/*
- * Copyright (c) 2000-2009 Apple Inc. All rights reserved.
+ * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
- *
+ *
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
- *
+ *
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
- *
+ *
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
- *
+ *
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_COPYRIGHT@
*/
-/*
+/*
* Mach Operating System
* Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
* All Rights Reserved.
- *
+ *
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
- *
+ *
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
- *
+ *
* Carnegie Mellon requests users of this software to return to
- *
+ *
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
- *
+ *
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
#include <mach/processor_server.h>
#include <kern/kern_types.h>
-#include <kern/counters.h>
#include <kern/cpu_data.h>
+#include <kern/cpu_quiesce.h>
#include <kern/ipc_host.h>
#include <kern/host.h>
-#include <kern/lock.h>
#include <kern/machine.h>
#include <kern/misc_protos.h>
#include <kern/processor.h>
#include <kern/queue.h>
#include <kern/sched.h>
+#include <kern/startup.h>
#include <kern/task.h>
#include <kern/thread.h>
#include <machine/commpage.h>
+#include <machine/machine_routines.h>
#if HIBERNATION
#include <IOKit/IOHibernatePrivate.h>
#endif
#include <IOKit/IOPlatformExpert.h>
+#if CONFIG_DTRACE
+extern void (*dtrace_cpu_state_changed_hook)(int, boolean_t);
+#endif
+
+#if defined(__x86_64__)
+#include <i386/panic_notify.h>
+#include <libkern/OSDebug.h>
+#endif
+
/*
* Exported variables:
*/
-struct machine_info machine_info;
+struct machine_info machine_info;
/* Forwards */
-void processor_doshutdown(
- processor_t processor);
+static void
+processor_doshutdown(processor_t processor);
+
+static void
+processor_offline(void * parameter, __unused wait_result_t result);
+
+static void
+processor_offline_intstack(processor_t processor) __dead2;
/*
* processor_up:
*/
void
processor_up(
- processor_t processor)
+ processor_t processor)
{
- processor_set_t pset;
- spl_t s;
+ processor_set_t pset;
+ spl_t s;
s = splsched();
init_ast_check(processor);
pset = processor->processor_set;
pset_lock(pset);
- if (++pset->online_processor_count == 1) {
- pset_pri_init_hint(pset, processor);
- pset_count_init_hint(pset, processor);
+
+ ++pset->online_processor_count;
+ pset_update_processor_state(pset, processor, PROCESSOR_RUNNING);
+ os_atomic_inc(&processor_avail_count, relaxed);
+ if (processor->is_recommended) {
+ os_atomic_inc(&processor_avail_count_user, relaxed);
+ SCHED(pset_made_schedulable)(processor, pset, false);
+ }
+ if (processor->processor_primary == processor) {
+ os_atomic_inc(&primary_processor_avail_count, relaxed);
+ if (processor->is_recommended) {
+ os_atomic_inc(&primary_processor_avail_count_user, relaxed);
+ }
}
- enqueue_tail(&pset->active_queue, (queue_entry_t)processor);
- processor->state = PROCESSOR_RUNNING;
- (void)hw_atomic_add(&processor_avail_count, 1);
commpage_update_active_cpus();
pset_unlock(pset);
ml_cpu_up();
splx(s);
+
+#if CONFIG_DTRACE
+ if (dtrace_cpu_state_changed_hook) {
+ (*dtrace_cpu_state_changed_hook)(processor->cpu_id, TRUE);
+ }
+#endif
}
+#include <atm/atm_internal.h>
kern_return_t
host_reboot(
- host_priv_t host_priv,
- int options)
+ host_priv_t host_priv,
+ int options)
{
- if (host_priv == HOST_PRIV_NULL)
- return (KERN_INVALID_HOST);
-
- assert(host_priv == &realhost);
+ if (host_priv == HOST_PRIV_NULL) {
+ return KERN_INVALID_HOST;
+ }
+#if DEVELOPMENT || DEBUG
if (options & HOST_REBOOT_DEBUGGER) {
Debugger("Debugger");
- return (KERN_SUCCESS);
+ return KERN_SUCCESS;
}
+#endif
- if (options & HOST_REBOOT_UPSDELAY) {
- // UPS power cutoff path
- PEHaltRestart( kPEUPSDelayHaltCPU );
- } else {
- halt_all_cpus(!(options & HOST_REBOOT_HALT));
- }
+ if (options & HOST_REBOOT_UPSDELAY) {
