/*
- * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
+ * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
- *
+ *
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
- *
+ *
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
- *
+ *
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
- *
+ *
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
#ifndef _IP_DUMMYNET_H
#define _IP_DUMMYNET_H
-#if !__LP64__
-
#include <sys/appleapiopts.h>
#ifdef PRIVATE
+#include <netinet/ip_flowid.h>
+
+/* Apply ipv6 mask on ipv6 addr */
+#define APPLY_MASK(addr, mask) \
+ (addr)->__u6_addr.__u6_addr32[0] &= (mask)->__u6_addr.__u6_addr32[0]; \
+ (addr)->__u6_addr.__u6_addr32[1] &= (mask)->__u6_addr.__u6_addr32[1]; \
+ (addr)->__u6_addr.__u6_addr32[2] &= (mask)->__u6_addr.__u6_addr32[2]; \
+ (addr)->__u6_addr.__u6_addr32[3] &= (mask)->__u6_addr.__u6_addr32[3];
+
/*
* Definition of dummynet data structures. In the structures, I decided
* not to use the macros in <sys/queue.h> in the hope of making the code
* MY_M is used as a shift count when doing fixed point arithmetic
* (a better name would be useful...).
*/
-typedef u_int64_t dn_key ; /* sorting key */
-#define DN_KEY_LT(a,b) ((int64_t)((a)-(b)) < 0)
-#define DN_KEY_LEQ(a,b) ((int64_t)((a)-(b)) <= 0)
-#define DN_KEY_GT(a,b) ((int64_t)((a)-(b)) > 0)
-#define DN_KEY_GEQ(a,b) ((int64_t)((a)-(b)) >= 0)
-#define MAX64(x,y) (( (int64_t) ( (y)-(x) )) > 0 ) ? (y) : (x)
-#define MY_M 16 /* number of left shift to obtain a larger precision */
+typedef u_int64_t dn_key; /* sorting key */
+#define DN_KEY_LT(a, b) ((int64_t)((a)-(b)) < 0)
+#define DN_KEY_LEQ(a, b) ((int64_t)((a)-(b)) <= 0)
+#define DN_KEY_GT(a, b) ((int64_t)((a)-(b)) > 0)
+#define DN_KEY_GEQ(a, b) ((int64_t)((a)-(b)) >= 0)
+#define MAX64(x, y) (( (int64_t) ( (y)-(x) )) > 0 ) ? (y) : (x)
+#define MY_M 16 /* number of left shift to obtain a larger precision */
/*
* XXX With this scaling, max 1000 flows, max weight 100, 1Gbit/s, the
* virtual time wraps every 15 days.
*/
-/*
- * The OFFSET_OF macro is used to return the offset of a field within
- * a structure. It is used by the heap management routines.
- */
-#define OFFSET_OF(type, field) ((int)&( ((type *)0)->field) )
-
/*
* The maximum hash table size for queues. This value must be a power
* of 2.
* is non-zero if we want to support extract from the middle.
*/
struct dn_heap_entry {
- dn_key key ; /* sorting key. Topmost element is smallest one */
- void *object ; /* object pointer */
-} ;
+ dn_key key; /* sorting key. Topmost element is smallest one */
+ void *object; /* object pointer */
+};
struct dn_heap {
- int size ;
- int elements ;
- int offset ; /* XXX if > 0 this is the offset of direct ptr to obj */
- struct dn_heap_entry *p ; /* really an array of "size" entries */
-} ;
+ int size;
+ int elements;
+ int offset; /* XXX if > 0 this is the offset of direct ptr to obj */
+ struct dn_heap_entry *p; /* really an array of "size" entries */
+};
/*
* Packets processed by dummynet have an mbuf tag associated with
* processing requirements.
