--- /dev/null
+/*
+ * Copyright (c) 2015 Apple Inc. All rights reserved.
+ *
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
+ *
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
+ *
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
+ * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
+ *
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
+ */
+/*
+ * @OSF_FREE_COPYRIGHT@
+ */
+/*
+ * Mach Operating System
+ * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
+ * All Rights Reserved.
+ *
+ * Permission to use, copy, modify and distribute this software and its
+ * documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
+ * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie Mellon
+ * the rights to redistribute these changes.
+ */
+#include <kern/ast.h>
+#include <kern/kern_types.h>
+#include <kern/mach_param.h>
+#include <kern/queue.h>
+#include <kern/sched_prim.h>
+#include <kern/simple_lock.h>
+#include <kern/spl.h>
+#include <kern/waitq.h>
+#include <kern/zalloc.h>
+#include <libkern/OSAtomic.h>
+#include <mach/sync_policy.h>
+#include <vm/vm_kern.h>
+
+#include <sys/kdebug.h>
+
+#if CONFIG_WAITQ_DEBUG
+#define wqdbg(fmt,...) \
+ printf("WQ[%s]: " fmt "\n", __func__, ## __VA_ARGS__)
+#else
+#define wqdbg(fmt,...) do { } while (0)
+#endif
+
+#ifdef WAITQ_VERBOSE_DEBUG
+#define wqdbg_v(fmt,...) \
+ printf("WQ[v:%s]: " fmt "\n", __func__, ## __VA_ARGS__)
+#else
+#define wqdbg_v(fmt,...) do { } while (0)
+#endif
+
+#define wqinfo(fmt,...) \
+ printf("WQ[%s]: " fmt "\n", __func__, ## __VA_ARGS__)
+
+#define wqerr(fmt,...) \
+ printf("WQ[%s] ERROR: " fmt "\n", __func__, ## __VA_ARGS__)
+
+
+/*
+ * un-comment the following lines to debug the link/prepost tables
+ * NOTE: this expands each element by ~40 bytes
+ */
+//#define CONFIG_WAITQ_LINK_STATS
+//#define CONFIG_WAITQ_PREPOST_STATS
+
+/*
+ * file-static functions / data
+ */
+static thread_t waitq_select_one_locked(struct waitq *waitq, event64_t event,
+ uint64_t *reserved_preposts,
+ int priority, spl_t *spl);
+
+static kern_return_t waitq_select_thread_locked(struct waitq *waitq,
+ event64_t event,
+ thread_t thread, spl_t *spl);
+
+#define WAITQ_SET_MAX (task_max * 3)
+static zone_t waitq_set_zone;
+
+
+#define P2ROUNDUP(x, align) (-(-((uint32_t)(x)) & -(align)))
+#define ROUNDDOWN(x,y) (((x)/(y))*(y))
+
+
+#ifdef CONFIG_WAITQ_STATS
+static __inline__ void waitq_grab_backtrace(uintptr_t bt[NWAITQ_BTFRAMES], int skip);
+#endif
+
+
+/* ----------------------------------------------------------------------
+ *
+ * Wait Queue Link/Prepost Table Implementation
+ *
+ * ---------------------------------------------------------------------- */
+#define DEFAULT_MIN_FREE_TABLE_ELEM 100
+static uint32_t g_min_free_table_elem;
+static uint32_t g_min_free_cache;
+
+static vm_size_t g_wqt_max_tbl_size;
+static lck_grp_t g_wqt_lck_grp;
+
+/* 1 prepost table, 1 setid link table */
+#define NUM_WQ_TABLES 2
+
+/* default VA space for waitq tables (zone allocated) */
+#define DEFAULT_MAX_TABLE_SIZE P2ROUNDUP(8 * 1024 * 1024, PAGE_SIZE)
+
+struct wq_id {
+ union {
+ uint64_t id;
+ struct {
+ /*
+ * this bitfied is OK because we don't need to
+ * enforce a particular memory layout
+ */
+ uint64_t idx:18, /* allows indexing up to 8MB of 32byte link objects */
+ generation:46;
+ };
+ };
+};
+
+enum wqt_elem_type {
+ WQT_FREE = 0,
+ WQT_ELEM = 1,
+ WQT_LINK = 2,
+ WQT_RESERVED = 3,
+};
+
+struct wqt_elem {
+ uint32_t wqt_bits;
+
+ uint32_t wqt_next_idx;
+
+ struct wq_id wqt_id;
+};
+
+/* this _must_ match the idx bitfield definition in struct wq_id */
+#define WQT_IDX_MAX (0x3ffff)
+#if defined(DEVELOPMENT) || defined(DEBUG)
+/* global for lldb macros */
+uint64_t g_wqt_idx_max = WQT_IDX_MAX;
+#endif
+
+/* reference count bits should _always_ be the low-order bits */
+#define WQT_BITS_REFCNT_MASK (0x1FFFFFFF)
+#define WQT_BITS_REFCNT_SHIFT (0)
+#define WQT_BITS_REFCNT (WQT_BITS_REFCNT_MASK << WQT_BITS_REFCNT_SHIFT)
+
+#define WQT_BITS_TYPE_MASK (0x3)
+#define WQT_BITS_TYPE_SHIFT (29)
+#define WQT_BITS_TYPE (WQT_BITS_TYPE_MASK << WQT_BITS_TYPE_SHIFT)
+
+#define WQT_BITS_VALID_MASK (0x1)
+#define WQT_BITS_VALID_SHIFT (31)
+#define WQT_BITS_VALID (WQT_BITS_VALID_MASK << WQT_BITS_VALID_SHIFT)
+
+#define wqt_bits_refcnt(bits) \
+ (((bits) >> WQT_BITS_REFCNT_SHIFT) & WQT_BITS_REFCNT_MASK)
+
+#define wqt_bits_type(bits) \
+ (((bits) >> WQT_BITS_TYPE_SHIFT) & WQT_BITS_TYPE_MASK)
+
+#define wqt_bits_valid(bits) \
+ ((bits) & WQT_BITS_VALID)
+
+struct wq_table;
+typedef void (*wq_table_poison_func)(struct wq_table *, struct wqt_elem *);
+
+/*
+ * A table is a container for slabs of elements. Each slab is 'slab_sz' bytes
+ * and contains 'slab_sz/elem_sz' elements (of 'elem_sz' bytes each). These
+ * slabs allow the table to be broken up into potentially dis-contiguous VA
+ * space. On 32-bit platforms with large amounts of physical RAM, this is
+ * quite important. Keeping slabs like this slightly complicates retrieval of
+ * table elements, but not by much.
+ */
+struct wq_table {
+ struct wqt_elem **table; /* an array of 'slabs' of elements */
+ struct wqt_elem **next_free_slab;
+ struct wq_id free_list __attribute__((aligned(8)));
+
+ uint32_t nelem;
+ uint32_t used_elem;
+ uint32_t elem_sz; /* size of a table element (bytes) */
+
+ uint32_t slab_sz; /* size of a table 'slab' object (bytes) */
+ uint32_t slab_shift;
+ uint32_t slab_msk;
+ uint32_t slab_elem;
+ zone_t slab_zone;
+
+ wq_table_poison_func poison;
+
+ lck_mtx_t lock;
+ uint32_t state;
+
+#if CONFIG_WAITQ_STATS
+ uint32_t nslabs;
+
+ uint64_t nallocs;
+ uint64_t nreallocs;
+ uint64_t npreposts;
+ int64_t nreservations;
+ uint64_t nreserved_releases;
+ uint64_t nspins;
+
+ uint64_t max_used;
+ uint64_t avg_used;
+ uint64_t max_reservations;
+ uint64_t avg_reservations;
+#endif
+} __attribute__((aligned(8)));
+
+#define wqt_elem_ofst_slab(slab, slab_msk, ofst) \
+ /* cast through 'void *' to avoid compiler alignment warning messages */ \
+ ((struct wqt_elem *)((void *)((uintptr_t)(slab) + ((ofst) & (slab_msk)))))
+
+#if defined(CONFIG_WAITQ_LINK_STATS) || defined(CONFIG_WAITQ_PREPOST_STATS)
+/* version that makes no assumption on waste within a slab */
+static inline struct wqt_elem *
+wqt_elem_idx(struct wq_table *table, uint32_t idx)
+{
+ int slab_idx = idx / table->slab_elem;
+ struct wqt_elem *slab = table->table[slab_idx];
+ if (!slab)
+ panic("Invalid index:%d slab:%d (NULL) for table:%p\n",
+ idx, slab_idx, table);
+ assert(slab->wqt_id.idx <= idx && (slab->wqt_id.idx + table->slab_elem) > idx);
+ return wqt_elem_ofst_slab(slab, table->slab_msk, (idx - slab->wqt_id.idx) * table->elem_sz);
+}
+#else /* !CONFIG_WAITQ_[LINK|PREPOST]_STATS */
+/* verion that assumes 100% ultilization of slabs (no waste) */
+static inline struct wqt_elem *
+wqt_elem_idx(struct wq_table *table, uint32_t idx)
+{
+ uint32_t ofst = idx * table->elem_sz;
+ struct wqt_elem *slab = table->table[ofst >> table->slab_shift];
+ if (!slab)
+ panic("Invalid index:%d slab:%d (NULL) for table:%p\n",
+ idx, (ofst >> table->slab_shift), table);
+ assert(slab->wqt_id.idx <= idx && (slab->wqt_id.idx + table->slab_elem) > idx);
+ return wqt_elem_ofst_slab(slab, table->slab_msk, ofst);
+}
+#endif /* !CONFIG_WAITQ_[LINK|PREPOST]_STATS */
+
+static int __assert_only wqt_elem_in_range(struct wqt_elem *elem,
+ struct wq_table *table)
+{
+ struct wqt_elem **base = table->table;
+ uintptr_t e = (uintptr_t)elem;
+ assert(base != NULL);
+ while (*base != NULL) {
+ uintptr_t b = (uintptr_t)(*base);
+ if (e >= b && e < b + table->slab_sz)
+ return 1;
+ base++;
+ if ((uintptr_t)base >= (uintptr_t)table->table + PAGE_SIZE)
+ return 0;
+ }
+ return 0;
+}
+
+static struct wqt_elem *wq_table_get_elem(struct wq_table *table, uint64_t id);
+static void wq_table_put_elem(struct wq_table *table, struct wqt_elem *elem);
+static int wqt_elem_list_link(struct wq_table *table, struct wqt_elem *parent,
+ struct wqt_elem *child);
+
+static void wqt_elem_invalidate(struct wqt_elem *elem)
+{
+ uint32_t __assert_only old = OSBitAndAtomic(~WQT_BITS_VALID, &elem->wqt_bits);
+ OSMemoryBarrier();
+ assert(((wqt_bits_type(old) != WQT_RESERVED) && (old & WQT_BITS_VALID)) ||
+ ((wqt_bits_type(old) == WQT_RESERVED) && !(old & WQT_BITS_VALID)));
+}
+
+static void wqt_elem_mkvalid(struct wqt_elem *elem)
+{
+ uint32_t __assert_only old = OSBitOrAtomic(WQT_BITS_VALID, &elem->wqt_bits);
+ OSMemoryBarrier();
+ assert(!(old & WQT_BITS_VALID));
+}
+
+static void wqt_elem_set_type(struct wqt_elem *elem, int type)
+{
+ uint32_t old_bits, new_bits;
+ do {
+ old_bits = elem->wqt_bits;
+ new_bits = (old_bits & ~WQT_BITS_TYPE) |
+ ((type & WQT_BITS_TYPE_MASK) << WQT_BITS_TYPE_SHIFT);
+ } while (OSCompareAndSwap(old_bits, new_bits, &elem->wqt_bits) == FALSE);
+ OSMemoryBarrier();
+}
+
+
+static void wq_table_bootstrap(void)
+{
+ uint32_t tmp32 = 0;
+
+ g_min_free_cache = 0;
+ g_min_free_table_elem = DEFAULT_MIN_FREE_TABLE_ELEM;
+ if (PE_parse_boot_argn("wqt_min_free", &tmp32, sizeof(tmp32)) == TRUE)
+ g_min_free_table_elem = tmp32;
+ wqdbg("Minimum free table elements: %d", tmp32);
+
+ g_wqt_max_tbl_size = DEFAULT_MAX_TABLE_SIZE;
+ if (PE_parse_boot_argn("wqt_tbl_size", &tmp32, sizeof(tmp32)) == TRUE)
+ g_wqt_max_tbl_size = (vm_size_t)P2ROUNDUP(tmp32, PAGE_SIZE);
+
+ lck_grp_init(&g_wqt_lck_grp, "waitq_table_locks", LCK_GRP_ATTR_NULL);
+}
+
+static void wq_table_init(struct wq_table *table, const char *name,
+ uint32_t max_tbl_elem, uint32_t elem_sz,
+ wq_table_poison_func poison)
+{
+ kern_return_t kr;
+ uint32_t slab_sz, slab_shift, slab_msk, slab_elem;
+ zone_t slab_zone;
+ size_t max_tbl_sz;
+ struct wqt_elem *e, **base;
+
+ /*
+ * First, allocate a single page of memory to act as the base
+ * for the table's element slabs
+ */
+ kr = kernel_memory_allocate(kernel_map, (vm_offset_t *)&base,
+ PAGE_SIZE, 0, KMA_NOPAGEWAIT, VM_KERN_MEMORY_WAITQ);
+ if (kr != KERN_SUCCESS)
+ panic("Cannot initialize %s table: "
+ "kernel_memory_allocate failed:%d\n", name, kr);
+ memset(base, 0, PAGE_SIZE);
+
+ /*
+ * Based on the maximum table size, calculate the slab size:
+ * we allocate 1 page of slab pointers for the table, and we need to
+ * index elements of 'elem_sz', this gives us the slab size based on
+ * the maximum size the table should grow.
+ */
+ max_tbl_sz = (max_tbl_elem * elem_sz);
+ max_tbl_sz = P2ROUNDUP(max_tbl_sz, PAGE_SIZE);
+
+ /* system maximum table size divided by number of slots in a page */
+ slab_sz = (uint32_t)(max_tbl_sz / (PAGE_SIZE / (sizeof(void *))));
+ if (slab_sz < PAGE_SIZE)
+ slab_sz = PAGE_SIZE;
+
+ /* make sure the slab size is a power of two */
+ slab_shift = 0;
+ slab_msk = ~0;
+ for (uint32_t i = 0; i < 31; i++) {
+ uint32_t bit = (1 << i);
+ if ((slab_sz & bit) == slab_sz) {
+ slab_shift = i;
+ slab_msk = 0;
+ for (uint32_t j = 0; j < i; j++)
+ slab_msk |= (1 << j);
+ break;
+ }
+ slab_sz &= ~bit;
+ }
+ slab_elem = slab_sz / elem_sz;
+
+ /* initialize the table's slab zone (for table growth) */
+ wqdbg("Initializing %s zone: slab:%d (%d,0x%x) max:%ld",
+ name, slab_sz, slab_shift, slab_msk, max_tbl_sz);
+ slab_zone = zinit(slab_sz, max_tbl_sz, slab_sz, name);
+ assert(slab_zone != ZONE_NULL);
+
+ /* allocate the first slab and populate it */
+ base[0] = (struct wqt_elem *)zalloc(slab_zone);
+ if (base[0] == NULL)
+ panic("Can't allocate a %s table slab from zone:%p",
+ name, slab_zone);
+
+ memset(base[0], 0, slab_sz);
+
+ /* setup the initial freelist */
+ wqdbg("initializing %d links (%d bytes each)...", slab_elem, elem_sz);
+ for (unsigned l = 0; l < slab_elem; l++) {
+ e = wqt_elem_ofst_slab(base[0], slab_msk, l * elem_sz);
+ e->wqt_id.idx = l;
+ /*
+ * setting generation to 0 ensures that a setid of 0 is
+ * invalid because the generation will be incremented before
+ * each element's allocation.
+ */
+ e->wqt_id.generation = 0;
+ e->wqt_next_idx = l + 1;
+ }
+
+ /* make sure the last free element points to a never-valid idx */
+ e = wqt_elem_ofst_slab(base[0], slab_msk, (slab_elem - 1) * elem_sz);
+ e->wqt_next_idx = WQT_IDX_MAX;
+
+ lck_mtx_init(&table->lock, &g_wqt_lck_grp, LCK_ATTR_NULL);
+
+ table->slab_sz = slab_sz;
+ table->slab_shift = slab_shift;
+ table->slab_msk = slab_msk;
+ table->slab_elem = slab_elem;
+ table->slab_zone = slab_zone;
+
+ table->elem_sz = elem_sz;
+ table->nelem = slab_elem;
+ table->used_elem = 0;
+ table->elem_sz = elem_sz;
+ table->poison = poison;
+
+ table->table = base;
+ table->next_free_slab = &base[1];
+ table->free_list.id = base[0]->wqt_id.id;
+
+#if CONFIG_WAITQ_STATS
+ table->nslabs = 1;
+ table->nallocs = 0;
+ table->nreallocs = 0;
+ table->npreposts = 0;
+ table->nreservations = 0;
+ table->nreserved_releases = 0;
+
+ table->max_used = 0;
+ table->avg_used = 0;
+ table->max_reservations = 0;
+ table->avg_reservations = 0;
+#endif
+}
+
+/**
+ * grow a waitq table by adding another 'slab' of table elements
+ *
+ * Conditions:
+ * table mutex is unlocked
+ * calling thread can block
+ */
+static void wq_table_grow(struct wq_table *table, uint32_t min_free)
+{
+ struct wqt_elem *slab, **slot;
+ struct wqt_elem *e = NULL, *first_new_elem, *last_new_elem;
+ struct wq_id free_id;
+ uint32_t free_elem;
+
+ assert(get_preemption_level() == 0);
+ assert(table && table->slab_zone);
+
+ lck_mtx_lock(&table->lock);
+
+ free_elem = table->nelem - table->used_elem;
+
+ /*
+ * If the caller just wanted to ensure a minimum number of elements,
+ * do that (and don't just blindly grow the table). Also, don't grow
+ * the table unnecessarily - we could have been beaten by a higher
+ * priority thread who acquired the lock and grew the table before we
+ * got here.
+ */
+ if (free_elem > min_free) {
+ lck_mtx_unlock(&table->lock);
+ return;
+ }
+
+ /* we are now committed to table growth */
+ wqdbg_v("BEGIN");
+
+ if (table->next_free_slab == NULL) {
+ /*
+ * before we panic, check one more time to see if any other
+ * threads have free'd from space in the table.
+ */
+ if ((table->nelem - table->used_elem) > 0) {
+ /* there's at least 1 free element: don't panic yet */
+ lck_mtx_unlock(&table->lock);
+ return;
+ }
+ panic("No more room to grow table: %p (nelem: %d, used: %d)",
+ table, table->nelem, table->used_elem);
+ }
+ slot = table->next_free_slab;
+ table->next_free_slab++;
+ if ((uintptr_t)table->next_free_slab >= (uintptr_t)table->table + PAGE_SIZE)
+ table->next_free_slab = NULL;
+
+ assert(*slot == NULL);
+
+ /* allocate another slab */
+ slab = (struct wqt_elem *)zalloc(table->slab_zone);
+ if (slab == NULL)
+ panic("Can't allocate a %s table (%p) slab from zone:%p",
+ table->slab_zone->zone_name, table, table->slab_zone);
+
+ memset(slab, 0, table->slab_sz);
+
+ /* put the new elements into a freelist */
+ wqdbg_v(" init %d new links...", table->slab_elem);
+ for (unsigned l = 0; l < table->slab_elem; l++) {
+ uint32_t idx = l + table->nelem;
+ if (idx >= (WQT_IDX_MAX - 1))
+ break; /* the last element of the last slab */
+ e = wqt_elem_ofst_slab(slab, table->slab_msk, l * table->elem_sz);
+ e->wqt_id.idx = idx;
+ e->wqt_next_idx = idx + 1;
+ }
+ last_new_elem = e;
+ assert(last_new_elem != NULL);
+
+ first_new_elem = wqt_elem_ofst_slab(slab, table->slab_msk, 0);
+
+ /* update table book keeping, and atomically swap the freelist head */
+ *slot = slab;
+ if (table->nelem + table->slab_elem >= WQT_IDX_MAX)
+ table->nelem = WQT_IDX_MAX - 1;
+ else
+ table->nelem += table->slab_elem;
+
+#if CONFIG_WAITQ_STATS
+ table->nslabs += 1;
+#endif
+
+ /*
+ * The atomic swap of the free list head marks the end of table
+ * growth. Incoming requests may now use the newly allocated slab
+ * of table elements
+ */
+ free_id = table->free_list;
+ /* connect the existing free list to the end of the new free list */
+ last_new_elem->wqt_next_idx = free_id.idx;
+ while (OSCompareAndSwap64(free_id.id, first_new_elem->wqt_id.id,
+ &table->free_list.id) == FALSE) {
+ OSMemoryBarrier();
+ free_id = table->free_list;
+ last_new_elem->wqt_next_idx = free_id.idx;
+ }
+ OSMemoryBarrier();
+
+ lck_mtx_unlock(&table->lock);
+
+ return;
+}
+
+static __attribute__((noinline))
+struct wqt_elem *wq_table_alloc_elem(struct wq_table *table, int type, int nelem)
+{
+ int nspins = 0, ntries = 0, nalloc = 0;
+ uint32_t table_size;
+ struct wqt_elem *elem = NULL;
+ struct wq_id free_id, next_id;
+
+ static const int max_retries = 500;
+
+ if (type != WQT_ELEM && type != WQT_LINK && type != WQT_RESERVED)
+ panic("wq_table_aloc of invalid elem type:%d from table @%p",
+ type, table);
+
+ assert(nelem > 0);
+ elem = NULL;
+
+try_again:
+ if (ntries++ > max_retries) {
+ struct wqt_elem *tmp;
+ if (table->used_elem + nelem >= table_size)
+ panic("No more room to grow table: 0x%p size:%d, used:%d, requested elem:%d",
+ table, table_size, table->used_elem, nelem);
+ if (nelem == 1)
+ panic("Too many alloc retries: %d, table:%p, type:%d, nelem:%d",
+ ntries, table, type, nelem);
+ /* don't panic: try allocating one-at-a-time */
+ while (nelem > 0) {
+ tmp = wq_table_alloc_elem(table, type, 1);
+ if (elem)
+ wqt_elem_list_link(table, tmp, elem);
+ elem = tmp;
+ --nelem;
+ }
+ assert(elem != NULL);
+ return elem;
+ }
+
+ nalloc = 0;
+ table_size = table->nelem;
+
+ if (table->used_elem + nelem >= table_size) {
+ if (get_preemption_level() != 0) {
+#if CONFIG_WAITQ_STATS
+ table->nspins += 1;
+#endif
+ /*
+ * We may have just raced with table growth: check
+ * again to make sure there really isn't any space.
+ */
+ if (++nspins > 4)
+ panic("Can't grow table %p with preemption"
+ " disabled!", table);
+ delay(1);
+ goto try_again;
+ }
+ wq_table_grow(table, nelem);
+ goto try_again;
+ }
+
+ /* read this value only once before the CAS */
+ free_id = table->free_list;
+ if (free_id.idx >= table_size)
+ goto try_again;
+
+ /*
+ * Find the item on the free list which will become the new free list
+ * head, but be careful not to modify any memory (read only)! Other
+ * threads can alter table state at any time up until the CAS. We
+ * don't modify any memory until we've successfully swapped out the
+ * free list head with the one we've investigated.
+ */
+ for (struct wqt_elem *next_elem = wqt_elem_idx(table, free_id.idx);
+ nalloc < nelem;
+ nalloc++) {
+ elem = next_elem;
+ next_id.generation = 0;
+ next_id.idx = next_elem->wqt_next_idx;
+ if (next_id.idx < table->nelem) {
+ next_elem = wqt_elem_idx(table, next_id.idx);
+ next_id.id = next_elem->wqt_id.id;
+ } else {
+ goto try_again;
+ }
+ }
+ /* 'elem' points to the last element being allocated */
+
+ if (OSCompareAndSwap64(free_id.id, next_id.id,
+ &table->free_list.id) == FALSE)
+ goto try_again;
+
+ /* load barrier */
+ OSMemoryBarrier();
+
+ /*
+ * After the CAS, we know that we own free_id, and it points to a
+ * valid table entry (checked above). Grab the table pointer and
+ * reset some values.
+ */
+ OSAddAtomic(nelem, &table->used_elem);
+
+ /* end the list of allocated elements */
+ elem->wqt_next_idx = WQT_IDX_MAX;
+ /* reset 'elem' to point to the first allocated element */
+ elem = wqt_elem_idx(table, free_id.idx);
+
+ /*
+ * Update the generation count, and return the element(s)
+ * with a single reference (and no valid bit). If the
+ * caller immediately calls _put() on any element, then
+ * it will be released back to the free list. If the caller
+ * subsequently marks the element as valid, then the put
+ * will simply drop the reference.
