/*
- * Copyright (c) 2000-2009 Apple Inc. All rights reserved.
+ * Copyright (c) 2000-2015 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
+#include <stdbool.h>
#include <sys/systm.h>
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/dirent.h>
#include <sys/stat.h>
#include <sys/buf.h>
+#include <sys/buf_internal.h>
#include <sys/mount.h>
#include <sys/vnode_if.h>
#include <sys/vnode_internal.h>
#include <sys/disk.h>
#include <sys/kauth.h>
#include <sys/uio_internal.h>
+#include <sys/fsctl.h>
+#include <sys/xattr.h>
+#include <string.h>
+#include <sys/fsevents.h>
+#include <kern/kalloc.h>
#include <miscfs/specfs/specdev.h>
#include <miscfs/fifofs/fifo.h>
#include <sys/kdebug.h>
#include <sys/sysctl.h>
+#include <stdbool.h>
#include "hfs.h"
#include "hfs_catalog.h"
#include "hfs_mount.h"
#include "hfs_quota.h"
#include "hfs_endian.h"
+#include "hfs_kdebug.h"
+#include "hfs_cprotect.h"
+
#include "hfscommon/headers/BTreesInternal.h"
#include "hfscommon/headers/FileMgrInternal.h"
/* Always F_FULLFSYNC? 1=yes,0=no (default due to "various" reasons is 'no') */
int always_do_fullfsync = 0;
SYSCTL_DECL(_vfs_generic);
-SYSCTL_INT (_vfs_generic, OID_AUTO, always_do_fullfsync, CTLFLAG_RW, &always_do_fullfsync, 0, "always F_FULLFSYNC when fsync is called");
+SYSCTL_INT (_vfs_generic, OID_AUTO, always_do_fullfsync, CTLFLAG_RW | CTLFLAG_LOCKED, &always_do_fullfsync, 0, "always F_FULLFSYNC when fsync is called");
-static int hfs_makenode(struct vnode *dvp, struct vnode **vpp,
+int hfs_makenode(struct vnode *dvp, struct vnode **vpp,
struct componentname *cnp, struct vnode_attr *vap,
vfs_context_t ctx);
+int hfs_metasync(struct hfsmount *hfsmp, daddr64_t node, __unused struct proc *p);
+int hfs_metasync_all(struct hfsmount *hfsmp);
+
+int hfs_removedir(struct vnode *, struct vnode *, struct componentname *,
+ int, int);
+int hfs_removefile(struct vnode *, struct vnode *, struct componentname *,
+ int, int, int, struct vnode *, int);
+
+/* Used here and in cnode teardown -- for symlinks */
+int hfs_removefile_callback(struct buf *bp, void *hfsmp);
+
+enum {
+ HFS_MOVE_DATA_INCLUDE_RSRC = 1,
+};
+typedef uint32_t hfs_move_data_options_t;
-static int hfs_metasync(struct hfsmount *hfsmp, daddr64_t node, __unused struct proc *p);
-static int hfs_metasync_all(struct hfsmount *hfsmp);
+static int hfs_move_data(cnode_t *from_cp, cnode_t *to_cp,
+ hfs_move_data_options_t options);
+static int hfs_move_fork(filefork_t *srcfork, cnode_t *src,
+ filefork_t *dstfork, cnode_t *dst);
-static int hfs_removedir(struct vnode *, struct vnode *, struct componentname *,
- int);
+#if HFS_COMPRESSION
+static int hfs_move_compressed(cnode_t *from_vp, cnode_t *to_vp);
+#endif
-static int hfs_removefile(struct vnode *, struct vnode *, struct componentname *,
- int, int, int, struct vnode *);
+decmpfs_cnode* hfs_lazy_init_decmpfs_cnode (struct cnode *cp);
#if FIFO
static int hfsfifo_read(struct vnop_read_args *);
extern int (**fifo_vnodeop_p)(void *);
#endif /* FIFO */
-static int hfs_vnop_close(struct vnop_close_args*);
-static int hfs_vnop_create(struct vnop_create_args*);
-static int hfs_vnop_exchange(struct vnop_exchange_args*);
-static int hfs_vnop_fsync(struct vnop_fsync_args*);
-static int hfs_vnop_mkdir(struct vnop_mkdir_args*);
-static int hfs_vnop_mknod(struct vnop_mknod_args*);
-static int hfs_vnop_getattr(struct vnop_getattr_args*);
-static int hfs_vnop_open(struct vnop_open_args*);
-static int hfs_vnop_readdir(struct vnop_readdir_args*);
-static int hfs_vnop_remove(struct vnop_remove_args*);
-static int hfs_vnop_rename(struct vnop_rename_args*);
-static int hfs_vnop_rmdir(struct vnop_rmdir_args*);
-static int hfs_vnop_symlink(struct vnop_symlink_args*);
-static int hfs_vnop_setattr(struct vnop_setattr_args*);
-static int hfs_vnop_readlink(struct vnop_readlink_args *);
-static int hfs_vnop_pathconf(struct vnop_pathconf_args *);
-static int hfs_vnop_whiteout(struct vnop_whiteout_args *);
-static int hfsspec_read(struct vnop_read_args *);
-static int hfsspec_write(struct vnop_write_args *);
-static int hfsspec_close(struct vnop_close_args *);
+int hfs_vnop_close(struct vnop_close_args*);
+int hfs_vnop_create(struct vnop_create_args*);
+int hfs_vnop_exchange(struct vnop_exchange_args*);
+int hfs_vnop_fsync(struct vnop_fsync_args*);
+int hfs_vnop_mkdir(struct vnop_mkdir_args*);
+int hfs_vnop_mknod(struct vnop_mknod_args*);
+int hfs_vnop_getattr(struct vnop_getattr_args*);
+int hfs_vnop_open(struct vnop_open_args*);
+int hfs_vnop_readdir(struct vnop_readdir_args*);
+int hfs_vnop_remove(struct vnop_remove_args*);
+int hfs_vnop_rename(struct vnop_rename_args*);
+int hfs_vnop_rmdir(struct vnop_rmdir_args*);
+int hfs_vnop_symlink(struct vnop_symlink_args*);
+int hfs_vnop_setattr(struct vnop_setattr_args*);
+int hfs_vnop_readlink(struct vnop_readlink_args *);
+int hfs_vnop_pathconf(struct vnop_pathconf_args *);
+int hfs_vnop_mmap(struct vnop_mmap_args *ap);
+int hfsspec_read(struct vnop_read_args *);
+int hfsspec_write(struct vnop_write_args *);
+int hfsspec_close(struct vnop_close_args *);
/* Options for hfs_removedir and hfs_removefile */
#define HFSRM_SKIP_RESERVE 0x01
-
/*****************************************************************************
*
* Common Operations on vnodes
*
*****************************************************************************/
+/*
+ * Is the given cnode either the .journal or .journal_info_block file on
+ * a volume with an active journal? Many VNOPs use this to deny access
+ * to those files.
+ *
+ * Note: the .journal file on a volume with an external journal still
+ * returns true here, even though it does not actually hold the contents
+ * of the volume's journal.
+ */
+static _Bool
+hfs_is_journal_file(struct hfsmount *hfsmp, struct cnode *cp)
+{
+ if (hfsmp->jnl != NULL &&
+ (cp->c_fileid == hfsmp->hfs_jnlinfoblkid ||
+ cp->c_fileid == hfsmp->hfs_jnlfileid)) {
+ return true;
+ } else {
+ return false;
+ }
+}
+
/*
* Create a regular file.
*/
-static int
+int
hfs_vnop_create(struct vnop_create_args *ap)
{
- int error;
-
-again:
- error = hfs_makenode(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap, ap->a_context);
-
/*
- * We speculatively skipped the original lookup of the leaf
- * for CREATE. Since it exists, go get it as long as they
- * didn't want an exclusive create.
+ * We leave handling of certain race conditions here to the caller
+ * which will have a better understanding of the semantics it
+ * requires. For example, if it turns out that the file exists,
+ * it would be wrong of us to return a reference to the existing
+ * file because the caller might not want that and it would be
+ * misleading to suggest the file had been created when it hadn't
+ * been. Note that our NFS server code does not set the
+ * VA_EXCLUSIVE flag so you cannot assume that callers don't want
+ * EEXIST errors if it's not set. The common case, where users
+ * are calling open with the O_CREAT mode, is handled in VFS; when
+ * we return EEXIST, it will loop and do the look-up again.
*/
- if ((error == EEXIST) && !(ap->a_vap->va_vaflags & VA_EXCLUSIVE)) {
- struct vnop_lookup_args args;
-
- args.a_desc = &vnop_lookup_desc;
- args.a_dvp = ap->a_dvp;
- args.a_vpp = ap->a_vpp;
- args.a_cnp = ap->a_cnp;
- args.a_context = ap->a_context;
- args.a_cnp->cn_nameiop = LOOKUP;
- error = hfs_vnop_lookup(&args);
- /*
- * We can also race with remove for this file.
- */
- if (error == ENOENT) {
- goto again;
- }
-
- /* Make sure it was file. */
- if ((error == 0) && !vnode_isreg(*args.a_vpp)) {
- vnode_put(*args.a_vpp);
- error = EEXIST;
- }
- args.a_cnp->cn_nameiop = CREATE;
- }
- return (error);
+ return hfs_makenode(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap, ap->a_context);
}
/*
* Make device special file.
*/
-static int
+int
hfs_vnop_mknod(struct vnop_mknod_args *ap)
{
struct vnode_attr *vap = ap->a_vap;
/* maybe we should take the hfs cnode lock here, and if so, use the skiplock parameter to tell us not to */
- if (!skiplock) hfs_lock(cp, HFS_SHARED_LOCK);
+ if (!skiplock) hfs_lock(cp, HFS_SHARED_LOCK, HFS_LOCK_DEFAULT);
struct vnode *c_vp = cp->c_vp;
if (c_vp) {
/* we already have a data vnode */
return EINVAL;
}
- if (0 == hfs_vget(VTOHFS(cp->c_rsrc_vp), cp->c_cnid, data_vp, 1) &&
+ if (0 == hfs_vget(VTOHFS(cp->c_rsrc_vp), cp->c_cnid, data_vp, 1, 0) &&
0 != data_vp) {
vref = vnode_ref(*data_vp);
vnode_put(*data_vp);
/*
* hfs_lazy_init_decmpfs_cnode(): returns the decmpfs_cnode for a cnode,
- * allocating it if necessary; returns NULL if there was an allocation error
+ * allocating it if necessary; returns NULL if there was an allocation error.
+ * function is non-static so that it can be used from the FCNTL handler.
*/
-static decmpfs_cnode *
+decmpfs_cnode *
hfs_lazy_init_decmpfs_cnode(struct cnode *cp)
{
if (!cp->c_decmp) {
int ret = 0;
/* fast check to see if file is compressed. If flag is clear, just answer no */
- if (!(cp->c_flags & UF_COMPRESSED)) {
+ if (!(cp->c_bsdflags & UF_COMPRESSED)) {
return 0;
}
* if the caller has passed a valid vnode (has a ref count > 0), then hfsmp and fid are not required.
* if the caller doesn't have a vnode, pass NULL in vp, and pass valid hfsmp and fid.
* files size is returned in size (required)
+ * if the indicated file is a directory (or something that doesn't have a data fork), then this call
+ * will return an error and the caller should fall back to treating the item as an uncompressed file
*/
int
hfs_uncompressed_size_of_compressed_file(struct hfsmount *hfsmp, struct vnode *vp, cnid_t fid, off_t *size, int skiplock)
if (!hfsmp || !fid) { /* make sure we have the required parameters */
return EINVAL;
}
- if (0 != hfs_vget(hfsmp, fid, &vp, skiplock)) { /* vnode is null, use hfs_vget() to get it */
+ if (0 != hfs_vget(hfsmp, fid, &vp, skiplock, 0)) { /* vnode is null, use hfs_vget() to get it */
vp = NULL;
} else {
putaway = 1; /* note that hfs_vget() was used to aquire the vnode */
* ensures the cached size is present in case decmpfs hasn't
* encountered this node yet.
*/
- if ( ( NULL != vp ) && hfs_file_is_compressed(VTOC(vp), skiplock) ) {
- *size = decmpfs_cnode_get_vnode_cached_size(VTOCMP(vp)); /* file info will be cached now, so get size */
- } else {
- ret = EINVAL;
+ if (vp) {
+ if (hfs_file_is_compressed(VTOC(vp), skiplock) ) {
+ *size = decmpfs_cnode_get_vnode_cached_size(VTOCMP(vp)); /* file info will be cached now, so get size */
+ } else {
+ if (VTOCMP(vp) && VTOCMP(vp)->cmp_type >= CMP_MAX) {
+ if (VTOCMP(vp)->cmp_type != DATALESS_CMPFS_TYPE) {
+ // if we don't recognize this type, just use the real data fork size
+ if (VTOC(vp)->c_datafork) {
+ *size = VTOC(vp)->c_datafork->ff_size;
+ ret = 0;
+ } else {
+ ret = EINVAL;
+ }
+ } else {
+ *size = decmpfs_cnode_get_vnode_cached_size(VTOCMP(vp)); /* file info will be cached now, so get size */
+ ret = 0;
+ }
+ } else {
+ ret = EINVAL;
+ }
+ }
}
if (putaway) { /* did we use hfs_vget() to get this vnode? */
}
#endif /* HFS_COMPRESSION */
+
+//
+// This function gets the doc_tombstone structure for the
+// current thread. If the thread doesn't have one, the
+// structure is allocated.
+//
+static struct doc_tombstone *
+get_uthread_doc_tombstone(void)
+{
+ struct uthread *ut;
+ ut = get_bsdthread_info(current_thread());
+
+ if (ut->t_tombstone == NULL) {
+ ut->t_tombstone = kalloc(sizeof(struct doc_tombstone));
+ if (ut->t_tombstone) {
+ memset(ut->t_tombstone, 0, sizeof(struct doc_tombstone));
+ }
+ }
+
+ return ut->t_tombstone;
+}
+
+//
+// This routine clears out the current tombstone for the
+// current thread and if necessary passes the doc-id of
+// the tombstone on to the dst_cnode.
+//
+// If the doc-id transfers to dst_cnode, we also generate
+// a doc-id changed fsevent. Unlike all the other fsevents,
+// doc-id changed events can only be generated here in HFS
+// where we have the necessary info.
+//
+static void
+clear_tombstone_docid(struct doc_tombstone *ut, __unused struct hfsmount *hfsmp, struct cnode *dst_cnode)
+{
+ uint32_t old_id = ut->t_lastop_document_id;
+
+ ut->t_lastop_document_id = 0;
+ ut->t_lastop_parent = NULL;
+ ut->t_lastop_parent_vid = 0;
+ ut->t_lastop_filename[0] = '\0';
+
+ //
+ // If the lastop item is still the same and needs to be cleared,
+ // clear it.
+ //
+ if (dst_cnode && old_id && ut->t_lastop_item && vnode_vid(ut->t_lastop_item) == ut->t_lastop_item_vid) {
+ //
+ // clear the document_id from the file that used to have it.
+ // XXXdbg - we need to lock the other vnode and make sure to
+ // update it on disk.
+ //
+ struct cnode *ocp = VTOC(ut->t_lastop_item);
+ struct FndrExtendedFileInfo *ofip = (struct FndrExtendedFileInfo *)((char *)&ocp->c_attr.ca_finderinfo + 16);
+
+ // printf("clearing doc-id from ino %d\n", ocp->c_desc.cd_cnid);
+ ofip->document_id = 0;
+ ocp->c_bsdflags &= ~UF_TRACKED;
+ ocp->c_flag |= C_MODIFIED;
+ /* cat_update(hfsmp, &ocp->c_desc, &ocp->c_attr, NULL, NULL); */
+
+ }
+
+#if CONFIG_FSE
+ if (dst_cnode && old_id) {
+ struct FndrExtendedFileInfo *fip = (struct FndrExtendedFileInfo *)((char *)&dst_cnode->c_attr.ca_finderinfo + 16);
+
+ add_fsevent(FSE_DOCID_CHANGED, vfs_context_current(),
+ FSE_ARG_DEV, hfsmp->hfs_raw_dev,
+ FSE_ARG_INO, (ino64_t)ut->t_lastop_fileid, // src inode #
+ FSE_ARG_INO, (ino64_t)dst_cnode->c_fileid, // dst inode #
+ FSE_ARG_INT32, (uint32_t)fip->document_id,
+ FSE_ARG_DONE);
+ }
+#endif
+ // last, clear these now that we're all done
+ ut->t_lastop_item = NULL;
+ ut->t_lastop_fileid = 0;
+ ut->t_lastop_item_vid = 0;
+}
+
+
+//
+// This function is used to filter out operations on temp
+// filenames. We have to filter out operations on certain
+// temp filenames to work-around questionable application
+// behavior from apps like Autocad that perform unusual
+// sequences of file system operations for a "safe save".
+static int
+is_ignorable_temp_name(const char *nameptr, int len)
+{
+ if (len == 0) {
+ len = strlen(nameptr);
+ }
+
+ if ( strncmp(nameptr, "atmp", 4) == 0
+ || (len > 4 && strncmp(nameptr+len-4, ".bak", 4) == 0)
+ || (len > 4 && strncmp(nameptr+len-4, ".tmp", 4) == 0)) {
+ return 1;
+ }
+
+ return 0;
+}
+
+//
+// Decide if we need to save a tombstone or not. Normally we always
+// save a tombstone - but if there already is one and the name we're
+// given is an ignorable name, then we will not save a tombstone.
+//
+static int
+should_save_docid_tombstone(struct doc_tombstone *ut, struct vnode *vp, struct componentname *cnp)
+{
+ if (cnp->cn_nameptr == NULL) {
+ return 0;
+ }
+
+ if (ut->t_lastop_document_id && ut->t_lastop_item == vp && is_ignorable_temp_name(cnp->cn_nameptr, cnp->cn_namelen)) {
+ return 0;
+ }
+
+ return 1;
+}
+
+
+//
+// This function saves a tombstone for the given vnode and name. The
+// tombstone represents the parent directory and name where the document
+// used to live and the document-id of that file. This info is recorded
+// in the doc_tombstone structure hanging off the uthread (which assumes
+// that all safe-save operations happen on the same thread).
+//
+// If later on the same parent/name combo comes back into existence then
+// we'll preserve the doc-id from this vnode onto the new vnode.
+//
+static void
+save_tombstone(struct hfsmount *hfsmp, struct vnode *dvp, struct vnode *vp, struct componentname *cnp, int for_unlink)
+{
+ struct cnode *cp = VTOC(vp);
+ struct doc_tombstone *ut;
+ ut = get_uthread_doc_tombstone();
+
+ if (for_unlink && vp->v_type == VREG && cp->c_linkcount > 1) {
+ //
+ // a regular file that is being unlinked and that is also
+ // hardlinked should not clear the UF_TRACKED state or
+ // mess with the tombstone because somewhere else in the
+ // file system the file is still alive.
+ //
+ return;
+ }
+
+ ut->t_lastop_parent = dvp;
+ ut->t_lastop_parent_vid = vnode_vid(dvp);
+ ut->t_lastop_fileid = cp->c_fileid;
+ if (for_unlink) {
+ ut->t_lastop_item = NULL;
+ ut->t_lastop_item_vid = 0;
+ } else {
+ ut->t_lastop_item = vp;
+ ut->t_lastop_item_vid = vnode_vid(vp);
+ }
+
+ strlcpy((char *)&ut->t_lastop_filename[0], cnp->cn_nameptr, sizeof(ut->t_lastop_filename));
+
+ struct FndrExtendedFileInfo *fip = (struct FndrExtendedFileInfo *)((char *)&cp->c_attr.ca_finderinfo + 16);
+ ut->t_lastop_document_id = fip->document_id;
+
+ if (for_unlink) {
+ // clear this so it's never returned again
+ fip->document_id = 0;
+ cp->c_bsdflags &= ~UF_TRACKED;
+
+ if (ut->t_lastop_document_id) {
+ (void) cat_update(hfsmp, &cp->c_desc, &cp->c_attr, NULL, NULL);
+
+#if CONFIG_FSE
+ // this event is more of a "pending-delete"
+ add_fsevent(FSE_DOCID_CHANGED, vfs_context_current(),
+ FSE_ARG_DEV, hfsmp->hfs_raw_dev,
+ FSE_ARG_INO, (ino64_t)cp->c_fileid, // src inode #
+ FSE_ARG_INO, (ino64_t)0, // dst inode #
+ FSE_ARG_INT32, ut->t_lastop_document_id, // document id
+ FSE_ARG_DONE);
+#endif
+ }
+ }
+}
+
+
/*
* Open a file/directory.
*/
-static int
+int
hfs_vnop_open(struct vnop_open_args *ap)
{
struct vnode *vp = ap->a_vp;
/*
* Files marked append-only must be opened for appending.
*/
- if ((cp->c_flags & APPEND) && !vnode_isdir(vp) &&
+ if ((cp->c_bsdflags & APPEND) && !vnode_isdir(vp) &&
(ap->a_mode & (FWRITE | O_APPEND)) == FWRITE)
return (EPERM);
if (vnode_isreg(vp) && !UBCINFOEXISTS(vp))
return (EBUSY); /* file is in use by the kernel */
- /* Don't allow journal file to be opened externally. */
- if (cp->c_fileid == hfsmp->hfs_jnlfileid)
+ /* Don't allow journal to be opened externally. */
+ if (hfs_is_journal_file(hfsmp, cp))
return (EPERM);
- /* If we're going to write to the file, initialize quotas. */
-#if QUOTA
- if ((ap->a_mode & FWRITE) && (hfsmp->hfs_flags & HFS_QUOTAS))
- (void)hfs_getinoquota(cp);
-#endif /* QUOTA */
+ bool have_lock = false;
+
+#if CONFIG_PROTECT
+ if (ISSET(ap->a_mode, FENCRYPTED) && cp->c_cpentry && vnode_isreg(vp)) {
+ bool have_trunc_lock = false;
+
+
+ if ((error = hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT))) {
+ if (have_trunc_lock)
+ hfs_unlock_truncate(cp, 0);
+ return error;
+ }
+
+ have_lock = true;
+
+ if (cp->c_cpentry->cp_raw_open_count + 1
+ < cp->c_cpentry->cp_raw_open_count) {
+ // Overflow; too many raw opens on this file
+ hfs_unlock(cp);
+ if (have_trunc_lock)
+ hfs_unlock_truncate(cp, 0);
+ return ENFILE;
+ }
+
+
+ if (have_trunc_lock)
+ hfs_unlock_truncate(cp, 0);
+
+ ++cp->c_cpentry->cp_raw_open_count;
+ }
+#endif
- /*
- * On the first (non-busy) open of a fragmented
- * file attempt to de-frag it (if its less than 20MB).
- */
if ((hfsmp->hfs_flags & HFS_READ_ONLY) ||
(hfsmp->jnl == NULL) ||
#if NAMEDSTREAMS
#else
!vnode_isreg(vp) || vnode_isinuse(vp, 0)) {
#endif
+
+#if CONFIG_PROTECT
+ if (have_lock)
+ hfs_unlock(cp);
+#endif
+
return (0);
}
- if ((error = hfs_lock(cp, HFS_EXCLUSIVE_LOCK)))
+ if (!have_lock && (error = hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT)))
return (error);
+
+#if QUOTA
+ /* If we're going to write to the file, initialize quotas. */
+ if ((ap->a_mode & FWRITE) && (hfsmp->hfs_flags & HFS_QUOTAS))
+ (void)hfs_getinoquota(cp);
+#endif /* QUOTA */
+
+ /*
+ * On the first (non-busy) open of a fragmented
+ * file attempt to de-frag it (if its less than 20MB).
+ */
fp = VTOF(vp);
if (fp->ff_blocks &&
fp->ff_extents[7].blockCount != 0 &&
vfs_context_proc(ap->a_context));
}
}
+
hfs_unlock(cp);
return (0);
/*
* Close a file/directory.
*/
-static int
+int
hfs_vnop_close(ap)
struct vnop_close_args /* {
struct vnode *a_vp;
int tooktrunclock = 0;
int knownrefs = 0;
- if ( hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK) != 0)
+ if ( hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT) != 0)
return (0);
cp = VTOC(vp);
hfsmp = VTOHFS(vp);
+#if CONFIG_PROTECT
+ if (cp->c_cpentry && ISSET(ap->a_fflag, FENCRYPTED) && vnode_isreg(vp)) {
+ assert(cp->c_cpentry->cp_raw_open_count > 0);
+ --cp->c_cpentry->cp_raw_open_count;
+ }
+#endif
+
/*
* If the rsrc fork is a named stream, it can cause the data fork to
* stay around, preventing de-allocation of these blocks.
// release cnode lock; must acquire truncate lock BEFORE cnode lock
hfs_unlock(cp);
- hfs_lock_truncate(cp, TRUE);
+ hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
tooktrunclock = 1;
- if (hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK) != 0) {
- hfs_unlock_truncate(cp, TRUE);
+ if (hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT) != 0) {
+ hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
// bail out if we can't re-acquire cnode lock
return 0;
}
// now we can truncate the file, if necessary
blks = howmany(VTOF(vp)->ff_size, VTOVCB(vp)->blockSize);
if (blks < VTOF(vp)->ff_blocks){
- (void) hfs_truncate(vp, VTOF(vp)->ff_size, IO_NDELAY, 0, 0, ap->a_context);
+ (void) hfs_truncate(vp, VTOF(vp)->ff_size, IO_NDELAY,
+ 0, ap->a_context);
}
}
}
// if we froze the fs and we're exiting, then "thaw" the fs
- if (hfsmp->hfs_freezing_proc == p && proc_exiting(p)) {
- hfsmp->hfs_freezing_proc = NULL;
- hfs_global_exclusive_lock_release(hfsmp);
- lck_rw_unlock_exclusive(&hfsmp->hfs_insync);
+ if (hfsmp->hfs_freeze_state == HFS_FROZEN
+ && hfsmp->hfs_freezing_proc == p && proc_exiting(p)) {
+ hfs_thaw(hfsmp, p);
}
busy = vnode_isinuse(vp, 1);
}
if (tooktrunclock){
- hfs_unlock_truncate(cp, TRUE);
+ hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
}
hfs_unlock(cp);
return (0);
}
+static bool hfs_should_generate_document_id(hfsmount_t *hfsmp, cnode_t *cp)
+{
+ return (!ISSET(hfsmp->hfs_flags, HFS_READ_ONLY)
+ && ISSET(cp->c_bsdflags, UF_TRACKED)
+ && cp->c_desc.cd_cnid != kHFSRootFolderID
+ && (S_ISDIR(cp->c_mode) || S_ISREG(cp->c_mode) || S_ISLNK(cp->c_mode)));
+}
+
/*
* Get basic attributes.
*/
-static int
+int
hfs_vnop_getattr(struct vnop_getattr_args *ap)
{
#define VNODE_ATTR_TIMES \
/* if it's a data fork, we need to know if it was compressed so we can report the uncompressed size */
compressed = hfs_file_is_compressed(cp, 0);
}
- if (compressed && (VATTR_IS_ACTIVE(vap, va_data_size) || VATTR_IS_ACTIVE(vap, va_total_size))) {
- if (0 != hfs_uncompressed_size_of_compressed_file(NULL, vp, 0, &uncompressed_size, 0)) {
- /* failed to get the uncompressed size, we'll check for this later */
- uncompressed_size = -1;
+ if ((VATTR_IS_ACTIVE(vap, va_data_size) || VATTR_IS_ACTIVE(vap, va_total_size))) {
+ // if it's compressed
+ if (compressed || (!VNODE_IS_RSRC(vp) && cp->c_decmp && cp->c_decmp->cmp_type >= CMP_MAX)) {
+ if (0 != hfs_uncompressed_size_of_compressed_file(NULL, vp, 0, &uncompressed_size, 0)) {
+ /* failed to get the uncompressed size, we'll check for this later */
+ uncompressed_size = -1;
+ } else {
+ // fake that it's compressed
+ compressed = 1;
+ }
}
}
}
vap->va_uid = cp->c_uid;
vap->va_gid = cp->c_gid;
vap->va_mode = cp->c_mode;
- vap->va_flags = cp->c_flags;
+ vap->va_flags = cp->c_bsdflags;
vap->va_supported |= VNODE_ATTR_AUTH & ~VNODE_ATTR_va_acl;
if ((cp->c_attr.ca_recflags & kHFSHasSecurityMask) == 0) {
hfsmp = VTOHFS(vp);
v_type = vnode_vtype(vp);
+
+ if (VATTR_IS_ACTIVE(vap, va_document_id)) {
+ uint32_t document_id;
+
+ if (cp->c_desc.cd_cnid == kHFSRootFolderID)
+ document_id = kHFSRootFolderID;
+ else {
+ /*
+ * This is safe without a lock because we're just reading
+ * a 32 bit aligned integer which should be atomic on all
+ * platforms we support.