*/
#ifdef KERNEL
-#include <netinet/ip_var.h> /* for ip_out_args */
+#include <net/if_var.h>
+#include <net/route.h>
+#include <netinet/ip_var.h> /* for ip_out_args */
+#include <netinet/ip6.h> /* for ip6_out_args */
+#include <netinet/in.h>
+#include <netinet6/ip6_var.h> /* for ip6_out_args */
struct dn_pkt_tag {
- struct ip_fw *rule; /* matching rule */
- int dn_dir; /* action when packet comes out. */
-#define DN_TO_IP_OUT 1
-#define DN_TO_IP_IN 2
-#define DN_TO_BDG_FWD 3
-
- dn_key output_time; /* when the pkt is due for delivery */
- struct ifnet *ifp; /* interface, for ip_output */
- struct sockaddr_in *dn_dst ;
- struct route ro; /* route, for ip_output. MUST COPY */
- int flags ; /* flags, for ip_output (IPv6 ?) */
- struct ip_out_args ipoa; /* output args, for ip_output. MUST COPY */
+ void *dn_pf_rule; /* matching PF rule */
+ int dn_dir; /* action when packet comes out. */
+#define DN_TO_IP_OUT 1
+#define DN_TO_IP_IN 2
+#define DN_TO_BDG_FWD 3
+#define DN_TO_IP6_IN 4
+#define DN_TO_IP6_OUT 5
+ dn_key dn_output_time; /* when the pkt is due for delivery */
+ struct ifnet *dn_ifp; /* interface, for ip[6]_output */
+ union {
+ struct sockaddr_in _dn_dst;
+ struct sockaddr_in6 _dn_dst6;
+ } dn_dst_;
+#define dn_dst dn_dst_._dn_dst
+#define dn_dst6 dn_dst_._dn_dst6
+ union {
+ struct route _dn_ro; /* route, for ip_output. MUST COPY */
+ struct route_in6 _dn_ro6;/* route, for ip6_output. MUST COPY */
+ } dn_ro_;
+#define dn_ro dn_ro_._dn_ro
+#define dn_ro6 dn_ro_._dn_ro6
+ struct route_in6 dn_ro6_pmtu; /* for ip6_output */
+ struct ifnet *dn_origifp; /* for ip6_output */
+ u_int32_t dn_mtu; /* for ip6_output */
+ u_int32_t dn_unfragpartlen; /* for ip6_output */
+ struct ip6_exthdrs dn_exthdrs; /* for ip6_output */
+ int dn_flags; /* flags, for ip[6]_output */
+ union {
+ struct ip_out_args _dn_ipoa;/* output args, for ip_output. MUST COPY */
+ struct ip6_out_args _dn_ip6oa;/* output args, for ip_output. MUST COPY */
+ } dn_ipoa_;
+#define dn_ipoa dn_ipoa_._dn_ipoa
+#define dn_ip6oa dn_ipoa_._dn_ip6oa
};
#else
struct dn_pkt;
/*
* Overall structure of dummynet (with WF2Q+):
-
-In dummynet, packets are selected with the firewall rules, and passed
-to two different objects: PIPE or QUEUE.
-
-A QUEUE is just a queue with configurable size and queue management
-policy. It is also associated with a mask (to discriminate among
-different flows), a weight (used to give different shares of the
-bandwidth to different flows) and a "pipe", which essentially
-supplies the transmit clock for all queues associated with that
-pipe.
-
-A PIPE emulates a fixed-bandwidth link, whose bandwidth is
-configurable. The "clock" for a pipe can come from either an
-internal timer, or from the transmit interrupt of an interface.
-A pipe is also associated with one (or more, if masks are used)
-queue, where all packets for that pipe are stored.
-
-The bandwidth available on the pipe is shared by the queues
-associated with that pipe (only one in case the packet is sent
-to a PIPE) according to the WF2Q+ scheduling algorithm and the
-configured weights.
-
-In general, incoming packets are stored in the appropriate queue,
-which is then placed into one of a few heaps managed by a scheduler
-to decide when the packet should be extracted.
-The scheduler (a function called dummynet()) is run at every timer
-tick, and grabs queues from the head of the heaps when they are
-ready for processing.
-
-There are three data structures definining a pipe and associated queues:
-
+ *
+ * In dummynet, packets are selected with the firewall rules, and passed
+ * to two different objects: PIPE or QUEUE.
+ *
+ * A QUEUE is just a queue with configurable size and queue management
+ * policy. It is also associated with a mask (to discriminate among
+ * different flows), a weight (used to give different shares of the
+ * bandwidth to different flows) and a "pipe", which essentially
+ * supplies the transmit clock for all queues associated with that
+ * pipe.
+ *
+ * A PIPE emulates a fixed-bandwidth link, whose bandwidth is
+ * configurable. The "clock" for a pipe can come from either an
+ * internal timer, or from the transmit interrupt of an interface.
+ * A pipe is also associated with one (or more, if masks are used)
+ * queue, where all packets for that pipe are stored.
+ *
+ * The bandwidth available on the pipe is shared by the queues
+ * associated with that pipe (only one in case the packet is sent
+ * to a PIPE) according to the WF2Q+ scheduling algorithm and the
+ * configured weights.