+ */
+ for (struct wqt_elem *tmp = elem; ; ) {
+ assert(!wqt_bits_valid(tmp->wqt_bits) &&
+ (wqt_bits_refcnt(tmp->wqt_bits) == 0));
+ --nalloc;
+ tmp->wqt_id.generation += 1;
+ tmp->wqt_bits = 1;
+ wqt_elem_set_type(tmp, type);
+ if (tmp->wqt_next_idx == WQT_IDX_MAX)
+ break;
+ assert(tmp->wqt_next_idx != WQT_IDX_MAX);
+ tmp = wqt_elem_idx(table, tmp->wqt_next_idx);
+ }
+ assert(nalloc == 0);
+
+#if CONFIG_WAITQ_STATS
+ uint64_t nreservations;
+ table->nallocs += nelem;
+ if (type == WQT_RESERVED)
+ OSIncrementAtomic64(&table->nreservations);
+ nreservations = table->nreservations;
+ if (table->used_elem > table->max_used)
+ table->max_used = table->used_elem;
+ if (nreservations > table->max_reservations)
+ table->max_reservations = nreservations;
+ table->avg_used = (table->avg_used + table->used_elem) / 2;
+ table->avg_reservations = (table->avg_reservations + nreservations) / 2;
+#endif
+
+ return elem;
+}
+
+static void wq_table_realloc_elem(struct wq_table *table, struct wqt_elem *elem, int type)
+{
+ (void)table;
+ assert(wqt_elem_in_range(elem, table) &&
+ !wqt_bits_valid(elem->wqt_bits));
+
+#if CONFIG_WAITQ_STATS
+ table->nreallocs += 1;
+ if (wqt_bits_type(elem->wqt_bits) == WQT_RESERVED && type != WQT_RESERVED) {
+ /*
+ * This isn't under any lock, so we'll clamp it.
+ * the stats are meant to be informative, not perfectly
+ * accurate
+ */
+ OSDecrementAtomic64(&table->nreservations);
+ }
+ table->avg_reservations = (table->avg_reservations + table->nreservations) / 2;
+#endif
+
+ /*
+ * Return the same element with a new generation count, and a
+ * (potentially) new type. Don't touch the refcount: the caller
+ * is responsible for getting that (and the valid bit) correct.
+ */
+ elem->wqt_id.generation += 1;
+ elem->wqt_next_idx = WQT_IDX_MAX;
+ wqt_elem_set_type(elem, type);
+
+ return;
+}
+
+static void wq_table_free_elem(struct wq_table *table, struct wqt_elem *elem)
+{
+ struct wq_id next_id;
+
+ assert(wqt_elem_in_range(elem, table) &&
+ !wqt_bits_valid(elem->wqt_bits) &&
+ (wqt_bits_refcnt(elem->wqt_bits) == 0));
+
+ OSDecrementAtomic(&table->used_elem);
+
+#if CONFIG_WAITQ_STATS
+ table->avg_used = (table->avg_used + table->used_elem) / 2;
+ if (wqt_bits_type(elem->wqt_bits) == WQT_RESERVED)
+ OSDecrementAtomic64(&table->nreservations);
+ table->avg_reservations = (table->avg_reservations + table->nreservations) / 2;
+#endif
+
+ elem->wqt_bits = 0;
+
+ if (table->poison)
+ (table->poison)(table, elem);
+
+again:
+ next_id = table->free_list;
+ if (next_id.idx >= table->nelem)
+ elem->wqt_next_idx = WQT_IDX_MAX;
+ else
+ elem->wqt_next_idx = next_id.idx;
+
+ /* store barrier */
+ OSMemoryBarrier();
+ if (OSCompareAndSwap64(next_id.id, elem->wqt_id.id,
+ &table->free_list.id) == FALSE)
+ goto again;
+}
+
+/* get a reference to a table element identified by 'id' */
+static struct wqt_elem *wq_table_get_elem(struct wq_table *table, uint64_t id)
+{
+ struct wqt_elem *elem;
+ uint32_t idx, bits, new_bits;
+
+ /*
+ * Here we have a reference to the table which is guaranteed to remain
+ * valid until we drop the reference
+ */
+
+ idx = ((struct wq_id *)&id)->idx;
+
+ if (idx >= table->nelem)
+ panic("id:0x%llx : idx:%d > %d", id, idx, table->nelem);
+
+ elem = wqt_elem_idx(table, idx);
+
+ /* verify the validity by taking a reference on the table object */
+ bits = elem->wqt_bits;
+ if (!wqt_bits_valid(bits))
+ return NULL;
+
+ /*
+ * do a pre-verify on the element ID to potentially
+ * avoid 2 compare-and-swaps
+ */
+ if (elem->wqt_id.id != id)
+ return NULL;
+
+ new_bits = bits + 1;
+
+ /* check for overflow */
+ assert(wqt_bits_refcnt(new_bits) > 0);
+
+ while (OSCompareAndSwap(bits, new_bits, &elem->wqt_bits) == FALSE) {
+ /*
+ * either the element became invalid,
+ * or someone else grabbed/removed a reference.
+ */
+ bits = elem->wqt_bits;
+ if (!wqt_bits_valid(bits)) {
+ /* don't return invalid elements */
+ return NULL;
+ }
+ new_bits = bits + 1;
+ assert(wqt_bits_refcnt(new_bits) > 0);
+ }
+
+ /* load barrier */
+ OSMemoryBarrier();
+
+ /* check to see that our reference is to the same generation! */
+ if (elem->wqt_id.id != id) {
+ /*
+ wqdbg("ID:0x%llx table generation (%d) != %d",
+ id, elem->wqt_id.generation,
+ ((struct wq_id *)&id)->generation);
+ */
+ wq_table_put_elem(table, elem);
+ return NULL;
+ }
+
+ /* We now have a reference on a valid object */
+ return elem;
+}
+
+/* release a ref to table element - puts it back on free list as appropriate */
+static void wq_table_put_elem(struct wq_table *table, struct wqt_elem *elem)
+{
+ uint32_t bits, new_bits;
+
+ assert(wqt_elem_in_range(elem, table));
+
+ bits = elem->wqt_bits;
+ new_bits = bits - 1;
+
+ /* check for underflow */
+ assert(wqt_bits_refcnt(new_bits) < WQT_BITS_REFCNT_MASK);
+
+ while (OSCompareAndSwap(bits, new_bits, &elem->wqt_bits) == FALSE) {
+ bits = elem->wqt_bits;
+ new_bits = bits - 1;
+ /* catch underflow */
+ assert(wqt_bits_refcnt(new_bits) < WQT_BITS_REFCNT_MASK);
+ }
+
+ /* load barrier */
+ OSMemoryBarrier();
+
+ /*
+ * if this was the last reference, and it was marked as invalid,
+ * then we can add this link object back to the free list
+ */
+ if (!wqt_bits_valid(new_bits) && (wqt_bits_refcnt(new_bits) == 0))
+ wq_table_free_elem(table, elem);
+
+ return;
+}
+
+
+/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ *
+ * API: wqt_elem_list_...
+ *
+ * Reuse the free list linkage member, 'wqt_next_idx' of a table element
+ * in a slightly more generic singly-linked list. All members of this
+ * list have been allocated from a table, but have not been made valid.
+ *
+ * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -*/
+
+/* link parent->child */
+static int wqt_elem_list_link(struct wq_table *table, struct wqt_elem *parent, struct wqt_elem *child)
+{
+ int nelem = 1;
+
+ assert(wqt_elem_in_range(parent, table));
+
+ /* find the end of the parent's list */
+ while (parent->wqt_next_idx != WQT_IDX_MAX) {
+ assert(parent->wqt_next_idx < table->nelem);
+ parent = wqt_elem_idx(table, parent->wqt_next_idx);
+ nelem++;
+ }
+
+ if (child) {
+ assert(wqt_elem_in_range(child, table));
+ parent->wqt_next_idx = child->wqt_id.idx;
+ }
+
+ return nelem;
+}
+
+static struct wqt_elem *wqt_elem_list_next(struct wq_table *table, struct wqt_elem *head)
+{
+ struct wqt_elem *elem;
+
+ if (!head)
+ return NULL;
+ if (head->wqt_next_idx >= table->nelem)
+ return NULL;
+
+ elem = wqt_elem_idx(table, head->wqt_next_idx);
+ assert(wqt_elem_in_range(elem, table));
+
+ return elem;
+}
+
+/*
+ * Obtain a pointer to the first element of a list. Don't take an extra
+ * reference on the object - the list implicitly holds that reference.
+ *
+ * This function is used to convert the head of a singly-linked list
+ * to a real wqt_elem object.
+ */
+static struct wqt_elem *wqt_elem_list_first(struct wq_table *table, uint64_t id)
+{
+ uint32_t idx;
+ struct wqt_elem *elem = NULL;
+
+ if (id == 0)
+ return NULL;
+
+ idx = ((struct wq_id *)&id)->idx;
+
+ if (idx > table->nelem)
+ panic("Invalid element for id:0x%llx", id);
+ elem = wqt_elem_idx(table, idx);
+
+ /* invalid element: reserved ID was probably already reallocated */
+ if (elem->wqt_id.id != id)
+ return NULL;
+
+ /* the returned element should _not_ be marked valid! */
+ if (wqt_bits_valid(elem->wqt_bits) ||
+ wqt_bits_type(elem->wqt_bits) != WQT_RESERVED ||
+ wqt_bits_refcnt(elem->wqt_bits) != 1) {
+ panic("Valid/unreserved element %p (0x%x) in reserved list",
+ elem, elem->wqt_bits);
+ }
+
+ return elem;
+}
+
+static void wqt_elem_reset_next(struct wq_table *table, struct wqt_elem *wqp)
+{
+ (void)table;
+
+ if (!wqp)
+ return;
+ assert(wqt_elem_in_range(wqp, table));
+
+ wqp->wqt_next_idx = WQT_IDX_MAX;
+}
+
+/*
+ * Pop an item off the list.
+ * New list head returned in *id, caller responsible for reference on returned
+ * object. We do a realloc here to reset the type of the object, but still
+ * leave it invalid.
+ */
+static struct wqt_elem *wqt_elem_list_pop(struct wq_table *table, uint64_t *id, int type)
+{
+ struct wqt_elem *first, *next;
+
+ if (!id || *id == 0)
+ return NULL;
+
+ /* pop an item off the reserved stack */
+
+ first = wqt_elem_list_first(table, *id);
+ if (!first) {
+ *id = 0;
+ return NULL;
+ }
+
+ next = wqt_elem_list_next(table, first);
+ if (next)
+ *id = next->wqt_id.id;
+ else
+ *id = 0;
+
+ wq_table_realloc_elem(table, first, type);
+
+ return first;
+}
+
+/*
+ * Free an entire list of linked/reserved elements
+ */
+static int wqt_elem_list_release(struct wq_table *table,
+ struct wqt_elem *head,
+ int __assert_only type)
+{
+ struct wqt_elem *elem;
+ struct wq_id free_id;
+ int nelem = 0;
+
+ if (!head)
+ return 0;
+
+ for (elem = head; ; ) {
+ assert(wqt_elem_in_range(elem, table));
+ assert(!wqt_bits_valid(elem->wqt_bits) && (wqt_bits_refcnt(elem->wqt_bits) == 1));
+ assert(wqt_bits_type(elem->wqt_bits) == type);
+
+ nelem++;
+ elem->wqt_bits = 0;
+ if (table->poison)
+ (table->poison)(table, elem);
+
+ if (elem->wqt_next_idx == WQT_IDX_MAX)
+ break;
+ assert(elem->wqt_next_idx < table->nelem);
+ elem = wqt_elem_idx(table, elem->wqt_next_idx);
+ }
+
+ /*
+ * 'elem' now points to the end of our list, and 'head' points to the
+ * beginning. We want to atomically swap the free list pointer with
+ * the 'head' and ensure that 'elem' points to the previous free list
+ * head.
+ */
+
+again:
+ free_id = table->free_list;
+ if (free_id.idx >= table->nelem)
+ elem->wqt_next_idx = WQT_IDX_MAX;
+ else
+ elem->wqt_next_idx = free_id.idx;
+
+ /* store barrier */
+ OSMemoryBarrier();
+ if (OSCompareAndSwap64(free_id.id, head->wqt_id.id,
+ &table->free_list.id) == FALSE)
+ goto again;
+
+ OSAddAtomic(-nelem, &table->used_elem);
+ return nelem;
+}
+
+
+/* ----------------------------------------------------------------------
+ *
+ * SetID Link Table Implementation
+ *
+ * ---------------------------------------------------------------------- */
+static struct wq_table g_linktable;
+
+enum setid_link_type {
+ SLT_ALL = -1,
+ SLT_FREE = WQT_FREE,
+ SLT_WQS = WQT_ELEM,
+ SLT_LINK = WQT_LINK,
+};
+
+struct setid_link {
+ struct wqt_elem wqte;
+
+ union {
+ /* wqt_type == SLT_WQS (WQT_ELEM) */
+ struct {
+ struct waitq_set *sl_set;
+ /* uint64_t sl_prepost_id; */
+ } sl_wqs;
+
+ /* wqt_type == SLT_LINK (WQT_LINK) */
+ struct {
+ uint64_t sl_left_setid;
+ uint64_t sl_right_setid;
+ } sl_link;
+ };
+#ifdef CONFIG_WAITQ_LINK_STATS
+ thread_t sl_alloc_th;
+ task_t sl_alloc_task;
+ uintptr_t sl_alloc_bt[NWAITQ_BTFRAMES];
+ uint64_t sl_alloc_ts;
+ uintptr_t sl_invalidate_bt[NWAITQ_BTFRAMES];
+ uint64_t sl_invalidate_ts;
+ uintptr_t sl_mkvalid_bt[NWAITQ_BTFRAMES];
+ uint64_t sl_mkvalid_ts;
+ uint64_t sl_free_ts;
+#endif
+};
+#if !defined(CONFIG_WAITQ_LINK_STATS)
+_Static_assert((sizeof(struct setid_link) & (sizeof(struct setid_link) - 1)) == 0,
+ "setid_link struct must be a power of two!");
+#endif
+
+#define sl_refcnt(link) \
+ (wqt_bits_refcnt((link)->wqte.wqt_bits))
+
+#define sl_type(link) \
+ (wqt_bits_type((link)->wqte.wqt_bits))
+
+#define sl_set_valid(link) \
+ do { \
+ wqt_elem_mkvalid(&(link)->wqte); \
+ lt_do_mkvalid_stats(&(link)->wqte); \
+ } while (0)
+
+#define sl_is_valid(link) \
+ wqt_bits_valid((link)->wqte.wqt_bits)
+
+#define sl_set_id wqte.wqt_id
+
+#define SLT_WQS_POISON ((void *)(0xf00df00d))
+#define SLT_LINK_POISON (0x0bad0badffffffffull)
+
+static void lt_poison(struct wq_table *table, struct wqt_elem *elem)
+{
+ struct setid_link *sl_link = (struct setid_link *)elem;
+ (void)table;
+
+ switch (sl_type(sl_link)) {
+ case SLT_WQS:
+ sl_link->sl_wqs.sl_set = SLT_WQS_POISON;
+ break;
+ case SLT_LINK:
+ sl_link->sl_link.sl_left_setid = SLT_LINK_POISON;
+ sl_link->sl_link.sl_right_setid = SLT_LINK_POISON;
+ break;
+ default:
+ break;
+ }
+#ifdef CONFIG_WAITQ_LINK_STATS
+ memset(sl_link->sl_alloc_bt, 0, sizeof(sl_link->sl_alloc_bt));
+ sl_link->sl_alloc_ts = 0;
+ memset(sl_link->sl_mkvalid_bt, 0, sizeof(sl_link->sl_mkvalid_bt));
+ sl_link->sl_mkvalid_ts = 0;
+
+ sl_link->sl_alloc_th = THREAD_NULL;
+ /* leave the sl_alloc_task in place for debugging */
+
+ sl_link->sl_free_ts = mach_absolute_time();
+#endif
+}
+
+#ifdef CONFIG_WAITQ_LINK_STATS
+static __inline__ void lt_do_alloc_stats(struct wqt_elem *elem)
+{
+ if (elem) {
+ struct setid_link *link = (struct setid_link *)elem;
+ memset(link->sl_alloc_bt, 0, sizeof(link->sl_alloc_bt));
+ waitq_grab_backtrace(link->sl_alloc_bt, 0);
+ link->sl_alloc_th = current_thread();
+ link->sl_alloc_task = current_task();
+
+ assert(link->sl_alloc_ts == 0);
+ link->sl_alloc_ts = mach_absolute_time();
+
+ memset(link->sl_invalidate_bt, 0, sizeof(link->sl_invalidate_bt));
+ link->sl_invalidate_ts = 0;
+ }
+}
+
+static __inline__ void lt_do_invalidate_stats(struct wqt_elem *elem)
+{
+ struct setid_link *link = (struct setid_link *)elem;
+
+ if (!elem)
+ return;
+
+ assert(link->sl_mkvalid_ts > 0);
+
+ memset(link->sl_invalidate_bt, 0, sizeof(link->sl_invalidate_bt));
+ link->sl_invalidate_ts = mach_absolute_time();
+ waitq_grab_backtrace(link->sl_invalidate_bt, 0);
+}
+
+static __inline__ void lt_do_mkvalid_stats(struct wqt_elem *elem)
+{
+ struct setid_link *link = (struct setid_link *)elem;
+
+ if (!elem)
+ return;
+
+ memset(link->sl_mkvalid_bt, 0, sizeof(link->sl_mkvalid_bt));
+ link->sl_mkvalid_ts = mach_absolute_time();
+ waitq_grab_backtrace(link->sl_mkvalid_bt, 0);
+}
+#else
+#define lt_do_alloc_stats(e)
+#define lt_do_invalidate_stats(e)
+#define lt_do_mkvalid_stats(e)
+#endif /* CONFIG_WAITQ_LINK_STATS */
+
+static void lt_init(void)
+{
+ uint32_t tablesz = 0, max_links = 0;
+
+ if (PE_parse_boot_argn("wql_tsize", &tablesz, sizeof(tablesz)) != TRUE)
+ tablesz = (uint32_t)g_wqt_max_tbl_size;
+
+ tablesz = P2ROUNDUP(tablesz, PAGE_SIZE);
+ max_links = tablesz / sizeof(struct setid_link);
+ assert(max_links > 0 && tablesz > 0);
+
+ /* we have a restricted index range */
+ if (max_links > (WQT_IDX_MAX + 1))
+ max_links = WQT_IDX_MAX + 1;
+
+ wqinfo("init linktable with max:%d elements (%d bytes)",
+ max_links, tablesz);
+ wq_table_init(&g_linktable, "wqslab.links", max_links,
+ sizeof(struct setid_link), lt_poison);
+}
+
+static void lt_ensure_free_space(void)
+{
+ if (g_linktable.nelem - g_linktable.used_elem < g_min_free_table_elem) {
+ /*
+ * we don't hold locks on these values, so check for underflow
+ */
+ if (g_linktable.used_elem <= g_linktable.nelem) {
+ wqdbg_v("Forcing table growth: nelem=%d, used=%d, min_free=%d",
+ g_linktable.nelem, g_linktable.used_elem,
+ g_min_free_table_elem);
+ wq_table_grow(&g_linktable, g_min_free_table_elem);
+ }
+ }
+}
+
+static struct setid_link *lt_alloc_link(int type)
+{
+ struct wqt_elem *elem;
+
+ elem = wq_table_alloc_elem(&g_linktable, type, 1);
+ lt_do_alloc_stats(elem);
+ return (struct setid_link *)elem;
+}
+
+static void lt_realloc_link(struct setid_link *link, int type)
+{
+ wq_table_realloc_elem(&g_linktable, &link->wqte, type);
+#ifdef CONFIG_WAITQ_LINK_STATS
+ memset(link->sl_alloc_bt, 0, sizeof(link->sl_alloc_bt));
+ link->sl_alloc_ts = 0;
+ lt_do_alloc_stats(&link->wqte);
+
+ memset(link->sl_invalidate_bt, 0, sizeof(link->sl_invalidate_bt));
+ link->sl_invalidate_ts = 0;
+#endif
+}
+
+static void lt_invalidate(struct setid_link *link)
+{
+ wqt_elem_invalidate(&link->wqte);
+ lt_do_invalidate_stats(&link->wqte);
+}
+
+static struct setid_link *lt_get_link(uint64_t setid)
+{
+ struct wqt_elem *elem;
+
+ elem = wq_table_get_elem(&g_linktable, setid);
+ return (struct setid_link *)elem;
+}
+
+static void lt_put_link(struct setid_link *link)
+{
+ if (!link)
+ return;
+ wq_table_put_elem(&g_linktable, (struct wqt_elem *)link);
+}
+
+static struct setid_link *lt_get_reserved(uint64_t setid, int type)
+{
+ struct wqt_elem *elem;
+
+ elem = wqt_elem_list_first(&g_linktable, setid);
+ if (!elem)
+ return NULL;
+ wq_table_realloc_elem(&g_linktable, elem, type);
+ return (struct setid_link *)elem;
+}
+
+
+static inline int waitq_maybe_remove_link(struct waitq *waitq,
+ uint64_t setid,
+ struct setid_link *parent,
+ struct setid_link *left,
+ struct setid_link *right);
+
+enum {
+ LINK_WALK_ONE_LEVEL = 0,
+ LINK_WALK_FULL_DAG = 1,
+ LINK_WALK_FULL_DAG_UNLOCKED = 2,
+};
+
+typedef int (*lt_callback_func)(struct waitq *waitq, void *ctx,
+ struct setid_link *link);
+
+/**
+ * walk all table elements (of type 'link_type') pointed to by 'setid'
+ *
+ * Conditions:
+ * waitq is locked (or NULL)
+ * 'setid' is managed by 'waitq'
+ * this could be direct (waitq->waitq_set_id == setid)
+ * OR indirect (setid is the left/right ID in a LINK chain,
+ * whose root is waitq->waitq_set_id)
+ *
+ * Notes:
+ * This function uses recursion to walk the set of table elements
+ * pointed to by 'setid'. For each element encountered, 'cb' will be
+ * called. If non-zero, the return value of this callback function can
+ * early-out of the table walk.
+ *
+ * For each link element encountered, the function takes a reference to
+ * it. The reference is dropped only after the callback and any recursion
+ * has completed.
+ *
+ * The assumed table/link/tree structure:
+ * 'setid'
+ * / \
+ * / \
+ * L(LINK) R(LINK)
+ * /\ /\
+ * / \ / \
+ * / \ Rl(*) Rr(*)
+ * Ll(*) Lr(*) /\ /\
+ * /\ /\ ... ... ... ...
+ * ... ... ... ...
+ * \
+ * WQS(wqset_q.waitq_setid == Sx)
+ * [waitq set is a membet of setid, 'Sx')
+ *
+ * 'Sx'
+ * / \
+ * / \
+ * L(LINK) R(LINK)
+ * /\ /\
+ * ... ... ... ...
+ *
+ * The basic algorithm is as follows:
+ * *) take a reference to the table object pointed to by 'setid'
+ * *) if appropriate, call 'cb' (potentially early-out on non-zero return)
+ * *) if the link object points to a waitq set, and the walk type
+ * is 'FULL_DAG' (full directed-acyclic-graph), then try to lock
+ * the associated waitq set object and recursively walk all sets to
+ * which that set belongs. This is a DFS of the tree structure.
+ * *) recurse down the left side of the tree (following the
+ * 'sl_left_setid' pointer in the link object
+ * *) recurse down the right side of the tree (following the
+ * 'sl_right_setid' pointer in the link object
+ */
+static __attribute__((noinline))
+int walk_setid_links(int walk_type, struct waitq *waitq,
+ uint64_t setid, int link_type,
+ void *ctx, lt_callback_func cb)
+{
+ struct setid_link *link;
+ uint64_t nextid;
+ int sl_type;
+
+ link = lt_get_link(setid);
+
+ /* invalid link */
+ if (!link)
+ return WQ_ITERATE_CONTINUE;
+
+ setid = nextid = 0;
+ sl_type = sl_type(link);
+ if (sl_type == SLT_LINK) {
+ setid = link->sl_link.sl_left_setid;
+ nextid = link->sl_link.sl_right_setid;
+ }
+
+ /*
+ * Make the callback only on specified link_type (or all links)
+ * Note that after the callback, the link object may be
+ * invalid. The only valid thing we can do is put our
+ * reference to it (which may put it back on the free list)
+ */
+ if (link_type == SLT_ALL || link_type == sl_type) {
+ /* allow the callback to early-out */
+ int ret = cb(waitq, ctx, link);
+ if (ret != WQ_ITERATE_CONTINUE) {
+ lt_put_link(link);
+ return ret;
+ }
+ }
+
+ if (sl_type == SLT_WQS &&
+ (walk_type == LINK_WALK_FULL_DAG ||
+ walk_type == LINK_WALK_FULL_DAG_UNLOCKED)) {
+ /*
+ * Recurse down any sets to which this wait queue set was
+ * added. We do this just before we put our reference to
+ * the link object (which may free it).
