* Copyright (c) 2000-2012 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
- *
+ *
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
- *
+ *
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
- *
+ *
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
- *
+ *
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
#include <architecture/i386/pio.h>
#include <i386/cpu_data.h>
#if DEBUG
-#define DBG(x...) kprintf("DBG: " x)
+#define DBG(x...) kprintf("DBG: " x)
#else
#define DBG(x...)
#endif
#include <kern/monotonic.h>
#endif /* MONOTONIC */
-extern void wakeup(void *);
+extern void wakeup(void *);
static int max_cpus_initialized = 0;
-uint64_t LockTimeOut;
-uint64_t TLBTimeOut;
-uint64_t LockTimeOutTSC;
-uint32_t LockTimeOutUsec;
-uint64_t MutexSpin;
-uint64_t LastDebuggerEntryAllowance;
-uint64_t delay_spin_threshold;
+uint64_t LockTimeOut;
+uint64_t TLBTimeOut;
+uint64_t LockTimeOutTSC;
+uint32_t LockTimeOutUsec;
+uint64_t MutexSpin;
+uint64_t LastDebuggerEntryAllowance;
+uint64_t delay_spin_threshold;
extern uint64_t panic_restart_timeout;
boolean_t virtualized = FALSE;
-decl_simple_lock_data(static, ml_timer_evaluation_slock);
+decl_simple_lock_data(static, ml_timer_evaluation_slock);
uint32_t ml_timer_eager_evaluations;
uint64_t ml_timer_eager_evaluation_max;
static boolean_t ml_timer_evaluation_in_progress = FALSE;
/* IO memory map services */
/* Map memory map IO space */
-vm_offset_t ml_io_map(
- vm_offset_t phys_addr,
+vm_offset_t
+ml_io_map(
+ vm_offset_t phys_addr,
vm_size_t size)
{
- return(io_map(phys_addr,size,VM_WIMG_IO));
+ return io_map(phys_addr, size, VM_WIMG_IO);
}
/* boot memory allocation */
-vm_offset_t ml_static_malloc(
- __unused vm_size_t size)
+vm_offset_t
+ml_static_malloc(
+ __unused vm_size_t size)
{
- return((vm_offset_t)NULL);
+ return (vm_offset_t)NULL;
}
-void ml_get_bouncepool_info(vm_offset_t *phys_addr, vm_size_t *size)
+void
+ml_get_bouncepool_info(vm_offset_t *phys_addr, vm_size_t *size)
{
- *phys_addr = 0;
+ *phys_addr = 0;
*size = 0;
}
#else
return (vm_offset_t)((paddr) | LINEAR_KERNEL_ADDRESS);
#endif
-}
+}
vm_offset_t
ml_static_slide(
addr64_t vaddr_cur;
ppnum_t ppn;
uint32_t freed_pages = 0;
+
assert(vaddr >= VM_MIN_KERNEL_ADDRESS);
- assert((vaddr & (PAGE_SIZE-1)) == 0); /* must be page aligned */
+ assert((vaddr & (PAGE_SIZE - 1)) == 0); /* must be page aligned */
for (vaddr_cur = vaddr;
- vaddr_cur < round_page_64(vaddr+size);
- vaddr_cur += PAGE_SIZE) {
+ vaddr_cur < round_page_64(vaddr + size);
+ vaddr_cur += PAGE_SIZE) {
ppn = pmap_find_phys(kernel_pmap, vaddr_cur);
if (ppn != (vm_offset_t)NULL) {
- kernel_pmap->stats.resident_count++;
+ kernel_pmap->stats.resident_count++;
if (kernel_pmap->stats.resident_count >
kernel_pmap->stats.resident_max) {
kernel_pmap->stats.resident_max =
- kernel_pmap->stats.resident_count;
+ kernel_pmap->stats.resident_count;
}
- pmap_remove(kernel_pmap, vaddr_cur, vaddr_cur+PAGE_SIZE);
+ pmap_remove(kernel_pmap, vaddr_cur, vaddr_cur + PAGE_SIZE);
assert(pmap_valid_page(ppn));
if (IS_MANAGED_PAGE(ppn)) {
- vm_page_create(ppn,(ppn+1));
+ vm_page_create(ppn, (ppn + 1));
freed_pages++;
}
}
vm_page_lockspin_queues();
vm_page_wire_count -= freed_pages;
vm_page_wire_count_initial -= freed_pages;
+ if (vm_page_wire_count_on_boot != 0) {
+ assert(vm_page_wire_count_on_boot >= freed_pages);
+ vm_page_wire_count_on_boot -= freed_pages;
+ }
vm_page_unlock_queues();
-#if DEBUG
+#if DEBUG
kprintf("ml_static_mfree: Released 0x%x pages at VA %p, size:0x%llx, last ppn: 0x%x\n", freed_pages, (void *)vaddr, (uint64_t)size, ppn);
#endif
}
/* virtual to physical on wired pages */
-vm_offset_t ml_vtophys(
+vm_offset_t
+ml_vtophys(
vm_offset_t vaddr)
{
- return (vm_offset_t)kvtophys(vaddr);
+ return (vm_offset_t)kvtophys(vaddr);
}
/*
* the duration of the copy process.
