package : %d\n", info_p->cpuid_logical_per_package);
+ DBG(" microcode_version : 0x%08x\n", info_p->cpuid_microcode_version);
+
/* Fold in the Invariant TSC feature bit, if present */
- if (max_extid >= 0x80000007) {
- do_cpuid(0x80000007, cpuid_reg);
+ if (info_p->cpuid_max_ext >= 0x80000007) {
+ cpuid_fn(0x80000007, reg);
info_p->cpuid_extfeatures |=
- cpuid_reg[edx] & CPUID_EXTFEATURE_TSCI;
+ reg[edx] & (uint32_t)CPUID_EXTFEATURE_TSCI;
+ DBG(" extfeatures : 0x%016llx\n",
+ info_p->cpuid_extfeatures);
}
- /* Find the microcode version number a.k.a. signature a.k.a. BIOS ID */
- info_p->cpuid_microcode_version =
- (uint32_t) (rdmsr64(MSR_IA32_BIOS_SIGN_ID) >> 32);
+ if (info_p->cpuid_max_basic >= 0x5) {
+ cpuid_mwait_leaf_t *cmp = &info_p->cpuid_mwait_leaf;
- if (info_p->cpuid_model == CPUID_MODEL_NEHALEM) {
/*
- * For Nehalem, find the number of enabled cores and threads
- * (which determines whether SMT/Hyperthreading is active).
+ * Extract the Monitor/Mwait Leaf info:
*/
- uint64_t msr_core_thread_count = rdmsr64(MSR_CORE_THREAD_COUNT);
- info_p->core_count = bitfield(msr_core_thread_count, 31, 16);
- info_p->thread_count = bitfield(msr_core_thread_count, 15, 0);
+ cpuid_fn(5, reg);
+ cmp->linesize_min = reg[eax];
+ cmp->linesize_max = reg[ebx];
+ cmp->extensions = reg[ecx];
+ cmp->sub_Cstates = reg[edx];
+ info_p->cpuid_mwait_leafp = cmp;
+
+ DBG(" Monitor/Mwait Leaf:\n");
+ DBG(" linesize_min : %d\n", cmp->linesize_min);
+ DBG(" linesize_max : %d\n", cmp->linesize_max);
+ DBG(" extensions : %d\n", cmp->extensions);
+ DBG(" sub_Cstates : 0x%08x\n", cmp->sub_Cstates);
}
-
- if (info_p->cpuid_features & CPUID_FEATURE_MONITOR) {
+
+ if (info_p->cpuid_max_basic >= 0x6) {
+ cpuid_thermal_leaf_t *ctp = &info_p->cpuid_thermal_leaf;
+
/*
- * Extract the Monitor/Mwait Leaf info:
+ * The thermal and Power Leaf:
*/
- do_cpuid(5, cpuid_reg);
- info_p->cpuid_mwait_linesize_min = cpuid_reg[eax];
- info_p->cpuid_mwait_linesize_max = cpuid_reg[ebx];
- info_p->cpuid_mwait_extensions = cpuid_reg[ecx];
- info_p->cpuid_mwait_sub_Cstates = cpuid_reg[edx];
+ cpuid_fn(6, reg);
+ ctp->sensor = bitfield32(reg[eax], 0, 0);
+ ctp->dynamic_acceleration = bitfield32(reg[eax], 1, 1);
+ ctp->invariant_APIC_timer = bitfield32(reg[eax], 2, 2);
+ ctp->core_power_limits = bitfield32(reg[eax], 4, 4);
+ ctp->fine_grain_clock_mod = bitfield32(reg[eax], 5, 5);
+ ctp->package_thermal_intr = bitfield32(reg[eax], 6, 6);
+ ctp->thresholds = bitfield32(reg[ebx], 3, 0);
+ ctp->ACNT_MCNT = bitfield32(reg[ecx], 0, 0);
+ ctp->hardware_feedback = bitfield32(reg[ecx], 1, 1);
+ ctp->energy_policy = bitfield32(reg[ecx], 3, 3);
+ info_p->cpuid_thermal_leafp = ctp;
+
+ DBG(" Thermal/Power Leaf:\n");
+ DBG(" sensor : %d\n", ctp->sensor);
+ DBG(" dynamic_acceleration : %d\n", ctp->dynamic_acceleration);
+ DBG(" invariant_APIC_timer : %d\n", ctp->invariant_APIC_timer);
+ DBG(" core_power_limits : %d\n", ctp->core_power_limits);
+ DBG(" fine_grain_clock_mod : %d\n", ctp->fine_grain_clock_mod);
+ DBG(" package_thermal_intr : %d\n", ctp->package_thermal_intr);
+ DBG(" thresholds : %d\n", ctp->thresholds);
+ DBG(" ACNT_MCNT : %d\n", ctp->ACNT_MCNT);
+ DBG(" ACNT2 : %d\n", ctp->hardware_feedback);
+ DBG(" energy_policy : %d\n", ctp->energy_policy);
+ }
+
+ if (info_p->cpuid_max_basic >= 0xa) {
+ cpuid_arch_perf_leaf_t *capp = &info_p->cpuid_arch_perf_leaf;
/*
- * And the thermal and Power Leaf while we're at it:
+ * Architectural Performance Monitoring Leaf:
*/
- do_cpuid(6, cpuid_reg);
- info_p->cpuid_thermal_sensor =
- bitfield(cpuid_reg[eax], 0, 0);
- info_p->cpuid_thermal_dynamic_acceleration =
- bitfield(cpuid_reg[eax], 1, 1);
- info_p->cpuid_thermal_thresholds =
- bitfield(cpuid_reg[ebx], 3, 0);
- info_p->cpuid_thermal_ACNT_MCNT =
- bitfield(cpuid_reg[ecx], 0, 0);
+ cpuid_fn(0xa, reg);
+ capp->version = bitfield32(reg[eax], 7, 0);
+ capp->number = bitfield32(reg[eax], 15, 8);
+ capp->width = bitfield32(reg[eax], 23, 16);
+ capp->events_number = bitfield32(reg[eax], 31, 24);
+ capp->events = reg[ebx];
+ capp->fixed_number = bitfield32(reg[edx], 4, 0);
+ capp->fixed_width = bitfield32(reg[edx], 12, 5);
+ info_p->cpuid_arch_perf_leafp = capp;
+
+ DBG(" Architectural Performance Monitoring Leaf:\n");