+ */
+ document_id = hfs_get_document_id(cp);
+
+ if (!document_id && hfs_should_generate_document_id(hfsmp, cp)) {
+ uint32_t new_document_id;
+
+ error = hfs_generate_document_id(hfsmp, &new_document_id);
+ if (error)
+ return error;
+
+ error = hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
+ if (error)
+ return error;
+
+ bool want_docid_fsevent = false;
+
+ // Need to check again now that we have the lock
+ document_id = hfs_get_document_id(cp);
+ if (!document_id && hfs_should_generate_document_id(hfsmp, cp)) {
+ cp->c_attr.ca_finderextendeddirinfo.document_id = document_id = new_document_id;
+ want_docid_fsevent = true;
+ SET(cp->c_flag, C_MODIFIED);
+ }
+
+ hfs_unlock(cp);
+
+ if (want_docid_fsevent) {
+#if CONFIG_FSE
+ add_fsevent(FSE_DOCID_CHANGED, ap->a_context,
+ FSE_ARG_DEV, hfsmp->hfs_raw_dev,
+ FSE_ARG_INO, (ino64_t)0, // src inode #
+ FSE_ARG_INO, (ino64_t)cp->c_fileid, // dst inode #
+ FSE_ARG_INT32, document_id,
+ FSE_ARG_DONE);
+
+ if (need_fsevent(FSE_STAT_CHANGED, vp)) {
+ add_fsevent(FSE_STAT_CHANGED, ap->a_context,
+ FSE_ARG_VNODE, vp, FSE_ARG_DONE);
+ }
+#endif
+ }
+ }
+ }
+
+ vap->va_document_id = document_id;
+ VATTR_SET_SUPPORTED(vap, va_document_id);
+ }
+
/*
* If time attributes are requested and we have cnode times
* that require updating, then acquire an exclusive lock on
*/
if ((vap->va_active & VNODE_ATTR_TIMES) &&
(cp->c_touch_acctime || cp->c_touch_chgtime || cp->c_touch_modtime)) {
- if ((error = hfs_lock(cp, HFS_EXCLUSIVE_LOCK)))
+ if ((error = hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT)))
return (error);
hfs_touchtimes(hfsmp, cp);
- }
- else {
- if ((error = hfs_lock(cp, HFS_SHARED_LOCK)))
- return (error);
+
+ // downgrade to a shared lock since that's all we need from here on out
+ cp->c_lockowner = HFS_SHARED_OWNER;
+ lck_rw_lock_exclusive_to_shared(&cp->c_rwlock);
+
+ } else if ((error = hfs_lock(cp, HFS_SHARED_LOCK, HFS_LOCK_DEFAULT))) {
+ return (error);
}
if (v_type == VDIR) {
if (cp->c_blocks - VTOF(vp)->ff_blocks) {
/* We deal with rsrc fork vnode iocount at the end of the function */
- error = hfs_vgetrsrc(hfsmp, vp, &rvp, TRUE, TRUE);
+ error = hfs_vgetrsrc(hfsmp, vp, &rvp);
if (error) {
- /*
- * hfs_vgetrsrc may have returned a vnode in rvp even though
- * we got an error, because we specified error_on_unlinked.
- * We need to drop the iocount after we release the cnode lock, so
- * it will be taken care of at the end of the function if it's needed.
+ /*
+ * Note that we call hfs_vgetrsrc with error_on_unlinked
+ * set to FALSE. This is because we may be invoked via
+ * fstat() on an open-unlinked file descriptor and we must
+ * continue to support access to the rsrc fork until it disappears.
+ * The code at the end of this function will be
+ * responsible for releasing the iocount generated by
+ * hfs_vgetrsrc. This is because we can't drop the iocount
+ * without unlocking the cnode first.
*/
goto out;
}
VATTR_SET_SUPPORTED(vap, va_acl);
}
}
- if (VATTR_IS_ACTIVE(vap, va_access_time)) {
- /* Access times are lazily updated, get current time if needed */
- if (cp->c_touch_acctime) {
- struct timeval tv;
-
- microtime(&tv);
- vap->va_access_time.tv_sec = tv.tv_sec;
- } else {
- vap->va_access_time.tv_sec = cp->c_atime;
- }
- vap->va_access_time.tv_nsec = 0;
- VATTR_SET_SUPPORTED(vap, va_access_time);
- }
+
+ vap->va_access_time.tv_sec = cp->c_atime;
+ vap->va_access_time.tv_nsec = 0;
vap->va_create_time.tv_sec = cp->c_itime;
vap->va_create_time.tv_nsec = 0;
vap->va_modify_time.tv_sec = cp->c_mtime;
vap->va_backup_time.tv_sec = cp->c_btime;
vap->va_backup_time.tv_nsec = 0;
+ /* See if we need to emit the date added field to the user */
+ if (VATTR_IS_ACTIVE(vap, va_addedtime)) {
+ u_int32_t dateadded = hfs_get_dateadded (cp);
+ if (dateadded) {
+ vap->va_addedtime.tv_sec = dateadded;
+ vap->va_addedtime.tv_nsec = 0;
+ VATTR_SET_SUPPORTED (vap, va_addedtime);
+ }
+ }
+
/* XXX is this really a good 'optimal I/O size'? */
vap->va_iosize = hfsmp->hfs_logBlockSize;
vap->va_uid = cp->c_uid;
vap->va_gid = cp->c_gid;
vap->va_mode = cp->c_mode;
- vap->va_flags = cp->c_flags;
+ vap->va_flags = cp->c_bsdflags;
/*
* Exporting file IDs from HFS Plus:
*/
if (cp->c_flag & C_HARDLINK) {
vap->va_linkid = (u_int64_t)hfs_currentcnid(cp);
- vap->va_parentid = (u_int64_t)hfs_currentparent(cp);
+ vap->va_parentid = (u_int64_t)hfs_currentparent(cp, /* have_lock: */ true);
} else {
vap->va_linkid = (u_int64_t)cp->c_cnid;
vap->va_parentid = (u_int64_t)cp->c_parentcnid;
}
} else
vap->va_data_size = data_size;
-// vap->va_supported |= VNODE_ATTR_va_data_size;
VATTR_SET_SUPPORTED(vap, va_data_size);
}
#else
vap->va_data_size = data_size;
vap->va_supported |= VNODE_ATTR_va_data_size;
#endif
-
+
+#if CONFIG_PROTECT
+ if (VATTR_IS_ACTIVE(vap, va_dataprotect_class)) {
+ vap->va_dataprotect_class = cp->c_cpentry ? CP_CLASS(cp->c_cpentry->cp_pclass) : 0;
+ VATTR_SET_SUPPORTED(vap, va_dataprotect_class);
+ }
+#endif
+ if (VATTR_IS_ACTIVE(vap, va_write_gencount)) {
+ if (ubc_is_mapped_writable(vp)) {
+ /*
+ * Return 0 to the caller to indicate the file may be
+ * changing. There is no need for us to increment the
+ * generation counter here because it gets done as part of
+ * page-out and also when the file is unmapped (to account
+ * for changes we might not have seen).
+ */
+ vap->va_write_gencount = 0;
+ } else {
+ vap->va_write_gencount = hfs_get_gencount(cp);
+ }
+
+ VATTR_SET_SUPPORTED(vap, va_write_gencount);
+ }
+
/* Mark them all at once instead of individual VATTR_SET_SUPPORTED calls. */
- vap->va_supported |= VNODE_ATTR_va_create_time | VNODE_ATTR_va_modify_time |
+ vap->va_supported |= VNODE_ATTR_va_access_time |
+ VNODE_ATTR_va_create_time | VNODE_ATTR_va_modify_time |
VNODE_ATTR_va_change_time| VNODE_ATTR_va_backup_time |
VNODE_ATTR_va_iosize | VNODE_ATTR_va_uid |
VNODE_ATTR_va_gid | VNODE_ATTR_va_mode |
if ((cp->c_flag & C_HARDLINK) &&
((cp->c_desc.cd_namelen == 0) || (vap->va_linkid != cp->c_cnid))) {
- /* If we have no name and our link ID is the raw inode number, then we may
+ /*
+ * If we have no name and our link ID is the raw inode number, then we may
* have an open-unlinked file. Go to the next link in this case.
*/
if ((cp->c_desc.cd_namelen == 0) && (vap->va_linkid == cp->c_fileid)) {
- if ((error = hfs_lookuplink(hfsmp, vap->va_linkid, &prevlinkid, &nextlinkid))){
+ if ((error = hfs_lookup_siblinglinks(hfsmp, vap->va_linkid, &prevlinkid, &nextlinkid))){
goto out;
}
}
return (error);
}
-static int
+int
hfs_vnop_setattr(ap)
struct vnop_setattr_args /* {
struct vnode *a_vp;
int error = 0;
uid_t nuid;
gid_t ngid;
+ time_t orig_ctime;
+ orig_ctime = VTOC(vp)->c_ctime;
+
#if HFS_COMPRESSION
int decmpfs_reset_state = 0;
/*
if (error)
return error;
#endif
+ //
+ // if this is not a size-changing setattr and it is not just
+ // an atime update, then check for a snapshot.
+ //
+ if (!VATTR_IS_ACTIVE(vap, va_data_size) && !(vap->va_active == VNODE_ATTR_va_access_time)) {
+ check_for_tracked_file(vp, orig_ctime, NAMESPACE_HANDLER_METADATA_MOD, NSPACE_REARM_NO_ARG);
+ }
+
+#if CONFIG_PROTECT
+ /*
+ * All metadata changes should be allowed except a size-changing setattr, which
+ * has effects on file content and requires calling into cp_handle_vnop
+ * to have content protection check.
+ */
+ if (VATTR_IS_ACTIVE(vap, va_data_size)) {
+ if ((error = cp_handle_vnop(vp, CP_WRITE_ACCESS, 0)) != 0) {
+ return (error);
+ }
+ }
+#endif /* CONFIG_PROTECT */
hfsmp = VTOHFS(vp);
- /* Don't allow modification of the journal file. */
- if (hfsmp->hfs_jnlfileid == VTOC(vp)->c_fileid) {
+ /* Don't allow modification of the journal. */
+ if (hfs_is_journal_file(hfsmp, VTOC(vp))) {
return (EPERM);
}
+ //
+ // Check if we'll need a document_id and if so, get it before we lock the
+ // the cnode to avoid any possible deadlock with the root vnode which has
+ // to get locked to get the document id
+ //
+ u_int32_t document_id=0;
+ if (VATTR_IS_ACTIVE(vap, va_flags) && (vap->va_flags & UF_TRACKED) && !(VTOC(vp)->c_bsdflags & UF_TRACKED)) {
+ struct FndrExtendedDirInfo *fip = (struct FndrExtendedDirInfo *)((char *)&(VTOC(vp)->c_attr.ca_finderinfo) + 16);
+ //
+ // If the document_id is not set, get a new one. It will be set
+ // on the file down below once we hold the cnode lock.
+ //
+ if (fip->document_id == 0) {
+ if (hfs_generate_document_id(hfsmp, &document_id) != 0) {
+ document_id = 0;
+ }
+ }
+ }
+
+
/*
* File size change request.
* We are guaranteed that this is not a directory, and that
}
}
+ check_for_tracked_file(vp, orig_ctime, vap->va_data_size == 0 ? NAMESPACE_HANDLER_TRUNCATE_OP|NAMESPACE_HANDLER_DELETE_OP : NAMESPACE_HANDLER_TRUNCATE_OP, NULL);
+
decmpfs_lock_compressed_data(dp, 1);
if (hfs_file_is_compressed(VTOC(vp), 1)) {
error = decmpfs_decompress_file(vp, dp, -1/*vap->va_data_size*/, 0, 1);
}
#endif
- /* Take truncate lock before taking cnode lock. */
- hfs_lock_truncate(VTOC(vp), TRUE);
-
- /* Perform the ubc_setsize before taking the cnode lock. */
- ubc_setsize(vp, vap->va_data_size);
-
- if ((error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK))) {
- hfs_unlock_truncate(VTOC(vp), TRUE);
-#if HFS_COMPRESSION
- decmpfs_unlock_compressed_data(dp, 1);
-#endif
- return (error);
- }
- cp = VTOC(vp);
+ // Take truncate lock
+ hfs_lock_truncate(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
- error = hfs_truncate(vp, vap->va_data_size, vap->va_vaflags & 0xffff, 1, 0, ap->a_context);
+ // hfs_truncate will deal with the cnode lock
+ error = hfs_truncate(vp, vap->va_data_size, vap->va_vaflags & 0xffff,
+ 0, ap->a_context);
- hfs_unlock_truncate(cp, TRUE);
+ hfs_unlock_truncate(VTOC(vp), HFS_LOCK_DEFAULT);
#if HFS_COMPRESSION
decmpfs_unlock_compressed_data(dp, 1);
#endif
if (error)
- goto out;
+ return error;
}
if (cp == NULL) {
- if ((error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK)))
+ if ((error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT)))
return (error);
cp = VTOC(vp);
}
u_int16_t *fdFlags;
#if HFS_COMPRESSION
- if ((cp->c_flags ^ vap->va_flags) & UF_COMPRESSED) {
+ if ((cp->c_bsdflags ^ vap->va_flags) & UF_COMPRESSED) {
/*
* the UF_COMPRESSED was toggled, so reset our cached compressed state
* but we don't want to actually do the update until we've released the cnode lock down below
decmpfs_reset_state = 1;
}
#endif
+ if ((vap->va_flags & UF_TRACKED) && !(cp->c_bsdflags & UF_TRACKED)) {
+ struct FndrExtendedDirInfo *fip = (struct FndrExtendedDirInfo *)((char *)&cp->c_attr.ca_finderinfo + 16);
+
+ //
+ // we're marking this item UF_TRACKED. if the document_id is
+ // not set, get a new one and put it on the file.
+ //
+ if (fip->document_id == 0) {
+ if (document_id != 0) {
+ // printf("SETATTR: assigning doc-id %d to %s (ino %d)\n", document_id, vp->v_name, cp->c_desc.cd_cnid);
+ fip->document_id = (uint32_t)document_id;
+#if CONFIG_FSE
+ add_fsevent(FSE_DOCID_CHANGED, ap->a_context,
+ FSE_ARG_DEV, hfsmp->hfs_raw_dev,
+ FSE_ARG_INO, (ino64_t)0, // src inode #
+ FSE_ARG_INO, (ino64_t)cp->c_fileid, // dst inode #
+ FSE_ARG_INT32, document_id,
+ FSE_ARG_DONE);
+#endif
+ } else {
+ // printf("hfs: could not acquire a new document_id for %s (ino %d)\n", vp->v_name, cp->c_desc.cd_cnid);
+ }
+ }
+
+ } else if (!(vap->va_flags & UF_TRACKED) && (cp->c_bsdflags & UF_TRACKED)) {
+ //
+ // UF_TRACKED is being cleared so clear the document_id
+ //
+ struct FndrExtendedDirInfo *fip = (struct FndrExtendedDirInfo *)((char *)&cp->c_attr.ca_finderinfo + 16);
+ if (fip->document_id) {
+ // printf("SETATTR: clearing doc-id %d from %s (ino %d)\n", fip->document_id, vp->v_name, cp->c_desc.cd_cnid);
+#if CONFIG_FSE
+ add_fsevent(FSE_DOCID_CHANGED, ap->a_context,
+ FSE_ARG_DEV, hfsmp->hfs_raw_dev,
+ FSE_ARG_INO, (ino64_t)cp->c_fileid, // src inode #
+ FSE_ARG_INO, (ino64_t)0, // dst inode #
+ FSE_ARG_INT32, fip->document_id, // document id
+ FSE_ARG_DONE);
+#endif
+ fip->document_id = 0;
+ cp->c_bsdflags &= ~UF_TRACKED;
+ }
+ }
- cp->c_flags = vap->va_flags;
+ cp->c_bsdflags = vap->va_flags;
+ cp->c_flag |= C_MODIFIED;
cp->c_touch_chgtime = TRUE;
+
/*
* Mirror the UF_HIDDEN flag to the invisible bit of the Finder Info.
cp->c_touch_modtime = FALSE;
cp->c_touch_chgtime = TRUE;
+ hfs_clear_might_be_dirty_flag(cp);
+
/*
* The utimes system call can reset the modification
* time but it doesn't know about HFS create times.
*/
if ((VTOVCB(vp)->vcbSigWord == kHFSPlusSigWord) &&
(cp->c_cnid != kHFSRootFolderID) &&
+ !VATTR_IS_ACTIVE(vap, va_create_time) &&
(cp->c_mtime < cp->c_itime)) {
cp->c_itime = cp->c_mtime;
}
}
if (VATTR_IS_ACTIVE(vap, va_backup_time))
cp->c_btime = vap->va_backup_time.tv_sec;
- cp->c_flag |= C_MODIFIED;
+ cp->c_flag |= C_MINOR_MOD;
}
/*
VATTR_SET_SUPPORTED(vap, va_encoding);
if (VATTR_IS_ACTIVE(vap, va_encoding)) {
cp->c_encoding = vap->va_encoding;
+ cp->c_flag |= C_MODIFIED;
hfs_setencodingbits(hfsmp, cp->c_encoding);
}
- if ((error = hfs_update(vp, TRUE)) != 0)
+ if ((error = hfs_update(vp, 0)) != 0)
goto out;
out:
if (cp) {
* Change the mode on a file.
* cnode must be locked before calling.
*/
-__private_extern__
int
hfs_chmod(struct vnode *vp, int mode, __unused kauth_cred_t cred, __unused struct proc *p)
{
if (VTOVCB(vp)->vcbSigWord != kHFSPlusSigWord)
return (0);
- // XXXdbg - don't allow modification of the journal or journal_info_block
- if (VTOHFS(vp)->jnl && cp && cp->c_datafork) {
- struct HFSPlusExtentDescriptor *extd;
-
- extd = &cp->c_datafork->ff_extents[0];
- if (extd->startBlock == VTOVCB(vp)->vcbJinfoBlock || extd->startBlock == VTOHFS(vp)->jnl_start) {
- return EPERM;
- }
+ // Don't allow modification of the journal or journal_info_block
+ if (hfs_is_journal_file(VTOHFS(vp), cp)) {
+ return EPERM;
}
#if OVERRIDE_UNKNOWN_PERMISSIONS
return (0);
};
#endif
- cp->c_mode &= ~ALLPERMS;
- cp->c_mode |= (mode & ALLPERMS);
+
+ mode_t new_mode = (cp->c_mode & ~ALLPERMS) | (mode & ALLPERMS);
+ if (new_mode != cp->c_mode) {
+ cp->c_mode = new_mode;
+ cp->c_flag |= C_MINOR_MOD;
+ }
cp->c_touch_chgtime = TRUE;
return (0);
}
-__private_extern__
int
hfs_write_access(struct vnode *vp, kauth_cred_t cred, struct proc *p, Boolean considerFlags)
{
}
/* If immutable bit set, nobody gets to write it. */
- if (considerFlags && (cp->c_flags & IMMUTABLE))
+ if (considerFlags && (cp->c_bsdflags & IMMUTABLE))
return (EPERM);
/* Otherwise, user id 0 always gets access. */
* Perform chown operation on cnode cp;
* code must be locked prior to call.
*/
-__private_extern__
int
#if !QUOTA
hfs_chown(struct vnode *vp, uid_t uid, gid_t gid, __unused kauth_cred_t cred,
ogid = cp->c_gid;
ouid = cp->c_uid;
+
+ if (ouid == uid && ogid == gid) {
+ // No change, just set change time
+ cp->c_touch_chgtime = TRUE;
+ return 0;
+ }
+
#if QUOTA
if ((error = hfs_getinoquota(cp)))
return (error);
panic("hfs_chown: lost quota");
#endif /* QUOTA */
+ /*
+ * Without quotas, we could probably make this a minor
+ * modification.
+ */
+ cp->c_flag |= C_MODIFIED;
/*
According to the SUSv3 Standard, chown() shall mark
return (0);
}
-
+#if HFS_COMPRESSION
/*
- * The hfs_exchange routine swaps the fork data in two files by
- * exchanging some of the information in the cnode. It is used
- * to preserve the file ID when updating an existing file, in
- * case the file is being tracked through its file ID. Typically
- * its used after creating a new file during a safe-save.
+ * Flush the resource fork if it exists. vp is the data fork and has
+ * an iocount.
*/
-static int
-hfs_vnop_exchange(ap)
- struct vnop_exchange_args /* {
- struct vnode *a_fvp;
- struct vnode *a_tvp;
- int a_options;
- vfs_context_t a_context;
- } */ *ap;
+static int hfs_flush_rsrc(vnode_t vp, vfs_context_t ctx)
{
- struct vnode *from_vp = ap->a_fvp;
+ cnode_t *cp = VTOC(vp);
+
+ hfs_lock(cp, HFS_SHARED_LOCK, 0);
+
+ vnode_t rvp = cp->c_rsrc_vp;
+
+ if (!rvp) {
+ hfs_unlock(cp);
+ return 0;
+ }
+
+ int vid = vnode_vid(rvp);
+
+ hfs_unlock(cp);
+
+ int error = vnode_getwithvid(rvp, vid);
+
+ if (error)
+ return error == ENOENT ? 0 : error;
+
+ hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK, 0);
+ hfs_lock_always(cp, HFS_EXCLUSIVE_LOCK);
+ hfs_filedone(rvp, ctx, HFS_FILE_DONE_NO_SYNC);
+ hfs_unlock(cp);
+ hfs_unlock_truncate(cp, 0);
+
+ error = ubc_msync(rvp, 0, ubc_getsize(rvp), NULL,
+ UBC_PUSHALL | UBC_SYNC);
+
+ vnode_put(rvp);
+
+ return error;
+}
+#endif // HFS_COMPRESSION
+
+/*
+ * hfs_vnop_exchange:
+ *
+ * Inputs:
+ * 'from' vnode/cnode
+ * 'to' vnode/cnode
+ * options flag bits
+ * vfs_context
+ *
+ * Discussion:
+ * hfs_vnop_exchange is used to service the exchangedata(2) system call.
+ * Per the requirements of that system call, this function "swaps" some
+ * of the information that lives in one catalog record for some that
+ * lives in another. Note that not everything is swapped; in particular,
+ * the extent information stored in each cnode is kept local to that
+ * cnode. This allows existing file descriptor references to continue
+ * to operate on the same content, regardless of the location in the
+ * namespace that the file may have moved to. See inline comments
+ * in the function for more information.
+ */
+int
+hfs_vnop_exchange(ap)
+ struct vnop_exchange_args /* {
+ struct vnode *a_fvp;
+ struct vnode *a_tvp;
+ int a_options;
+ vfs_context_t a_context;
+ } */ *ap;
+{
+ struct vnode *from_vp = ap->a_fvp;
struct vnode *to_vp = ap->a_tvp;
struct cnode *from_cp;
struct cnode *to_cp;
const unsigned char *to_nameptr;
char from_iname[32];
char to_iname[32];
- u_int32_t tempflag;
+ uint32_t to_flag_special;
+ uint32_t from_flag_special;
cnid_t from_parid;
cnid_t to_parid;
int lockflags;
int error = 0, started_tr = 0, got_cookie = 0;
cat_cookie_t cookie;
+ time_t orig_from_ctime, orig_to_ctime;
+ bool have_cnode_locks = false, have_from_trunc_lock = false, have_to_trunc_lock = false;
+
+ /*
+ * VFS does the following checks:
+ * 1. Validate that both are files.
+ * 2. Validate that both are on the same mount.
+ * 3. Validate that they're not the same vnode.
+ */
- /* The files must be on the same volume. */
- if (vnode_mount(from_vp) != vnode_mount(to_vp))
- return (EXDEV);
+ from_cp = VTOC(from_vp);
+ to_cp = VTOC(to_vp);
+ hfsmp = VTOHFS(from_vp);
- if (from_vp == to_vp)
- return (EINVAL);
+ orig_from_ctime = from_cp->c_ctime;
+ orig_to_ctime = to_cp->c_ctime;
+
+#if CONFIG_PROTECT
+ /*
+ * Do not allow exchangedata/F_MOVEDATAEXTENTS on data-protected filesystems
+ * because the EAs will not be swapped. As a result, the persistent keys would not
+ * match and the files will be garbage.
+ */
+ if (cp_fs_protected (vnode_mount(from_vp))) {
+ return EINVAL;
+ }
+#endif
#if HFS_COMPRESSION
- if ( hfs_file_is_compressed(VTOC(from_vp), 0) ) {
- if ( 0 != ( error = decmpfs_decompress_file(from_vp, VTOCMP(from_vp), -1, 0, 1) ) ) {
- return error;
+ if (!ISSET(ap->a_options, FSOPT_EXCHANGE_DATA_ONLY)) {
+ if ( hfs_file_is_compressed(from_cp, 0) ) {
+ if ( 0 != ( error = decmpfs_decompress_file(from_vp, VTOCMP(from_vp), -1, 0, 1) ) ) {
+ return error;
+ }
}
- }
-
- if ( hfs_file_is_compressed(VTOC(to_vp), 0) ) {
- if ( 0 != ( error = decmpfs_decompress_file(to_vp, VTOCMP(to_vp), -1, 0, 1) ) ) {
- return error;
+
+ if ( hfs_file_is_compressed(to_cp, 0) ) {
+ if ( 0 != ( error = decmpfs_decompress_file(to_vp, VTOCMP(to_vp), -1, 0, 1) ) ) {
+ return error;
+ }
}
}
#endif // HFS_COMPRESSION
-
- if ((error = hfs_lockpair(VTOC(from_vp), VTOC(to_vp), HFS_EXCLUSIVE_LOCK)))
- return (error);
-
- from_cp = VTOC(from_vp);
- to_cp = VTOC(to_vp);
- hfsmp = VTOHFS(from_vp);
- /* Only normal files can be exchanged. */
- if (!vnode_isreg(from_vp) || !vnode_isreg(to_vp) ||
- VNODE_IS_RSRC(from_vp) || VNODE_IS_RSRC(to_vp)) {
- error = EINVAL;
- goto exit;
- }
+ // Resource forks cannot be exchanged.
+ if (VNODE_IS_RSRC(from_vp) || VNODE_IS_RSRC(to_vp))
+ return EINVAL;
- // XXXdbg - don't allow modification of the journal or journal_info_block
- if (hfsmp->jnl) {
- struct HFSPlusExtentDescriptor *extd;
+ /*
+ * Normally, we want to notify the user handlers about the event,
+ * except if it's a handler driving the event.
+ */
+ if ((ap->a_options & FSOPT_EXCHANGE_DATA_ONLY) == 0) {
+ check_for_tracked_file(from_vp, orig_from_ctime, NAMESPACE_HANDLER_WRITE_OP, NULL);
+ check_for_tracked_file(to_vp, orig_to_ctime, NAMESPACE_HANDLER_WRITE_OP, NULL);
+ } else {
+ /*
+ * This is currently used by mtmd so we should tidy up the
+ * file now because the data won't be used again in the
+ * destination file.
+ */
+ hfs_lock_truncate(from_cp, HFS_EXCLUSIVE_LOCK, 0);
+ hfs_lock_always(from_cp, HFS_EXCLUSIVE_LOCK);
+ hfs_filedone(from_vp, ap->a_context, HFS_FILE_DONE_NO_SYNC);
+ hfs_unlock(from_cp);
+ hfs_unlock_truncate(from_cp, 0);
+
+ // Flush all the data from the source file
+ error = ubc_msync(from_vp, 0, ubc_getsize(from_vp), NULL,
+ UBC_PUSHALL | UBC_SYNC);
+ if (error)
+ goto exit;
- if (from_cp->c_datafork) {
- extd = &from_cp->c_datafork->ff_extents[0];
- if (extd->startBlock == VTOVCB(from_vp)->vcbJinfoBlock || extd->startBlock == hfsmp->jnl_start) {
- error = EPERM;
+#if HFS_COMPRESSION
+ /*
+ * If this is a compressed file, we need to do the same for
+ * the resource fork.