*/
-vm_size_t ml_nofault_copy(
+vm_size_t
+ml_nofault_copy(
vm_offset_t virtsrc, vm_offset_t virtdst, vm_size_t size)
{
addr64_t cur_phys_dst, cur_phys_src;
uint32_t count, nbytes = 0;
while (size > 0) {
- if (!(cur_phys_src = kvtophys(virtsrc)))
+ if (!(cur_phys_src = kvtophys(virtsrc))) {
break;
- if (!(cur_phys_dst = kvtophys(virtdst)))
+ }
+ if (!(cur_phys_dst = kvtophys(virtdst))) {
break;
- if (!pmap_valid_page(i386_btop(cur_phys_dst)) || !pmap_valid_page(i386_btop(cur_phys_src)))
+ }
+ if (!pmap_valid_page(i386_btop(cur_phys_dst)) || !pmap_valid_page(i386_btop(cur_phys_src))) {
break;
+ }
count = (uint32_t)(PAGE_SIZE - (cur_phys_src & PAGE_MASK));
- if (count > (PAGE_SIZE - (cur_phys_dst & PAGE_MASK)))
+ if (count > (PAGE_SIZE - (cur_phys_dst & PAGE_MASK))) {
count = (uint32_t)(PAGE_SIZE - (cur_phys_dst & PAGE_MASK));
- if (count > size)
+ }
+ if (count > size) {
count = (uint32_t)size;
+ }
bcopy_phys(cur_phys_src, cur_phys_dst, count);
* FALSE otherwise.
*/
-boolean_t ml_validate_nofault(
+boolean_t
+ml_validate_nofault(
vm_offset_t virtsrc, vm_size_t size)
{
addr64_t cur_phys_src;
uint32_t count;
while (size > 0) {
- if (!(cur_phys_src = kvtophys(virtsrc)))
+ if (!(cur_phys_src = kvtophys(virtsrc))) {
return FALSE;
- if (!pmap_valid_page(i386_btop(cur_phys_src)))
+ }
+ if (!pmap_valid_page(i386_btop(cur_phys_src))) {
return FALSE;
+ }
count = (uint32_t)(PAGE_SIZE - (cur_phys_src & PAGE_MASK));
- if (count > size)
+ if (count > size) {
count = (uint32_t)size;
+ }
virtsrc += count;
size -= count;
/* Interrupt handling */
/* Initialize Interrupts */
-void ml_init_interrupt(void)
+void
+ml_init_interrupt(void)
{
(void) ml_set_interrupts_enabled(TRUE);
}
/* Get Interrupts Enabled */
-boolean_t ml_get_interrupts_enabled(void)
+boolean_t
+ml_get_interrupts_enabled(void)
{
- unsigned long flags;
+ unsigned long flags;
- __asm__ volatile("pushf; pop %0" : "=r" (flags));
- return (flags & EFL_IF) != 0;
+ __asm__ volatile ("pushf; pop %0": "=r" (flags));
+ return (flags & EFL_IF) != 0;
}
/* Set Interrupts Enabled */
-boolean_t ml_set_interrupts_enabled(boolean_t enable)
+boolean_t
+ml_set_interrupts_enabled(boolean_t enable)
{
unsigned long flags;
boolean_t istate;
-
- __asm__ volatile("pushf; pop %0" : "=r" (flags));
+
+ __asm__ volatile ("pushf; pop %0" : "=r" (flags));
assert(get_interrupt_level() ? (enable == FALSE) : TRUE);
istate = ((flags & EFL_IF) != 0);
if (enable) {
- __asm__ volatile("sti;nop");
+ __asm__ volatile ("sti;nop");
- if ((get_preemption_level() == 0) && (*ast_pending() & AST_URGENT))
+ if ((get_preemption_level() == 0) && (*ast_pending() & AST_URGENT)) {
__asm__ volatile ("int %0" :: "N" (T_PREEMPT));
- }
- else {
- if (istate)
- __asm__ volatile("cli");
+ }
+ } else {
+ if (istate) {
+ __asm__ volatile ("cli");
+ }
}
return istate;
}
+/* Early Set Interrupts Enabled */
+boolean_t
+ml_early_set_interrupts_enabled(boolean_t enable)
+{
+ if (enable == TRUE) {
+ kprintf("Caller attempted to enable interrupts too early in "
+ "kernel startup. Halting.\n");
+ hlt();
+ /*NOTREACHED*/
+ }
+
+ /* On x86, do not allow interrupts to be enabled very early */
+ return FALSE;
+}
+
/* Check if running at interrupt context */
-boolean_t ml_at_interrupt_context(void)
+boolean_t
