/*
- * Copyright (c) 2004-2008 Apple Inc. All rights reserved.
+ * Copyright (c) 2004-2011 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
- *
+ *
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
- *
+ *
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
- *
+ *
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
- *
+ *
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
*
* Implements the "wrappers" to the KEXT.
*/
-#include <kern/machine.h>
-#include <i386/machine_routines.h>
-#include <i386/machine_cpu.h>
-#include <i386/misc_protos.h>
-#include <i386/pmap.h>
#include <i386/asm.h>
+#include <i386/machine_cpu.h>
#include <i386/mp.h>
+#include <i386/machine_routines.h>
#include <i386/proc_reg.h>
+#include <i386/pmap.h>
+#include <i386/misc_protos.h>
+#include <kern/machine.h>
#include <kern/pms.h>
#include <kern/processor.h>
+#include <kern/timer_queue.h>
#include <i386/cpu_threads.h>
#include <i386/pmCPU.h>
#include <i386/cpuid.h>
-#include <i386/rtclock.h>
+#include <i386/rtclock_protos.h>
#include <kern/sched_prim.h>
+#include <i386/lapic.h>
+#include <i386/pal_routines.h>
+#include <sys/kdebug.h>
+#include <i386/tsc.h>
-/*
- * Kernel parameter determining whether threads are halted unconditionally
- * in the idle state. This is the default behavior.
- * See machine_idle() for use.
- */
-int idlehalt = 1;
+#include <kern/sched_urgency.h>
extern int disableConsoleOutput;
-decl_simple_lock_data(,pm_init_lock);
+#define DELAY_UNSET 0xFFFFFFFFFFFFFFFFULL
+
+uint64_t cpu_itime_bins[CPU_ITIME_BINS] = {16 * NSEC_PER_USEC, 32 * NSEC_PER_USEC, 64 * NSEC_PER_USEC, 128 * NSEC_PER_USEC, 256 * NSEC_PER_USEC, 512 * NSEC_PER_USEC, 1024 * NSEC_PER_USEC, 2048 * NSEC_PER_USEC, 4096 * NSEC_PER_USEC, 8192 * NSEC_PER_USEC, 16384 * NSEC_PER_USEC, 32768 * NSEC_PER_USEC};
+uint64_t *cpu_rtime_bins = &cpu_itime_bins[0];
/*
* The following is set when the KEXT loads and initializes.
*/
-pmDispatch_t *pmDispatch = NULL;
-
-static uint32_t pmInitDone = 0;
+pmDispatch_t *pmDispatch = NULL;
+uint32_t pmInitDone = 0;
+static boolean_t earlyTopology = FALSE;
+static uint64_t earlyMaxBusDelay = DELAY_UNSET;
+static uint64_t earlyMaxIntDelay = DELAY_UNSET;
/*
* Initialize the Cstate change code.
void
power_management_init(void)
{
- static boolean_t initialized = FALSE;
-
- /*
- * Initialize the lock for the KEXT initialization.
- */
- if (!initialized) {
- simple_lock_init(&pm_init_lock, 0);
- initialized = TRUE;
- }
+ if (pmDispatch != NULL && pmDispatch->cstateInit != NULL) {
+ (*pmDispatch->cstateInit)();
+ }
+}
- if (pmDispatch != NULL && pmDispatch->cstateInit != NULL)
- (*pmDispatch->cstateInit)();
+static inline void
+machine_classify_interval(uint64_t interval, uint64_t *bins, uint64_t *binvals, uint32_t nbins)
+{
+ uint32_t i;
+ for (i = 0; i < nbins; i++) {
+ if (interval < binvals[i]) {
+ bins[i]++;
+ break;
+ }
+ }
}
+uint64_t idle_pending_timers_processed;
+uint32_t idle_entry_timer_processing_hdeadline_threshold = 5000000;
+
/*
* Called when the CPU is idle. It calls into the power management kext
* to determine the best way to idle the CPU.
void
machine_idle(void)
{
- cpu_data_t *my_cpu = current_cpu_datap();
+ cpu_data_t *my_cpu = current_cpu_datap();
+ __unused uint32_t cnum = my_cpu->cpu_number;
+ uint64_t ctime, rtime, itime;
+#if CST_DEMOTION_DEBUG
+ processor_t cproc = my_cpu->cpu_processor;
+ uint64_t cwakeups = my_cpu->cpu_wakeups_issued_total;
+#endif /* CST_DEMOTION_DEBUG */
+ uint64_t esdeadline, ehdeadline;
+ boolean_t do_process_pending_timers = FALSE;
+
+ ctime = mach_absolute_time();
+ esdeadline = my_cpu->rtclock_timer.queue.earliest_soft_deadline;
+ ehdeadline = my_cpu->rtclock_timer.deadline;
+/* Determine if pending timers exist */
+ if ((ctime >= esdeadline) && (ctime < ehdeadline) &&
+ ((ehdeadline - ctime) < idle_entry_timer_processing_hdeadline_threshold)) {
+ idle_pending_timers_processed++;
+ do_process_pending_timers = TRUE;
+ goto machine_idle_exit;
+ } else {
+ TCOAL_DEBUG(0xCCCC0000, ctime, my_cpu->rtclock_timer.queue.earliest_soft_deadline, my_cpu->rtclock_timer.deadline, idle_pending_timers_processed, 0);
+ }
- if (my_cpu == NULL)
- goto out;
+ my_cpu->lcpu.state = LCPU_IDLE;
+ DBGLOG(cpu_handle, cpu_number(), MP_IDLE);
+ MARK_CPU_IDLE(cnum);
+
+ rtime = ctime - my_cpu->cpu_ixtime;
+
+ my_cpu->cpu_rtime_total += rtime;
+ machine_classify_interval(rtime, &my_cpu->cpu_rtimes[0], &cpu_rtime_bins[0], CPU_RTIME_BINS);
+#if CST_DEMOTION_DEBUG
+ uint32_t cl = 0, ch = 0;
+ uint64_t c3res, c6res, c7res;
+ rdmsr_carefully(MSR_IA32_CORE_C3_RESIDENCY, &cl, &ch);
+ c3res = ((uint64_t)ch << 32) | cl;
+ rdmsr_carefully(MSR_IA32_CORE_C6_RESIDENCY, &cl, &ch);
+ c6res = ((uint64_t)ch << 32) | cl;
+ rdmsr_carefully(MSR_IA32_CORE_C7_RESIDENCY, &cl, &ch);
+ c7res = ((uint64_t)ch << 32) | cl;
+#endif
+
+ if (pmInitDone) {
+ /*
+ * Handle case where ml_set_maxbusdelay() or ml_set_maxintdelay()
+ * were called prior to the CPU PM kext being registered. We do
+ * this here since we know at this point the values will be first
+ * used since idle is where the decisions using these values is made.