+ *
+ * In general, incoming packets are stored in the appropriate queue,
+ * which is then placed into one of a few heaps managed by a scheduler
+ * to decide when the packet should be extracted.
+ * The scheduler (a function called dummynet()) is run at every timer
+ * tick, and grabs queues from the head of the heaps when they are
+ * ready for processing.
+ *
+ * There are three data structures definining a pipe and associated queues:
+ *
+ dn_pipe, which contains the main configuration parameters related
- to delay and bandwidth;
+ + to delay and bandwidth;
+ dn_flow_set, which contains WF2Q+ configuration, flow
- masks, plr and RED configuration;
+ + masks, plr and RED configuration;
+ dn_flow_queue, which is the per-flow queue (containing the packets)
-
-Multiple dn_flow_set can be linked to the same pipe, and multiple
-dn_flow_queue can be linked to the same dn_flow_set.
-All data structures are linked in a linear list which is used for
-housekeeping purposes.
-
-During configuration, we create and initialize the dn_flow_set
-and dn_pipe structures (a dn_pipe also contains a dn_flow_set).
-
-At runtime: packets are sent to the appropriate dn_flow_set (either
-WFQ ones, or the one embedded in the dn_pipe for fixed-rate flows),
-which in turn dispatches them to the appropriate dn_flow_queue
-(created dynamically according to the masks).
-
-The transmit clock for fixed rate flows (ready_event()) selects the
-dn_flow_queue to be used to transmit the next packet. For WF2Q,
-wfq_ready_event() extract a pipe which in turn selects the right
-flow using a number of heaps defined into the pipe itself.
-
+ +
+ + Multiple dn_flow_set can be linked to the same pipe, and multiple
+ + dn_flow_queue can be linked to the same dn_flow_set.
+ + All data structures are linked in a linear list which is used for
+ + housekeeping purposes.
+ +
+ + During configuration, we create and initialize the dn_flow_set
+ + and dn_pipe structures (a dn_pipe also contains a dn_flow_set).
+ +
+ + At runtime: packets are sent to the appropriate dn_flow_set (either
+ + WFQ ones, or the one embedded in the dn_pipe for fixed-rate flows),
+ + which in turn dispatches them to the appropriate dn_flow_queue
+ + (created dynamically according to the masks).
+ +
+ + The transmit clock for fixed rate flows (ready_event()) selects the
+ + dn_flow_queue to be used to transmit the next packet. For WF2Q,
+ + wfq_ready_event() extract a pipe which in turn selects the right
+ + flow using a number of heaps defined into the pipe itself.
+ +
*
*/
* a new flow arrives.
*/
struct dn_flow_queue {
- struct dn_flow_queue *next ;
- struct ipfw_flow_id id ;
-
- struct mbuf *head, *tail ; /* queue of packets */
- u_int len ;
- u_int len_bytes ;
- u_long numbytes ; /* credit for transmission (dynamic queues) */
-
- u_int64_t tot_pkts ; /* statistics counters */
- u_int64_t tot_bytes ;
- u_int32_t drops ;
-
- int hash_slot ; /* debugging/diagnostic */
-
- /* RED parameters */
- int avg ; /* average queue length est. (scaled) */
- int count ; /* arrivals since last RED drop */
- int random ; /* random value (scaled) */
- u_int32_t q_time ; /* start of queue idle time */
-
- /* WF2Q+ support */
- struct dn_flow_set *fs ; /* parent flow set */
- int heap_pos ; /* position (index) of struct in heap */
- dn_key sched_time ; /* current time when queue enters ready_heap */
-
- dn_key S,F ; /* start time, finish time */
- /*
- * Setting F < S means the timestamp is invalid. We only need
- * to test this when the queue is empty.
- */
-} ;
+ struct dn_flow_queue *next;
+ struct ip_flow_id id;
+
+ struct mbuf *head, *tail; /* queue of packets */
+ u_int len;
+ u_int len_bytes;
+ u_int32_t numbytes; /* credit for transmission (dynamic queues) */
+
+ u_int64_t tot_pkts; /* statistics counters */
+ u_int64_t tot_bytes;
+ u_int32_t drops;
+
+ int hash_slot; /* debugging/diagnostic */
+
+ /* RED parameters */
+ int avg; /* average queue length est. (scaled) */
+ int count; /* arrivals since last RED drop */
+ int random; /* random value (scaled) */
+ u_int32_t q_time; /* start of queue idle time */
+
+ /* WF2Q+ support */
+ struct dn_flow_set *fs; /* parent flow set */
+ int heap_pos; /* position (index) of struct in heap */
+ dn_key sched_time; /* current time when queue enters ready_heap */
+
+ dn_key S, F; /* start time, finish time */
+ /*
+ * Setting F < S means the timestamp is invalid. We only need
+ * to test this when the queue is empty.
