]> git.saurik.com Git - apple/xnu.git/blobdiff - osfmk/kern/processor.c
xnu-2782.1.97.tar.gz
[apple/xnu.git] / osfmk / kern / processor.c
index 3410697249f5369eaedac9c4073475550f0fe061..355b1b1dcb7bc859c004a21f4abdf9ad4bba417e 100644 (file)
@@ -89,7 +89,9 @@ struct pset_node              pset_node0;
 decl_simple_lock_data(static,pset_node_lock)
 
 queue_head_t                   tasks;
+queue_head_t                   terminated_tasks;       /* To be used ONLY for stackshot. */
 int                                            tasks_count;
+int                                            terminated_tasks_count;
 queue_head_t                   threads;
 int                                            threads_count;
 decl_lck_mtx_data(,tasks_threads_lock)
@@ -103,6 +105,7 @@ uint32_t                            processor_avail_count;
 
 processor_t            master_processor;
 int                    master_cpu = 0;
+boolean_t              sched_stats_active = FALSE;
 
 /* Forwards */
 kern_return_t  processor_set_things(
@@ -120,6 +123,7 @@ processor_bootstrap(void)
        simple_lock_init(&pset_node_lock, 0);
 
        queue_init(&tasks);
+       queue_init(&terminated_tasks);
        queue_init(&threads);
 
        simple_lock_init(&processor_list_lock, 0);
@@ -140,21 +144,41 @@ processor_init(
        int                                     cpu_id,
        processor_set_t         pset)
 {
-       run_queue_init(&processor->runq);
+       spl_t           s;
+
+       if (processor != master_processor) {
+               /* Scheduler state deferred until sched_init() */
+               SCHED(processor_init)(processor);
+       }
 
        processor->state = PROCESSOR_OFF_LINE;
        processor->active_thread = processor->next_thread = processor->idle_thread = THREAD_NULL;
        processor->processor_set = pset;
        processor->current_pri = MINPRI;
+       processor->current_thmode = TH_MODE_NONE;
        processor->cpu_id = cpu_id;
        timer_call_setup(&processor->quantum_timer, thread_quantum_expire, processor);
+       processor->quantum_end = UINT64_MAX;
        processor->deadline = UINT64_MAX;
        processor->timeslice = 0;
-       processor->processor_meta = PROCESSOR_META_NULL;
+       processor->processor_primary = processor; /* no SMT relationship known at this point */
+       processor->processor_secondary = NULL;
+       processor->is_SMT = FALSE;
        processor->processor_self = IP_NULL;
        processor_data_init(processor);
        processor->processor_list = NULL;
 
+       s = splsched();
+       pset_lock(pset);
+       if (pset->cpu_set_count++ == 0)
+               pset->cpu_set_low = pset->cpu_set_hi = cpu_id;
+       else {
+               pset->cpu_set_low = (cpu_id < pset->cpu_set_low)? cpu_id: pset->cpu_set_low;
+               pset->cpu_set_hi = (cpu_id > pset->cpu_set_hi)? cpu_id: pset->cpu_set_hi;
+       }
+       pset_unlock(pset);
+       splx(s);
+
        simple_lock(&processor_list_lock);
        if (processor_list == NULL)
                processor_list = processor;
@@ -166,21 +190,26 @@ processor_init(
 }
 
 void
-processor_meta_init(
+processor_set_primary(
        processor_t             processor,
        processor_t             primary)
 {
-       processor_meta_t        pmeta = primary->processor_meta;
-
-       if (pmeta == PROCESSOR_META_NULL) {
-               pmeta = kalloc(sizeof (*pmeta));
-
-               queue_init(&pmeta->idle_queue);
-
-               pmeta->primary = primary;
+       assert(processor->processor_primary == primary || processor->processor_primary == processor);
+       /* Re-adjust primary point for this (possibly) secondary processor */
+       processor->processor_primary = primary;
+
+       assert(primary->processor_secondary == NULL || primary->processor_secondary == processor);
+       if (primary != processor) {
+               /* Link primary to secondary, assumes a 2-way SMT model
+                * We'll need to move to a queue if any future architecture
+                * requires otherwise.
+                */
+               assert(processor->processor_secondary == NULL);
+               primary->processor_secondary = processor;
+               /* Mark both processors as SMT siblings */
+               primary->is_SMT = TRUE;
+               processor->is_SMT = TRUE;
        }
-
-       processor->processor_meta = pmeta;
 }
 
 processor_set_t
@@ -200,6 +229,12 @@ processor_set_t
 pset_create(
        pset_node_t                     node)
 {
+#if defined(CONFIG_SCHED_MULTIQ)
+       /* multiq scheduler is not currently compatible with multiple psets */
+       if (sched_groups_enabled)
+               return processor_pset(master_processor);
+#endif /* defined(CONFIG_SCHED_MULTIQ) */
+
        processor_set_t         *prev, pset = kalloc(sizeof (*pset));
 
        if (pset != PROCESSOR_SET_NULL) {
@@ -227,10 +262,18 @@ pset_init(
        processor_set_t         pset,
        pset_node_t                     node)
 {
+       if (pset != &pset0) {
+               /* Scheduler state deferred until sched_init() */
+               SCHED(pset_init)(pset);
+       }
+
        queue_init(&pset->active_queue);
        queue_init(&pset->idle_queue);
-       pset->processor_count = 0;
-       pset->low_pri = pset->low_count = PROCESSOR_NULL;
+       queue_init(&pset->idle_secondary_queue);
+       pset->online_processor_count = 0;
+       pset->cpu_set_low = pset->cpu_set_hi = 0;
+       pset->cpu_set_count = 0;
+       pset->pending_AST_cpu_mask = 0;
        pset_lock_init(pset);
        pset->pset_self = IP_NULL;
        pset->pset_name_self = IP_NULL;
@@ -308,18 +351,71 @@ processor_info(
 