+ml_at_interrupt_context(void)
{
return get_interrupt_level() != 0;
}
-void ml_get_power_state(boolean_t *icp, boolean_t *pidlep) {
+void
+ml_get_power_state(boolean_t *icp, boolean_t *pidlep)
+{
*icp = (get_interrupt_level() != 0);
/* These will be technically inaccurate for interrupts that occur
* successively within a single "idle exit" event, but shouldn't
}
/* Generate a fake interrupt */
-void ml_cause_interrupt(void)
+void
+ml_cause_interrupt(void)
{
panic("ml_cause_interrupt not defined yet on Intel");
}
* TODO: transition users of this to kernel_thread_start_priority
* ml_thread_policy is an unsupported KPI
*/
-void ml_thread_policy(
+void
+ml_thread_policy(
thread_t thread,
-__unused unsigned policy_id,
+ __unused unsigned policy_id,
unsigned policy_info)
{
if (policy_info & MACHINE_NETWORK_WORKLOOP) {
info.importance = 1;
kret = thread_policy_set_internal(thread, THREAD_PRECEDENCE_POLICY,
- (thread_policy_t)&info,
- THREAD_PRECEDENCE_POLICY_COUNT);
+ (thread_policy_t)&info,
+ THREAD_PRECEDENCE_POLICY_COUNT);
assert(kret == KERN_SUCCESS);
}
}
/* Initialize Interrupts */
-void ml_install_interrupt_handler(
+void
+ml_install_interrupt_handler(
void *nub,
int source,
void *target,
IOInterruptHandler handler,
- void *refCon)
+ void *refCon)
{
boolean_t current_state;
current_state = ml_set_interrupts_enabled(FALSE);
PE_install_interrupt_handler(nub, source, target,
- (IOInterruptHandler) handler, refCon);
+ (IOInterruptHandler) handler, refCon);
(void) ml_set_interrupts_enabled(current_state);
void
machine_signal_idle(
- processor_t processor)
+ processor_t processor)
{
cpu_interrupt(processor->cpu_id);
}
static kern_return_t
register_cpu(
- uint32_t lapic_id,
+ uint32_t lapic_id,
processor_t *processor_out,
boolean_t boot_cpu )
{
- int target_cpu;
- cpu_data_t *this_cpu_datap;
+ int target_cpu;
+ cpu_data_t *this_cpu_datap;
this_cpu_datap = cpu_data_alloc(boot_cpu);
if (this_cpu_datap == NULL) {
}
target_cpu = this_cpu_datap->cpu_number;
assert((boot_cpu && (target_cpu == 0)) ||
- (!boot_cpu && (target_cpu != 0)));
+ (!boot_cpu && (target_cpu != 0)));
lapic_cpu_map(lapic_id, target_cpu);
/* The cpu_id is not known at registration phase. Just do
- * lapic_id for now
+ * lapic_id for now
*/
this_cpu_datap->cpu_phys_number = lapic_id;
this_cpu_datap->cpu_console_buf = console_cpu_alloc(boot_cpu);
- if (this_cpu_datap->cpu_console_buf == NULL)
+ if (this_cpu_datap->cpu_console_buf == NULL) {
goto failed;
+ }
#if KPC
- if (kpc_register_cpu(this_cpu_datap) != TRUE)
+ if (kpc_register_cpu(this_cpu_datap) != TRUE) {
goto failed;
+ }
#endif
if (!boot_cpu) {
cpu_thread_alloc(this_cpu_datap->cpu_number);
- if (this_cpu_datap->lcpu.core == NULL)
+ if (this_cpu_datap->lcpu.core == NULL) {
goto failed;
+ }
#if NCOPY_WINDOWS > 0
this_cpu_datap->cpu_pmap = pmap_cpu_alloc(boot_cpu);
- if (this_cpu_datap->cpu_pmap == NULL)
+ if (this_cpu_datap->cpu_pmap == NULL) {
goto failed;
+ }
#endif
this_cpu_datap->cpu_processor = cpu_processor_alloc(boot_cpu);
- if (this_cpu_datap->cpu_processor == NULL)
+ if (this_cpu_datap->cpu_processor == NULL) {
goto failed;
+ }
/*
* processor_init() deferred to topology start
* because "slot numbers" a.k.a. logical processor numbers
- * are not yet finalized.
+ * are not yet finalized.