+ */
+};
/*
* flow_set descriptor. Contains the "template" parameters for the
* latter case, the structure is located inside the struct dn_pipe).
*/
struct dn_flow_set {
- struct dn_flow_set *next; /* next flow set in all_flow_sets list */
+ SLIST_ENTRY(dn_flow_set) next;/* linked list in a hash slot */
- u_short fs_nr ; /* flow_set number */
- u_short flags_fs;
-#define DN_HAVE_FLOW_MASK 0x0001
-#define DN_IS_RED 0x0002
-#define DN_IS_GENTLE_RED 0x0004
-#define DN_QSIZE_IS_BYTES 0x0008 /* queue size is measured in bytes */
-#define DN_NOERROR 0x0010 /* do not report ENOBUFS on drops */
-#define DN_IS_PIPE 0x4000
-#define DN_IS_QUEUE 0x8000
+ u_short fs_nr; /* flow_set number */
+ u_short flags_fs;
+#define DN_HAVE_FLOW_MASK 0x0001
+#define DN_IS_RED 0x0002
+#define DN_IS_GENTLE_RED 0x0004
+#define DN_QSIZE_IS_BYTES 0x0008 /* queue size is measured in bytes */
+#define DN_NOERROR 0x0010 /* do not report ENOBUFS on drops */
+#define DN_IS_PIPE 0x4000
+#define DN_IS_QUEUE 0x8000
- struct dn_pipe *pipe ; /* pointer to parent pipe */
- u_short parent_nr ; /* parent pipe#, 0 if local to a pipe */
+ struct dn_pipe *pipe; /* pointer to parent pipe */
+ u_short parent_nr; /* parent pipe#, 0 if local to a pipe */
- int weight ; /* WFQ queue weight */
- int qsize ; /* queue size in slots or bytes */
- int plr ; /* pkt loss rate (2^31-1 means 100%) */
+ int weight; /* WFQ queue weight */
+ int qsize; /* queue size in slots or bytes */
+ int plr; /* pkt loss rate (2^31-1 means 100%) */
- struct ipfw_flow_id flow_mask ;
+ struct ip_flow_id flow_mask;
- /* hash table of queues onto this flow_set */
- int rq_size ; /* number of slots */
- int rq_elements ; /* active elements */
- struct dn_flow_queue **rq; /* array of rq_size entries */
+ /* hash table of queues onto this flow_set */
+ int rq_size; /* number of slots */
+ int rq_elements; /* active elements */
+ struct dn_flow_queue **rq; /* array of rq_size entries */
- u_int32_t last_expired ; /* do not expire too frequently */
- int backlogged ; /* #active queues for this flowset */
+ u_int32_t last_expired; /* do not expire too frequently */
+ int backlogged; /* #active queues for this flowset */
- /* RED parameters */
+ /* RED parameters */
#define SCALE_RED 16
#define SCALE(x) ( (x) << SCALE_RED )
#define SCALE_VAL(x) ( (x) >> SCALE_RED )
-#define SCALE_MUL(x,y) ( ( (x) * (y) ) >> SCALE_RED )
- int w_q ; /* queue weight (scaled) */
- int max_th ; /* maximum threshold for queue (scaled) */
- int min_th ; /* minimum threshold for queue (scaled) */
- int max_p ; /* maximum value for p_b (scaled) */
- u_int c_1 ; /* max_p/(max_th-min_th) (scaled) */
- u_int c_2 ; /* max_p*min_th/(max_th-min_th) (scaled) */
- u_int c_3 ; /* for GRED, (1-max_p)/max_th (scaled) */
- u_int c_4 ; /* for GRED, 1 - 2*max_p (scaled) */
- u_int * w_q_lookup ; /* lookup table for computing (1-w_q)^t */
- u_int lookup_depth ; /* depth of lookup table */
- int lookup_step ; /* granularity inside the lookup table */
- int lookup_weight ; /* equal to (1-w_q)^t / (1-w_q)^(t+1) */
- int avg_pkt_size ; /* medium packet size */
- int max_pkt_size ; /* max packet size */
-} ;
+#define SCALE_MUL(x, y) ( ( (x) * (y) ) >> SCALE_RED )
+ int w_q; /* queue weight (scaled) */
+ int max_th; /* maximum threshold for queue (scaled) */
+ int min_th; /* minimum threshold for queue (scaled) */
+ int max_p; /* maximum value for p_b (scaled) */
+ u_int c_1; /* max_p/(max_th-min_th) (scaled) */
+ u_int c_2; /* max_p*min_th/(max_th-min_th) (scaled) */
+ u_int c_3; /* for GRED, (1-max_p)/max_th (scaled) */
+ u_int c_4; /* for GRED, 1 - 2*max_p (scaled) */
+ u_int * w_q_lookup; /* lookup table for computing (1-w_q)^t */
+ u_int lookup_depth; /* depth of lookup table */
+ int lookup_step; /* granularity inside the lookup table */
+ int lookup_weight; /* equal to (1-w_q)^t / (1-w_q)^(t+1) */
+ int avg_pkt_size; /* medium packet size */
+ int max_pkt_size; /* max packet size */
+};
+
+SLIST_HEAD(dn_flow_set_head, dn_flow_set);
/*
* Pipe descriptor. Contains global parameters, delay-line queue,
* operations during forwarding.