+ DBG(" version : %d\n", capp->version);
+ DBG(" number : %d\n", capp->number);
+ DBG(" width : %d\n", capp->width);
+ DBG(" events_number : %d\n", capp->events_number);
+ DBG(" events : %d\n", capp->events);
+ DBG(" fixed_number : %d\n", capp->fixed_number);
+ DBG(" fixed_width : %d\n", capp->fixed_width);
+ }
+ if (info_p->cpuid_max_basic >= 0xd) {
+ cpuid_xsave_leaf_t *xsp;
/*
- * And the Architectural Performance Monitoring Leaf:
+ * XSAVE Features:
*/
- do_cpuid(0xa, cpuid_reg);
- info_p->cpuid_arch_perf_version =
- bitfield(cpuid_reg[eax], 7, 0);
- info_p->cpuid_arch_perf_number =
- bitfield(cpuid_reg[eax],15, 8);
- info_p->cpuid_arch_perf_width =
- bitfield(cpuid_reg[eax],23,16);
- info_p->cpuid_arch_perf_events_number =
- bitfield(cpuid_reg[eax],31,24);
- info_p->cpuid_arch_perf_events =
- cpuid_reg[ebx];
- info_p->cpuid_arch_perf_fixed_number =
- bitfield(cpuid_reg[edx], 4, 0);
- info_p->cpuid_arch_perf_fixed_width =
- bitfield(cpuid_reg[edx],12, 5);
+ xsp = &info_p->cpuid_xsave_leaf[0];
+ info_p->cpuid_xsave_leafp = xsp;
+ xsp->extended_state[eax] = 0xd;
+ xsp->extended_state[ecx] = 0;
+ cpuid(xsp->extended_state);
+ DBG(" XSAVE Main leaf:\n");
+ DBG(" EAX : 0x%x\n", xsp->extended_state[eax]);
+ DBG(" EBX : 0x%x\n", xsp->extended_state[ebx]);
+ DBG(" ECX : 0x%x\n", xsp->extended_state[ecx]);
+ DBG(" EDX : 0x%x\n", xsp->extended_state[edx]);
+
+ xsp = &info_p->cpuid_xsave_leaf[1];
+ xsp->extended_state[eax] = 0xd;
+ xsp->extended_state[ecx] = 1;
+ cpuid(xsp->extended_state);
+ DBG(" XSAVE Sub-leaf1:\n");
+ DBG(" EAX : 0x%x\n", xsp->extended_state[eax]);
+ DBG(" EBX : 0x%x\n", xsp->extended_state[ebx]);
+ DBG(" ECX : 0x%x\n", xsp->extended_state[ecx]);
+ DBG(" EDX : 0x%x\n", xsp->extended_state[edx]);
+ }
+ if (info_p->cpuid_model >= CPUID_MODEL_IVYBRIDGE) {
+ /*
+ * Leaf7 Features:
+ */
+ cpuid_fn(0x7, reg);
+ info_p->cpuid_leaf7_features = quad(reg[ecx], reg[ebx]);
+ info_p->cpuid_leaf7_extfeatures = reg[edx];
+
+ cpuid_tsx_supported = (reg[ebx] & (CPUID_LEAF7_FEATURE_HLE | CPUID_LEAF7_FEATURE_RTM)) != 0;
+
+ DBG(" Feature Leaf7:\n");
+ DBG(" EBX : 0x%x\n", reg[ebx]);
+ DBG(" ECX : 0x%x\n", reg[ecx]);
+ DBG(" EDX : 0x%x\n", reg[edx]);
+ }
+
+ if (info_p->cpuid_max_basic >= 0x15) {
+ /*
+ * TCS/CCC frequency leaf:
+ */
+ cpuid_fn(0x15, reg);
+ info_p->cpuid_tsc_leaf.denominator = reg[eax];
+ info_p->cpuid_tsc_leaf.numerator = reg[ebx];
+
+ DBG(" TSC/CCC Information Leaf:\n");
+ DBG(" numerator : 0x%x\n", reg[ebx]);
+ DBG(" denominator : 0x%x\n", reg[eax]);
}
return;
}
+static uint32_t
+cpuid_set_cpufamily(i386_cpu_info_t *info_p)
+{
+ uint32_t cpufamily = CPUFAMILY_UNKNOWN;
+
+ switch (info_p->cpuid_family) {
+ case 6:
+ switch (info_p->cpuid_model) {
+ case 23:
+ cpufamily = CPUFAMILY_INTEL_PENRYN;
+ break;
+ case CPUID_MODEL_NEHALEM:
+ case CPUID_MODEL_FIELDS:
+ case CPUID_MODEL_DALES:
+ case CPUID_MODEL_NEHALEM_EX:
+ cpufamily = CPUFAMILY_INTEL_NEHALEM;
+ break;
+ case CPUID_MODEL_DALES_32NM:
+ case CPUID_MODEL_WESTMERE:
+ case CPUID_MODEL_WESTMERE_EX:
+ cpufamily = CPUFAMILY_INTEL_WESTMERE;
+ break;
+ case CPUID_MODEL_SANDYBRIDGE:
+ case CPUID_MODEL_JAKETOWN:
+ cpufamily = CPUFAMILY_INTEL_SANDYBRIDGE;
+ break;
+ case CPUID_MODEL_IVYBRIDGE:
+ case CPUID_MODEL_IVYBRIDGE_EP:
+ cpufamily = CPUFAMILY_INTEL_IVYBRIDGE;
+ break;
+ case CPUID_MODEL_HASWELL:
+ case CPUID_MODEL_HASWELL_EP:
+ case CPUID_MODEL_HASWELL_ULT:
+ case CPUID_MODEL_CRYSTALWELL:
+ cpufamily = CPUFAMILY_INTEL_HASWELL;
+ break;
+ case CPUID_MODEL_BROADWELL:
+ case CPUID_MODEL_BRYSTALWELL:
+ cpufamily = CPUFAMILY_INTEL_BROADWELL;
+ break;
+ case CPUID_MODEL_SKYLAKE:
+ case CPUID_MODEL_SKYLAKE_DT:
+ case CPUID_MODEL_SKYLAKE_W:
+ cpufamily = CPUFAMILY_INTEL_SKYLAKE;
+ break;
+ case CPUID_MODEL_KABYLAKE:
+ case CPUID_MODEL_KABYLAKE_DT:
+ cpufamily = CPUFAMILY_INTEL_KABYLAKE;
+ break;
+ case CPUID_MODEL_ICELAKE:
+ case CPUID_MODEL_ICELAKE_H:
+ case CPUID_MODEL_ICELAKE_DT:
+ cpufamily = CPUFAMILY_INTEL_ICELAKE;
+ break;
+ }
+ break;
+ }
+
+ info_p->cpuid_cpufamily = cpufamily;
+ DBG("cpuid_set_cpufamily(%p) returning 0x%x\n", info_p, cpufamily);
+ return cpufamily;
+}
+/*
+ * Must be invoked either when executing single threaded, or with
+ * independent synchronization.