*/
}
kern_return_t
ml_processor_register(
- cpu_id_t cpu_id,
- uint32_t lapic_id,
- processor_t *processor_out,
- boolean_t boot_cpu,
+ cpu_id_t cpu_id,
+ uint32_t lapic_id,
+ processor_t *processor_out,
+ boolean_t boot_cpu,
boolean_t start )
{
- static boolean_t done_topo_sort = FALSE;
- static uint32_t num_registered = 0;
+ static boolean_t done_topo_sort = FALSE;
+ static uint32_t num_registered = 0;
- /* Register all CPUs first, and track max */
- if( start == FALSE )
- {
- num_registered++;
+ /* Register all CPUs first, and track max */
+ if (start == FALSE) {
+ num_registered++;
- DBG( "registering CPU lapic id %d\n", lapic_id );
+ DBG( "registering CPU lapic id %d\n", lapic_id );
- return register_cpu( lapic_id, processor_out, boot_cpu );
- }
+ return register_cpu( lapic_id, processor_out, boot_cpu );
+ }
- /* Sort by topology before we start anything */
- if( !done_topo_sort )
- {
- DBG( "about to start CPUs. %d registered\n", num_registered );
+ /* Sort by topology before we start anything */
+ if (!done_topo_sort) {
+ DBG( "about to start CPUs. %d registered\n", num_registered );
- cpu_topology_sort( num_registered );
- done_topo_sort = TRUE;
- }
+ cpu_topology_sort( num_registered );
+ done_topo_sort = TRUE;
+ }
- /* Assign the cpu ID */
- uint32_t cpunum = -1;
- cpu_data_t *this_cpu_datap = NULL;
+ /* Assign the cpu ID */
+ uint32_t cpunum = -1;
+ cpu_data_t *this_cpu_datap = NULL;
- /* find cpu num and pointer */
- cpunum = ml_get_cpuid( lapic_id );
+ /* find cpu num and pointer */
+ cpunum = ml_get_cpuid( lapic_id );
- if( cpunum == 0xFFFFFFFF ) /* never heard of it? */
- panic( "trying to start invalid/unregistered CPU %d\n", lapic_id );
+ if (cpunum == 0xFFFFFFFF) { /* never heard of it? */
+ panic( "trying to start invalid/unregistered CPU %d\n", lapic_id );
+ }
- this_cpu_datap = cpu_datap(cpunum);
+ this_cpu_datap = cpu_datap(cpunum);
- /* fix the CPU id */
- this_cpu_datap->cpu_id = cpu_id;
+ /* fix the CPU id */
+ this_cpu_datap->cpu_id = cpu_id;
- /* allocate and initialize other per-cpu structures */
- if (!boot_cpu) {
- mp_cpus_call_cpu_init(cpunum);
- early_random_cpu_init(cpunum);
- }
+ /* allocate and initialize other per-cpu structures */
+ if (!boot_cpu) {
+ mp_cpus_call_cpu_init(cpunum);
+ early_random_cpu_init(cpunum);
+ }
- /* output arg */
- *processor_out = this_cpu_datap->cpu_processor;
+ /* output arg */
+ *processor_out = this_cpu_datap->cpu_processor;
- /* OK, try and start this CPU */
- return cpu_topology_start_cpu( cpunum );
+ /* OK, try and start this CPU */
+ return cpu_topology_start_cpu( cpunum );
}
void
ml_cpu_get_info(ml_cpu_info_t *cpu_infop)
{
- boolean_t os_supports_sse;
+ boolean_t os_supports_sse;
i386_cpu_info_t *cpuid_infop;
- if (cpu_infop == NULL)
+ if (cpu_infop == NULL) {
return;
-
+ }
+
/*
* Are we supporting MMX/SSE/SSE2/SSE3?
* As distinct from whether the cpu has these capabilities.
*/
os_supports_sse = !!(get_cr4() & CR4_OSXMM);
- if (ml_fpu_avx_enabled())
+ if (ml_fpu_avx_enabled()) {
cpu_infop->vector_unit = 9;
- else if ((cpuid_features() & CPUID_FEATURE_SSE4_2) && os_supports_sse)
+ } else if ((cpuid_features() & CPUID_FEATURE_SSE4_2) && os_supports_sse) {
cpu_infop->vector_unit = 8;
- else if ((cpuid_features() & CPUID_FEATURE_SSE4_1) && os_supports_sse)
+ } else if ((cpuid_features() & CPUID_FEATURE_SSE4_1) && os_supports_sse) {
cpu_infop->vector_unit = 7;
- else if ((cpuid_features() & CPUID_FEATURE_SSSE3) && os_supports_sse)
+ } else if ((cpuid_features() & CPUID_FEATURE_SSSE3) && os_supports_sse) {
cpu_infop->vector_unit = 6;
- else if ((cpuid_features() & CPUID_FEATURE_SSE3) && os_supports_sse)
+ } else if ((cpuid_features() & CPUID_FEATURE_SSE3) && os_supports_sse) {
cpu_infop->vector_unit = 5;
- else if ((cpuid_features() & CPUID_FEATURE_SSE2) && os_supports_sse)
+ } else if ((cpuid_features() & CPUID_FEATURE_SSE2) && os_supports_sse) {
cpu_infop->vector_unit = 4;
- else if ((cpuid_features() & CPUID_FEATURE_SSE) && os_supports_sse)
+ } else if ((cpuid_features() & CPUID_FEATURE_SSE) && os_supports_sse) {
cpu_infop->vector_unit = 3;
- else if (cpuid_features() & CPUID_FEATURE_MMX)
+ } else if (cpuid_features() & CPUID_FEATURE_MMX) {
cpu_infop->vector_unit = 2;
