/*
* Copyright (c) 2000-2005 Apple Computer, Inc. All rights reserved.
*
- * @APPLE_LICENSE_HEADER_START@
+ * @APPLE_LICENSE_OSREFERENCE_HEADER_START@
*
- * The contents of this file constitute Original Code as defined in and
- * are subject to the Apple Public Source License Version 1.1 (the
- * "License"). You may not use this file except in compliance with the
- * License. Please obtain a copy of the License at
- * http://www.apple.com/publicsource and read it before using this file.
- *
- * This Original Code and all software distributed under the License are
- * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
- * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
- * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
- * License for the specific language governing rights and limitations
- * under the License.
- *
- * @APPLE_LICENSE_HEADER_END@
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the
+ * License may not be used to create, or enable the creation or
+ * redistribution of, unlawful or unlicensed copies of an Apple operating
+ * system, or to circumvent, violate, or enable the circumvention or
+ * violation of, any terms of an Apple operating system software license
+ * agreement.
+ *
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this
+ * file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
+ * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
+ *
+ * @APPLE_LICENSE_OSREFERENCE_HEADER_END@
*/
/*
* @OSF_COPYRIGHT@
#include <vm/vm_kern.h> /* for kernel_map */
#include <i386/ipl.h>
#include <i386/pit.h>
-#include <architecture/i386/pio.h>
+#include <i386/pio.h>
#include <i386/misc_protos.h>
#include <i386/proc_reg.h>
#include <i386/machine_cpu.h>
#include <i386/cpu_threads.h>
#include <i386/perfmon.h>
#include <i386/machine_routines.h>
+#include <i386/AT386/bbclock_entries.h>
#include <pexpert/pexpert.h>
#include <machine/limits.h>
#include <machine/commpage.h>
#include <sys/kdebug.h>
-#include <i386/tsc.h>
-#include <i386/hpet.h>
#define MAX(a,b) (((a)>(b))?(a):(b))
#define MIN(a,b) (((a)>(b))?(b):(a))
#define UI_CPUFREQ_ROUNDING_FACTOR 10000000
-int rtclock_config(void);
+int sysclk_config(void);
+
+int sysclk_init(void);
+
+kern_return_t sysclk_gettime(
+ mach_timespec_t *cur_time);
+
+kern_return_t sysclk_getattr(
+ clock_flavor_t flavor,
+ clock_attr_t attr,
+ mach_msg_type_number_t *count);
+
+void sysclk_setalarm(
+ mach_timespec_t *alarm_time);
+
+/*
+ * Lists of clock routines.
+ */
+struct clock_ops sysclk_ops = {
+ sysclk_config, sysclk_init,
+ sysclk_gettime, 0,
+ sysclk_getattr, 0,
+ sysclk_setalarm,
+};
+
+int calend_config(void);
-int rtclock_init(void);
+int calend_init(void);
-uint64_t rtc_decrementer_min;
+kern_return_t calend_gettime(
+ mach_timespec_t *cur_time);
-void rtclock_intr(x86_saved_state_t *regs);
-static uint64_t maxDec; /* longest interval our hardware timer can handle (nsec) */
+kern_return_t calend_getattr(
+ clock_flavor_t flavor,
+ clock_attr_t attr,
+ mach_msg_type_number_t *count);
-/* XXX this should really be in a header somewhere */
-extern clock_timer_func_t rtclock_timer_expire;
+struct clock_ops calend_ops = {
+ calend_config, calend_init,
+ calend_gettime, 0,
+ calend_getattr, 0,
+ 0,
+};
-static void rtc_set_timescale(uint64_t cycles);
-static uint64_t rtc_export_speed(uint64_t cycles);
+/* local data declarations */
-extern void rtc_nanotime_store(
- uint64_t tsc,
- uint64_t nsec,
- uint32_t scale,
- uint32_t shift,
- rtc_nanotime_t *dst);
+static clock_timer_func_t rtclock_timer_expire;
-extern void rtc_nanotime_load(
- rtc_nanotime_t *src,
- rtc_nanotime_t *dst);
+static timer_call_data_t rtclock_alarm_timer;
-rtc_nanotime_t rtc_nanotime_info;
+static void rtclock_alarm_expire(
+ timer_call_param_t p0,
+ timer_call_param_t p1);
+
+struct {
+ mach_timespec_t calend_offset;
+ boolean_t calend_is_set;
+
+ int64_t calend_adjtotal;
+ int32_t calend_adjdelta;
+
+ uint32_t boottime;
+
+ mach_timebase_info_data_t timebase_const;
+
+ decl_simple_lock_data(,lock) /* real-time clock device lock */
+} rtclock;
+
+boolean_t rtc_initialized = FALSE;
+clock_res_t rtc_intr_nsec = NSEC_PER_HZ; /* interrupt res */
+uint64_t rtc_cycle_count; /* clocks in 1/20th second */
+uint64_t rtc_cyc_per_sec; /* processor cycles per sec */
+uint32_t rtc_boot_frequency; /* provided by 1st speed-step */
+uint32_t rtc_quant_scale; /* clock to nanos multiplier */
+uint32_t rtc_quant_shift; /* clock to nanos right shift */
+uint64_t rtc_decrementer_min;
+
+static mach_timebase_info_data_t rtc_lapic_scale; /* nsec to lapic count */
/*
- * tsc_to_nanoseconds:
+ * Macros to lock/unlock real-time clock data.
+ */
+#define RTC_INTRS_OFF(s) \
+ (s) = splclock()
+
+#define RTC_INTRS_ON(s) \
+ splx(s)
+
+#define RTC_LOCK(s) \
+MACRO_BEGIN \
+ RTC_INTRS_OFF(s); \
+ simple_lock(&rtclock.lock); \
+MACRO_END
+
+#define RTC_UNLOCK(s) \
+MACRO_BEGIN \
+ simple_unlock(&rtclock.lock); \
+ RTC_INTRS_ON(s); \
+MACRO_END
+
+/*
+ * i8254 control. ** MONUMENT **
+ *
+ * The i8254 is a traditional PC device with some arbitrary characteristics.
+ * Basically, it is a register that counts at a fixed rate and can be
+ * programmed to generate an interrupt every N counts. The count rate is
+ * clknum counts per sec (see pit.h), historically 1193167=14.318MHz/12
+ * but the more accurate value is 1193182=14.31818MHz/12. [14.31818 MHz being
+ * the master crystal oscillator reference frequency since the very first PC.]
+ * Various constants are computed based on this value, and we calculate
+ * them at init time for execution efficiency. To obtain sufficient
+ * accuracy, some of the calculation are most easily done in floating
+ * point and then converted to int.
*
- * Basic routine to convert a raw 64 bit TSC value to a
- * 64 bit nanosecond value. The conversion is implemented
- * based on the scale factor and an implicit 32 bit shift.
*/
-static inline uint64_t
-_tsc_to_nanoseconds(uint64_t value)
+
+/*
+ * Forward decl.
+ */
+
+static uint64_t rtc_set_cyc_per_sec(uint64_t cycles);
+uint64_t rtc_nanotime_read(void);
+
+/*
+ * create_mul_quant_GHZ
+ * create a constant used to multiply the TSC by to convert to nanoseconds.
+ * This is a 32 bit number and the TSC *MUST* have a frequency higher than
+ * 1000Mhz for this routine to work.