+ */
void
cpuid_set_info(void)
{
- bzero((void *)&cpuid_cpu_info, sizeof(cpuid_cpu_info));
+ i386_cpu_info_t *info_p = &cpuid_cpu_info;
+ boolean_t enable_x86_64h = TRUE;
+
+ /* Perform pre-cpuid workarounds (since their effects impact values returned via cpuid) */
+ cpuid_do_precpuid_was();
- cpuid_set_generic_info(&cpuid_cpu_info);
+ cpuid_set_generic_info(info_p);
/* verify we are running on a supported CPU */
- if ((strncmp(CPUID_VID_INTEL, cpuid_cpu_info.cpuid_vendor,
- min(strlen(CPUID_STRING_UNKNOWN) + 1,
- sizeof(cpuid_cpu_info.cpuid_vendor)))) ||
- (cpuid_cpu_info.cpuid_family != 6) ||
- (cpuid_cpu_info.cpuid_model < 13))
+ if ((strncmp(CPUID_VID_INTEL, info_p->cpuid_vendor,
+ min(strlen(CPUID_STRING_UNKNOWN) + 1,
+ sizeof(info_p->cpuid_vendor)))) ||
+ (cpuid_set_cpufamily(info_p) == CPUFAMILY_UNKNOWN)) {
panic("Unsupported CPU");
+ }
- cpuid_cpu_info.cpuid_cpu_type = CPU_TYPE_X86;
- cpuid_cpu_info.cpuid_cpu_subtype = CPU_SUBTYPE_X86_ARCH1;
+ info_p->cpuid_cpu_type = CPU_TYPE_X86;
- cpuid_set_cache_info(&cpuid_cpu_info);
+ if (!PE_parse_boot_argn("-enable_x86_64h", &enable_x86_64h, sizeof(enable_x86_64h))) {
+ boolean_t disable_x86_64h = FALSE;
- if (cpuid_cpu_info.core_count == 0) {
- cpuid_cpu_info.core_count =
- cpuid_cpu_info.cpuid_cores_per_package;
- cpuid_cpu_info.thread_count =
- cpuid_cpu_info.cpuid_logical_per_package;
+ if (PE_parse_boot_argn("-disable_x86_64h", &disable_x86_64h, sizeof(disable_x86_64h))) {
+ enable_x86_64h = FALSE;
+ }
}
- cpuid_cpu_info.cpuid_model_string = ""; /* deprecated */
+ if (enable_x86_64h &&
+ ((info_p->cpuid_features & CPUID_X86_64_H_FEATURE_SUBSET) == CPUID_X86_64_H_FEATURE_SUBSET) &&
+ ((info_p->cpuid_extfeatures & CPUID_X86_64_H_EXTFEATURE_SUBSET) == CPUID_X86_64_H_EXTFEATURE_SUBSET) &&
+ ((info_p->cpuid_leaf7_features & CPUID_X86_64_H_LEAF7_FEATURE_SUBSET) == CPUID_X86_64_H_LEAF7_FEATURE_SUBSET)) {
+ info_p->cpuid_cpu_subtype = CPU_SUBTYPE_X86_64_H;
+ } else {
+ info_p->cpuid_cpu_subtype = CPU_SUBTYPE_X86_ARCH1;
+ }
+ /* cpuid_set_cache_info must be invoked after set_generic_info */
+
+ /*
+ * Find the number of enabled cores and threads
+ * (which determines whether SMT/Hyperthreading is active).
+ */
+
+ /*
+ * Not all VMMs emulate MSR_CORE_THREAD_COUNT (0x35).
+ */
+ if (0 != (info_p->cpuid_features & CPUID_FEATURE_VMM) &&
+ PE_parse_boot_argn("-nomsr35h", NULL, 0)) {
+ info_p->core_count = 1;
+ info_p->thread_count = 1;
+ cpuid_set_cache_info(info_p);
+ } else {
+ switch (info_p->cpuid_cpufamily) {
+ case CPUFAMILY_INTEL_PENRYN:
+ cpuid_set_cache_info(info_p);
+ info_p->core_count = info_p->cpuid_cores_per_package;
+ info_p->thread_count = info_p->cpuid_logical_per_package;
+ break;
+ case CPUFAMILY_INTEL_WESTMERE: {
+ /*
+ * This should be the same as Nehalem but an A0 silicon bug returns
+ * invalid data in the top 12 bits. Hence, we use only bits [19..16]
+ * rather than [31..16] for core count - which actually can't exceed 8.
+ */
+ uint64_t msr = rdmsr64(MSR_CORE_THREAD_COUNT);
+ if (0 == msr) {
+ /* Provide a non-zero default for some VMMs */
+ msr = (1 << 16) | 1;
+ }
+ info_p->core_count = bitfield32((uint32_t)msr, 19, 16);
+ info_p->thread_count = bitfield32((uint32_t)msr, 15, 0);
+ cpuid_set_cache_info(info_p);
+ break;
+ }
+ default: {
+ uint64_t msr = rdmsr64(MSR_CORE_THREAD_COUNT);
+ if (0 == msr) {
+ /* Provide a non-zero default for some VMMs */
+ msr = (1 << 16) | 1;
+ }
+ info_p->core_count = bitfield32((uint32_t)msr, 31, 16);
+ info_p->thread_count = bitfield32((uint32_t)msr, 15, 0);
+ cpuid_set_cache_info(info_p);
+ break;
+ }
+ }
+ }
+
+ DBG("cpuid_set_info():\n");
+ DBG(" core_count : %d\n", info_p->core_count);
+ DBG(" thread_count : %d\n", info_p->thread_count);
+ DBG(" cpu_type: 0x%08x\n", info_p->cpuid_cpu_type);
+ DBG(" cpu_subtype: 0x%08x\n", info_p->cpuid_cpu_subtype);
+
+ info_p->cpuid_model_string = ""; /* deprecated */
+
+ /* Init CPU LBRs */
+ i386_lbr_init(info_p, true);
+
+ do_cwas(info_p, FALSE);
}
-static struct {
- uint64_t mask;
- const char *name;
+static struct table {
+ uint64_t mask;
+ const char *name;
} feature_map[] = {
- {CPUID_FEATURE_FPU, "FPU",},
- {CPUID_FEATURE_VME, "VME",},
- {CPUID_FEATURE_DE, "DE",},
- {CPUID_FEATURE_PSE, "PSE",},
- {CPUID_FEATURE_TSC, "TSC",},
- {CPUID_FEATURE_MSR, "MSR",},
- {CPUID_FEATURE_PAE, "PAE",},
- {CPUID_FEATURE_MCE, "MCE",},
- {CPUID_FEATURE_CX8, "CX8",},
- {CPUID_FEATURE_APIC, "APIC",},
- {CPUID_FEATURE_SEP, "SEP",},
- {CPUID_FEATURE_MTRR, "MTRR",},
- {CPUID_FEATURE_PGE, "PGE",},
- {CPUID_FEATURE_MCA, "MCA",},
- {CPUID_FEATURE_CMOV, "CMOV",},
- {CPUID_FEATURE_PAT, "PAT",},
- {CPUID_FEATURE_PSE36, "PSE36",},