+ */
+ struct waitq_set *wqset = link->sl_wqs.sl_set;
+ int ret = WQ_ITERATE_CONTINUE;
+ int get_spl = 0;
+ int should_unlock = 0;
+ uint64_t wqset_setid = 0;
+ spl_t set_spl;
+
+ if (waitq_set_is_valid(wqset) && walk_type == LINK_WALK_FULL_DAG) {
+ if ((!waitq || !waitq_irq_safe(waitq)) &&
+ waitq_irq_safe(&wqset->wqset_q)) {
+ get_spl = 1;
+ set_spl = splsched();
+ }
+ waitq_set_lock(wqset);
+ should_unlock = 1;
+ }
+
+ /*
+ * verify the linked waitq set as it could have been
+ * invalidated before we grabbed the lock!
+ */
+ if (wqset->wqset_id != link->sl_set_id.id) {
+ /*This is the bottom of the tree: just get out */
+ if (should_unlock) {
+ waitq_set_unlock(wqset);
+ if (get_spl)
+ splx(set_spl);
+ }
+ lt_put_link(link);
+ return WQ_ITERATE_CONTINUE;
+ }
+
+ wqset_setid = wqset->wqset_q.waitq_set_id;
+
+ if (wqset_setid > 0)
+ ret = walk_setid_links(walk_type, &wqset->wqset_q,
+ wqset_setid, link_type, ctx, cb);
+ if (should_unlock) {
+ waitq_set_unlock(wqset);
+ if (get_spl)
+ splx(set_spl);
+ }
+ if (ret != WQ_ITERATE_CONTINUE) {
+ lt_put_link(link);
+ return ret;
+ }
+ }
+
+ lt_put_link(link);
+
+ /* recurse down left side of the tree */
+ if (setid) {
+ int ret = walk_setid_links(walk_type, waitq, setid, link_type, ctx, cb);
+ if (ret != WQ_ITERATE_CONTINUE)
+ return ret;
+ }
+
+ /* recurse down right side of the tree */
+ if (nextid)
+ return walk_setid_links(walk_type, waitq, nextid, link_type, ctx, cb);
+
+ return WQ_ITERATE_CONTINUE;
+}
+
+/* ----------------------------------------------------------------------
+ *
+ * Prepost Link Table Implementation
+ *
+ * ---------------------------------------------------------------------- */
+static struct wq_table g_prepost_table;
+
+enum wq_prepost_type {
+ WQP_FREE = WQT_FREE,
+ WQP_WQ = WQT_ELEM,
+ WQP_POST = WQT_LINK,
+};
+
+struct wq_prepost {
+ struct wqt_elem wqte;
+
+ union {
+ /* wqt_type == WQP_WQ (WQT_ELEM) */
+ struct {
+ struct waitq *wqp_wq_ptr;
+ } wqp_wq;
+ /* wqt_type == WQP_POST (WQT_LINK) */
+ struct {
+ uint64_t wqp_next_id;
+ uint64_t wqp_wq_id;
+ } wqp_post;
+ };
+#ifdef CONFIG_WAITQ_PREPOST_STATS
+ thread_t wqp_alloc_th;
+ task_t wqp_alloc_task;
+ uintptr_t wqp_alloc_bt[NWAITQ_BTFRAMES];
+#endif
+};
+#if !defined(CONFIG_WAITQ_PREPOST_STATS)
+_Static_assert((sizeof(struct wq_prepost) & (sizeof(struct wq_prepost) - 1)) == 0,
+ "wq_prepost struct must be a power of two!");
+#endif
+
+#define wqp_refcnt(wqp) \
+ (wqt_bits_refcnt((wqp)->wqte.wqt_bits))
+
+#define wqp_type(wqp) \
+ (wqt_bits_type((wqp)->wqte.wqt_bits))
+
+#define wqp_set_valid(wqp) \
+ wqt_elem_mkvalid(&(wqp)->wqte)
+
+#define wqp_is_valid(wqp) \
+ wqt_bits_valid((wqp)->wqte.wqt_bits)
+
+#define wqp_prepostid wqte.wqt_id
+
+#define WQP_WQ_POISON (0x0bad0badffffffffull)
+#define WQP_POST_POISON (0xf00df00df00df00d)
+
+static void wqp_poison(struct wq_table *table, struct wqt_elem *elem)
+{
+ struct wq_prepost *wqp = (struct wq_prepost *)elem;
+ (void)table;
+
+ switch (wqp_type(wqp)) {
+ case WQP_WQ:
+ break;
+ case WQP_POST:
+ wqp->wqp_post.wqp_next_id = WQP_POST_POISON;
+ wqp->wqp_post.wqp_wq_id = WQP_POST_POISON;
+ break;
+ default:
+ break;
+ }
+}
+
+#ifdef CONFIG_WAITQ_PREPOST_STATS
+static __inline__ void wqp_do_alloc_stats(struct wqt_elem *elem)
+{
+ if (elem) {
+ struct wq_prepost *wqp = (struct wq_prepost *)elem;
+
+ /* be sure the take stats for _all_ allocated objects */
+ for (;;) {
+ uint32_t next_idx;
+
+ memset(wqp->wqp_alloc_bt, 0, sizeof(wqp->wqp_alloc_bt));
+ waitq_grab_backtrace(wqp->wqp_alloc_bt, 4);
+ wqp->wqp_alloc_th = current_thread();
+ wqp->wqp_alloc_task = current_task();
+ next_idx = wqp->wqte.wqt_next_idx;
+
+ if (next_idx == WQT_IDX_MAX)
+ break;
+ assert(next_idx < g_prepost_table.nelem);
+
+ wqp = (struct wq_prepost *)wqt_elem_idx(&g_prepost_table,
+ next_idx);
+ }
+ }
+}
+#else
+#define wqp_do_alloc_stats(e)
+#endif /* CONFIG_WAITQ_LINK_STATS */
+
+static void wqp_init(void)
+{
+ uint32_t tablesz = 0, max_wqp = 0;
+
+ if (PE_parse_boot_argn("wqp_tsize", &tablesz, sizeof(tablesz)) != TRUE)
+ tablesz = (uint32_t)g_wqt_max_tbl_size;
+
+ tablesz = P2ROUNDUP(tablesz, PAGE_SIZE);
+ max_wqp = tablesz / sizeof(struct wq_prepost);
+ assert(max_wqp > 0 && tablesz > 0);
+
+ /* we have a restricted index range */
+ if (max_wqp > (WQT_IDX_MAX + 1))
+ max_wqp = WQT_IDX_MAX + 1;
+
+ wqinfo("init prepost table with max:%d elements (%d bytes)",
+ max_wqp, tablesz);
+ wq_table_init(&g_prepost_table, "wqslab.prepost", max_wqp,
+ sizeof(struct wq_prepost), wqp_poison);
+}
+
+/*
+ * Refill the per-CPU cache.
+ */
+static void wq_prepost_refill_cpu_cache(uint32_t nalloc)
+{
+ struct wqt_elem *new_head, *old_head;
+ struct wqp_cache *cache;
+
+ /* require preemption enabled to allocate elements */
+ if (get_preemption_level() != 0)
+ return;
+
+ new_head = wq_table_alloc_elem(&g_prepost_table,
+ WQT_RESERVED, nalloc);
+ if (new_head == NULL)
+ return;
+
+ disable_preemption();
+ cache = &PROCESSOR_DATA(current_processor(), wqp_cache);
+ cache->avail += nalloc;
+ if (cache->head == 0 || cache->head == WQT_IDX_MAX) {
+ cache->head = new_head->wqt_id.id;
+ goto out;
+ }
+
+ old_head = wqt_elem_list_first(&g_prepost_table, cache->head);
+ (void)wqt_elem_list_link(&g_prepost_table, new_head, old_head);
+ cache->head = new_head->wqt_id.id;
+
+out:
+ enable_preemption();
+ return;
+}
+
+static void wq_prepost_ensure_free_space(void)
+{
+ uint32_t free_elem;
+ uint32_t min_free;
+ struct wqp_cache *cache;
+
+ if (g_min_free_cache == 0)
+ g_min_free_cache = (WQP_CACHE_MAX * ml_get_max_cpus());
+
+ /*
+ * Ensure that we always have a pool of per-CPU prepost elements
+ */
+ disable_preemption();
+ cache = &PROCESSOR_DATA(current_processor(), wqp_cache);
+ free_elem = cache->avail;
+ enable_preemption();
+
+ if (free_elem < (WQP_CACHE_MAX / 3))
+ wq_prepost_refill_cpu_cache(WQP_CACHE_MAX - free_elem);
+
+ /*
+ * Now ensure that we have a sufficient amount of free table space
+ */
+ free_elem = g_prepost_table.nelem - g_prepost_table.used_elem;
+ min_free = g_min_free_table_elem + g_min_free_cache;
+ if (free_elem < min_free) {
+ /*
+ * we don't hold locks on these values, so check for underflow
+ */
+ if (g_prepost_table.used_elem <= g_prepost_table.nelem) {
+ wqdbg_v("Forcing table growth: nelem=%d, used=%d, min_free=%d+%d",
+ g_prepost_table.nelem, g_prepost_table.used_elem,
+ g_min_free_table_elem, g_min_free_cache);
+ wq_table_grow(&g_prepost_table, min_free);
+ }
+ }
+}
+
+static struct wq_prepost *wq_prepost_alloc(int type, int nelem)
+{
+ struct wqt_elem *elem;
+ struct wq_prepost *wqp;
+ struct wqp_cache *cache;
+
+ if (type != WQT_RESERVED)
+ goto do_alloc;
+ if (nelem == 0)
+ return NULL;
+
+ /*
+ * First try to grab the elements from the per-CPU cache if we are
+ * allocating RESERVED elements
+ */
+ disable_preemption();
+ cache = &PROCESSOR_DATA(current_processor(), wqp_cache);
+ if (nelem <= (int)cache->avail) {
+ struct wqt_elem *first, *next = NULL;
+ int nalloc = nelem;
+
+ cache->avail -= nelem;
+
+ /* grab the first element */
+ first = wqt_elem_list_first(&g_prepost_table, cache->head);
+
+ /* find the last element and re-adjust the cache head */
+ for (elem = first; elem != NULL && nalloc > 0; elem = next) {
+ next = wqt_elem_list_next(&g_prepost_table, elem);
+ if (--nalloc == 0) {
+ /* terminate the allocated list */
+ elem->wqt_next_idx = WQT_IDX_MAX;
+ break;
+ }
+ }
+ assert(nalloc == 0);
+ if (!next)
+ cache->head = WQT_IDX_MAX;
+ else
+ cache->head = next->wqt_id.id;
+ /* assert that we don't have mis-matched book keeping */
+ assert(!(cache->head == WQT_IDX_MAX && cache->avail > 0));
+ enable_preemption();
+ elem = first;
+ goto out;
+ }
+ enable_preemption();
+
+do_alloc:
+ /* fall-back to standard table allocation */
+ elem = wq_table_alloc_elem(&g_prepost_table, type, nelem);
+ if (!elem)
+ return NULL;
+
+out:
+ wqp = (struct wq_prepost *)elem;
+ wqp_do_alloc_stats(elem);
+ return wqp;
+}
+
+/*
+static void wq_prepost_realloc(struct wq_prepost *wqp, int type)
+{
+ wq_table_realloc_elem(&g_prepost_table, &wqp->wqte, type);
+}
+*/
+
+static void wq_prepost_invalidate(struct wq_prepost *wqp)
+{
+ wqt_elem_invalidate(&wqp->wqte);
+}
+
+static struct wq_prepost *wq_prepost_get(uint64_t wqp_id)
+{
+ struct wqt_elem *elem;
+
+ elem = wq_table_get_elem(&g_prepost_table, wqp_id);
+ return (struct wq_prepost *)elem;
+}
+
+static void wq_prepost_put(struct wq_prepost *wqp)
+{
+ wq_table_put_elem(&g_prepost_table, (struct wqt_elem *)wqp);
+}
+
+static int wq_prepost_rlink(struct wq_prepost *parent, struct wq_prepost *child)
+{
+ return wqt_elem_list_link(&g_prepost_table, &parent->wqte, &child->wqte);
+}
+
+static struct wq_prepost *wq_prepost_get_rnext(struct wq_prepost *head)
+{
+ struct wqt_elem *elem;
+ struct wq_prepost *wqp;
+ uint64_t id;
+
+ elem = wqt_elem_list_next(&g_prepost_table, &head->wqte);
+ if (!elem)
+ return NULL;
+ id = elem->wqt_id.id;
+ elem = wq_table_get_elem(&g_prepost_table, id);
+
+ if (!elem)
+ return NULL;
+ wqp = (struct wq_prepost *)elem;
+ if (elem->wqt_id.id != id ||
+ wqp_type(wqp) != WQP_POST ||
+ wqp->wqp_post.wqp_next_id != head->wqp_prepostid.id) {
+ wq_table_put_elem(&g_prepost_table, elem);
+ return NULL;
+ }
+
+ return wqp;
+}
+
+static void wq_prepost_reset_rnext(struct wq_prepost *wqp)
+{
+ wqt_elem_reset_next(&g_prepost_table, &wqp->wqte);
+}
+
+
+/**
+ * remove 'wqp' from the prepost list on 'wqset'
+ *
+ * Conditions:
+ * wqset is locked
+ * caller holds a reference on wqp (and is responsible to release it)
+ *
+ * Result:
+ * wqp is invalidated, wqset is potentially updated with a new
+ * prepost ID, and the next element of the prepost list may be
+ * consumed as well (if the list contained only 2 objects)
+ */
+static int wq_prepost_remove(struct waitq_set *wqset,
+ struct wq_prepost *wqp)
+{
+ int more_posts = 1;
+ uint64_t next_id = wqp->wqp_post.wqp_next_id;
+ uint64_t wqp_id = wqp->wqp_prepostid.id;
+ struct wq_prepost *prev_wqp, *next_wqp;
+
+ assert(wqp_type(wqp) == WQP_POST);
+
+ if (next_id == wqp_id) {
+ /* the list is singular and becoming empty */
+ wqset->wqset_prepost_id = 0;
+ more_posts = 0;
+ goto out;
+ }
+
+ prev_wqp = wq_prepost_get_rnext(wqp);
+ assert(prev_wqp != NULL);
+ assert(prev_wqp->wqp_post.wqp_next_id == wqp_id);
+ assert(prev_wqp->wqp_prepostid.id != wqp_id);
+ assert(wqp_type(prev_wqp) == WQP_POST);
+
+ if (prev_wqp->wqp_prepostid.id == next_id) {
+ /*
+ * There are two items in the list, and we're removing one. We
+ * only need to keep the WQP_WQ pointer from 'prev_wqp'
+ */
+ wqset->wqset_prepost_id = prev_wqp->wqp_post.wqp_wq_id;
+ wq_prepost_invalidate(prev_wqp);
+ wq_prepost_put(prev_wqp);
+ more_posts = 0;
+ goto out;
+ }
+
+ /* prev->next = next */
+ prev_wqp->wqp_post.wqp_next_id = next_id;
+
+ /* next->prev = prev */
+ next_wqp = wq_prepost_get(next_id);
+ assert(next_wqp != NULL);
+ assert(next_wqp != wqp);
+ assert(next_wqp != prev_wqp);
+ assert(wqp_type(next_wqp) == WQP_POST);
+
+ wq_prepost_reset_rnext(next_wqp);
+ wq_prepost_rlink(next_wqp, prev_wqp);
+
+ /* If we remove the head of the list, update the wqset */
+ if (wqp_id == wqset->wqset_prepost_id)
+ wqset->wqset_prepost_id = next_id;
+
+ wq_prepost_put(prev_wqp);
+ wq_prepost_put(next_wqp);
+
+out:
+ wq_prepost_reset_rnext(wqp);
+ wq_prepost_invalidate(wqp);
+ return more_posts;
+}
+
+static struct wq_prepost *wq_prepost_rfirst(uint64_t id)
+{
+ struct wqt_elem *elem;
+ elem = wqt_elem_list_first(&g_prepost_table, id);
+ wqp_do_alloc_stats(elem);
+ return (struct wq_prepost *)(void *)elem;
+}
+
+static struct wq_prepost *wq_prepost_rpop(uint64_t *id, int type)
+{
+ struct wqt_elem *elem;
+ elem = wqt_elem_list_pop(&g_prepost_table, id, type);
+ wqp_do_alloc_stats(elem);
+ return (struct wq_prepost *)(void *)elem;
+}
+
+static void wq_prepost_release_rlist(struct wq_prepost *wqp)
+{
+ int nelem = 0;
+ struct wqp_cache *cache;
+ struct wqt_elem *elem;
+
+ if (!wqp)
+ return;
+
+ elem = &wqp->wqte;
+
+ /*
+ * These are reserved elements: release them back to the per-cpu pool
+ * if our cache is running low.
+ */
+ disable_preemption();
+ cache = &PROCESSOR_DATA(current_processor(), wqp_cache);
+ if (cache->avail < WQP_CACHE_MAX) {
+ struct wqt_elem *tmp = NULL;
+ if (cache->head != WQT_IDX_MAX)
+ tmp = wqt_elem_list_first(&g_prepost_table, cache->head);
+ nelem = wqt_elem_list_link(&g_prepost_table, elem, tmp);
+ cache->head = elem->wqt_id.id;
+ cache->avail += nelem;
+ enable_preemption();
+ return;
+ }
+ enable_preemption();
+
+ /* release these elements back to the main table */
+ nelem = wqt_elem_list_release(&g_prepost_table, elem, WQT_RESERVED);
+
+#if CONFIG_WAITQ_STATS
+ g_prepost_table.nreserved_releases += 1;
+ OSDecrementAtomic64(&g_prepost_table.nreservations);
+#endif
+}
+
+typedef int (*wqp_callback_func)(struct waitq_set *wqset,
+ void *ctx,
+ struct wq_prepost *wqp,
+ struct waitq *waitq);
+
+/**
+ * iterate over a chain of preposts associated with a waitq set.
+ *
+ * Conditions:
+ * wqset is locked
+ *
+ * Notes:
+ * This loop performs automatic prepost chain management / culling, and
+ * may reset or adjust the waitq set's prepost ID pointer. If you don't
+ * want this extra processing, you can use wq_prepost_iterate().
+ */
+static int wq_prepost_foreach_locked(struct waitq_set *wqset,
+ void *ctx, wqp_callback_func cb)
+{
+ int ret;
+ struct wq_prepost *wqp, *tmp_wqp;
+
+ if (!wqset || !wqset->wqset_prepost_id)
+ return WQ_ITERATE_SUCCESS;
+
+restart:
+ wqp = wq_prepost_get(wqset->wqset_prepost_id);
+ if (!wqp) {
+ /*
+ * The prepost object is no longer valid, reset the waitq
+ * set's prepost id.
+ */
+ wqset->wqset_prepost_id = 0;
+ return WQ_ITERATE_SUCCESS;
+ }
+
+ if (wqp_type(wqp) == WQP_WQ) {
+ uint64_t __assert_only wqp_id = wqp->wqp_prepostid.id;
+ if (cb)
+ ret = cb(wqset, ctx, wqp, wqp->wqp_wq.wqp_wq_ptr);
+
+ switch (ret) {
+ case WQ_ITERATE_INVALIDATE_CONTINUE:
+ /* the caller wants to remove the only prepost here */
+ assert(wqp_id == wqset->wqset_prepost_id);
+ wqset->wqset_prepost_id = 0;
+ /* fall through */
+ case WQ_ITERATE_CONTINUE:
+ wq_prepost_put(wqp);
+ ret = WQ_ITERATE_SUCCESS;
+ break;
+ case WQ_ITERATE_RESTART:
+ wq_prepost_put(wqp);
+ /* fall through */
+ case WQ_ITERATE_DROPPED:
+ goto restart;
+ default:
+ wq_prepost_put(wqp);
+ break;
+ }
+ return ret;
+ }
+
+ assert(wqp->wqp_prepostid.id == wqset->wqset_prepost_id);
+ assert(wqp_type(wqp) == WQP_POST);
+
+ /*
+ * At this point we know we have a list of POST objects.
+ * Grab a handle to the last element in the list and start
+ * the iteration.
+ */
+ tmp_wqp = wq_prepost_get_rnext(wqp);
+ assert(tmp_wqp != NULL && wqp_type(tmp_wqp) == WQP_POST);
+
+ uint64_t last_id = tmp_wqp->wqp_prepostid.id;
+ wq_prepost_put(tmp_wqp);
+
+ ret = WQ_ITERATE_SUCCESS;
+ for (;;) {
+ uint64_t wqp_id, first_id, next_id;
+
+ wqp_id = wqp->wqp_prepostid.id;
+ first_id = wqset->wqset_prepost_id;
+ next_id = wqp->wqp_post.wqp_next_id;
+
+ /* grab the WQP_WQ object this _POST points to */
+ tmp_wqp = wq_prepost_get(wqp->wqp_post.wqp_wq_id);
+ if (!tmp_wqp) {
+ /*
+ * This WQP_POST object points to an invalid
+ * WQP_WQ object - remove the POST object from
+ * the list.
+ */
+ if (wq_prepost_remove(wqset, wqp) == 0) {
+ wq_prepost_put(wqp);
+ goto restart;
+ }
+ goto next_prepost;
+ }
+ assert(wqp_type(tmp_wqp) == WQP_WQ);
+ /*
+ * make the callback: note that this could remove 'wqp' or
+ * drop the lock on our waitq set. We need to re-validate
+ * our state when this function returns.
+ */
+ if (cb)
+ ret = cb(wqset, ctx, wqp,
+ tmp_wqp->wqp_wq.wqp_wq_ptr);
+ wq_prepost_put(tmp_wqp);
+
+ switch (ret) {
+ case WQ_ITERATE_CONTINUE:
+ /* continue iteration */
+ break;
+ case WQ_ITERATE_INVALIDATE_CONTINUE:
+ assert(next_id == wqp->wqp_post.wqp_next_id);
+ if (wq_prepost_remove(wqset, wqp) == 0) {
+ wq_prepost_put(wqp);
+ goto restart;
+ }
+ goto next_prepost;
+ case WQ_ITERATE_RESTART:
+ wq_prepost_put(wqp);
+ /* fall-through */
+ case WQ_ITERATE_DROPPED:
+ /* the callback dropped the ref to wqp: just restart */
+ goto restart;
+ default:
+ /* break out of the iteration for some other reason */
+ goto finish_prepost_foreach;
+ }
+
+ /*
+ * the set lock may have been dropped during callback,
+ * if something looks different, restart the prepost iteration
+ */
+ if (!wqp_is_valid(wqp) ||
+ (wqp->wqp_post.wqp_next_id != next_id) ||
+ wqset->wqset_prepost_id != first_id) {
+ wq_prepost_put(wqp);
+ goto restart;
+ }
+
+next_prepost:
+ /* this was the last object in the list */
+ if (wqp_id == last_id)
+ break;
+
+ /* get the next object */
+ tmp_wqp = wq_prepost_get(next_id);
+ if (!tmp_wqp) {
+ /*
+ * At this point we've already checked our state
+ * after the callback (which may have dropped the set
+ * lock). If we find an invalid member of the list
+ * then something is wrong.
+ */
+ panic("Invalid WQP_POST member 0x%llx in waitq set "
+ "0x%llx prepost list (first:%llx, "
+ "wqp:%p)",
+ next_id, wqset->wqset_id, first_id, wqp);
+ }
+ wq_prepost_put(wqp);
+ wqp = tmp_wqp;
+
+ assert(wqp_type(wqp) == WQP_POST);
+ }
+
+finish_prepost_foreach:
+ wq_prepost_put(wqp);
+ if (ret == WQ_ITERATE_CONTINUE)
+ ret = WQ_ITERATE_SUCCESS;
+
+ return ret;
+}
+
+/**
+ * Perform a simple loop over a chain of prepost objects
+ *
+ * Conditions:
+ * If 'prepost_id' is associated with a waitq (set) then that object must
+ * be locked before calling this function.
+ * Callback function, 'cb', must be able to handle a NULL wqset pointer
+ * and a NULL waitq pointer!
+ *
+ * Notes:
+ * This prepost chain iteration will _not_ automatically adjust any chain
+ * element or linkage. This is the responsibility of the caller! If you
+ * want automatic prepost chain management (at a cost of extra CPU time),
+ * you can use: wq_prepost_foreach_locked().