+ */
+ if (ISSET(from_cp->c_bsdflags, UF_COMPRESSED)) {
+ error = hfs_flush_rsrc(from_vp, ap->a_context);
+ if (error)
goto exit;
- }
}
+#endif
- if (to_cp->c_datafork) {
- extd = &to_cp->c_datafork->ff_extents[0];
- if (extd->startBlock == VTOVCB(to_vp)->vcbJinfoBlock || extd->startBlock == hfsmp->jnl_start) {
- error = EPERM;
- goto exit;
- }
+ /*
+ * We're doing a data-swap so we need to take the truncate
+ * lock exclusively. We need an exclusive lock because we
+ * will be completely truncating the source file and we must
+ * make sure nobody else sneaks in and trys to issue I/O
+ * whilst we don't have the cnode lock.
+ *
+ * After taking the truncate lock we do a quick check to
+ * verify there are no other references (including mmap
+ * references), but we must remember that this does not stop
+ * anybody coming in later and taking a reference. We will
+ * have the truncate lock exclusively so that will prevent
+ * them from issuing any I/O.
+ */
+
+ if (to_cp < from_cp) {
+ hfs_lock_truncate(to_cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
+ have_to_trunc_lock = true;
+ }
+
+ hfs_lock_truncate(from_cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
+ have_from_trunc_lock = true;
+
+ /*
+ * Do an early check to verify the source is not in use by
+ * anyone. We should be called from an FD opened as F_EVTONLY
+ * so that doesn't count as a reference.
+ */
+ if (vnode_isinuse(from_vp, 0)) {
+ error = EBUSY;
+ goto exit;
}
+
+ if (to_cp >= from_cp) {
+ hfs_lock_truncate(to_cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
+ have_to_trunc_lock = true;
+ }
+ }
+
+ if ((error = hfs_lockpair(from_cp, to_cp, HFS_EXCLUSIVE_LOCK)))
+ goto exit;
+ have_cnode_locks = true;
+
+ // Don't allow modification of the journal or journal_info_block
+ if (hfs_is_journal_file(hfsmp, from_cp) ||
+ hfs_is_journal_file(hfsmp, to_cp)) {
+ error = EPERM;
+ goto exit;
+ }
+
+ /*
+ * Ok, now that all of the pre-flighting is done, call the underlying
+ * function if needed.
+ */
+ if (ISSET(ap->a_options, FSOPT_EXCHANGE_DATA_ONLY)) {
+#if HFS_COMPRESSION
+ if (ISSET(from_cp->c_bsdflags, UF_COMPRESSED)) {
+ error = hfs_move_compressed(from_cp, to_cp);
+ goto exit;
+ }
+#endif
+
+ error = hfs_move_data(from_cp, to_cp, 0);
+ goto exit;
}
if ((error = hfs_start_transaction(hfsmp)) != 0) {
to_parid = to_cp->c_parentcnid;
}
- /* Do the exchange */
+ /*
+ * ExchangeFileIDs swaps the on-disk, or in-BTree extent information
+ * attached to two different file IDs. It also swaps the extent
+ * information that may live in the extents-overflow B-Tree.
+ *
+ * We do this in a transaction as this may require a lot of B-Tree nodes
+ * to do completely, particularly if one of the files in question
+ * has a lot of extents.
+ *
+ * For example, assume "file1" has fileID 50, and "file2" has fileID 52.
+ * For the on-disk records, which are assumed to be synced, we will
+ * first swap the resident inline-8 extents as part of the catalog records.
+ * Then we will swap any extents overflow records for each file.
+ *
+ * When ExchangeFileIDs returns successfully, "file1" will have fileID 52,
+ * and "file2" will have fileID 50. However, note that this is only
+ * approximately half of the work that exchangedata(2) will need to
+ * accomplish. In other words, we swap "too much" of the information
+ * because if we only called ExchangeFileIDs, both the fileID and extent
+ * information would be the invariants of this operation. We don't
+ * actually want that; we want to conclude with "file1" having
+ * file ID 50, and "file2" having fileID 52.
+ *
+ * The remainder of hfs_vnop_exchange will swap the file ID and other cnode
+ * data back to the proper ownership, while still allowing the cnode to remain
+ * pointing at the same set of extents that it did originally.
+ */
error = ExchangeFileIDs(hfsmp, from_nameptr, to_nameptr, from_parid,
to_parid, from_cp->c_hint, to_cp->c_hint);
hfs_systemfile_unlock(hfsmp, lockflags);
if (to_vp)
cache_purge(to_vp);
- /* Save a copy of from attributes before swapping. */
+ /* Bump both source and destination write counts before any swaps. */
+ {
+ hfs_incr_gencount (from_cp);
+ hfs_incr_gencount (to_cp);
+ }
+
+ /* Save a copy of "from" attributes before swapping. */
bcopy(&from_cp->c_desc, &tempdesc, sizeof(struct cat_desc));
bcopy(&from_cp->c_attr, &tempattr, sizeof(struct cat_attr));
- tempflag = from_cp->c_flag & (C_HARDLINK | C_HASXATTRS);
+
+ /* Save whether or not each cnode is a hardlink or has EAs */
+ from_flag_special = from_cp->c_flag & (C_HARDLINK | C_HASXATTRS);
+ to_flag_special = to_cp->c_flag & (C_HARDLINK | C_HASXATTRS);
+
+ /* Drop the special bits from each cnode */
+ from_cp->c_flag &= ~(C_HARDLINK | C_HASXATTRS);
+ to_cp->c_flag &= ~(C_HARDLINK | C_HASXATTRS);
/*
- * Swap the descriptors and all non-fork related attributes.
- * (except the modify date)
+ * Now complete the in-memory portion of the copy.
+ *
+ * ExchangeFileIDs swaps the on-disk records involved. We complete the
+ * operation by swapping the in-memory contents of the two files here.
+ * We swap the cnode descriptors, which contain name, BSD attributes,
+ * timestamps, etc, about the file.
+ *
+ * NOTE: We do *NOT* swap the fileforks of the two cnodes. We have
+ * already swapped the on-disk extent information. As long as we swap the
+ * IDs, the in-line resident 8 extents that live in the filefork data
+ * structure will point to the right data for the new file ID if we leave
+ * them alone.
+ *
+ * As a result, any file descriptor that points to a particular
+ * vnode (even though it should change names), will continue
+ * to point to the same content.
*/
+
+ /* Copy the "to" -> "from" cnode */
bcopy(&to_cp->c_desc, &from_cp->c_desc, sizeof(struct cat_desc));
from_cp->c_hint = 0;
- from_cp->c_fileid = from_cp->c_cnid;
+ /*
+ * If 'to' was a hardlink, then we copied over its link ID/CNID/(namespace ID)
+ * when we bcopy'd the descriptor above. However, the cnode attributes
+ * are not bcopied. As a result, make sure to swap the file IDs of each item.
+ *
+ * Further, other hardlink attributes must be moved along in this swap:
+ * the linkcount, the linkref, and the firstlink all need to move
+ * along with the file IDs. See note below regarding the flags and
+ * what moves vs. what does not.
+ *
+ * For Reference:
+ * linkcount == total # of hardlinks.
+ * linkref == the indirect inode pointer.
+ * firstlink == the first hardlink in the chain (written to the raw inode).
+ * These three are tied to the fileID and must move along with the rest of the data.
+ */
+ from_cp->c_fileid = to_cp->c_attr.ca_fileid;
+
from_cp->c_itime = to_cp->c_itime;
from_cp->c_btime = to_cp->c_btime;
from_cp->c_atime = to_cp->c_atime;
from_cp->c_ctime = to_cp->c_ctime;
from_cp->c_gid = to_cp->c_gid;
from_cp->c_uid = to_cp->c_uid;
- from_cp->c_flags = to_cp->c_flags;
+ from_cp->c_bsdflags = to_cp->c_bsdflags;
from_cp->c_mode = to_cp->c_mode;
from_cp->c_linkcount = to_cp->c_linkcount;
- from_cp->c_flag = to_cp->c_flag & (C_HARDLINK | C_HASXATTRS);
+ from_cp->c_attr.ca_linkref = to_cp->c_attr.ca_linkref;
+ from_cp->c_attr.ca_firstlink = to_cp->c_attr.ca_firstlink;
+
+ /*
+ * The cnode flags need to stay with the cnode and not get transferred
+ * over along with everything else because they describe the content; they are
+ * not attributes that reflect changes specific to the file ID. In general,
+ * fields that are tied to the file ID are the ones that will move.
+ *
+ * This reflects the fact that the file may have borrowed blocks, dirty metadata,
+ * or other extents, which may not yet have been written to the catalog. If
+ * they were, they would have been transferred above in the ExchangeFileIDs call above...
+ *
+ * The flags that are special are:
+ * C_HARDLINK, C_HASXATTRS
+ *
+ * These flags move with the item and file ID in the namespace since their
+ * state is tied to that of the file ID.
+ *
+ * So to transfer the flags, we have to take the following steps
+ * 1) Store in a localvar whether or not the special bits are set.
+ * 2) Drop the special bits from the current flags
+ * 3) swap the special flag bits to their destination
+ */
+ from_cp->c_flag |= to_flag_special | C_MODIFIED;
from_cp->c_attr.ca_recflags = to_cp->c_attr.ca_recflags;
bcopy(to_cp->c_finderinfo, from_cp->c_finderinfo, 32);
+
+ /* Copy the "from" -> "to" cnode */
bcopy(&tempdesc, &to_cp->c_desc, sizeof(struct cat_desc));
to_cp->c_hint = 0;
- to_cp->c_fileid = to_cp->c_cnid;
+ /*
+ * Pull the file ID from the tempattr we copied above. We can't assume
+ * it is the same as the CNID.
+ */
+ to_cp->c_fileid = tempattr.ca_fileid;
to_cp->c_itime = tempattr.ca_itime;
to_cp->c_btime = tempattr.ca_btime;
to_cp->c_atime = tempattr.ca_atime;
to_cp->c_ctime = tempattr.ca_ctime;
to_cp->c_gid = tempattr.ca_gid;
to_cp->c_uid = tempattr.ca_uid;
- to_cp->c_flags = tempattr.ca_flags;
+ to_cp->c_bsdflags = tempattr.ca_flags;
to_cp->c_mode = tempattr.ca_mode;
to_cp->c_linkcount = tempattr.ca_linkcount;
- to_cp->c_flag = tempflag;
+ to_cp->c_attr.ca_linkref = tempattr.ca_linkref;
+ to_cp->c_attr.ca_firstlink = tempattr.ca_firstlink;
+
+ /*
+ * Only OR in the "from" flags into our cnode flags below.
+ * Leave the rest of the flags alone.
+ */
+ to_cp->c_flag |= from_flag_special | C_MODIFIED;
+
to_cp->c_attr.ca_recflags = tempattr.ca_recflags;
bcopy(tempattr.ca_finderinfo, to_cp->c_finderinfo, 32);
+
/* Rehash the cnodes using their new file IDs */
hfs_chash_rehash(hfsmp, from_cp, to_cp);
* When a file moves out of "Cleanup At Startup"
* we can drop its NODUMP status.
*/
- if ((from_cp->c_flags & UF_NODUMP) &&
+ if ((from_cp->c_bsdflags & UF_NODUMP) &&
(from_cp->c_parentcnid != to_cp->c_parentcnid)) {
- from_cp->c_flags &= ~UF_NODUMP;
+ from_cp->c_bsdflags &= ~UF_NODUMP;
from_cp->c_touch_chgtime = TRUE;
}
- if ((to_cp->c_flags & UF_NODUMP) &&
+ if ((to_cp->c_bsdflags & UF_NODUMP) &&
(to_cp->c_parentcnid != from_cp->c_parentcnid)) {
- to_cp->c_flags &= ~UF_NODUMP;
+ to_cp->c_bsdflags &= ~UF_NODUMP;
to_cp->c_touch_chgtime = TRUE;
}
exit:
if (got_cookie) {
- cat_postflight(hfsmp, &cookie, vfs_context_proc(ap->a_context));
+ cat_postflight(hfsmp, &cookie, vfs_context_proc(ap->a_context));
}
if (started_tr) {
hfs_end_transaction(hfsmp);
}
- hfs_unlockpair(from_cp, to_cp);
- return (error);
+ if (have_cnode_locks)
+ hfs_unlockpair(from_cp, to_cp);
+
+ if (have_from_trunc_lock)
+ hfs_unlock_truncate(from_cp, 0);
+
+ if (have_to_trunc_lock)
+ hfs_unlock_truncate(to_cp, 0);
+
+ return (error);
+}
+
+#if HFS_COMPRESSION
+/*
+ * This function is used specifically for the case when a namespace
+ * handler is trying to steal data before it's deleted. Note that we
+ * don't bother deleting the xattr from the source because it will get
+ * deleted a short time later anyway.
+ *
+ * cnodes must be locked
+ */
+static int hfs_move_compressed(cnode_t *from_cp, cnode_t *to_cp)
+{
+ int ret;
+ void *data = NULL;
+
+ CLR(from_cp->c_bsdflags, UF_COMPRESSED);
+ SET(from_cp->c_flag, C_MODIFIED);
+
+ ret = hfs_move_data(from_cp, to_cp, HFS_MOVE_DATA_INCLUDE_RSRC);
+ if (ret)
+ goto exit;
+
+ /*
+ * Transfer the xattr that decmpfs uses. Ideally, this code
+ * should be with the other decmpfs code but it's file system
+ * agnostic and this path is currently, and likely to remain, HFS+
+ * specific. It's easier and more performant if we implement it
+ * here.
+ */
+
+ size_t size = MAX_DECMPFS_XATTR_SIZE;
+ MALLOC(data, void *, size, M_TEMP, M_WAITOK);
+
+ ret = hfs_xattr_read(from_cp->c_vp, DECMPFS_XATTR_NAME, data, &size);
+ if (ret)
+ goto exit;
+
+ ret = hfs_xattr_write(to_cp->c_vp, DECMPFS_XATTR_NAME, data, size);
+ if (ret)
+ goto exit;
+
+ SET(to_cp->c_bsdflags, UF_COMPRESSED);
+ SET(to_cp->c_flag, C_MODIFIED);
+
+exit:
+ if (data)
+ FREE(data, M_TEMP);
+
+ return ret;
+}
+#endif // HFS_COMPRESSION
+
+int
+hfs_vnop_mmap(struct vnop_mmap_args *ap)
+{
+ struct vnode *vp = ap->a_vp;
+ cnode_t *cp = VTOC(vp);
+ int error;
+
+ if (VNODE_IS_RSRC(vp)) {
+ /* allow pageins of the resource fork */
+ } else {
+ int compressed = hfs_file_is_compressed(cp, 1); /* 1 == don't take the cnode lock */
+ time_t orig_ctime = cp->c_ctime;
+
+ if (!compressed && (cp->c_bsdflags & UF_COMPRESSED)) {
+ error = check_for_dataless_file(vp, NAMESPACE_HANDLER_READ_OP);
+ if (error != 0) {
+ return error;
+ }
+ }
+
+ if (ap->a_fflags & PROT_WRITE) {
+ check_for_tracked_file(vp, orig_ctime, NAMESPACE_HANDLER_WRITE_OP, NULL);
+ }
+ }
+
+ //
+ // NOTE: we return ENOTSUP because we want the cluster layer
+ // to actually do all the real work.
+ //
+ return (ENOTSUP);
+}
+
+static errno_t hfs_vnop_mnomap(struct vnop_mnomap_args *ap)
+{
+ vnode_t vp = ap->a_vp;
+
+ /*
+ * Whilst the file was mapped, there may not have been any
+ * page-outs so we need to increment the generation counter now.
+ * Unfortunately this may lead to a change in the generation
+ * counter when no actual change has been made, but there is
+ * little we can do about that with our current architecture.
+ */
+ if (ubc_is_mapped_writable(vp)) {
+ cnode_t *cp = VTOC(vp);
+ hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
+ hfs_incr_gencount(cp);
+
+ /*
+ * We don't want to set the modification time here since a
+ * change to that is not acceptable if no changes were made.
+ * Instead we set a flag so that if we get any page-outs we
+ * know to update the modification time. It's possible that
+ * they weren't actually because of changes made whilst the
+ * file was mapped but that's not easy to fix now.
+ */
+ SET(cp->c_flag, C_MIGHT_BE_DIRTY_FROM_MAPPING);
+
+ hfs_unlock(cp);
+ }
+
+ return 0;
+}
+
+/*
+ * Mark the resource fork as needing a ubc_setsize when we drop the
+ * cnode lock later.
+ */
+static void hfs_rsrc_setsize(cnode_t *cp)
+{
+ /*
+ * We need to take an iocount if we don't have one. vnode_get
+ * will return ENOENT if the vnode is terminating which is what we
+ * want as it's not safe to call ubc_setsize in that case.
+ */
+ if (cp->c_rsrc_vp && !vnode_get(cp->c_rsrc_vp)) {
+ // Shouldn't happen, but better safe...
+ if (ISSET(cp->c_flag, C_NEED_RVNODE_PUT))
+ vnode_put(cp->c_rsrc_vp);
+ SET(cp->c_flag, C_NEED_RVNODE_PUT | C_NEED_RSRC_SETSIZE);
+ }
+}
+
+/*
+ * hfs_move_data
+ *
+ * This is a non-symmetric variant of exchangedata. In this function,
+ * the contents of the data fork (and optionally the resource fork)
+ * are moved from from_cp to to_cp.
+ *
+ * The cnodes must be locked.
+ *
+ * The cnode pointed to by 'to_cp' *must* be empty prior to invoking
+ * this function. We impose this restriction because we may not be
+ * able to fully delete the entire file's contents in a single
+ * transaction, particularly if it has a lot of extents. In the
+ * normal file deletion codepath, the file is screened for two
+ * conditions: 1) bigger than 400MB, and 2) more than 8 extents. If
+ * so, the file is relocated to the hidden directory and the deletion
+ * is broken up into multiple truncates. We can't do that here
+ * because both files need to exist in the namespace. The main reason
+ * this is imposed is that we may have to touch a whole lot of bitmap
+ * blocks if there are many extents.
+ *
+ * Any data written to 'from_cp' after this call completes is not
+ * guaranteed to be moved.
+ *
+ * Arguments:
+ * cnode_t *from_cp : source file
+ * cnode_t *to_cp : destination file; must be empty
+ *
+ * Returns:
+ *
+ * EBUSY - File has been deleted or is in use
+ * EFBIG - Destination file was not empty
+ * EIO - An I/O error
+ * 0 - success
+ * other - Other errors that can be returned from called functions
+ */
+int hfs_move_data(cnode_t *from_cp, cnode_t *to_cp,
+ hfs_move_data_options_t options)
+{
+ hfsmount_t *hfsmp = VTOHFS(from_cp->c_vp);
+ int error = 0;
+ int lockflags = 0;
+ bool return_EIO_on_error = false;
+ const bool include_rsrc = ISSET(options, HFS_MOVE_DATA_INCLUDE_RSRC);
+
+ /* Verify that neither source/dest file is open-unlinked */
+ if (ISSET(from_cp->c_flag, C_DELETED | C_NOEXISTS)
+ || ISSET(to_cp->c_flag, C_DELETED | C_NOEXISTS)) {
+ return EBUSY;
+ }
+
+ /*
+ * Verify the source file is not in use by anyone besides us.
+ *
+ * This function is typically invoked by a namespace handler
+ * process responding to a temporarily stalled system call.
+ * The FD that it is working off of is opened O_EVTONLY, so
+ * it really has no active usecounts (the kusecount from O_EVTONLY
+ * is subtracted from the total usecounts).
+ *
+ * As a result, we shouldn't have any active usecounts against
+ * this vnode when we go to check it below.
+ */
+ if (vnode_isinuse(from_cp->c_vp, 0))
+ return EBUSY;
+
+ if (include_rsrc && from_cp->c_rsrc_vp) {
+ if (vnode_isinuse(from_cp->c_rsrc_vp, 0))
+ return EBUSY;
+
+ /*
+ * In the code below, if the destination file doesn't have a
+ * c_rsrcfork then we don't create it which means we we cannot
+ * transfer the ff_invalidranges and cf_vblocks fields. These
+ * shouldn't be set because we flush the resource fork before
+ * calling this function but there is a tiny window when we
+ * did not have any locks...
+ */
+ if (!to_cp->c_rsrcfork
+ && (!TAILQ_EMPTY(&from_cp->c_rsrcfork->ff_invalidranges)
+ || from_cp->c_rsrcfork->ff_unallocblocks)) {
+ /*
+ * The file isn't really busy now but something did slip
+ * in and tinker with the file while we didn't have any
+ * locks, so this is the most meaningful return code for
+ * the caller.
+ */
+ return EBUSY;
+ }
+ }
+
+ // Check the destination file is empty
+ if (to_cp->c_datafork->ff_blocks
+ || to_cp->c_datafork->ff_size
+ || (include_rsrc
+ && (to_cp->c_blocks
+ || (to_cp->c_rsrcfork && to_cp->c_rsrcfork->ff_size)))) {
+ return EFBIG;
+ }
+
+ if ((error = hfs_start_transaction (hfsmp)))
+ return error;
+
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_EXTENTS | SFL_ATTRIBUTE,
+ HFS_EXCLUSIVE_LOCK);
+
+ // filefork_t is 128 bytes which should be OK
+ filefork_t rfork_buf, *from_rfork = NULL;
+
+ if (include_rsrc) {
+ from_rfork = from_cp->c_rsrcfork;
+
+ /*
+ * Creating resource fork vnodes is expensive, so just get get
+ * the fork data if we need it.
+ */
+ if (!from_rfork && hfs_has_rsrc(from_cp)) {
+ from_rfork = &rfork_buf;
+
+ from_rfork->ff_cp = from_cp;
+ TAILQ_INIT(&from_rfork->ff_invalidranges);
+
+ error = cat_idlookup(hfsmp, from_cp->c_fileid, 0, 1, NULL, NULL,
+ &from_rfork->ff_data);
+
+ if (error)
+ goto exit;
+ }
+ }
+
+ /*
+ * From here on, any failures mean that we might be leaving things
+ * in a weird or inconsistent state. Ideally, we should back out
+ * all the changes, but to do that properly we need to fix
+ * MoveData. We'll save fixing that for another time. For now,
+ * just return EIO in all cases to the caller so that they know.
+ */
+ return_EIO_on_error = true;
+
+ bool data_overflow_extents = overflow_extents(from_cp->c_datafork);
+
+ // Move the data fork
+ if ((error = hfs_move_fork (from_cp->c_datafork, from_cp,
+ to_cp->c_datafork, to_cp))) {
+ goto exit;
+ }
+
+ SET(from_cp->c_flag, C_NEED_DATA_SETSIZE);
+ SET(to_cp->c_flag, C_NEED_DATA_SETSIZE);
+
+ // We move the resource fork later
+
+ /*
+ * Note that because all we're doing is moving the extents around,
+ * we can probably do this in a single transaction: Each extent
+ * record (group of 8) is 64 bytes. A extent overflow B-Tree node
+ * is typically 4k. This means each node can hold roughly ~60
+ * extent records == (480 extents).
+ *
+ * If a file was massively fragmented and had 20k extents, this
+ * means we'd roughly touch 20k/480 == 41 to 42 nodes, plus the
+ * index nodes, for half of the operation. (inserting or
+ * deleting). So if we're manipulating 80-100 nodes, this is
+ * basically 320k of data to write to the journal in a bad case.
+ */
+ if (data_overflow_extents) {
+ if ((error = MoveData(hfsmp, from_cp->c_cnid, to_cp->c_cnid, 0)))
+ goto exit;
+ }
+
+ if (from_rfork && overflow_extents(from_rfork)) {
+ if ((error = MoveData(hfsmp, from_cp->c_cnid, to_cp->c_cnid, 1)))
+ goto exit;
+ }
+
+ // Touch times
+ from_cp->c_touch_acctime = TRUE;
+ from_cp->c_touch_chgtime = TRUE;
+ from_cp->c_touch_modtime = TRUE;
+ hfs_touchtimes(hfsmp, from_cp);
+
+ to_cp->c_touch_acctime = TRUE;
+ to_cp->c_touch_chgtime = TRUE;
+ to_cp->c_touch_modtime = TRUE;
+ hfs_touchtimes(hfsmp, to_cp);
+
+ struct cat_fork dfork_buf;
+ const struct cat_fork *dfork, *rfork;
+
+ dfork = hfs_prepare_fork_for_update(to_cp->c_datafork, NULL,
+ &dfork_buf, hfsmp->blockSize);
+ rfork = hfs_prepare_fork_for_update(from_rfork, NULL,
+ &rfork_buf.ff_data, hfsmp->blockSize);
+
+ // Update the catalog nodes, to_cp first
+ if ((error = cat_update(hfsmp, &to_cp->c_desc, &to_cp->c_attr,
+ dfork, rfork))) {
+ goto exit;
+ }
+
+ CLR(to_cp->c_flag, C_MODIFIED | C_MINOR_MOD);
+
+ // Update in-memory resource fork data here
+ if (from_rfork) {
+ // Update c_blocks
+ uint32_t moving = from_rfork->ff_blocks + from_rfork->ff_unallocblocks;
+
+ from_cp->c_blocks -= moving;
+ to_cp->c_blocks += moving;
+
+ // Update to_cp's resource data if it has it
+ filefork_t *to_rfork = to_cp->c_rsrcfork;
+ if (to_rfork) {
+ to_rfork->ff_invalidranges = from_rfork->ff_invalidranges;
+ to_rfork->ff_data = from_rfork->ff_data;
+
+ // Deal with ubc_setsize
+ hfs_rsrc_setsize(to_cp);
+ }
+
+ // Wipe out the resource fork in from_cp
+ rl_init(&from_rfork->ff_invalidranges);
+ bzero(&from_rfork->ff_data, sizeof(from_rfork->ff_data));
+
+ // Deal with ubc_setsize
+ hfs_rsrc_setsize(from_cp);
+ }
+
+ // Currently unnecessary, but might be useful in future...
+ dfork = hfs_prepare_fork_for_update(from_cp->c_datafork, NULL, &dfork_buf,
+ hfsmp->blockSize);
+ rfork = hfs_prepare_fork_for_update(from_rfork, NULL, &rfork_buf.ff_data,
+ hfsmp->blockSize);
+
+ // Update from_cp
+ if ((error = cat_update(hfsmp, &from_cp->c_desc, &from_cp->c_attr,
+ dfork, rfork))) {
+ goto exit;
+ }
+
+ CLR(from_cp->c_flag, C_MODIFIED | C_MINOR_MOD);
+
+exit:
+ if (lockflags) {
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ hfs_end_transaction(hfsmp);
+ }
+
+ if (error && error != EIO && return_EIO_on_error) {
+ printf("hfs_move_data: encountered error %d\n", error);
+ error = EIO;
+ }
+
+ return error;
+}
+
+/*
+ * Move all of the catalog and runtime data in srcfork to dstfork.
+ *
+ * This allows us to maintain the invalid ranges across the move data
+ * operation so we don't need to force all of the pending IO right
+ * now. In addition, we move all non overflow-extent extents into the
+ * destination here.
+ *
+ * The destination fork must be empty and should have been checked
+ * prior to calling this.