+ // UPS power cutoff path
+ PEHaltRestart( kPEUPSDelayHaltCPU );
+ } else {
+ halt_all_cpus(!(options & HOST_REBOOT_HALT));
+ }
- return (KERN_SUCCESS);
+ return KERN_SUCCESS;
}
kern_return_t
processor_assign(
- __unused processor_t processor,
- __unused processor_set_t new_pset,
- __unused boolean_t wait)
+ __unused processor_t processor,
+ __unused processor_set_t new_pset,
+ __unused boolean_t wait)
{
- return (KERN_FAILURE);
+ return KERN_FAILURE;
}
kern_return_t
processor_shutdown(
- processor_t processor)
+ processor_t processor)
{
- processor_set_t pset;
- spl_t s;
+ processor_set_t pset;
+ spl_t s;
+ ml_cpu_begin_state_transition(processor->cpu_id);
s = splsched();
pset = processor->processor_set;
pset_lock(pset);
*/
pset_unlock(pset);
splx(s);
+ ml_cpu_end_state_transition(processor->cpu_id);
+
+ return KERN_SUCCESS;
+ }
+
+ if (!ml_cpu_can_exit(processor->cpu_id)) {
+ /*
+ * Failure if disallowed by arch code.
+ */
+ pset_unlock(pset);
+ splx(s);
+ ml_cpu_end_state_transition(processor->cpu_id);
- return (KERN_SUCCESS);
+ return KERN_FAILURE;
}
if (processor->state == PROCESSOR_START) {
pset_unlock(pset);
splx(s);
- return (KERN_FAILURE);
+ return KERN_FAILURE;
}
/*
*/
while (processor->state == PROCESSOR_DISPATCHING) {
pset_unlock(pset);
+ splx(s);
delay(1);
+ s = splsched();
pset_lock(pset);
}
if (processor->state == PROCESSOR_SHUTDOWN) {
pset_unlock(pset);
splx(s);
+ ml_cpu_end_state_transition(processor->cpu_id);
- return (KERN_SUCCESS);
+ return KERN_SUCCESS;
}
- if (processor->state == PROCESSOR_IDLE)
- remqueue((queue_entry_t)processor);
- else
- if (processor->state == PROCESSOR_RUNNING)
- remqueue((queue_entry_t)processor);
-
- processor->state = PROCESSOR_SHUTDOWN;
-
+ ml_broadcast_cpu_event(CPU_EXIT_REQUESTED, processor->cpu_id);
+ pset_update_processor_state(pset, processor, PROCESSOR_SHUTDOWN);
pset_unlock(pset);
processor_doshutdown(processor);
splx(s);
cpu_exit_wait(processor->cpu_id);
+ ml_cpu_end_state_transition(processor->cpu_id);
+ ml_broadcast_cpu_event(CPU_EXITED, processor->cpu_id);
- return (KERN_SUCCESS);
+ return KERN_SUCCESS;
}
/*
* Called with interrupts disabled.
*/
-void
+static void
processor_doshutdown(
- processor_t processor)
+ processor_t processor)
{
- thread_t old_thread, self = current_thread();
- processor_t prev;
- processor_set_t pset;
+ thread_t self = current_thread();
/*
* Get onto the processor to shutdown
*/
- prev = thread_bind(processor);
+ processor_t prev = thread_bind(processor);
thread_block(THREAD_CONTINUE_NULL);
+ /* interrupts still disabled */
+ assert(ml_get_interrupts_enabled() == FALSE);
+
+ assert(processor == current_processor());
assert(processor->state == PROCESSOR_SHUTDOWN);
+#if CONFIG_DTRACE
+ if (dtrace_cpu_state_changed_hook) {
+ (*dtrace_cpu_state_changed_hook)(processor->cpu_id, FALSE);
+ }
+#endif
+
ml_cpu_down();
#if HIBERNATION
}
#endif
- pset = processor->processor_set;
+ processor_set_t pset = processor->processor_set;
+
pset_lock(pset);
- processor->state = PROCESSOR_OFF_LINE;
- if (--pset->online_processor_count == 0) {
- pset_pri_init_hint(pset, PROCESSOR_NULL);
- pset_count_init_hint(pset, PROCESSOR_NULL);
+ pset_update_processor_state(pset, processor, PROCESSOR_OFF_LINE);
+ --pset->online_processor_count;
+ os_atomic_dec(&processor_avail_count, relaxed);
+ if (processor->is_recommended) {
+ os_atomic_dec(&processor_avail_count_user, relaxed);
+ }
+ if (processor->processor_primary == processor) {
+ os_atomic_dec(&primary_processor_avail_count, relaxed);
+ if (processor->is_recommended) {
+ os_atomic_dec(&primary_processor_avail_count_user, relaxed);
+ }
}
- (void)hw_atomic_sub(&processor_avail_count, 1);
commpage_update_active_cpus();
SCHED(processor_queue_shutdown)(processor);
/* pset lock dropped */
+ SCHED(rt_queue_shutdown)(processor);
+
+ thread_bind(prev);
+
+ /* interrupts still disabled */
/*
- * Continue processor shutdown in shutdown context.