+ *
+ * The theory here is that we know how many TSCs-per-sec the processor runs at.
+ * Normally to convert this to nanoseconds you would multiply the current
+ * timestamp by 1000000000 (a billion) then divide by TSCs-per-sec.
+ * Unfortunatly the TSC is 64 bits which would leave us with 96 bit intermediate
+ * results from the multiply that must be divided by.
+ * Usually thats
+ * uint96 = tsc * numer
+ * nanos = uint96 / denom
+ * Instead, we create this quant constant and it becomes the numerator,
+ * the denominator can then be 0x100000000 which makes our division as simple as
+ * forgetting the lower 32 bits of the result. We can also pass this number to
+ * user space as the numer and pass 0xFFFFFFFF (RTC_FAST_DENOM) as the denom to
+ * convert raw counts * to nanos. The difference is so small as to be
+ * undetectable by anything.
+ *
+ * Unfortunatly we can not do this for sub GHZ processors. In this case, all
+ * we do is pass the CPU speed in raw as the denom and we pass in 1000000000
+ * as the numerator. No short cuts allowed
+ */
+#define RTC_FAST_DENOM 0xFFFFFFFF
+inline static uint32_t
+create_mul_quant_GHZ(int shift, uint32_t quant)
{
- asm volatile("movl %%edx,%%esi ;"
- "mull %%ecx ;"
- "movl %%edx,%%edi ;"
- "movl %%esi,%%eax ;"
- "mull %%ecx ;"
- "addl %%edi,%%eax ;"
- "adcl $0,%%edx "
- : "+A" (value) : "c" (rtc_nanotime_info.scale) : "esi", "edi");
+ return (uint32_t)((((uint64_t)NSEC_PER_SEC/20) << shift) / quant);
+}
+/*
+ * This routine takes a value of raw TSC ticks and applies the passed mul_quant
+ * generated by create_mul_quant() This is our internal routine for creating
+ * nanoseconds.
+ * Since we don't really have uint96_t this routine basically does this....
+ * uint96_t intermediate = (*value) * scale
+ * return (intermediate >> 32)
+ */
+inline static uint64_t
+fast_get_nano_from_abs(uint64_t value, int scale)
+{
+ asm (" movl %%edx,%%esi \n\t"
+ " mull %%ecx \n\t"
+ " movl %%edx,%%edi \n\t"
+ " movl %%esi,%%eax \n\t"
+ " mull %%ecx \n\t"
+ " xorl %%ecx,%%ecx \n\t"
+ " addl %%edi,%%eax \n\t"
+ " adcl %%ecx,%%edx "
+ : "+A" (value)
+ : "c" (scale)
+ : "%esi", "%edi");
+ return value;
+}
- return (value);
+/*
+ * This routine basically does this...
+ * ts.tv_sec = nanos / 1000000000; create seconds
+ * ts.tv_nsec = nanos % 1000000000; create remainder nanos
+ */
+inline static mach_timespec_t
+nanos_to_timespec(uint64_t nanos)
+{
+ union {
+ mach_timespec_t ts;
+ uint64_t u64;
+ } ret;
+ ret.u64 = nanos;
+ asm volatile("divl %1" : "+A" (ret.u64) : "r" (NSEC_PER_SEC));
+ return ret.ts;
}
-uint64_t
-tsc_to_nanoseconds(uint64_t value)
+/*
+ * The following two routines perform the 96 bit arithmetic we need to
+ * convert generic absolute<->nanoseconds
+ * The multiply routine takes a uint64_t and a uint32_t and returns the result
+ * in a uint32_t[3] array.
+ * The divide routine takes this uint32_t[3] array and divides it by a uint32_t
+ * returning a uint64_t
+ */
+inline static void
+longmul(uint64_t *abstime, uint32_t multiplicand, uint32_t *result)
{
- return _tsc_to_nanoseconds(value);
+ asm volatile(
+ " pushl %%ebx \n\t"
+ " movl %%eax,%%ebx \n\t"
+ " movl (%%eax),%%eax \n\t"
+ " mull %%ecx \n\t"
+ " xchg %%eax,%%ebx \n\t"
+ " pushl %%edx \n\t"
+ " movl 4(%%eax),%%eax \n\t"
+ " mull %%ecx \n\t"
+ " movl %2,%%ecx \n\t"
+ " movl %%ebx,(%%ecx) \n\t"
+ " popl %%ebx \n\t"
+ " addl %%ebx,%%eax \n\t"
+ " popl %%ebx \n\t"
+ " movl %%eax,4(%%ecx) \n\t"
+ " adcl $0,%%edx \n\t"
+ " movl %%edx,8(%%ecx) // and save it"
+ : : "a"(abstime), "c"(multiplicand), "m"(result));
+
}
+inline static uint64_t
+longdiv(uint32_t *numer, uint32_t denom)
+{
+ uint64_t result;
+ asm volatile(
+ " pushl %%ebx \n\t"
+ " movl %%eax,%%ebx \n\t"
+ " movl 8(%%eax),%%edx \n\t"
+ " movl 4(%%eax),%%eax \n\t"
+ " divl %%ecx \n\t"
+ " xchg %%ebx,%%eax \n\t"
+ " movl (%%eax),%%eax \n\t"
+ " divl %%ecx \n\t"
+ " xchg %%ebx,%%edx \n\t"
+ " popl %%ebx \n\t"
+ : "=A"(result) : "a"(numer),"c"(denom));
+ return result;
+}
+
+/*
+ * Enable or disable timer 2.
+ * Port 0x61 controls timer 2:
+ * bit 0 gates the clock,
+ * bit 1 gates output to speaker.
+ */
+inline static void
+enable_PIT2(void)
+{
+ asm volatile(
+ " inb $0x61,%%al \n\t"
+ " and $0xFC,%%al \n\t"
+ " or $1,%%al \n\t"
+ " outb %%al,$0x61 \n\t"
+ : : : "%al" );
+}
+
+inline static void
+disable_PIT2(void)
+{
+ asm volatile(
+ " inb $0x61,%%al \n\t"
+ " and $0xFC,%%al \n\t"
+ " outb %%al,$0x61 \n\t"
+ : : : "%al" );
+}
+
+inline static void
+set_PIT2(int value)
+{
+/*
+ * First, tell the clock we are going to write 16 bits to the counter
+ * and enable one-shot mode (command 0xB8 to port 0x43)
+ * Then write the two bytes into the PIT2 clock register (port 0x42).
+ * Loop until the value is "realized" in the clock,
+ * this happens on the next tick.
+ */
+ asm volatile(
+ " movb $0xB8,%%al \n\t"
+ " outb %%al,$0x43 \n\t"
+ " movb %%dl,%%al \n\t"
+ " outb %%al,$0x42 \n\t"
+ " movb %%dh,%%al \n\t"
+ " outb %%al,$0x42 \n"
+"1: inb $0x42,%%al \n\t"
+ " inb $0x42,%%al \n\t"
+ " cmp %%al,%%dh \n\t"
+ " jne 1b"
+ : : "d"(value) : "%al");
+}
+
+inline static uint64_t
+get_PIT2(unsigned int *value)
+{
+ register uint64_t result;
+/*
+ * This routine first latches the time (command 0x80 to port 0x43),
+ * then gets the time stamp so we know how long the read will take later.