+ */
+ if (earlyMaxBusDelay != DELAY_UNSET) {
+ ml_set_maxbusdelay((uint32_t)(earlyMaxBusDelay & 0xFFFFFFFF));
+ }
+ if (earlyMaxIntDelay != DELAY_UNSET) {
+ ml_set_maxintdelay(earlyMaxIntDelay);
+ }
+ }
- /*
- * If idlehalt isn't set, then don't do any power management related
- * idle handling.
- */
- if (!idlehalt)
- goto out;
+ if (pmInitDone
+ && pmDispatch != NULL
+ && pmDispatch->MachineIdle != NULL) {
+ (*pmDispatch->MachineIdle)(0x7FFFFFFFFFFFFFFFULL);
+ } else {
+ /*
+ * If no power management, re-enable interrupts and halt.
+ * This will keep the CPU from spinning through the scheduler
+ * and will allow at least some minimal power savings (but it
+ * cause problems in some MP configurations w.r.t. the APIC
+ * stopping during a GV3 transition).
+ */
+ pal_hlt();
+ /* Once woken, re-disable interrupts. */
+ pal_cli();
+ }
- my_cpu->lcpu.state = LCPU_IDLE;
- my_cpu->lcpu.flags |= X86CORE_FL_IDLE;
- DBGLOG(cpu_handle, cpu_number(), MP_IDLE);
- MARK_CPU_IDLE(cpu_number());
+ /*
+ * Mark the CPU as running again.
+ */
+ MARK_CPU_ACTIVE(cnum);
+ DBGLOG(cpu_handle, cnum, MP_UNIDLE);
+ my_cpu->lcpu.state = LCPU_RUN;
+ uint64_t ixtime = my_cpu->cpu_ixtime = mach_absolute_time();
+ itime = ixtime - ctime;
+ my_cpu->cpu_idle_exits++;
+ my_cpu->cpu_itime_total += itime;
+ machine_classify_interval(itime, &my_cpu->cpu_itimes[0], &cpu_itime_bins[0], CPU_ITIME_BINS);
+#if CST_DEMOTION_DEBUG
+ cl = ch = 0;
+ rdmsr_carefully(MSR_IA32_CORE_C3_RESIDENCY, &cl, &ch);
+ c3res = (((uint64_t)ch << 32) | cl) - c3res;
+ rdmsr_carefully(MSR_IA32_CORE_C6_RESIDENCY, &cl, &ch);
+ c6res = (((uint64_t)ch << 32) | cl) - c6res;
+ rdmsr_carefully(MSR_IA32_CORE_C7_RESIDENCY, &cl, &ch);
+ c7res = (((uint64_t)ch << 32) | cl) - c7res;
+
+ uint64_t ndelta = itime - tmrCvt(c3res + c6res + c7res, tscFCvtt2n);
+ KERNEL_DEBUG_CONSTANT(0xcead0000, ndelta, itime, c7res, c6res, c3res);
+ if ((itime > 1000000) && (ndelta > 250000)) {
+ KERNEL_DEBUG_CONSTANT(0xceae0000, ndelta, itime, c7res, c6res, c3res);
+ }
+#endif
- if (pmInitDone
- && pmDispatch != NULL
- && pmDispatch->cstateMachineIdle != NULL)
- (*pmDispatch->cstateMachineIdle)(0x7FFFFFFFFFFFFFFFULL);
- else {
+machine_idle_exit:
/*
- * If no power management, re-enable interrupts and halt.
- * This will keep the CPU from spinning through the scheduler
- * and will allow at least some minimal power savings (but it
- * cause problems in some MP configurations w.r.t. the APIC
- * stopping during a GV3 transition).
+ * Re-enable interrupts.
*/
- __asm__ volatile ("sti; hlt");
- }
- /*
- * Mark the CPU as running again.
- */
- MARK_CPU_ACTIVE(cpu_number());
- DBGLOG(cpu_handle, cpu_number(), MP_UNIDLE);
- my_cpu->lcpu.flags &= ~(X86CORE_FL_IDLE | X86CORE_FL_WAKEUP);
- my_cpu->lcpu.state = LCPU_RUN;
+ pal_sti();
+
+ if (do_process_pending_timers) {
+ TCOAL_DEBUG(0xBBBB0000 | DBG_FUNC_START, ctime, esdeadline, ehdeadline, idle_pending_timers_processed, 0);
+
+ /* Adjust to reflect that this isn't truly a package idle exit */
+ __sync_fetch_and_sub(&my_cpu->lcpu.package->num_idle, 1);
+ lapic_timer_swi(); /* Trigger software timer interrupt */
+ __sync_fetch_and_add(&my_cpu->lcpu.package->num_idle, 1);
+
+ TCOAL_DEBUG(0xBBBB0000 | DBG_FUNC_END, ctime, esdeadline, idle_pending_timers_processed, 0, 0);
+ }
+#if CST_DEMOTION_DEBUG
+ uint64_t nwakeups = my_cpu->cpu_wakeups_issued_total;
- /*
- * Re-enable interrupts.