+ * Continue processor shutdown on the processor's idle thread.
+ * The handoff won't fail because the idle thread has a reserved stack.
+ * Switching to the idle thread leaves interrupts disabled,
+ * so we can't accidentally take an interrupt after the context switch.
*/
- thread_bind(prev);
- old_thread = machine_processor_shutdown(self, processor_offline, processor);
+ thread_t shutdown_thread = processor->idle_thread;
+ shutdown_thread->continuation = processor_offline;
+ shutdown_thread->parameter = processor;
- thread_dispatch(old_thread, self);
+ thread_run(self, NULL, NULL, shutdown_thread);
}
/*
- *Complete the shutdown and place the processor offline.
+ * Called in the context of the idle thread to shut down the processor
*
- * Called at splsched in the shutdown context.
+ * A shut-down processor looks like it's 'running' the idle thread parked
+ * in this routine, but it's actually been powered off and has no hardware state.
*/
-void
+static void
processor_offline(
- processor_t processor)
+ void * parameter,
+ __unused wait_result_t result)
{
- thread_t new_thread, old_thread = processor->active_thread;
+ processor_t processor = (processor_t) parameter;
+ thread_t self = current_thread();
+ __assert_only thread_t old_thread = THREAD_NULL;
+
+ assert(processor == current_processor());
+ assert(self->state & TH_IDLE);
+ assert(processor->idle_thread == self);
+ assert(ml_get_interrupts_enabled() == FALSE);
+ assert(self->continuation == NULL);
+ assert(processor->processor_offlined == false);
+ assert(processor->running_timers_active == false);
- new_thread = processor->idle_thread;
- processor->active_thread = new_thread;
- processor->current_pri = IDLEPRI;
- processor->current_thmode = TH_MODE_NONE;
- processor->deadline = UINT64_MAX;
- new_thread->last_processor = processor;
+ bool enforce_quiesce_safety = gEnforceQuiesceSafety;
- processor->last_dispatch = mach_absolute_time();
- timer_stop(PROCESSOR_DATA(processor, thread_timer), processor->last_dispatch);
+ /*
+ * Scheduling is now disabled for this processor.
+ * Ensure that primitives that need scheduling (like mutexes) know this.
+ */
+ if (enforce_quiesce_safety) {
+ disable_preemption();
+ }
- machine_set_current_thread(new_thread);
+ /* convince slave_main to come back here */
+ processor->processor_offlined = true;
- thread_dispatch(old_thread, new_thread);
+ /*
+ * Switch to the interrupt stack and shut down the processor.
+ *
+ * When the processor comes back, it will eventually call load_context which
+ * restores the context saved by machine_processor_shutdown, returning here.
+ */
+ old_thread = machine_processor_shutdown(self, processor_offline_intstack, processor);
+
+ /* old_thread should be NULL because we got here through Load_context */
+ assert(old_thread == THREAD_NULL);
+
+ assert(processor == current_processor());
+ assert(processor->idle_thread == current_thread());
+
+ assert(ml_get_interrupts_enabled() == FALSE);
+ assert(self->continuation == NULL);
+
+ /* Extract the machine_param value stashed by slave_main */
+ void * machine_param = self->parameter;
+ self->parameter = NULL;
+
+ /* Re-initialize the processor */
+ slave_machine_init(machine_param);
+
+ assert(processor->processor_offlined == true);
+ processor->processor_offlined = false;
+
+ if (enforce_quiesce_safety) {
+ enable_preemption();
+ }
+
+ /*
+ * Now that the processor is back, invoke the idle thread to find out what to do next.