+ * Read (from port 0x42) and return the current value of the timer.
+ */
+ asm volatile(
+ " xorl %%ecx,%%ecx \n\t"
+ " movb $0x80,%%al \n\t"
+ " outb %%al,$0x43 \n\t"
+ " rdtsc \n\t"
+ " pushl %%eax \n\t"
+ " inb $0x42,%%al \n\t"
+ " movb %%al,%%cl \n\t"
+ " inb $0x42,%%al \n\t"
+ " movb %%al,%%ch \n\t"
+ " popl %%eax "
+ : "=A"(result), "=c"(*value));
+ return result;
+}
+
+/*
+ * timeRDTSC()
+ * This routine sets up PIT counter 2 to count down 1/20 of a second.
+ * It pauses until the value is latched in the counter
+ * and then reads the time stamp counter to return to the caller.
+ */
+static uint64_t
+timeRDTSC(void)
+{
+ int attempts = 0;
+ uint64_t latchTime;
+ uint64_t saveTime,intermediate;
+ unsigned int timerValue, lastValue;
+ boolean_t int_enabled;
+ /*
+ * Table of correction factors to account for
+ * - timer counter quantization errors, and
+ * - undercounts 0..5
+ */
+#define SAMPLE_CLKS_EXACT (((double) CLKNUM) / 20.0)
+#define SAMPLE_CLKS_INT ((int) CLKNUM / 20)
+#define SAMPLE_NSECS (2000000000LL)
+#define SAMPLE_MULTIPLIER (((double)SAMPLE_NSECS)*SAMPLE_CLKS_EXACT)
+#define ROUND64(x) ((uint64_t)((x) + 0.5))
+ uint64_t scale[6] = {
+ ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-0)),
+ ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-1)),
+ ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-2)),
+ ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-3)),
+ ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-4)),
+ ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-5))
+ };
+
+ int_enabled = ml_set_interrupts_enabled(FALSE);
+
+restart:
+ if (attempts >= 2)
+ panic("timeRDTSC() calibation failed with %d attempts\n", attempts);
+ attempts++;
+ enable_PIT2(); // turn on PIT2
+ set_PIT2(0); // reset timer 2 to be zero
+ latchTime = rdtsc64(); // get the time stamp to time
+ latchTime = get_PIT2(&timerValue) - latchTime; // time how long this takes
+ set_PIT2(SAMPLE_CLKS_INT); // set up the timer for (almost) 1/20th a second
+ saveTime = rdtsc64(); // now time how long a 20th a second is...
+ get_PIT2(&lastValue);
+ get_PIT2(&lastValue); // read twice, first value may be unreliable
+ do {
+ intermediate = get_PIT2(&timerValue);
+ if (timerValue > lastValue) {
+ printf("Hey we are going backwards! %u -> %u, restarting timing\n",
+ timerValue,lastValue);
+ set_PIT2(0);
+ disable_PIT2();
+ goto restart;
+ }
+ lastValue = timerValue;
+ } while (timerValue > 5);
+ kprintf("timerValue %d\n",timerValue);
+ kprintf("intermediate 0x%016llx\n",intermediate);
+ kprintf("saveTime 0x%016llx\n",saveTime);
+
+ intermediate -= saveTime; // raw count for about 1/20 second
+ intermediate *= scale[timerValue]; // rescale measured time spent
+ intermediate /= SAMPLE_NSECS; // so its exactly 1/20 a second
+ intermediate += latchTime; // add on our save fudge
+
+ set_PIT2(0); // reset timer 2 to be zero
+ disable_PIT2(); // turn off PIT 2
+
+ ml_set_interrupts_enabled(int_enabled);
+ return intermediate;
+}
+
+static uint64_t
+tsc_to_nanoseconds(uint64_t abstime)
+{
+ uint32_t numer;
+ uint32_t denom;
+ uint32_t intermediate[3];
+
+ numer = rtclock.timebase_const.numer;
+ denom = rtclock.timebase_const.denom;
+ if (denom == RTC_FAST_DENOM) {
+ abstime = fast_get_nano_from_abs(abstime, numer);
+ } else {
+ longmul(&abstime, numer, intermediate);
+ abstime = longdiv(intermediate, denom);
+ }
+ return abstime;
+}
+
+inline static mach_timespec_t
+tsc_to_timespec(void)
+{
+ uint64_t currNanos;
+ currNanos = rtc_nanotime_read();
+ return nanos_to_timespec(currNanos);
+}
+
+#define DECREMENTER_MAX UINT_MAX
static uint32_t
deadline_to_decrementer(
uint64_t deadline,
return rtc_decrementer_min;
else {
delta = deadline - now;
- return MIN(MAX(rtc_decrementer_min,delta),maxDec);
+ return MIN(MAX(rtc_decrementer_min,delta),DECREMENTER_MAX);
}
}
+static inline uint64_t
+lapic_time_countdown(uint32_t initial_count)
+{
+ boolean_t state;
+ uint64_t start_time;
+ uint64_t stop_time;
+ lapic_timer_count_t count;
+
+ state = ml_set_interrupts_enabled(FALSE);
+ lapic_set_timer(FALSE, one_shot, divide_by_1, initial_count);
+ start_time = rdtsc64();
+ do {
+ lapic_get_timer(NULL, NULL, NULL, &count);
+ } while (count > 0);
+ stop_time = rdtsc64();
+ ml_set_interrupts_enabled(state);
+
+ return tsc_to_nanoseconds(stop_time - start_time);
+}
+
static void
-rtc_lapic_start_ticking(void)
+rtc_lapic_timer_calibrate(void)
{
- uint64_t abstime;
- uint64_t first_tick;
- cpu_data_t *cdp = current_cpu_datap();
+ uint32_t nsecs;
+ uint64_t countdown;
- abstime = mach_absolute_time();
- rtclock_tick_interval = NSEC_PER_HZ;
+ if (!(cpuid_features() & CPUID_FEATURE_APIC))
+ return;
- first_tick = abstime + rtclock_tick_interval;
- cdp->rtclock_intr_deadline = first_tick;
+ /*
+ * Set the local apic timer counting down to zero without an interrupt.
+ * Use the timestamp to calculate how long this takes.
+ */
+ nsecs = (uint32_t) lapic_time_countdown(rtc_intr_nsec);
/*
- * Force a complete re-evaluation of timer deadlines.
+ * Compute a countdown ratio for a given time in nanoseconds.
+ * That is, countdown = time * numer / denom.