+ */
+static int wq_prepost_iterate(uint64_t prepost_id,
+ void *ctx, wqp_callback_func cb)
+{
+ int ret;
+ struct wq_prepost *wqp;
+
+ if (!prepost_id)
+ return WQ_ITERATE_SUCCESS;
+
+ wqp = wq_prepost_get(prepost_id);
+ if (!wqp)
+ return WQ_ITERATE_SUCCESS;
+
+ if (wqp_type(wqp) == WQP_WQ) {
+ ret = WQ_ITERATE_SUCCESS;
+ if (cb)
+ ret = cb(NULL, ctx, wqp, wqp->wqp_wq.wqp_wq_ptr);
+
+ if (ret != WQ_ITERATE_DROPPED)
+ wq_prepost_put(wqp);
+ return ret;
+ }
+
+ assert(wqp->wqp_prepostid.id == prepost_id);
+ assert(wqp_type(wqp) == WQP_POST);
+
+ /* at this point we know we have a list of POST objects */
+ uint64_t next_id;
+
+ ret = WQ_ITERATE_CONTINUE;
+ do {
+ struct wq_prepost *tmp_wqp;
+ struct waitq *wq = NULL;
+
+ next_id = wqp->wqp_post.wqp_next_id;
+
+ /* grab the WQP_WQ object this _POST points to */
+ tmp_wqp = wq_prepost_get(wqp->wqp_post.wqp_wq_id);
+ if (tmp_wqp) {
+ assert(wqp_type(tmp_wqp) == WQP_WQ);
+ wq = tmp_wqp->wqp_wq.wqp_wq_ptr;
+ }
+
+ if (cb)
+ ret = cb(NULL, ctx, wqp, wq);
+ if (tmp_wqp)
+ wq_prepost_put(tmp_wqp);
+
+ if (ret != WQ_ITERATE_CONTINUE)
+ break;
+
+ tmp_wqp = wq_prepost_get(next_id);
+ if (!tmp_wqp) {
+ /*
+ * the chain is broken: nothing we can do here besides
+ * bail from the iteration.
+ */
+ ret = WQ_ITERATE_ABORTED;
+ break;
+ }
+
+ wq_prepost_put(wqp);
+ wqp = tmp_wqp;
+
+ assert(wqp_type(wqp) == WQP_POST);
+ } while (next_id != prepost_id);
+
+ if (ret != WQ_ITERATE_DROPPED)
+ wq_prepost_put(wqp);
+
+ if (ret == WQ_ITERATE_CONTINUE)
+ ret = WQ_ITERATE_SUCCESS;
+ return ret;
+}
+
+
+struct _is_posted_ctx {
+ struct waitq *posting_wq;
+ int did_prepost;
+};
+
+static int wq_is_preposted_on_set_cb(struct waitq_set *wqset, void *ctx,
+ struct wq_prepost *wqp, struct waitq *waitq)
+{
+ struct _is_posted_ctx *pctx = (struct _is_posted_ctx *)ctx;
+
+ (void)wqset;
+ (void)wqp;
+
+ /*
+ * Don't early-out, run through the _entire_ list:
+ * This ensures that we retain a minimum number of invalid elements.
+ */
+ if (pctx->posting_wq == waitq)
+ pctx->did_prepost = 1;
+
+ return WQ_ITERATE_CONTINUE;
+}
+
+
+/**
+ * checks if 'waitq' has already preposted on 'wqset'
+ *
+ * Parameters:
+ * waitq The waitq that's preposting
+ * wqset The set onto which waitq may be preposted
+ *
+ * Conditions:
+ * both waitq and wqset are locked
+ *
+ * Returns non-zero if 'waitq' has already preposted to 'wqset'
+ */
+static int wq_is_preposted_on_set(struct waitq *waitq, struct waitq_set *wqset)
+{
+ int ret;
+ struct _is_posted_ctx pctx;
+
+ /*
+ * If the set's only prepost matches the waitq's prepost ID,
+ * then it obviously already preposted to the set.
+ */
+ if (waitq->waitq_prepost_id != 0 &&
+ wqset->wqset_prepost_id == waitq->waitq_prepost_id)
+ return 1;
+
+ /* use full prepost iteration: always trim the list */
+ pctx.posting_wq = waitq;
+ pctx.did_prepost = 0;
+ ret = wq_prepost_foreach_locked(wqset, (void *)&pctx,
+ wq_is_preposted_on_set_cb);
+ return pctx.did_prepost;
+}
+
+static struct wq_prepost *wq_get_prepost_obj(uint64_t *reserved, int type)
+{
+ struct wq_prepost *wqp = NULL;
+ /*
+ * don't fail just because the caller doesn't have enough
+ * reservations, we've kept a low-water mark on the prepost table,
+ * so there should be some available for us.
+ */
+ if (reserved && *reserved) {
+ wqp = wq_prepost_rpop(reserved, type);
+ } else {
+ /*
+ * TODO: if in interrupt context, grab from a special
+ * region / reserved list!
+ */
+ wqp = wq_prepost_alloc(type, 1);
+ }
+
+ if (wqp == NULL)
+ panic("Couldn't allocate prepost object!");
+ return wqp;
+}
+
+
+/**
+ * prepost a waitq onto a waitq set
+ *
+ * Parameters:
+ * wqset The set onto which waitq will be preposted
+ * waitq The waitq that's preposting
+ * reserved List (wqt_elem_list_ style) of pre-allocated prepost elements
+ * Could be NULL
+ *
+ * Conditions:
+ * both wqset and waitq are locked
+ *
+ * Notes:
+ * If reserved is NULL, this may block on prepost table growth.
+ */
+static void wq_prepost_do_post_locked(struct waitq_set *wqset,
+ struct waitq *waitq,
+ uint64_t *reserved)
+{
+ struct wq_prepost *wqp_post, *wqp_head, *wqp_tail;
+
+ assert(waitq_held(waitq) && waitq_held(&wqset->wqset_q));
+
+ /*
+ * nothing to do if it's already preposted:
+ * note that this also culls any invalid prepost objects
+ */
+ if (wq_is_preposted_on_set(waitq, wqset))
+ return;
+
+ /*
+ * This function is called because an event is being posted to 'waitq'.
+ * We need a prepost object associated with this queue. Allocate one
+ * now if the waitq isn't already associated with one.
+ */
+ if (waitq->waitq_prepost_id == 0) {
+ struct wq_prepost *wqp;
+ wqp = wq_get_prepost_obj(reserved, WQP_WQ);
+ wqp->wqp_wq.wqp_wq_ptr = waitq;
+ wqp_set_valid(wqp);
+ waitq->waitq_prepost_id = wqp->wqp_prepostid.id;
+ wq_prepost_put(wqp);
+ }
+
+#if CONFIG_WAITQ_STATS
+ g_prepost_table.npreposts += 1;
+#endif
+
+ wqdbg_v("preposting waitq %p (0x%llx) to set 0x%llx",
+ (void *)VM_KERNEL_UNSLIDE_OR_PERM(waitq),
+ waitq->waitq_prepost_id, wqset->wqset_id);
+
+ if (wqset->wqset_prepost_id == 0) {
+ /* the set has no previous preposts */
+ wqset->wqset_prepost_id = waitq->waitq_prepost_id;
+ return;
+ }
+
+ wqp_head = wq_prepost_get(wqset->wqset_prepost_id);
+ if (!wqp_head) {
+ /* the previous prepost has become invalid */
+ wqset->wqset_prepost_id = waitq->waitq_prepost_id;
+ return;
+ }
+
+ assert(wqp_head->wqp_prepostid.id == wqset->wqset_prepost_id);
+
+ /*
+ * If we get here, we're going to need at least one new wq_prepost
+ * object. If the previous wqset_prepost_id points to a WQP_WQ, we
+ * actually need to allocate 2 wq_prepost objects because the WQP_WQ
+ * is tied to the waitq and shared across all sets.
+ */
+ wqp_post = wq_get_prepost_obj(reserved, WQP_POST);
+
+ wqp_post->wqp_post.wqp_wq_id = waitq->waitq_prepost_id;
+ wqdbg_v("POST 0x%llx :: WQ 0x%llx", wqp_post->wqp_prepostid.id,
+ waitq->waitq_prepost_id);
+
+ if (wqp_type(wqp_head) == WQP_WQ) {
+ /*
+ * We must replace the wqset_prepost_id with a pointer
+ * to two new WQP_POST objects
+ */
+ uint64_t wqp_id = wqp_head->wqp_prepostid.id;
+ wqdbg_v("set 0x%llx previous had 1 WQ prepost (0x%llx): "
+ "replacing with two POST preposts",
+ wqset->wqset_id, wqp_id);
+
+ /* drop the old reference */
+ wq_prepost_put(wqp_head);
+
+ /* grab another new object (the 2nd of two) */
+ wqp_head = wq_get_prepost_obj(reserved, WQP_POST);
+
+ /* point this one to the original WQP_WQ object */
+ wqp_head->wqp_post.wqp_wq_id = wqp_id;
+ wqdbg_v("POST 0x%llx :: WQ 0x%llx",
+ wqp_head->wqp_prepostid.id, wqp_id);
+
+ /* link it to the new wqp_post object allocated earlier */
+ wqp_head->wqp_post.wqp_next_id = wqp_post->wqp_prepostid.id;
+ /* make the list a double-linked and circular */
+ wq_prepost_rlink(wqp_head, wqp_post);
+
+ /*
+ * Finish setting up the new prepost: point it back to the
+ * POST object we allocated to replace the original wqset
+ * WQ prepost object
+ */
+ wqp_post->wqp_post.wqp_next_id = wqp_head->wqp_prepostid.id;
+ wq_prepost_rlink(wqp_post, wqp_head);
+
+ /* mark objects valid, and reset the wqset prepost list head */
+ wqp_set_valid(wqp_head);
+ wqp_set_valid(wqp_post);
+ wqset->wqset_prepost_id = wqp_head->wqp_prepostid.id;
+
+ /* release both references */
+ wq_prepost_put(wqp_head);
+ wq_prepost_put(wqp_post);
+
+ wqdbg_v("set 0x%llx: 0x%llx/0x%llx -> 0x%llx/0x%llx -> 0x%llx",
+ wqset->wqset_id, wqset->wqset_prepost_id,
+ wqp_head->wqp_prepostid.id, wqp_head->wqp_post.wqp_next_id,
+ wqp_post->wqp_prepostid.id,
+ wqp_post->wqp_post.wqp_next_id);
+ return;
+ }
+
+ assert(wqp_type(wqp_head) == WQP_POST);
+
+ /*
+ * Add the new prepost to the end of the prepost list
+ */
+ wqp_tail = wq_prepost_get_rnext(wqp_head);
+ assert(wqp_tail != NULL);
+ assert(wqp_tail->wqp_post.wqp_next_id == wqset->wqset_prepost_id);
+
+ /*
+ * link the head to the new tail
+ * NOTE: this needs to happen first in case wqp_tail == wqp_head
+ */
+ wq_prepost_reset_rnext(wqp_head);
+ wq_prepost_rlink(wqp_head, wqp_post);
+
+ /* point the new object to the list head, and list tail */
+ wqp_post->wqp_post.wqp_next_id = wqp_head->wqp_prepostid.id;
+ wq_prepost_rlink(wqp_post, wqp_tail);
+
+ /* point the last item in the waitq set's list to the new object */
+ wqp_tail->wqp_post.wqp_next_id = wqp_post->wqp_prepostid.id;
+
+ wqp_set_valid(wqp_post);
+
+ wq_prepost_put(wqp_head);
+ wq_prepost_put(wqp_tail);
+ wq_prepost_put(wqp_post);
+
+ wqdbg_v("set 0x%llx (wqp:0x%llx) last_prepost:0x%llx, "
+ "new_prepost:0x%llx->0x%llx", wqset->wqset_id,
+ wqset->wqset_prepost_id, wqp_head->wqp_prepostid.id,
+ wqp_post->wqp_prepostid.id, wqp_post->wqp_post.wqp_next_id);
+
+ return;
+}
+
+
+/* ----------------------------------------------------------------------
+ *
+ * Stats collection / reporting
+ *
+ * ---------------------------------------------------------------------- */
+#if CONFIG_WAITQ_STATS
+static void wq_table_stats(struct wq_table *table, struct wq_table_stats *stats)
+{
+ stats->version = WAITQ_STATS_VERSION;
+ stats->table_elements = table->nelem;
+ stats->table_used_elems = table->used_elem;
+ stats->table_elem_sz = table->elem_sz;
+ stats->table_slabs = table->nslabs;
+ stats->table_slab_sz = table->slab_sz;
+
+ stats->table_num_allocs = table->nallocs;
+ stats->table_num_preposts = table->npreposts;
+ stats->table_num_reservations = table->nreservations;
+
+ stats->table_max_used = table->max_used;
+ stats->table_avg_used = table->avg_used;
+ stats->table_max_reservations = table->max_reservations;
+ stats->table_avg_reservations = table->avg_reservations;
+}
+
+void waitq_link_stats(struct wq_table_stats *stats)
+{
+ if (!stats)
+ return;
+ wq_table_stats(&g_linktable, stats);
+}
+
+void waitq_prepost_stats(struct wq_table_stats *stats)
+{
+ wq_table_stats(&g_prepost_table, stats);
+}
+#endif
+
+
+/* ----------------------------------------------------------------------
+ *
+ * Global Wait Queues
+ *
+ * ---------------------------------------------------------------------- */
+
+static struct waitq g_boot_waitq;
+static struct waitq *global_waitqs = &g_boot_waitq;
+static uint32_t g_num_waitqs = 1;
+
+/*
+ * Zero out the used MSBs of the event.
+ */
+#define _CAST_TO_EVENT_MASK(event) ((uintptr_t)(event) & ((1ul << _EVENT_MASK_BITS) - 1ul))
+
+/*
+ * The Jenkins "one at a time" hash.
+ * TBD: There may be some value to unrolling here,
+ * depending on the architecture.
+ */
+static __inline__ uint32_t waitq_hash(char *key, size_t length)
+{
+ uint32_t hash = 0;
+ size_t i;
+
+ for (i = 0; i < length; i++) {
+ hash += key[i];
+ hash += (hash << 10);
+ hash ^= (hash >> 6);
+ }
+
+ hash += (hash << 3);
+ hash ^= (hash >> 11);
+ hash += (hash << 15);
+
+ hash &= (g_num_waitqs - 1);
+ return hash;
+}
+
+/* return a global waitq pointer corresponding to the given event */
+struct waitq *_global_eventq(char *event, size_t event_length)
+{
+ return &global_waitqs[waitq_hash(event, event_length)];
+}
+
+/* return an indexed global waitq pointer */
+struct waitq *global_waitq(int index)
+{
+ return &global_waitqs[index % g_num_waitqs];
+}
+
+
+#if CONFIG_WAITQ_STATS
+/* this global is for lldb */
+const uint32_t g_nwaitq_btframes = NWAITQ_BTFRAMES;
+struct wq_stats g_boot_stats;
+struct wq_stats *g_waitq_stats = &g_boot_stats;
+
+static __inline__ void waitq_grab_backtrace(uintptr_t bt[NWAITQ_BTFRAMES], int skip)
+{
+ uintptr_t buf[NWAITQ_BTFRAMES + skip];
+ if (skip < 0)
+ skip = 0;
+ memset(buf, 0, (NWAITQ_BTFRAMES + skip) * sizeof(uintptr_t));
+ fastbacktrace(buf, g_nwaitq_btframes + skip);
+ memcpy(&bt[0], &buf[skip], NWAITQ_BTFRAMES * sizeof(uintptr_t));
+}
+
+static __inline__ struct wq_stats *waitq_global_stats(struct waitq *waitq) {
+ struct wq_stats *wqs;
+ uint32_t idx;
+
+ if (!waitq_is_global(waitq))
+ return NULL;
+
+ idx = (uint32_t)(((uintptr_t)waitq - (uintptr_t)global_waitqs) / sizeof(*waitq));
+ assert(idx < g_num_waitqs);
+ wqs = &g_waitq_stats[idx];
+ return wqs;
+}
+
+static __inline__ void waitq_stats_count_wait(struct waitq *waitq)
+{
+ struct wq_stats *wqs = waitq_global_stats(waitq);
+ if (wqs != NULL) {
+ wqs->waits++;
+ waitq_grab_backtrace(wqs->last_wait, 2);
+ }
+}
+
+static __inline__ void waitq_stats_count_wakeup(struct waitq *waitq)
+{
+ struct wq_stats *wqs = waitq_global_stats(waitq);
+ if (wqs != NULL) {
+ wqs->wakeups++;
+ waitq_grab_backtrace(wqs->last_wakeup, 2);
+ }
+}
+
+static __inline__ void waitq_stats_count_clear_wakeup(struct waitq *waitq)
+{
+ struct wq_stats *wqs = waitq_global_stats(waitq);
+ if (wqs != NULL) {
+ wqs->wakeups++;
+ wqs->clears++;
+ waitq_grab_backtrace(wqs->last_wakeup, 2);
+ }
+}
+
+static __inline__ void waitq_stats_count_fail(struct waitq *waitq)
+{
+ struct wq_stats *wqs = waitq_global_stats(waitq);
+ if (wqs != NULL) {
+ wqs->failed_wakeups++;
+ waitq_grab_backtrace(wqs->last_failed_wakeup, 2);
+ }
+}
+#else
+#define waitq_stats_count_wait(q) do { } while (0)
+#define waitq_stats_count_wakeup(q) do { } while (0)
+#define waitq_stats_count_clear_wakeup(q) do { } while (0)
+#define waitq_stats_count_fail(q) do { } while (0)
+#endif
+
+int waitq_is_valid(struct waitq *waitq)
+{
+ return (waitq != NULL) && ((waitq->waitq_type & ~1) == WQT_QUEUE);
+}
+
+int waitq_set_is_valid(struct waitq_set *wqset)
+{
+ return (wqset != NULL) && waitqs_is_set(wqset);
+}
+
+int waitq_is_global(struct waitq *waitq)
+{
+ if (waitq >= global_waitqs && waitq < global_waitqs + g_num_waitqs)
+ return 1;
+ return 0;
+}
+
+int waitq_irq_safe(struct waitq *waitq)
+{
+ /* global wait queues have this bit set on initialization */
+ return waitq->waitq_irq;
+}
+
+static uint32_t waitq_hash_size(void)
+{
+ uint32_t hsize, queues;
+
+ if (PE_parse_boot_argn("wqsize", &hsize, sizeof(hsize)))
+ return (hsize);
+
+ queues = thread_max / 11;
+ hsize = P2ROUNDUP(queues * sizeof(struct waitq), PAGE_SIZE);
+
+ return hsize;
+}
+
+void waitq_bootstrap(void)
+{
+ kern_return_t kret;
+ uint32_t whsize, qsz;
+
+ wq_table_bootstrap();
+ lt_init();
+ wqp_init();
+
+ /*
+ * Determine the amount of memory we're willing to reserve for
+ * the waitqueue hash table
+ */
+ whsize = waitq_hash_size();
+
+ /* Determine the number of waitqueues we can fit. */
+ qsz = sizeof(struct waitq);
+ whsize = ROUNDDOWN(whsize, qsz);
+ g_num_waitqs = whsize / qsz;
+
+ /*
+ * The hash algorithm requires that this be a power of 2, so we
+ * just mask off all the low-order bits.
+ */
+ for (uint32_t i = 0; i < 31; i++) {
+ uint32_t bit = (1 << i);
+ if ((g_num_waitqs & bit) == g_num_waitqs)
+ break;
+ g_num_waitqs &= ~bit;
+ }
+ assert(g_num_waitqs > 0);
+
+ /* Now determine how much memory we really need. */
+ whsize = P2ROUNDUP(g_num_waitqs * qsz, PAGE_SIZE);
+
+ wqdbg("allocating %d global queues (%d bytes)", g_num_waitqs, whsize);
+ kret = kernel_memory_allocate(kernel_map, (vm_offset_t *)&global_waitqs,
+ whsize, 0, KMA_KOBJECT|KMA_NOPAGEWAIT, VM_KERN_MEMORY_WAITQ);
+ if (kret != KERN_SUCCESS || global_waitqs == NULL)
+ panic("kernel_memory_allocate() failed to alloc global_waitqs"
+ ", error: %d, whsize: 0x%x", kret, whsize);
+
+#if CONFIG_WAITQ_STATS
+ whsize = P2ROUNDUP(g_num_waitqs * sizeof(struct wq_stats), PAGE_SIZE);
+ kret = kernel_memory_allocate(kernel_map, (vm_offset_t *)&g_waitq_stats,
+ whsize, 0, KMA_KOBJECT|KMA_NOPAGEWAIT, VM_KERN_MEMORY_WAITQ);
+ if (kret != KERN_SUCCESS || global_waitqs == NULL)
+ panic("kernel_memory_allocate() failed to alloc g_waitq_stats"
+ ", error: %d, whsize: 0x%x", kret, whsize);
+ memset(g_waitq_stats, 0, whsize);
+#endif
+
+ for (uint32_t i = 0; i < g_num_waitqs; i++) {
+ waitq_init(&global_waitqs[i], SYNC_POLICY_FIFO|SYNC_POLICY_DISABLE_IRQ);
+ }
+
+
+ waitq_set_zone = zinit(sizeof(struct waitq_set),
+ WAITQ_SET_MAX * sizeof(struct waitq_set),
+ sizeof(struct waitq_set),
+ "waitq sets");
+ zone_change(waitq_set_zone, Z_NOENCRYPT, TRUE);
+}
+
+
+/* ----------------------------------------------------------------------
+ *
+ * Wait Queue Implementation
+ *
+ * ---------------------------------------------------------------------- */
+
+/*
+ * Double the standard lock timeout, because wait queues tend
+ * to iterate over a number of threads - locking each. If there is
+ * a problem with a thread lock, it normally times out at the wait
+ * queue level first, hiding the real problem.
+ */
+/* For x86, the hardware timeout is in TSC units. */
+#if defined(__i386__) || defined(__x86_64__)
+#define hwLockTimeOut LockTimeOutTSC
+#else
+#define hwLockTimeOut LockTimeOut
+#endif
+
+void waitq_lock(struct waitq *wq)
+{
+ if (__improbable(hw_lock_to(&(wq)->waitq_interlock,
+ hwLockTimeOut * 2) == 0)) {
+ boolean_t wql_acquired = FALSE;
+
+ while (machine_timeout_suspended()) {
+#if defined(__i386__) || defined(__x86_64__)
+ /*
+ * i386/x86_64 return with preemption disabled on a
+ * timeout for diagnostic purposes.
+ */
+ mp_enable_preemption();
+#endif
+ wql_acquired = hw_lock_to(&(wq)->waitq_interlock,
+ hwLockTimeOut * 2);
+ if (wql_acquired)
+ break;
+ }
+ if (wql_acquired == FALSE)
+ panic("waitq deadlock - waitq=%p, cpu=%d\n",
+ wq, cpu_number());
+ }
+ assert(waitq_held(wq));
+}
+
+void waitq_unlock(struct waitq *wq)
+{
+ assert(waitq_held(wq));
+ hw_lock_unlock(&(wq)->waitq_interlock);
+}
+
+
+/**
+ * clear the thread-related waitq state
+ *
+ * Conditions:
+ * 'thread' is locked
+ */
+static inline void thread_clear_waitq_state(thread_t thread)
+{
+ thread->waitq = NULL;
+ thread->wait_event = NO_EVENT64;
+ thread->at_safe_point = FALSE;
+}
+
+
+typedef thread_t (*waitq_select_cb)(void *ctx, struct waitq *waitq,
+ int is_global, thread_t thread);
+
+struct waitq_select_args {
+ /* input parameters */
+ struct waitq *posted_waitq;
+ struct waitq *waitq;
+ event64_t event;
+ waitq_select_cb select_cb;
+ void *select_ctx;
+
+ uint64_t *reserved_preposts;
+
+ /* output parameters */
+ queue_t threadq;
+ int max_threads;
+ int *nthreads;
+ spl_t *spl;
+};
+
+static void do_waitq_select_n_locked(struct waitq_select_args *args);
+
+/**
+ * callback invoked once for every waitq set to which a waitq belongs
+ *
+ * Conditions:
+ * ctx->posted_waitq is locked
+ * 'link' points to a valid waitq set
+ *
+ * Notes:
+ * Takes the waitq set lock on the set pointed to by 'link'
+ * Calls do_waitq_select_n_locked() which could recurse back into
+ * this function if the waitq set is a member of other sets.
+ * If no threads were selected, it preposts the input waitq
+ * onto the waitq set pointed to by 'link'.
+ */
+static int waitq_select_walk_cb(struct waitq *waitq, void *ctx,
+ struct setid_link *link)
+{
+ int ret = WQ_ITERATE_CONTINUE;
+ struct waitq_select_args args = *((struct waitq_select_args *)ctx);
+ struct waitq_set *wqset;
+ int get_spl = 0;
+ spl_t set_spl;
+
+ (void)waitq;
+ assert(sl_type(link) == SLT_WQS);
+
+ wqset = link->sl_wqs.sl_set;
+ args.waitq = &wqset->wqset_q;
+
+ if (!waitq_irq_safe(waitq) && waitq_irq_safe(&wqset->wqset_q)) {
+ get_spl = 1;
+ set_spl = splsched();
+ }
+ waitq_set_lock(wqset);
+ /*
+ * verify that the link wasn't invalidated just before
+ * we were able to take the lock.