+ * idle_thread will enable interrupts.
+ */
+ thread_block(idle_thread);
+ /*NOTREACHED*/
+}
+
+/*
+ * Complete the shutdown and place the processor offline.
+ *
+ * Called at splsched in the shutdown context
+ * (i.e. on the idle thread, on the interrupt stack)
+ *
+ * The onlining half of this is done in load_context().
+ */
+static void
+processor_offline_intstack(
+ processor_t processor)
+{
+ assert(processor == current_processor());
+ assert(processor->active_thread == current_thread());
+
+ timer_stop(processor->current_state, processor->last_dispatch);
+
+ cpu_quiescent_counter_leave(processor->last_dispatch);
PMAP_DEACTIVATE_KERNEL(processor->cpu_id);
kern_return_t
host_get_boot_info(
- host_priv_t host_priv,
- kernel_boot_info_t boot_info)
+ host_priv_t host_priv,
+ kernel_boot_info_t boot_info)
{
const char *src = "";
- if (host_priv == HOST_PRIV_NULL)
- return (KERN_INVALID_HOST);
-
- assert(host_priv == &realhost);
+ if (host_priv == HOST_PRIV_NULL) {
+ return KERN_INVALID_HOST;
+ }
/*
* Copy first operator string terminated by '\0' followed by
* standardized strings generated from boot string.
*/
src = machine_boot_info(boot_info, KERNEL_BOOT_INFO_MAX);
- if (src != boot_info)
+ if (src != boot_info) {
(void) strncpy(boot_info, src, KERNEL_BOOT_INFO_MAX);
+ }
+
+ return KERN_SUCCESS;
+}
+
+#if CONFIG_DTRACE
+#include <mach/sdt.h>
+#endif
- return (KERN_SUCCESS);
+unsigned long long
+ml_io_read(uintptr_t vaddr, int size)
+{
+ unsigned long long result = 0;
+ unsigned char s1;
+ unsigned short s2;
+
+#if defined(__x86_64__)
+ uint64_t sabs, eabs;
+ boolean_t istate, timeread = FALSE;
+#if DEVELOPMENT || DEBUG
+ extern uint64_t simulate_stretched_io;
+ uintptr_t paddr = pmap_verify_noncacheable(vaddr);
+#endif /* x86_64 DEVELOPMENT || DEBUG */
+ if (__improbable(reportphyreaddelayabs != 0)) {
+ istate = ml_set_interrupts_enabled(FALSE);
+ sabs = mach_absolute_time();
+ timeread = TRUE;
+ }
+
+#if DEVELOPMENT || DEBUG
+ if (__improbable(timeread && simulate_stretched_io)) {
+ sabs -= simulate_stretched_io;
+ }
+#endif /* x86_64 DEVELOPMENT || DEBUG */
+
+#endif /* x86_64 */
+
+ switch (size) {
+ case 1:
+ s1 = *(volatile unsigned char *)vaddr;
+ result = s1;
+ break;
+ case 2:
+ s2 = *(volatile unsigned short *)vaddr;
+ result = s2;
+ break;
+ case 4:
+ result = *(volatile unsigned int *)vaddr;
+ break;
+ case 8:
+ result = *(volatile unsigned long long *)vaddr;
+ break;
+ default:
+ panic("Invalid size %d for ml_io_read(%p)", size, (void *)vaddr);
+ break;
+ }
+
+#if defined(__x86_64__)
+ if (__improbable(timeread == TRUE)) {
+ eabs = mach_absolute_time();
+
+#if DEVELOPMENT || DEBUG
+ iotrace(IOTRACE_IO_READ, vaddr, paddr, size, result, sabs, eabs - sabs);
+#endif
+
+ if (__improbable((eabs - sabs) > reportphyreaddelayabs)) {
+#if !(DEVELOPMENT || DEBUG)
+ uintptr_t paddr = kvtophys(vaddr);
+#endif