*/
- cdp->rtcPop = EndOfAllTime;
- etimer_resync_deadlines();
+ countdown = (uint64_t)rtc_intr_nsec * (uint64_t)rtc_intr_nsec / nsecs;
+
+ nsecs = (uint32_t) lapic_time_countdown((uint32_t) countdown);
+
+ rtc_lapic_scale.numer = countdown;
+ rtc_lapic_scale.denom = nsecs;
+
+ kprintf("rtc_lapic_timer_calibrate() scale: %d/%d\n",
+ (uint32_t) countdown, nsecs);
+}
+
+static void
+rtc_lapic_set_timer(
+ uint32_t interval)
+{
+ uint64_t count;
+
+ assert(rtc_lapic_scale.denom);
+
+ count = interval * (uint64_t) rtc_lapic_scale.numer;
+ count /= rtc_lapic_scale.denom;
+
+ lapic_set_timer(TRUE, one_shot, divide_by_1, (uint32_t) count);
+}
+
+static void
+rtc_lapic_start_ticking(void)
+{
+ uint64_t abstime;
+ uint64_t first_tick;
+ uint64_t decr;
+
+ abstime = mach_absolute_time();
+ first_tick = abstime + NSEC_PER_HZ;
+ current_cpu_datap()->cpu_rtc_tick_deadline = first_tick;
+ decr = deadline_to_decrementer(first_tick, abstime);
+ rtc_lapic_set_timer(decr);
}
/*
*/
int
-rtclock_config(void)
+sysclk_config(void)
{
- /* nothing to do */
+
+ mp_disable_preemption();
+ if (cpu_number() != master_cpu) {
+ mp_enable_preemption();
+ return(1);
+ }
+ mp_enable_preemption();
+
+ timer_call_setup(&rtclock_alarm_timer, rtclock_alarm_expire, NULL);
+
+ simple_lock_init(&rtclock.lock, 0);
+
return (1);
}
/*
* Nanotime/mach_absolutime_time
* -----------------------------
- * The timestamp counter (TSC) - which counts cpu clock cycles and can be read
- * efficiently by the kernel and in userspace - is the reference for all timing.
- * The cpu clock rate is platform-dependent and may stop or be reset when the
- * processor is napped/slept. As a result, nanotime is the software abstraction
- * used to maintain a monotonic clock, adjusted from an outside reference as needed.
+ * The timestamp counter (tsc) - which counts cpu clock cycles and can be read
+ * efficient by the kernel and in userspace - is the reference for all timing.
+ * However, the cpu clock rate is not only platform-dependent but can change
+ * (speed-step) dynamically. Hence tsc is converted into nanoseconds which is
+ * identical to mach_absolute_time. The conversion to tsc to nanoseconds is
+ * encapsulated by nanotime.
*
* The kernel maintains nanotime information recording:
- * - the ratio of tsc to nanoseconds
+ * - the current ratio of tsc to nanoseconds
* with this ratio expressed as a 32-bit scale and shift
* (power of 2 divider);
- * - { tsc_base, ns_base } pair of corresponding timestamps.
+ * - the tsc (step_tsc) and nanotime (step_ns) at which the current
+ * ratio (clock speed) began.
+ * So a tsc value can be converted to nanotime by:
+ *
+ * nanotime = (((tsc - step_tsc)*scale) >> shift) + step_ns
+ *
+ * In general, (tsc - step_tsc) is a 64-bit quantity with the scaling
+ * involving a 96-bit intermediate value. However, by saving the converted
+ * values at each tick (or at any intervening speed-step) - base_tsc and
+ * base_ns - we can perform conversions relative to these and be assured that
+ * (tsc - tick_tsc) is 32-bits. Hence:
*
- * The tuple {tsc_base, ns_base, scale, shift} is exported in the commpage
- * for the userspace nanotime routine to read.
+ * fast_nanotime = (((tsc - base_tsc)*scale) >> shift) + base_ns
*
- * All of the routines which update the nanotime data are non-reentrant. This must
- * be guaranteed by the caller.
+ * The tuple {base_tsc, base_ns, scale, shift} is exported in the commpage
+ * for the userspace nanotime routine to read. A duplicate check_tsc is
+ * appended so that the consistency of the read can be verified. Note that
+ * this scheme is essential for MP systems in which the commpage is updated
+ * by the master cpu but may be read concurrently by other cpus.
+ *
*/
static inline void
rtc_nanotime_set_commpage(rtc_nanotime_t *rntp)
{
- commpage_set_nanotime(rntp->tsc_base, rntp->ns_base, rntp->scale, rntp->shift);
-}
+ commpage_nanotime_t cp_nanotime;
-/*
- * rtc_nanotime_init:
- *
- * Intialize the nanotime info from the base time. Since
- * the base value might be from a lower resolution clock,
- * we compare it to the TSC derived value, and use the
- * greater of the two values.
- */
-static inline void
-_rtc_nanotime_init(rtc_nanotime_t *rntp, uint64_t base)
-{
- uint64_t nsecs, tsc = rdtsc64();
+ /* Only the master cpu updates the commpage */
+ if (cpu_number() != master_cpu)
+ return;
+
+ cp_nanotime.nt_base_tsc = rntp->rnt_tsc;
+ cp_nanotime.nt_base_ns = rntp->rnt_nanos;
+ cp_nanotime.nt_scale = rntp->rnt_scale;
+ cp_nanotime.nt_shift = rntp->rnt_shift;
- nsecs = _tsc_to_nanoseconds(tsc);
- rtc_nanotime_store(tsc, MAX(nsecs, base), rntp->scale, rntp->shift, rntp);
+ commpage_set_nanotime(&cp_nanotime);
}
static void
-rtc_nanotime_init(uint64_t base)
+rtc_nanotime_init(void)
{
- rtc_nanotime_t *rntp = &rtc_nanotime_info;
+ rtc_nanotime_t *rntp = ¤t_cpu_datap()->cpu_rtc_nanotime;
+ rtc_nanotime_t *master_rntp = &cpu_datap(master_cpu)->cpu_rtc_nanotime;
- _rtc_nanotime_init(rntp, base);
- rtc_nanotime_set_commpage(rntp);
+ if (cpu_number() == master_cpu) {
+ rntp->rnt_tsc = rdtsc64();
+ rntp->rnt_nanos = tsc_to_nanoseconds(rntp->rnt_tsc);
+ rntp->rnt_scale = rtc_quant_scale;
+ rntp->rnt_shift = rtc_quant_shift;
+ rntp->rnt_step_tsc = 0ULL;
+ rntp->rnt_step_nanos = 0ULL;
+ } else {
+ /*
+ * Copy master processor's nanotime info.
+ * Loop required in case this changes while copying.
+ */
+ do {
+ *rntp = *master_rntp;
+ } while (rntp->rnt_tsc != master_rntp->rnt_tsc);
+ }
}
-/*
- * rtc_nanotime_init:
- *
- * Call back from the commpage initialization to
- * cause the commpage data to be filled in once the
- * commpages have been created.
- */
-void
-rtc_nanotime_init_commpage(void)
+static inline void
+_rtc_nanotime_update(rtc_nanotime_t *rntp, uint64_t tsc)
{
- spl_t s = splclock();
-
- rtc_nanotime_set_commpage(&rtc_nanotime_info);
+ uint64_t tsc_delta;
+ uint64_t ns_delta;
- splx(s);
+ tsc_delta = tsc - rntp->rnt_step_tsc;
+ ns_delta = tsc_to_nanoseconds(tsc_delta);
+ rntp->rnt_nanos = rntp->rnt_step_nanos + ns_delta;
+ rntp->rnt_tsc = tsc;
}
-/*
- * rtc_nanotime_update:
- *
- * Update the nanotime info from the base time. Since
- * the base value might be from a lower resolution clock,
- * we compare it to the TSC derived value, and use the
- * greater of the two values.
- *
- * N.B. In comparison to the above init routine, this assumes
- * that the TSC has remained monotonic compared to the tsc_base
- * value, which is not the case after S3 sleep.