- {CPUID_FEATURE_PSN, "PSN",},
- {CPUID_FEATURE_CLFSH, "CLFSH",},
- {CPUID_FEATURE_DS, "DS",},
- {CPUID_FEATURE_ACPI, "ACPI",},
- {CPUID_FEATURE_MMX, "MMX",},
- {CPUID_FEATURE_FXSR, "FXSR",},
- {CPUID_FEATURE_SSE, "SSE",},
- {CPUID_FEATURE_SSE2, "SSE2",},
- {CPUID_FEATURE_SS, "SS",},
- {CPUID_FEATURE_HTT, "HTT",},
- {CPUID_FEATURE_TM, "TM",},
- {CPUID_FEATURE_SSE3, "SSE3"},
+ {CPUID_FEATURE_FPU, "FPU"},
+ {CPUID_FEATURE_VME, "VME"},
+ {CPUID_FEATURE_DE, "DE"},
+ {CPUID_FEATURE_PSE, "PSE"},
+ {CPUID_FEATURE_TSC, "TSC"},
+ {CPUID_FEATURE_MSR, "MSR"},
+ {CPUID_FEATURE_PAE, "PAE"},
+ {CPUID_FEATURE_MCE, "MCE"},
+ {CPUID_FEATURE_CX8, "CX8"},
+ {CPUID_FEATURE_APIC, "APIC"},
+ {CPUID_FEATURE_SEP, "SEP"},
+ {CPUID_FEATURE_MTRR, "MTRR"},
+ {CPUID_FEATURE_PGE, "PGE"},
+ {CPUID_FEATURE_MCA, "MCA"},
+ {CPUID_FEATURE_CMOV, "CMOV"},
+ {CPUID_FEATURE_PAT, "PAT"},
+ {CPUID_FEATURE_PSE36, "PSE36"},
+ {CPUID_FEATURE_PSN, "PSN"},
+ {CPUID_FEATURE_CLFSH, "CLFSH"},
+ {CPUID_FEATURE_DS, "DS"},
+ {CPUID_FEATURE_ACPI, "ACPI"},
+ {CPUID_FEATURE_MMX, "MMX"},
+ {CPUID_FEATURE_FXSR, "FXSR"},
+ {CPUID_FEATURE_SSE, "SSE"},
+ {CPUID_FEATURE_SSE2, "SSE2"},
+ {CPUID_FEATURE_SS, "SS"},
+ {CPUID_FEATURE_HTT, "HTT"},
+ {CPUID_FEATURE_TM, "TM"},
+ {CPUID_FEATURE_PBE, "PBE"},
+ {CPUID_FEATURE_SSE3, "SSE3"},
+ {CPUID_FEATURE_PCLMULQDQ, "PCLMULQDQ"},
+ {CPUID_FEATURE_DTES64, "DTES64"},
{CPUID_FEATURE_MONITOR, "MON"},
- {CPUID_FEATURE_DSCPL, "DSCPL"},
- {CPUID_FEATURE_VMX, "VMX"},
- {CPUID_FEATURE_SMX, "SMX"},
- {CPUID_FEATURE_EST, "EST"},
- {CPUID_FEATURE_TM2, "TM2"},
- {CPUID_FEATURE_SSSE3, "SSSE3"},
- {CPUID_FEATURE_CID, "CID"},
- {CPUID_FEATURE_CX16, "CX16"},
- {CPUID_FEATURE_xTPR, "TPR"},
- {CPUID_FEATURE_PDCM, "PDCM"},
- {CPUID_FEATURE_SSE4_1, "SSE4.1"},
- {CPUID_FEATURE_SSE4_2, "SSE4.2"},
- {CPUID_FEATURE_xAPIC, "xAPIC"},
- {CPUID_FEATURE_POPCNT, "POPCNT"},
+ {CPUID_FEATURE_DSCPL, "DSCPL"},
+ {CPUID_FEATURE_VMX, "VMX"},
+ {CPUID_FEATURE_SMX, "SMX"},
+ {CPUID_FEATURE_EST, "EST"},
+ {CPUID_FEATURE_TM2, "TM2"},
+ {CPUID_FEATURE_SSSE3, "SSSE3"},
+ {CPUID_FEATURE_CID, "CID"},
+ {CPUID_FEATURE_FMA, "FMA"},
+ {CPUID_FEATURE_CX16, "CX16"},
+ {CPUID_FEATURE_xTPR, "TPR"},
+ {CPUID_FEATURE_PDCM, "PDCM"},
+ {CPUID_FEATURE_SSE4_1, "SSE4.1"},
+ {CPUID_FEATURE_SSE4_2, "SSE4.2"},
+ {CPUID_FEATURE_x2APIC, "x2APIC"},
+ {CPUID_FEATURE_MOVBE, "MOVBE"},
+ {CPUID_FEATURE_POPCNT, "POPCNT"},
+ {CPUID_FEATURE_AES, "AES"},
+ {CPUID_FEATURE_VMM, "VMM"},
+ {CPUID_FEATURE_PCID, "PCID"},
+ {CPUID_FEATURE_XSAVE, "XSAVE"},
+ {CPUID_FEATURE_OSXSAVE, "OSXSAVE"},
+ {CPUID_FEATURE_SEGLIM64, "SEGLIM64"},
+ {CPUID_FEATURE_TSCTMR, "TSCTMR"},
+ {CPUID_FEATURE_AVX1_0, "AVX1.0"},
+ {CPUID_FEATURE_RDRAND, "RDRAND"},
+ {CPUID_FEATURE_F16C, "F16C"},
{0, 0}
},
-extfeature_map[] = {
+ extfeature_map[] = {
{CPUID_EXTFEATURE_SYSCALL, "SYSCALL"},
- {CPUID_EXTFEATURE_XD, "XD"},
- {CPUID_EXTFEATURE_EM64T, "EM64T"},
- {CPUID_EXTFEATURE_LAHF, "LAHF"},
- {CPUID_EXTFEATURE_RDTSCP, "RDTSCP"},
- {CPUID_EXTFEATURE_TSCI, "TSCI"},
+ {CPUID_EXTFEATURE_XD, "XD"},
+ {CPUID_EXTFEATURE_1GBPAGE, "1GBPAGE"},
+ {CPUID_EXTFEATURE_EM64T, "EM64T"},
+ {CPUID_EXTFEATURE_LAHF, "LAHF"},
+ {CPUID_EXTFEATURE_LZCNT, "LZCNT"},
+ {CPUID_EXTFEATURE_PREFETCHW, "PREFETCHW"},
+ {CPUID_EXTFEATURE_RDTSCP, "RDTSCP"},
+ {CPUID_EXTFEATURE_TSCI, "TSCI"},
+ {0, 0}
+},
+ leaf7_feature_map[] = {
+ {CPUID_LEAF7_FEATURE_RDWRFSGS, "RDWRFSGS"},
+ {CPUID_LEAF7_FEATURE_TSCOFF, "TSC_THREAD_OFFSET"},
+ {CPUID_LEAF7_FEATURE_SGX, "SGX"},
+ {CPUID_LEAF7_FEATURE_BMI1, "BMI1"},
+ {CPUID_LEAF7_FEATURE_HLE, "HLE"},
+ {CPUID_LEAF7_FEATURE_AVX2, "AVX2"},
+ {CPUID_LEAF7_FEATURE_FDPEO, "FDPEO"},
+ {CPUID_LEAF7_FEATURE_SMEP, "SMEP"},
+ {CPUID_LEAF7_FEATURE_BMI2, "BMI2"},
+ {CPUID_LEAF7_FEATURE_ERMS, "ERMS"},
+ {CPUID_LEAF7_FEATURE_INVPCID, "INVPCID"},
+ {CPUID_LEAF7_FEATURE_RTM, "RTM"},
+ {CPUID_LEAF7_FEATURE_PQM, "PQM"},
+ {CPUID_LEAF7_FEATURE_FPU_CSDS, "FPU_CSDS"},
+ {CPUID_LEAF7_FEATURE_MPX, "MPX"},
+ {CPUID_LEAF7_FEATURE_PQE, "PQE"},
+ {CPUID_LEAF7_FEATURE_AVX512F, "AVX512F"},
+ {CPUID_LEAF7_FEATURE_AVX512DQ, "AVX512DQ"},
+ {CPUID_LEAF7_FEATURE_RDSEED, "RDSEED"},
+ {CPUID_LEAF7_FEATURE_ADX, "ADX"},
+ {CPUID_LEAF7_FEATURE_SMAP, "SMAP"},
+ {CPUID_LEAF7_FEATURE_AVX512IFMA, "AVX512IFMA"},
+ {CPUID_LEAF7_FEATURE_CLFSOPT, "CLFSOPT"},
+ {CPUID_LEAF7_FEATURE_CLWB, "CLWB"},
+ {CPUID_LEAF7_FEATURE_IPT, "IPT"},
+ {CPUID_LEAF7_FEATURE_AVX512CD, "AVX512CD"},
+ {CPUID_LEAF7_FEATURE_SHA, "SHA"},
+ {CPUID_LEAF7_FEATURE_AVX512BW, "AVX512BW"},
+ {CPUID_LEAF7_FEATURE_AVX512VL, "AVX512VL"},
+ {CPUID_LEAF7_FEATURE_PREFETCHWT1, "PREFETCHWT1"},
+ {CPUID_LEAF7_FEATURE_AVX512VBMI, "AVX512VBMI"},