- else
+ } else {
cpu_infop->vector_unit = 0;
+ }
cpuid_infop = cpuid_info();
- cpu_infop->cache_line_size = cpuid_infop->cache_linesize;
+ cpu_infop->cache_line_size = cpuid_infop->cache_linesize;
cpu_infop->l1_icache_size = cpuid_infop->cache_size[L1I];
cpu_infop->l1_dcache_size = cpuid_infop->cache_size[L1D];
-
- if (cpuid_infop->cache_size[L2U] > 0) {
- cpu_infop->l2_settings = 1;
- cpu_infop->l2_cache_size = cpuid_infop->cache_size[L2U];
- } else {
- cpu_infop->l2_settings = 0;
- cpu_infop->l2_cache_size = 0xFFFFFFFF;
- }
-
- if (cpuid_infop->cache_size[L3U] > 0) {
- cpu_infop->l3_settings = 1;
- cpu_infop->l3_cache_size = cpuid_infop->cache_size[L3U];
- } else {
- cpu_infop->l3_settings = 0;
- cpu_infop->l3_cache_size = 0xFFFFFFFF;
- }
+
+ if (cpuid_infop->cache_size[L2U] > 0) {
+ cpu_infop->l2_settings = 1;
+ cpu_infop->l2_cache_size = cpuid_infop->cache_size[L2U];
+ } else {
+ cpu_infop->l2_settings = 0;
+ cpu_infop->l2_cache_size = 0xFFFFFFFF;
+ }
+
+ if (cpuid_infop->cache_size[L3U] > 0) {
+ cpu_infop->l3_settings = 1;
+ cpu_infop->l3_cache_size = cpuid_infop->cache_size[L3U];
+ } else {
+ cpu_infop->l3_settings = 0;
+ cpu_infop->l3_cache_size = 0xFFFFFFFF;
+ }
}
void
ml_init_max_cpus(unsigned long max_cpus)
{
- boolean_t current_state;
+ boolean_t current_state;
- current_state = ml_set_interrupts_enabled(FALSE);
- if (max_cpus_initialized != MAX_CPUS_SET) {
- if (max_cpus > 0 && max_cpus <= MAX_CPUS) {
+ current_state = ml_set_interrupts_enabled(FALSE);
+ if (max_cpus_initialized != MAX_CPUS_SET) {
+ if (max_cpus > 0 && max_cpus <= MAX_CPUS) {
/*
* Note: max_cpus is the number of enabled processors
* that ACPI found; max_ncpus is the maximum number
* that the kernel supports or that the "cpus="
* boot-arg has set. Here we take int minimum.
*/
- machine_info.max_cpus = (integer_t)MIN(max_cpus, max_ncpus);
+ machine_info.max_cpus = (integer_t)MIN(max_cpus, max_ncpus);
}
- if (max_cpus_initialized == MAX_CPUS_WAIT)
- wakeup((event_t)&max_cpus_initialized);
- max_cpus_initialized = MAX_CPUS_SET;
- }
- (void) ml_set_interrupts_enabled(current_state);
+ if (max_cpus_initialized == MAX_CPUS_WAIT) {
+ wakeup((event_t)&max_cpus_initialized);
+ }
+ max_cpus_initialized = MAX_CPUS_SET;
+ }
+ (void) ml_set_interrupts_enabled(current_state);
}
int
ml_get_max_cpus(void)
{
- boolean_t current_state;
+ boolean_t current_state;
- current_state = ml_set_interrupts_enabled(FALSE);
- if (max_cpus_initialized != MAX_CPUS_SET) {
- max_cpus_initialized = MAX_CPUS_WAIT;
- assert_wait((event_t)&max_cpus_initialized, THREAD_UNINT);
- (void)thread_block(THREAD_CONTINUE_NULL);
- }
- (void) ml_set_interrupts_enabled(current_state);
- return(machine_info.max_cpus);
+ current_state = ml_set_interrupts_enabled(FALSE);
+ if (max_cpus_initialized != MAX_CPUS_SET) {
+ max_cpus_initialized = MAX_CPUS_WAIT;
+ assert_wait((event_t)&max_cpus_initialized, THREAD_UNINT);
+ (void)thread_block(THREAD_CONTINUE_NULL);
+ }
+ (void) ml_set_interrupts_enabled(current_state);
+ return machine_info.max_cpus;
}
boolean_t
void
ml_panic_trap_to_debugger(__unused const char *panic_format_str,
- __unused va_list *panic_args,
- __unused unsigned int reason,
- __unused void *ctx,
- __unused uint64_t panic_options_mask,
- __unused unsigned long panic_caller)
+ __unused va_list *panic_args,
+ __unused unsigned int reason,
+ __unused void *ctx,
+ __unused uint64_t panic_options_mask,
+ __unused unsigned long panic_caller)
{
return;
}
void
ml_init_lock_timeout(void)
{
- uint64_t abstime;
- uint32_t mtxspin;
+ uint64_t abstime;
+ uint32_t mtxspin;
#if DEVELOPMENT || DEBUG
- uint64_t default_timeout_ns = NSEC_PER_SEC>>2;
+ uint64_t default_timeout_ns = NSEC_PER_SEC >> 2;
#else
- uint64_t default_timeout_ns = NSEC_PER_SEC>>1;
+ uint64_t default_timeout_ns = NSEC_PER_SEC >> 1;
#endif
- uint32_t slto;
- uint32_t prt;
+ uint32_t slto;
+ uint32_t prt;
- if (PE_parse_boot_argn("slto_us", &slto, sizeof (slto)))
+ if (PE_parse_boot_argn("slto_us", &slto, sizeof(slto))) {
default_timeout_ns = slto * NSEC_PER_USEC;
+ }
/*
* LockTimeOut is absolutetime, LockTimeOutTSC is in TSC ticks,
* zero value inhibits the timeout-panic and cuts a trace evnt instead
* - see pmap_flush_tlbs().