- */
-static inline void
-_rtc_nanotime_update(rtc_nanotime_t *rntp, uint64_t base)
+static void
+rtc_nanotime_update(void)
{
- uint64_t nsecs, tsc = rdtsc64();
+ rtc_nanotime_t *rntp = ¤t_cpu_datap()->cpu_rtc_nanotime;
- nsecs = rntp->ns_base + _tsc_to_nanoseconds(tsc - rntp->tsc_base);
- rtc_nanotime_store(tsc, MAX(nsecs, base), rntp->scale, rntp->shift, rntp);
+ assert(get_preemption_level() > 0);
+ assert(!ml_get_interrupts_enabled());
+
+ _rtc_nanotime_update(rntp, rdtsc64());
+ rtc_nanotime_set_commpage(rntp);
}
static void
-rtc_nanotime_update(
- uint64_t base)
+rtc_nanotime_scale_update(void)
{
- rtc_nanotime_t *rntp = &rtc_nanotime_info;
+ rtc_nanotime_t *rntp = ¤t_cpu_datap()->cpu_rtc_nanotime;
+ uint64_t tsc = rdtsc64();
assert(!ml_get_interrupts_enabled());
- _rtc_nanotime_update(rntp, base);
+ /*
+ * Update time based on past scale.
+ */
+ _rtc_nanotime_update(rntp, tsc);
+
+ /*
+ * Update scale and timestamp this update.
+ */
+ rntp->rnt_scale = rtc_quant_scale;
+ rntp->rnt_shift = rtc_quant_shift;
+ rntp->rnt_step_tsc = rntp->rnt_tsc;
+ rntp->rnt_step_nanos = rntp->rnt_nanos;
+
+ /* Export update to userland */
rtc_nanotime_set_commpage(rntp);
}
-/*
- * rtc_nanotime_read:
- *
- * Returns the current nanotime value, accessable from any
- * context.
- */
static uint64_t
+_rtc_nanotime_read(void)
+{
+ rtc_nanotime_t *rntp = ¤t_cpu_datap()->cpu_rtc_nanotime;
+ uint64_t rnt_tsc;
+ uint32_t rnt_scale;
+ uint32_t rnt_shift;
+ uint64_t rnt_nanos;
+ uint64_t tsc;
+ uint64_t tsc_delta;
+
+ rnt_scale = rntp->rnt_scale;
+ if (rnt_scale == 0)
+ return 0ULL;
+
+ rnt_shift = rntp->rnt_shift;
+ rnt_nanos = rntp->rnt_nanos;
+ rnt_tsc = rntp->rnt_tsc;
+ tsc = rdtsc64();
+
+ tsc_delta = tsc - rnt_tsc;
+ if ((tsc_delta >> 32) != 0)
+ return rnt_nanos + tsc_to_nanoseconds(tsc_delta);
+
+ /* Let the compiler optimize(?): */
+ if (rnt_shift == 32)
+ return rnt_nanos + ((tsc_delta * rnt_scale) >> 32);
+ else
+ return rnt_nanos + ((tsc_delta * rnt_scale) >> rnt_shift);
+}
+
+uint64_t
rtc_nanotime_read(void)
{
- rtc_nanotime_t rnt, *rntp = &rtc_nanotime_info;
- uint64_t result;
+ uint64_t result;
+ uint64_t rnt_tsc;
+ rtc_nanotime_t *rntp = ¤t_cpu_datap()->cpu_rtc_nanotime;
+ /*
+ * Use timestamp to ensure the uptime record isn't changed.
+ * This avoids disabling interrupts.
+ * And not this is a per-cpu structure hence no locking.
+ */
do {
- rtc_nanotime_load(rntp, &rnt);
- result = rnt.ns_base + _tsc_to_nanoseconds(rdtsc64() - rnt.tsc_base);
- } while (rntp->tsc_base != rnt.tsc_base);
+ rnt_tsc = rntp->rnt_tsc;
+ result = _rtc_nanotime_read();
+ } while (rnt_tsc != rntp->rnt_tsc);
- return (result);
+ return result;
}
+
/*
- * rtc_clock_napped:
- *
- * Invoked from power manangement when we have awoken from a nap (C3/C4)
- * during which the TSC lost counts. The nanotime data is updated according
- * to the provided nanosecond base value.
- *
- * The caller must guarantee non-reentrancy.
+ * This function is called by the speed-step driver when a
+ * change of cpu clock frequency is about to occur.
+ * The scale is not changed until rtc_clock_stepped() is called.
+ * Between these times there is an uncertainty is exactly when
+ * the change takes effect. FIXME: by using another timing source
+ * we could eliminate this error.
*/
-void
-rtc_clock_napped(
- uint64_t base)
-{
- rtc_nanotime_update(base);
-}
-
void
rtc_clock_stepping(__unused uint32_t new_frequency,
__unused uint32_t old_frequency)
{
- panic("rtc_clock_stepping unsupported");
+ boolean_t istate;
+
+ istate = ml_set_interrupts_enabled(FALSE);
+ rtc_nanotime_scale_update();
+ ml_set_interrupts_enabled(istate);
}
+/*
+ * This function is called by the speed-step driver when a
+ * change of cpu clock frequency has just occured. This change
+ * is expressed as a ratio relative to the boot clock rate.
+ */
void
-rtc_clock_stepped(__unused uint32_t new_frequency,
- __unused uint32_t old_frequency)
+rtc_clock_stepped(uint32_t new_frequency, uint32_t old_frequency)
{
- panic("rtc_clock_stepping unsupported");
+ boolean_t istate;
+
+ istate = ml_set_interrupts_enabled(FALSE);
+ if (rtc_boot_frequency == 0) {
+ /*
+ * At the first ever stepping, old frequency is the real
+ * initial clock rate. This step and all others are based
+ * relative to this initial frequency at which the tsc
+ * calibration was made. Hence we must remember this base
+ * frequency as reference.
+ */
+ rtc_boot_frequency = old_frequency;
+ }
+ rtc_set_cyc_per_sec(rtc_cycle_count * new_frequency /
+ rtc_boot_frequency);
+ rtc_nanotime_scale_update();
+ ml_set_interrupts_enabled(istate);
}
/*
- * rtc_sleep_wakeup:
- *
- * Invoked from power manageent when we have awoken from a sleep (S3)
- * and the TSC has been reset. The nanotime data is updated based on
- * the HPET value.
- *
- * The caller must guarantee non-reentrancy.
+ * rtc_sleep_wakeup() is called from acpi on awakening from a S3 sleep
*/
void
rtc_sleep_wakeup(void)
{
- boolean_t istate;
+ rtc_nanotime_t *rntp = ¤t_cpu_datap()->cpu_rtc_nanotime;
+
+ boolean_t istate;
istate = ml_set_interrupts_enabled(FALSE);
* Reset nanotime.
* The timestamp counter will have been reset
* but nanotime (uptime) marches onward.
+ * We assume that we're still at the former cpu frequency.
*/
- rtc_nanotime_init(tmrCvt(rdHPET(), hpetCvtt2n));
+ rntp->rnt_tsc = rdtsc64();
+ rntp->rnt_step_tsc = 0ULL;
+ rntp->rnt_step_nanos = rntp->rnt_nanos;
+ rtc_nanotime_set_commpage(rntp);
/* Restart tick interrupts from the LAPIC timer */
rtc_lapic_start_ticking();
* In addition, various variables used to support the clock are initialized.