+ */
+static int hfs_move_fork(filefork_t *srcfork, cnode_t *src_cp,
+ filefork_t *dstfork, cnode_t *dst_cp)
+{
+ // Move the invalid ranges
+ TAILQ_SWAP(&dstfork->ff_invalidranges, &srcfork->ff_invalidranges,
+ rl_entry, rl_link);
+ rl_remove_all(&srcfork->ff_invalidranges);
+
+ // Move the fork data (copy whole structure)
+ dstfork->ff_data = srcfork->ff_data;
+ bzero(&srcfork->ff_data, sizeof(srcfork->ff_data));
+
+ // Update c_blocks
+ src_cp->c_blocks -= dstfork->ff_blocks + dstfork->ff_unallocblocks;
+ dst_cp->c_blocks += dstfork->ff_blocks + dstfork->ff_unallocblocks;
+
+ return 0;
+}
+
+
+#include <i386/panic_hooks.h>
+
+struct hfs_fsync_panic_hook {
+ panic_hook_t hook;
+ struct cnode *cp;
+};
+
+static void hfs_fsync_panic_hook(panic_hook_t *hook_)
+{
+ struct hfs_fsync_panic_hook *hook = (struct hfs_fsync_panic_hook *)hook_;
+ extern int kdb_log(const char *fmt, ...);
+
+ // Get the physical region just before cp
+ panic_phys_range_t range;
+ uint64_t phys;
+
+ if (panic_phys_range_before(hook->cp, &phys, &range)) {
+ kdb_log("cp = %p, phys = %p, prev (%p: %p-%p)\n",
+ hook->cp, phys, range.type, range.phys_start,
+ range.phys_start + range.len);
+ } else
+ kdb_log("cp = %p, phys = %p, prev (!)\n", hook->cp, phys);
+
+ panic_dump_mem((void *)(((vm_offset_t)hook->cp - 4096) & ~4095), 12288);
+
+ kdb_log("\n");
}
/*
* cnode must be locked
*/
-__private_extern__
int
-hfs_fsync(struct vnode *vp, int waitfor, int fullsync, struct proc *p)
+hfs_fsync(struct vnode *vp, int waitfor, hfs_fsync_mode_t fsyncmode, struct proc *p)
{
struct cnode *cp = VTOC(vp);
struct filefork *fp = NULL;
int retval = 0;
struct hfsmount *hfsmp = VTOHFS(vp);
- struct rl_entry *invalid_range;
struct timeval tv;
int waitdata; /* attributes necessary for data retrieval */
int wait; /* all other attributes (e.g. atime, etc.) */
int lockflag;
int took_trunc_lock = 0;
- boolean_t trunc_lock_exclusive = FALSE;
+ int locked_buffers = 0;
+ int fsync_default = 1;
/*
* Applications which only care about data integrity rather than full
*/
wait = (waitfor == MNT_WAIT);
waitdata = (waitfor == MNT_DWAIT) | wait;
+
if (always_do_fullfsync)
- fullsync = 1;
+ fsyncmode = HFS_FSYNC_FULL;
+ if (fsyncmode != HFS_FSYNC)
+ fsync_default = 0;
/* HFS directories don't have any data blocks. */
if (vnode_isdir(vp))
}
} else if (UBCINFOEXISTS(vp)) {
hfs_unlock(cp);
- hfs_lock_truncate(cp, trunc_lock_exclusive);
+ hfs_lock_truncate(cp, HFS_SHARED_LOCK, HFS_LOCK_DEFAULT);
took_trunc_lock = 1;
+ struct hfs_fsync_panic_hook hook;
+ hook.cp = cp;
+ panic_hook(&hook.hook, hfs_fsync_panic_hook);
+
if (fp->ff_unallocblocks != 0) {
- hfs_unlock_truncate(cp, trunc_lock_exclusive);
+ hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
- trunc_lock_exclusive = TRUE;
- hfs_lock_truncate(cp, trunc_lock_exclusive);
+ hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
}
+
+ panic_unhook(&hook.hook);
+
/* Don't hold cnode lock when calling into cluster layer. */
(void) cluster_push(vp, waitdata ? IO_SYNC : 0);
- hfs_lock(cp, HFS_FORCE_LOCK);
+ hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
}
/*
* When MNT_WAIT is requested and the zero fill timeout
*/
if (fp && (((cp->c_flag & C_ALWAYS_ZEROFILL) && !TAILQ_EMPTY(&fp->ff_invalidranges)) ||
((wait || (cp->c_flag & C_ZFWANTSYNC)) &&
- ((cp->c_flags & UF_NODUMP) == 0) &&
+ ((cp->c_bsdflags & UF_NODUMP) == 0) &&
UBCINFOEXISTS(vp) && (vnode_issystem(vp) ==0) &&
cp->c_zftimeout != 0))) {
microuptime(&tv);
- if ((cp->c_flag & C_ALWAYS_ZEROFILL) == 0 && !fullsync && tv.tv_sec < (long)cp->c_zftimeout) {
+ if ((cp->c_flag & C_ALWAYS_ZEROFILL) == 0 && fsync_default && tv.tv_sec < (long)cp->c_zftimeout) {
/* Remember that a force sync was requested. */
cp->c_flag |= C_ZFWANTSYNC;
goto datasync;
}
if (!TAILQ_EMPTY(&fp->ff_invalidranges)) {
- if (!took_trunc_lock || trunc_lock_exclusive == FALSE) {
+ if (!took_trunc_lock || (cp->c_truncatelockowner == HFS_SHARED_OWNER)) {
hfs_unlock(cp);
- if (took_trunc_lock)
- hfs_unlock_truncate(cp, trunc_lock_exclusive);
-
- trunc_lock_exclusive = TRUE;
- hfs_lock_truncate(cp, trunc_lock_exclusive);
- hfs_lock(cp, HFS_FORCE_LOCK);
+ if (took_trunc_lock) {
+ hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
+ }
+ hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
+ hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
took_trunc_lock = 1;
}
- while ((invalid_range = TAILQ_FIRST(&fp->ff_invalidranges))) {
- off_t start = invalid_range->rl_start;
- off_t end = invalid_range->rl_end;
-
- /* The range about to be written must be validated
- * first, so that VNOP_BLOCKMAP() will return the
- * appropriate mapping for the cluster code:
- */
- rl_remove(start, end, &fp->ff_invalidranges);
-
- /* Don't hold cnode lock when calling into cluster layer. */
- hfs_unlock(cp);
- (void) cluster_write(vp, (struct uio *) 0,
- fp->ff_size, end + 1, start, (off_t)0,
- IO_HEADZEROFILL | IO_NOZERODIRTY | IO_NOCACHE);
- hfs_lock(cp, HFS_FORCE_LOCK);
- cp->c_flag |= C_MODIFIED;
- }
+ hfs_flush_invalid_ranges(vp);
hfs_unlock(cp);
(void) cluster_push(vp, waitdata ? IO_SYNC : 0);
- hfs_lock(cp, HFS_FORCE_LOCK);
+ hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
}
- cp->c_flag &= ~C_ZFWANTSYNC;
- cp->c_zftimeout = 0;
}
datasync:
if (took_trunc_lock) {
- hfs_unlock_truncate(cp, trunc_lock_exclusive);
+ hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
took_trunc_lock = 0;
}
/*
/*
* Flush all dirty buffers associated with a vnode.
+ * Record how many of them were dirty AND locked (if necessary).
*/
- buf_flushdirtyblks(vp, waitdata, lockflag, "hfs_fsync");
+ locked_buffers = buf_flushdirtyblks_skipinfo(vp, waitdata, lockflag, "hfs_fsync");
+ if ((lockflag & BUF_SKIP_LOCKED) && (locked_buffers) && (vnode_vtype(vp) == VLNK)) {
+ /*
+ * If there are dirty symlink buffers, then we may need to take action
+ * to prevent issues later on if we are journaled. If we're fsyncing a
+ * symlink vnode then we are in one of three cases:
+ *
+ * 1) automatic sync has fired. In this case, we don't want the behavior to change.
+ *
+ * 2) Someone has opened the FD for the symlink (not what it points to)
+ * and has issued an fsync against it. This should be rare, and we don't
+ * want the behavior to change.
+ *
+ * 3) We are being called by a vclean which is trying to reclaim this
+ * symlink vnode. If this is the case, then allowing this fsync to
+ * proceed WITHOUT flushing the journal could result in the vclean
+ * invalidating the buffer's blocks before the journal transaction is
+ * written to disk. To prevent this, we force a journal flush
+ * if the vnode is in the middle of a recycle (VL_TERMINATE or VL_DEAD is set).
+ */
+ if (vnode_isrecycled(vp)) {
+ fsync_default = 0;
+ }
+ }
metasync:
if (vnode_isreg(vp) && vnode_issystem(vp)) {
cp->c_touch_chgtime = FALSE;
cp->c_touch_modtime = FALSE;
} else if ( !(vp->v_flag & VSWAP) ) /* User file */ {
- retval = hfs_update(vp, wait);
+ retval = hfs_update(vp, HFS_UPDATE_FORCE);
/*
* When MNT_WAIT is requested push out the catalog record for
* because the journal_flush or hfs_metasync_all will push out
* all of the metadata changes.
*/
- if ((retval == 0) && wait && !fullsync && cp->c_hint &&
+ if ((retval == 0) && wait && fsync_default && cp->c_hint &&
!ISSET(cp->c_flag, C_DELETED | C_NOEXISTS)) {
hfs_metasync(VTOHFS(vp), (daddr64_t)cp->c_hint, p);
}
* If this was a full fsync, make sure all metadata
* changes get to stable storage.
*/
- if (fullsync) {
- if (hfsmp->jnl) {
- hfs_journal_flush(hfsmp);
- } else {
- retval = hfs_metasync_all(hfsmp);
- /* XXX need to pass context! */
- VNOP_IOCTL(hfsmp->hfs_devvp, DKIOCSYNCHRONIZECACHE, NULL, FWRITE, NULL);
- }
+ if (!fsync_default) {
+ if (hfsmp->jnl) {
+ if (fsyncmode == HFS_FSYNC_FULL)
+ hfs_flush(hfsmp, HFS_FLUSH_FULL);
+ else
+ hfs_flush(hfsmp,
+ HFS_FLUSH_JOURNAL_BARRIER);
+ } else {
+ retval = hfs_metasync_all(hfsmp);
+ /* XXX need to pass context! */
+ hfs_flush(hfsmp, HFS_FLUSH_CACHE);
+ }
}
}
+ if (!hfs_is_dirty(cp) && !ISSET(cp->c_flag, C_DELETED))
+ vnode_cleardirty(vp);
+
return (retval);
}
/* Sync an hfs catalog b-tree node */
-static int
+int
hfs_metasync(struct hfsmount *hfsmp, daddr64_t node, __unused struct proc *p)
{
vnode_t vp;
* we rely on fsck_hfs to fix that up (which it can do without any loss
* of data).
*/
-static int
+int
hfs_metasync_all(struct hfsmount *hfsmp)
{
int lockflags;
}
-__private_extern__
int
hfs_btsync(struct vnode *vp, int sync_transaction)
{
/*
* Remove a directory.
*/
-static int
+int
hfs_vnop_rmdir(ap)
struct vnop_rmdir_args /* {
struct vnode *a_dvp;
struct cnode *dcp = VTOC(dvp);
struct cnode *cp = VTOC(vp);
int error;
+ time_t orig_ctime;
+
+ orig_ctime = VTOC(vp)->c_ctime;
if (!S_ISDIR(cp->c_mode)) {
return (ENOTDIR);
if (dvp == vp) {
return (EINVAL);
}
+
+ check_for_tracked_file(vp, orig_ctime, NAMESPACE_HANDLER_DELETE_OP, NULL);
+ cp = VTOC(vp);
+
if ((error = hfs_lockpair(dcp, cp, HFS_EXCLUSIVE_LOCK))) {
return (error);
}
hfs_unlockpair (dcp, cp);
return ENOENT;
}
- error = hfs_removedir(dvp, vp, ap->a_cnp, 0);
+
+ //
+ // if the item is tracked but doesn't have a document_id, assign one and generate an fsevent for it
+ //
+ if ((cp->c_bsdflags & UF_TRACKED) && ((struct FndrExtendedDirInfo *)((char *)&cp->c_attr.ca_finderinfo + 16))->document_id == 0) {
+ uint32_t newid;
+
+ hfs_unlockpair(dcp, cp);
+
+ if (hfs_generate_document_id(VTOHFS(vp), &newid) == 0) {
+ hfs_lockpair(dcp, cp, HFS_EXCLUSIVE_LOCK);
+ ((struct FndrExtendedDirInfo *)((char *)&cp->c_attr.ca_finderinfo + 16))->document_id = newid;
+#if CONFIG_FSE
+ add_fsevent(FSE_DOCID_CHANGED, vfs_context_current(),
+ FSE_ARG_DEV, VTOHFS(vp)->hfs_raw_dev,
+ FSE_ARG_INO, (ino64_t)0, // src inode #
+ FSE_ARG_INO, (ino64_t)cp->c_fileid, // dst inode #
+ FSE_ARG_INT32, newid,
+ FSE_ARG_DONE);
+#endif
+ } else {
+ // XXXdbg - couldn't get a new docid... what to do? can't really fail the rm...
+ hfs_lockpair(dcp, cp, HFS_EXCLUSIVE_LOCK);
+ }
+ }
+
+ error = hfs_removedir(dvp, vp, ap->a_cnp, 0, 0);
hfs_unlockpair(dcp, cp);
*
* Both dvp and vp cnodes are locked
*/
-static int
+int
hfs_removedir(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
- int skip_reserve)
+ int skip_reserve, int only_unlink)
{
struct cnode *cp;
struct cnode *dcp;
if (cp->c_entries != 0) {
return (ENOTEMPTY);
}
+
+ /*
+ * If the directory is open or in use (e.g. opendir() or current working
+ * directory for some process); wait for inactive/reclaim to actually
+ * remove cnode from the catalog. Both inactive and reclaim codepaths are capable
+ * of removing open-unlinked directories from the catalog, as well as getting rid
+ * of EAs still on the element. So change only_unlink to true, so that it will get
+ * cleaned up below.
+ *
+ * Otherwise, we can get into a weird old mess where the directory has C_DELETED,
+ * but it really means C_NOEXISTS because the item was actually removed from the
+ * catalog. Then when we try to remove the entry from the catalog later on, it won't
+ * really be there anymore.
+ */
+ if (vnode_isinuse(vp, 0)) {
+ only_unlink = 1;
+ }
- /* Check if we're removing the last link to an empty directory. */
+ /* Deal with directory hardlinks */
if (cp->c_flag & C_HARDLINK) {
- /* We could also return EBUSY here */
+ /*
+ * Note that if we have a directory which was a hardlink at any point,
+ * its actual directory data is stored in the directory inode in the hidden
+ * directory rather than the leaf element(s) present in the namespace.
+ *
+ * If there are still other hardlinks to this directory,
+ * then we'll just eliminate this particular link and the vnode will still exist.
+ * If this is the last link to an empty directory, then we'll open-unlink the
+ * directory and it will be only tagged with C_DELETED (as opposed to C_NOEXISTS).
+ *
+ * We could also return EBUSY here.
+ */
+
return hfs_unlink(hfsmp, dvp, vp, cnp, skip_reserve);
}
/*
- * We want to make sure that if the directory has a lot of attributes, we process them
- * in separate transactions to ensure we don't panic in the journal with a gigantic
- * transaction. This means we'll let hfs_removefile deal with the directory, which generally
- * follows the same codepath as open-unlinked files. Note that the last argument to
- * hfs_removefile specifies that it is supposed to handle directories for this case.
- */
- if ((hfsmp->hfs_attribute_vp != NULL) &&
- (cp->c_attr.ca_recflags & kHFSHasAttributesMask) != 0) {
-
- return hfs_removefile(dvp, vp, cnp, 0, 0, 1, NULL);
+ * In a few cases, we may want to allow the directory to persist in an
+ * open-unlinked state. If the directory is being open-unlinked (still has usecount
+ * references), or if it has EAs, or if it was being deleted as part of a rename,
+ * then we go ahead and move it to the hidden directory.
+ *
+ * If the directory is being open-unlinked, then we want to keep the catalog entry
+ * alive so that future EA calls and fchmod/fstat etc. do not cause issues later.
+ *
+ * If the directory had EAs, then we want to use the open-unlink trick so that the
+ * EA removal is not done in one giant transaction. Otherwise, it could cause a panic
+ * due to overflowing the journal.
+ *
+ * Finally, if it was deleted as part of a rename, we move it to the hidden directory
+ * in order to maintain rename atomicity.
+ *
+ * Note that the allow_dirs argument to hfs_removefile specifies that it is
+ * supposed to handle directories for this case.
+ */
+
+ if (((hfsmp->hfs_attribute_vp != NULL) &&
+ ((cp->c_attr.ca_recflags & kHFSHasAttributesMask) != 0)) ||
+ (only_unlink != 0)) {
+
+ int ret = hfs_removefile(dvp, vp, cnp, 0, 0, 1, NULL, only_unlink);
+ /*
+ * Even though hfs_vnop_rename calls vnode_recycle for us on tvp we call
+ * it here just in case we were invoked by rmdir() on a directory that had
+ * EAs. To ensure that we start reclaiming the space as soon as possible,
+ * we call vnode_recycle on the directory.
+ */
+ vnode_recycle(vp);
+
+ return ret;
+
}
dcp->c_flag |= C_DIR_MODIFICATION;
* the current directory and thus be
* non-empty.)
*/
- if ((dcp->c_flags & APPEND) || (cp->c_flags & (IMMUTABLE | APPEND))) {
+ if ((dcp->c_bsdflags & APPEND) || (cp->c_bsdflags & (IMMUTABLE | APPEND))) {
error = EPERM;
goto out;
}
desc.cd_encoding = cp->c_encoding;
desc.cd_hint = 0;
- if (!hfs_valid_cnode(hfsmp, dvp, cnp, cp->c_fileid)) {
+ if (!hfs_valid_cnode(hfsmp, dvp, cnp, cp->c_fileid, NULL, &error)) {
error = 0;
goto out;
}
}
error = cat_delete(hfsmp, &desc, &cp->c_attr);
- if (error == 0) {
+
+ if (!error) {
+ //
+ // if skip_reserve == 1 then we're being called from hfs_vnop_rename() and thus
+ // we don't need to touch the document_id as it's handled by the rename code.
+ // otherwise it's a normal remove and we need to save the document id in the
+ // per thread struct and clear it from the cnode.
+ //
+ struct doc_tombstone *ut;
+ ut = get_uthread_doc_tombstone();
+ if (!skip_reserve && (cp->c_bsdflags & UF_TRACKED) && should_save_docid_tombstone(ut, vp, cnp)) {
+
+ if (ut->t_lastop_document_id) {
+ clear_tombstone_docid(ut, hfsmp, NULL);
+ }
+ save_tombstone(hfsmp, dvp, vp, cnp, 1);
+
+ }
+
/* The parent lost a child */
if (dcp->c_entries > 0)
dcp->c_entries--;
DEC_FOLDERCOUNT(hfsmp, dcp->c_attr);
dcp->c_dirchangecnt++;
+ hfs_incr_gencount(dcp);
+
dcp->c_touch_chgtime = TRUE;
dcp->c_touch_modtime = TRUE;
- hfs_touchtimes(hfsmp, cp);
- (void) cat_update(hfsmp, &dcp->c_desc, &dcp->c_attr, NULL, NULL);
- cp->c_flag &= ~(C_MODIFIED | C_FORCEUPDATE);
+ dcp->c_flag |= C_MODIFIED;
+
+ hfs_update(dcp->c_vp, 0);
}
hfs_systemfile_unlock(hfsmp, lockflags);
hfs_volupdate(hfsmp, VOL_RMDIR, (dcp->c_cnid == kHFSRootFolderID));
- /*
- * directory open or in use (e.g. opendir() or current working
- * directory for some process); wait for inactive to actually
- * remove catalog entry
- */
- if (vnode_isinuse(vp, 0)) {
- cp->c_flag |= C_DELETED;
- } else {
- cp->c_flag |= C_NOEXISTS;
- }
+ /* Mark C_NOEXISTS since the catalog entry is now gone */
+ cp->c_flag |= C_NOEXISTS;
+
out:
dcp->c_flag &= ~C_DIR_MODIFICATION;
wakeup((caddr_t)&dcp->c_flag);
/*
* Remove a file or link.
*/
-static int
+int
hfs_vnop_remove(ap)
struct vnop_remove_args /* {
struct vnode *a_dvp;
struct vnode *dvp = ap->a_dvp;
struct vnode *vp = ap->a_vp;
struct cnode *dcp = VTOC(dvp);
- struct cnode *cp = VTOC(vp);
+ struct cnode *cp;
struct vnode *rvp = NULL;
- struct hfsmount *hfsmp = VTOHFS(vp);
int error=0, recycle_rsrc=0;
- int drop_rsrc_vnode = 0;
- int vref;
+ int recycle_vnode = 0;
+ uint32_t rsrc_vid = 0;
+ time_t orig_ctime;
if (dvp == vp) {
return (EINVAL);
}
- /*
- * We need to grab the cnode lock on 'cp' before the lockpair()
- * to get an iocount on the rsrc fork BEFORE we enter hfs_removefile.
- * To prevent other deadlocks, it's best to call hfs_vgetrsrc in a way that
- * allows it to drop the cnode lock that it expects to be held coming in.
- * If we don't, we could commit a lock order violation, causing a deadlock.
- * In order to safely get the rsrc vnode with an iocount, we need to only hold the
- * lock on the file temporarily. Unlike hfs_vnop_rename, we don't have to worry
- * about one rsrc fork getting recycled for another, but we do want to ensure
- * that there are no deadlocks due to lock ordering issues.
- *
+ orig_ctime = VTOC(vp)->c_ctime;
+ if (!vnode_isnamedstream(vp) && ((ap->a_flags & VNODE_REMOVE_SKIP_NAMESPACE_EVENT) == 0)) {
+ error = check_for_tracked_file(vp, orig_ctime, NAMESPACE_HANDLER_DELETE_OP, NULL);
+ if (error) {
+ // XXXdbg - decide on a policy for handling namespace handler failures!
+ // for now we just let them proceed.
+ }
+ }
+ error = 0;
+
+ cp = VTOC(vp);
+
+relock:
+
+ hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
+
+ if ((error = hfs_lockpair(dcp, cp, HFS_EXCLUSIVE_LOCK))) {
+ hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
+ if (rvp) {
+ vnode_put (rvp);
+ }
+ return (error);
+ }
+ //
+ // if the item is tracked but doesn't have a document_id, assign one and generate an fsevent for it
+ //
+ if ((cp->c_bsdflags & UF_TRACKED) && ((struct FndrExtendedDirInfo *)((char *)&cp->c_attr.ca_finderinfo + 16))->document_id == 0) {
+ uint32_t newid;
+
+ hfs_unlockpair(dcp, cp);
+
+ if (hfs_generate_document_id(VTOHFS(vp), &newid) == 0) {
+ hfs_lockpair(dcp, cp, HFS_EXCLUSIVE_LOCK);
+ ((struct FndrExtendedDirInfo *)((char *)&cp->c_attr.ca_finderinfo + 16))->document_id = newid;
+#if CONFIG_FSE
+ add_fsevent(FSE_DOCID_CHANGED, vfs_context_current(),
+ FSE_ARG_DEV, VTOHFS(vp)->hfs_raw_dev,
+ FSE_ARG_INO, (ino64_t)0, // src inode #
+ FSE_ARG_INO, (ino64_t)cp->c_fileid, // dst inode #
+ FSE_ARG_INT32, newid,
+ FSE_ARG_DONE);
+#endif
+ } else {
+ // XXXdbg - couldn't get a new docid... what to do? can't really fail the rm...
+ hfs_lockpair(dcp, cp, HFS_EXCLUSIVE_LOCK);
+ }
+ }
+
+ /*
+ * Lazily respond to determining if there is a valid resource fork
+ * vnode attached to 'cp' if it is a regular file or symlink.
+ * If the vnode does not exist, then we may proceed without having to
+ * create it.
+ *
+ * If, however, it does exist, then we need to acquire an iocount on the
+ * vnode after acquiring its vid. This ensures that if we have to do I/O
+ * against it, it can't get recycled from underneath us in the middle
+ * of this call.
+ *
* Note: this function may be invoked for directory hardlinks, so just skip these
* steps if 'vp' is a directory.
*/
-
if ((vp->v_type == VLNK) || (vp->v_type == VREG)) {
-
- if ((error = hfs_lock (cp, HFS_EXCLUSIVE_LOCK))) {
- return (error);
- }
- error = hfs_vgetrsrc(hfsmp, vp, &rvp, TRUE, TRUE);
- hfs_unlock(cp);
- if (error) {
- /* We may have gotten a rsrc vp out even though we got an error back. */
- if (rvp) {
- vnode_put(rvp);
+ if ((cp->c_rsrc_vp) && (rvp == NULL)) {
+ /* We need to acquire the rsrc vnode */
+ rvp = cp->c_rsrc_vp;
+ rsrc_vid = vnode_vid (rvp);
+
+ /* Unlock everything to acquire iocount on the rsrc vnode */
+ hfs_unlock_truncate (cp, HFS_LOCK_DEFAULT);
+ hfs_unlockpair (dcp, cp);
+ /* Use the vid to maintain identity on rvp */
+ if (vnode_getwithvid(rvp, rsrc_vid)) {
+ /*
+ * If this fails, then it was recycled or
+ * reclaimed in the interim. Reset fields and
+ * start over.
+ */
rvp = NULL;
+ rsrc_vid = 0;
}
- return error;
- }
- drop_rsrc_vnode = 1;
- }
- /* Now that we may have an iocount on rvp, do the lock pair */
- hfs_lock_truncate(cp, TRUE);
-
- if ((error = hfs_lockpair(dcp, cp, HFS_EXCLUSIVE_LOCK))) {
- hfs_unlock_truncate(cp, TRUE);
- /* drop the iocount on rvp if necessary */
- if (drop_rsrc_vnode) {
- vnode_put (rvp);
+ goto relock;
}
- return (error);
}
/*
goto rm_done;
}
- error = hfs_removefile(dvp, vp, ap->a_cnp, ap->a_flags, 0, 0, rvp);
-
- //
- // If the remove succeeded and it's an open-unlinked file that has
- // a resource fork vnode that's not in use, we will want to recycle
- // the rvp *after* we're done unlocking everything. Otherwise the
- // resource vnode will keep a v_parent reference on this vnode which
- // prevents it from going through inactive/reclaim which means that
- // the disk space associated with this file won't get free'd until
- // something forces the resource vnode to get recycled (and that can
- // take a very long time).
- //
- if (error == 0 && (cp->c_flag & C_DELETED) &&
- (rvp) && !vnode_isinuse(rvp, 0)) {
- recycle_rsrc = 1;
+ error = hfs_removefile(dvp, vp, ap->a_cnp, ap->a_flags, 0, 0, NULL, 0);
+
+ /*
+ * If the remove succeeded in deleting the file, then we may need to mark
+ * the resource fork for recycle so that it is reclaimed as quickly
+ * as possible. If it were not recycled quickly, then this resource fork
+ * vnode could keep a v_parent reference on the data fork, which prevents it
+ * from going through reclaim (by giving it extra usecounts), except in the force-
+ * unmount case.
+ *
+ * However, a caveat: we need to continue to supply resource fork
+ * access to open-unlinked files even if the resource fork is not open. This is
+ * a requirement for the compressed files work. Luckily, hfs_vgetrsrc will handle
+ * this already if the data fork has been re-parented to the hidden directory.
+ *
+ * As a result, all we really need to do here is mark the resource fork vnode
+ * for recycle. If it goes out of core, it can be brought in again if needed.
+ * If the cnode was instead marked C_NOEXISTS, then there wouldn't be any
+ * more work.
+ */
+ if (error == 0) {
+ hfs_hotfile_deleted(vp);
+
+ if (rvp) {
+ recycle_rsrc = 1;
+ }
+ /*
+ * If the target was actually removed from the catalog schedule it for
+ * full reclamation/inactivation. We hold an iocount on it so it should just
+ * get marked with MARKTERM
+ */
+ if (cp->c_flag & C_NOEXISTS) {
+ recycle_vnode = 1;
+ }
}
+
/*
* Drop the truncate lock before unlocking the cnode
* (which can potentially perform a vnode_put and
* truncate lock)
*/
rm_done:
- hfs_unlock_truncate(cp, TRUE);
hfs_unlockpair(dcp, cp);
+ hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
if (recycle_rsrc) {
- vref = vnode_ref(rvp);
- if (vref == 0) {
- /* vnode_ref could return an error, only release if we got a ref */
- vnode_rele(rvp);
- }
+ /* inactive or reclaim on rvp will clean up the blocks from the rsrc fork */
vnode_recycle(rvp);
}
-
- if (drop_rsrc_vnode) {
+ if (recycle_vnode) {
+ vnode_recycle (vp);
+ }
+
+ if (rvp) {
/* drop iocount on rsrc fork, was obtained at beginning of fxn */
vnode_put(rvp);
}
}
-static int
+int
hfs_removefile_callback(struct buf *bp, void *hfsmp) {
if ( !(buf_flags(bp) & B_META))
* This function may be used to remove directories if they have
* lots of EA's -- note the 'allow_dirs' argument.
*
- * The 'rvp' argument is used to pass in a resource fork vnode with
- * an iocount to prevent it from getting recycled during usage. If it
- * is NULL, then it is assumed the caller is a VNOP that cannot operate
- * on resource forks, like hfs_vnop_symlink or hfs_removedir. Otherwise in
- * a VNOP that takes multiple vnodes, we could violate lock order and
- * cause a deadlock.
+ * This function is able to delete blocks & fork data for the resource
+ * fork even if it does not exist in core (and have a backing vnode).
+ * It should infer the correct behavior based on the number of blocks
+ * in the cnode and whether or not the resource fork pointer exists or
+ * not. As a result, one only need pass in the 'vp' corresponding to the
+ * data fork of this file (or main vnode in the case of a directory).
+ * Passing in a resource fork will result in an error.
+ *
+ * Because we do not create any vnodes in this function, we are not at
+ * risk of deadlocking against ourselves by double-locking.
*
* Requires cnode and truncate locks to be held.