*/
- if (PE_parse_boot_argn("tlbto_us", &slto, sizeof (slto))) {
+ if (PE_parse_boot_argn("tlbto_us", &slto, sizeof(slto))) {
default_timeout_ns = slto * NSEC_PER_USEC;
nanoseconds_to_absolutetime(default_timeout_ns, &abstime);
TLBTimeOut = (uint32_t) abstime;
#if DEVELOPMENT || DEBUG
reportphyreaddelayabs = LockTimeOut >> 1;
#endif
- if (PE_parse_boot_argn("phyreadmaxus", &slto, sizeof (slto))) {
+ if (PE_parse_boot_argn("phyreadmaxus", &slto, sizeof(slto))) {
default_timeout_ns = slto * NSEC_PER_USEC;
nanoseconds_to_absolutetime(default_timeout_ns, &abstime);
reportphyreaddelayabs = abstime;
}
- if (PE_parse_boot_argn("mtxspin", &mtxspin, sizeof (mtxspin))) {
- if (mtxspin > USEC_PER_SEC>>4)
- mtxspin = USEC_PER_SEC>>4;
- nanoseconds_to_absolutetime(mtxspin*NSEC_PER_USEC, &abstime);
+ if (PE_parse_boot_argn("phywritemaxus", &slto, sizeof(slto))) {
+ nanoseconds_to_absolutetime((uint64_t)slto * NSEC_PER_USEC, &abstime);
+ reportphywritedelayabs = abstime;
+ }
+
+ if (PE_parse_boot_argn("tracephyreadus", &slto, sizeof(slto))) {
+ nanoseconds_to_absolutetime((uint64_t)slto * NSEC_PER_USEC, &abstime);
+ tracephyreaddelayabs = abstime;
+ }
+
+ if (PE_parse_boot_argn("tracephywriteus", &slto, sizeof(slto))) {
+ nanoseconds_to_absolutetime((uint64_t)slto * NSEC_PER_USEC, &abstime);
+ tracephywritedelayabs = abstime;
+ }
+
+ if (PE_parse_boot_argn("mtxspin", &mtxspin, sizeof(mtxspin))) {
+ if (mtxspin > USEC_PER_SEC >> 4) {
+ mtxspin = USEC_PER_SEC >> 4;
+ }
+ nanoseconds_to_absolutetime(mtxspin * NSEC_PER_USEC, &abstime);
} else {
- nanoseconds_to_absolutetime(10*NSEC_PER_USEC, &abstime);
+ nanoseconds_to_absolutetime(10 * NSEC_PER_USEC, &abstime);
}
MutexSpin = (unsigned int)abstime;
nanoseconds_to_absolutetime(4ULL * NSEC_PER_SEC, &LastDebuggerEntryAllowance);
- if (PE_parse_boot_argn("panic_restart_timeout", &prt, sizeof (prt)))
+ if (PE_parse_boot_argn("panic_restart_timeout", &prt, sizeof(prt))) {
nanoseconds_to_absolutetime(prt * NSEC_PER_SEC, &panic_restart_timeout);
+ }
virtualized = ((cpuid_features() & CPUID_FEATURE_VMM) != 0);
if (virtualized) {
- int vti;
-
- if (!PE_parse_boot_argn("vti", &vti, sizeof (vti)))
+ int vti;
+
+ if (!PE_parse_boot_argn("vti", &vti, sizeof(vti))) {
vti = 6;
+ }
printf("Timeouts adjusted for virtualization (<<%d)\n", vti);
kprintf("Timeouts adjusted for virtualization (<<%d):\n", vti);
-#define VIRTUAL_TIMEOUT_INFLATE64(_timeout) \
-MACRO_BEGIN \
- kprintf("%24s: 0x%016llx ", #_timeout, _timeout); \
- _timeout <<= vti; \
- kprintf("-> 0x%016llx\n", _timeout); \
+#define VIRTUAL_TIMEOUT_INFLATE64(_timeout) \
+MACRO_BEGIN \
+ kprintf("%24s: 0x%016llx ", #_timeout, _timeout); \
+ _timeout <<= vti; \
+ kprintf("-> 0x%016llx\n", _timeout); \
MACRO_END
-#define VIRTUAL_TIMEOUT_INFLATE32(_timeout) \
-MACRO_BEGIN \
- kprintf("%24s: 0x%08x ", #_timeout, _timeout); \
- if ((_timeout <<vti) >> vti == _timeout) \
- _timeout <<= vti; \
- else \
- _timeout = ~0; /* cap rather than overflow */ \
- kprintf("-> 0x%08x\n", _timeout); \
+#define VIRTUAL_TIMEOUT_INFLATE32(_timeout) \
+MACRO_BEGIN \
+ kprintf("%24s: 0x%08x ", #_timeout, _timeout); \
+ if ((_timeout <<vti) >> vti == _timeout) \
+ _timeout <<= vti; \
+ else \
+ _timeout = ~0; /* cap rather than overflow */ \