*/
int
-rtclock_init(void)
+sysclk_init(void)
{
uint64_t cycles;
- assert(!ml_get_interrupts_enabled());
-
+ mp_disable_preemption();
if (cpu_number() == master_cpu) {
-
- assert(tscFreq);
- rtc_set_timescale(tscFreq);
-
/*
- * Adjust and set the exported cpu speed.
+ * Perform calibration.
+ * The PIT is used as the reference to compute how many
+ * TCS counts (cpu clock cycles) occur per second.
*/
- cycles = rtc_export_speed(tscFreq);
+ rtc_cycle_count = timeRDTSC();
+ cycles = rtc_set_cyc_per_sec(rtc_cycle_count);
/*
* Set min/max to actual.
* ACPI may update these later if speed-stepping is detected.
*/
- gPEClockFrequencyInfo.cpu_frequency_min_hz = cycles;
- gPEClockFrequencyInfo.cpu_frequency_max_hz = cycles;
+ gPEClockFrequencyInfo.cpu_frequency_min_hz = cycles;
+ gPEClockFrequencyInfo.cpu_frequency_max_hz = cycles;
+ printf("[RTCLOCK] frequency %llu (%llu)\n",
+ cycles, rtc_cyc_per_sec);
- /*
- * Compute the longest interval we can represent.
- */
- maxDec = tmrCvt(0x7fffffffULL, busFCvtt2n);
- kprintf("maxDec: %lld\n", maxDec);
+ rtc_lapic_timer_calibrate();
/* Minimum interval is 1usec */
- rtc_decrementer_min = deadline_to_decrementer(NSEC_PER_USEC, 0ULL);
+ rtc_decrementer_min = deadline_to_decrementer(NSEC_PER_USEC,
+ 0ULL);
/* Point LAPIC interrupts to hardclock() */
lapic_set_timer_func((i386_intr_func_t) rtclock_intr);
clock_timebase_init();
- ml_init_lock_timeout();
+ rtc_initialized = TRUE;
}
+ rtc_nanotime_init();
+
rtc_lapic_start_ticking();
+ mp_enable_preemption();
+
return (1);
}
-// utility routine
-// Code to calculate how many processor cycles are in a second...
+/*
+ * Get the clock device time. This routine is responsible
+ * for converting the device's machine dependent time value
+ * into a canonical mach_timespec_t value.
+ */
+static kern_return_t
+sysclk_gettime_internal(
+ mach_timespec_t *cur_time) /* OUT */
+{
+ *cur_time = tsc_to_timespec();
+ return (KERN_SUCCESS);
+}
-static void
-rtc_set_timescale(uint64_t cycles)
+kern_return_t
+sysclk_gettime(
+ mach_timespec_t *cur_time) /* OUT */
{
- rtc_nanotime_info.scale = ((uint64_t)NSEC_PER_SEC << 32) / cycles;
- rtc_nanotime_info.shift = 32;
+ return sysclk_gettime_internal(cur_time);
+}
- rtc_nanotime_init(0);
+void
+sysclk_gettime_interrupts_disabled(
+ mach_timespec_t *cur_time) /* OUT */
+{
+ (void) sysclk_gettime_internal(cur_time);
}
+// utility routine
+// Code to calculate how many processor cycles are in a second...
+
static uint64_t
-rtc_export_speed(uint64_t cyc_per_sec)
+rtc_set_cyc_per_sec(uint64_t cycles)
{
- uint64_t cycles;
- /* Round: */
- cycles = ((cyc_per_sec + (UI_CPUFREQ_ROUNDING_FACTOR/2))
+ if (cycles > (NSEC_PER_SEC/20)) {
+ // we can use just a "fast" multiply to get nanos
+ rtc_quant_shift = 32;
+ rtc_quant_scale = create_mul_quant_GHZ(rtc_quant_shift, cycles);
+ rtclock.timebase_const.numer = rtc_quant_scale; // timeRDTSC is 1/20
+ rtclock.timebase_const.denom = RTC_FAST_DENOM;
+ } else {
+ rtc_quant_shift = 26;
+ rtc_quant_scale = create_mul_quant_GHZ(rtc_quant_shift, cycles);
+ rtclock.timebase_const.numer = NSEC_PER_SEC/20; // timeRDTSC is 1/20
+ rtclock.timebase_const.denom = cycles;
+ }
+ rtc_cyc_per_sec = cycles*20; // multiply it by 20 and we are done..
+ // BUT we also want to calculate...
+
+ cycles = ((rtc_cyc_per_sec + (UI_CPUFREQ_ROUNDING_FACTOR/2))
/ UI_CPUFREQ_ROUNDING_FACTOR)
* UI_CPUFREQ_ROUNDING_FACTOR;
}
gPEClockFrequencyInfo.cpu_frequency_hz = cycles;
- kprintf("[RTCLOCK] frequency %llu (%llu)\n", cycles, cyc_per_sec);
+ kprintf("[RTCLOCK] frequency %llu (%llu)\n", cycles, rtc_cyc_per_sec);
return(cycles);
}
uint32_t *secs,
uint32_t *microsecs)
{
- uint64_t now = rtc_nanotime_read();
- uint32_t remain;
+ mach_timespec_t now;
- asm volatile(
- "divl %3"
- : "=a" (*secs), "=d" (remain)
- : "A" (now), "r" (NSEC_PER_SEC));
- asm volatile(
- "divl %3"
- : "=a" (*microsecs)
- : "0" (remain), "d" (0), "r" (NSEC_PER_USEC));
+ (void) sysclk_gettime_internal(&now);
+
+ *secs = now.tv_sec;
+ *microsecs = now.tv_nsec / NSEC_PER_USEC;
}
void
uint32_t *secs,
uint32_t *nanosecs)
{
- uint64_t now = rtc_nanotime_read();
+ mach_timespec_t now;
- asm volatile(
- "divl %3"
- : "=a" (*secs), "=d" (*nanosecs)
- : "A" (now), "r" (NSEC_PER_SEC));
+ (void) sysclk_gettime_internal(&now);
+
+ *secs = now.tv_sec;
+ *nanosecs = now.tv_nsec;
+}
+
+/*
+ * Get clock device attributes.
+ */
+kern_return_t
+sysclk_getattr(
+ clock_flavor_t flavor,
+ clock_attr_t attr, /* OUT */
+ mach_msg_type_number_t *count) /* IN/OUT */
+{
+ if (*count != 1)
+ return (KERN_FAILURE);
+ switch (flavor) {
+
+ case CLOCK_GET_TIME_RES: /* >0 res */
+ *(clock_res_t *) attr = rtc_intr_nsec;
+ break;
+
+ case CLOCK_ALARM_CURRES: /* =0 no alarm */
+ case CLOCK_ALARM_MAXRES:
+ case CLOCK_ALARM_MINRES:
+ *(clock_res_t *) attr = 0;
+ break;
+
+ default:
+ return (KERN_INVALID_VALUE);
+ }
+ return (KERN_SUCCESS);
}
+/*
+ * Set next alarm time for the clock device. This call
+ * always resets the time to deliver an alarm for the
+ * clock.