+
+ (void)ml_set_interrupts_enabled(istate);
+
+ if (phyreadpanic && (machine_timeout_suspended() == FALSE)) {
+ panic_notify();
+ panic("Read from IO vaddr 0x%lx paddr 0x%lx took %llu ns, "
+ "result: 0x%llx (start: %llu, end: %llu), ceiling: %llu",
+ vaddr, paddr, (eabs - sabs), result, sabs, eabs,
+ reportphyreaddelayabs);
+ }
+
+ if (reportphyreadosbt) {
+ OSReportWithBacktrace("ml_io_read(v=%p, p=%p) size %d result 0x%llx "
+ "took %lluus",
+ (void *)vaddr, (void *)paddr, size, result,
+ (eabs - sabs) / NSEC_PER_USEC);
+ }
+#if CONFIG_DTRACE
+ DTRACE_PHYSLAT5(physioread, uint64_t, (eabs - sabs),
+ uint64_t, vaddr, uint32_t, size, uint64_t, paddr, uint64_t, result);
+#endif /* CONFIG_DTRACE */
+ } else if (__improbable(tracephyreaddelayabs > 0 && (eabs - sabs) > tracephyreaddelayabs)) {
+#if !(DEVELOPMENT || DEBUG)
+ uintptr_t paddr = kvtophys(vaddr);
+#endif
+
+ KDBG(MACHDBG_CODE(DBG_MACH_IO, DBC_MACH_IO_MMIO_READ),
+ (eabs - sabs), VM_KERNEL_UNSLIDE_OR_PERM(vaddr), paddr, result);
+
+ (void)ml_set_interrupts_enabled(istate);
+ } else {
+ (void)ml_set_interrupts_enabled(istate);
+ }
+ }
+#endif /* x86_64 */
+ return result;
+}
+
+unsigned int
+ml_io_read8(uintptr_t vaddr)
+{
+ return (unsigned) ml_io_read(vaddr, 1);
+}
+
+unsigned int
+ml_io_read16(uintptr_t vaddr)
+{
+ return (unsigned) ml_io_read(vaddr, 2);
+}
+
+unsigned int
+ml_io_read32(uintptr_t vaddr)
+{
+ return (unsigned) ml_io_read(vaddr, 4);
+}
+
+unsigned long long
+ml_io_read64(uintptr_t vaddr)
+{
+ return ml_io_read(vaddr, 8);
+}
+
+/* ml_io_write* */
+
+void
+ml_io_write(uintptr_t vaddr, uint64_t val, int size)
+{
+#if defined(__x86_64__)
+ uint64_t sabs, eabs;
+ boolean_t istate, timewrite = FALSE;
+#if DEVELOPMENT || DEBUG
+ extern uint64_t simulate_stretched_io;
+ uintptr_t paddr = pmap_verify_noncacheable(vaddr);
+#endif /* x86_64 DEVELOPMENT || DEBUG */
+ if (__improbable(reportphywritedelayabs != 0)) {
+ istate = ml_set_interrupts_enabled(FALSE);
+ sabs = mach_absolute_time();
+ timewrite = TRUE;
+ }
+
+#if DEVELOPMENT || DEBUG
+ if (__improbable(timewrite && simulate_stretched_io)) {
+ sabs -= simulate_stretched_io;
+ }
+#endif /* x86_64 DEVELOPMENT || DEBUG */
+#endif /* x86_64 */
+
+ switch (size) {
+ case 1:
+ *(volatile uint8_t *)vaddr = (uint8_t)val;
+ break;
+ case 2:
+ *(volatile uint16_t *)vaddr = (uint16_t)val;
+ break;
+ case 4:
+ *(volatile uint32_t *)vaddr = (uint32_t)val;
+ break;
+ case 8:
+ *(volatile uint64_t *)vaddr = (uint64_t)val;
+ break;
+ default:
+ panic("Invalid size %d for ml_io_write(%p, 0x%llx)", size, (void *)vaddr, val);
+ break;
+ }
+
+#if defined(__x86_64__)
+ if (__improbable(timewrite == TRUE)) {
+ eabs = mach_absolute_time();
+
+#if DEVELOPMENT || DEBUG
+ iotrace(IOTRACE_IO_WRITE, vaddr, paddr, size, val, sabs, eabs - sabs);
+#endif
+
+ if (__improbable((eabs - sabs) > reportphywritedelayabs)) {