+ {CPUID_LEAF7_FEATURE_UMIP, "UMIP"},
+ {CPUID_LEAF7_FEATURE_PKU, "PKU"},
+ {CPUID_LEAF7_FEATURE_OSPKE, "OSPKE"},
+ {CPUID_LEAF7_FEATURE_WAITPKG, "WAITPKG"},
+ {CPUID_LEAF7_FEATURE_GFNI, "GFNI"},
+ {CPUID_LEAF7_FEATURE_VAES, "VAES"},
+ {CPUID_LEAF7_FEATURE_VPCLMULQDQ, "VPCLMULQDQ"},
+ {CPUID_LEAF7_FEATURE_AVX512VNNI, "AVX512VNNI"},
+ {CPUID_LEAF7_FEATURE_AVX512BITALG, "AVX512BITALG"},
+ {CPUID_LEAF7_FEATURE_AVX512VPCDQ, "AVX512VPOPCNTDQ"},
+ {CPUID_LEAF7_FEATURE_RDPID, "RDPID"},
+ {CPUID_LEAF7_FEATURE_CLDEMOTE, "CLDEMOTE"},
+ {CPUID_LEAF7_FEATURE_MOVDIRI, "MOVDIRI"},
+ {CPUID_LEAF7_FEATURE_MOVDIRI64B, "MOVDIRI64B"},
+ {CPUID_LEAF7_FEATURE_SGXLC, "SGXLC"},
+ {0, 0}
+},
+ leaf7_extfeature_map[] = {
+ { CPUID_LEAF7_EXTFEATURE_AVX5124VNNIW, "AVX5124VNNIW" },
+ { CPUID_LEAF7_EXTFEATURE_AVX5124FMAPS, "AVX5124FMAPS" },
+ { CPUID_LEAF7_EXTFEATURE_FSREPMOV, "FSREPMOV" },
+ { CPUID_LEAF7_EXTFEATURE_MDCLEAR, "MDCLEAR" },
+ { CPUID_LEAF7_EXTFEATURE_TSXFA, "TSXFA" },
+ { CPUID_LEAF7_EXTFEATURE_IBRS, "IBRS" },
+ { CPUID_LEAF7_EXTFEATURE_STIBP, "STIBP" },
+ { CPUID_LEAF7_EXTFEATURE_L1DF, "L1DF" },
+ { CPUID_LEAF7_EXTFEATURE_ACAPMSR, "ACAPMSR" },
+ { CPUID_LEAF7_EXTFEATURE_CCAPMSR, "CCAPMSR" },
+ { CPUID_LEAF7_EXTFEATURE_SSBD, "SSBD" },
{0, 0}
};
-i386_cpu_info_t *
+static char *
+cpuid_get_names(struct table *map, uint64_t bits, char *buf, unsigned buf_len)
+{
+ size_t len = 0;
+ char *p = buf;
+ int i;
+
+ for (i = 0; map[i].mask != 0; i++) {
+ if ((bits & map[i].mask) == 0) {
+ continue;
+ }
+ if (len && ((size_t) (p - buf) < (buf_len - 1))) {
+ *p++ = ' ';
+ }
+ len = min(strlen(map[i].name), (size_t)((buf_len - 1) - (p - buf)));
+ if (len == 0) {
+ break;
+ }
+ bcopy(map[i].name, p, len);
+ p += len;
+ }
+ *p = '\0';
+ return buf;
+}
+
+i386_cpu_info_t *
cpuid_info(void)
{
/* Set-up the cpuid_info stucture lazily */
if (cpuid_cpu_infop == NULL) {
+ PE_parse_boot_argn("-cpuid", &cpuid_dbg, sizeof(cpuid_dbg));
cpuid_set_info();
cpuid_cpu_infop = &cpuid_cpu_info;
}
char *
cpuid_get_feature_names(uint64_t features, char *buf, unsigned buf_len)
{
- int len = -1;
- char *p = buf;
- int i;
-
- for (i = 0; feature_map[i].mask != 0; i++) {
- if ((features & feature_map[i].mask) == 0)
- continue;
- if (len > 0)
- *p++ = ' ';
- len = min(strlen(feature_map[i].name), (buf_len-1) - (p-buf));
- if (len == 0)
- break;
- bcopy(feature_map[i].name, p, len);
- p += len;
- }
- *p = '\0';
- return buf;
+ return cpuid_get_names(feature_map, features, buf, buf_len);
}
char *
cpuid_get_extfeature_names(uint64_t extfeatures, char *buf, unsigned buf_len)
{
- int len = -1;
- char *p = buf;
- int i;
-
- for (i = 0; extfeature_map[i].mask != 0; i++) {
- if ((extfeatures & extfeature_map[i].mask) == 0)
- continue;
- if (len > 0)
- *p++ = ' ';
- len = min(strlen(extfeature_map[i].name), (buf_len-1)-(p-buf));
- if (len == 0)
- break;
- bcopy(extfeature_map[i].name, p, len);
- p += len;
- }
- *p = '\0';
- return buf;
+ return cpuid_get_names(extfeature_map, extfeatures, buf, buf_len);
}
-
-#if CONFIG_NO_KPRINTF_STRINGS
-void
-cpuid_feature_display(
- __unused const char *header)
+char *
+cpuid_get_leaf7_feature_names(uint64_t features, char *buf, unsigned buf_len)
{
+ return cpuid_get_names(leaf7_feature_map, features, buf, buf_len);
}
-void
-cpuid_extfeature_display(
- __unused const char *header)
+char *
+cpuid_get_leaf7_extfeature_names(uint64_t features, char *buf, unsigned buf_len)
{
+ return cpuid_get_names(leaf7_extfeature_map, features, buf, buf_len);
}
-void
-cpuid_cpu_display(
- __unused const char *header)
-{
-}
-#else /* CONFIG_NO_KPRINTF_STRINGS */
void
cpuid_feature_display(
- const char *header)
+ const char *header)
{
- char buf[256];
+ char buf[320];
- kprintf("%s: %s\n", header,
- cpuid_get_feature_names(cpuid_features(),
- buf, sizeof(buf)));
+ kprintf("%s: %s", header,
+ cpuid_get_feature_names(cpuid_features(), buf, sizeof(buf)));
+ if (cpuid_leaf7_features()) {
+ kprintf(" %s", cpuid_get_leaf7_feature_names(
+ cpuid_leaf7_features(), buf, sizeof(buf)));
+ }
+ if (cpuid_leaf7_extfeatures()) {
+ kprintf(" %s", cpuid_get_leaf7_extfeature_names(
+ cpuid_leaf7_extfeatures(), buf, sizeof(buf)));
+ }
+ kprintf("\n");
if (cpuid_features() & CPUID_FEATURE_HTT) {
-#define s_if_plural(n) ((n > 1) ? "s" : "")
+#define s_if_plural(n) ((n > 1) ? "s" : "")
kprintf(" HTT: %d core%s per package;"
- " %d logical cpu%s per package\n",
- cpuid_cpu_info.cpuid_cores_per_package,
- s_if_plural(cpuid_cpu_info.cpuid_cores_per_package),
- cpuid_cpu_info.cpuid_logical_per_package,
- s_if_plural(cpuid_cpu_info.cpuid_logical_per_package));
+ " %d logical cpu%s per package\n",