+ */
void
-clock_gettimeofday_set_commpage(
- uint64_t abstime,
- uint64_t epoch,
- uint64_t offset,
- uint32_t *secs,
- uint32_t *microsecs)
-{
- uint64_t now = abstime;
- uint32_t remain;
+sysclk_setalarm(
+ mach_timespec_t *alarm_time)
+{
+ timer_call_enter(&rtclock_alarm_timer,
+ (uint64_t) alarm_time->tv_sec * NSEC_PER_SEC
+ + alarm_time->tv_nsec);
+}
+
+/*
+ * Configure the calendar clock.
+ */
+int
+calend_config(void)
+{
+ return bbc_config();
+}
- now += offset;
+/*
+ * Initialize calendar clock.
+ */
+int
+calend_init(void)
+{
+ return (1);
+}
- asm volatile(
- "divl %3"
- : "=a" (*secs), "=d" (remain)
- : "A" (now), "r" (NSEC_PER_SEC));
- asm volatile(
- "divl %3"
- : "=a" (*microsecs)
- : "0" (remain), "d" (0), "r" (NSEC_PER_USEC));
+/*
+ * Get the current clock time.
+ */
+kern_return_t
+calend_gettime(
+ mach_timespec_t *cur_time) /* OUT */
+{
+ spl_t s;
+
+ RTC_LOCK(s);
+ if (!rtclock.calend_is_set) {
+ RTC_UNLOCK(s);
+ return (KERN_FAILURE);
+ }
+
+ (void) sysclk_gettime_internal(cur_time);
+ ADD_MACH_TIMESPEC(cur_time, &rtclock.calend_offset);
+ RTC_UNLOCK(s);
+
+ return (KERN_SUCCESS);
+}
+
+void
+clock_get_calendar_microtime(
+ uint32_t *secs,
+ uint32_t *microsecs)
+{
+ mach_timespec_t now;
+
+ calend_gettime(&now);
+
+ *secs = now.tv_sec;
+ *microsecs = now.tv_nsec / NSEC_PER_USEC;
+}
+
+void
+clock_get_calendar_nanotime(
+ uint32_t *secs,
+ uint32_t *nanosecs)
+{
+ mach_timespec_t now;
+
+ calend_gettime(&now);
+
+ *secs = now.tv_sec;
+ *nanosecs = now.tv_nsec;
+}
+
+void
+clock_set_calendar_microtime(
+ uint32_t secs,
+ uint32_t microsecs)
+{
+ mach_timespec_t new_time, curr_time;
+ uint32_t old_offset;
+ spl_t s;
+
+ new_time.tv_sec = secs;
+ new_time.tv_nsec = microsecs * NSEC_PER_USEC;
+
+ RTC_LOCK(s);
+ old_offset = rtclock.calend_offset.tv_sec;
+ (void) sysclk_gettime_internal(&curr_time);
+ rtclock.calend_offset = new_time;
+ SUB_MACH_TIMESPEC(&rtclock.calend_offset, &curr_time);
+ rtclock.boottime += rtclock.calend_offset.tv_sec - old_offset;
+ rtclock.calend_is_set = TRUE;
+ RTC_UNLOCK(s);
+
+ (void) bbc_settime(&new_time);
- *secs += epoch;
+ host_notify_calendar_change();
+}
+
+/*
+ * Get clock device attributes.
+ */
+kern_return_t
+calend_getattr(
+ clock_flavor_t flavor,
+ clock_attr_t attr, /* OUT */
+ mach_msg_type_number_t *count) /* IN/OUT */
+{
+ if (*count != 1)
+ return (KERN_FAILURE);
+ switch (flavor) {
+
+ case CLOCK_GET_TIME_RES: /* >0 res */
+ *(clock_res_t *) attr = rtc_intr_nsec;
+ break;
+
+ case CLOCK_ALARM_CURRES: /* =0 no alarm */
+ case CLOCK_ALARM_MINRES:
+ case CLOCK_ALARM_MAXRES:
+ *(clock_res_t *) attr = 0;
+ break;
+
+ default:
+ return (KERN_INVALID_VALUE);
+ }
+ return (KERN_SUCCESS);
+}
+
+#define tickadj (40*NSEC_PER_USEC) /* "standard" skew, ns / tick */
+#define bigadj (NSEC_PER_SEC) /* use 10x skew above bigadj ns */
+
+uint32_t
+clock_set_calendar_adjtime(
+ int32_t *secs,
+ int32_t *microsecs)
+{
+ int64_t total, ototal;
+ uint32_t interval = 0;
+ spl_t s;
+
+ total = (int64_t)*secs * NSEC_PER_SEC + *microsecs * NSEC_PER_USEC;
+
+ RTC_LOCK(s);
+ ototal = rtclock.calend_adjtotal;
+
+ if (total != 0) {
+ int32_t delta = tickadj;
+
+ if (total > 0) {
+ if (total > bigadj)
+ delta *= 10;
+ if (delta > total)
+ delta = total;
+ }
+ else {
+ if (total < -bigadj)
+ delta *= 10;
+ delta = -delta;
+ if (delta < total)
+ delta = total;
+ }
+
+ rtclock.calend_adjtotal = total;
+ rtclock.calend_adjdelta = delta;
+
+ interval = NSEC_PER_HZ;
+ }
+ else
+ rtclock.calend_adjdelta = rtclock.calend_adjtotal = 0;
+
+ RTC_UNLOCK(s);
+
+ if (ototal == 0)
+ *secs = *microsecs = 0;
+ else {
+ *secs = ototal / NSEC_PER_SEC;
+ *microsecs = ototal % NSEC_PER_SEC;
+ }
+
+ return (interval);
+}
+
+uint32_t
+clock_adjust_calendar(void)
+{
+ uint32_t interval = 0;
+ int32_t delta;
+ spl_t s;
+
+ RTC_LOCK(s);
+ delta = rtclock.calend_adjdelta;
+ ADD_MACH_TIMESPEC_NSEC(&rtclock.calend_offset, delta);
+
+ rtclock.calend_adjtotal -= delta;
+
+ if (delta > 0) {
+ if (delta > rtclock.calend_adjtotal)
+ rtclock.calend_adjdelta = rtclock.calend_adjtotal;
+ }
+ else
+ if (delta < 0) {
+ if (delta < rtclock.calend_adjtotal)
+ rtclock.calend_adjdelta = rtclock.calend_adjtotal;
+ }
- commpage_set_timestamp(abstime - remain, *secs, NSEC_PER_SEC);
+ if (rtclock.calend_adjdelta != 0)
+ interval = NSEC_PER_HZ;
+
+ RTC_UNLOCK(s);
+
+ return (interval);
+}
+
+void
+clock_initialize_calendar(void)
+{
+ mach_timespec_t bbc_time, curr_time;
+ spl_t s;
+
+ if (bbc_gettime(&bbc_time) != KERN_SUCCESS)
+ return;
+
+ RTC_LOCK(s);
+ if (rtclock.boottime == 0)
+ rtclock.boottime = bbc_time.tv_sec;
+ (void) sysclk_gettime_internal(&curr_time);
+ rtclock.calend_offset = bbc_time;
+ SUB_MACH_TIMESPEC(&rtclock.calend_offset, &curr_time);
+ rtclock.calend_is_set = TRUE;
+ RTC_UNLOCK(s);
+
+ host_notify_calendar_change();
+}
+
+void
+clock_get_boottime_nanotime(
+ uint32_t *secs,
+ uint32_t *nanosecs)
+{
+ *secs = rtclock.boottime;
+ *nanosecs = 0;
}
void
info->numer = info->denom = 1;
}
+void
+clock_set_timer_deadline(
+ uint64_t deadline)
+{
+ spl_t s;
+ cpu_data_t *pp = current_cpu_datap();
+ rtclock_timer_t *mytimer = &pp->cpu_rtc_timer;
+ uint64_t abstime;
+ uint64_t decr;
+
+ assert(get_preemption_level() > 0);
+ assert(rtclock_timer_expire);
+
+ RTC_INTRS_OFF(s);
+ mytimer->deadline = deadline;
+ mytimer->is_set = TRUE;
+ if (!mytimer->has_expired) {
+ abstime = mach_absolute_time();
+ if (mytimer->deadline < pp->cpu_rtc_tick_deadline) {
+ decr = deadline_to_decrementer(mytimer->deadline,
+ abstime);
+ rtc_lapic_set_timer(decr);
+ pp->cpu_rtc_intr_deadline = mytimer->deadline;
+ KERNEL_DEBUG_CONSTANT(
+ MACHDBG_CODE(DBG_MACH_EXCP_DECI, 1) |
+ DBG_FUNC_NONE, decr, 2, 0, 0, 0);
+ }
+ }
+ RTC_INTRS_ON(s);
+}
+
void
clock_set_timer_func(
clock_timer_func_t func)
* Real-time clock device interrupt.