*/
-static int
+int
hfs_removefile(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
- int flags, int skip_reserve, int allow_dirs, struct vnode *rvp)
+ int flags, int skip_reserve, int allow_dirs,
+ __unused struct vnode *rvp, int only_unlink)
{
struct cnode *cp;
struct cnode *dcp;
+ struct vnode *rsrc_vp = NULL;
struct hfsmount *hfsmp;
struct cat_desc desc;
struct timeval tv;
- vfs_context_t ctx = cnp->cn_context;
int dataforkbusy = 0;
int rsrcforkbusy = 0;
- int truncated = 0;
int lockflags;
int error = 0;
int started_tr = 0;
int isbigfile = 0, defer_remove=0, isdir=0;
+ int update_vh = 0;
cp = VTOC(vp);
dcp = VTOC(dvp);
return (0);
}
- if (!hfs_valid_cnode(hfsmp, dvp, cnp, cp->c_fileid)) {
+ if (!hfs_valid_cnode(hfsmp, dvp, cnp, cp->c_fileid, NULL, &error)) {
return 0;
}
if (VNODE_IS_RSRC(vp)) {
return (EPERM);
}
+ else {
+ /*
+ * We know it's a data fork.
+ * Probe the cnode to see if we have a valid resource fork
+ * in hand or not.
+ */
+ rsrc_vp = cp->c_rsrc_vp;
+ }
+
/* Don't allow deleting the journal or journal_info_block. */
- if (hfsmp->jnl &&
- (cp->c_fileid == hfsmp->hfs_jnlfileid || cp->c_fileid == hfsmp->hfs_jnlinfoblkid)) {
+ if (hfs_is_journal_file(hfsmp, cp)) {
return (EPERM);
}
+
/*
* Hard links require special handling.
*/
return hfs_unlink(hfsmp, dvp, vp, cnp, skip_reserve);
}
}
+
/* Directories should call hfs_rmdir! (unless they have a lot of attributes) */
if (vnode_isdir(vp)) {
if (allow_dirs == 0)
/* Remove our entry from the namei cache. */
cache_purge(vp);
-
+
/*
- * We expect the caller, if operating on files,
- * will have passed in a resource fork vnode with
- * an iocount, even if there was no content.
- * We only do the hfs_truncate on the rsrc fork
- * if we know that it DID have content, however.
- * This has the bonus of not requiring us to defer
- * its removal, unless it is in use.
+ * If the caller was operating on a file (as opposed to a
+ * directory with EAs), then we need to figure out
+ * whether or not it has a valid resource fork vnode.
+ *
+ * If there was a valid resource fork vnode, then we need
+ * to use hfs_truncate to eliminate its data. If there is
+ * no vnode, then we hold the cnode lock which would
+ * prevent it from being created. As a result,
+ * we can use the data deletion functions which do not
+ * require that a cnode/vnode pair exist.
*/
/* Check if this file is being used. */
if (isdir == 0) {
dataforkbusy = vnode_isinuse(vp, 0);
- /* Only need to defer resource fork removal if in use and has content */
- if (rvp && (cp->c_blocks - VTOF(vp)->ff_blocks)) {
- rsrcforkbusy = vnode_isinuse(rvp, 0);
+ /*
+ * At this point, we know that 'vp' points to the
+ * a data fork because we checked it up front. And if
+ * there is no rsrc fork, rsrc_vp will be NULL.
+ */
+ if (rsrc_vp && (cp->c_blocks - VTOF(vp)->ff_blocks)) {
+ rsrcforkbusy = vnode_isinuse(rsrc_vp, 0);
}
}
/* Check if we have to break the deletion into multiple pieces. */
- if (isdir == 0) {
- isbigfile = ((cp->c_datafork->ff_size >= HFS_BIGFILE_SIZE) && overflow_extents(VTOF(vp)));
- }
+ if (isdir == 0)
+ isbigfile = cp->c_datafork->ff_size >= HFS_BIGFILE_SIZE;
/* Check if the file has xattrs. If it does we'll have to delete them in
individual transactions in case there are too many */
(cp->c_attr.ca_recflags & kHFSHasAttributesMask) != 0) {
defer_remove = 1;
}
+
+ /* If we are explicitly told to only unlink item and move to hidden dir, then do it */
+ if (only_unlink) {
+ defer_remove = 1;
+ }
/*
* Carbon semantics prohibit deleting busy files.
if (hfsmp->hfs_flags & HFS_QUOTAS)
(void)hfs_getinoquota(cp);
#endif /* QUOTA */
-
- /* Check if we need a ubc_setsize. */
- if (isdir == 0 && (!dataforkbusy || !rsrcforkbusy)) {
+
+ /*
+ * Do a ubc_setsize to indicate we need to wipe contents if:
+ * 1) item is a regular file.
+ * 2) Neither fork is busy AND we are not told to unlink this.
+ *
+ * We need to check for the defer_remove since it can be set without
+ * having a busy data or rsrc fork
+ */
+ if (isdir == 0 && (!dataforkbusy || !rsrcforkbusy) && (defer_remove == 0)) {
/*
* A ubc_setsize can cause a pagein so defer it
* until after the cnode lock is dropped. The
if (!dataforkbusy && cp->c_datafork->ff_blocks && !isbigfile) {
cp->c_flag |= C_NEED_DATA_SETSIZE;
}
- if (!rsrcforkbusy && rvp) {
+ if (!rsrcforkbusy && rsrc_vp) {
cp->c_flag |= C_NEED_RSRC_SETSIZE;
}
}
started_tr = 1;
// XXXdbg - if we're journaled, kill any dirty symlink buffers
- if (hfsmp->jnl && vnode_islnk(vp))
+ if (hfsmp->jnl && vnode_islnk(vp) && (defer_remove == 0)) {
buf_iterate(vp, hfs_removefile_callback, BUF_SKIP_NONLOCKED, (void *)hfsmp);
+ }
/*
- * Truncate any non-busy forks. Busy forks will
+ * Prepare to truncate any non-busy forks. Busy forks will
* get truncated when their vnode goes inactive.
* Note that we will only enter this region if we
* can avoid creating an open-unlinked file. If
* either region is busy, we will have to create an open
* unlinked file.
- * Since we're already inside a transaction,
- * tell hfs_truncate to skip the ubc_setsize.
+ *
+ * Since we are deleting the file, we need to stagger the runtime
+ * modifications to do things in such a way that a crash won't
+ * result in us getting overlapped extents or any other
+ * bad inconsistencies. As such, we call prepare_release_storage
+ * which updates the UBC, updates quota information, and releases
+ * any loaned blocks that belong to this file. No actual
+ * truncation or bitmap manipulation is done until *AFTER*
+ * the catalog record is removed.
*/
- if (isdir == 0 && (!dataforkbusy && !rsrcforkbusy)) {
- /*
- * Note that 5th argument to hfs_truncate indicates whether or not
- * hfs_update calls should be suppressed in call to do_hfs_truncate
- */
+ if (isdir == 0 && (!dataforkbusy && !rsrcforkbusy) && (only_unlink == 0)) {
+
if (!dataforkbusy && !isbigfile && cp->c_datafork->ff_blocks != 0) {
- /* skip update in hfs_truncate */
- error = hfs_truncate(vp, (off_t)0, IO_NDELAY, 1, 1, ctx);
- if (error)
+
+ error = hfs_prepare_release_storage (hfsmp, vp);
+ if (error) {
goto out;
- truncated = 1;
+ }
+ update_vh = 1;
}
- if (!rsrcforkbusy && rvp) {
- /* skip update in hfs_truncate */
- error = hfs_truncate(rvp, (off_t)0, IO_NDELAY, 1, 1, ctx);
- if (error)
+
+ /*
+ * If the resource fork vnode does not exist, we can skip this step.
+ */
+ if (!rsrcforkbusy && rsrc_vp) {
+ error = hfs_prepare_release_storage (hfsmp, rsrc_vp);
+ if (error) {
goto out;
- truncated = 1;
+ }
+ update_vh = 1;
}
}
-
+
/*
* Protect against a race with rename by using the component
* name passed in and parent id from dvp (instead of using
DEC_FOLDERCOUNT(hfsmp, dcp->c_attr);
}
dcp->c_dirchangecnt++;
+ hfs_incr_gencount(dcp);
+
dcp->c_ctime = tv.tv_sec;
dcp->c_mtime = tv.tv_sec;
(void) cat_update(hfsmp, &dcp->c_desc, &dcp->c_attr, NULL, NULL);
if (error)
goto out;
- } else /* Not busy */ {
+ }
+ else {
+ /*
+ * Nobody is using this item; we can safely remove everything.
+ */
+ struct filefork *temp_rsrc_fork = NULL;
+#if QUOTA
+ off_t savedbytes;
+ int blksize = hfsmp->blockSize;
+#endif
+ u_int32_t fileid = cp->c_fileid;
+
+ /*
+ * Figure out if we need to read the resource fork data into
+ * core before wiping out the catalog record.
+ *
+ * 1) Must not be a directory
+ * 2) cnode's c_rsrcfork ptr must be NULL.
+ * 3) rsrc fork must have actual blocks
+ */
+ if ((isdir == 0) && (cp->c_rsrcfork == NULL) &&
+ (cp->c_blocks - VTOF(vp)->ff_blocks)) {
+ /*
+ * The resource fork vnode & filefork did not exist.
+ * Create a temporary one for use in this function only.
+ */
+ MALLOC_ZONE (temp_rsrc_fork, struct filefork *, sizeof (struct filefork), M_HFSFORK, M_WAITOK);
+ bzero(temp_rsrc_fork, sizeof(struct filefork));
+ temp_rsrc_fork->ff_cp = cp;
+ rl_init(&temp_rsrc_fork->ff_invalidranges);
+ }
+
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_ATTRIBUTE | SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
- if (cp->c_blocks > 0) {
- printf("hfs_remove: attempting to delete a non-empty file %s\n",
- cp->c_desc.cd_nameptr);
- error = EBUSY;
- goto out;
+ /* Look up the resource fork first, if necessary */
+ if (temp_rsrc_fork) {
+ error = cat_lookup (hfsmp, &desc, 1, 0, (struct cat_desc*) NULL,
+ (struct cat_attr*) NULL, &temp_rsrc_fork->ff_data, NULL);
+ if (error) {
+ FREE_ZONE (temp_rsrc_fork, sizeof(struct filefork), M_HFSFORK);
+ hfs_systemfile_unlock (hfsmp, lockflags);
+ goto out;
+ }
}
- lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_ATTRIBUTE | SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
if (!skip_reserve) {
if ((error = cat_preflight(hfsmp, CAT_DELETE, NULL, 0))) {
+ if (temp_rsrc_fork) {
+ FREE_ZONE (temp_rsrc_fork, sizeof(struct filefork), M_HFSFORK);
+ }
hfs_systemfile_unlock(hfsmp, lockflags);
goto out;
}
}
-
+
error = cat_delete(hfsmp, &desc, &cp->c_attr);
-
- if (error && error != ENXIO && error != ENOENT && truncated) {
- if ((cp->c_datafork && cp->c_datafork->ff_size != 0) ||
- (cp->c_rsrcfork && cp->c_rsrcfork->ff_size != 0)) {
- off_t data_size = 0;
- off_t rsrc_size = 0;
- if (cp->c_datafork) {
- data_size = cp->c_datafork->ff_size;
- }
- if (cp->c_rsrcfork) {
- rsrc_size = cp->c_rsrcfork->ff_size;
- }
- printf("hfs: remove: couldn't delete a truncated file (%s)"
- "(error %d, data sz %lld; rsrc sz %lld)",
- cp->c_desc.cd_nameptr, error, data_size, rsrc_size);
- hfs_mark_volume_inconsistent(hfsmp);
- } else {
- printf("hfs: remove: strangely enough, deleting truncated file %s (%d) got err %d\n",
- cp->c_desc.cd_nameptr, cp->c_attr.ca_fileid, error);
- }
+
+ if (error && error != ENXIO && error != ENOENT) {
+ printf("hfs_removefile: deleting file %s (id=%d) vol=%s err=%d\n",
+ cp->c_desc.cd_nameptr, cp->c_attr.ca_fileid, hfsmp->vcbVN, error);
}
-
+
if (error == 0) {
/* Update the parent directory */
if (dcp->c_entries > 0)
dcp->c_entries--;
dcp->c_dirchangecnt++;
+ hfs_incr_gencount(dcp);
+
dcp->c_ctime = tv.tv_sec;
dcp->c_mtime = tv.tv_sec;
(void) cat_update(hfsmp, &dcp->c_desc, &dcp->c_attr, NULL, NULL);
}
hfs_systemfile_unlock(hfsmp, lockflags);
- if (error)
- goto out;
+ if (error) {
+ if (temp_rsrc_fork) {
+ FREE_ZONE (temp_rsrc_fork, sizeof(struct filefork), M_HFSFORK);
+ }
+ goto out;
+ }
+
+ /*
+ * Now that we've wiped out the catalog record, the file effectively doesn't
+ * exist anymore. So update the quota records to reflect the loss of the
+ * data fork and the resource fork.
+ */
#if QUOTA
- if (hfsmp->hfs_flags & HFS_QUOTAS)
+ if (cp->c_datafork->ff_blocks > 0) {
+ savedbytes = ((off_t)cp->c_datafork->ff_blocks * (off_t)blksize);
+ (void) hfs_chkdq(cp, (int64_t)-(savedbytes), NOCRED, 0);
+ }
+
+ /*
+ * We may have just deleted the catalog record for a resource fork even
+ * though it did not exist in core as a vnode. However, just because there
+ * was a resource fork pointer in the cnode does not mean that it had any blocks.
+ */
+ if (temp_rsrc_fork || cp->c_rsrcfork) {
+ if (cp->c_rsrcfork) {
+ if (cp->c_rsrcfork->ff_blocks > 0) {
+ savedbytes = ((off_t)cp->c_rsrcfork->ff_blocks * (off_t)blksize);
+ (void) hfs_chkdq(cp, (int64_t)-(savedbytes), NOCRED, 0);
+ }
+ }
+ else {
+ /* we must have used a temporary fork */
+ savedbytes = ((off_t)temp_rsrc_fork->ff_blocks * (off_t)blksize);
+ (void) hfs_chkdq(cp, (int64_t)-(savedbytes), NOCRED, 0);
+ }
+ }
+
+ if (hfsmp->hfs_flags & HFS_QUOTAS) {
(void)hfs_chkiq(cp, -1, NOCRED, 0);
-#endif /* QUOTA */
+ }
+#endif
+
+ /*
+ * If we didn't get any errors deleting the catalog entry, then go ahead
+ * and release the backing store now. The filefork pointers are still valid.
+ */
+ if (temp_rsrc_fork) {
+ error = hfs_release_storage (hfsmp, cp->c_datafork, temp_rsrc_fork, fileid);
+ }
+ else {
+ /* if cp->c_rsrcfork == NULL, hfs_release_storage will skip over it. */
+ error = hfs_release_storage (hfsmp, cp->c_datafork, cp->c_rsrcfork, fileid);
+ }
+ if (error) {
+ /*
+ * If we encountered an error updating the extents and bitmap,
+ * mark the volume inconsistent. At this point, the catalog record has
+ * already been deleted, so we can't recover it at this point. We need
+ * to proceed and update the volume header and mark the cnode C_NOEXISTS.
+ * The subsequent fsck should be able to recover the free space for us.
+ */
+ hfs_mark_inconsistent(hfsmp, HFS_OP_INCOMPLETE);
+ }
+ else {
+ /* reset update_vh to 0, since hfs_release_storage should have done it for us */
+ update_vh = 0;
+ }
+
+ /* Get rid of the temporary rsrc fork */
+ if (temp_rsrc_fork) {
+ FREE_ZONE (temp_rsrc_fork, sizeof(struct filefork), M_HFSFORK);
+ }
cp->c_flag |= C_NOEXISTS;
cp->c_flag &= ~C_DELETED;
- truncated = 0; // because the catalog entry is gone
-
- cp->c_touch_chgtime = TRUE; /* XXX needed ? */
+
+ cp->c_touch_chgtime = TRUE;
--cp->c_linkcount;
-
+
/*
* We must never get a directory if we're in this else block. We could
* accidentally drop the number of files in the volume header if we did.
*/
hfs_volupdate(hfsmp, VOL_RMFILE, (dcp->c_cnid == kHFSRootFolderID));
+
+ }
+
+ //
+ // if skip_reserve == 1 then we're being called from hfs_vnop_rename() and thus
+ // we don't need to touch the document_id as it's handled by the rename code.
+ // otherwise it's a normal remove and we need to save the document id in the
+ // per thread struct and clear it from the cnode.
+ //
+ struct doc_tombstone *ut;
+ ut = get_uthread_doc_tombstone();
+ if (!error && !skip_reserve && (cp->c_bsdflags & UF_TRACKED) && should_save_docid_tombstone(ut, vp, cnp)) {
+
+ if (ut->t_lastop_document_id) {
+ clear_tombstone_docid(ut, hfsmp, NULL);
+ }
+ save_tombstone(hfsmp, dvp, vp, cnp, 1);
+
}
+
/*
* All done with this cnode's descriptor...
*
if (error) {
cp->c_flag &= ~C_DELETED;
}
-
- /* Commit the truncation to the catalog record */
- if (truncated) {
- cp->c_flag |= C_FORCEUPDATE;
- cp->c_touch_chgtime = TRUE;
- cp->c_touch_modtime = TRUE;
- (void) hfs_update(vp, 0);
- }
+
+ if (update_vh) {
+ /*
+ * If we bailed out earlier, we may need to update the volume header
+ * to deal with the borrowed blocks accounting.
+ */
+ hfs_volupdate (hfsmp, VOL_UPDATE, 0);
+ }
if (started_tr) {
hfs_end_transaction(hfsmp);
* been locked. By taking the rsrc fork vnodes up front we ensure that they
* cannot be recycled, and that the situation mentioned above cannot happen.
*/
-static int
+int
hfs_vnop_rename(ap)
struct vnop_rename_args /* {
struct vnode *a_fdvp;
struct vnode *tdvp = ap->a_tdvp;
struct vnode *fvp = ap->a_fvp;
struct vnode *fdvp = ap->a_fdvp;
- struct vnode *fvp_rsrc = NULLVP;
- struct vnode *tvp_rsrc = NULLVP;
+ /*
+ * Note that we only need locals for the target/destination's
+ * resource fork vnode (and only if necessary). We don't care if the
+ * source has a resource fork vnode or not.
+ */
+ struct vnode *tvp_rsrc = NULLVP;
+ uint32_t tvp_rsrc_vid = 0;
struct componentname *tcnp = ap->a_tcnp;
struct componentname *fcnp = ap->a_fcnp;
struct proc *p = vfs_context_proc(ap->a_context);
int took_trunc_lock = 0;
int lockflags;
int error;
- int recycle_rsrc = 0;
-
+ time_t orig_from_ctime, orig_to_ctime;
+ int emit_rename = 1;
+ int emit_delete = 1;
+ int is_tracked = 0;
+ int unlocked;
+
+ orig_from_ctime = VTOC(fvp)->c_ctime;
+ if (tvp && VTOC(tvp)) {
+ orig_to_ctime = VTOC(tvp)->c_ctime;
+ } else {
+ orig_to_ctime = ~0;
+ }
+ hfsmp = VTOHFS(tdvp);
/*
- * Before grabbing the four locks, we may need to get an iocount on the resource fork
- * vnodes in question, just like hfs_vnop_remove. If fvp and tvp are not
- * directories, then go ahead and grab the resource fork vnodes now
- * one at a time. We don't actively need the fvp_rsrc to do the rename operation,
- * but we need the iocount to prevent the vnode from getting recycled/reclaimed
- * during the middle of the VNOP.
+ * Do special case checks here. If fvp == tvp then we need to check the
+ * cnode with locks held.
*/
-
-
- if ((vnode_isreg(fvp)) || (vnode_islnk(fvp))) {
-
- if ((error = hfs_lock (VTOC(fvp), HFS_EXCLUSIVE_LOCK))) {
- return (error);
- }
-
- /*
- * We care if we race against rename/delete with this cnode, so we'll
- * error out if this file becomes open-unlinked during this call.
- */
- error = hfs_vgetrsrc(VTOHFS(fvp), fvp, &fvp_rsrc, TRUE, TRUE);
- hfs_unlock (VTOC(fvp));
- if (error) {
- if (fvp_rsrc) {
- vnode_put (fvp_rsrc);
- }
+ if (fvp == tvp) {
+ int is_hardlink = 0;
+ /*
+ * In this case, we do *NOT* ever emit a DELETE event.
+ * We may not necessarily emit a RENAME event
+ */
+ emit_delete = 0;
+ if ((error = hfs_lock(VTOC(fvp), HFS_SHARED_LOCK, HFS_LOCK_DEFAULT))) {
return error;
}
- }
+ /* Check to see if the item is a hardlink or not */
+ is_hardlink = (VTOC(fvp)->c_flag & C_HARDLINK);
+ hfs_unlock (VTOC(fvp));
- if (tvp && (vnode_isreg(tvp) || vnode_islnk(tvp))) {
/*
- * Lock failure is OK on tvp, since we may race with a remove on the dst.
- * But this shouldn't stop rename from proceeding, so only try to
- * grab the resource fork if the lock succeeded.
+ * If the item is not a hardlink, then case sensitivity must be off, otherwise
+ * two names should not resolve to the same cnode unless they were case variants.
*/
- if (hfs_lock (VTOC(tvp), HFS_EXCLUSIVE_LOCK) == 0) {
- tcp = VTOC(tvp);
-
- /*
- * We only care if we get an open-unlinked file on the dst so we
- * know to null out tvp/tcp to make the rename operation act
- * as if they never existed. Because they're effectively out of the
- * namespace already it's fine to do this. If this is true, then
- * make sure to unlock the cnode and drop the iocount only after the unlock.
+ if (is_hardlink) {
+ emit_rename = 0;
+ /*
+ * Hardlinks are a little trickier. We only want to emit a rename event
+ * if the item is a hardlink, the parent directories are the same, case sensitivity
+ * is off, and the case folded names are the same. See the fvp == tvp case below for more
+ * info.
*/
- error = hfs_vgetrsrc(VTOHFS(tvp), tvp, &tvp_rsrc, TRUE, TRUE);
- hfs_unlock (tcp);
- if (error) {
- /*
- * Since we specify TRUE for error-on-unlinked in hfs_vgetrsrc,
- * we can get a rsrc fork vp even if it returns an error.
- */
- tcp = NULL;
- tvp = NULL;
- if (tvp_rsrc) {
- vnode_put (tvp_rsrc);
- tvp_rsrc = NULLVP;
+
+ if ((fdvp == tdvp) && ((hfsmp->hfs_flags & HFS_CASE_SENSITIVE) == 0)) {
+ if (hfs_namecmp((const u_int8_t *)fcnp->cn_nameptr, fcnp->cn_namelen,
+ (const u_int8_t *)tcnp->cn_nameptr, tcnp->cn_namelen) == 0) {
+ /* Then in this case only it is ok to emit a rename */
+ emit_rename = 1;
}
- /* just bypass truncate lock and act as if we never got tcp/tvp */
- goto retry;
}
}
}
+ if (emit_rename) {
+ /* c_bsdflags should only be assessed while holding the cnode lock.
+ * This is not done consistently throughout the code and can result
+ * in race. This will be fixed via rdar://12181064
+ */
+ if (VTOC(fvp)->c_bsdflags & UF_TRACKED) {
+ is_tracked = 1;
+ }
+ check_for_tracked_file(fvp, orig_from_ctime, NAMESPACE_HANDLER_RENAME_OP, NULL);
+ }
+
+ if (tvp && VTOC(tvp)) {
+ if (emit_delete) {
+ check_for_tracked_file(tvp, orig_to_ctime, NAMESPACE_HANDLER_DELETE_OP, NULL);
+ }
+ }
+retry:
/* When tvp exists, take the truncate lock for hfs_removefile(). */
if (tvp && (vnode_isreg(tvp) || vnode_islnk(tvp))) {
- hfs_lock_truncate(VTOC(tvp), TRUE);
+ hfs_lock_truncate(VTOC(tvp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
took_trunc_lock = 1;
}
- retry:
+relock:
error = hfs_lockfour(VTOC(fdvp), VTOC(fvp), VTOC(tdvp), tvp ? VTOC(tvp) : NULL,
HFS_EXCLUSIVE_LOCK, &error_cnode);
if (error) {
if (took_trunc_lock) {
- hfs_unlock_truncate(VTOC(tvp), TRUE);
+ hfs_unlock_truncate(VTOC(tvp), HFS_LOCK_DEFAULT);
took_trunc_lock = 0;
}
+
+ /*
+ * We hit an error path. If we were trying to re-acquire the locks
+ * after coming through here once, we might have already obtained
+ * an iocount on tvp's resource fork vnode. Drop that before dealing
+ * with the failure. Note this is safe -- since we are in an
+ * error handling path, we can't be holding the cnode locks.
+ */
+ if (tvp_rsrc) {
+ vnode_put (tvp_rsrc);
+ tvp_rsrc_vid = 0;
+ tvp_rsrc = NULL;
+ }
+
/*
* tvp might no longer exist. If the cause of the lock failure
* was tvp, then we can try again with tvp/tcp set to NULL.
tvp = NULL;
goto retry;
}
- /* otherwise, drop iocounts on the rsrc forks and bail out */
- if (fvp_rsrc) {
- vnode_put (fvp_rsrc);
- }
- if (tvp_rsrc) {
- vnode_put (tvp_rsrc);
- }
+
+ /* If we want to reintroduce notifications for failed renames, this
+ is the place to do it. */
+
return (error);
}
fcp = VTOC(fvp);
tdcp = VTOC(tdvp);
tcp = tvp ? VTOC(tvp) : NULL;
- hfsmp = VTOHFS(tdvp);
+
+ //
+ // if the item is tracked but doesn't have a document_id, assign one and generate an fsevent for it
+ //
+ unlocked = 0;
+ if ((fcp->c_bsdflags & UF_TRACKED) && ((struct FndrExtendedDirInfo *)((char *)&fcp->c_attr.ca_finderinfo + 16))->document_id == 0) {
+ uint32_t newid;
+
+ hfs_unlockfour(VTOC(fdvp), VTOC(fvp), VTOC(tdvp), tvp ? VTOC(tvp) : NULL);
+ unlocked = 1;
+
+ if (hfs_generate_document_id(hfsmp, &newid) == 0) {
+ hfs_lock(fcp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
+ ((struct FndrExtendedDirInfo *)((char *)&fcp->c_attr.ca_finderinfo + 16))->document_id = newid;
+#if CONFIG_FSE
+ add_fsevent(FSE_DOCID_CHANGED, vfs_context_current(),
+ FSE_ARG_DEV, hfsmp->hfs_raw_dev,
+ FSE_ARG_INO, (ino64_t)0, // src inode #
+ FSE_ARG_INO, (ino64_t)fcp->c_fileid, // dst inode #
+ FSE_ARG_INT32, newid,
+ FSE_ARG_DONE);
+#endif
+ hfs_unlock(fcp);
+ } else {
+ // XXXdbg - couldn't get a new docid... what to do? can't really fail the rename...
+ }
+
+ //
+ // check if we're going to need to fix tcp as well. if we aren't, go back relock
+ // everything. otherwise continue on and fix up tcp as well before relocking.
+ //
+ if (tcp == NULL || !(tcp->c_bsdflags & UF_TRACKED) || ((struct FndrExtendedDirInfo *)((char *)&tcp->c_attr.ca_finderinfo + 16))->document_id != 0) {
+ goto relock;
+ }
+ }
+
+ //
+ // same thing for tcp if it's set
+ //
+ if (tcp && (tcp->c_bsdflags & UF_TRACKED) && ((struct FndrExtendedDirInfo *)((char *)&tcp->c_attr.ca_finderinfo + 16))->document_id == 0) {
+ uint32_t newid;
+
+ if (!unlocked) {
+ hfs_unlockfour(VTOC(fdvp), VTOC(fvp), VTOC(tdvp), tvp ? VTOC(tvp) : NULL);
+ unlocked = 1;
+ }
+
+ if (hfs_generate_document_id(hfsmp, &newid) == 0) {
+ hfs_lock(tcp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
+ ((struct FndrExtendedDirInfo *)((char *)&tcp->c_attr.ca_finderinfo + 16))->document_id = newid;
+#if CONFIG_FSE
+ add_fsevent(FSE_DOCID_CHANGED, vfs_context_current(),
+ FSE_ARG_DEV, hfsmp->hfs_raw_dev,
+ FSE_ARG_INO, (ino64_t)0, // src inode #
+ FSE_ARG_INO, (ino64_t)tcp->c_fileid, // dst inode #
+ FSE_ARG_INT32, newid,
+ FSE_ARG_DONE);
+#endif
+ hfs_unlock(tcp);
+ } else {
+ // XXXdbg - couldn't get a new docid... what to do? can't really fail the rename...