+ */
+ if (wqset->wqset_id != link->sl_set_id.id)
+ goto out_unlock;
+
+ /*
+ * Find any threads waiting on this wait queue set,
+ * and recurse into any waitq set to which this set belongs.
+ */
+ do_waitq_select_n_locked(&args);
+
+ if (*(args.nthreads) > 0 ||
+ (args.threadq && !queue_empty(args.threadq))) {
+ /* at least 1 thread was selected and returned: don't prepost */
+ if (args.max_threads > 0 &&
+ *(args.nthreads) >= args.max_threads) {
+ /* break out of the setid walk */
+ ret = WQ_ITERATE_FOUND;
+ }
+ goto out_unlock;
+ } else {
+ /*
+ * No thread selected: prepost 'waitq' to 'wqset'
+ * if wqset can handle preposts and the event is set to 0.
+ * We also make sure to not post waitq sets to other sets.
+ *
+ * In the future, we may consider an optimization to prepost
+ * 'args.posted_waitq' directly to 'wqset' to avoid
+ * unnecessary data structure manipulations in the kqueue path
+ */
+ if (args.event == NO_EVENT64 && waitq_set_can_prepost(wqset)) {
+ wq_prepost_do_post_locked(wqset, waitq,
+ args.reserved_preposts);
+ }
+ }
+
+out_unlock:
+ waitq_set_unlock(wqset);
+ if (get_spl)
+ splx(set_spl);
+ return ret;
+}
+
+/**
+ * generic thread selection from a waitq (and sets to which the waitq belongs)
+ *
+ * Conditions:
+ * args->waitq (and args->posted_waitq) is locked
+ *
+ * Notes:
+ * Uses the optional select callback function to refine the selection
+ * of one or more threads from a waitq and any set to which the waitq
+ * belongs. The select callback is invoked once for every thread that
+ * is found to be waiting on the input args->waitq.
+ *
+ * If one or more threads are selected, this may disable interrupts.
+ * The previous interrupt state is returned in args->spl and should
+ * be used in a call to splx() if threads are returned to the caller.
+ */
+static void do_waitq_select_n_locked(struct waitq_select_args *args)
+{
+ struct waitq *waitq = args->waitq;
+ int max_threads = args->max_threads;
+ thread_t thread = THREAD_NULL, first_thread = THREAD_NULL;
+ int global_q = 0;
+ unsigned long eventmask = 0;
+ int *nthreads = args->nthreads;
+
+ assert(max_threads != 0);
+
+ global_q = waitq_is_global(waitq);
+ if (global_q) {
+ eventmask = _CAST_TO_EVENT_MASK(args->event);
+ /* make sure this waitq accepts this event mask */
+ if ((waitq->waitq_eventmask & eventmask) != eventmask)
+ return;
+ eventmask = 0;
+ }
+
+ /* look through each thread waiting directly on the waitq */
+ qe_foreach_element_safe(thread, &waitq->waitq_queue, links) {
+ thread_t t = THREAD_NULL;
+ assert(thread->waitq == waitq);
+ if (thread->wait_event == args->event) {
+ t = thread;
+ if (first_thread == THREAD_NULL)
+ first_thread = thread;
+
+ /* allow the caller to futher refine the selection */
+ if (args->select_cb)
+ t = args->select_cb(args->select_ctx, waitq,
+ global_q, thread);
+ if (t != THREAD_NULL) {
+ *nthreads += 1;
+ if (args->threadq) {
+ if (*nthreads == 1)
+ *(args->spl) = splsched();
+ thread_lock(t);
+ thread_clear_waitq_state(t);
+ /* put locked thread on output queue */
+ re_queue_tail(args->threadq, &t->links);
+ }
+ /* only enqueue up to 'max' threads */
+ if (*nthreads >= max_threads && max_threads > 0)
+ break;
+ }
+ }
+ /* thread wasn't selected, and the waitq is global */
+ if (t == THREAD_NULL && global_q)
+ eventmask |= _CAST_TO_EVENT_MASK(thread->wait_event);
+ }
+
+ /*
+ * Update the eventmask of global queues:
+ * - If we selected all the threads in the queue, or we selected zero
+ * threads on the queue, set the eventmask to the calculated value
+ * (potentially 0 if we selected them all)
+ * - If we just pulled out a subset of threads from the queue, then we
+ * can't assume the calculated mask is complete (because we may not
+ * have made it through all the threads in the queue), so we have to
+ * leave it alone.
+ */
+ if (global_q && (queue_empty(&waitq->waitq_queue) || *nthreads == 0))
+ waitq->waitq_eventmask = (typeof(waitq->waitq_eventmask))eventmask;
+
+ /*
+ * Grab the first thread in the queue if no other thread was selected.
+ * We can guarantee that no one has manipulated this thread because
+ * it's waiting on the given waitq, and we have that waitq locked.
+ */
+ if (*nthreads == 0 && first_thread != THREAD_NULL && args->threadq) {
+ /* we know this is the first (and only) thread */
+ ++(*nthreads);
+ *(args->spl) = splsched();
+ thread_lock(first_thread);
+ thread_clear_waitq_state(first_thread);
+ re_queue_tail(args->threadq, &first_thread->links);
+
+ /* update the eventmask on global queues */
+ if (global_q && queue_empty(&waitq->waitq_queue))
+ waitq->waitq_eventmask = 0;
+ }
+
+ if (max_threads > 0 && *nthreads >= max_threads)
+ return;
+
+ /*
+ * wait queues that are not in any sets
+ * are the bottom of the recursion
+ */
+ if (!waitq->waitq_set_id)
+ return;
+
+ /* check to see if the set ID for this wait queue is valid */
+ struct setid_link *link = lt_get_link(waitq->waitq_set_id);
+ if (!link) {
+ /* the waitq set to which this waitq belonged, has been invalidated */
+ waitq->waitq_set_id = 0;
+ return;
+ }
+
+ lt_put_link(link);
+
+ /*
+ * If this waitq is a member of any wait queue sets, we need to look
+ * for waiting thread(s) in any of those sets, and prepost all sets that
+ * don't have active waiters.
+ *
+ * Note that we do a local walk of this waitq's links - we manually
+ * recurse down wait queue set's with non-zero wqset_q.waitq_set_id
+ */
+ (void)walk_setid_links(LINK_WALK_ONE_LEVEL, waitq, waitq->waitq_set_id,
+ SLT_WQS, (void *)args, waitq_select_walk_cb);
+}
+
+/**
+ * main entry point for thread selection from a waitq
+ *
+ * Conditions:
+ * waitq is locked
+ *
+ * Returns:
+ * The number of threads waiting on 'waitq' for 'event' which have
+ * been placed onto the input 'threadq'
+ *
+ * Notes:
+ * The 'select_cb' function is invoked for every thread found waiting
+ * on 'waitq' for 'event'. The thread is _not_ locked upon callback
+ * invocation. This parameter may be NULL.
+ *
+ * If one or more threads are returned in 'threadq' then the caller is
+ * responsible to call splx() using the returned 'spl' value. Each
+ * returned thread is locked.
+ */
+static __inline__ int waitq_select_n_locked(struct waitq *waitq,
+ event64_t event,
+ waitq_select_cb select_cb,
+ void *select_ctx,
+ uint64_t *reserved_preposts,
+ queue_t threadq,
+ int max_threads, spl_t *spl)
+{
+ int nthreads = 0;
+
+ struct waitq_select_args args = {
+ .posted_waitq = waitq,
+ .waitq = waitq,
+ .event = event,
+ .select_cb = select_cb,
+ .select_ctx = select_ctx,
+ .reserved_preposts = reserved_preposts,
+ .threadq = threadq,
+ .max_threads = max_threads,
+ .nthreads = &nthreads,
+ .spl = spl,
+ };
+
+ do_waitq_select_n_locked(&args);
+ return nthreads;
+}
+
+
+/**
+ * callback function that uses thread parameters to determine wakeup eligibility
+ *
+ * Conditions:
+ * 'waitq' is locked
+ * 'thread' is not locked
+ */
+static thread_t waitq_select_one_cb(void *ctx, struct waitq *waitq,
+ int is_global, thread_t thread)
+{
+ int fifo_q, realtime;
+ boolean_t thread_imp_donor = FALSE;
+
+ (void)ctx;
+ (void)waitq;
+ (void)is_global;
+ realtime = 0;
+
+ fifo_q = 1; /* default to FIFO for all queues for now */
+#if IMPORTANCE_INHERITANCE
+ if (is_global)
+ fifo_q = 0; /* 'thread_imp_donor' takes the place of FIFO checking */
+#endif
+
+ if (thread->sched_pri >= BASEPRI_REALTIME)
+ realtime = 1;
+
+#if IMPORTANCE_INHERITANCE
+ /*
+ * Checking imp donor bit does not need thread lock or
+ * or task lock since we have the wait queue lock and
+ * thread can not be removed from it without acquiring
+ * wait queue lock. The imp donor bit may change
+ * once we read its value, but it is ok to wake
+ * a thread while someone drops importance assertion
+ * on the that thread.
+ */
+ thread_imp_donor = task_is_importance_donor(thread->task);
+#endif /* IMPORTANCE_INHERITANCE */
+
+ if (fifo_q || thread_imp_donor == TRUE
+ || realtime || (thread->options & TH_OPT_VMPRIV)) {
+ /*
+ * If this thread's task is an importance donor,
+ * or it's a realtime thread, or it's a VM privileged
+ * thread, OR the queue is marked as FIFO:
+ * select the thread
+ */
+ return thread;
+ }
+
+ /* by default, _don't_ select the thread */
+ return THREAD_NULL;
+}
+
+/**
+ * select a single thread from a waitq that's waiting for a given event
+ *
+ * Conditions:
+ * 'waitq' is locked
+ *
+ * Returns:
+ * A locked thread that's been removed from the waitq, but has not
+ * yet been put on a run queue. Caller is responsible to call splx
+ * with the '*spl' value.
+ */
+static thread_t waitq_select_one_locked(struct waitq *waitq, event64_t event,
+ uint64_t *reserved_preposts,
+ int priority, spl_t *spl)
+{
+ int nthreads;
+ queue_head_t threadq;
+
+ (void)priority;
+
+ queue_init(&threadq);
+
+ nthreads = waitq_select_n_locked(waitq, event, waitq_select_one_cb, NULL,
+ reserved_preposts, &threadq, 1, spl);
+
+ /* if we selected a thread, return it (still locked) */
+ if (!queue_empty(&threadq)) {
+ thread_t t;
+ queue_entry_t qe = dequeue_head(&threadq);
+ t = qe_element(qe, struct thread, links);
+ assert(queue_empty(&threadq)); /* there should be 1 entry */
+ /* t has been locked and removed from all queues */
+ return t;
+ }
+
+ return THREAD_NULL;
+}
+
+
+struct select_thread_ctx {
+ thread_t thread;
+ event64_t event;
+ spl_t *spl;
+};
+
+/**
+ * link walk callback invoked once for each set to which a waitq belongs
+ *
+ * Conditions:
+ * initial waitq is locked
+ * ctx->thread is unlocked
+ *
+ * Notes:
+ * This may disable interrupts and early-out of the full DAG link walk by
+ * returning KERN_ALREADY_IN_SET. In this case, the returned thread has
+ * been removed from the waitq, it's waitq state has been reset, and the
+ * caller is responsible to call splx() with the returned interrupt state
+ * in ctx->spl.
+ */
+static int waitq_select_thread_cb(struct waitq *waitq, void *ctx,
+ struct setid_link *link)
+{
+ struct select_thread_ctx *stctx = (struct select_thread_ctx *)ctx;
+ struct waitq_set *wqset;
+
+ (void)waitq;
+
+ thread_t thread = stctx->thread;
+ event64_t event = stctx->event;
+
+ if (sl_type(link) != SLT_WQS)
+ return WQ_ITERATE_CONTINUE;
+
+ wqset = link->sl_wqs.sl_set;
+
+ if (!waitq_irq_safe(waitq) && waitq_irq_safe(&wqset->wqset_q)) {
+ *(stctx->spl) = splsched();
+ waitq_set_lock(wqset);
+ thread_lock(thread);
+ } else {
+ waitq_set_lock(wqset);
+ *(stctx->spl) = splsched();
+ thread_lock(thread);
+ }
+
+ if ((thread->waitq == &wqset->wqset_q)
+ && (thread->wait_event == event)) {
+ remqueue(&thread->links);
+ thread_clear_waitq_state(thread);
+ /*
+ * thread still locked,
+ * return non-zero to break out of WQS walk
+ */
+ waitq_set_unlock(wqset);
+ return WQ_ITERATE_FOUND;
+ }
+
+ thread_unlock(thread);
+ waitq_set_unlock(wqset);
+ splx(*(stctx->spl));
+
+ return WQ_ITERATE_CONTINUE;
+}
+
+/**
+ * returns KERN_SUCCESS and locks 'thread' if-and-only-if 'thread' is waiting
+ * on 'waitq' (or any set to which waitq belongs) for 'event'
+ *
+ * Conditions:
+ * 'waitq' is locked
+ * 'thread' is unlocked
+ */
+static kern_return_t waitq_select_thread_locked(struct waitq *waitq,
+ event64_t event,
+ thread_t thread, spl_t *spl)
+{
+ struct setid_link *link;
+ struct select_thread_ctx ctx;
+ kern_return_t kr;
+
+ *spl = splsched();
+ thread_lock(thread);
+
+ if ((thread->waitq == waitq) && (thread->wait_event == event)) {
+ remqueue(&thread->links);
+ thread_clear_waitq_state(thread);
+ /* thread still locked */
+ return KERN_SUCCESS;
+ }
+
+ thread_unlock(thread);
+ splx(*spl);
+
+ if (!waitq->waitq_set_id)
+ return KERN_NOT_WAITING;
+
+ /* check to see if the set ID for this wait queue is valid */
+ link = lt_get_link(waitq->waitq_set_id);
+ if (!link) {
+ /* the waitq to which this set belonged, has been invalidated */
+ waitq->waitq_set_id = 0;
+ return KERN_NOT_WAITING;
+ }
+
+ /*
+ * The thread may be waiting on a wait queue set to which
+ * the input 'waitq' belongs. Go look for the thread in
+ * all wait queue sets. If it's there, we'll remove it
+ * because it's equivalent to waiting directly on the input waitq.
+ */
+ ctx.thread = thread;
+ ctx.event = event;
+ ctx.spl = spl;
+ kr = walk_setid_links(LINK_WALK_FULL_DAG, waitq, waitq->waitq_set_id,
+ SLT_WQS, (void *)&ctx, waitq_select_thread_cb);
+
+ lt_put_link(link);
+
+ /* we found a thread, return success */
+ if (kr == WQ_ITERATE_FOUND)
+ return KERN_SUCCESS;
+
+ return KERN_NOT_WAITING;
+}
+
+static int prepost_exists_cb(struct waitq_set __unused *wqset,
+ void __unused *ctx,
+ struct wq_prepost __unused *wqp,
+ struct waitq __unused *waitq)
+{
+ /* if we get here, then we know that there is a valid prepost object! */
+ return WQ_ITERATE_FOUND;
+}
+
+/**
+ * declare a thread's intent to wait on 'waitq' for 'wait_event'
+ *
+ * Conditions:
+ * 'waitq' is locked
+ * 'thread' is locked
+ */
+wait_result_t waitq_assert_wait64_locked(struct waitq *waitq,
+ event64_t wait_event,
+ wait_interrupt_t interruptible,
+ wait_timeout_urgency_t urgency,
+ uint64_t deadline,
+ uint64_t leeway,
+ thread_t thread)
+{
+ wait_result_t wait_result;
+ int realtime = 0;
+
+ /*
+ * Warning: Do _not_ place debugging print statements here.
+ * The thread is locked!
+ */
+
+ if (thread->waitq != NULL)
+ panic("thread already waiting on %p", thread->waitq);
+
+ if (waitq_is_set(waitq)) {
+ struct waitq_set *wqset = (struct waitq_set *)waitq;
+ /*
+ * early-out if the thread is waiting on a wait queue set
+ * that has already been pre-posted.
+ */
+ if (wait_event == NO_EVENT64 && waitq_set_maybe_preposted(wqset)) {
+ int ret;
+ /*
+ * Run through the list of potential preposts. Because
+ * this is a hot path, we short-circuit the iteration
+ * if we find just one prepost object.
+ */
+ ret = wq_prepost_foreach_locked(wqset, NULL,
+ prepost_exists_cb);
+ if (ret == WQ_ITERATE_FOUND) {
+ thread->wait_result = THREAD_AWAKENED;
+ return THREAD_AWAKENED;
+ }
+ }
+ }
+
+ /*
+ * Realtime threads get priority for wait queue placements.
+ * This allows wait_queue_wakeup_one to prefer a waiting
+ * realtime thread, similar in principle to performing
+ * a wait_queue_wakeup_all and allowing scheduler prioritization
+ * to run the realtime thread, but without causing the
+ * lock contention of that scenario.
+ */
+ if (thread->sched_pri >= BASEPRI_REALTIME)
+ realtime = 1;
+
+ /*
+ * This is the extent to which we currently take scheduling attributes
+ * into account. If the thread is vm priviledged, we stick it at
+ * the front of the queue. Later, these queues will honor the policy
+ * value set at waitq_init time.
+ */
+ wait_result = thread_mark_wait_locked(thread, interruptible);
+ /* thread->wait_result has been set */
+ if (wait_result == THREAD_WAITING) {
+ if (!waitq->waitq_fifo
+ || (thread->options & TH_OPT_VMPRIV) || realtime)
+ enqueue_head(&waitq->waitq_queue, &thread->links);
+ else
+ enqueue_tail(&waitq->waitq_queue, &thread->links);
+
+ thread->wait_event = wait_event;
+ thread->waitq = waitq;
+
+ if (deadline != 0) {
+ boolean_t act;
+ act = timer_call_enter_with_leeway(&thread->wait_timer,
+ NULL,
+ deadline, leeway,
+ urgency, FALSE);
+ if (!act)
+ thread->wait_timer_active++;
+ thread->wait_timer_is_set = TRUE;
+ }
+
+ if (waitq_is_global(waitq))
+ waitq->waitq_eventmask = waitq->waitq_eventmask
+ | _CAST_TO_EVENT_MASK(wait_event);
+
+ waitq_stats_count_wait(waitq);
+ }
+
+ return wait_result;
+}
+
+/**
+ * remove 'thread' from its current blocking state on 'waitq'
+ *
+ * Conditions:
+ * 'waitq' is locked
+ * 'thread' is locked
+ *
+ * Notes:
+ * This function is primarily used by clear_wait_internal in
+ * sched_prim.c from the thread timer wakeup path
+ * (i.e. the thread was waiting on 'waitq' with a timeout that expired)
+ */
+void waitq_pull_thread_locked(struct waitq *waitq, thread_t thread)
+{
+ (void)waitq;
+ assert(thread->waitq == waitq);
+
+ remqueue(&thread->links);
+ thread_clear_waitq_state(thread);
+ waitq_stats_count_clear_wakeup(waitq);
+
+ /* clear the global event mask if this was the last thread there! */
+ if (waitq_is_global(waitq) && queue_empty(&waitq->waitq_queue))
+ waitq->waitq_eventmask = 0;
+}
+
+
+static __inline__
+void maybe_adjust_thread_pri(thread_t thread, int priority) {
+ if (thread->sched_pri < priority) {
+ if (priority <= MAXPRI) {
+ set_sched_pri(thread, priority);
+
+ thread->was_promoted_on_wakeup = 1;
+ thread->sched_flags |= TH_SFLAG_PROMOTED;
+ }
+ return;
+ }
+
+ /*
+ * If the caller is requesting the waitq subsystem to promote the
+ * priority of the awoken thread, then boost the thread's priority to
+ * the default WAITQ_BOOST_PRIORITY (if it's not already equal or
+ * higher priority). This boost must be removed via a call to
+ * waitq_clear_promotion_locked.
+ */
+ if (priority == WAITQ_PROMOTE_PRIORITY &&
+ (thread->sched_pri < WAITQ_BOOST_PRIORITY ||
+ !(thread->sched_flags & TH_SFLAG_WAITQ_PROMOTED))) {
+
+ KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAITQ_PROMOTE) | DBG_FUNC_NONE,
+ (uintptr_t)thread_tid(thread),
+ thread->sched_pri, thread->base_pri,
+ WAITQ_BOOST_PRIORITY, 0);
+ thread->sched_flags |= TH_SFLAG_WAITQ_PROMOTED;
+ if (thread->sched_pri < WAITQ_BOOST_PRIORITY)
+ set_sched_pri(thread, WAITQ_BOOST_PRIORITY);
+ }
+}
+
+/**
+ * Clear a thread's waitq priority promotion state and the waitq's boost flag
+ *
+ * This function will always clear the waitq's 'waitq_boost' flag. If the
+ * 'thread' parameter is non-null, the this function will also check the
+ * priority promotion (boost) state of that thread. If this thread was boosted
+ * (by having been awoken from a boosting waitq), then this boost state is
+ * cleared. This function is to be paired with waitq_enable_promote_locked.
+ */
+void waitq_clear_promotion_locked(struct waitq *waitq, thread_t thread)
+{
+ spl_t s;
+
+ assert(waitq_held(waitq));
+ if (thread == THREAD_NULL)
+ return;
+
+ if (!waitq_irq_safe(waitq))
+ s = splsched();
+ thread_lock(thread);
+
+ if (thread->sched_flags & TH_SFLAG_WAITQ_PROMOTED) {
+ thread->sched_flags &= ~TH_SFLAG_WAITQ_PROMOTED;
+
+ if (thread->sched_flags & TH_SFLAG_PROMOTED_MASK) {
+ /* it still has other promotions (mutex/rw_lock) */
+ } else if (thread->sched_flags & TH_SFLAG_DEPRESSED_MASK) {
+ KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAITQ_DEMOTE) | DBG_FUNC_NONE,
+ (uintptr_t)thread_tid(thread),
+ thread->sched_pri,
+ thread->base_pri,
+ DEPRESSPRI, 0);
+ set_sched_pri(thread, DEPRESSPRI);
+ } else {
+ KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAITQ_DEMOTE) | DBG_FUNC_NONE,
+ (uintptr_t)thread_tid(thread),
+ thread->sched_pri,
+ thread->base_pri,
+ thread->base_pri, 0);
+ thread_recompute_sched_pri(thread, FALSE);
+ }
+ }
+
+ thread_unlock(thread);
+ if (!waitq_irq_safe(waitq))
+ splx(s);
+}
+
+/**
+ * wakeup all threads waiting on 'waitq' for 'wake_event'
+ *
+ * Conditions:
+ * 'waitq' is locked
+ *
+ * Notes:
+ * May temporarily disable and re-enable interrupts
+ * and re-adjust thread priority of each awoken thread.
+ *
+ * If the input 'lock_state' == WAITQ_UNLOCK then the waitq will have
+ * been unlocked before calling thread_go() on any returned threads, and
+ * is guaranteed to be unlocked upon function return.
+ */
+kern_return_t waitq_wakeup64_all_locked(struct waitq *waitq,
+ event64_t wake_event,
+ wait_result_t result,
+ uint64_t *reserved_preposts,
+ int priority,
+ waitq_lock_state_t lock_state)
+{
+ kern_return_t ret;
+ thread_t thread;
+ spl_t th_spl;
+ int nthreads;
+ queue_head_t wakeup_queue;
+
+ assert(waitq_held(waitq));
+ queue_init(&wakeup_queue);
+
+ nthreads = waitq_select_n_locked(waitq, wake_event, NULL, NULL,
+ reserved_preposts,
+ &wakeup_queue, -1, &th_spl);
+
+ /* set each thread running */
+ ret = KERN_NOT_WAITING;
+
+#if CONFIG_WAITQ_STATS
+ qe_foreach_element(thread, &wakeup_queue, links)
+ waitq_stats_count_wakeup(waitq);
+#endif
+ if (lock_state == WAITQ_UNLOCK)
+ waitq_unlock(waitq);
+
+ qe_foreach_element_safe(thread, &wakeup_queue, links) {
+ remqueue(&thread->links);
+ maybe_adjust_thread_pri(thread, priority);
+ ret = thread_go(thread, result);
+ assert(ret == KERN_SUCCESS);
+ thread_unlock(thread);
+ }
+ if (nthreads > 0)
+ splx(th_spl);
+ else
+ waitq_stats_count_fail(waitq);
+
+ return ret;
+}
+
+/**
+ * wakeup one thread waiting on 'waitq' for 'wake_event'
+ *
+ * Conditions:
+ * 'waitq' is locked
+ *
+ * Notes:
+ * May temporarily disable and re-enable interrupts.