+ kprintf("-> 0x%08x\n", _timeout); \
MACRO_END
VIRTUAL_TIMEOUT_INFLATE32(LockTimeOutUsec);
VIRTUAL_TIMEOUT_INFLATE64(LockTimeOut);
return (interval < delay_spin_threshold) ? TRUE : FALSE;
}
-void ml_delay_on_yield(void) {}
+uint32_t yield_delay_us = 0;
+
+void
+ml_delay_on_yield(void)
+{
+#if DEVELOPMENT || DEBUG
+ if (yield_delay_us) {
+ delay(yield_delay_us);
+ }
+#endif
+}
/*
* This is called from the machine-independent layer
thread_t
current_act(void)
{
- return(current_thread_fast());
+ return current_thread_fast();
}
#undef current_thread
thread_t
current_thread(void)
{
- return(current_thread_fast());
+ return current_thread_fast();
}
-boolean_t ml_is64bit(void) {
-
- return (cpu_mode_is64bit());
+boolean_t
+ml_is64bit(void)
+{
+ return cpu_mode_is64bit();
}
-boolean_t ml_thread_is64bit(thread_t thread) {
-
- return (thread_is_64bit_addr(thread));
+boolean_t
+ml_thread_is64bit(thread_t thread)
+{
+ return thread_is_64bit_addr(thread);
}
-boolean_t ml_state_is64bit(void *saved_state) {
-
+boolean_t
+ml_state_is64bit(void *saved_state)
+{
return is_saved_state64(saved_state);
}
-void ml_cpu_set_ldt(int selector)
+void
+ml_cpu_set_ldt(int selector)
{
/*
* Avoid loading the LDT
* if we're setting the KERNEL LDT and it's already set.
*/
if (selector == KERNEL_LDT &&
- current_cpu_datap()->cpu_ldt == KERNEL_LDT)
+ current_cpu_datap()->cpu_ldt == KERNEL_LDT) {
return;
+ }
lldt(selector);
current_cpu_datap()->cpu_ldt = selector;
}
-void ml_fp_setvalid(boolean_t value)
+void
+ml_fp_setvalid(boolean_t value)
{
- fp_setvalid(value);
+ fp_setvalid(value);
}
-uint64_t ml_cpu_int_event_time(void)
+uint64_t
+ml_cpu_int_event_time(void)
{
return current_cpu_datap()->cpu_int_event_time;
}
-vm_offset_t ml_stack_remaining(void)
+vm_offset_t
+ml_stack_remaining(void)
{
uintptr_t local = (uintptr_t) &local;
if (ml_at_interrupt_context() != 0) {
- return (local - (current_cpu_datap()->cpu_int_stack_top - INTSTACK_SIZE));
+ return local - (current_cpu_datap()->cpu_int_stack_top - INTSTACK_SIZE);
} else {
- return (local - current_thread()->kernel_stack);
+ return local - current_thread()->kernel_stack;
}
}
if (ml_at_interrupt_context()) {
return current_cpu_datap()->cpu_int_stack_top - INTSTACK_SIZE;
} else {
- return current_thread()->kernel_stack;
+ return current_thread()->kernel_stack;
}
}
ml_stack_size(void)
{
if (ml_at_interrupt_context()) {
- return INTSTACK_SIZE;
+ return INTSTACK_SIZE;
} else {
- return kernel_stack_size;
+ return kernel_stack_size;
}
}
#endif
void
kernel_preempt_check(void)
{
- boolean_t intr;
+ boolean_t intr;
unsigned long flags;
assert(get_preemption_level() == 0);
if (__improbable(*ast_pending() & AST_URGENT)) {
/*
- * can handle interrupts and preemptions
+ * can handle interrupts and preemptions
* at this point
*/
- __asm__ volatile("pushf; pop %0" : "=r" (flags));
+ __asm__ volatile ("pushf; pop %0" : "=r" (flags));
intr = ((flags & EFL_IF) != 0);
/*
* now cause the PRE-EMPTION trap
*/
- if (intr == TRUE){
+ if (intr == TRUE) {
__asm__ volatile ("int %0" :: "N" (T_PREEMPT));
}
}
}
-boolean_t machine_timeout_suspended(void) {
- return (pmap_tlb_flush_timeout || spinlock_timed_out || panic_active() || mp_recent_debugger_activity() || ml_recent_wake());
+boolean_t