+ }
+
+ // go back up and relock everything. next time through the if statement won't be true
+ // and we'll skip over this block of code.
+ goto relock;
+ }
+
+
+
+ /*
+ * Acquire iocounts on the destination's resource fork vnode
+ * if necessary. If dst/src are files and the dst has a resource
+ * fork vnode, then we need to try and acquire an iocount on the rsrc vnode.
+ * If it does not exist, then we don't care and can skip it.
+ */
+ if ((vnode_isreg(fvp)) || (vnode_islnk(fvp))) {
+ if ((tvp) && (tcp->c_rsrc_vp) && (tvp_rsrc == NULL)) {
+ tvp_rsrc = tcp->c_rsrc_vp;
+ /*
+ * We can look at the vid here because we're holding the
+ * cnode lock on the underlying cnode for this rsrc vnode.
+ */
+ tvp_rsrc_vid = vnode_vid (tvp_rsrc);
+
+ /* Unlock everything to acquire iocount on this rsrc vnode */
+ if (took_trunc_lock) {
+ hfs_unlock_truncate (VTOC(tvp), HFS_LOCK_DEFAULT);
+ took_trunc_lock = 0;
+ }
+ hfs_unlockfour(fdcp, fcp, tdcp, tcp);
+
+ if (vnode_getwithvid (tvp_rsrc, tvp_rsrc_vid)) {
+ /* iocount acquisition failed. Reset fields and start over.. */
+ tvp_rsrc_vid = 0;
+ tvp_rsrc = NULL;
+ }
+ goto retry;
+ }
+ }
+
+
/* Ensure we didn't race src or dst parent directories with rmdir. */
if (fdcp->c_flag & (C_NOEXISTS | C_DELETED)) {
* the parent/child relationship with fdcp and tdcp, as well as the
* component name of the target cnodes.
*/
- if ((fcp->c_flag & (C_NOEXISTS | C_DELETED)) || !hfs_valid_cnode(hfsmp, fdvp, fcnp, fcp->c_fileid)) {
+ if ((fcp->c_flag & (C_NOEXISTS | C_DELETED)) || !hfs_valid_cnode(hfsmp, fdvp, fcnp, fcp->c_fileid, NULL, &error)) {
error = ENOENT;
goto out;
}
- if (tcp && ((tcp->c_flag & (C_NOEXISTS | C_DELETED)) || !hfs_valid_cnode(hfsmp, tdvp, tcnp, tcp->c_fileid))) {
+ if (tcp && ((tcp->c_flag & (C_NOEXISTS | C_DELETED)) || !hfs_valid_cnode(hfsmp, tdvp, tcnp, tcp->c_fileid, NULL, &error))) {
//
// hmm, the destination vnode isn't valid any more.
// in this case we can just drop him and pretend he
// never existed in the first place.
//
if (took_trunc_lock) {
- hfs_unlock_truncate(VTOC(tvp), TRUE);
- took_trunc_lock = 0;
+ hfs_unlock_truncate(VTOC(tvp), HFS_LOCK_DEFAULT);
+ took_trunc_lock = 0;
}
+ error = 0;
hfs_unlockfour(fdcp, fcp, tdcp, tcp);
/*
* Make sure "from" vnode and its parent are changeable.
*/
- if ((fcp->c_flags & (IMMUTABLE | APPEND)) || (fdcp->c_flags & APPEND)) {
+ if ((fcp->c_bsdflags & (IMMUTABLE | APPEND)) || (fdcp->c_bsdflags & APPEND)) {
error = EPERM;
goto out;
}
goto out;
}
+ /* Don't allow modification of the journal or journal_info_block */
+ if (hfs_is_journal_file(hfsmp, fcp) ||
+ (tcp && hfs_is_journal_file(hfsmp, tcp))) {
+ error = EPERM;
+ goto out;
+ }
+
#if QUOTA
if (tvp)
(void)hfs_getinoquota(tcp);
/* Preflighting done, take fvp out of the name space. */
cache_purge(fvp);
+#if CONFIG_SECLUDED_RENAME
+ /*
+ * Check for "secure" rename that imposes additional restrictions on the
+ * source vnode. We wait until here to check in order to prevent a race
+ * with other threads that manage to look up fvp, but their open or link
+ * is blocked by our locks. At this point, with fvp out of the name cache,
+ * and holding the lock on fdvp, no other thread can find fvp.
+ *
+ * TODO: Do we need to limit these checks to regular files only?
+ */
+ if (fcnp->cn_flags & CN_SECLUDE_RENAME) {
+ if (vnode_isdir(fvp)) {
+ error = EISDIR;
+ goto out;
+ }
+
+ /*
+ * Neither fork of source may be open or memory mapped.
+ * We also don't want it in use by any other system call.
+ * The file must not have hard links.
+ *
+ * We can't simply use vnode_isinuse() because that does not
+ * count opens with O_EVTONLY. We don't want a malicious
+ * process using O_EVTONLY to subvert a secluded rename.
+ */
+ if (fcp->c_linkcount != 1) {
+ error = EMLINK;
+ goto out;
+ }
+
+ if (fcp->c_rsrc_vp && (fcp->c_rsrc_vp->v_usecount > 0 ||
+ fcp->c_rsrc_vp->v_iocount > 0)) {
+ /* Resource fork is in use (including O_EVTONLY) */
+ error = EBUSY;
+ goto out;
+ }
+ if (fcp->c_vp && (fcp->c_vp->v_usecount > (fcp->c_rsrc_vp ? 1 : 0) ||
+ fcp->c_vp->v_iocount > 1)) {
+ /*
+ * Data fork is in use, including O_EVTONLY, but not
+ * including a reference from the resource fork.
+ */
+ error = EBUSY;
+ goto out;
+ }
+ }
+#endif
+
bzero(&from_desc, sizeof(from_desc));
from_desc.cd_nameptr = (const u_int8_t *)fcnp->cn_nameptr;
from_desc.cd_namelen = fcnp->cn_namelen;
lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
- if (cat_lookup(hfsmp, &tmpdesc, 0, NULL, NULL, NULL, &real_cnid) != 0) {
+ if (cat_lookup(hfsmp, &tmpdesc, 0, 0, NULL, NULL, NULL, &real_cnid) != 0) {
hfs_systemfile_unlock(hfsmp, lockflags);
goto out;
}
got_cookie = 1;
/*
- * If the destination exists then it may need to be removed.
+ * If the destination exists then it may need to be removed.
+ *
+ * Due to HFS's locking system, we should always move the
+ * existing 'tvp' element to the hidden directory in hfs_vnop_rename.
+ * Because the VNOP_LOOKUP call enters and exits the filesystem independently
+ * of the actual vnop that it was trying to do (stat, link, readlink),
+ * we must release the cnode lock of that element during the interim to
+ * do MAC checking, vnode authorization, and other calls. In that time,
+ * the item can be deleted (or renamed over). However, only in the rename
+ * case is it inappropriate to return ENOENT from any of those calls. Either
+ * the call should return information about the old element (stale), or get
+ * information about the newer element that we are about to write in its place.
+ *
+ * HFS lookup has been modified to detect a rename and re-drive its
+ * lookup internally. For other calls that have already succeeded in
+ * their lookup call and are waiting to acquire the cnode lock in order
+ * to proceed, that cnode lock will not fail due to the cnode being marked
+ * C_NOEXISTS, because it won't have been marked as such. It will only
+ * have C_DELETED. Thus, they will simply act on the stale open-unlinked
+ * element. All future callers will get the new element.
+ *
+ * To implement this behavior, we pass the "only_unlink" argument to
+ * hfs_removefile and hfs_removedir. This will result in the vnode acting
+ * as though it is open-unlinked. Additionally, when we are done moving the
+ * element to the hidden directory, we vnode_recycle the target so that it is
+ * reclaimed as soon as possible. Reclaim and inactive are both
+ * capable of clearing out unused blocks for an open-unlinked file or dir.
*/
if (tvp) {
+ //
+ // if the destination has a document id, we need to preserve it
+ //
+ if (fvp != tvp) {
+ uint32_t document_id;
+ struct FndrExtendedDirInfo *ffip = (struct FndrExtendedDirInfo *)((char *)&fcp->c_attr.ca_finderinfo + 16);
+ struct FndrExtendedDirInfo *tfip = (struct FndrExtendedDirInfo *)((char *)&tcp->c_attr.ca_finderinfo + 16);
+
+ if (ffip->document_id && tfip->document_id) {
+ // both documents are tracked. only save a tombstone from tcp and do nothing else.
+ save_tombstone(hfsmp, tdvp, tvp, tcnp, 0);
+ } else {
+ struct doc_tombstone *ut;
+ ut = get_uthread_doc_tombstone();
+
+ document_id = tfip->document_id;
+ tfip->document_id = 0;
+
+ if (document_id != 0) {
+ // clear UF_TRACKED as well since tcp is now no longer tracked
+ tcp->c_bsdflags &= ~UF_TRACKED;
+ (void) cat_update(hfsmp, &tcp->c_desc, &tcp->c_attr, NULL, NULL);
+ }
+
+ if (ffip->document_id == 0 && document_id != 0) {
+ // printf("RENAME: preserving doc-id %d onto %s (from ino %d, to ino %d)\n", document_id, tcp->c_desc.cd_nameptr, tcp->c_desc.cd_cnid, fcp->c_desc.cd_cnid);
+ fcp->c_bsdflags |= UF_TRACKED;
+ ffip->document_id = document_id;
+
+ (void) cat_update(hfsmp, &fcp->c_desc, &fcp->c_attr, NULL, NULL);
+#if CONFIG_FSE
+ add_fsevent(FSE_DOCID_CHANGED, vfs_context_current(),
+ FSE_ARG_DEV, hfsmp->hfs_raw_dev,
+ FSE_ARG_INO, (ino64_t)tcp->c_fileid, // src inode #
+ FSE_ARG_INO, (ino64_t)fcp->c_fileid, // dst inode #
+ FSE_ARG_INT32, (uint32_t)ffip->document_id,
+ FSE_ARG_DONE);
+#endif
+ } else if ((fcp->c_bsdflags & UF_TRACKED) && should_save_docid_tombstone(ut, fvp, fcnp)) {
+
+ if (ut->t_lastop_document_id) {
+ clear_tombstone_docid(ut, hfsmp, NULL);
+ }
+ save_tombstone(hfsmp, fdvp, fvp, fcnp, 0);
+
+ //printf("RENAME: (dest-exists): saving tombstone doc-id %lld @ %s (ino %d)\n",
+ // ut->t_lastop_document_id, ut->t_lastop_filename, fcp->c_desc.cd_cnid);
+ }
+ }
+ }
+
/*
* When fvp matches tvp they could be case variants
* or matching hard links.
*/
if (fvp == tvp) {
if (!(fcp->c_flag & C_HARDLINK)) {
+ /*
+ * If they're not hardlinks, then fvp == tvp must mean we
+ * are using case-insensitive HFS because case-sensitive would
+ * not use the same vnode for both. In this case we just update
+ * the catalog for: a -> A
+ */
goto skip_rm; /* simple case variant */
- } else if ((fdvp != tdvp) ||
+ }
+ /* For all cases below, we must be using hardlinks */
+ else if ((fdvp != tdvp) ||
(hfsmp->hfs_flags & HFS_CASE_SENSITIVE)) {
+ /*
+ * If the parent directories are not the same, AND the two items
+ * are hardlinks, posix says to do nothing:
+ * dir1/fred <-> dir2/bob and the op was mv dir1/fred -> dir2/bob
+ * We just return 0 in this case.
+ *
+ * If case sensitivity is on, and we are using hardlinks
+ * then renaming is supposed to do nothing.
+ * dir1/fred <-> dir2/FRED, and op == mv dir1/fred -> dir2/FRED
+ */
goto out; /* matching hardlinks, nothing to do */
} else if (hfs_namecmp((const u_int8_t *)fcnp->cn_nameptr, fcnp->cn_namelen,
(const u_int8_t *)tcnp->cn_nameptr, tcnp->cn_namelen) == 0) {
+ /*
+ * If we get here, then the following must be true:
+ * a) We are running case-insensitive HFS+.
+ * b) Both paths 'fvp' and 'tvp' are in the same parent directory.
+ * c) the two names are case-variants of each other.
+ *
+ * In this case, we are really only dealing with a single catalog record
+ * whose name is being updated.
+ *
+ * op is dir1/fred -> dir1/FRED
+ *
+ * We need to special case the name matching, because if
+ * dir1/fred <-> dir1/bob were the two links, and the
+ * op was dir1/fred -> dir1/bob
+ * That would fail/do nothing.
+ */
goto skip_rm; /* case-variant hardlink in the same dir */
} else {
goto out; /* matching hardlink, nothing to do */
}
}
- if (vnode_isdir(tvp))
- error = hfs_removedir(tdvp, tvp, tcnp, HFSRM_SKIP_RESERVE);
- else {
- error = hfs_removefile(tdvp, tvp, tcnp, 0, HFSRM_SKIP_RESERVE, 0, tvp_rsrc);
-
- /*
- * If the destination file had a rsrc fork vnode, it may have been cleaned up
- * in hfs_removefile if it was not busy (had no usecounts). This is possible
- * because we grabbed the iocount on the rsrc fork safely at the beginning
- * of the function before we did the lockfour. However, we may still need
- * to take action to prevent block leaks, so aggressively recycle the vnode
- * if possible. The vnode cannot be recycled because we hold an iocount on it.
+
+ if (vnode_isdir(tvp)) {
+ /*
+ * hfs_removedir will eventually call hfs_removefile on the directory
+ * we're working on, because only hfs_removefile does the renaming of the
+ * item to the hidden directory. The directory will stay around in the
+ * hidden directory with C_DELETED until it gets an inactive or a reclaim.
+ * That way, we can destroy all of the EAs as needed and allow new ones to be
+ * written.
*/
-
- if ((error == 0) && (tcp->c_flag & C_DELETED) && tvp_rsrc && !vnode_isinuse(tvp_rsrc, 0)) {
- recycle_rsrc = 1;
- }
+ error = hfs_removedir(tdvp, tvp, tcnp, HFSRM_SKIP_RESERVE, 1);
+ }
+ else {
+ error = hfs_removefile(tdvp, tvp, tcnp, 0, HFSRM_SKIP_RESERVE, 0, NULL, 1);
+
+ /*
+ * If the destination file had a resource fork vnode, then we need to get rid of
+ * its blocks when there are no more references to it. Because the call to
+ * hfs_removefile above always open-unlinks things, we need to force an inactive/reclaim
+ * on the resource fork vnode, in order to prevent block leaks. Otherwise,
+ * the resource fork vnode could prevent the data fork vnode from going out of scope
+ * because it holds a v_parent reference on it. So we mark it for termination
+ * with a call to vnode_recycle. hfs_vnop_reclaim has been modified so that it
+ * can clean up the blocks of open-unlinked files and resource forks.
+ *
+ * We can safely call vnode_recycle on the resource fork because we took an iocount
+ * reference on it at the beginning of the function.
+ */
+
+ if ((error == 0) && (tcp->c_flag & C_DELETED) && (tvp_rsrc)) {
+ vnode_recycle(tvp_rsrc);
+ }
}
- if (error)
+ if (error) {
goto out;
+ }
+
tvp_deleted = 1;
+
+ /* Mark 'tcp' as being deleted due to a rename */
+ tcp->c_flag |= C_RENAMED;
+
+ /*
+ * Aggressively mark tvp/tcp for termination to ensure that we recover all blocks
+ * as quickly as possible.
+ */
+ vnode_recycle(tvp);
+ } else {
+ struct doc_tombstone *ut;
+ ut = get_uthread_doc_tombstone();
+
+ //
+ // There is nothing at the destination. If the file being renamed is
+ // tracked, save a "tombstone" of the document_id. If the file is
+ // not a tracked file, then see if it needs to inherit a tombstone.
+ //
+ // NOTE: we do not save a tombstone if the file being renamed begins
+ // with "atmp" which is done to work-around AutoCad's bizarre
+ // 5-step un-safe save behavior
+ //
+ if (fcp->c_bsdflags & UF_TRACKED) {
+ if (should_save_docid_tombstone(ut, fvp, fcnp)) {
+ save_tombstone(hfsmp, fdvp, fvp, fcnp, 0);
+
+ //printf("RENAME: (no dest): saving tombstone doc-id %lld @ %s (ino %d)\n",
+ // ut->t_lastop_document_id, ut->t_lastop_filename, fcp->c_desc.cd_cnid);
+ } else {
+ // intentionally do nothing
+ }
+ } else if ( ut->t_lastop_document_id != 0
+ && tdvp == ut->t_lastop_parent
+ && vnode_vid(tdvp) == ut->t_lastop_parent_vid
+ && strcmp((char *)ut->t_lastop_filename, (char *)tcnp->cn_nameptr) == 0) {
+
+ //printf("RENAME: %s (ino %d) inheriting doc-id %lld\n", tcnp->cn_nameptr, fcp->c_desc.cd_cnid, ut->t_lastop_document_id);
+ struct FndrExtendedFileInfo *fip = (struct FndrExtendedFileInfo *)((char *)&fcp->c_attr.ca_finderinfo + 16);
+ fcp->c_bsdflags |= UF_TRACKED;
+ fip->document_id = ut->t_lastop_document_id;
+ cat_update(hfsmp, &fcp->c_desc, &fcp->c_attr, NULL, NULL);
+
+ clear_tombstone_docid(ut, hfsmp, fcp); // will send the docid-changed fsevent
+
+ } else if (ut->t_lastop_document_id && should_save_docid_tombstone(ut, fvp, fcnp) && should_save_docid_tombstone(ut, tvp, tcnp)) {
+ // no match, clear the tombstone
+ //printf("RENAME: clearing the tombstone %lld @ %s\n", ut->t_lastop_document_id, ut->t_lastop_filename);
+ clear_tombstone_docid(ut, hfsmp, NULL);
+ }
+
}
skip_rm:
/*
fcp->c_parentcnid = tdcp->c_fileid;
fcp->c_hint = 0;
+ /* Now indicate this cnode needs to have date-added written to the finderinfo */
+ fcp->c_flag |= C_NEEDS_DATEADDED;
+ (void) hfs_update (fvp, 0);
+
+
hfs_volupdate(hfsmp, vnode_isdir(fvp) ? VOL_RMDIR : VOL_RMFILE,
(fdcp->c_cnid == kHFSRootFolderID));
hfs_volupdate(hfsmp, vnode_isdir(fvp) ? VOL_MKDIR : VOL_MKFILE,
}
tdcp->c_entries++;
tdcp->c_dirchangecnt++;
+ tdcp->c_flag |= C_MODIFIED;
+ hfs_incr_gencount(tdcp);
+
if (fdcp->c_entries > 0)
fdcp->c_entries--;
fdcp->c_dirchangecnt++;
+ fdcp->c_flag |= C_MODIFIED;
fdcp->c_touch_chgtime = TRUE;
fdcp->c_touch_modtime = TRUE;
- fdcp->c_flag |= C_FORCEUPDATE; // XXXdbg - force it out!
+ if (ISSET(fcp->c_flag, C_HARDLINK)) {
+ hfs_relorigin(fcp, fdcp->c_fileid);
+ if (fdcp->c_fileid != fdcp->c_cnid)
+ hfs_relorigin(fcp, fdcp->c_cnid);
+ }
+
(void) hfs_update(fdvp, 0);
}
+ hfs_incr_gencount(fdcp);
+
tdcp->c_childhint = out_desc.cd_hint; /* Cache directory's location */
tdcp->c_touch_chgtime = TRUE;
tdcp->c_touch_modtime = TRUE;
- tdcp->c_flag |= C_FORCEUPDATE; // XXXdbg - force it out!
(void) hfs_update(tdvp, 0);
+
+ /* Update the vnode's name now that the rename has completed. */
+ vnode_update_identity(fvp, tdvp, tcnp->cn_nameptr, tcnp->cn_namelen,
+ tcnp->cn_hash, (VNODE_UPDATE_PARENT | VNODE_UPDATE_NAME));
+
+ /*
+ * At this point, we may have a resource fork vnode attached to the
+ * 'from' vnode. If it exists, we will want to update its name, because
+ * it contains the old name + _PATH_RSRCFORKSPEC. ("/..namedfork/rsrc").
+ *
+ * Note that the only thing we need to update here is the name attached to
+ * the vnode, since a resource fork vnode does not have a separate resource
+ * cnode -- it's still 'fcp'.
+ */
+ if (fcp->c_rsrc_vp) {
+ char* rsrc_path = NULL;
+ int len;
+
+ /* Create a new temporary buffer that's going to hold the new name */
+ MALLOC_ZONE (rsrc_path, caddr_t, MAXPATHLEN, M_NAMEI, M_WAITOK);
+ len = snprintf (rsrc_path, MAXPATHLEN, "%s%s", tcnp->cn_nameptr, _PATH_RSRCFORKSPEC);
+ len = MIN(len, MAXPATHLEN);
+
+ /*
+ * vnode_update_identity will do the following for us:
+ * 1) release reference on the existing rsrc vnode's name.
+ * 2) copy/insert new name into the name cache
+ * 3) attach the new name to the resource vnode
+ * 4) update the vnode's vid
+ */
+ vnode_update_identity (fcp->c_rsrc_vp, fvp, rsrc_path, len, 0, (VNODE_UPDATE_NAME | VNODE_UPDATE_CACHE));
+
+ /* Free the memory associated with the resource fork's name */
+ FREE_ZONE (rsrc_path, MAXPATHLEN, M_NAMEI);
+ }
out:
if (got_cookie) {
cat_postflight(hfsmp, &cookie, p);
wakeup((caddr_t)&tdcp->c_flag);
}
- if (took_trunc_lock)
- hfs_unlock_truncate(VTOC(tvp), TRUE);
-
hfs_unlockfour(fdcp, fcp, tdcp, tcp);
-
- /*
- * Now that we've dropped all of the locks, we need to force an inactive and a recycle
- * on the old destination's rsrc fork to prevent a leak of its blocks. Note that
- * doing the ref/rele is to twiddle the VL_NEEDINACTIVE bit of the vnode's flags, so that
- * on the last vnode_put for this vnode, we will force inactive to get triggered.
- * We hold an iocount from the beginning of this function so we know it couldn't have been
- * recycled already.
- */
- if (recycle_rsrc) {
- int vref;
- vref = vnode_ref(tvp_rsrc);
- if (vref == 0) {
- vnode_rele(tvp_rsrc);
- }
- vnode_recycle(tvp_rsrc);
+
+ if (took_trunc_lock) {
+ hfs_unlock_truncate(VTOC(tvp), HFS_LOCK_DEFAULT);
}
/* Now vnode_put the resource forks vnodes if necessary */
if (tvp_rsrc) {
vnode_put(tvp_rsrc);
- }
- if (fvp_rsrc) {
- vnode_put(fvp_rsrc);
+ tvp_rsrc = NULL;
}
/* After tvp is removed the only acceptable error is EIO */
if (error && tvp_deleted)
error = EIO;
+ /* If we want to reintroduce notifications for renames, this is the
+ place to do it. */
+
return (error);
}
/*
* Make a directory.
*/
-static int
+int
hfs_vnop_mkdir(struct vnop_mkdir_args *ap)
{
/***** HACK ALERT ********/
/*
* Create a symbolic link.
*/
-static int
+int
hfs_vnop_symlink(struct vnop_symlink_args *ap)
{
struct vnode **vpp = ap->a_vpp;
goto out;
}
vp = *vpp;
- if ((error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK))) {
+ if ((error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT))) {
goto out;
}
cp = VTOC(vp);
* Allocate space for the link.
*
* Since we're already inside a transaction,
- * tell hfs_truncate to skip the ubc_setsize.
*
* Don't need truncate lock since a symlink is treated as a system file.
*/
- error = hfs_truncate(vp, len, IO_NOZEROFILL, 1, 0, ap->a_context);
+ error = hfs_truncate(vp, len, IO_NOZEROFILL, 0, ap->a_context);
/* On errors, remove the symlink file */
if (error) {
/* hfs_removefile() requires holding the truncate lock */
hfs_unlock(cp);
- hfs_lock_truncate(cp, TRUE);
- hfs_lock(cp, HFS_FORCE_LOCK);
+ hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
+ hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
if (hfs_start_transaction(hfsmp) != 0) {
started_tr = 0;
- hfs_unlock_truncate(cp, TRUE);
+ hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
goto out;
}
- (void) hfs_removefile(dvp, vp, ap->a_cnp, 0, 0, 0, NULL);
- hfs_unlock_truncate(cp, TRUE);
+ (void) hfs_removefile(dvp, vp, ap->a_cnp, 0, 0, 0, NULL, 0);
+ hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
goto out;
}
} else {
buf_bawrite(bp);
}
- /*
- * We defered the ubc_setsize for hfs_truncate
- * since we were inside a transaction.
- *
- * We don't need to drop the cnode lock here
- * since this is a symlink.
- */
- ubc_setsize(vp, len);
out:
if (started_tr)
hfs_end_transaction(hfsmp);
*
* In fact, the offset used by HFS is essentially an index (26 bits)
* with a tag (6 bits). The tag is for associating the next request
- * with the current request. This enables us to have multiple threads
+ * with the current request. This enables us to have multiple threads
* reading the directory while the directory is also being modified.
*
* Each tag/index pair is tied to a unique directory hint. The hint
* If the directory is marked as deleted-but-in-use (cp->c_flag & C_DELETED),
* do NOT synthesize entries for "." and "..".
*/
-static int
+int
hfs_vnop_readdir(ap)
struct vnop_readdir_args /* {
vnode_t a_vp;
int extended;
int nfs_cookies;
cnid_t cnid_hint = 0;
+ int bump_valence = 0;
items = 0;
startoffset = offset = uio_offset(uio);
/* Sanity check the uio data. */
if (uio_iovcnt(uio) > 1)
return (EINVAL);
- /* Note that the dirhint calls require an exclusive lock. */
- if ((error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK)))
- return (error);
+
+ if (VTOC(vp)->c_bsdflags & UF_COMPRESSED) {
+ int compressed = hfs_file_is_compressed(VTOC(vp), 0); /* 0 == take the cnode lock */
+ if (VTOCMP(vp) != NULL && !compressed) {
+ error = check_for_dataless_file(vp, NAMESPACE_HANDLER_READ_OP);
+ if (error) {
+ return error;
+ }
+ }
+ }
+
cp = VTOC(vp);
hfsmp = VTOHFS(vp);
+ /* Note that the dirhint calls require an exclusive lock. */
+ if ((error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT)))
+ return (error);
+
/* Pick up cnid hint (if any). */
if (nfs_cookies) {
cnid_hint = (cnid_t)(uio_offset(uio) >> 32);
offset += 2;
}
- /* If there are no real entries then we're done. */
- if (cp->c_entries == 0) {
- error = 0;
- eofflag = 1;
- uio_setoffset(uio, offset);
- goto seekoffcalc;
- }
-
+ /*
+ * Intentionally avoid checking the valence here. If we
+ * have FS corruption that reports the valence is 0, even though it
+ * has contents, we might artificially skip over iterating
+ * this directory.
+ */
+
//
// We have to lock the user's buffer here so that we won't
// fault on it after we've acquired a shared lock on the
if (index == 0) {
dirhint->dh_threadhint = cp->c_dirthreadhint;
- }
+ }
else {
/*
* If we have a non-zero index, there is a possibility that during the last
}
/* Pack the buffer with dirent entries. */
- error = cat_getdirentries(hfsmp, cp->c_entries, dirhint, uio, extended, &items, &eofflag);
+ error = cat_getdirentries(hfsmp, cp->c_entries, dirhint, uio, ap->a_flags, &items, &eofflag);
if (index == 0 && error == 0) {
cp->c_dirthreadhint = dirhint->dh_threadhint;
if (items >= (int)cp->c_entries) {
eofflag = 1;
}
+
+ /*
+ * Detect valence FS corruption.
+ *
+ * We are holding the cnode lock exclusive, so there should not be
+ * anybody modifying the valence field of this cnode. If we enter
+ * this block, that means we observed filesystem corruption, because
+ * this directory reported a valence of 0, yet we found at least one
+ * item. In this case, we need to minimally self-heal this
+ * directory to prevent userland from tripping over a directory
+ * that appears empty (getattr of valence reports 0), but actually
+ * has contents.