*
*/
-struct dn_pipe { /* a pipe */
- struct dn_pipe *next ;
+struct dn_pipe { /* a pipe */
+ SLIST_ENTRY(dn_pipe) next;/* linked list in a hash slot */
- int pipe_nr ; /* number */
- int bandwidth; /* really, bytes/tick. */
- int delay ; /* really, ticks */
+ int pipe_nr; /* number */
+ int bandwidth; /* really, bytes/tick. */
+ int delay; /* really, ticks */
- struct mbuf *head, *tail ; /* packets in delay line */
+ struct mbuf *head, *tail; /* packets in delay line */
- /* WF2Q+ */
- struct dn_heap scheduler_heap ; /* top extract - key Finish time*/
- struct dn_heap not_eligible_heap; /* top extract- key Start time */
- struct dn_heap idle_heap ; /* random extract - key Start=Finish time */
+ /* WF2Q+ */
+ struct dn_heap scheduler_heap; /* top extract - key Finish time*/
+ struct dn_heap not_eligible_heap; /* top extract- key Start time */
+ struct dn_heap idle_heap; /* random extract - key Start=Finish time */
- dn_key V ; /* virtual time */
- int sum; /* sum of weights of all active sessions */
- int numbytes; /* bits I can transmit (more or less). */
+ dn_key V; /* virtual time */
+ int sum; /* sum of weights of all active sessions */
+ int numbytes; /* bits I can transmit (more or less). */
- dn_key sched_time ; /* time pipe was scheduled in ready_heap */
+ dn_key sched_time; /* time pipe was scheduled in ready_heap */
- /*
- * When the tx clock come from an interface (if_name[0] != '\0'), its name
- * is stored below, whereas the ifp is filled when the rule is configured.
- */
- char if_name[IFNAMSIZ];
- struct ifnet *ifp ;
- int ready ; /* set if ifp != NULL and we got a signal from it */
+ /*
+ * When the tx clock come from an interface (if_name[0] != '\0'), its name
+ * is stored below, whereas the ifp is filled when the rule is configured.
+ */
+ char if_name[IFNAMSIZ];
+ struct ifnet *ifp;
+ int ready; /* set if ifp != NULL and we got a signal from it */
- struct dn_flow_set fs ; /* used with fixed-rate flows */
+ struct dn_flow_set fs; /* used with fixed-rate flows */
};
-#ifdef KERNEL
+SLIST_HEAD(dn_pipe_head, dn_pipe);
+
+#ifdef BSD_KERNEL_PRIVATE
+extern uint32_t my_random(void);
+void ip_dn_init(void);
+
+typedef int ip_dn_ctl_t(struct sockopt *); /* raw_ip.c */
+typedef int ip_dn_io_t(struct mbuf *m, int pipe_nr, int dir,
+ struct ip_fw_args *fwa);
+extern ip_dn_ctl_t *ip_dn_ctl_ptr;
+extern ip_dn_io_t *ip_dn_io_ptr;
+#define DUMMYNET_LOADED (ip_dn_io_ptr != NULL)
+
+#pragma pack(4)
+
+struct dn_heap_32 {
+ int size;
+ int elements;
+ int offset; /* XXX if > 0 this is the offset of direct ptr to obj */
+ user32_addr_t p; /* really an array of "size" entries */
+};
+
+struct dn_flow_queue_32 {
+ user32_addr_t next;
+ struct ip_flow_id id;
+
+ user32_addr_t head, tail; /* queue of packets */
+ u_int len;
+ u_int len_bytes;
+ u_int32_t numbytes; /* credit for transmission (dynamic queues) */
+
+ u_int64_t tot_pkts; /* statistics counters */
+ u_int64_t tot_bytes;
+ u_int32_t drops;
+
+ int hash_slot; /* debugging/diagnostic */
+
+ /* RED parameters */
+ int avg; /* average queue length est. (scaled) */
+ int count; /* arrivals since last RED drop */
+ int random; /* random value (scaled) */
+ u_int32_t q_time; /* start of queue idle time */
+
+ /* WF2Q+ support */
+ user32_addr_t fs; /* parent flow set */
+ int heap_pos; /* position (index) of struct in heap */
+ dn_key sched_time; /* current time when queue enters ready_heap */
+
+ dn_key S, F; /* start time, finish time */
+ /*
+ * Setting F < S means the timestamp is invalid. We only need
+ * to test this when the queue is empty.