- */
- out:
- __asm__ volatile("sti");
+ if ((nwakeups == cwakeups) && (topoParms.nLThreadsPerPackage == my_cpu->lcpu.package->num_idle)) {
+ KERNEL_DEBUG_CONSTANT(0xceaa0000, cwakeups, 0, 0, 0, 0);
+ }
+#endif
}
/*
void
pmCPUHalt(uint32_t reason)
{
- cpu_data_t *cpup = current_cpu_datap();
-
- switch (reason) {
- case PM_HALT_DEBUG:
- cpup->lcpu.state = LCPU_PAUSE;
- __asm__ volatile ("wbinvd; hlt");
- break;
-
- case PM_HALT_PANIC:
- cpup->lcpu.state = LCPU_PAUSE;
- __asm__ volatile ("cli; wbinvd; hlt");
- break;
-
- case PM_HALT_NORMAL:
- default:
- __asm__ volatile ("cli");
-
- if (pmInitDone
- && pmDispatch != NULL
- && pmDispatch->pmCPUHalt != NULL) {
- /*
- * Halt the CPU (and put it in a low power state.
- */
- (*pmDispatch->pmCPUHalt)();
-
- /*
- * We've exited halt, so get the the CPU schedulable again.
- */
- i386_init_slave_fast();
-
- panic("init_slave_fast returned");
- } else {
- /*
- * If no power managment and a processor is taken off-line,
- * then invalidate the cache and halt it (it will not be able
- * to be brought back on-line without resetting the CPU).
- */
- __asm__ volatile ("wbinvd");
- cpup->lcpu.state = LCPU_HALT;
- __asm__ volatile ( "wbinvd; hlt" );
-
- panic("back from Halt");
+ cpu_data_t *cpup = current_cpu_datap();
+
+ switch (reason) {
+ case PM_HALT_DEBUG:
+ cpup->lcpu.state = LCPU_PAUSE;
+ pal_stop_cpu(FALSE);
+ break;
+
+ case PM_HALT_PANIC:
+ cpup->lcpu.state = LCPU_PAUSE;
+ pal_stop_cpu(TRUE);
+ break;
+
+ case PM_HALT_NORMAL:
+ case PM_HALT_SLEEP:
+ default:
+ pal_cli();
+
+ if (pmInitDone
+ && pmDispatch != NULL
+ && pmDispatch->pmCPUHalt != NULL) {
+ /*
+ * Halt the CPU (and put it in a low power state.
+ */
+ (*pmDispatch->pmCPUHalt)();
+
+ /*
+ * We've exited halt, so get the CPU schedulable again.
+ * - by calling the fast init routine for a slave, or
+ * - by returning if we're the master processor.
+ */
+ if (cpup->cpu_number != master_cpu) {
+ i386_init_slave_fast();
+ panic("init_slave_fast returned");
+ }
+ } else {
+ /*
+ * If no power managment and a processor is taken off-line,
+ * then invalidate the cache and halt it (it will not be able
+ * to be brought back on-line without resetting the CPU).
+ */
+ __asm__ volatile ("wbinvd");
+ cpup->lcpu.state = LCPU_HALT;
+ pal_stop_cpu(FALSE);
+
+ panic("back from Halt");
+ }
+
+ break;
}
- break;
- }
}
void
pmMarkAllCPUsOff(void)
{
- if (pmInitDone
- && pmDispatch != NULL
- && pmDispatch->markAllCPUsOff != NULL)
- (*pmDispatch->markAllCPUsOff)();
+ if (pmInitDone
+ && pmDispatch != NULL
+ && pmDispatch->markAllCPUsOff != NULL) {
+ (*pmDispatch->markAllCPUsOff)();
+ }
}
static void
pmInitComplete(void)
{
- pmInitDone = 1;
+ if (earlyTopology
+ && pmDispatch != NULL
+ && pmDispatch->pmCPUStateInit != NULL) {
+ (*pmDispatch->pmCPUStateInit)();
+ earlyTopology = FALSE;
+ }
+ pmInitDone = 1;
}
-static x86_lcpu_t *
+x86_lcpu_t *
pmGetLogicalCPU(int cpu)
{
- return(cpu_to_lcpu(cpu));
+ return cpu_to_lcpu(cpu);
}
-static x86_lcpu_t *
+x86_lcpu_t *
pmGetMyLogicalCPU(void)
{
- cpu_data_t *cpup = current_cpu_datap();
+ cpu_data_t *cpup = current_cpu_datap();
- return(&cpup->lcpu);
+ return &cpup->lcpu;
}
static x86_core_t *
pmGetCore(int cpu)
{
- return(cpu_to_core(cpu));
+ return cpu_to_core(cpu);
}
static x86_core_t *
pmGetMyCore(void)
{
- cpu_data_t *cpup = current_cpu_datap();
+ cpu_data_t *cpup = current_cpu_datap();
- return(cpup->lcpu.core);
+ return cpup->lcpu.core;
}
static x86_die_t *
pmGetDie(int cpu)
{
- return(cpu_to_die(cpu));
+ return cpu_to_die(cpu);
}
static x86_die_t *
pmGetMyDie(void)
{
- cpu_data_t *cpup = current_cpu_datap();
+ cpu_data_t *cpup = current_cpu_datap();
- return(cpup->lcpu.die);
+ return cpup->lcpu.die;
}
static x86_pkg_t *
pmGetPackage(int cpu)
{
- return(cpu_to_package(cpu));
+ return cpu_to_package(cpu);
}
static x86_pkg_t *
pmGetMyPackage(void)
{
- cpu_data_t *cpup = current_cpu_datap();
+ cpu_data_t *cpup = current_cpu_datap();
- return(cpup->lcpu.package);
+ return cpup->lcpu.package;
}
static void
pmLockCPUTopology(int lock)
{
- if (lock) {
- simple_lock(&x86_topo_lock);
- } else {
- simple_unlock(&x86_topo_lock);
- }
+ if (lock) {
+ mp_safe_spin_lock(&x86_topo_lock);
+ } else {
+ simple_unlock(&x86_topo_lock);
+ }
}
/*
* Called to get the next deadline that has been set by the
* power management code.