*/
void
-rtclock_intr(
- x86_saved_state_t *tregs)
+rtclock_intr(struct i386_interrupt_state *regs)
{
- uint64_t rip;
- boolean_t user_mode = FALSE;
uint64_t abstime;
uint32_t latency;
+ uint64_t decr;
+ uint64_t decr_tick;
+ uint64_t decr_timer;
cpu_data_t *pp = current_cpu_datap();
+ rtclock_timer_t *mytimer = &pp->cpu_rtc_timer;
assert(get_preemption_level() > 0);
assert(!ml_get_interrupts_enabled());
- abstime = rtc_nanotime_read();
- latency = (uint32_t) abstime - pp->rtcPop;
-
- if (is_saved_state64(tregs) == TRUE) {
- x86_saved_state64_t *regs;
-
- regs = saved_state64(tregs);
-
- user_mode = TRUE;
- rip = regs->isf.rip;
- } else {
- x86_saved_state32_t *regs;
-
- regs = saved_state32(tregs);
+ abstime = _rtc_nanotime_read();
+ latency = (uint32_t) abstime - pp->cpu_rtc_intr_deadline;
+ if (pp->cpu_rtc_tick_deadline <= abstime) {
+ rtc_nanotime_update();
+ clock_deadline_for_periodic_event(
+ NSEC_PER_HZ, abstime, &pp->cpu_rtc_tick_deadline);
+ hertz_tick(
+#if STAT_TIME
+ NSEC_PER_HZ,
+#endif
+ (regs->efl & EFL_VM) || ((regs->cs & 0x03) != 0),
+ regs->eip);
+ }
- if (regs->cs & 0x03)
- user_mode = TRUE;
- rip = regs->eip;
+ abstime = _rtc_nanotime_read();
+ if (mytimer->is_set && mytimer->deadline <= abstime) {
+ mytimer->has_expired = TRUE;
+ mytimer->is_set = FALSE;
+ (*rtclock_timer_expire)(abstime);
+ assert(!ml_get_interrupts_enabled());
+ mytimer->has_expired = FALSE;
}
/* Log the interrupt service latency (-ve value expected by tool) */
KERNEL_DEBUG_CONSTANT(
MACHDBG_CODE(DBG_MACH_EXCP_DECI, 0) | DBG_FUNC_NONE,
- -latency, (uint32_t)rip, user_mode, 0, 0);
-
- /* call the generic etimer */
- etimer_intr(user_mode, rip);
-}
+ -latency, (uint32_t)regs->eip, 0, 0, 0);
-/*
- * Request timer pop from the hardware
- */
+ abstime = _rtc_nanotime_read();
+ decr_tick = deadline_to_decrementer(pp->cpu_rtc_tick_deadline, abstime);
+ decr_timer = (mytimer->is_set) ?
+ deadline_to_decrementer(mytimer->deadline, abstime) :
+ DECREMENTER_MAX;
+ decr = MIN(decr_tick, decr_timer);
+ pp->cpu_rtc_intr_deadline = abstime + decr;
-int
-setPop(
- uint64_t time)
-{
- uint64_t now;
- uint32_t decr;
- uint64_t count;
-
- now = rtc_nanotime_read(); /* The time in nanoseconds */
- decr = deadline_to_decrementer(time, now);
+ rtc_lapic_set_timer(decr);
- count = tmrCvt(decr, busFCvtn2t);
- lapic_set_timer(TRUE, one_shot, divide_by_1, (uint32_t) count);
+ /* Log the new decrementer value */
+ KERNEL_DEBUG_CONSTANT(
+ MACHDBG_CODE(DBG_MACH_EXCP_DECI, 1) | DBG_FUNC_NONE,
+ decr, 3, 0, 0, 0);
- return decr; /* Pass back what we set */
}
+static void
+rtclock_alarm_expire(
+ __unused timer_call_param_t p0,
+ __unused timer_call_param_t p1)
+{
+ mach_timespec_t clock_time;
+ (void) sysclk_gettime_internal(&clock_time);
-uint64_t
-mach_absolute_time(void)
-{
- return rtc_nanotime_read();
+ clock_alarm_intr(SYSTEM_CLOCK, &clock_time);
}
void
-clock_interval_to_absolutetime_interval(
- uint32_t interval,
- uint32_t scale_factor,
+clock_get_uptime(
uint64_t *result)
{
- *result = (uint64_t)interval * scale_factor;
+ *result = rtc_nanotime_read();
+}
+
+uint64_t
+mach_absolute_time(void)
+{
+ return rtc_nanotime_read();
}
void
}
void
-absolutetime_to_nanotime(
- uint64_t abstime,
- uint32_t *secs,
- uint32_t *nanosecs)
+clock_interval_to_deadline(
+ uint32_t interval,
+ uint32_t scale_factor,
+ uint64_t *result)
{
- asm volatile(
- "divl %3"
- : "=a" (*secs), "=d" (*nanosecs)
- : "A" (abstime), "r" (NSEC_PER_SEC));
+ uint64_t abstime;
+
+ clock_get_uptime(result);
+
+ clock_interval_to_absolutetime_interval(interval, scale_factor, &abstime);
+
+ *result += abstime;
}
void
-nanotime_to_absolutetime(
- uint32_t secs,
- uint32_t nanosecs,
- uint64_t *result)
+clock_interval_to_absolutetime_interval(
+ uint32_t interval,
+ uint32_t scale_factor,
+ uint64_t *result)
+{
+ *result = (uint64_t)interval * scale_factor;
+}
+
+void
+clock_absolutetime_interval_to_deadline(
+ uint64_t abstime,
+ uint64_t *result)
{
- *result = ((uint64_t)secs * NSEC_PER_SEC) + nanosecs;
+ clock_get_uptime(result);
+
+ *result += abstime;
}
void