+ *
+ * We'll force the cnode update at the end of the function after
+ * completing all of the normal getdirentries steps.
+ */
+ if ((cp->c_entries == 0) && (items > 0)) {
+ /* disk corruption */
+ cp->c_entries++;
+ /* Mark the cnode as dirty. */
+ cp->c_flag |= C_MODIFIED;
+ printf("hfs_vnop_readdir: repairing valence to non-zero! \n");
+ bump_valence++;
+ }
+
/* Convert catalog directory index back into an offset. */
while (tag == 0)
}
out:
- if (hfsmp->jnl && user_start) {
+ if (user_start) {
vsunlock(user_start, user_len, TRUE);
}
/* If we didn't do anything then go ahead and dump the hint. */
if (dirhint == &localhint) {
cat_releasedesc(&localhint.dh_desc);
}
+
+ if (bump_valence) {
+ /* force the update before dropping the cnode lock*/
+ hfs_update(vp, 0);
+ }
+
hfs_unlock(cp);
+
return (error);
}
/*
* Read contents of a symbolic link.
*/
-static int
+int
hfs_vnop_readlink(ap)
struct vnop_readlink_args /* {
struct vnode *a_vp;
if (!vnode_islnk(vp))
return (EINVAL);
- if ((error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK)))
+ if ((error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT)))
return (error);
cp = VTOC(vp);
fp = VTOF(vp);
/* Zero length sym links are not allowed */
if (fp->ff_size == 0 || fp->ff_size > MAXPATHLEN) {
- printf("hfs: zero length symlink on fileid %d\n", cp->c_fileid);
error = EINVAL;
goto exit;
}
/*
* Get configurable pathname variables.
*/
-static int
+int
hfs_vnop_pathconf(ap)
struct vnop_pathconf_args /* {
struct vnode *a_vp;
vfs_context_t a_context;
} */ *ap;
{
+
+ int std_hfs = (VTOHFS(ap->a_vp)->hfs_flags & HFS_STANDARD);
switch (ap->a_name) {
case _PC_LINK_MAX:
- if (VTOHFS(ap->a_vp)->hfs_flags & HFS_STANDARD)
- *ap->a_retval = 1;
- else
+ if (std_hfs == 0){
*ap->a_retval = HFS_LINK_MAX;
+ }
+#if CONFIG_HFS_STD
+ else {
+ *ap->a_retval = 1;
+ }
+#endif
break;
case _PC_NAME_MAX:
- if (VTOHFS(ap->a_vp)->hfs_flags & HFS_STANDARD)
- *ap->a_retval = kHFSMaxFileNameChars; /* 255 */
- else
- *ap->a_retval = kHFSPlusMaxFileNameChars; /* 31 */
+ if (std_hfs == 0) {
+ *ap->a_retval = kHFSPlusMaxFileNameChars; /* 255 */
+ }
+#if CONFIG_HFS_STD
+ else {
+ *ap->a_retval = kHFSMaxFileNameChars; /* 31 */
+ }
+#endif
break;
case _PC_PATH_MAX:
*ap->a_retval = PATH_MAX; /* 1024 */
*ap->a_retval = 200112; /* _POSIX_NO_TRUNC */
break;
case _PC_NAME_CHARS_MAX:
- *ap->a_retval = kHFSPlusMaxFileNameChars;
+ if (std_hfs == 0) {
+ *ap->a_retval = kHFSPlusMaxFileNameChars; /* 255 */
+ }
+#if CONFIG_HFS_STD
+ else {
+ *ap->a_retval = kHFSMaxFileNameChars; /* 31 */
+ }
+#endif
break;
case _PC_CASE_SENSITIVE:
if (VTOHFS(ap->a_vp)->hfs_flags & HFS_CASE_SENSITIVE)
*ap->a_retval = 1;
break;
case _PC_FILESIZEBITS:
- if (VTOHFS(ap->a_vp)->hfs_flags & HFS_STANDARD)
+ /* number of bits to store max file size */
+ if (std_hfs == 0) {
+ *ap->a_retval = 64;
+ }
+#if CONFIG_HFS_STD
+ else {
*ap->a_retval = 32;
- else
- *ap->a_retval = 64; /* number of bits to store max file size */
+ }
+#endif
+ break;
+ case _PC_XATTR_SIZE_BITS:
+ /* Number of bits to store maximum extended attribute size */
+ *ap->a_retval = HFS_XATTR_SIZE_BITS;
break;
default:
return (EINVAL);
return (0);
}
+/*
+ * Prepares a fork for cat_update by making sure ff_size and ff_blocks
+ * are no bigger than the valid data on disk thus reducing the chance
+ * of exposing uninitialised data in the event of a non clean unmount.
+ * fork_buf is where to put the temporary copy if required. (It can
+ * be inside pfork.)
+ */
+const struct cat_fork *
+hfs_prepare_fork_for_update(filefork_t *ff,
+ const struct cat_fork *cf,
+ struct cat_fork *cf_buf,
+ uint32_t block_size)
+{
+ if (!ff)
+ return NULL;
+
+ if (!cf)
+ cf = &ff->ff_data;
+ if (!cf_buf)
+ cf_buf = &ff->ff_data;
+
+ off_t max_size = ff->ff_size;
+
+ // Check first invalid range
+ if (!TAILQ_EMPTY(&ff->ff_invalidranges))
+ max_size = TAILQ_FIRST(&ff->ff_invalidranges)->rl_start;
+
+ if (!ff->ff_unallocblocks && ff->ff_size <= max_size)
+ return cf; // Nothing to do
+
+ if (ff->ff_blocks < ff->ff_unallocblocks) {
+ panic("hfs: ff_blocks %d is less than unalloc blocks %d\n",
+ ff->ff_blocks, ff->ff_unallocblocks);
+ }
+
+ struct cat_fork *out = cf_buf;
+
+ if (out != cf)
+ bcopy(cf, out, sizeof(*cf));
+
+ // Adjust cf_blocks for cf_vblocks
+ out->cf_blocks -= out->cf_vblocks;
+
+ /*
+ * Here we trim the size with the updated cf_blocks. This is
+ * probably unnecessary now because the invalid ranges should
+ * catch this (but that wasn't always the case).
+ */
+ off_t alloc_bytes = hfs_blk_to_bytes(out->cf_blocks, block_size);
+ if (out->cf_size > alloc_bytes)
+ out->cf_size = alloc_bytes;
+
+ // Trim cf_size to first invalid range
+ if (out->cf_size > max_size)
+ out->cf_size = max_size;
+
+ return out;
+}
/*
* Update a cnode's on-disk metadata.
*
- * If waitfor is set, then wait for the disk write of
- * the node to complete.
- *
- * The cnode must be locked exclusive
+ * The cnode must be locked exclusive. See declaration for possible
+ * options.
*/
-__private_extern__
int
-hfs_update(struct vnode *vp, __unused int waitfor)
+hfs_update(struct vnode *vp, int options)
{
struct cnode *cp = VTOC(vp);
struct proc *p;
- struct cat_fork *dataforkp = NULL;
- struct cat_fork *rsrcforkp = NULL;
+ const struct cat_fork *dataforkp = NULL;
+ const struct cat_fork *rsrcforkp = NULL;
struct cat_fork datafork;
struct cat_fork rsrcfork;
struct hfsmount *hfsmp;
int lockflags;
int error;
+ uint32_t tstate = 0;
+
+ if (ISSET(cp->c_flag, C_NOEXISTS))
+ return 0;
p = current_proc();
hfsmp = VTOHFS(vp);
return (0);
}
if ((hfsmp->hfs_flags & HFS_READ_ONLY) || (cp->c_mode == 0)) {
- cp->c_flag &= ~C_MODIFIED;
+ CLR(cp->c_flag, C_MODIFIED | C_MINOR_MOD | C_NEEDS_DATEADDED);
cp->c_touch_acctime = 0;
cp->c_touch_chgtime = 0;
cp->c_touch_modtime = 0;
return (0);
}
-
+ if (kdebug_enable) {
+ if (cp->c_touch_acctime || cp->c_atime != cp->c_attr.ca_atimeondisk)
+ tstate |= DBG_HFS_UPDATE_ACCTIME;
+ if (cp->c_touch_modtime)
+ tstate |= DBG_HFS_UPDATE_MODTIME;
+ if (cp->c_touch_chgtime)
+ tstate |= DBG_HFS_UPDATE_CHGTIME;
+
+ if (cp->c_flag & C_MODIFIED)
+ tstate |= DBG_HFS_UPDATE_MODIFIED;
+ if (ISSET(options, HFS_UPDATE_FORCE))
+ tstate |= DBG_HFS_UPDATE_FORCE;
+ if (cp->c_flag & C_NEEDS_DATEADDED)
+ tstate |= DBG_HFS_UPDATE_DATEADDED;
+ if (cp->c_flag & C_MINOR_MOD)
+ tstate |= DBG_HFS_UPDATE_MINOR;
+ }
hfs_touchtimes(hfsmp, cp);
- /* Nothing to update. */
- if ((cp->c_flag & (C_MODIFIED | C_FORCEUPDATE)) == 0) {
- return (0);
+ if (!ISSET(cp->c_flag, C_MODIFIED | C_MINOR_MOD)
+ && !hfs_should_save_atime(cp)) {
+ // Nothing to update
+ return 0;
}
-
+
+ KDBG(HFSDBG_UPDATE | DBG_FUNC_START, VM_KERNEL_ADDRPERM(vp), tstate);
+
+ bool check_txn = false;
+
+ if (!ISSET(options, HFS_UPDATE_FORCE) && !ISSET(cp->c_flag, C_MODIFIED)) {
+ /*
+ * This must be a minor modification. If the current
+ * transaction already has an update for this node, then we
+ * bundle in the modification.
+ */
+ if (hfsmp->jnl
+ && journal_current_txn(hfsmp->jnl) == cp->c_update_txn) {
+ check_txn = true;
+ } else {
+ tstate |= DBG_HFS_UPDATE_SKIPPED;
+ error = 0;
+ goto exit;
+ }
+ }
+
+ if ((error = hfs_start_transaction(hfsmp)) != 0)
+ goto exit;
+
+ if (check_txn
+ && journal_current_txn(hfsmp->jnl) != cp->c_update_txn) {
+ hfs_end_transaction(hfsmp);
+ tstate |= DBG_HFS_UPDATE_SKIPPED;
+ error = 0;
+ goto exit;
+ }
+
if (cp->c_datafork)
dataforkp = &cp->c_datafork->ff_data;
if (cp->c_rsrcfork)
rsrcforkp = &cp->c_rsrcfork->ff_data;
- /*
- * For delayed allocations updates are
- * postponed until an fsync or the file
- * gets written to disk.
- *
- * Deleted files can defer meta data updates until inactive.
- *
- * If we're ever called with the C_FORCEUPDATE flag though
- * we have to do the update.
- */
- if (ISSET(cp->c_flag, C_FORCEUPDATE) == 0 &&
- (ISSET(cp->c_flag, C_DELETED) ||
- (dataforkp && cp->c_datafork->ff_unallocblocks) ||
- (rsrcforkp && cp->c_rsrcfork->ff_unallocblocks))) {
- // cp->c_flag &= ~(C_ACCESS | C_CHANGE | C_UPDATE);
- cp->c_flag |= C_MODIFIED;
+ /*
+ * Modify the values passed to cat_update based on whether or not
+ * the file has invalid ranges or borrowed blocks.
+ */
+ dataforkp = hfs_prepare_fork_for_update(cp->c_datafork, NULL, &datafork, hfsmp->blockSize);
+ rsrcforkp = hfs_prepare_fork_for_update(cp->c_rsrcfork, NULL, &rsrcfork, hfsmp->blockSize);
- return (0);
- }
+ if (__improbable(kdebug_enable & KDEBUG_TRACE)) {
+ long dbg_parms[NUMPARMS];
+ int dbg_namelen;
- if ((error = hfs_start_transaction(hfsmp)) != 0) {
- return error;
- }
+ dbg_namelen = NUMPARMS * sizeof(long);
+ vn_getpath(vp, (char *)dbg_parms, &dbg_namelen);
- /*
- * For files with invalid ranges (holes) the on-disk
- * field representing the size of the file (cf_size)
- * must be no larger than the start of the first hole.
- */
- if (dataforkp && !TAILQ_EMPTY(&cp->c_datafork->ff_invalidranges)) {
- bcopy(dataforkp, &datafork, sizeof(datafork));
- datafork.cf_size = TAILQ_FIRST(&cp->c_datafork->ff_invalidranges)->rl_start;
- dataforkp = &datafork;
- } else if (dataforkp && (cp->c_datafork->ff_unallocblocks != 0)) {
- // always make sure the block count and the size
- // of the file match the number of blocks actually
- // allocated to the file on disk
- bcopy(dataforkp, &datafork, sizeof(datafork));
- // make sure that we don't assign a negative block count
- if (cp->c_datafork->ff_blocks < cp->c_datafork->ff_unallocblocks) {
- panic("hfs: ff_blocks %d is less than unalloc blocks %d\n",
- cp->c_datafork->ff_blocks, cp->c_datafork->ff_unallocblocks);
- }
- datafork.cf_blocks = (cp->c_datafork->ff_blocks - cp->c_datafork->ff_unallocblocks);
- datafork.cf_size = datafork.cf_blocks * HFSTOVCB(hfsmp)->blockSize;
- dataforkp = &datafork;
- }
+ if (dbg_namelen < (int)sizeof(dbg_parms))
+ memset((char *)dbg_parms + dbg_namelen, 0, sizeof(dbg_parms) - dbg_namelen);
- /*
- * For resource forks with delayed allocations, make sure
- * the block count and file size match the number of blocks
- * actually allocated to the file on disk.
- */
- if (rsrcforkp && (cp->c_rsrcfork->ff_unallocblocks != 0)) {
- bcopy(rsrcforkp, &rsrcfork, sizeof(rsrcfork));
- rsrcfork.cf_blocks = (cp->c_rsrcfork->ff_blocks - cp->c_rsrcfork->ff_unallocblocks);
- rsrcfork.cf_size = rsrcfork.cf_blocks * HFSTOVCB(hfsmp)->blockSize;
- rsrcforkp = &rsrcfork;
+ kdebug_lookup_gen_events(dbg_parms, dbg_namelen, (void *)vp, TRUE);
}
/*
*/
lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_EXCLUSIVE_LOCK);
- /* XXX - waitfor is not enforced */
error = cat_update(hfsmp, &cp->c_desc, &cp->c_attr, dataforkp, rsrcforkp);
+ if (hfsmp->jnl)
+ cp->c_update_txn = journal_current_txn(hfsmp->jnl);
+
hfs_systemfile_unlock(hfsmp, lockflags);
- /* After the updates are finished, clear the flags */
- cp->c_flag &= ~(C_MODIFIED | C_FORCEUPDATE);
+ CLR(cp->c_flag, C_MODIFIED | C_MINOR_MOD);
hfs_end_transaction(hfsmp);
- return (error);
+exit:
+
+ KDBG(HFSDBG_UPDATE | DBG_FUNC_END, VM_KERNEL_ADDRPERM(vp), tstate, error);
+
+ return error;
}
/*
* Allocate a new node
- * Note - Function does not create and return a vnode for whiteout creation.
*/
-static int
+int
hfs_makenode(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
struct vnode_attr *vap, vfs_context_t ctx)
{
int error, started_tr = 0;
enum vtype vnodetype;
int mode;
+ int newvnode_flags = 0;
+ u_int32_t gnv_flags = 0;
+ int protectable_target = 0;
+ int nocache = 0;
+
+#if CONFIG_PROTECT
+ struct cprotect *entry = NULL;
+ int32_t cp_class = -1;
+
+ /*
+ * By default, it's OK for AKS to overrride our target class preferences.
+ */
+ uint32_t keywrap_flags = CP_KEYWRAP_DIFFCLASS;
+
+ if (VATTR_IS_ACTIVE(vap, va_dataprotect_class)) {
+ cp_class = (int32_t)vap->va_dataprotect_class;
+ /*
+ * Since the user specifically requested this target class be used,
+ * we want to fail this creation operation if we cannot wrap to their
+ * target class. The CP_KEYWRAP_DIFFCLASS bit says that it is OK to
+ * use a different class than the one specified, so we turn that off
+ * now.
+ */
+ keywrap_flags &= ~CP_KEYWRAP_DIFFCLASS;
+ }
+ int protected_mount = 0;
+#endif
- if ((error = hfs_lock(VTOC(dvp), HFS_EXCLUSIVE_LOCK)))
+
+ if ((error = hfs_lock(VTOC(dvp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT)))
return (error);
- /* set the cnode pointer only after successfully acquiring lock */
- dcp = VTOC(dvp);
+ /* set the cnode pointer only after successfully acquiring lock */
+ dcp = VTOC(dvp);
+
+ /* Don't allow creation of new entries in open-unlinked directories */
+ if ((error = hfs_checkdeleted(dcp))) {
+ hfs_unlock(dcp);
+ return error;
+ }
+
dcp->c_flag |= C_DIR_MODIFICATION;
-
+
hfsmp = VTOHFS(dvp);
+
*vpp = NULL;
tvp = NULL;
out_desc.cd_flags = 0;
vnodetype = VREG;
mode = MAKEIMODE(vnodetype, vap->va_mode);
+ if (S_ISDIR (mode) || S_ISREG (mode)) {
+ protectable_target = 1;
+ }
+
+
/* Check if were out of usable disk space. */
if ((hfs_freeblks(hfsmp, 1) == 0) && (vfs_context_suser(ctx) != 0)) {
error = ENOSPC;
} else {
attr.ca_itime = tv.tv_sec;
}
+#if CONFIG_HFS_STD
if ((hfsmp->hfs_flags & HFS_STANDARD) && gTimeZone.tz_dsttime) {
attr.ca_itime += 3600; /* Same as what hfs_update does */
}
+#endif
attr.ca_atime = attr.ca_ctime = attr.ca_mtime = attr.ca_itime;
attr.ca_atimeondisk = attr.ca_atime;
if (VATTR_IS_ACTIVE(vap, va_flags)) {
}
}
+#if CONFIG_PROTECT
+ if (cp_fs_protected(hfsmp->hfs_mp)) {
+ protected_mount = 1;
+ }
+ /*
+ * On a content-protected HFS+/HFSX filesystem, files and directories
+ * cannot be created without atomically setting/creating the EA that
+ * contains the protection class metadata and keys at the same time, in
+ * the same transaction. As a result, pre-set the "EAs exist" flag
+ * on the cat_attr for protectable catalog record creations. This will
+ * cause the cnode creation routine in hfs_getnewvnode to mark the cnode
+ * as having EAs.
+ */
+ if ((protected_mount) && (protectable_target)) {
+ attr.ca_recflags |= kHFSHasAttributesMask;
+ /* delay entering in the namecache */
+ nocache = 1;
+ }
+#endif
+
+
+ /*
+ * Add the date added to the item. See above, as
+ * all of the dates are set to the itime.
+ */
+ hfs_write_dateadded (&attr, attr.ca_atime);
+
+ /* Initialize the gen counter to 1 */
+ hfs_write_gencount(&attr, (uint32_t)1);
+
attr.ca_uid = vap->va_uid;
attr.ca_gid = vap->va_gid;
VATTR_SET_SUPPORTED(vap, va_mode);
fip->fdType = SWAP_BE32(kSymLinkFileType);
fip->fdCreator = SWAP_BE32(kSymLinkCreator);
}
- if (cnp->cn_flags & ISWHITEOUT)
- attr.ca_flags |= UF_OPAQUE;
/* Setup the descriptor */
in_desc.cd_nameptr = (const u_int8_t *)cnp->cn_nameptr;
in_desc.cd_hint = dcp->c_childhint;
in_desc.cd_encoding = 0;
+#if CONFIG_PROTECT
+ /*
+ * To preserve file creation atomicity with regards to the content protection EA,
+ * we must create the file in the catalog and then write out its EA in the same
+ * transaction.
+ *
+ * We only denote the target class in this EA; key generation is not completed
+ * until the file has been inserted into the catalog and will be done
+ * in a separate transaction.
+ */
+ if ((protected_mount) && (protectable_target)) {
+ error = cp_setup_newentry(hfsmp, dcp, cp_class, attr.ca_mode, &entry);
+ if (error) {
+ goto exit;
+ }
+ }
+#endif
+
if ((error = hfs_start_transaction(hfsmp)) != 0) {
goto exit;
}
// to check that any fileID it wants to use does not have orphaned
// attributes in it.
lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_ATTRIBUTE, HFS_EXCLUSIVE_LOCK);
+ cnid_t new_id;
/* Reserve some space in the Catalog file. */
if ((error = cat_preflight(hfsmp, CAT_CREATE, NULL, 0))) {
hfs_systemfile_unlock(hfsmp, lockflags);
goto exit;
}
- error = cat_create(hfsmp, &in_desc, &attr, &out_desc);
+
+ if ((error = cat_acquire_cnid(hfsmp, &new_id))) {
+ hfs_systemfile_unlock (hfsmp, lockflags);
+ goto exit;
+ }
+
+ error = cat_create(hfsmp, new_id, &in_desc, &attr, &out_desc);
if (error == 0) {
/* Update the parent directory */
dcp->c_childhint = out_desc.cd_hint; /* Cache directory's location */
dcp->c_entries++;
+
if (vnodetype == VDIR) {
INC_FOLDERCOUNT(hfsmp, dcp->c_attr);
}
dcp->c_dirchangecnt++;
- dcp->c_ctime = tv.tv_sec;
- dcp->c_mtime = tv.tv_sec;
- (void) cat_update(hfsmp, &dcp->c_desc, &dcp->c_attr, NULL, NULL);
+ hfs_incr_gencount(dcp);
+
+ dcp->c_touch_chgtime = dcp->c_touch_modtime = true;
+ dcp->c_flag |= C_MODIFIED;
+
+ hfs_update(dcp->c_vp, 0);
+
+#if CONFIG_PROTECT
+ /*
+ * If we are creating a content protected file, now is when
+ * we create the EA. We must create it in the same transaction
+ * that creates the file. We can also guarantee that the file
+ * MUST exist because we are still holding the catalog lock
+ * at this point.
+ */
+ if ((attr.ca_fileid != 0) && (protected_mount) && (protectable_target)) {
+ error = cp_setxattr (NULL, entry, hfsmp, attr.ca_fileid, XATTR_CREATE);
+
+ if (error) {
+ int delete_err;
+ /*
+ * If we fail the EA creation, then we need to delete the file.
+ * Luckily, we are still holding all of the right locks.
+ */
+ delete_err = cat_delete (hfsmp, &out_desc, &attr);
+ if (delete_err == 0) {
+ /* Update the parent directory */
+ if (dcp->c_entries > 0)
+ dcp->c_entries--;
+ dcp->c_dirchangecnt++;
+ dcp->c_ctime = tv.tv_sec;
+ dcp->c_mtime = tv.tv_sec;
+ (void) cat_update(hfsmp, &dcp->c_desc, &dcp->c_attr, NULL, NULL);
+ }
+
+ /* Emit EINVAL if we fail to create EA*/
+ error = EINVAL;
+ }
+ }
+#endif
}
hfs_systemfile_unlock(hfsmp, lockflags);
if (error)
goto exit;
-
+
+ uint32_t txn = hfsmp->jnl ? journal_current_txn(hfsmp->jnl) : 0;
+
/* Invalidate negative cache entries in the directory */
if (dcp->c_flag & C_NEG_ENTRIES) {
cache_purge_negatives(dvp);
started_tr = 0;
}
- /* Do not create vnode for whiteouts */
- if (S_ISWHT(mode)) {
- goto exit;
+#if CONFIG_PROTECT
+ /*
+ * At this point, we must have encountered success with writing the EA.
+ * Destroy our temporary cprotect (which had no keys).
+ */
+
+ if ((attr.ca_fileid != 0) && (protected_mount) && (protectable_target)) {
+ cp_entry_destroy (hfsmp, entry);
+ entry = NULL;
+ }
+#endif
+ gnv_flags |= GNV_CREATE;
+ if (nocache) {
+ gnv_flags |= GNV_NOCACHE;
}
/*
* try to create a new vnode, and then end up reclaiming another shadow vnode to
* create the new one. However, if everything is working properly, this should
* be a non-issue as we would never enter that reclaim codepath.
- *
+ *
* The cnode is locked on successful return.
*/
- error = hfs_getnewvnode(hfsmp, dvp, cnp, &out_desc, GNV_CREATE, &attr, NULL, &tvp);
+ error = hfs_getnewvnode(hfsmp, dvp, cnp, &out_desc, gnv_flags, &attr,
+ NULL, &tvp, &newvnode_flags);
if (error)
goto exit;
cp = VTOC(tvp);
+
+ cp->c_update_txn = txn;
+
+ struct doc_tombstone *ut;
+ ut = get_uthread_doc_tombstone();
+ if ( ut->t_lastop_document_id != 0
+ && ut->t_lastop_parent == dvp
+ && ut->t_lastop_parent_vid == vnode_vid(dvp)
+ && strcmp((char *)ut->t_lastop_filename, (const char *)cp->c_desc.cd_nameptr) == 0) {
+ struct FndrExtendedDirInfo *fip = (struct FndrExtendedDirInfo *)((char *)&cp->c_attr.ca_finderinfo + 16);
+
+ //printf("CREATE: preserving doc-id %lld on %s\n", ut->t_lastop_document_id, ut->t_lastop_filename);
+ fip->document_id = (uint32_t)(ut->t_lastop_document_id & 0xffffffff);
+
+ cp->c_bsdflags |= UF_TRACKED;
+ cp->c_flag |= C_MODIFIED;
+
+ if ((error = hfs_start_transaction(hfsmp)) == 0) {
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_EXCLUSIVE_LOCK);
+
+ (void) cat_update(hfsmp, &cp->c_desc, &cp->c_attr, NULL, NULL);
+
+ hfs_systemfile_unlock (hfsmp, lockflags);
+ (void) hfs_end_transaction(hfsmp);
+ }
+
+ clear_tombstone_docid(ut, hfsmp, cp); // will send the docid-changed fsevent
+ } else if (ut->t_lastop_document_id != 0) {
+ int len = cnp->cn_namelen;
+ if (len == 0) {
+ len = strlen(cnp->cn_nameptr);
+ }
+
+ if (is_ignorable_temp_name(cnp->cn_nameptr, cnp->cn_namelen)) {
+ // printf("CREATE: not clearing tombstone because %s is a temp name.\n", cnp->cn_nameptr);
+ } else {
+ // Clear the tombstone because the thread is not recreating the same path
+ // printf("CREATE: clearing tombstone because %s is NOT a temp name.\n", cnp->cn_nameptr);
+ clear_tombstone_docid(ut, hfsmp, NULL);
+ }
+ }
+
+ if ((hfsmp->hfs_flags & HFS_CS_HOTFILE_PIN) && (vnode_isfastdevicecandidate(dvp) && !vnode_isautocandidate(dvp))) {
+
+ //printf("hfs: flagging %s (fileid: %d) as VFASTDEVCANDIDATE (dvp name: %s)\n",
+ // cnp->cn_nameptr ? cnp->cn_nameptr : "<NONAME>",
+ // cp->c_fileid,
+ // dvp->v_name ? dvp->v_name : "no-dir-name");
+
+ //
+ // On new files we set the FastDevCandidate flag so that
+ // any new blocks allocated to it will be pinned.
+ //
+ cp->c_attr.ca_recflags |= kHFSFastDevCandidateMask;
+ vnode_setfastdevicecandidate(tvp);
+
+ //
+ // properly inherit auto-cached flags
+ //
+ if (vnode_isautocandidate(dvp)) {
+ cp->c_attr.ca_recflags |= kHFSAutoCandidateMask;
+ vnode_setautocandidate(tvp);
+ }
+
+
+ //
+ // We also want to add it to the hotfile adoption list so
+ // that it will eventually land in the hotfile btree
+ //
+ (void) hfs_addhotfile(tvp);
+ }
+
*vpp = tvp;
+
+#if CONFIG_PROTECT
+ /*
+ * Now that we have a vnode-in-hand, generate keys for this namespace item.
+ * If we fail to create the keys, then attempt to delete the item from the
+ * namespace. If we can't delete the item, that's not desirable but also not fatal..
+ * All of the places which deal with restoring/unwrapping keys must also be
+ * prepared to encounter an entry that does not have keys.
+ */
+ if ((protectable_target) && (protected_mount)) {
+ struct cprotect *keyed_entry = NULL;
+
+ if (cp->c_cpentry == NULL) {
+ panic ("hfs_makenode: no cpentry for cnode (%p)", cp);
+ }
+
+ error = cp_generate_keys (hfsmp, cp, CP_CLASS(cp->c_cpentry->cp_pclass), keywrap_flags, &keyed_entry);
+ if (error == 0) {
+ /*
+ * Upon success, the keys were generated and written out.