+ cpuid_cpu_infop->cpuid_cores_per_package,
+ s_if_plural(cpuid_cpu_infop->cpuid_cores_per_package),
+ cpuid_cpu_infop->cpuid_logical_per_package,
+ s_if_plural(cpuid_cpu_infop->cpuid_logical_per_package));
}
}
void
cpuid_extfeature_display(
- const char *header)
+ const char *header)
{
- char buf[256];
+ char buf[256];
kprintf("%s: %s\n", header,
- cpuid_get_extfeature_names(cpuid_extfeatures(),
- buf, sizeof(buf)));
+ cpuid_get_extfeature_names(cpuid_extfeatures(),
+ buf, sizeof(buf)));
}
void
cpuid_cpu_display(
- const char *header)
+ const char *header)
{
- if (cpuid_cpu_info.cpuid_brand_string[0] != '\0') {
- kprintf("%s: %s\n", header, cpuid_cpu_info.cpuid_brand_string);
- }
+ if (cpuid_cpu_infop->cpuid_brand_string[0] != '\0') {
+ kprintf("%s: %s\n", header, cpuid_cpu_infop->cpuid_brand_string);
+ }
}
-#endif /* !CONFIG_NO_KPRINTF_STRINGS */
unsigned int
cpuid_family(void)
return cpuid_info()->cpuid_family;
}
+uint32_t
+cpuid_cpufamily(void)
+{
+ return cpuid_info()->cpuid_cpufamily;
+}
+
cpu_type_t
cpuid_cputype(void)
{
cpuid_features(void)
{
static int checked = 0;
- char fpu_arg[20] = { 0 };
+ char fpu_arg[20] = { 0 };
(void) cpuid_info();
if (!checked) {
- /* check for boot-time fpu limitations */
- if (PE_parse_boot_argn("_fpu", &fpu_arg[0], sizeof (fpu_arg))) {
- printf("limiting fpu features to: %s\n", fpu_arg);
- if (!strncmp("387", fpu_arg, sizeof("387")) || !strncmp("mmx", fpu_arg, sizeof("mmx"))) {
- printf("no sse or sse2\n");
- cpuid_cpu_info.cpuid_features &= ~(CPUID_FEATURE_SSE | CPUID_FEATURE_SSE2 | CPUID_FEATURE_FXSR);
- } else if (!strncmp("sse", fpu_arg, sizeof("sse"))) {
- printf("no sse2\n");
- cpuid_cpu_info.cpuid_features &= ~(CPUID_FEATURE_SSE2);
- }
+ /* check for boot-time fpu limitations */
+ if (PE_parse_boot_argn("_fpu", &fpu_arg[0], sizeof(fpu_arg))) {
+ printf("limiting fpu features to: %s\n", fpu_arg);
+ if (!strncmp("387", fpu_arg, sizeof("387")) || !strncmp("mmx", fpu_arg, sizeof("mmx"))) {
+ printf("no sse or sse2\n");
+ cpuid_cpu_infop->cpuid_features &= ~(CPUID_FEATURE_SSE | CPUID_FEATURE_SSE2 | CPUID_FEATURE_FXSR);
+ } else if (!strncmp("sse", fpu_arg, sizeof("sse"))) {
+ printf("no sse2\n");
+ cpuid_cpu_infop->cpuid_features &= ~(CPUID_FEATURE_SSE2);
}
- checked = 1;
+ }
+ checked = 1;
}
- return cpuid_cpu_info.cpuid_features;
+ return cpuid_cpu_infop->cpuid_features;
}
uint64_t
{
return cpuid_info()->cpuid_extfeatures;
}
-
-#if MACH_KDB
+uint64_t
+cpuid_leaf7_features(void)
+{
+ return cpuid_info()->cpuid_leaf7_features;
+}
+
+uint64_t
+cpuid_leaf7_extfeatures(void)
+{
+ return cpuid_info()->cpuid_leaf7_extfeatures;
+}
-/*
- * Display the cpuid
- * *
- * cp
- */
-void
-db_cpuid(__unused db_expr_t addr,
- __unused int have_addr,
- __unused db_expr_t count,
- __unused char *modif)
+const char *
+cpuid_vmm_family_string(void)
{
+ switch (cpuid_vmm_info()->cpuid_vmm_family) {
+ case CPUID_VMM_FAMILY_NONE:
+ return "None";
- uint32_t i, mid;
- uint32_t cpid[4];
+ case CPUID_VMM_FAMILY_VMWARE:
+ return "VMWare";
- do_cpuid(0, cpid); /* Get the first cpuid which is the number of
- * basic ids */
- db_printf("%08X - %08X %08X %08X %08X\n",
- 0, cpid[eax], cpid[ebx], cpid[ecx], cpid[edx]);
+ case CPUID_VMM_FAMILY_PARALLELS:
+ return "Parallels";
- mid = cpid[eax]; /* Set the number */
- for (i = 1; i <= mid; i++) { /* Dump 'em out */
- do_cpuid(i, cpid); /* Get the next */
- db_printf("%08X - %08X %08X %08X %08X\n",
- i, cpid[eax], cpid[ebx], cpid[ecx], cpid[edx]);
- }
- db_printf("\n");
+ case CPUID_VMM_FAMILY_HYVE:
+ return "xHyve";
+
+ case CPUID_VMM_FAMILY_HVF:
+ return "HVF";
- do_cpuid(0x80000000, cpid); /* Get the first extended cpuid which
- * is the number of extended ids */
- db_printf("%08X - %08X %08X %08X %08X\n",
- 0x80000000, cpid[eax], cpid[ebx], cpid[ecx], cpid[edx]);
+ case CPUID_VMM_FAMILY_KVM:
+ return "KVM";
- mid = cpid[eax]; /* Set the number */
- for (i = 0x80000001; i <= mid; i++) { /* Dump 'em out */
- do_cpuid(i, cpid); /* Get the next */
- db_printf("%08X - %08X %08X %08X %08X\n",
- i, cpid[eax], cpid[ebx], cpid[ecx], cpid[edx]);
+ case CPUID_VMM_FAMILY_UNKNOWN:
+ /*FALLTHROUGH*/
+ default:
+ return "Unknown VMM";
}
}
+static i386_vmm_info_t *_cpuid_vmm_infop = NULL;
+static i386_vmm_info_t _cpuid_vmm_info;
+
+static void
+cpuid_init_vmm_info(i386_vmm_info_t *info_p)
+{
+ uint32_t reg[4], maxbasic_regs[4];
+ uint32_t max_vmm_leaf;
+
+ bzero(info_p, sizeof(*info_p));
+
+ if (!cpuid_vmm_present()) {
+ return;
+ }
+
+ DBG("cpuid_init_vmm_info(%p)\n", info_p);
+
+ /*
+ * Get the highest basic leaf value, then save the cpuid details for that leaf
+ * for comparison with the [ostensible] VMM leaf.