+ */
+};
+
+struct dn_flow_set_32 {
+ user32_addr_t next;/* next flow set in all_flow_sets list */
+
+ u_short fs_nr; /* flow_set number */
+ u_short flags_fs;
+#define DN_HAVE_FLOW_MASK 0x0001
+#define DN_IS_RED 0x0002
+#define DN_IS_GENTLE_RED 0x0004
+#define DN_QSIZE_IS_BYTES 0x0008 /* queue size is measured in bytes */
+#define DN_NOERROR 0x0010 /* do not report ENOBUFS on drops */
+#define DN_IS_PIPE 0x4000
+#define DN_IS_QUEUE 0x8000
+
+ user32_addr_t pipe; /* pointer to parent pipe */
+ u_short parent_nr; /* parent pipe#, 0 if local to a pipe */
+
+ int weight; /* WFQ queue weight */
+ int qsize; /* queue size in slots or bytes */
+ int plr; /* pkt loss rate (2^31-1 means 100%) */
+
+ struct ip_flow_id flow_mask;
+
+ /* hash table of queues onto this flow_set */
+ int rq_size; /* number of slots */
+ int rq_elements; /* active elements */
+ user32_addr_t rq; /* array of rq_size entries */
+
+ u_int32_t last_expired; /* do not expire too frequently */
+ int backlogged; /* #active queues for this flowset */
+
+ /* RED parameters */
+#define SCALE_RED 16
+#define SCALE(x) ( (x) << SCALE_RED )
+#define SCALE_VAL(x) ( (x) >> SCALE_RED )
+#define SCALE_MUL(x, y) ( ( (x) * (y) ) >> SCALE_RED )
+ int w_q; /* queue weight (scaled) */
+ int max_th; /* maximum threshold for queue (scaled) */
+ int min_th; /* minimum threshold for queue (scaled) */
+ int max_p; /* maximum value for p_b (scaled) */
+ u_int c_1; /* max_p/(max_th-min_th) (scaled) */
+ u_int c_2; /* max_p*min_th/(max_th-min_th) (scaled) */
+ u_int c_3; /* for GRED, (1-max_p)/max_th (scaled) */
+ u_int c_4; /* for GRED, 1 - 2*max_p (scaled) */
+ user32_addr_t w_q_lookup; /* lookup table for computing (1-w_q)^t */
+ u_int lookup_depth; /* depth of lookup table */
+ int lookup_step; /* granularity inside the lookup table */
+ int lookup_weight; /* equal to (1-w_q)^t / (1-w_q)^(t+1) */
+ int avg_pkt_size; /* medium packet size */
+ int max_pkt_size; /* max packet size */
+};
-void ip_dn_init(void); /* called from raw_ip.c:load_ipfw() */
+struct dn_pipe_32 { /* a pipe */
+ user32_addr_t next;
-typedef int ip_dn_ctl_t(struct sockopt *); /* raw_ip.c */
-typedef void ip_dn_ruledel_t(void *); /* ip_fw.c */
-typedef int ip_dn_io_t(struct mbuf *m, int pipe_nr, int dir,
- struct ip_fw_args *fwa);
-extern ip_dn_ctl_t *ip_dn_ctl_ptr;
-extern ip_dn_ruledel_t *ip_dn_ruledel_ptr;
-extern ip_dn_io_t *ip_dn_io_ptr;
-#define DUMMYNET_LOADED (ip_dn_io_ptr != NULL)
+ int pipe_nr; /* number */
+ int bandwidth; /* really, bytes/tick. */
+ int delay; /* really, ticks */
+ user32_addr_t head, tail; /* packets in delay line */
+
+ /* WF2Q+ */
+ struct dn_heap_32 scheduler_heap; /* top extract - key Finish time*/
+ struct dn_heap_32 not_eligible_heap; /* top extract- key Start time */
+ struct dn_heap_32 idle_heap; /* random extract - key Start=Finish time */
+
+ dn_key V; /* virtual time */
+ int sum; /* sum of weights of all active sessions */
+ int numbytes; /* bits I can transmit (more or less). */
+
+ dn_key sched_time; /* time pipe was scheduled in ready_heap */
+
+ /*
+ * When the tx clock come from an interface (if_name[0] != '\0'), its name
+ * is stored below, whereas the ifp is filled when the rule is configured.