+ * Update the cp pointer in the cnode.
+ */
+ cp_replace_entry (hfsmp, cp, keyed_entry);
+ if (nocache) {
+ cache_enter (dvp, tvp, cnp);
+ }
+ }
+ else {
+ /* If key creation OR the setxattr failed, emit EPERM to userland */
+ error = EPERM;
+
+ /*
+ * Beware! This slightly violates the lock ordering for the
+ * cnode/vnode 'tvp'. Ordinarily, you must acquire the truncate lock
+ * which guards file size changes before acquiring the normal cnode lock
+ * and calling hfs_removefile on an item.
+ *
+ * However, in this case, we are still holding the directory lock so
+ * 'tvp' is not lookup-able and it was a newly created vnode so it
+ * cannot have any content yet. The only reason we are initiating
+ * the removefile is because we could not generate content protection keys
+ * for this namespace item. Note also that we pass a '1' in the allow_dirs
+ * argument for hfs_removefile because we may be creating a directory here.
+ *
+ * All this to say that while it is technically a violation it is
+ * impossible to race with another thread for this cnode so it is safe.
+ */
+ int err = hfs_removefile (dvp, tvp, cnp, 0, 0, 1, NULL, 0);
+ if (err) {
+ printf("hfs_makenode: removefile failed (%d) for CP entry %p\n", err, tvp);
+ }
+
+ /* Release the cnode lock and mark the vnode for termination */
+ hfs_unlock (cp);
+ err = vnode_recycle (tvp);
+ if (err) {
+ printf("hfs_makenode: vnode_recycle failed (%d) for CP entry %p\n", err, tvp);
+ }
+
+ /* Drop the iocount on the new vnode to force reclamation/recycling */
+ vnode_put (tvp);
+ cp = NULL;
+ *vpp = NULL;
+ }
+ }
+#endif
+
+#if QUOTA
+ /*
+ * Once we create this vnode, we need to initialize its quota data
+ * structures, if necessary. We know that it is OK to just go ahead and
+ * initialize because we've already validated earlier (through the hfs_quotacheck
+ * function) to see if creating this cnode/vnode would cause us to go over quota.
+ */
+ if (hfsmp->hfs_flags & HFS_QUOTAS) {
+ if (cp) {
+ /* cp could have been zeroed earlier */
+ (void) hfs_getinoquota(cp);
+ }
+ }
+#endif
+
exit:
cat_releasedesc(&out_desc);
+#if CONFIG_PROTECT
+ /*
+ * We may have jumped here in error-handling various situations above.
+ * If we haven't already dumped the temporary CP used to initialize
+ * the file atomically, then free it now. cp_entry_destroy should null
+ * out the pointer if it was called already.
+ */
+ if (entry) {
+ cp_entry_destroy (hfsmp, entry);
+ entry = NULL;
+ }
+#endif
+
/*
* Make sure we release cnode lock on dcp.
*/
}
-
-/* hfs_vgetrsrc acquires a resource fork vnode corresponding to the cnode that is
- * found in 'vp'. The rsrc fork vnode is returned with the cnode locked and iocount
- * on the rsrc vnode.
- *
- * *rvpp is an output argument for returning the pointer to the resource fork vnode.
- * In most cases, the resource fork vnode will not be set if we return an error.
- * However, if error_on_unlinked is set, we may have already acquired the resource fork vnode
- * before we discover the error (the file has gone open-unlinked). In this case only,
- * we may return a vnode in the output argument despite an error.
- *
- * If can_drop_lock is set, then it is safe for this function to temporarily drop
- * and then re-acquire the cnode lock. We may need to do this, for example, in order to
- * acquire an iocount or promote our lock.
+/*
+ * hfs_vgetrsrc acquires a resource fork vnode corresponding to the
+ * cnode that is found in 'vp'. The cnode should be locked upon entry
+ * and will be returned locked, but it may be dropped temporarily.
+ *
+ * If the resource fork vnode does not exist, HFS will attempt to acquire an
+ * empty (uninitialized) vnode from VFS so as to avoid deadlocks with
+ * jetsam. If we let the normal getnewvnode code produce the vnode for us
+ * we would be doing so while holding the cnode lock of our cnode.
*
- * error_on_unlinked is an argument which indicates that we are to return an error if we
- * discover that the cnode has gone into an open-unlinked state ( C_DELETED or C_NOEXISTS)
- * is set in the cnode flags. This is only necessary if can_drop_lock is true, otherwise
- * there's really no reason to double-check for errors on the cnode.
+ * On success, *rvpp wlll hold the resource fork vnode with an
+ * iocount. *Don't* forget the vnode_put.
*/
-
-__private_extern__
int
-hfs_vgetrsrc(struct hfsmount *hfsmp, struct vnode *vp,
- struct vnode **rvpp, int can_drop_lock, int error_on_unlinked)
+hfs_vgetrsrc(struct hfsmount *hfsmp, struct vnode *vp, struct vnode **rvpp)
{
- struct vnode *rvp;
+ struct vnode *rvp = NULLVP;
+ struct vnode *empty_rvp = NULLVP;
struct vnode *dvp = NULLVP;
struct cnode *cp = VTOC(vp);
int error;
int vid;
- int delete_status = 0;
-
- /*
- * Need to check the status of the cnode to validate it hasn't
- * gone open-unlinked on us before we can actually do work with it.
- */
- delete_status = hfs_checkdeleted (cp);
- if ((delete_status) && (error_on_unlinked)) {
- return delete_status;
+ if (vnode_vtype(vp) == VDIR) {
+ return EINVAL;
}
-
+
restart:
- /* Attempt to use exising vnode */
+ /* Attempt to use existing vnode */
if ((rvp = cp->c_rsrc_vp)) {
- vid = vnode_vid(rvp);
+ vid = vnode_vid(rvp);
- /*
- * It is not safe to hold the cnode lock when calling vnode_getwithvid()
- * for the alternate fork -- vnode_getwithvid() could deadlock waiting
- * for a VL_WANTTERM while another thread has an iocount on the alternate
- * fork vnode and is attempting to acquire the common cnode lock.
- *
- * But it's also not safe to drop the cnode lock when we're holding
- * multiple cnode locks, like during a hfs_removefile() operation
- * since we could lock out of order when re-acquiring the cnode lock.
- *
- * So we can only drop the lock here if its safe to drop it -- which is
- * most of the time with the exception being hfs_removefile().
- */
- if (can_drop_lock)
- hfs_unlock(cp);
+ // vnode_getwithvid can block so we need to drop the cnode lock
+ hfs_unlock(cp);
error = vnode_getwithvid(rvp, vid);
- if (can_drop_lock) {
- (void) hfs_lock(cp, HFS_FORCE_LOCK);
+ hfs_lock_always(cp, HFS_EXCLUSIVE_LOCK);
- /*
- * When we relinquished our cnode lock, the cnode could have raced
- * with a delete and gotten deleted. If the caller did not want
- * us to ignore open-unlinked files, then re-check the C_DELETED
- * state and see if we need to return an ENOENT here because the item
- * got deleted in the intervening time.
- */
- if (error_on_unlinked) {
- if ((delete_status = hfs_checkdeleted(cp))) {
- /*
- * If error == 0, this means that we succeeded in acquiring an iocount on the
- * rsrc fork vnode. However, if we're in this block of code, that
- * means that we noticed that the cnode has gone open-unlinked. In
- * this case, the caller requested that we not do any other work and
- * return an errno. The caller will be responsible for dropping the
- * iocount we just acquired because we can't do it until we've released
- * the cnode lock.
- */
- if (error == 0) {
- *rvpp = rvp;
- }
- return delete_status;
- }
- }
+ /*
+ * When our lock was relinquished, the resource fork
+ * could have been recycled. Check for this and try
+ * again.
+ */
+ if (error == ENOENT)
+ goto restart;
- /*
- * When our lock was relinquished, the resource fork
- * could have been recycled. Check for this and try
- * again.
- */
- if (error == ENOENT)
- goto restart;
- }
if (error) {
const char * name = (const char *)VTOC(vp)->c_desc.cd_nameptr;
if (name)
printf("hfs_vgetrsrc: couldn't get resource"
- " fork for %s, err %d\n", name, error);
+ " fork for %s, vol=%s, err=%d\n", name, hfsmp->vcbVN, error);
return (error);
}
} else {
struct cat_desc to_desc;
char delname[32];
int lockflags;
+ int newvnode_flags = 0;
- /*
- * Make sure cnode lock is exclusive, if not upgrade it.
+ /*
+ * In this case, we don't currently see a resource fork vnode attached
+ * to this cnode. In most cases, we were called from a read-only VNOP
+ * like getattr, so it should be safe to drop the cnode lock and then
+ * re-acquire it.
*
- * We assume that we were called from a read-only VNOP (getattr)
- * and that its safe to have the cnode lock dropped and reacquired.
+ * Here, we drop the lock so that we can acquire an empty/husk
+ * vnode so that we don't deadlock against jetsam.
+ *
+ * It does not currently appear possible to hold the truncate lock via
+ * FS re-entrancy when we get to this point. (8/2014)
*/
- if (cp->c_lockowner != current_thread()) {
- if (!can_drop_lock) {
- return (EINVAL);
- }
- /*
- * If the upgrade fails we lose the lock and
- * have to take the exclusive lock on our own.
- */
- if (lck_rw_lock_shared_to_exclusive(&cp->c_rwlock) == FALSE)
- lck_rw_lock_exclusive(&cp->c_rwlock);
- cp->c_lockowner = current_thread();
+ hfs_unlock (cp);
+
+ error = vnode_create_empty (&empty_rvp);
+
+ hfs_lock_always (cp, HFS_EXCLUSIVE_LOCK);
+
+ if (error) {
+ /* If acquiring the 'empty' vnode failed, then nothing to clean up */
+ return error;
}
+ /*
+ * We could have raced with another thread here while we dropped our cnode
+ * lock. See if the cnode now has a resource fork vnode and restart if appropriate.
+ *
+ * Note: We just released the cnode lock, so there is a possibility that the
+ * cnode that we just acquired has been deleted or even removed from disk
+ * completely, though this is unlikely. If the file is open-unlinked, the
+ * check below will resolve it for us. If it has been completely
+ * removed (even from the catalog!), then when we examine the catalog
+ * directly, below, while holding the catalog lock, we will not find the
+ * item and we can fail out properly.
+ */
+ if (cp->c_rsrc_vp) {
+ /* Drop the empty vnode before restarting */
+ vnode_put (empty_rvp);
+ empty_rvp = NULL;
+ rvp = NULL;
+ goto restart;
+ }
+
/*
* hfs_vgetsrc may be invoked for a cnode that has already been marked
* C_DELETED. This is because we need to continue to provide rsrc
* fork access to open-unlinked files. In this case, build a fake descriptor
* like in hfs_removefile. If we don't do this, buildkey will fail in
- * cat_lookup because this cnode has no name in its descriptor. However,
- * only do this if the caller did not specify that they wanted us to
- * error out upon encountering open-unlinked files.
+ * cat_lookup because this cnode has no name in its descriptor.
*/
-
- if ((error_on_unlinked) && (can_drop_lock)) {
- if ((error = hfs_checkdeleted (cp))) {
- return error;
- }
- }
-
if ((cp->c_flag & C_DELETED ) && (cp->c_desc.cd_namelen == 0)) {
bzero (&to_desc, sizeof(to_desc));
bzero (delname, 32);
lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
+ /*
+ * We call cat_idlookup (instead of cat_lookup) below because we can't
+ * trust the descriptor in the provided cnode for lookups at this point.
+ * Between the time of the original lookup of this vnode and now, the
+ * descriptor could have gotten swapped or replaced. If this occurred,
+ * the parent/name combo originally desired may not necessarily be provided
+ * if we use the descriptor. Even worse, if the vnode represents
+ * a hardlink, we could have removed one of the links from the namespace
+ * but left the descriptor alone, since hfs_unlink does not invalidate
+ * the descriptor in the cnode if other links still point to the inode.
+ *
+ * Consider the following (slightly contrived) scenario:
+ * /tmp/a <--> /tmp/b (hardlinks).
+ * 1. Thread A: open rsrc fork on /tmp/b.
+ * 1a. Thread A: does lookup, goes out to lunch right before calling getnamedstream.
+ * 2. Thread B does 'mv /foo/b /tmp/b'
+ * 2. Thread B succeeds.
+ * 3. Thread A comes back and wants rsrc fork info for /tmp/b.
+ *
+ * Even though the hardlink backing /tmp/b is now eliminated, the descriptor
+ * is not removed/updated during the unlink process. So, if you were to
+ * do a lookup on /tmp/b, you'd acquire an entirely different record's resource
+ * fork.
+ *
+ * As a result, we use the fileid, which should be invariant for the lifetime
+ * of the cnode (possibly barring calls to exchangedata).
+ *
+ * Addendum: We can't do the above for HFS standard since we aren't guaranteed to
+ * have thread records for files. They were only required for directories. So
+ * we need to do the lookup with the catalog name. This is OK since hardlinks were
+ * never allowed on HFS standard.
+ */
+
/* Get resource fork data */
- error = cat_lookup(hfsmp, descptr, 1, (struct cat_desc *)0,
- (struct cat_attr *)0, &rsrcfork, NULL);
+ if ((hfsmp->hfs_flags & HFS_STANDARD) == 0) {
+ error = cat_idlookup (hfsmp, cp->c_fileid, 0, 1, NULL, NULL, &rsrcfork);
+ }
+#if CONFIG_HFS_STD
+ else {
+ /*
+ * HFS standard only:
+ *
+ * Get the resource fork for this item with a cat_lookup call, but do not
+ * force a case lookup since HFS standard is case-insensitive only. We
+ * don't want the descriptor; just the fork data here. If we tried to
+ * do a ID lookup (via thread record -> catalog record), then we might fail
+ * prematurely since, as noted above, thread records were not strictly required
+ * on files in HFS.
+ */
+ error = cat_lookup (hfsmp, descptr, 1, 0, (struct cat_desc*)NULL,
+ (struct cat_attr*)NULL, &rsrcfork, NULL);
+ }
+#endif
hfs_systemfile_unlock(hfsmp, lockflags);
if (error) {
+ /* Drop our 'empty' vnode ! */
+ vnode_put (empty_rvp);
return (error);
}
/*
cn.cn_namelen = snprintf(cn.cn_nameptr, MAXPATHLEN,
"%s%s", descptr->cd_nameptr,
_PATH_RSRCFORKSPEC);
+ // Should never happen because cn.cn_nameptr won't ever be long...
+ if (cn.cn_namelen >= MAXPATHLEN) {
+ FREE_ZONE(cn.cn_pnbuf, cn.cn_pnlen, M_NAMEI);
+ /* Drop our 'empty' vnode ! */
+ vnode_put (empty_rvp);
+ return ENAMETOOLONG;
+
+ }
}
dvp = vnode_getparent(vp);
+
+ /*
+ * We are about to call hfs_getnewvnode and pass in the vnode that we acquired
+ * earlier when we were not holding any locks. The semantics of GNV_USE_VP require that
+ * either hfs_getnewvnode consume the vnode and vend it back to us, properly initialized,
+ * or it will consume/dispose of it properly if it errors out.
+ */
+ rvp = empty_rvp;
+
error = hfs_getnewvnode(hfsmp, dvp, cn.cn_pnbuf ? &cn : NULL,
- descptr, GNV_WANTRSRC | GNV_SKIPLOCK, &cp->c_attr,
- &rsrcfork, &rvp);
+ descptr, (GNV_WANTRSRC | GNV_SKIPLOCK | GNV_USE_VP),
+ &cp->c_attr, &rsrcfork, &rvp, &newvnode_flags);
+
if (dvp)
vnode_put(dvp);
if (cn.cn_pnbuf)
FREE_ZONE(cn.cn_pnbuf, cn.cn_pnlen, M_NAMEI);
if (error)
return (error);
- }
+ } /* End 'else' for rsrc fork not existing */
*rvpp = rvp;
return (0);
/*
* Wrapper for special device reads
*/
-static int
+int
hfsspec_read(ap)
struct vnop_read_args /* {
struct vnode *a_vp;
/*
* Wrapper for special device writes
*/
-static int
+int
hfsspec_write(ap)
struct vnop_write_args /* {
struct vnode *a_vp;
*
* Update the times on the cnode then do device close.
*/
-static int
+int
hfsspec_close(ap)
struct vnop_close_args /* {
struct vnode *a_vp;
struct cnode *cp;
if (vnode_isinuse(ap->a_vp, 0)) {
- if (hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK) == 0) {
+ if (hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT) == 0) {
cp = VTOC(vp);
hfs_touchtimes(VTOHFS(vp), cp);
hfs_unlock(cp);
struct cnode *cp;
if (vnode_isinuse(ap->a_vp, 1)) {
- if (hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK) == 0) {
+ if (hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT) == 0) {
cp = VTOC(vp);
hfs_touchtimes(VTOHFS(vp), cp);
hfs_unlock(cp);
#endif /* FIFO */
+/*
+ * Getter for the document_id
+ * the document_id is stored in FndrExtendedFileInfo/FndrExtendedDirInfo
+ */
+static u_int32_t
+hfs_get_document_id_internal(const uint8_t *finderinfo, mode_t mode)
+{
+ const uint8_t *finfo = NULL;
+ u_int32_t doc_id = 0;
+
+ /* overlay the FinderInfo to the correct pointer, and advance */
+ finfo = finderinfo + 16;
+
+ if (S_ISDIR(mode) || S_ISREG(mode)) {
+ const struct FndrExtendedFileInfo *extinfo = (const struct FndrExtendedFileInfo *)finfo;
+ doc_id = extinfo->document_id;
+ } else if (S_ISDIR(mode)) {
+ const struct FndrExtendedDirInfo *extinfo = (const struct FndrExtendedDirInfo *)finfo;
+ doc_id = extinfo->document_id;
+ }
+
+ return doc_id;
+}
+
+
+/* getter(s) for document id */
+u_int32_t
+hfs_get_document_id(struct cnode *cp)
+{
+ return (hfs_get_document_id_internal((u_int8_t*)cp->c_finderinfo,
+ cp->c_attr.ca_mode));
+}
+
+/* If you have finderinfo and mode, you can use this */
+u_int32_t
+hfs_get_document_id_from_blob(const uint8_t *finderinfo, mode_t mode)
+{
+ return (hfs_get_document_id_internal(finderinfo, mode));
+}
+
/*
* Synchronize a file's in-core state with that on disk.
*/
-static int
+int
hfs_vnop_fsync(ap)
struct vnop_fsync_args /* {
struct vnode *a_vp;
struct vnode* vp = ap->a_vp;
int error;
+ /* Note: We check hfs flags instead of vfs mount flag because during
+ * read-write update, hfs marks itself read-write much earlier than
+ * the vfs, and hence won't result in skipping of certain writes like
+ * zero'ing out of unused nodes, creation of hotfiles btree, etc.
+ */
+ if (VTOHFS(vp)->hfs_flags & HFS_READ_ONLY) {
+ return 0;
+ }
+
/*
- * We need to allow ENOENT lock errors since unlink
- * systenm call can call VNOP_FSYNC during vclean.
+ * No need to call cp_handle_vnop to resolve fsync(). Any dirty data
+ * should have caused the keys to be unwrapped at the time the data was
+ * put into the UBC, either at mmap/pagein/read-write. If we did manage
+ * to let this by, then strategy will auto-resolve for us.
+ *
+ * We also need to allow ENOENT lock errors since unlink
+ * system call can call VNOP_FSYNC during vclean.
*/
- error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK);
+ error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
if (error)
return (0);
return (error);
}
-
-static int
-hfs_vnop_whiteout(ap)
- struct vnop_whiteout_args /* {
- struct vnode *a_dvp;
- struct componentname *a_cnp;
- int a_flags;
- vfs_context_t a_context;
- } */ *ap;
-{
- int error = 0;
- struct vnode *vp = NULL;
- struct vnode_attr va;
- struct vnop_lookup_args lookup_args;
- struct vnop_remove_args remove_args;
- struct hfsmount *hfsmp;
-
- hfsmp = VTOHFS(ap->a_dvp);
- if (hfsmp->hfs_flags & HFS_STANDARD) {
- error = ENOTSUP;
- goto exit;
- }
-
- switch (ap->a_flags) {
- case LOOKUP:
- error = 0;
- break;
-
- case CREATE:
- VATTR_INIT(&va);
- VATTR_SET(&va, va_type, VREG);
- VATTR_SET(&va, va_mode, S_IFWHT);
- VATTR_SET(&va, va_uid, 0);
- VATTR_SET(&va, va_gid, 0);
-
- error = hfs_makenode(ap->a_dvp, &vp, ap->a_cnp, &va, ap->a_context);
- /* No need to release the vnode as no vnode is created for whiteouts */
- break;
-
- case DELETE:
- lookup_args.a_dvp = ap->a_dvp;
- lookup_args.a_vpp = &vp;
- lookup_args.a_cnp = ap->a_cnp;
- lookup_args.a_context = ap->a_context;
-
- error = hfs_vnop_lookup(&lookup_args);
- if (error) {
- break;
- }
-
- remove_args.a_dvp = ap->a_dvp;
- remove_args.a_vp = vp;
- remove_args.a_cnp = ap->a_cnp;
- remove_args.a_flags = 0;
- remove_args.a_context = ap->a_context;
-
- error = hfs_vnop_remove(&remove_args);
- vnode_put(vp);
- break;
-
- default:
- panic("hfs_vnop_whiteout: unknown operation (flag = %x)\n", ap->a_flags);
- };
-
-exit:
- return (error);
-}
-
int (**hfs_vnodeop_p)(void *);
-int (**hfs_std_vnodeop_p) (void *);
#define VOPFUNC int (*)(void *)
+
+#if CONFIG_HFS_STD
+int (**hfs_std_vnodeop_p) (void *);
static int hfs_readonly_op (__unused void* ap) { return (EROFS); }
/*
{ &vnop_pathconf_desc, (VOPFUNC)hfs_vnop_pathconf }, /* pathconf */
{ &vnop_advlock_desc, (VOPFUNC)err_advlock }, /* advlock */
{ &vnop_allocate_desc, (VOPFUNC)hfs_readonly_op }, /* allocate (READONLY) */
+#if CONFIG_SEARCHFS
{ &vnop_searchfs_desc, (VOPFUNC)hfs_vnop_search }, /* search fs */
+#else
+ { &vnop_searchfs_desc, (VOPFUNC)err_searchfs }, /* search fs */
+#endif
{ &vnop_bwrite_desc, (VOPFUNC)hfs_readonly_op }, /* bwrite (READONLY) */
{ &vnop_pagein_desc, (VOPFUNC)hfs_vnop_pagein }, /* pagein */
{ &vnop_pageout_desc,(VOPFUNC) hfs_readonly_op }, /* pageout (READONLY) */
{ &vnop_setxattr_desc, (VOPFUNC)hfs_readonly_op}, /* set xattr (READONLY) */
{ &vnop_removexattr_desc, (VOPFUNC)hfs_readonly_op}, /* remove xattr (READONLY) */
{ &vnop_listxattr_desc, (VOPFUNC)hfs_vnop_listxattr},
- { &vnop_whiteout_desc, (VOPFUNC)hfs_readonly_op}, /* whiteout (READONLY) */
#if NAMEDSTREAMS
{ &vnop_getnamedstream_desc, (VOPFUNC)hfs_vnop_getnamedstream },
{ &vnop_makenamedstream_desc, (VOPFUNC)hfs_readonly_op },
{ &vnop_removenamedstream_desc, (VOPFUNC)hfs_readonly_op },
#endif
+ { &vnop_getattrlistbulk_desc, (VOPFUNC)hfs_vnop_getattrlistbulk }, /* getattrlistbulk */
{ NULL, (VOPFUNC)NULL }
};
struct vnodeopv_desc hfs_std_vnodeop_opv_desc =
{ &hfs_std_vnodeop_p, hfs_standard_vnodeop_entries };
-
+#endif
/* VNOP table for HFS+ */
struct vnodeopv_entry_desc hfs_vnodeop_entries[] = {
{ &vnop_select_desc, (VOPFUNC)hfs_vnop_select }, /* select */
{ &vnop_revoke_desc, (VOPFUNC)nop_revoke }, /* revoke */
{ &vnop_exchange_desc, (VOPFUNC)hfs_vnop_exchange }, /* exchange */
- { &vnop_mmap_desc, (VOPFUNC)err_mmap }, /* mmap */
+ { &vnop_mmap_desc, (VOPFUNC)hfs_vnop_mmap }, /* mmap */
{ &vnop_fsync_desc, (VOPFUNC)hfs_vnop_fsync }, /* fsync */
{ &vnop_remove_desc, (VOPFUNC)hfs_vnop_remove }, /* remove */
{ &vnop_link_desc, (VOPFUNC)hfs_vnop_link }, /* link */
{ &vnop_pathconf_desc, (VOPFUNC)hfs_vnop_pathconf }, /* pathconf */
{ &vnop_advlock_desc, (VOPFUNC)err_advlock }, /* advlock */
{ &vnop_allocate_desc, (VOPFUNC)hfs_vnop_allocate }, /* allocate */
+#if CONFIG_SEARCHFS
{ &vnop_searchfs_desc, (VOPFUNC)hfs_vnop_search }, /* search fs */
+#else
+ { &vnop_searchfs_desc, (VOPFUNC)err_searchfs }, /* search fs */
+#endif
{ &vnop_bwrite_desc, (VOPFUNC)hfs_vnop_bwrite }, /* bwrite */
{ &vnop_pagein_desc, (VOPFUNC)hfs_vnop_pagein }, /* pagein */
{ &vnop_pageout_desc,(VOPFUNC) hfs_vnop_pageout }, /* pageout */
{ &vnop_setxattr_desc, (VOPFUNC)hfs_vnop_setxattr},
{ &vnop_removexattr_desc, (VOPFUNC)hfs_vnop_removexattr},
{ &vnop_listxattr_desc, (VOPFUNC)hfs_vnop_listxattr},
- { &vnop_whiteout_desc, (VOPFUNC)hfs_vnop_whiteout},
#if NAMEDSTREAMS
{ &vnop_getnamedstream_desc, (VOPFUNC)hfs_vnop_getnamedstream },
{ &vnop_makenamedstream_desc, (VOPFUNC)hfs_vnop_makenamedstream },
{ &vnop_removenamedstream_desc, (VOPFUNC)hfs_vnop_removenamedstream },
#endif
+ { &vnop_getattrlistbulk_desc, (VOPFUNC)hfs_vnop_getattrlistbulk }, /* getattrlistbulk */
+ { &vnop_mnomap_desc, (VOPFUNC)hfs_vnop_mnomap },
{ NULL, (VOPFUNC)NULL }
};
{ &vnop_copyfile_desc, (VOPFUNC)err_copyfile }, /* copyfile */
{ &vnop_blktooff_desc, (VOPFUNC)hfs_vnop_blktooff }, /* blktooff */
{ &vnop_offtoblk_desc, (VOPFUNC)hfs_vnop_offtoblk }, /* offtoblk */
+ { &vnop_getxattr_desc, (VOPFUNC)hfs_vnop_getxattr},
+ { &vnop_setxattr_desc, (VOPFUNC)hfs_vnop_setxattr},
+ { &vnop_removexattr_desc, (VOPFUNC)hfs_vnop_removexattr},
+ { &vnop_listxattr_desc, (VOPFUNC)hfs_vnop_listxattr},
{ (struct vnodeop_desc*)NULL, (VOPFUNC)NULL }
};
struct vnodeopv_desc hfs_specop_opv_desc =
{ &vnop_blktooff_desc, (VOPFUNC)hfs_vnop_blktooff }, /* blktooff */
{ &vnop_offtoblk_desc, (VOPFUNC)hfs_vnop_offtoblk }, /* offtoblk */
{ &vnop_blockmap_desc, (VOPFUNC)hfs_vnop_blockmap }, /* blockmap */
+ { &vnop_getxattr_desc, (VOPFUNC)hfs_vnop_getxattr},
+ { &vnop_setxattr_desc, (VOPFUNC)hfs_vnop_setxattr},
+ { &vnop_removexattr_desc, (VOPFUNC)hfs_vnop_removexattr},
+ { &vnop_listxattr_desc, (VOPFUNC)hfs_vnop_listxattr},
{ (struct vnodeop_desc*)NULL, (VOPFUNC)NULL }
};
struct vnodeopv_desc hfs_fifoop_opv_desc =