+ */
+kern_return_t waitq_wakeup64_one_locked(struct waitq *waitq,
+ event64_t wake_event,
+ wait_result_t result,
+ uint64_t *reserved_preposts,
+ int priority,
+ waitq_lock_state_t lock_state)
+{
+ thread_t thread;
+ spl_t th_spl;
+
+ assert(waitq_held(waitq));
+
+ thread = waitq_select_one_locked(waitq, wake_event,
+ reserved_preposts,
+ priority, &th_spl);
+
+ if (thread != THREAD_NULL)
+ waitq_stats_count_wakeup(waitq);
+ else
+ waitq_stats_count_fail(waitq);
+
+ if (lock_state == WAITQ_UNLOCK)
+ waitq_unlock(waitq);
+
+ if (thread != THREAD_NULL) {
+ maybe_adjust_thread_pri(thread, priority);
+ kern_return_t ret = thread_go(thread, result);
+ assert(ret == KERN_SUCCESS);
+ thread_unlock(thread);
+ splx(th_spl);
+ return ret;
+ }
+
+ return KERN_NOT_WAITING;
+}
+
+/**
+ * wakeup one thread waiting on 'waitq' for 'wake_event'
+ *
+ * Conditions:
+ * 'waitq' is locked
+ *
+ * Returns:
+ * A locked, runnable thread.
+ * If return value is non-NULL, interrupts have also
+ * been disabled, and the caller is responsible to call
+ * splx() with the returned '*spl' value.
+ */
+thread_t waitq_wakeup64_identity_locked(struct waitq *waitq,
+ event64_t wake_event,
+ wait_result_t result,
+ spl_t *spl,
+ uint64_t *reserved_preposts,
+ waitq_lock_state_t lock_state)
+{
+ thread_t thread;
+
+ assert(waitq_held(waitq));
+
+ thread = waitq_select_one_locked(waitq, wake_event,
+ reserved_preposts,
+ WAITQ_ALL_PRIORITIES, spl);
+
+ if (thread != THREAD_NULL)
+ waitq_stats_count_wakeup(waitq);
+ else
+ waitq_stats_count_fail(waitq);
+
+ if (lock_state == WAITQ_UNLOCK)
+ waitq_unlock(waitq);
+
+ if (thread != THREAD_NULL) {
+ kern_return_t __assert_only ret;
+ ret = thread_go(thread, result);
+ assert(ret == KERN_SUCCESS);
+ }
+
+ return thread; /* locked if not NULL (caller responsible for spl) */
+}
+
+/**
+ * wakeup a specific thread iff it's waiting on 'waitq' for 'wake_event'
+ *
+ * Conditions:
+ * 'waitq' is locked
+ * 'thread' is unlocked
+ *
+ * Notes:
+ * May temporarily disable and re-enable interrupts
+ *
+ * If the input lock_state == WAITQ_UNLOCK then the waitq will have been
+ * unlocked before calling thread_go() if 'thread' is to be awoken, and
+ * is guaranteed to be unlocked upon function return.
+ */
+kern_return_t waitq_wakeup64_thread_locked(struct waitq *waitq,
+ event64_t wake_event,
+ thread_t thread,
+ wait_result_t result,
+ waitq_lock_state_t lock_state)
+{
+ kern_return_t ret;
+ spl_t th_spl;
+
+ assert(waitq_held(waitq));
+
+ /*
+ * See if the thread was still waiting there. If so, it got
+ * dequeued and returned locked.
+ */
+ ret = waitq_select_thread_locked(waitq, wake_event, thread, &th_spl);
+
+ if (ret == KERN_SUCCESS)
+ waitq_stats_count_wakeup(waitq);
+ else
+ waitq_stats_count_fail(waitq);
+
+ if (lock_state == WAITQ_UNLOCK)
+ waitq_unlock(waitq);
+
+ if (ret != KERN_SUCCESS)
+ return KERN_NOT_WAITING;
+
+ ret = thread_go(thread, result);
+ assert(ret == KERN_SUCCESS);
+ thread_unlock(thread);
+ splx(th_spl);
+
+ return ret;
+}
+
+
+
+/* ----------------------------------------------------------------------
+ *
+ * In-Kernel API
+ *
+ * ---------------------------------------------------------------------- */
+
+/**
+ * initialize a waitq object
+ */
+kern_return_t waitq_init(struct waitq *waitq, int policy)
+{
+ assert(waitq != NULL);
+
+ /* only FIFO and LIFO for now */
+ if ((policy & SYNC_POLICY_FIXED_PRIORITY) != 0)
+ return KERN_INVALID_ARGUMENT;
+
+ waitq->waitq_fifo = ((policy & SYNC_POLICY_REVERSED) == 0);
+ waitq->waitq_irq = !!(policy & SYNC_POLICY_DISABLE_IRQ);
+ waitq->waitq_prepost = 0;
+ waitq->waitq_type = WQT_QUEUE;
+ waitq->waitq_eventmask = 0;
+
+ waitq->waitq_set_id = 0;
+ waitq->waitq_prepost_id = 0;
+
+ hw_lock_init(&waitq->waitq_interlock);
+ queue_init(&waitq->waitq_queue);
+
+ return KERN_SUCCESS;
+}
+
+struct wq_unlink_ctx {
+ struct waitq *unlink_wq;
+ struct waitq_set *unlink_wqset;
+};
+
+static int waitq_unlink_prepost_cb(struct waitq_set __unused *wqset, void *ctx,
+ struct wq_prepost *wqp, struct waitq *waitq);
+
+/**
+ * walk_setid_links callback to invalidate 'link' parameter
+ *
+ * Conditions:
+ * Called from walk_setid_links.
+ * Note that unlink other callbacks, this one make no assumptions about
+ * the 'waitq' parameter, specifically it does not have to be locked or
+ * even valid.
+ */
+static int waitq_unlink_all_cb(struct waitq *waitq, void *ctx,
+ struct setid_link *link)
+{
+ (void)waitq;
+ (void)ctx;
+ if (sl_type(link) == SLT_LINK && sl_is_valid(link))
+ lt_invalidate(link);
+
+ if (sl_type(link) == SLT_WQS) {
+ struct waitq_set *wqset;
+ int do_spl = 0;
+ spl_t spl;
+ struct wq_unlink_ctx ulctx;
+
+ /*
+ * When destroying the waitq, take the time to clear out any
+ * preposts it may have made. This could potentially save time
+ * on the IPC send path which would otherwise have to iterate
+ * over lots of dead port preposts.
+ */
+ if (waitq->waitq_prepost_id == 0)
+ goto out;
+
+ wqset = link->sl_wqs.sl_set;
+ assert(wqset != NULL);
+
+ if (waitq_set_is_valid(wqset) &&
+ waitq_irq_safe(&wqset->wqset_q)) {
+ spl = splsched();
+ do_spl = 1;
+ }
+ waitq_set_lock(wqset);
+
+ if (!waitq_set_is_valid(wqset)) {
+ /* someone raced us to teardown */
+ goto out_unlock;
+ }
+ if (!waitq_set_maybe_preposted(wqset))
+ goto out_unlock;
+
+ ulctx.unlink_wq = waitq;
+ ulctx.unlink_wqset = wqset;
+ (void)wq_prepost_iterate(wqset->wqset_prepost_id, &ulctx,
+ waitq_unlink_prepost_cb);
+out_unlock:
+ waitq_set_unlock(wqset);
+ if (do_spl)
+ splx(spl);
+ }
+
+out:
+ return WQ_ITERATE_CONTINUE;
+}
+
+
+/**
+ * cleanup any link/prepost table resources associated with a waitq
+ */
+void waitq_deinit(struct waitq *waitq)
+{
+ uint64_t setid = 0;
+ spl_t s;
+
+ if (!waitq_valid(waitq))
+ return;
+
+ if (waitq_irq_safe(waitq))
+ s = splsched();
+ waitq_lock(waitq);
+ if (!waitq_valid(waitq))
+ goto out;
+
+ waitq_unlink_all_locked(waitq, &setid, &s, NULL);
+ waitq->waitq_type = WQT_INVALID;
+ assert(queue_empty(&waitq->waitq_queue));
+
+out:
+ waitq_unlock(waitq);
+ if (waitq_irq_safe(waitq))
+ splx(s);
+
+ if (setid)
+ (void)walk_setid_links(LINK_WALK_ONE_LEVEL, waitq, setid,
+ SLT_ALL, NULL, waitq_unlink_all_cb);
+}
+
+
+/**
+ * invalidate the given wq_prepost object
+ *
+ * Conditions:
+ * Called from wq_prepost_iterate (_not_ from wq_prepost_foreach_locked!)
+ */
+static int wqset_clear_prepost_chain_cb(struct waitq_set __unused *wqset,
+ void __unused *ctx,
+ struct wq_prepost *wqp,
+ struct waitq __unused *waitq)
+{
+ if (wqp_type(wqp) == WQP_POST)
+ wq_prepost_invalidate(wqp);
+ return WQ_ITERATE_CONTINUE;
+}
+
+
+/**
+ * allocate and initialize a waitq set object
+ *
+ * Conditions:
+ * may block
+ *
+ * Returns:
+ * allocated / initialized waitq_set object
+ * NULL on failure
+ */
+struct waitq_set *waitq_set_alloc(int policy)
+{
+ struct waitq_set *wqset;
+
+ wqset = (struct waitq_set *)zalloc(waitq_set_zone);
+ if (!wqset)
+ panic("Can't allocate a new waitq set from zone %p", waitq_set_zone);
+
+ kern_return_t ret;
+ ret = waitq_set_init(wqset, policy, NULL);
+ if (ret != KERN_SUCCESS) {
+ zfree(waitq_set_zone, wqset);
+ wqset = NULL;
+ }
+
+ return wqset;
+}
+
+/**
+ * initialize a waitq set object
+ *
+ * Conditions:
+ * may (rarely) block if link table needs to grow, and
+ * no 'reserved_link' object is passed.
+ */
+kern_return_t waitq_set_init(struct waitq_set *wqset,
+ int policy, uint64_t *reserved_link)
+{
+ struct setid_link *link;
+ kern_return_t ret;
+
+ memset(wqset, 0, sizeof(*wqset));
+
+ ret = waitq_init(&wqset->wqset_q, policy);
+ if (ret != KERN_SUCCESS)
+ return ret;
+
+ wqset->wqset_q.waitq_type = WQT_SET;
+ if (policy & SYNC_POLICY_PREPOST)
+ wqset->wqset_q.waitq_prepost = 1;
+ else
+ wqset->wqset_q.waitq_prepost = 0;
+
+ if (reserved_link && *reserved_link != 0) {
+ link = lt_get_reserved(*reserved_link, SLT_WQS);
+ /* always consume the caller's reference */
+ *reserved_link = 0;
+ } else {
+ link = lt_alloc_link(SLT_WQS);
+ }
+ if (!link)
+ panic("Can't allocate link object for waitq set: %p", wqset);
+
+ link->sl_wqs.sl_set = wqset;
+ sl_set_valid(link);
+
+ wqset->wqset_id = link->sl_set_id.id;
+ wqset->wqset_prepost_id = 0;
+ lt_put_link(link);
+
+ return KERN_SUCCESS;
+}
+
+/**
+ * clear out / release any resources associated with a waitq set
+ *
+ * Conditions:
+ * may block
+ * Note:
+ * This will render the waitq set invalid, and it must
+ * be re-initialized with waitq_set_init before it can be used again
+ */
+void waitq_set_deinit(struct waitq_set *wqset)
+{
+ struct setid_link *link = NULL;
+ uint64_t set_id, set_links_id, prepost_id;
+ int do_spl = 0;
+ spl_t s;
+
+ if (!waitqs_is_set(wqset))
+ panic("trying to de-initialize an invalid wqset @%p", wqset);
+
+ if (waitq_irq_safe(&wqset->wqset_q)) {
+ s = splsched();
+ do_spl = 1;
+ }
+ waitq_set_lock(wqset);
+
+ set_id = wqset->wqset_id;
+
+ /* grab the set's link object */
+ link = lt_get_link(set_id);
+ if (link)
+ lt_invalidate(link);
+
+ /* someone raced us to deinit */
+ if (!link || wqset->wqset_id != set_id || set_id != link->sl_set_id.id) {
+ if (link)
+ lt_put_link(link);
+ waitq_set_unlock(wqset);
+ if (do_spl)
+ splx(s);
+ return;
+ }
+
+ /* every wait queue set should have a valid link object */
+ assert(link != NULL && sl_type(link) == SLT_WQS);
+
+ wqset->wqset_id = 0;
+
+ wqset->wqset_q.waitq_type = WQT_INVALID;
+ wqset->wqset_q.waitq_fifo = 0;
+ wqset->wqset_q.waitq_prepost = 0;
+ /* don't clear the 'waitq_irq' bit: it's used in locking! */
+ wqset->wqset_q.waitq_eventmask = 0;
+
+ /*
+ * This set may have a lot of preposts, or may have been a member of
+ * many other sets. To minimize spinlock hold times, we clear out the
+ * waitq set data structure under the lock-hold, but don't clear any
+ * table objects. We keep handles to the prepost and set linkage
+ * objects and free those outside the critical section.
+ */
+ prepost_id = wqset->wqset_prepost_id;
+ wqset->wqset_prepost_id = 0;
+
+ set_links_id = 0;
+ waitq_unlink_all_locked(&wqset->wqset_q, &set_links_id, &s, NULL);
+
+ waitq_set_unlock(wqset);
+ if (do_spl)
+ splx(s);
+
+ /*
+ * walk_setid_links may race with us for access to the waitq set.
+ * If walk_setid_links has a reference to the set, then we should wait
+ * until the link's refcount goes to 1 (our reference) before we exit
+ * this function. That way we ensure that the waitq set memory will
+ * remain valid even though it's been cleared out.
+ */
+ while (sl_refcnt(link) > 1)
+ delay(1);
+ lt_put_link(link);
+
+ /*
+ * release all the set link objects
+ * (links to other sets to which this set was previously added)
+ */
+ if (set_links_id)
+ (void)walk_setid_links(LINK_WALK_ONE_LEVEL, NULL, set_links_id,
+ SLT_ALL, NULL, waitq_unlink_all_cb);
+
+ /* drop / unlink all the prepost table objects */
+ (void)wq_prepost_iterate(prepost_id, NULL, wqset_clear_prepost_chain_cb);
+}
+
+/**
+ * de-initialize and free an allocated waitq set object
+ *
+ * Conditions:
+ * may block
+ */
+kern_return_t waitq_set_free(struct waitq_set *wqset)
+{
+ waitq_set_deinit(wqset);
+
+ memset(wqset, 0, sizeof(*wqset));
+ zfree(waitq_set_zone, wqset);
+
+ return KERN_SUCCESS;
+}
+
+#if defined(DEVLEOPMENT) || defined(DEBUG)
+#if CONFIG_WAITQ_DEBUG
+/**
+ * return the set ID of 'wqset'
+ */
+uint64_t wqset_id(struct waitq_set *wqset)
+{
+ if (!wqset)
+ return 0;
+
+ assert(waitqs_is_set(wqset));
+ return wqset->wqset_id;
+}
+
+/**
+ * returns a pointer to the waitq object embedded in 'wqset'
+ */
+struct waitq *wqset_waitq(struct waitq_set *wqset)
+{
+ if (!wqset)
+ return NULL;
+
+ assert(waitqs_is_set(wqset));
+
+ return &wqset->wqset_q;
+}
+#endif /* CONFIG_WAITQ_DEBUG */
+#endif /* DEVELOPMENT || DEBUG */
+
+
+/**
+ * clear all preposts originating from 'waitq'
+ *
+ * Conditions:
+ * 'waitq' locked
+ * may (rarely) spin waiting for another on-core thread to
+ * release the last reference to the waitq's prepost link object
+ *
+ * NOTE:
+ * If this function needs to spin, it will drop the waitq lock!
+ * The return value of the function indicates whether or not this
+ * happened: 1 == lock was dropped, 0 == lock held
+ */
+int waitq_clear_prepost_locked(struct waitq *waitq, spl_t *s)
+{
+ struct wq_prepost *wqp;
+ int dropped_lock = 0;
+
+ if (waitq->waitq_prepost_id == 0)
+ return 0;
+
+ wqp = wq_prepost_get(waitq->waitq_prepost_id);
+ waitq->waitq_prepost_id = 0;
+ if (wqp) {
+ uint64_t wqp_id = wqp->wqp_prepostid.id;
+ wqdbg_v("invalidate prepost 0x%llx (refcnt:%d)",
+ wqp->wqp_prepostid.id, wqp_refcnt(wqp));
+ wq_prepost_invalidate(wqp);
+ while (wqp_refcnt(wqp) > 1) {
+ int do_spl = waitq_irq_safe(waitq);
+
+ /*
+ * Some other thread must have raced us to grab a link
+ * object reference before we invalidated it. This
+ * means that they are probably trying to access the
+ * waitq to which the prepost object points. We need
+ * to wait here until the other thread drops their
+ * reference. We know that no one else can get a
+ * reference (the object has been invalidated), and
+ * that prepost references are short-lived (dropped on
+ * a call to wq_prepost_put). We also know that no one
+ * blocks while holding a reference therefore the
+ * other reference holder must be on-core. We'll just
+ * sit and wait for the other reference to be dropped.
+ */
+ disable_preemption();
+
+ waitq_unlock(waitq);
+ if (s && do_spl)
+ splx(*s);
+ dropped_lock = 1;
+ /*
+ * don't yield here, just spin and assume the other
+ * consumer is already on core...
+ */
+ delay(1);
+ if (s && do_spl)
+ *s = splsched();
+ waitq_lock(waitq);
+
+ enable_preemption();
+ }
+ if (wqp_refcnt(wqp) > 0 && wqp->wqp_prepostid.id == wqp_id)
+ wq_prepost_put(wqp);
+ }
+
+ return dropped_lock;
+}
+
+/**
+ * clear all preposts originating from 'waitq'
+ *
+ * Conditions:
+ * 'waitq' is not locked
+ * may disable and re-enable interrupts
+ */
+void waitq_clear_prepost(struct waitq *waitq)
+{
+ spl_t s;
+ int do_spl = waitq_irq_safe(waitq);
+
+ assert(waitq_valid(waitq));
+
+ if (do_spl)
+ s = splsched();
+ waitq_lock(waitq);
+ /* it doesn't matter to us if the lock is dropped here */
+ (void)waitq_clear_prepost_locked(waitq, &s);
+ waitq_unlock(waitq);
+ if (do_spl)
+ splx(s);
+}
+
+/**
+ * return a the waitq's prepost object ID (allocate if necessary)
+ *
+ * Conditions:
+ * 'waitq' is unlocked
+ */
+uint64_t waitq_get_prepost_id(struct waitq *waitq)
+{
+ struct wq_prepost *wqp;
+ uint64_t wqp_id = 0;
+ spl_t s;
+
+ if (!waitq_valid(waitq))
+ return 0;
+
+ if (waitq_irq_safe(waitq))
+ s = splsched();
+ waitq_lock(waitq);
+
+ if (!waitq_valid(waitq))
+ goto out_unlock;
+
+ if (waitq->waitq_prepost_id) {
+ wqp_id = waitq->waitq_prepost_id;
+ goto out_unlock;
+ }
+
+ /* don't hold a spinlock while allocating a prepost object */
+ waitq_unlock(waitq);
+ if (waitq_irq_safe(waitq))
+ splx(s);
+
+ wqp = wq_prepost_alloc(WQP_WQ, 1);
+ if (!wqp)
+ return 0;
+
+ /* re-acquire the waitq lock */
+ if (waitq_irq_safe(waitq))
+ s = splsched();
+ waitq_lock(waitq);
+
+ if (!waitq_valid(waitq)) {
+ wq_prepost_put(wqp);
+ wqp_id = 0;
+ goto out_unlock;
+ }
+
+ if (waitq->waitq_prepost_id) {
+ /* we were beat by someone else */
+ wq_prepost_put(wqp);
+ wqp_id = waitq->waitq_prepost_id;
+ goto out_unlock;
+ }
+
+ wqp->wqp_wq.wqp_wq_ptr = waitq;
+
+ wqp_set_valid(wqp);
+ wqp_id = wqp->wqp_prepostid.id;
+ waitq->waitq_prepost_id = wqp_id;
+
+ wq_prepost_put(wqp);
+
+out_unlock:
+ waitq_unlock(waitq);
+ if (waitq_irq_safe(waitq))
+ splx(s);
+
+ return wqp_id;
+}
+
+
+static int waitq_inset_cb(struct waitq *waitq, void *ctx, struct setid_link *link)
+{
+ uint64_t setid = *(uint64_t *)ctx;
+ int ltype = sl_type(link);
+ (void)waitq;
+ if (ltype == SLT_WQS && link->sl_set_id.id == setid) {
+ wqdbg_v(" waitq already in set 0x%llx", setid);
+ return WQ_ITERATE_FOUND;
+ } else if (ltype == SLT_LINK) {
+ /*
+ * break out early if we see a link that points to the setid
+ * in question. This saves us a step in the
+ * iteration/recursion
+ */
+ wqdbg_v(" waitq already in set 0x%llx (SLT_LINK)", setid);
+ if (link->sl_link.sl_left_setid == setid ||
+ link->sl_link.sl_right_setid == setid)
+ return WQ_ITERATE_FOUND;
+ }
+
+ return WQ_ITERATE_CONTINUE;
+}
+
+/**
+ * determine if 'waitq' is a member of 'wqset'
+ *
+ * Conditions:
+ * neither 'waitq' nor 'wqset' is not locked
+ * may disable and re-enable interrupts while locking 'waitq'
+ */
+boolean_t waitq_member(struct waitq *waitq, struct waitq_set *wqset)
+{
+ kern_return_t kr = WQ_ITERATE_SUCCESS;
+ uint64_t setid;
+ spl_t s;
+
+ if (!waitq_valid(waitq))
+ panic("Invalid waitq: %p", waitq);
+
+ if (!waitqs_is_set(wqset))
+ return FALSE;
+
+ if (waitq_irq_safe(waitq))
+ s = splsched();
+ waitq_lock(waitq);
+
+ setid = wqset->wqset_id;
+ if (!setid)
+ goto out_unlock;
+
+ /* fast path: most waitqs are members of only 1 set */
+ if (waitq->waitq_set_id == setid) {
+ waitq_unlock(waitq);
+ if (waitq_irq_safe(waitq))
+ splx(s);
+ return TRUE;
+ }
+
+ /* walk the link table and look for the Set ID of wqset */
+ kr = walk_setid_links(LINK_WALK_ONE_LEVEL, waitq, waitq->waitq_set_id,
+ SLT_ALL, (void *)&setid, waitq_inset_cb);
+
+out_unlock:
+ waitq_unlock(waitq);
+ if (waitq_irq_safe(waitq))
+ splx(s);
+
+ if (kr == WQ_ITERATE_FOUND)
+ return TRUE;
+ return FALSE;
+}
+
+/**
+ * Returns true is the given waitq is a member of at least 1 set
+ */
+boolean_t waitq_in_set(struct waitq *waitq)
+{
+ struct setid_link *link;
+ boolean_t inset = FALSE;
+ spl_t s;
+
+ if (waitq_irq_safe(waitq))
+ s = splsched();
+ waitq_lock(waitq);
+
+ if (!waitq->waitq_set_id)
+ goto out_unlock;
+
+ link = lt_get_link(waitq->waitq_set_id);
+ if (link) {
+ /* if we get here, the waitq is in _at_least_one_ set */
+ inset = TRUE;
+ lt_put_link(link);
+ } else {
+ /* we can just optimize this for next time */
+ waitq->waitq_set_id = 0;
+ }
+
+out_unlock:
+ waitq_unlock(waitq);
+ if (waitq_irq_safe(waitq))
+ splx(s);
+ return inset;
+}
+
+
+/**
+ * pre-allocate a waitq link structure from the link table
+ *
+ * Conditions:
+ * 'waitq' is not locked
+ * may (rarely) block if link table needs to grow
+ */
+uint64_t waitq_link_reserve(struct waitq *waitq)
+{
+ struct setid_link *link;
+ uint64_t reserved_id = 0;
+
+ assert(get_preemption_level() == 0 && waitq_wait_possible(current_thread()));
+
+ /*
+ * We've asserted that the caller can block, so we enforce a
+ * minimum-free table element policy here.
+ */
+ lt_ensure_free_space();
+
+ (void)waitq;
+ link = lt_alloc_link(WQT_RESERVED);
+ if (!link)
+ return 0;
+
+ reserved_id = link->sl_set_id.id;
+
+ return reserved_id;
+}
+
+/**
+ * release a pre-allocated waitq link structure
+ */
+void waitq_link_release(uint64_t id)
+{
+ struct setid_link *link;
+
+ if (id == 0)
+ return;
+
+ link = lt_get_reserved(id, SLT_LINK);
+ if (!link)
+ return;
+
+ /*
+ * if we successfully got a link object, then we know
+ * it's not been marked valid, and can be released with
+ * a standard lt_put_link() which should free the element.