        case PROCESSOR_CPU_LOAD_INFO:
        {
-               register processor_cpu_load_info_t      cpu_load_info;
-
-           if (*count < PROCESSOR_CPU_LOAD_INFO_COUNT)
+               processor_cpu_load_info_t       cpu_load_info;
+               timer_t         idle_state;
+               uint64_t        idle_time_snapshot1, idle_time_snapshot2;
+               uint64_t        idle_time_tstamp1, idle_time_tstamp2;
+
+               /*
+                * We capture the accumulated idle time twice over
+                * the course of this function, as well as the timestamps
+                * when each were last updated. Since these are
+                * all done using non-atomic racy mechanisms, the
+                * most we can infer is whether values are stable.
+                * timer_grab() is the only function that can be
+                * used reliably on another processor's per-processor
+                * data.
+                */
+
+               if (*count < PROCESSOR_CPU_LOAD_INFO_COUNT)
                        return (KERN_FAILURE);
 
-           cpu_load_info = (processor_cpu_load_info_t) info;
-               cpu_load_info->cpu_ticks[CPU_STATE_USER] =
+               cpu_load_info = (processor_cpu_load_info_t) info;
+               if (precise_user_kernel_time) {
+                       cpu_load_info->cpu_ticks[CPU_STATE_USER] =
                                                        (uint32_t)(timer_grab(&PROCESSOR_DATA(processor, user_state)) / hz_tick_interval);
-               cpu_load_info->cpu_ticks[CPU_STATE_SYSTEM] =
+                       cpu_load_info->cpu_ticks[CPU_STATE_SYSTEM] =
                                                        (uint32_t)(timer_grab(&PROCESSOR_DATA(processor, system_state)) / hz_tick_interval);
-               cpu_load_info->cpu_ticks[CPU_STATE_IDLE] =
-                                                       (uint32_t)(timer_grab(&PROCESSOR_DATA(processor, idle_state)) / hz_tick_interval);
+               } else {
+                       uint64_t tval = timer_grab(&PROCESSOR_DATA(processor, user_state)) +
+                               timer_grab(&PROCESSOR_DATA(processor, system_state));
+
+                       cpu_load_info->cpu_ticks[CPU_STATE_USER] = (uint32_t)(tval / hz_tick_interval);
+                       cpu_load_info->cpu_ticks[CPU_STATE_SYSTEM] = 0;
+               }
+
+               idle_state = &PROCESSOR_DATA(processor, idle_state);
+               idle_time_snapshot1 = timer_grab(idle_state);
+               idle_time_tstamp1 = idle_state->tstamp;
+
+               /*
+                * Idle processors are not continually updating their
+                * per-processor idle timer, so it may be extremely
+                * out of date, resulting in an over-representation
+                * of non-idle time between two measurement
+                * intervals by e.g. top(1). If we are non-idle, or
+                * have evidence that the timer is being updated
+                * concurrently, we consider its value up-to-date.
+                */
+               if (PROCESSOR_DATA(processor, current_state) != idle_state) {
+                       cpu_load_info->cpu_ticks[CPU_STATE_IDLE] =
+                                                       (uint32_t)(idle_time_snapshot1 / hz_tick_interval);
+               } else if ((idle_time_snapshot1 != (idle_time_snapshot2 = timer_grab(idle_state))) ||
+                                  (idle_time_tstamp1 != (idle_time_tstamp2 = idle_state->tstamp))){
+                       /* Idle timer is being updated concurrently, second stamp is good enough */
+                       cpu_load_info->cpu_ticks[CPU_STATE_IDLE] =
+                                                       (uint32_t)(idle_time_snapshot2 / hz_tick_interval);
+               } else {
+                       /*
+                        * Idle timer may be very stale. Fortunately we have established
+                        * that idle_time_snapshot1 and idle_time_tstamp1 are unchanging
+                        */
+                       idle_time_snapshot1 += mach_absolute_time() - idle_time_tstamp1;
+                               
+                       cpu_load_info->cpu_ticks[CPU_STATE_IDLE] =
+                               (uint32_t)(idle_time_snapshot1 / hz_tick_interval);
+               }
+
                cpu_load_info->cpu_ticks[CPU_STATE_NICE] = 0;
 
            *count = PROCESSOR_CPU_LOAD_INFO_COUNT;
@@ -485,6 +581,9 @@ processor_get_assignment(
 {
        int state;
 
+       if (processor == PROCESSOR_NULL)
+               return(KERN_INVALID_ARGUMENT);
+
        state = processor->state;
        if (state == PROCESSOR_SHUTDOWN || state == PROCESSOR_OFF_LINE)
                return(KERN_FAILURE);
@@ -901,15 +1000,6 @@ processor_set_threads(
 {
     return KERN_FAILURE;
 }
-#elif defined(CONFIG_EMBEDDED)
-kern_return_t
-processor_set_threads(
-       __unused processor_set_t                pset,
-       __unused thread_array_t         *thread_list,
-       __unused mach_msg_type_number_t *count)
-{
-    return KERN_NOT_SUPPORTED;
-}
 #else
 kern_return_t
 processor_set_threads(