+ */
+ char if_name[IFNAMSIZ];
+ user32_addr_t ifp;
+ int ready; /* set if ifp != NULL and we got a signal from it */
+
+ struct dn_flow_set_32 fs; /* used with fixed-rate flows */
+};
+#pragma pack()
+
+
+struct dn_heap_64 {
+ int size;
+ int elements;
+ int offset; /* XXX if > 0 this is the offset of direct ptr to obj */
+ user64_addr_t p; /* really an array of "size" entries */
+};
+
+
+struct dn_flow_queue_64 {
+ user64_addr_t next;
+ struct ip_flow_id id;
+
+ user64_addr_t head, tail; /* queue of packets */
+ u_int len;
+ u_int len_bytes;
+ u_int32_t numbytes; /* credit for transmission (dynamic queues) */
+
+ u_int64_t tot_pkts; /* statistics counters */
+ u_int64_t tot_bytes;
+ u_int32_t drops;
+
+ int hash_slot; /* debugging/diagnostic */
+
+ /* RED parameters */
+ int avg; /* average queue length est. (scaled) */
+ int count; /* arrivals since last RED drop */
+ int random; /* random value (scaled) */
+ u_int32_t q_time; /* start of queue idle time */
+
+ /* WF2Q+ support */
+ user64_addr_t fs; /* parent flow set */
+ int heap_pos; /* position (index) of struct in heap */
+ dn_key sched_time; /* current time when queue enters ready_heap */
+
+ dn_key S, F; /* start time, finish time */
+ /*
+ * Setting F < S means the timestamp is invalid. We only need
+ * to test this when the queue is empty.
+ */
+};
+
+struct dn_flow_set_64 {
+ user64_addr_t next; /* next flow set in all_flow_sets list */
+
+ u_short fs_nr; /* flow_set number */
+ u_short flags_fs;
+#define DN_HAVE_FLOW_MASK 0x0001
+#define DN_IS_RED 0x0002
+#define DN_IS_GENTLE_RED 0x0004
+#define DN_QSIZE_IS_BYTES 0x0008 /* queue size is measured in bytes */
+#define DN_NOERROR 0x0010 /* do not report ENOBUFS on drops */
+#define DN_IS_PIPE 0x4000
+#define DN_IS_QUEUE 0x8000
+
+ user64_addr_t pipe; /* pointer to parent pipe */
+ u_short parent_nr; /* parent pipe#, 0 if local to a pipe */
+
+ int weight; /* WFQ queue weight */
+ int qsize; /* queue size in slots or bytes */
+ int plr; /* pkt loss rate (2^31-1 means 100%) */
+
+ struct ip_flow_id flow_mask;
+
+ /* hash table of queues onto this flow_set */
+ int rq_size; /* number of slots */
+ int rq_elements; /* active elements */
+ user64_addr_t rq; /* array of rq_size entries */
+
+ u_int32_t last_expired; /* do not expire too frequently */
+ int backlogged; /* #active queues for this flowset */
+
+ /* RED parameters */
+#define SCALE_RED 16
+#define SCALE(x) ( (x) << SCALE_RED )
+#define SCALE_VAL(x) ( (x) >> SCALE_RED )
+#define SCALE_MUL(x, y) ( ( (x) * (y) ) >> SCALE_RED )
+ int w_q; /* queue weight (scaled) */
+ int max_th; /* maximum threshold for queue (scaled) */
+ int min_th; /* minimum threshold for queue (scaled) */
+ int max_p; /* maximum value for p_b (scaled) */
+ u_int c_1; /* max_p/(max_th-min_th) (scaled) */
+ u_int c_2; /* max_p*min_th/(max_th-min_th) (scaled) */
+ u_int c_3; /* for GRED, (1-max_p)/max_th (scaled) */
+ u_int c_4; /* for GRED, 1 - 2*max_p (scaled) */
+ user64_addr_t w_q_lookup; /* lookup table for computing (1-w_q)^t */
+ u_int lookup_depth; /* depth of lookup table */
+ int lookup_step; /* granularity inside the lookup table */
+ int lookup_weight; /* equal to (1-w_q)^t / (1-w_q)^(t+1) */