+ * Note: a return of 0 from AICPM and this routine signifies
+ * that no deadline is set.
*/
uint64_t
pmCPUGetDeadline(cpu_data_t *cpu)
{
- uint64_t deadline = EndOfAllTime;
+ uint64_t deadline = 0;
- if (pmInitDone
- && pmDispatch != NULL
- && pmDispatch->GetDeadline != NULL)
- deadline = (*pmDispatch->GetDeadline)(&cpu->lcpu);
+ if (pmInitDone
+ && pmDispatch != NULL
+ && pmDispatch->GetDeadline != NULL) {
+ deadline = (*pmDispatch->GetDeadline)(&cpu->lcpu);
+ }
- return(deadline);
+ return deadline;
}
/*
* Called to determine if the supplied deadline or the power management
* deadline is sooner. Returns which ever one is first.
*/
+
uint64_t
pmCPUSetDeadline(cpu_data_t *cpu, uint64_t deadline)
{
- if (pmInitDone
- && pmDispatch != NULL
- && pmDispatch->SetDeadline != NULL)
- deadline = (*pmDispatch->SetDeadline)(&cpu->lcpu, deadline);
+ if (pmInitDone
+ && pmDispatch != NULL
+ && pmDispatch->SetDeadline != NULL) {
+ deadline = (*pmDispatch->SetDeadline)(&cpu->lcpu, deadline);
+ }
- return(deadline);
+ return deadline;
}
/*
void
pmCPUDeadline(cpu_data_t *cpu)
{
- if (pmInitDone
- && pmDispatch != NULL
- && pmDispatch->Deadline != NULL)
- (*pmDispatch->Deadline)(&cpu->lcpu);
+ if (pmInitDone
+ && pmDispatch != NULL
+ && pmDispatch->Deadline != NULL) {
+ (*pmDispatch->Deadline)(&cpu->lcpu);
+ }
}
/*
boolean_t
pmCPUExitIdle(cpu_data_t *cpu)
{
- boolean_t do_ipi;
+ boolean_t do_ipi;
- cpu->lcpu.flags |= X86CORE_FL_WAKEUP;
- if (pmInitDone
- && pmDispatch != NULL
- && pmDispatch->exitIdle != NULL)
- do_ipi = (*pmDispatch->exitIdle)(&cpu->lcpu);
- else
- do_ipi = TRUE;
-
- if (do_ipi)
- cpu->lcpu.flags &= ~X86CORE_FL_WAKEUP;
+ if (pmInitDone
+ && pmDispatch != NULL
+ && pmDispatch->exitIdle != NULL) {
+ do_ipi = (*pmDispatch->exitIdle)(&cpu->lcpu);
+ } else {
+ do_ipi = TRUE;
+ }
- return(do_ipi);
+ return do_ipi;
}
kern_return_t
pmCPUExitHalt(int cpu)
{
- kern_return_t rc = KERN_INVALID_ARGUMENT;
+ kern_return_t rc = KERN_INVALID_ARGUMENT;
+
+ if (pmInitDone
+ && pmDispatch != NULL
+ && pmDispatch->exitHalt != NULL) {
+ rc = pmDispatch->exitHalt(cpu_to_lcpu(cpu));
+ }
+
+ return rc;
+}
+
+kern_return_t
+pmCPUExitHaltToOff(int cpu)
+{
+ kern_return_t rc = KERN_SUCCESS;
- if (pmInitDone
- && pmDispatch != NULL
- && pmDispatch->exitHalt != NULL)
- rc = pmDispatch->exitHalt(cpu_to_lcpu(cpu));
+ if (pmInitDone
+ && pmDispatch != NULL
+ && pmDispatch->exitHaltToOff != NULL) {
+ rc = pmDispatch->exitHaltToOff(cpu_to_lcpu(cpu));
+ }
- return(rc);
+ return rc;
}
/*
void
pmCPUStateInit(void)
{
- if (pmDispatch != NULL && pmDispatch->pmCPUStateInit != NULL)
- (*pmDispatch->pmCPUStateInit)();
+ if (pmDispatch != NULL && pmDispatch->pmCPUStateInit != NULL) {
+ (*pmDispatch->pmCPUStateInit)();
+ } else {
+ earlyTopology = TRUE;
+ }
}
/*
void
pmCPUMarkRunning(cpu_data_t *cpu)
{
- cpu_data_t *cpup = current_cpu_datap();
+ cpu_data_t *cpup = current_cpu_datap();
- if (pmInitDone
- && pmDispatch != NULL
- && pmDispatch->markCPURunning != NULL)
- (*pmDispatch->markCPURunning)(&cpu->lcpu);
- else
- cpup->lcpu.state = LCPU_RUN;
+ if (pmInitDone
+ && pmDispatch != NULL
+ && pmDispatch->markCPURunning != NULL) {
+ (*pmDispatch->markCPURunning)(&cpu->lcpu);
+ } else {
+ cpup->lcpu.state = LCPU_RUN;
+ }
}
/*
int
pmCPUControl(uint32_t cmd, void *datap)
{
- int rc = -1;
+ int rc = -1;
- if (pmDispatch != NULL
- && pmDispatch->pmCPUControl != NULL)
- rc = (*pmDispatch->pmCPUControl)(cmd, datap);
+ if (pmDispatch != NULL
+ && pmDispatch->pmCPUControl != NULL) {
+ rc = (*pmDispatch->pmCPUControl)(cmd, datap);
+ }
- return(rc);
+ return rc;
}
/*
void
pmTimerSave(void)