+ */
+ cpuid_fn(0, reg);
+ cpuid_fn(reg[eax], maxbasic_regs);
+
+ /* do cpuid 0x40000000 to get VMM vendor */
+ cpuid_fn(0x40000000, reg);
+
+ /*
+ * If leaf 0x40000000 is non-existent, cpuid will return the values as
+ * if the highest basic leaf was requested, so compare to those values
+ * we just retrieved to see if no vmm is present.
+ */
+ if (bcmp(reg, maxbasic_regs, sizeof(reg)) == 0) {
+ info_p->cpuid_vmm_family = CPUID_VMM_FAMILY_NONE;
+ DBG(" vmm_vendor : NONE\n");
+ return;
+ }
+
+ max_vmm_leaf = reg[eax];
+ bcopy((char *)®[ebx], &info_p->cpuid_vmm_vendor[0], 4);
+ bcopy((char *)®[ecx], &info_p->cpuid_vmm_vendor[4], 4);
+ bcopy((char *)®[edx], &info_p->cpuid_vmm_vendor[8], 4);
+ info_p->cpuid_vmm_vendor[12] = '\0';
+
+ if (0 == strcmp(info_p->cpuid_vmm_vendor, CPUID_VMM_ID_VMWARE)) {
+ /* VMware identification string: kb.vmware.com/kb/1009458 */
+ info_p->cpuid_vmm_family = CPUID_VMM_FAMILY_VMWARE;
+ } else if (0 == bcmp(info_p->cpuid_vmm_vendor, CPUID_VMM_ID_PARALLELS, 12)) {
+ /* Parallels identification string */
+ info_p->cpuid_vmm_family = CPUID_VMM_FAMILY_PARALLELS;
+ } else if (0 == bcmp(info_p->cpuid_vmm_vendor, CPUID_VMM_ID_HYVE, 12)) {
+ /* bhyve/xhyve identification string */
+ info_p->cpuid_vmm_family = CPUID_VMM_FAMILY_HYVE;
+ } else if (0 == bcmp(info_p->cpuid_vmm_vendor, CPUID_VMM_ID_HVF, 12)) {
+ /* HVF identification string */
+ info_p->cpuid_vmm_family = CPUID_VMM_FAMILY_HVF;
+ } else if (0 == bcmp(info_p->cpuid_vmm_vendor, CPUID_VMM_ID_KVM, 12)) {
+ /* KVM identification string */
+ info_p->cpuid_vmm_family = CPUID_VMM_FAMILY_KVM;
+ } else {
+ info_p->cpuid_vmm_family = CPUID_VMM_FAMILY_UNKNOWN;
+ }
+
+ /* VMM generic leaves: https://lkml.org/lkml/2008/10/1/246 */
+ if (max_vmm_leaf >= 0x40000010) {
+ cpuid_fn(0x40000010, reg);
+
+ info_p->cpuid_vmm_tsc_frequency = reg[eax];
+ info_p->cpuid_vmm_bus_frequency = reg[ebx];
+ }
+
+#if DEBUG || DEVELOPMENT
+ cpuid_vmm_detect_pv_interface(info_p, APPLEPV_SIGNATURE, &cpuid_vmm_detect_applepv_features);
#endif
+
+ DBG(" vmm_vendor : %s\n", info_p->cpuid_vmm_vendor);
+ DBG(" vmm_family : %u\n", info_p->cpuid_vmm_family);
+ DBG(" vmm_bus_frequency : %u\n", info_p->cpuid_vmm_bus_frequency);
+ DBG(" vmm_tsc_frequency : %u\n", info_p->cpuid_vmm_tsc_frequency);
+}
+
+boolean_t
+cpuid_vmm_present(void)
+{
+ return (cpuid_features() & CPUID_FEATURE_VMM) ? TRUE : FALSE;
+}
+
+i386_vmm_info_t *
+cpuid_vmm_info(void)
+{
+ if (_cpuid_vmm_infop == NULL) {
+ cpuid_init_vmm_info(&_cpuid_vmm_info);
+ _cpuid_vmm_infop = &_cpuid_vmm_info;
+ }
+ return _cpuid_vmm_infop;
+}
+
+uint32_t
+cpuid_vmm_family(void)
+{
+ return cpuid_vmm_info()->cpuid_vmm_family;
+}
+
+#if DEBUG || DEVELOPMENT
+uint64_t
+cpuid_vmm_get_applepv_features(void)
+{
+ return cpuid_vmm_info()->cpuid_vmm_applepv_features;
+}
+#endif /* DEBUG || DEVELOPMENT */
+
+cwa_classifier_e
+cpuid_wa_required(cpu_wa_e wa)
+{
+ i386_cpu_info_t *info_p = &cpuid_cpu_info;
+ static uint64_t bootarg_cpu_wa_enables = 0;
+ static uint64_t bootarg_cpu_wa_disables = 0;
+ static int bootargs_overrides_processed = 0;
+ uint32_t reg[4];
+
+ if (!bootargs_overrides_processed) {
+ if (!PE_parse_boot_argn("cwae", &bootarg_cpu_wa_enables, sizeof(bootarg_cpu_wa_enables))) {
+ bootarg_cpu_wa_enables = 0;
+ }
+
+ if (!PE_parse_boot_argn("cwad", &bootarg_cpu_wa_disables, sizeof(bootarg_cpu_wa_disables))) {
+ bootarg_cpu_wa_disables = 0;
+ }
+ bootargs_overrides_processed = 1;
+ }
+
+ if (bootarg_cpu_wa_enables & (1 << wa)) {
+ return CWA_FORCE_ON;
+ }
+
+ if (bootarg_cpu_wa_disables & (1 << wa)) {
+ return CWA_FORCE_OFF;
+ }
+
+ switch (wa) {
+ case CPU_INTEL_SEGCHK:
+ /* First, check to see if this CPU requires the workaround */
+ if ((info_p->cpuid_leaf7_extfeatures & CPUID_LEAF7_EXTFEATURE_ACAPMSR) != 0) {
+ /* We have ARCHCAP, so check it for either RDCL_NO or MDS_NO */
+ uint64_t archcap_msr = rdmsr64(MSR_IA32_ARCH_CAPABILITIES);
+ if ((archcap_msr & (MSR_IA32_ARCH_CAPABILITIES_RDCL_NO | MSR_IA32_ARCH_CAPABILITIES_MDS_NO)) != 0) {
+ /* Workaround not needed */
+ return CWA_OFF;
+ }
+ }
+
+ if ((info_p->cpuid_leaf7_extfeatures & CPUID_LEAF7_EXTFEATURE_MDCLEAR) != 0) {
+ return CWA_ON;
+ }
+
+ /*
+ * If the CPU supports the ARCHCAP MSR and neither the RDCL_NO bit nor the MDS_NO
+ * bit are set, OR the CPU does not support the ARCHCAP MSR and the CPU does
+ * not enumerate the presence of the enhanced VERW instruction, report
+ * that the workaround should not be enabled.