+ */
+ lt_put_link(link);
+#if CONFIG_WAITQ_STATS
+ g_linktable.nreserved_releases += 1;
+#endif
+}
+
+/**
+ * link 'waitq' to the set identified by 'setid' using the 'link' structure
+ *
+ * Conditions:
+ * 'waitq' is locked
+ * caller should have a reference to the 'link' object
+ */
+static kern_return_t waitq_link_internal(struct waitq *waitq,
+ uint64_t setid, struct setid_link *link)
+{
+ struct setid_link *qlink;
+ kern_return_t kr;
+
+ assert(waitq_held(waitq));
+
+ /*
+ * If the waitq_set_id field is empty, then this waitq is not
+ * a member of any other set. All we have to do is update the
+ * field.
+ */
+ if (!waitq->waitq_set_id) {
+ waitq->waitq_set_id = setid;
+ return KERN_SUCCESS;
+ }
+
+ qlink = lt_get_link(waitq->waitq_set_id);
+ if (!qlink) {
+ /*
+ * The set to which this wait queue belonged has been
+ * destroyed / invalidated. We can re-use the waitq field.
+ */
+ waitq->waitq_set_id = setid;
+ return KERN_SUCCESS;
+ }
+ lt_put_link(qlink);
+
+ /*
+ * Check to see if it's already a member of the set.
+ *
+ * TODO: check for cycles!
+ */
+ kr = walk_setid_links(LINK_WALK_ONE_LEVEL, waitq, waitq->waitq_set_id,
+ SLT_ALL, (void *)&setid, waitq_inset_cb);
+ if (kr == WQ_ITERATE_FOUND)
+ return kr;
+
+ /*
+ * This wait queue is a member of at least one set already,
+ * and _not_ a member of the given set. Use our previously
+ * allocated link object, and hook it up to the wait queue.
+ * Note that it's possible that one or more of the wait queue sets to
+ * which the wait queue belongs was invalidated before we allocated
+ * this link object. That's OK because the next time we use that
+ * object we'll just ignore it.
+ */
+ link->sl_link.sl_left_setid = setid;
+ link->sl_link.sl_right_setid = waitq->waitq_set_id;
+ sl_set_valid(link);
+
+ waitq->waitq_set_id = link->sl_set_id.id;
+
+ return KERN_SUCCESS;
+}
+
+/**
+ * link 'waitq' to 'wqset'
+ *
+ * Conditions:
+ * if 'lock_state' contains WAITQ_SHOULD_LOCK, 'waitq' must be unlocked.
+ * Otherwise, 'waitq' must be locked.
+ *
+ * may (rarely) block on link table allocation if the table has to grow,
+ * and no 'reserved_link' object is passed.
+ *
+ * Notes:
+ * The caller can guarantee that this function will never block by
+ * pre-allocating a link table object and passing its ID in 'reserved_link'
+ */
+kern_return_t waitq_link(struct waitq *waitq, struct waitq_set *wqset,
+ waitq_lock_state_t lock_state, uint64_t *reserved_link)
+{
+ kern_return_t kr;
+ struct setid_link *link;
+ int should_lock = (lock_state == WAITQ_SHOULD_LOCK);
+ spl_t s;
+
+ if (!waitq_valid(waitq))
+ panic("Invalid waitq: %p", waitq);
+
+ if (!waitqs_is_set(wqset))
+ return KERN_INVALID_ARGUMENT;
+
+ wqdbg_v("Link waitq %p to wqset 0x%llx",
+ (void *)VM_KERNEL_UNSLIDE_OR_PERM(waitq), wqset->wqset_id);
+
+ if (waitq_irq_safe(waitq) && (!reserved_link || *reserved_link == 0)) {
+ /*
+ * wait queues that need IRQs disabled cannot block waiting
+ * for table growth to complete. Even though this is rare,
+ * we require all these waitqs to pass in a reserved link
+ * object to avoid the potential to block.
+ */
+ panic("Global/IRQ-safe waitq %p cannot link to %p without"
+ "reserved object!", waitq, wqset);
+ }
+
+ /*
+ * We _might_ need a new link object here, so we'll grab outside
+ * the lock because the alloc call _might_ block.
+ *
+ * If the caller reserved a link beforehand, then lt_get_link
+ * is guaranteed not to block because the caller holds an extra
+ * reference to the link which, in turn, hold a reference to the
+ * link table.
+ */
+ if (reserved_link && *reserved_link != 0) {
+ link = lt_get_reserved(*reserved_link, SLT_LINK);
+ /* always consume the caller's reference */
+ *reserved_link = 0;
+ } else {
+ link = lt_alloc_link(SLT_LINK);
+ }
+ if (!link)
+ return KERN_NO_SPACE;
+
+ if (should_lock) {
+ if (waitq_irq_safe(waitq))
+ s = splsched();
+ waitq_lock(waitq);
+ }
+
+ kr = waitq_link_internal(waitq, wqset->wqset_id, link);
+
+ if (should_lock) {
+ waitq_unlock(waitq);
+ if (waitq_irq_safe(waitq))
+ splx(s);
+ }
+
+ lt_put_link(link);
+
+ return kr;
+}
+
+/**
+ * helper: unlink 'waitq' from waitq set identified by 'setid'
+ * this function also prunes invalid objects from the tree
+ *
+ * Conditions:
+ * MUST be called from walk_setid_links link table walk
+ * 'waitq' is locked
+ *
+ * Notes:
+ * This is a helper function which compresses the link table by culling
+ * unused or unnecessary links. See comments below for different
+ * scenarios.
+ */
+static inline int waitq_maybe_remove_link(struct waitq *waitq,
+ uint64_t setid,
+ struct setid_link *parent,
+ struct setid_link *left,
+ struct setid_link *right)
+{
+ uint64_t *wq_setid = &waitq->waitq_set_id;
+
+ /*
+ * There are two scenarios:
+ *
+ * Scenario 1:
+ * --------------------------------------------------------------------
+ * waitq->waitq_set_id == parent
+ *
+ * parent(LINK)
+ * / \
+ * / \
+ * / \
+ * L(LINK/WQS_l) R(LINK/WQS_r)
+ *
+ * In this scenario, we assert that the original waitq points to the
+ * parent link we were passed in. If WQS_l (or WQS_r) is the waitq
+ * set we're looking for, we can set the corresponding parent
+ * link id (left or right) to 0. To compress the tree, we can reset the
+ * waitq_set_id of the original waitq to point to the side of the
+ * parent that is still valid. We then discard the parent link object.
+ */
+ if (*wq_setid == parent->sl_set_id.id) {
+ if (!left && !right) {
+ /* completely invalid children */
+ lt_invalidate(parent);
+ wqdbg_v("S1, L+R");
+ *wq_setid = 0;
+ return WQ_ITERATE_INVALID;
+ } else if (!left || left->sl_set_id.id == setid) {
+ /*
+ * left side matches we know it points either to the
+ * WQS we're unlinking, or to an invalid object:
+ * no need to invalidate it
+ */
+ *wq_setid = right->sl_set_id.id;
+ lt_invalidate(parent);
+ wqdbg_v("S1, L");
+ return left ? WQ_ITERATE_UNLINKED : WQ_ITERATE_INVALID;
+ } else if (!right || right->sl_set_id.id == setid) {
+ /*
+ * if right side matches we know it points either to the
+ * WQS we're unlinking, or to an invalid object:
+ * no need to invalidate it
+ */
+ *wq_setid = left->sl_set_id.id;
+ lt_invalidate(parent);
+ wqdbg_v("S1, R");
+ return right ? WQ_ITERATE_UNLINKED : WQ_ITERATE_INVALID;
+ }
+ }
+
+ /*
+ * the tree walk starts at the top-of-tree and moves down,
+ * so these are safe asserts.
+ */
+ assert(left || right); /* one of them has to be valid at this point */
+
+ /*
+ * Scenario 2:
+ * --------------------------------------------------------------------
+ * waitq->waitq_set_id == ... (OR parent)
+ *
+ * ...
+ * |
+ * parent
+ * / \
+ * / \
+ * L(LINK) R(LINK)
+ * /\ /\
+ * / \ / \
+ * / \ Rl(*) Rr(*)
+ * Ll(WQS) Lr(WQS)
+ *
+ * In this scenario, a leaf node of either the left or right side
+ * could be the wait queue set we're looking to unlink. We also handle
+ * the case where one of these links is invalid. If a leaf node is
+ * invalid or it's the set we're looking for, we can safely remove the
+ * middle link (left or right) and point the parent link directly to
+ * the remaining leaf node.
+ */
+ if (left && sl_type(left) == SLT_LINK) {
+ uint64_t Ll, Lr;
+ struct setid_link *linkLl, *linkLr;
+ assert(left->sl_set_id.id != setid);
+ Ll = left->sl_link.sl_left_setid;
+ Lr = left->sl_link.sl_right_setid;
+ linkLl = lt_get_link(Ll);
+ linkLr = lt_get_link(Lr);
+ if (!linkLl && !linkLr) {
+ /*
+ * The left object points to two invalid objects!
+ * We can invalidate the left w/o touching the parent.
+ */
+ lt_invalidate(left);
+ wqdbg_v("S2, Ll+Lr");
+ return WQ_ITERATE_INVALID;
+ } else if (!linkLl || Ll == setid) {
+ /* Ll is invalid and/or the wait queue set we're looking for */
+ parent->sl_link.sl_left_setid = Lr;
+ lt_invalidate(left);
+ lt_put_link(linkLl);
+ lt_put_link(linkLr);
+ wqdbg_v("S2, Ll");
+ return linkLl ? WQ_ITERATE_UNLINKED : WQ_ITERATE_INVALID;
+ } else if (!linkLr || Lr == setid) {
+ /* Lr is invalid and/or the wait queue set we're looking for */
+ parent->sl_link.sl_left_setid = Ll;
+ lt_invalidate(left);
+ lt_put_link(linkLr);
+ lt_put_link(linkLl);
+ wqdbg_v("S2, Lr");
+ return linkLr ? WQ_ITERATE_UNLINKED : WQ_ITERATE_INVALID;
+ }
+ lt_put_link(linkLl);
+ lt_put_link(linkLr);
+ }
+
+ if (right && sl_type(right) == SLT_LINK) {
+ uint64_t Rl, Rr;
+ struct setid_link *linkRl, *linkRr;
+ assert(right->sl_set_id.id != setid);
+ Rl = right->sl_link.sl_left_setid;
+ Rr = right->sl_link.sl_right_setid;
+ linkRl = lt_get_link(Rl);
+ linkRr = lt_get_link(Rr);
+ if (!linkRl && !linkRr) {
+ /*
+ * The right object points to two invalid objects!
+ * We can invalidate the right w/o touching the parent.
+ */
+ lt_invalidate(right);
+ wqdbg_v("S2, Rl+Rr");
+ return WQ_ITERATE_INVALID;
+ } else if (!linkRl || Rl == setid) {
+ /* Rl is invalid and/or the wait queue set we're looking for */
+ parent->sl_link.sl_right_setid = Rr;
+ lt_invalidate(right);
+ lt_put_link(linkRl);
+ lt_put_link(linkRr);
+ wqdbg_v("S2, Rl");
+ return linkRl ? WQ_ITERATE_UNLINKED : WQ_ITERATE_INVALID;
+ } else if (!linkRr || Rr == setid) {
+ /* Rr is invalid and/or the wait queue set we're looking for */
+ parent->sl_link.sl_right_setid = Rl;
+ lt_invalidate(right);
+ lt_put_link(linkRl);
+ lt_put_link(linkRr);
+ wqdbg_v("S2, Rr");
+ return linkRr ? WQ_ITERATE_UNLINKED : WQ_ITERATE_INVALID;
+ }
+ lt_put_link(linkRl);
+ lt_put_link(linkRr);
+ }
+
+ return WQ_ITERATE_CONTINUE;
+}
+
+/**
+ * link table walk callback that unlinks 'waitq' from 'ctx->setid'
+ *
+ * Conditions:
+ * called from walk_setid_links
+ * 'waitq' is locked
+ *
+ * Notes:
+ * uses waitq_maybe_remove_link() to compress the linktable and
+ * perform the actual unlinking
+ */
+static int waitq_unlink_cb(struct waitq *waitq, void *ctx,
+ struct setid_link *link)
+{
+ uint64_t setid = *((uint64_t *)ctx);
+ struct setid_link *right, *left;
+ int ret = 0;
+
+ if (sl_type(link) != SLT_LINK)
+ return WQ_ITERATE_CONTINUE;
+
+ do {
+ left = lt_get_link(link->sl_link.sl_left_setid);
+ right = lt_get_link(link->sl_link.sl_right_setid);
+
+ ret = waitq_maybe_remove_link(waitq, setid, link, left, right);
+
+ lt_put_link(left);
+ lt_put_link(right);
+
+ if (!sl_is_valid(link))
+ return WQ_ITERATE_INVALID;
+ /* A ret value of UNLINKED will break us out of table walk */
+ } while (ret == WQ_ITERATE_INVALID);
+
+ return ret;
+}
+
+
+/**
+ * undo/remove a prepost from 'ctx' (waitq) to 'wqset'
+ *
+ * Conditions:
+ * Called from wq_prepost_foreach_locked OR wq_prepost_iterate
+ * 'wqset' may be NULL
+ * (ctx)->unlink_wqset is locked
+ */
+static int waitq_unlink_prepost_cb(struct waitq_set __unused *wqset, void *ctx,
+ struct wq_prepost *wqp, struct waitq *waitq)
+{
+ struct wq_unlink_ctx *ulctx = (struct wq_unlink_ctx *)ctx;
+
+ if (waitq != ulctx->unlink_wq)
+ return WQ_ITERATE_CONTINUE;
+
+ if (wqp_type(wqp) == WQP_WQ &&
+ wqp->wqp_prepostid.id == ulctx->unlink_wqset->wqset_prepost_id) {
+ /* this is the only prepost on this wait queue set */
+ wqdbg_v("unlink wqp (WQ) 0x%llx", wqp->wqp_prepostid.id);
+ ulctx->unlink_wqset->wqset_prepost_id = 0;
+ return WQ_ITERATE_BREAK;
+ }
+
+ assert(wqp_type(wqp) == WQP_POST);
+
+ /*
+ * The prepost object 'wqp' points to a waitq which should no longer
+ * be preposted to 'ulctx->unlink_wqset'. We can remove the prepost
+ * object from the list and break out of the iteration. Using the
+ * context object in this way allows this same callback function to be
+ * used from both wq_prepost_foreach_locked and wq_prepost_iterate.
+ */
+ wq_prepost_remove(ulctx->unlink_wqset, wqp);
+ return WQ_ITERATE_BREAK;
+}
+
+/**
+ * unlink 'waitq' from 'wqset'
+ *
+ * Conditions:
+ * 'waitq' is locked
+ * 'wqset' is _not_ locked
+ * may (rarely) spin in prepost clear and drop/re-acquire 'waitq' lock
+ * (see waitq_clear_prepost_locked)
+ */
+static kern_return_t waitq_unlink_locked(struct waitq *waitq,
+ struct waitq_set *wqset,
+ spl_t *s)
+{
+ uint64_t setid;
+ kern_return_t kr;
+
+ setid = wqset->wqset_id;
+
+ if (waitq->waitq_set_id == 0) {
+ /*
+ * TODO:
+ * it doesn't belong to anyone, and it has a prepost object?
+ * This is an artifact of not cleaning up after kqueues when
+ * they prepost into select sets...
+ */
+ if (waitq->waitq_prepost_id != 0)
+ (void)waitq_clear_prepost_locked(waitq, s);
+ return KERN_NOT_IN_SET;
+ }
+
+ if (waitq->waitq_set_id == setid) {
+ waitq->waitq_set_id = 0;
+ /*
+ * This was the only set to which the waitq belonged: we can
+ * safely release the waitq's prepost object. It doesn't
+ * matter if this function drops and re-acquires the lock
+ * because we're not manipulating waitq state any more.
+ */
+ (void)waitq_clear_prepost_locked(waitq, s);
+ return KERN_SUCCESS;
+ }
+
+ /*
+ * The waitq was a member of more that 1 set, so we need to
+ * handle potentially compressing the link table, and
+ * adjusting the waitq->waitq_set_id value.
+ *
+ * Note: we can't free the waitq's associated prepost object (if any)
+ * because it may be in use by the one or more _other_ sets to
+ * which this queue belongs.
+ *
+ * Note: This function only handles a single level of the queue linkage.
+ * Removing a waitq from a set to which it does not directly
+ * belong is undefined. For example, if a waitq belonged to set
+ * A, and set A belonged to set B. You can't remove the waitq
+ * from set B.
+ */
+ kr = walk_setid_links(LINK_WALK_ONE_LEVEL, waitq, waitq->waitq_set_id,
+ SLT_LINK, (void *)&setid, waitq_unlink_cb);
+
+ if (kr == WQ_ITERATE_UNLINKED) {
+ struct wq_unlink_ctx ulctx;
+ int do_spl = 0;
+
+ kr = KERN_SUCCESS; /* found it and dis-associated it */
+
+ if (!waitq_irq_safe(waitq) && waitq_irq_safe(&wqset->wqset_q)) {
+ *s = splsched();
+ do_spl = 1;
+ }
+ waitq_set_lock(wqset);
+ /*
+ * clear out any prepost from waitq into wqset
+ * TODO: this could be more efficient than a linear search of
+ * the waitq set's prepost list.
+ */
+ ulctx.unlink_wq = waitq;
+ ulctx.unlink_wqset = wqset;
+ (void)wq_prepost_iterate(wqset->wqset_prepost_id, (void *)&ulctx,
+ waitq_unlink_prepost_cb);
+ waitq_set_unlock(wqset);
+ if (do_spl)
+ splx(*s);
+ } else {
+ kr = KERN_NOT_IN_SET; /* waitq is _not_ associated with wqset */
+ }
+
+ return kr;
+}
+
+/**
+ * unlink 'waitq' from 'wqset'
+ *
+ * Conditions:
+ * neither 'waitq' nor 'wqset' is locked
+ * may disable and re-enable interrupts
+ * may (rarely) spin in prepost clear
+ * (see waitq_clear_prepost_locked)
+ */
+kern_return_t waitq_unlink(struct waitq *waitq, struct waitq_set *wqset)
+{
+ kern_return_t kr = KERN_SUCCESS;
+ spl_t s;
+
+ assert(waitqs_is_set(wqset));
+
+ /*
+ * we allow the waitq to be invalid because the caller may be trying
+ * to clear out old/dirty state
+ */
+ if (!waitq_valid(waitq))
+ return KERN_INVALID_ARGUMENT;
+
+ wqdbg_v("unlink waitq %p from set 0x%llx",
+ (void *)VM_KERNEL_UNSLIDE_OR_PERM(waitq), wqset->wqset_id);
+
+ if (waitq_irq_safe(waitq))
+ s = splsched();
+ waitq_lock(waitq);
+
+ kr = waitq_unlink_locked(waitq, wqset, &s);
+
+ waitq_unlock(waitq);
+ if (waitq_irq_safe(waitq))
+ splx(s);
+
+ return kr;
+}
+
+/**
+ * unlink a waitq from a waitq set, but reference the waitq by its prepost ID
+ *
+ * Conditions:
+ * 'wqset' is unlocked
+ * wqp_id may be valid or invalid
+ */
+void waitq_unlink_by_prepost_id(uint64_t wqp_id, struct waitq_set *wqset)
+{
+ struct wq_prepost *wqp;
+
+ disable_preemption();
+ wqp = wq_prepost_get(wqp_id);
+ if (wqp) {
+ struct waitq *wq;
+ spl_t s;
+
+ wq = wqp->wqp_wq.wqp_wq_ptr;
+
+ /*
+ * lock the waitq, then release our prepost ID reference, then
+ * unlink the waitq from the wqset: this ensures that we don't
+ * hold a prepost ID reference during the unlink, but we also
+ * complete the unlink operation atomically to avoid a race
+ * with waitq_unlink[_all].
+ */
+ if (waitq_irq_safe(wq))
+ s = splsched();
+ waitq_lock(wq);
+ wq_prepost_put(wqp);
+
+ if (!waitq_valid(wq)) {
+ /* someone already tore down this waitq! */
+ waitq_unlock(wq);
+ if (waitq_irq_safe(wq))
+ splx(s);
+ enable_preemption();
+ return;
+ }
+
+ /* this _may_ drop the wq lock, but that's OK */
+ waitq_unlink_locked(wq, wqset, &s);
+
+ waitq_unlock(wq);
+ if (waitq_irq_safe(wq))
+ splx(s);
+ }
+ enable_preemption();
+ return;
+}
+
+
+/**
+ * unlink 'waitq' from all sets to which it belongs
+ *
+ * Conditions:
+ * 'waitq' is locked
+ *
+ * Notes:
+ * may drop and re-acquire the waitq lock
+ * may (rarely) spin (see waitq_clear_prepost_locked)
+ */
+kern_return_t waitq_unlink_all_locked(struct waitq *waitq, uint64_t *old_set_id,
+ spl_t *s, int *dropped_lock)
+{
+ wqdbg_v("unlink waitq %p from all sets",
+ (void *)VM_KERNEL_UNSLIDE_OR_PERM(waitq));
+
+ *old_set_id = 0;
+
+ /* it's not a member of any sets */
+ if (waitq->waitq_set_id == 0)
+ return KERN_SUCCESS;
+
+ *old_set_id = waitq->waitq_set_id;
+ waitq->waitq_set_id = 0;
+
+ /*
+ * invalidate the prepost entry for this waitq.
+ * This may drop and re-acquire the waitq lock, but that's OK because
+ * if it was added to another set and preposted to that set in the
+ * time we drop the lock, the state will remain consistent.
+ */
+ int dropped = waitq_clear_prepost_locked(waitq, s);
+ if (dropped_lock)
+ *dropped_lock = dropped;
+
+ return KERN_SUCCESS;
+}
+
+/**
+ * unlink 'waitq' from all sets to which it belongs
+ *
+ * Conditions:
+ * 'waitq' is not locked
+ * may disable and re-enable interrupts
+ * may (rarely) spin
+ * (see waitq_unlink_all_locked, waitq_clear_prepost_locked)
+ */
+kern_return_t waitq_unlink_all(struct waitq *waitq)
+{
+ kern_return_t kr = KERN_SUCCESS;
+ uint64_t setid = 0;
+ spl_t s;
+
+ if (!waitq_valid(waitq))
+ panic("Invalid waitq: %p", waitq);
+
+ if (waitq_irq_safe(waitq))
+ s = splsched();
+ waitq_lock(waitq);
+ if (waitq_valid(waitq))
+ kr = waitq_unlink_all_locked(waitq, &setid, &s, NULL);
+ waitq_unlock(waitq);
+ if (waitq_irq_safe(waitq))
+ splx(s);
+
+ if (setid) {
+ /*
+ * Walk the link table and invalidate each LINK object that
+ * used to connect this waitq to one or more sets: this works
+ * because SLT_LINK objects are private to each wait queue
+ */
+ (void)walk_setid_links(LINK_WALK_ONE_LEVEL, waitq, setid,
+ SLT_LINK, NULL, waitq_unlink_all_cb);
+ }
+
+ return kr;
+}
+
+
+/**
+ * unlink all waitqs from 'wqset'
+ *
+ * Conditions:
+ * 'wqset' is not locked
+ * may (rarely) spin/block (see waitq_clear_prepost_locked)
+ */
+kern_return_t waitq_set_unlink_all(struct waitq_set *wqset)
+{
+ struct setid_link *link;
+ uint64_t prepost_id, set_links_id = 0;
+ spl_t spl;
+
+ assert(waitqs_is_set(wqset));
+
+ wqdbg_v("unlink all queues from set 0x%llx", wqset->wqset_id);
+
+ /*
+ * This operation does not require interaction with any of the set's
+ * constituent wait queues. All we have to do is invalidate the SetID
+ */
+ if (waitq_irq_safe(&wqset->wqset_q))
+ spl = splsched();
+ waitq_set_lock(wqset);
+
+ /* invalidate and re-alloc the link object first */
+ link = lt_get_link(wqset->wqset_id);
+
+ /* we may have raced with a waitq_set_deinit: handle this */
+ if (!link) {
+ waitq_set_unlock(wqset);
+ return KERN_SUCCESS;
+ }
+
+ lt_invalidate(link);
+
+ /* re-alloc the object to get a new generation ID */
+ lt_realloc_link(link, SLT_WQS);
+ link->sl_wqs.sl_set = wqset;
+
+ wqset->wqset_id = link->sl_set_id.id;
+ sl_set_valid(link);
+ lt_put_link(link);
+
+ /* clear any preposts attached to this set */
+ prepost_id = wqset->wqset_prepost_id;
+ wqset->wqset_prepost_id = 0;
+
+ /*
+ * clear set linkage and prepost object associated with this set:
+ * waitq sets may prepost to other sets if, for example, they are
+ * associated with a kqueue which is in a select set.