{
- if (pmDispatch != NULL
- && pmDispatch->pmTimerStateSave != NULL)
- (*pmDispatch->pmTimerStateSave)();
+ if (pmDispatch != NULL
+ && pmDispatch->pmTimerStateSave != NULL) {
+ (*pmDispatch->pmTimerStateSave)();
+ }
}
/*
void
pmTimerRestore(void)
{
- if (pmDispatch != NULL
- && pmDispatch->pmTimerStateRestore != NULL)
- (*pmDispatch->pmTimerStateRestore)();
+ if (pmDispatch != NULL
+ && pmDispatch->pmTimerStateRestore != NULL) {
+ (*pmDispatch->pmTimerStateRestore)();
+ }
}
/*
unsigned
ml_get_maxsnoop(void)
{
- uint64_t max_snoop = 0;
+ uint64_t max_snoop = 0;
- if (pmDispatch != NULL
- && pmDispatch->getMaxSnoop != NULL)
- max_snoop = pmDispatch->getMaxSnoop();
+ if (pmInitDone
+ && pmDispatch != NULL
+ && pmDispatch->getMaxSnoop != NULL) {
+ max_snoop = pmDispatch->getMaxSnoop();
+ }
- return((unsigned)(max_snoop & 0xffffffff));
+ return (unsigned)(max_snoop & 0xffffffff);
}
uint32_t
ml_get_maxbusdelay(void)
{
- uint64_t max_delay = 0;
+ uint64_t max_delay = 0;
- if (pmDispatch != NULL
- && pmDispatch->getMaxBusDelay != NULL)
- max_delay = pmDispatch->getMaxBusDelay();
+ if (pmInitDone
+ && pmDispatch != NULL
+ && pmDispatch->getMaxBusDelay != NULL) {
+ max_delay = pmDispatch->getMaxBusDelay();
+ }
- return((uint32_t)(max_delay & 0xffffffff));
+ return (uint32_t)(max_delay & 0xffffffff);
}
/*
- * Set the maximum delay time allowed for snoop on the bus.
- *
- * Note that this value will be compared to the amount of time that it takes
- * to transition from a non-snooping power state (C4) to a snooping state (C2).
- * If maxBusDelay is less than C4C2SnoopDelay,
- * we will not enter the lowest power state.
+ * Advertise a memory access latency tolerance of "mdelay" ns
*/
void
ml_set_maxbusdelay(uint32_t mdelay)
{
- uint64_t maxdelay = mdelay;
+ uint64_t maxdelay = mdelay;
- if (pmDispatch != NULL
- && pmDispatch->setMaxBusDelay != NULL)
- pmDispatch->setMaxBusDelay(maxdelay);
+ if (pmDispatch != NULL
+ && pmDispatch->setMaxBusDelay != NULL) {
+ earlyMaxBusDelay = DELAY_UNSET;
+ pmDispatch->setMaxBusDelay(maxdelay);
+ } else {
+ earlyMaxBusDelay = maxdelay;
+ }
}
uint64_t
ml_get_maxintdelay(void)
{
- uint64_t max_delay = 0;
+ uint64_t max_delay = 0;
- if (pmDispatch != NULL
- && pmDispatch->getMaxIntDelay != NULL)
- max_delay = pmDispatch->getMaxIntDelay();
+ if (pmDispatch != NULL
+ && pmDispatch->getMaxIntDelay != NULL) {
+ max_delay = pmDispatch->getMaxIntDelay();
+ }
- return(max_delay);
+ return max_delay;
}
/*
void
ml_set_maxintdelay(uint64_t mdelay)
{
- if (pmDispatch != NULL
- && pmDispatch->setMaxIntDelay != NULL)
- pmDispatch->setMaxIntDelay(mdelay);
+ if (pmDispatch != NULL
+ && pmDispatch->setMaxIntDelay != NULL) {
+ earlyMaxIntDelay = DELAY_UNSET;
+ pmDispatch->setMaxIntDelay(mdelay);
+ } else {
+ earlyMaxIntDelay = mdelay;
+ }
+}
+
+boolean_t
+ml_get_interrupt_prewake_applicable()
+{
+ boolean_t applicable = FALSE;
+
+ if (pmInitDone
+ && pmDispatch != NULL
+ && pmDispatch->pmInterruptPrewakeApplicable != NULL) {
+ applicable = pmDispatch->pmInterruptPrewakeApplicable();
+ }
+
+ return applicable;
}
/*
void
pmSafeMode(x86_lcpu_t *lcpu, uint32_t flags)
{
- if (pmDispatch != NULL
- && pmDispatch->pmCPUSafeMode != NULL)
- pmDispatch->pmCPUSafeMode(lcpu, flags);
- else {
- /*
- * Do something reasonable if the KEXT isn't present.
- *
- * We only look at the PAUSE and RESUME flags. The other flag(s)
- * will not make any sense without the KEXT, so just ignore them.
- *
- * We set the CPU's state to indicate that it's halted. If this
- * is the CPU we're currently running on, then spin until the
- * state becomes non-halted.