+ */
+ break;
+
+ case CPU_INTEL_TSXFA:
+ /*
+ * Note that if TSX was disabled in cpuid_do_precpuid_was(), the cached cpuid
+ * info will indicate that RTM is *not* supported and this workaround will not
+ * be enabled.
+ */
+ /*
+ * Otherwise, if the CPU supports both TSX(HLE) and FORCE_ABORT, return that
+ * the workaround should be enabled.
+ */
+ if ((info_p->cpuid_leaf7_extfeatures & CPUID_LEAF7_EXTFEATURE_TSXFA) != 0 &&
+ (info_p->cpuid_leaf7_features & CPUID_LEAF7_FEATURE_RTM) != 0) {
+ return CWA_ON;
+ }
+ break;
+
+ case CPU_INTEL_TSXDA:
+ /*
+ * Since this workaround might be requested before cpuid_set_info() is complete,
+ * we need to invoke cpuid directly when looking for the required bits.
+ */
+ cpuid_fn(0x7, reg);
+ if (reg[edx] & CPUID_LEAF7_EXTFEATURE_ACAPMSR) {
+ uint64_t archcap_msr = rdmsr64(MSR_IA32_ARCH_CAPABILITIES);
+ /*
+ * If this CPU supports TSX (HLE being the proxy for TSX detection) AND it does
+ * not include a hardware fix for TAA and it supports the TSX_CTRL MSR, disable TSX entirely.
+ * (Note this can be overridden (above) if the cwad boot-arg's value has bit 2 set.)
+ */
+ if ((reg[ebx] & CPUID_LEAF7_FEATURE_HLE) != 0 &&
+ (archcap_msr & (MSR_IA32_ARCH_CAPABILITIES_TAA_NO | MSR_IA32_ARCH_CAPABILITIES_TSX_CTRL))
+ == MSR_IA32_ARCH_CAPABILITIES_TSX_CTRL) {
+ return CWA_ON;
+ }
+ }
+ break;
+
+ case CPU_INTEL_SRBDS:
+ /*
+ * SRBDS mitigations are enabled by default. CWA_ON returned here indicates
+ * the caller should disable the mitigation. Mitigations should be disabled
+ * at least for CPUs that advertise MDS_NO *and* (either TAA_NO is set OR TSX
+ * has been disabled).
+ */
+ if ((info_p->cpuid_leaf7_extfeatures & CPUID_LEAF7_EXTFEATURE_SRBDS_CTRL) != 0) {
+ if ((info_p->cpuid_leaf7_extfeatures & CPUID_LEAF7_EXTFEATURE_ACAPMSR) != 0) {
+ uint64_t archcap_msr = rdmsr64(MSR_IA32_ARCH_CAPABILITIES);
+ if ((archcap_msr & MSR_IA32_ARCH_CAPABILITIES_MDS_NO) != 0 &&
+ ((archcap_msr & MSR_IA32_ARCH_CAPABILITIES_TAA_NO) != 0 ||
+ cpuid_tsx_disabled)) {
+ return CWA_ON;
+ }
+ }
+ }
+ break;
+
+ default:
+ break;
+ }
+
+ return CWA_OFF;
+}
+
+static void
+cpuid_do_precpuid_was(void)
+{
+ /*
+ * Note that care must be taken not to use any data from the cached cpuid data since it is
+ * likely uninitialized at this point. That includes calling functions that make use of
+ * that data as well.
+ */
+
+ /* Note the TSX disablement, we do not support force-on since it depends on MSRs being present */
+ if (cpuid_wa_required(CPU_INTEL_TSXDA) == CWA_ON) {
+ /* This must be executed on all logical processors */
+ wrmsr64(MSR_IA32_TSX_CTRL, MSR_IA32_TSXCTRL_TSX_CPU_CLEAR | MSR_IA32_TSXCTRL_RTM_DISABLE);
+ cpuid_tsx_disabled = true;
+ }
+}
+
+
+#if DEBUG || DEVELOPMENT
+
+/*
+ * Hunt for Apple Paravirtualization support in the hypervisor class leaves [0x4000_0000-0x4001_0000].
+ * Hypervisor interfaces are expected to be found at 0x100 boundaries for compatibility.
+ */
+
+static bool
+cpuid_vmm_detect_applepv_features(i386_vmm_info_t *info_p, const uint32_t base, const uint32_t max_leaf)
+{
+ if ((max_leaf - base) < APPLEPV_LEAF_INDEX_MAX) {
+ return false;
+ }
+
+ /*
+ * Issue cpuid to make sure the interface supports "AH#1" features.
+ * This avoids a possible collision with "Hv#1" used by Hyper-V.
+ */
+ uint32_t reg[4];
+ char interface[5];
+ cpuid_fn(base + APPLEPV_INTERFACE_LEAF_INDEX, reg);
+ memcpy(&interface[0], ®[eax], 4);
+ interface[4] = '\0';
+ if (0 == strcmp(interface, APPLEPV_INTERFACE)) {
+ cpuid_fn(base + APPLEPV_FEATURES_LEAF_INDEX, reg);
+ info_p->cpuid_vmm_applepv_features = quad(reg[ecx], reg[edx]);
+ return true;
+ }
+ return false;
+}
+
+static void
+cpuid_vmm_detect_pv_interface(i386_vmm_info_t *info_p, const char *signature,
+ bool (*searcher)(i386_vmm_info_t*, const uint32_t, const uint32_t))
+{
+ int hcalls;
+ if (PE_parse_boot_argn("hcalls", &hcalls, sizeof(hcalls)) &&
+ hcalls == 0) {
+ return;
+ }
+
+ assert(info_p);
+ /*
+ * Look for PV interface matching signature
+ */
+ for (uint32_t base = 0x40000100; base < 0x40010000; base += 0x100) {
+ uint32_t reg[4];
+ char vendor[13];
+
+ cpuid_fn(base, reg);
+ memcpy(&vendor[0], ®[ebx], 4);
+ memcpy(&vendor[4], ®[ecx], 4);
+ memcpy(&vendor[8], ®[edx], 4);
+ vendor[12] = '\0';
+ if ((0 == strcmp(vendor, signature)) &&
+ (reg[eax] - base) < 0x100 &&
+ (*searcher)(info_p, base, reg[eax])) {
+ break;
+ }
+ }
+}
+
+#endif /* DEBUG || DEVELOPMENT */