+machine_timeout_suspended(void)
+{
+ return pmap_tlb_flush_timeout || spinlock_timed_out || panic_active() || mp_recent_debugger_activity() || ml_recent_wake();
}
/* Eagerly evaluate all pending timer and thread callouts
*/
-void ml_timer_evaluate(void) {
- KERNEL_DEBUG_CONSTANT(DECR_TIMER_RESCAN|DBG_FUNC_START, 0, 0, 0, 0, 0);
+void
+ml_timer_evaluate(void)
+{
+ KERNEL_DEBUG_CONSTANT(DECR_TIMER_RESCAN | DBG_FUNC_START, 0, 0, 0, 0, 0);
uint64_t te_end, te_start = mach_absolute_time();
- simple_lock(&ml_timer_evaluation_slock);
+ simple_lock(&ml_timer_evaluation_slock, LCK_GRP_NULL);
ml_timer_evaluation_in_progress = TRUE;
thread_call_delayed_timer_rescan_all();
mp_cpus_call(CPUMASK_ALL, ASYNC, timer_queue_expire_rescan, NULL);
ml_timer_eager_evaluation_max = MAX(ml_timer_eager_evaluation_max, (te_end - te_start));
simple_unlock(&ml_timer_evaluation_slock);
- KERNEL_DEBUG_CONSTANT(DECR_TIMER_RESCAN|DBG_FUNC_END, 0, 0, 0, 0, 0);
+ KERNEL_DEBUG_CONSTANT(DECR_TIMER_RESCAN | DBG_FUNC_END, 0, 0, 0, 0, 0);
}
boolean_t
-ml_timer_forced_evaluation(void) {
+ml_timer_forced_evaluation(void)
+{
return ml_timer_evaluation_in_progress;
}
/* 32-bit right-rotate n bits */
-static inline uint32_t ror32(uint32_t val, const unsigned int n)
-{
- __asm__ volatile("rorl %%cl,%0" : "=r" (val) : "0" (val), "c" (n));
+static inline uint32_t
+ror32(uint32_t val, const unsigned int n)
+{
+ __asm__ volatile ("rorl %%cl,%0" : "=r" (val) : "0" (val), "c" (n));
return val;
}
void
ml_entropy_collect(void)
{
- uint32_t tsc_lo, tsc_hi;
- uint32_t *ep;
+ uint32_t tsc_lo, tsc_hi;
+ uint32_t *ep;
assert(cpu_number() == master_cpu);
/* update buffer pointer cyclically */
- if (EntropyData.index_ptr - EntropyData.buffer == ENTROPY_BUFFER_SIZE)
+ if (EntropyData.index_ptr - EntropyData.buffer == ENTROPY_BUFFER_SIZE) {
ep = EntropyData.index_ptr = EntropyData.buffer;
- else
+ } else {
ep = EntropyData.index_ptr++;
+ }
rdtsc_nofence(tsc_lo, tsc_hi);
*ep = ror32(*ep, 9) ^ tsc_lo;
}
uint64_t
-ml_energy_stat(__unused thread_t t) {
+ml_energy_stat(__unused thread_t t)
+{
return 0;
}
void
-ml_gpu_stat_update(uint64_t gpu_ns_delta) {
+ml_gpu_stat_update(uint64_t gpu_ns_delta)
+{
current_thread()->machine.thread_gpu_ns += gpu_ns_delta;
}
uint64_t
-ml_gpu_stat(thread_t t) {
+ml_gpu_stat(thread_t t)
+{
return t->machine.thread_gpu_ns;
}
int plctrace_enabled = 0;
-void _disable_preemption(void) {
+void
+_disable_preemption(void)
+{
disable_preemption_internal();
}
-void _enable_preemption(void) {
+void
+_enable_preemption(void)
+{
enable_preemption_internal();
}
-void plctrace_disable(void) {
+void
+plctrace_disable(void)
+{
plctrace_enabled = 0;
}
static boolean_t ml_quiescing;
-void ml_set_is_quiescing(boolean_t quiescing)
+void
+ml_set_is_quiescing(boolean_t quiescing)
{
- assert(FALSE == ml_get_interrupts_enabled());
- ml_quiescing = quiescing;
+ assert(FALSE == ml_get_interrupts_enabled());
+ ml_quiescing = quiescing;
}
-boolean_t ml_is_quiescing(void)
+boolean_t
+ml_is_quiescing(void)
{
- assert(FALSE == ml_get_interrupts_enabled());
- return (ml_quiescing);
+ assert(FALSE == ml_get_interrupts_enabled());
+ return ml_quiescing;
}
-uint64_t ml_get_booter_memory_size(void)
+uint64_t
+ml_get_booter_memory_size(void)
{
- return (0);
+ return 0;
}