- */
- if (flags & PM_SAFE_FL_PAUSE) {
- lcpu->state = LCPU_PAUSE;
- if (lcpu == x86_lcpu()) {
- while (lcpu->state == LCPU_PAUSE)
- cpu_pause();
- }
- }
-
- /*
- * Clear the halted flag for the specified CPU, that will
- * get it out of it's spin loop.
- */
- if (flags & PM_SAFE_FL_RESUME) {
- lcpu->state = LCPU_RUN;
+ if (pmDispatch != NULL
+ && pmDispatch->pmCPUSafeMode != NULL) {
+ pmDispatch->pmCPUSafeMode(lcpu, flags);
+ } else {
+ /*
+ * Do something reasonable if the KEXT isn't present.
+ *
+ * We only look at the PAUSE and RESUME flags. The other flag(s)
+ * will not make any sense without the KEXT, so just ignore them.
+ *
+ * We set the CPU's state to indicate that it's halted. If this
+ * is the CPU we're currently running on, then spin until the
+ * state becomes non-halted.
+ */
+ if (flags & PM_SAFE_FL_PAUSE) {
+ lcpu->state = LCPU_PAUSE;
+ if (lcpu == x86_lcpu()) {
+ while (lcpu->state == LCPU_PAUSE) {
+ cpu_pause();
+ }
+ }
+ }
+
+ /*
+ * Clear the halted flag for the specified CPU, that will
+ * get it out of it's spin loop.
+ */
+ if (flags & PM_SAFE_FL_RESUME) {
+ lcpu->state = LCPU_RUN;
+ }
}
- }
}
-static uint32_t saved_run_count = 0;
+static uint32_t saved_run_count = 0;
void
machine_run_count(uint32_t count)
{
- if (pmDispatch != NULL
- && pmDispatch->pmSetRunCount != NULL)
- pmDispatch->pmSetRunCount(count);
- else
- saved_run_count = count;
+ if (pmDispatch != NULL
+ && pmDispatch->pmSetRunCount != NULL) {
+ pmDispatch->pmSetRunCount(count);
+ } else {
+ saved_run_count = count;
+ }
}
-boolean_t
-machine_cpu_is_inactive(int cpu)
+processor_t
+machine_choose_processor(processor_set_t pset,
+ processor_t preferred)
{
- if (pmDispatch != NULL
- && pmDispatch->pmIsCPUUnAvailable != NULL)
- return(pmDispatch->pmIsCPUUnAvailable(cpu_to_lcpu(cpu)));
- else
- return(FALSE);
+ int startCPU;
+ int endCPU;
+ int preferredCPU;
+ int chosenCPU;
+
+ if (!pmInitDone) {
+ return preferred;
+ }
+
+ if (pset == NULL) {
+ startCPU = -1;
+ endCPU = -1;
+ } else {
+ startCPU = pset->cpu_set_low;
+ endCPU = pset->cpu_set_hi;
+ }
+
+ if (preferred == NULL) {
+ preferredCPU = -1;
+ } else {
+ preferredCPU = preferred->cpu_id;
+ }
+
+ if (pmDispatch != NULL
+ && pmDispatch->pmChooseCPU != NULL) {
+ chosenCPU = pmDispatch->pmChooseCPU(startCPU, endCPU, preferredCPU);
+
+ if (chosenCPU == -1) {
+ return NULL;
+ }
+ return cpu_datap(chosenCPU)->cpu_processor;
+ }
+
+ return preferred;
+}
+
+static int
+pmThreadGetUrgency(uint64_t *rt_period, uint64_t *rt_deadline)
+{
+ thread_urgency_t urgency;
+ uint64_t arg1, arg2;
+
+ urgency = thread_get_urgency(THREAD_NULL, &arg1, &arg2);
+
+ if (urgency == THREAD_URGENCY_REAL_TIME) {
+ if (rt_period != NULL) {
+ *rt_period = arg1;
+ }
+
+ if (rt_deadline != NULL) {
+ *rt_deadline = arg2;
+ }
+ }
+
+ return (int)urgency;
+}
+
+#if DEBUG
+uint32_t urgency_stats[64][THREAD_URGENCY_MAX];
+#endif
+
+#define URGENCY_NOTIFICATION_ASSERT_NS (5 * 1000 * 1000)
+uint64_t urgency_notification_assert_abstime_threshold, urgency_notification_max_recorded;
+
+void
+thread_tell_urgency(thread_urgency_t urgency,
+ uint64_t rt_period,
+ uint64_t rt_deadline,
+ uint64_t sched_latency,
+ thread_t nthread)
+{
+ uint64_t urgency_notification_time_start = 0, delta;
+ boolean_t urgency_assert = (urgency_notification_assert_abstime_threshold != 0);
+ assert(get_preemption_level() > 0 || ml_get_interrupts_enabled() == FALSE);
+#if DEBUG
+ urgency_stats[cpu_number() % 64][urgency]++;
+#endif
+ if (!pmInitDone
+ || pmDispatch == NULL
+ || pmDispatch->pmThreadTellUrgency == NULL) {
+ return;
+ }
+
+ SCHED_DEBUG_PLATFORM_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_URGENCY) | DBG_FUNC_START, urgency, rt_period, rt_deadline, sched_latency, 0);
+
+ if (__improbable((urgency_assert == TRUE))) {
+ urgency_notification_time_start = mach_absolute_time();
+ }
+
+ current_cpu_datap()->cpu_nthread = nthread;
+ pmDispatch->pmThreadTellUrgency(urgency, rt_period, rt_deadline);
+
+ if (__improbable((urgency_assert == TRUE))) {
+ delta = mach_absolute_time() - urgency_notification_time_start;
+
+ if (__improbable(delta > urgency_notification_max_recorded)) {
+ /* This is not synchronized, but it doesn't matter
+ * if we (rarely) miss an event, as it is statistically
+ * unlikely that it will never recur.