+ *
+ * This may drop and re-acquire the set lock, but that's OK because
+ * the resulting state will remain consistent.
+ */
+ waitq_unlink_all_locked(&wqset->wqset_q, &set_links_id, &spl, NULL);
+
+ waitq_set_unlock(wqset);
+ if (waitq_irq_safe(&wqset->wqset_q))
+ splx(spl);
+
+ /*
+ * release all the set link objects
+ * (links to other sets to which this set was previously added)
+ */
+ if (set_links_id)
+ (void)walk_setid_links(LINK_WALK_ONE_LEVEL, &wqset->wqset_q,
+ set_links_id, SLT_LINK, NULL,
+ waitq_unlink_all_cb);
+
+ /* drop / unlink all the prepost table objects */
+ if (prepost_id)
+ (void)wq_prepost_iterate(prepost_id, NULL,
+ wqset_clear_prepost_chain_cb);
+
+ return KERN_SUCCESS;
+}
+
+
+static int waitq_prepost_reserve_cb(struct waitq *waitq, void *ctx,
+ struct setid_link *link)
+{
+ uint32_t *num = (uint32_t *)ctx;
+ (void)waitq;
+
+ /*
+ * In the worst case, we'll have to allocate 2 prepost objects
+ * per waitq set (if the set was already preposted by another
+ * waitq).
+ */
+ if (sl_type(link) == SLT_WQS) {
+ /*
+ * check to see if the associated waitq actually supports
+ * preposting
+ */
+ if (waitq_set_can_prepost(link->sl_wqs.sl_set))
+ *num += 2;
+ }
+ return WQ_ITERATE_CONTINUE;
+}
+
+static int waitq_alloc_prepost_reservation(int nalloc, struct waitq *waitq,
+ spl_t *s, int *did_unlock,
+ struct wq_prepost **wqp)
+{
+ struct wq_prepost *tmp;
+ struct wqp_cache *cache;
+
+ *did_unlock = 0;
+
+ /*
+ * Before we unlock the waitq, check the per-processor prepost object
+ * cache to see if there's enough there for us. If so, do the
+ * allocation, keep the lock and save an entire iteration over the set
+ * linkage!
+ */
+ if (waitq) {
+ disable_preemption();
+ cache = &PROCESSOR_DATA(current_processor(), wqp_cache);
+ if (nalloc <= (int)cache->avail)
+ goto do_alloc;
+ enable_preemption();
+
+ /* unlock the waitq to perform the allocation */
+ *did_unlock = 1;
+ waitq_unlock(waitq);
+ if (waitq_irq_safe(waitq))
+ splx(*s);
+ }
+
+do_alloc:
+ tmp = wq_prepost_alloc(WQT_RESERVED, nalloc);
+ if (!tmp)
+ panic("Couldn't reserve %d preposts for waitq @%p (wqp@%p)",
+ nalloc, waitq, *wqp);
+ if (*wqp) {
+ /* link the two lists */
+ int __assert_only rc;
+ rc = wq_prepost_rlink(tmp, *wqp);
+ assert(rc == nalloc);
+ }
+ *wqp = tmp;
+
+ /*
+ * If the caller can block, then enforce a minimum-free table element
+ * policy here. This helps ensure that we will have enough prepost
+ * objects for callers such as selwakeup() that can be called with
+ * spin locks held.
+ */
+ if (get_preemption_level() == 0)
+ wq_prepost_ensure_free_space();
+
+ if (waitq) {
+ if (*did_unlock == 0) {
+ /* decrement the preemption count if alloc from cache */
+ enable_preemption();
+ } else {
+ /* otherwise: re-lock the waitq */
+ if (waitq_irq_safe(waitq))
+ *s = splsched();
+ waitq_lock(waitq);
+ }
+ }
+
+ return nalloc;
+}
+
+static int waitq_count_prepost_reservation(struct waitq *waitq, int extra, int keep_locked)
+{
+ int npreposts = 0;
+
+ /*
+ * If the waitq is not currently part of a set, and we're not asked to
+ * keep the waitq locked then we'll want to have 3 in reserve
+ * just-in-case it becomes part of a set while we unlock and reserve.
+ * We may need up to 1 object for the waitq, and 2 for the set.
+ */
+ if (waitq->waitq_set_id == 0) {
+ npreposts = 3;
+ } else {
+ /* this queue has never been preposted before */
+ if (waitq->waitq_prepost_id == 0)
+ npreposts = 3;
+
+ /*
+ * Walk the set of table linkages associated with this waitq
+ * and count the worst-case number of prepost objects that
+ * may be needed during a wakeup_all. We can walk this without
+ * locking each set along the way because the table-based IDs
+ * disconnect us from the set pointers themselves, and the
+ * table walking is careful to read the setid values only once.
+ * Locking each set up the chain also doesn't guarantee that
+ * their membership won't change between the time we unlock
+ * that set and when we actually go to prepost, so our
+ * situation is no worse than before and we've alleviated lock
+ * contention on any sets to which this waitq belongs.
+ */
+ (void)walk_setid_links(LINK_WALK_FULL_DAG_UNLOCKED,
+ waitq, waitq->waitq_set_id,
+ SLT_WQS, (void *)&npreposts,
+ waitq_prepost_reserve_cb);
+ }
+
+ if (extra > 0)
+ npreposts += extra;
+
+ if (npreposts == 0 && !keep_locked) {
+ /*
+ * If we get here, we were asked to reserve some prepost
+ * objects for a waitq that's previously preposted, and is not
+ * currently a member of any sets. We have also been
+ * instructed to unlock the waitq when we're done. In this
+ * case, we pre-allocated enough reserved objects to handle
+ * the case where the waitq gets added to a single set when
+ * the lock is released.
+ */
+ npreposts = 3;
+ }
+
+ return npreposts;
+}
+
+
+/**
+ * pre-allocate prepost objects for 'waitq'
+ *
+ * Conditions:
+ * 'waitq' is not locked
+ *
+ * Returns:
+ * panic on error
+ *
+ * 0 on success, '*reserved' is set to the head of a singly-linked
+ * list of pre-allocated prepost objects.
+ *
+ * Notes:
+ * If 'lock_state' is WAITQ_KEEP_LOCKED, this function performs the pre-allocation
+ * atomically and returns 'waitq' locked. If the waitq requires
+ * interrupts to be disabled, then the output parameter 's' is set to the
+ * previous interrupt state (from splsched), and the caller is
+ * responsible to call splx().
+ *
+ * This function attempts to pre-allocate precisely enough prepost
+ * objects based on the current set membership of 'waitq'. If the
+ * operation is performed atomically, then the caller
+ * is guaranteed to have enough pre-allocated prepost object to avoid
+ * any (rare) blocking in the wakeup path.
+ */
+uint64_t waitq_prepost_reserve(struct waitq *waitq, int extra,
+ waitq_lock_state_t lock_state, spl_t *s)
+{
+ uint64_t reserved = 0;
+ uint64_t prev_setid = 0, prev_prepostid = 0;
+ struct wq_prepost *wqp = NULL;
+ int nalloc = 0, npreposts = 0;
+ int keep_locked = (lock_state == WAITQ_KEEP_LOCKED);
+ int unlocked = 0;
+
+ if (s)
+ *s = 0;
+
+ wqdbg_v("Attempting to reserve prepost linkages for waitq %p (extra:%d)",
+ (void *)VM_KERNEL_UNSLIDE_OR_PERM(waitq), extra);
+
+ if (waitq == NULL && extra > 0) {
+ /*
+ * Simple prepost object allocation:
+ * we'll add 2 more because the waitq might need an object,
+ * and the set itself may need a new POST object in addition
+ * to the number of preposts requested by the caller
+ */
+ nalloc = waitq_alloc_prepost_reservation(extra + 2, NULL, NULL,
+ &unlocked, &wqp);
+ assert(nalloc == extra + 2);
+ return wqp->wqp_prepostid.id;
+ }
+
+ assert(lock_state == WAITQ_KEEP_LOCKED || lock_state == WAITQ_UNLOCK);
+
+ if (waitq_irq_safe(waitq))
+ *s = splsched();
+ waitq_lock(waitq);
+
+ /* global queues are never part of any sets */
+ if (waitq_is_global(waitq)) {
+ if (keep_locked)
+ goto out;
+ goto out_unlock;
+ }
+
+ /* remember the set ID that we started with */
+ prev_setid = waitq->waitq_set_id;
+ prev_prepostid = waitq->waitq_prepost_id;
+
+ /*
+ * If the waitq is not part of a set, and we're asked to
+ * keep the set locked, then we don't have to reserve
+ * anything!
+ */
+ if (prev_setid == 0 && keep_locked)
+ goto out;
+
+ npreposts = waitq_count_prepost_reservation(waitq, extra, keep_locked);
+
+ /* nothing for us to do! */
+ if (npreposts == 0) {
+ if (keep_locked)
+ goto out;
+ goto out_unlock;
+ }
+
+try_alloc:
+ /* this _may_ unlock and relock the waitq! */
+ nalloc = waitq_alloc_prepost_reservation(npreposts, waitq, s,
+ &unlocked, &wqp);
+
+ if (!unlocked) {
+ /* allocation held the waitq lock: we'd done! */
+ if (keep_locked)
+ goto out;
+ goto out_unlock;
+ }
+
+ /*
+ * Before we return, if the allocation had to unlock the waitq, we
+ * must check one more time to see if we have enough. If not, we'll
+ * try to allocate the difference. If the caller requests it, we'll
+ * also leave the waitq locked so that the use of the pre-allocated
+ * prepost objects can be guaranteed to be enough if a wakeup_all is
+ * performed before unlocking the waitq.
+ */
+
+ /*
+ * If the waitq is no longer associated with a set, or if the waitq's
+ * set/prepostid has not changed since we first walked its linkage,
+ * we're done.
+ */
+ if ((waitq->waitq_set_id == 0) ||
+ (waitq->waitq_set_id == prev_setid &&
+ waitq->waitq_prepost_id == prev_prepostid)) {
+ if (keep_locked)
+ goto out;
+ goto out_unlock;
+ }
+
+ npreposts = waitq_count_prepost_reservation(waitq, extra, keep_locked);
+
+ if (npreposts > nalloc) {
+ prev_setid = waitq->waitq_set_id;
+ prev_prepostid = waitq->waitq_prepost_id;
+ npreposts = npreposts - nalloc; /* only allocate the diff */
+ goto try_alloc;
+ }
+
+ if (keep_locked)
+ goto out;
+
+out_unlock:
+ waitq_unlock(waitq);
+ if (waitq_irq_safe(waitq))
+ splx(*s);
+out:
+ if (wqp)
+ reserved = wqp->wqp_prepostid.id;
+
+ return reserved;
+}
+
+/**
+ * release a linked list of prepost objects allocated via _prepost_reserve
+ *
+ * Conditions:
+ * may (rarely) spin waiting for prepost table growth memcpy
+ */
+void waitq_prepost_release_reserve(uint64_t id)
+{
+ struct wq_prepost *wqp;
+
+ wqdbg_v("releasing reserved preposts starting at: 0x%llx", id);
+
+ wqp = wq_prepost_rfirst(id);
+ if (!wqp)
+ return;
+
+ wq_prepost_release_rlist(wqp);
+}
+
+
+/**
+ * clear all preposts from 'wqset'
+ *
+ * Conditions:
+ * 'wqset' is not locked
+ */
+void waitq_set_clear_preposts(struct waitq_set *wqset)
+{
+ uint64_t prepost_id;
+ spl_t spl;
+
+ assert(waitqs_is_set(wqset));
+
+ wqdbg_v("Clearing all preposted queues on waitq_set: 0x%llx",
+ wqset->wqset_id);
+
+ if (waitq_irq_safe(&wqset->wqset_q))
+ spl = splsched();
+ waitq_set_lock(wqset);
+ prepost_id = wqset->wqset_prepost_id;
+ wqset->wqset_prepost_id = 0;
+ waitq_set_unlock(wqset);
+ if (waitq_irq_safe(&wqset->wqset_q))
+ splx(spl);
+
+ /* drop / unlink all the prepost table objects */
+ if (prepost_id)
+ (void)wq_prepost_iterate(prepost_id, NULL,
+ wqset_clear_prepost_chain_cb);
+}
+
+
+/* ----------------------------------------------------------------------
+ *
+ * Iteration: waitq -> sets / waitq_set -> preposts
+ *
+ * ---------------------------------------------------------------------- */
+
+struct wq_it_ctx {
+ void *input;
+ void *ctx;
+ waitq_iterator_t it;
+
+ spl_t *spl;
+};
+
+static int waitq_iterate_sets_cb(struct waitq *waitq, void *ctx,
+ struct setid_link *link)
+{
+ struct wq_it_ctx *wctx = (struct wq_it_ctx *)(ctx);
+ struct waitq_set *wqset;
+ int ret;
+ spl_t spl;
+
+ (void)waitq;
+ assert(sl_type(link) == SLT_WQS);
+
+ /*
+ * the waitq is locked, so we can just take the set lock
+ * and call the iterator function
+ */
+ wqset = link->sl_wqs.sl_set;
+ assert(wqset != NULL);
+
+ if (!waitq_irq_safe(waitq) && waitq_irq_safe(&wqset->wqset_q))
+ spl = splsched();
+ waitq_set_lock(wqset);
+
+ ret = wctx->it(wctx->ctx, (struct waitq *)wctx->input, wqset);
+
+ waitq_set_unlock(wqset);
+ if (!waitq_irq_safe(waitq) && waitq_irq_safe(&wqset->wqset_q))
+ splx(spl);
+
+ return ret;
+}
+
+/**
+ * call external iterator function for each prepost object in wqset
+ *
+ * Conditions:
+ * Called from wq_prepost_foreach_locked
+ * (wqset locked, waitq _not_ locked)
+ */
+static int wqset_iterate_prepost_cb(struct waitq_set *wqset, void *ctx,
+ struct wq_prepost *wqp, struct waitq *waitq)
+{
+ struct wq_it_ctx *wctx = (struct wq_it_ctx *)(ctx);
+ uint64_t wqp_id;
+ int ret;
+ spl_t s;
+
+ (void)wqp;
+
+ /*
+ * This is a bit tricky. The 'wqset' is locked, but the 'waitq' is not.
+ * Taking the 'waitq' lock is a lock order violation, so we need to be
+ * careful. We also must realize that we may have taken a reference to
+ * the 'wqp' just as the associated waitq was being torn down (or
+ * clearing all its preposts) - see waitq_clear_prepost_locked(). If
+ * the 'wqp' is valid and we can get the waitq lock, then we are good
+ * to go. If not, we need to back off, check that the 'wqp' hasn't
+ * been invalidated, and try to re-take the locks.
+ */
+ if (waitq_irq_safe(waitq))
+ s = splsched();
+ if (waitq_lock_try(waitq))
+ goto call_iterator;
+
+ if (waitq_irq_safe(waitq))
+ splx(s);
+
+ if (!wqp_is_valid(wqp))
+ return WQ_ITERATE_RESTART;
+
+ /* We are passed a prepost object with a reference on it. If neither
+ * the waitq set nor the waitq require interrupts disabled, then we
+ * may block on the delay(1) call below. We can't hold a prepost
+ * object reference while blocking, so we have to give that up as well
+ * and re-acquire it when we come back.
+ */
+ wqp_id = wqp->wqp_prepostid.id;
+ wq_prepost_put(wqp);
+ waitq_set_unlock(wqset);
+ wqdbg_v("dropped set:%p lock waiting for wqp:%p (0x%llx -> wq:%p)",
+ wqset, wqp, wqp->wqp_prepostid.id, waitq);
+ delay(1);
+ waitq_set_lock(wqset);
+ wqp = wq_prepost_get(wqp_id);
+ if (!wqp)
+ /* someone cleared preposts while we slept! */
+ return WQ_ITERATE_DROPPED;
+
+ /*
+ * TODO:
+ * This differs slightly from the logic in ipc_mqueue.c:
+ * ipc_mqueue_receive_on_thread(). There, if the waitq lock
+ * can't be obtained, the prepost link is placed on the back of
+ * the chain, and the iteration starts from the beginning. Here,
+ * we just restart from the beginning.
+ */
+ return WQ_ITERATE_RESTART;
+
+call_iterator:
+ if (!wqp_is_valid(wqp)) {
+ ret = WQ_ITERATE_RESTART;
+ goto out_unlock;
+ }
+
+ /* call the external callback */
+ ret = wctx->it(wctx->ctx, waitq, wqset);
+
+ if (ret == WQ_ITERATE_BREAK_KEEP_LOCKED) {
+ ret = WQ_ITERATE_BREAK;
+ if (wctx->spl)
+ *(wctx->spl) = s;
+ goto out;
+ }
+
+out_unlock:
+ waitq_unlock(waitq);
+ if (waitq_irq_safe(waitq))
+ splx(s);
+
+out:
+ return ret;
+}
+
+/**
+ * iterator over all sets to which the given waitq has been linked
+ *
+ * Conditions:
+ * 'waitq' is locked
+ */
+int waitq_iterate_sets(struct waitq *waitq, void *ctx, waitq_iterator_t it)
+{
+ int ret;
+ struct wq_it_ctx wctx = {
+ .input = (void *)waitq,
+ .ctx = ctx,
+ .it = it,
+ };
+ if (!it || !waitq)
+ return KERN_INVALID_ARGUMENT;
+
+ ret = walk_setid_links(LINK_WALK_ONE_LEVEL, waitq, waitq->waitq_set_id,
+ SLT_WQS, (void *)&wctx, waitq_iterate_sets_cb);
+ if (ret == WQ_ITERATE_CONTINUE)
+ ret = WQ_ITERATE_SUCCESS;
+ return ret;
+}
+
+/**
+ * iterator over all preposts in the given wqset
+ *
+ * Conditions:
+ * 'wqset' is locked
+ */
+int waitq_set_iterate_preposts(struct waitq_set *wqset,
+ void *ctx, waitq_iterator_t it, spl_t *s)
+{
+ struct wq_it_ctx wctx = {
+ .input = (void *)wqset,
+ .ctx = ctx,
+ .it = it,
+ .spl = s,
+ };
+ if (!it || !wqset)
+ return WQ_ITERATE_INVALID;
+
+ assert(waitq_held(&wqset->wqset_q));
+
+ return wq_prepost_foreach_locked(wqset, (void *)&wctx,
+ wqset_iterate_prepost_cb);
+}
+
+
+/* ----------------------------------------------------------------------
+ *
+ * Higher-level APIs
+ *
+ * ---------------------------------------------------------------------- */
+
+/**
+ * declare a thread's intent to wait on 'waitq' for 'wait_event'
+ *
+ * Conditions:
+ * 'waitq' is not locked
+ * will disable and re-enable interrupts while locking current_thread()
+ */
+wait_result_t waitq_assert_wait64(struct waitq *waitq,
+ event64_t wait_event,
+ wait_interrupt_t interruptible,
+ uint64_t deadline)
+{
+ wait_result_t ret;
+ thread_t thread = current_thread();
+ spl_t s;
+
+ if (!waitq_valid(waitq))
+ panic("Invalid waitq: %p", waitq);
+
+ if (waitq_irq_safe(waitq))
+ s = splsched();
+ waitq_lock(waitq);
+
+ if (!waitq_irq_safe(waitq))
+ s = splsched();
+ thread_lock(thread);
+
+ ret = waitq_assert_wait64_locked(waitq, wait_event, interruptible,
+ TIMEOUT_URGENCY_SYS_NORMAL,
+ deadline, TIMEOUT_NO_LEEWAY, thread);
+
+ thread_unlock(thread);
+ waitq_unlock(waitq);
+
+ splx(s);
+
+ return ret;
+}
+
+/**
+ * declare a thread's intent to wait on 'waitq' for 'wait_event'
+ *
+ * Conditions:
+ * 'waitq' is not locked
+ * will disable and re-enable interrupts while locking current_thread()
+ */
+wait_result_t waitq_assert_wait64_leeway(struct waitq *waitq,
+ event64_t wait_event,
+ wait_interrupt_t interruptible,
+ wait_timeout_urgency_t urgency,
+ uint64_t deadline,
+ uint64_t leeway)
+{
+ wait_result_t ret;
+ thread_t thread = current_thread();
+ spl_t s;
+
+ if (!waitq_valid(waitq))
+ panic("Invalid waitq: %p", waitq);
+
+ if (waitq_irq_safe(waitq))
+ s = splsched();
+ waitq_lock(waitq);
+
+ if (!waitq_irq_safe(waitq))
+ s = splsched();
+ thread_lock(thread);
+
+ ret = waitq_assert_wait64_locked(waitq, wait_event, interruptible,
+ urgency, deadline, leeway, thread);
+
+ thread_unlock(thread);
+ waitq_unlock(waitq);
+
+ splx(s);
+
+ return ret;
+}
+
+/**
+ * wakeup a single thread from a waitq that's waiting for a given event
+ *
+ * Conditions:
+ * 'waitq' is not locked
+ * may (rarely) block if 'waitq' is non-global and a member of 1 or more sets
+ * may disable and re-enable interrupts
+ *
+ * Notes:
+ * will _not_ block if waitq is global (or not a member of any set)
+ */
+kern_return_t waitq_wakeup64_one(struct waitq *waitq, event64_t wake_event,
+ wait_result_t result, int priority)
+{
+ kern_return_t kr;
+ uint64_t reserved_preposts = 0;
+ spl_t spl;
+
+ if (!waitq_valid(waitq))
+ panic("Invalid waitq: %p", waitq);
+
+ /* NOTE: this will _not_ reserve anything if waitq is global */
+ reserved_preposts = waitq_prepost_reserve(waitq, 0,
+ WAITQ_KEEP_LOCKED, &spl);
+
+ /* waitq is locked upon return */
+ kr = waitq_wakeup64_one_locked(waitq, wake_event, result,
+ &reserved_preposts, priority, WAITQ_UNLOCK);
+
+ if (waitq_irq_safe(waitq))
+ splx(spl);
+
+ /* release any left-over prepost object (won't block/lock anything) */
+ waitq_prepost_release_reserve(reserved_preposts);
+
+ return kr;
+}
+
+/**
+ * wakeup all threads from a waitq that are waiting for a given event
+ *
+ * Conditions:
+ * 'waitq' is not locked
+ * may (rarely) block if 'waitq' is non-global and a member of 1 or more sets
+ * may disable and re-enable interrupts
+ *
+ * Notes:
+ * will _not_ block if waitq is global (or not a member of any set)
+ */
+kern_return_t waitq_wakeup64_all(struct waitq *waitq,
+ event64_t wake_event,
+ wait_result_t result,
+ int priority)
+{
+ kern_return_t ret;
+ uint64_t reserved_preposts = 0;
+ spl_t s;
+
+ if (!waitq_valid(waitq))
+ panic("Invalid waitq: %p", waitq);
+
+ /* keep waitq locked upon return */
+ /* NOTE: this will _not_ reserve anything if waitq is global */
+ reserved_preposts = waitq_prepost_reserve(waitq, 0,
+ WAITQ_KEEP_LOCKED, &s);
+
+ /* waitq is locked */
+
+ ret = waitq_wakeup64_all_locked(waitq, wake_event, result,
+ &reserved_preposts, priority,
+ WAITQ_UNLOCK);
+
+ if (waitq_irq_safe(waitq))
+ splx(s);
+
+ waitq_prepost_release_reserve(reserved_preposts);
+
+ return ret;
+
+}
+
+/**
+ * wakeup a specific thread iff it's waiting on 'waitq' for 'wake_event'
+ *
+ * Conditions:
+ * 'waitq' is not locked
+ *
+ * Notes:
+ * May temporarily disable and re-enable interrupts
+ */
+kern_return_t waitq_wakeup64_thread(struct waitq *waitq,
+ event64_t wake_event,
+ thread_t thread,
+ wait_result_t result)
+{
+ kern_return_t ret;
+ spl_t s, th_spl;
+
+ if (!waitq_valid(waitq))
+ panic("Invalid waitq: %p", waitq);
+
+ if (waitq_irq_safe(waitq))
+ s = splsched();
+ waitq_lock(waitq);
+
+ ret = waitq_select_thread_locked(waitq, wake_event, thread, &th_spl);
+ /* on success, returns 'thread' locked */
+
+ waitq_unlock(waitq);
+
+ if (ret == KERN_SUCCESS) {
+ ret = thread_go(thread, result);
+ assert(ret == KERN_SUCCESS);
+ thread_unlock(thread);
+ splx(th_spl);
+ waitq_stats_count_wakeup(waitq);
+ } else {
+ ret = KERN_NOT_WAITING;
+ waitq_stats_count_fail(waitq);
+ }
+
+ if (waitq_irq_safe(waitq))
+ splx(s);
+
+ return ret;
+}