+ int avg_pkt_size; /* medium packet size */
+ int max_pkt_size; /* max packet size */
+};
+
+struct dn_pipe_64 { /* a pipe */
+ user64_addr_t next;
+
+ int pipe_nr; /* number */
+ int bandwidth; /* really, bytes/tick. */
+ int delay; /* really, ticks */
+
+ user64_addr_t head, tail; /* packets in delay line */
+
+ /* WF2Q+ */
+ struct dn_heap_64 scheduler_heap; /* top extract - key Finish time*/
+ struct dn_heap_64 not_eligible_heap; /* top extract- key Start time */
+ struct dn_heap_64 idle_heap; /* random extract - key Start=Finish time */
+
+ dn_key V; /* virtual time */
+ int sum; /* sum of weights of all active sessions */
+ int numbytes; /* bits I can transmit (more or less). */
+
+ dn_key sched_time; /* time pipe was scheduled in ready_heap */
+
+ /*
+ * When the tx clock come from an interface (if_name[0] != '\0'), its name
+ * is stored below, whereas the ifp is filled when the rule is configured.
+ */
+ char if_name[IFNAMSIZ];
+ user64_addr_t ifp;
+ int ready; /* set if ifp != NULL and we got a signal from it */
+
+ struct dn_flow_set_64 fs; /* used with fixed-rate flows */
+};
+
+#include <sys/eventhandler.h>
+/* Dummynet event handling declarations */
+extern struct eventhandler_lists_ctxt dummynet_evhdlr_ctxt;
+extern void dummynet_init(void);
+
+struct dn_pipe_mini_config {
+ uint32_t bandwidth;
+ uint32_t delay;
+ uint32_t plr;
+};
+
+struct dn_rule_mini_config {
+ uint32_t dir;
+ uint32_t af;
+ uint32_t proto;
+ /*
+ * XXX PF rules actually define ranges of ports and
+ * along with range goes an opcode ((not) equal to, less than
+ * greater than, etc.
+ * For now the following works assuming there's no port range
+ * and the rule is for specific port.
+ * Also the operation is assumed as equal to.
+ */
+ uint32_t src_port;
+ uint32_t dst_port;
+ char ifname[IFXNAMSIZ];
+};
+
+struct dummynet_event {
+ uint32_t dn_event_code;
+ union {
+ struct dn_pipe_mini_config _dnev_pipe_config;
+ struct dn_rule_mini_config _dnev_rule_config;
+ } dn_event;
+};
+
+#define dn_event_pipe_config dn_event._dnev_pipe_config
+#define dn_event_rule_config dn_event._dnev_rule_config
+
+extern void dummynet_event_enqueue_nwk_wq_entry(struct dummynet_event *);
+
+enum {
+ DUMMYNET_RULE_CONFIG,
+ DUMMYNET_RULE_DELETE,
+ DUMMYNET_PIPE_CONFIG,
+ DUMMYNET_PIPE_DELETE,
+ DUMMYNET_NLC_DISABLED,
+};
+
+enum { DN_INOUT, DN_IN, DN_OUT };
/*
- * Return the IPFW rule associated with the dummynet tag; if any.
- * Make sure that the dummynet tag is not reused by lower layers.
+ * The signature for the callback is:
+ * eventhandler_entry_arg __unused
+ * dummynet_event pointer to dummynet event object
*/
-static __inline struct ip_fw *
-ip_dn_claim_rule(struct mbuf *m)
-{
- struct m_tag *mtag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
- KERNEL_TAG_TYPE_DUMMYNET, NULL);
- if (mtag != NULL) {
- mtag->m_tag_type = KERNEL_TAG_TYPE_NONE;
- return (((struct dn_pkt_tag *)(mtag+1))->rule);
- } else
- return (NULL);
-}
-#endif /* KERNEL */
-
+typedef void (*dummynet_event_fn) (struct eventhandler_entry_arg, struct dummynet_event *);
+EVENTHANDLER_DECLARE(dummynet_event, dummynet_event_fn);
+#endif /* BSD_KERNEL_PRIVATE */
#endif /* PRIVATE */
-#endif /* !__LP64__ */
#endif /* _IP_DUMMYNET_H */