+#if !(DEVELOPMENT || DEBUG)
+ uintptr_t paddr = kvtophys(vaddr);
+#endif
+
+ (void)ml_set_interrupts_enabled(istate);
+
+ if (phywritepanic && (machine_timeout_suspended() == FALSE)) {
+ panic_notify();
+ panic("Write to IO vaddr %p paddr %p val 0x%llx took %llu ns,"
+ " (start: %llu, end: %llu), ceiling: %llu",
+ (void *)vaddr, (void *)paddr, val, (eabs - sabs), sabs, eabs,
+ reportphywritedelayabs);
+ }
+
+ if (reportphywriteosbt) {
+ OSReportWithBacktrace("ml_io_write size %d (v=%p, p=%p, 0x%llx) "
+ "took %lluus",
+ size, (void *)vaddr, (void *)paddr, val, (eabs - sabs) / NSEC_PER_USEC);
+ }
+#if CONFIG_DTRACE
+ DTRACE_PHYSLAT5(physiowrite, uint64_t, (eabs - sabs),
+ uint64_t, vaddr, uint32_t, size, uint64_t, paddr, uint64_t, val);
+#endif /* CONFIG_DTRACE */
+ } else if (__improbable(tracephywritedelayabs > 0 && (eabs - sabs) > tracephywritedelayabs)) {
+#if !(DEVELOPMENT || DEBUG)
+ uintptr_t paddr = kvtophys(vaddr);
+#endif
+
+ KDBG(MACHDBG_CODE(DBG_MACH_IO, DBC_MACH_IO_MMIO_WRITE),
+ (eabs - sabs), VM_KERNEL_UNSLIDE_OR_PERM(vaddr), paddr, val);
+
+ (void)ml_set_interrupts_enabled(istate);
+ } else {
+ (void)ml_set_interrupts_enabled(istate);
+ }
+ }
+#endif /* x86_64 */
+}
+
+void
+ml_io_write8(uintptr_t vaddr, uint8_t val)
+{
+ ml_io_write(vaddr, val, 1);
+}
+
+void
+ml_io_write16(uintptr_t vaddr, uint16_t val)
+{
+ ml_io_write(vaddr, val, 2);
+}
+
+void
+ml_io_write32(uintptr_t vaddr, uint32_t val)
+{
+ ml_io_write(vaddr, val, 4);
+}
+
+void
+ml_io_write64(uintptr_t vaddr, uint64_t val)
+{
+ ml_io_write(vaddr, val, 8);
+}
+
+struct cpu_callback_chain_elem {
+ cpu_callback_t fn;
+ void *param;
+ struct cpu_callback_chain_elem *next;
+};
+
+static struct cpu_callback_chain_elem *cpu_callback_chain;
+static LCK_GRP_DECLARE(cpu_callback_chain_lock_grp, "cpu_callback_chain");
+static LCK_SPIN_DECLARE(cpu_callback_chain_lock, &cpu_callback_chain_lock_grp);
+
+void
+cpu_event_register_callback(cpu_callback_t fn, void *param)
+{
+ struct cpu_callback_chain_elem *new_elem;
+
+ new_elem = zalloc_permanent_type(struct cpu_callback_chain_elem);
+ if (!new_elem) {
+ panic("can't allocate cpu_callback_chain_elem");
+ }
+
+ lck_spin_lock(&cpu_callback_chain_lock);
+ new_elem->next = cpu_callback_chain;
+ new_elem->fn = fn;
+ new_elem->param = param;
+ os_atomic_store(&cpu_callback_chain, new_elem, release);
+ lck_spin_unlock(&cpu_callback_chain_lock);
+}
+
+__attribute__((noreturn))
+void
+cpu_event_unregister_callback(__unused cpu_callback_t fn)
+{
+ panic("Unfortunately, cpu_event_unregister_callback is unimplemented.");
+}
+
+void
+ml_broadcast_cpu_event(enum cpu_event event, unsigned int cpu_or_cluster)
+{
+ struct cpu_callback_chain_elem *cursor;
+
+ cursor = os_atomic_load(&cpu_callback_chain, dependency);
+ for (; cursor != NULL; cursor = cursor->next) {
+ cursor->fn(cursor->param, event, cpu_or_cluster);
+ }
}