+ */
+ urgency_notification_max_recorded = delta;
+
+ if (__improbable((delta > urgency_notification_assert_abstime_threshold) && !machine_timeout_suspended())) {
+ panic("Urgency notification callout %p exceeded threshold, 0x%llx abstime units", pmDispatch->pmThreadTellUrgency, delta);
+ }
+ }
+ }
+
+ SCHED_DEBUG_PLATFORM_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_URGENCY) | DBG_FUNC_END, urgency, rt_period, rt_deadline, 0, 0);
+}
+
+void
+machine_thread_going_on_core(__unused thread_t new_thread,
+ __unused thread_urgency_t urgency,
+ __unused uint64_t sched_latency,
+ __unused uint64_t same_pri_latency,
+ __unused uint64_t dispatch_time)
+{
+}
+
+void
+machine_thread_going_off_core(thread_t old_thread, boolean_t thread_terminating,
+ uint64_t last_dispatch, boolean_t thread_runnable)
+{
+ if (!pmInitDone
+ || pmDispatch == NULL
+ || pmDispatch->pmThreadGoingOffCore == NULL) {
+ return;
+ }
+
+ pmDispatch->pmThreadGoingOffCore(old_thread, thread_terminating,
+ last_dispatch, thread_runnable);
+}
+
+void
+machine_max_runnable_latency(__unused uint64_t bg_max_latency,
+ __unused uint64_t default_max_latency,
+ __unused uint64_t realtime_max_latency)
+{
+}
+
+void
+machine_work_interval_notify(__unused thread_t thread,
+ __unused struct kern_work_interval_args* kwi_args)
+{
+}
+
+
+void
+machine_switch_perfcontrol_context(__unused perfcontrol_event event,
+ __unused uint64_t timestamp,
+ __unused uint32_t flags,
+ __unused uint64_t new_thread_same_pri_latency,
+ __unused thread_t old,
+ __unused thread_t new)
+{
+}
+
+void
+machine_switch_perfcontrol_state_update(__unused perfcontrol_event event,
+ __unused uint64_t timestamp,
+ __unused uint32_t flags,
+ __unused thread_t thread)
+{
+}
+
+void
+active_rt_threads(boolean_t active)
+{
+ if (!pmInitDone
+ || pmDispatch == NULL
+ || pmDispatch->pmActiveRTThreads == NULL) {
+ return;
+ }
+
+ pmDispatch->pmActiveRTThreads(active);
}
static uint32_t
pmGetSavedRunCount(void)
{
- return(saved_run_count);
+ return saved_run_count;
}
/*
* Returns the root of the package tree.
*/
-static x86_pkg_t *
+x86_pkg_t *
pmGetPkgRoot(void)
{
- return(x86_pkgs);
+ return x86_pkgs;
}
static boolean_t
pmCPUGetHibernate(int cpu)
{
- return(cpu_datap(cpu)->cpu_hibernate);
+ return cpu_datap(cpu)->cpu_hibernate;
}
-static processor_t
+processor_t
pmLCPUtoProcessor(int lcpu)
{
- return(cpu_datap(lcpu)->cpu_processor);
+ return cpu_datap(lcpu)->cpu_processor;
}
static void
pmReSyncDeadlines(int cpu)
{
- static boolean_t registered = FALSE;
+ static boolean_t registered = FALSE;
+
+ if (!registered) {
+ PM_interrupt_register(&timer_resync_deadlines);
+ registered = TRUE;
+ }
+
+ if ((uint32_t)cpu == current_cpu_datap()->lcpu.cpu_num) {
+ timer_resync_deadlines();
+ } else {
+ cpu_PM_interrupt(cpu);
+ }
+}
+
+static void
+pmSendIPI(int cpu)
+{
+ lapic_send_ipi(cpu, LAPIC_PM_INTERRUPT);
+}
- if (!registered) {
- PM_interrupt_register(&etimer_resync_deadlines);
- registered = TRUE;
- }
+static void
+pmGetNanotimeInfo(pm_rtc_nanotime_t *rtc_nanotime)
+{
+ /*
+ * Make sure that nanotime didn't change while we were reading it.
+ */
+ do {
+ rtc_nanotime->generation = pal_rtc_nanotime_info.generation; /* must be first */
+ rtc_nanotime->tsc_base = pal_rtc_nanotime_info.tsc_base;
+ rtc_nanotime->ns_base = pal_rtc_nanotime_info.ns_base;
+ rtc_nanotime->scale = pal_rtc_nanotime_info.scale;
+ rtc_nanotime->shift = pal_rtc_nanotime_info.shift;
+ } while (pal_rtc_nanotime_info.generation != 0
+ && rtc_nanotime->generation != pal_rtc_nanotime_info.generation);
+}
- if ((uint32_t)cpu == current_cpu_datap()->lcpu.cpu_num)
- etimer_resync_deadlines();
- else
- cpu_PM_interrupt(cpu);
+uint32_t
+pmTimerQueueMigrate(int target_cpu)
+{
+ /* Call the etimer code to do this. */
+ return (target_cpu != cpu_number())
+ ? timer_queue_migrate_cpu(target_cpu)
+ : 0;
}
+
/*
* Called by the power management kext to register itself and to get the
* callbacks it might need into other kernel functions. This interface
*/
void
pmKextRegister(uint32_t version, pmDispatch_t *cpuFuncs,
- pmCallBacks_t *callbacks)
-{
- if (callbacks != NULL && version == PM_DISPATCH_VERSION) {
- callbacks->setRTCPop = setPop;
- callbacks->resyncDeadlines = pmReSyncDeadlines;
- callbacks->initComplete = pmInitComplete;
- callbacks->GetLCPU = pmGetLogicalCPU;
- callbacks->GetCore = pmGetCore;
- callbacks->GetDie = pmGetDie;
- callbacks->GetPackage = pmGetPackage;
- callbacks->GetMyLCPU = pmGetMyLogicalCPU;
- callbacks->GetMyCore = pmGetMyCore;
- callbacks->GetMyDie = pmGetMyDie;
- callbacks->GetMyPackage = pmGetMyPackage;
- callbacks->GetPkgRoot = pmGetPkgRoot;
- callbacks->LockCPUTopology = pmLockCPUTopology;
- callbacks->GetHibernate = pmCPUGetHibernate;
- callbacks->LCPUtoProcessor = pmLCPUtoProcessor;
- callbacks->ThreadBind = thread_bind;
- callbacks->GetSavedRunCount = pmGetSavedRunCount;
- callbacks->topoParms = &topoParms;
- } else {
- panic("Version mis-match between Kernel and CPU PM");
- }
-
- if (cpuFuncs != NULL) {
- pmDispatch = cpuFuncs;
- }
-}
-
-/*
- * Unregisters the power management functions from the kext.
- */
-void
-pmUnRegister(pmDispatch_t *cpuFuncs)
+ pmCallBacks_t *callbacks)
{
- if (cpuFuncs != NULL && pmDispatch == cpuFuncs) {
- pmDispatch = NULL;
- }
-}
+ if (callbacks != NULL && version == PM_DISPATCH_VERSION) {
+ callbacks->setRTCPop = setPop;
+ callbacks->resyncDeadlines = pmReSyncDeadlines;
+ callbacks->initComplete = pmInitComplete;
+ callbacks->GetLCPU = pmGetLogicalCPU;
+ callbacks->GetCore = pmGetCore;
+ callbacks->GetDie = pmGetDie;
+ callbacks->GetPackage = pmGetPackage;
+ callbacks->GetMyLCPU = pmGetMyLogicalCPU;
+ callbacks->GetMyCore = pmGetMyCore;
+ callbacks->GetMyDie = pmGetMyDie;
+ callbacks->GetMyPackage = pmGetMyPackage;
+ callbacks->GetPkgRoot = pmGetPkgRoot;
+ callbacks->LockCPUTopology = pmLockCPUTopology;
+ callbacks->GetHibernate = pmCPUGetHibernate;
+ callbacks->LCPUtoProcessor = pmLCPUtoProcessor;
+ callbacks->ThreadBind = thread_bind;
+ callbacks->GetSavedRunCount = pmGetSavedRunCount;
+ callbacks->GetNanotimeInfo = pmGetNanotimeInfo;
+ callbacks->ThreadGetUrgency = pmThreadGetUrgency;
+ callbacks->RTCClockAdjust = rtc_clock_adjust;
+ callbacks->timerQueueMigrate = pmTimerQueueMigrate;
+ callbacks->topoParms = &topoParms;
+ callbacks->pmSendIPI = pmSendIPI;
+ callbacks->InterruptPending = lapic_is_interrupt_pending;
+ callbacks->IsInterrupting = lapic_is_interrupting;
+ callbacks->InterruptStats = lapic_interrupt_counts;
+ callbacks->DisableApicTimer = lapic_disable_timer;
+ } else {
+ panic("Version mis-match between Kernel and CPU PM");
+ }
-/******************************************************************************
- *
- * All of the following are deprecated interfaces and no longer used.
- *
- ******************************************************************************/
-kern_return_t
-pmsControl(__unused uint32_t request, __unused user_addr_t reqaddr,
- __unused uint32_t reqsize)
-{
- return(KERN_SUCCESS);
-}
+ if (cpuFuncs != NULL) {
+ if (pmDispatch) {
+ panic("Attempt to re-register power management interface--AICPM present in xcpm mode? %p->%p", pmDispatch, cpuFuncs);
+ }
-void
-pmsInit(void)
-{
-}
+ pmDispatch = cpuFuncs;
-void
-pmsStart(void)
-{
+ if (earlyTopology
+ && pmDispatch->pmCPUStateInit != NULL) {
+ (*pmDispatch->pmCPUStateInit)();
+ earlyTopology = FALSE;
+ }
+
+ if (pmDispatch->pmIPIHandler != NULL) {
+ lapic_set_pm_func((i386_intr_func_t)pmDispatch->pmIPIHandler);
+ }
+ }
}
+/*
+ * Unregisters the power management functions from the kext.
+ */
void
-pmsPark(void)
+pmUnRegister(pmDispatch_t *cpuFuncs)
{
+ if (cpuFuncs != NULL && pmDispatch == cpuFuncs) {
+ pmDispatch = NULL;
+ }
}
void
-pmsRun(__unused uint32_t nstep)
+machine_track_platform_idle(boolean_t entry)
{
-}
+ cpu_data_t *my_cpu = current_cpu_datap();
-kern_return_t
-pmsBuild(__unused pmsDef *pd, __unused uint32_t pdsize,
- __unused pmsSetFunc_t *functab,
- __unused uint32_t platformData, __unused pmsQueryFunc_t queryFunc)
-{
- return(KERN_SUCCESS);
+ if (entry) {
+ (void)__sync_fetch_and_add(&my_cpu->lcpu.package->num_idle, 1);
+ } else {
+ uint32_t nidle = __sync_fetch_and_sub(&my_cpu->lcpu.package->num_idle, 1);
+ if (nidle == topoParms.nLThreadsPerPackage) {
+ my_cpu->lcpu.package->package_idle_exits++;
+ }
+ }
}