/*
- * Copyright (c) 2000-2009 Apple Inc. All rights reserved.
+ * Copyright (c) 2000-2018 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
- *
+ *
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
- *
+ *
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
- *
+ *
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
- *
+ *
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_COPYRIGHT@
*/
-#include <mach_rt.h>
-#include <mach_kdb.h>
#include <mach_kdp.h>
+#include <kdp/kdp_internal.h>
#include <mach_ldebug.h>
-#include <gprof.h>
#include <mach/mach_types.h>
#include <mach/kern_return.h>
#include <kern/cpu_number.h>
#include <kern/cpu_data.h>
#include <kern/assert.h>
+#include <kern/lock_group.h>
#include <kern/machine.h>
#include <kern/pms.h>
#include <kern/misc_protos.h>
+#include <kern/timer_call.h>
+#include <kern/kalloc.h>
+#include <kern/queue.h>
+#include <prng/random.h>
#include <vm/vm_map.h>
#include <vm/vm_kern.h>
-#include <profiling/profile-mk.h>
-
+#include <i386/bit_routines.h>
#include <i386/proc_reg.h>
#include <i386/cpu_threads.h>
#include <i386/mp_desc.h>
#include <i386/mp.h>
#include <i386/mp_events.h>
#include <i386/lapic.h>
-#include <i386/ipl.h>
#include <i386/cpuid.h>
#include <i386/fpu.h>
#include <i386/machine_cpu.h>
-#include <i386/mtrr.h>
#include <i386/pmCPU.h>
#if CONFIG_MCA
#include <i386/machine_check.h>
#endif
#include <i386/acpi.h>
-#include <chud/chud_xnu.h>
-#include <chud/chud_xnu_private.h>
-
#include <sys/kdebug.h>
-#if MACH_KDB
-#include <machine/db_machdep.h>
-#include <ddb/db_aout.h>
-#include <ddb/db_access.h>
-#include <ddb/db_sym.h>
-#include <ddb/db_variables.h>
-#include <ddb/db_command.h>
-#include <ddb/db_output.h>
-#include <ddb/db_expr.h>
-#endif
-#if MP_DEBUG
-#define PAUSE delay(1000000)
-#define DBG(x...) kprintf(x)
+#include <console/serial_protos.h>
+
+#if MONOTONIC
+#include <kern/monotonic.h>
+#endif /* MONOTONIC */
+
+#if MP_DEBUG
+#define PAUSE delay(1000000)
+#define DBG(x...) kprintf(x)
#else
#define DBG(x...)
#define PAUSE
-#endif /* MP_DEBUG */
+#endif /* MP_DEBUG */
+/* Debugging/test trace events: */
+#define TRACE_MP_TLB_FLUSH MACHDBG_CODE(DBG_MACH_MP, 0)
+#define TRACE_MP_CPUS_CALL MACHDBG_CODE(DBG_MACH_MP, 1)
+#define TRACE_MP_CPUS_CALL_LOCAL MACHDBG_CODE(DBG_MACH_MP, 2)
+#define TRACE_MP_CPUS_CALL_ACTION MACHDBG_CODE(DBG_MACH_MP, 3)
+#define TRACE_MP_CPUS_CALL_NOBUF MACHDBG_CODE(DBG_MACH_MP, 4)
+#define TRACE_MP_CPU_FAST_START MACHDBG_CODE(DBG_MACH_MP, 5)
+#define TRACE_MP_CPU_START MACHDBG_CODE(DBG_MACH_MP, 6)
+#define TRACE_MP_CPU_DEACTIVATE MACHDBG_CODE(DBG_MACH_MP, 7)
-void slave_boot_init(void);
+#define ABS(v) (((v) > 0)?(v):-(v))
-#if MACH_KDB
-static void mp_kdb_wait(void);
-volatile boolean_t mp_kdb_trap = FALSE;
-volatile long mp_kdb_ncpus = 0;
-#endif
+void slave_boot_init(void);
+void i386_cpu_IPI(int cpu);
-static void mp_kdp_wait(boolean_t flush, boolean_t isNMI);
-static void mp_rendezvous_action(void);
-static void mp_broadcast_action(void);
+#if MACH_KDP
+static void mp_kdp_wait(boolean_t flush, boolean_t isNMI);
+#endif /* MACH_KDP */
-static boolean_t cpu_signal_pending(int cpu, mp_event_t event);
-static int cpu_signal_handler(x86_saved_state_t *regs);
-static int NMIInterruptHandler(x86_saved_state_t *regs);
+#if MACH_KDP
+static boolean_t cpu_signal_pending(int cpu, mp_event_t event);
+#endif /* MACH_KDP */
+static int NMIInterruptHandler(x86_saved_state_t *regs);
+
+boolean_t smp_initialized = FALSE;
+uint32_t TSC_sync_margin = 0xFFF;
+volatile boolean_t force_immediate_debugger_NMI = FALSE;
+volatile boolean_t pmap_tlb_flush_timeout = FALSE;
+#if DEBUG || DEVELOPMENT
+boolean_t mp_interrupt_watchdog_enabled = TRUE;
+uint32_t mp_interrupt_watchdog_events = 0;
+#endif
-boolean_t smp_initialized = FALSE;
-volatile boolean_t force_immediate_debugger_NMI = FALSE;
-volatile boolean_t pmap_tlb_flush_timeout = FALSE;
-decl_simple_lock_data(,mp_kdp_lock);
+decl_simple_lock_data(, debugger_callback_lock);
+struct debugger_callback *debugger_callback = NULL;
decl_lck_mtx_data(static, mp_cpu_boot_lock);
-lck_mtx_ext_t mp_cpu_boot_lock_ext;
+lck_mtx_ext_t mp_cpu_boot_lock_ext;
/* Variables needed for MP rendezvous. */
-decl_simple_lock_data(,mp_rv_lock);
-static void (*mp_rv_setup_func)(void *arg);
-static void (*mp_rv_action_func)(void *arg);
-static void (*mp_rv_teardown_func)(void *arg);
-static void *mp_rv_func_arg;
-static volatile int mp_rv_ncpus;
- /* Cache-aligned barriers: */
-static volatile long mp_rv_entry __attribute__((aligned(64)));
-static volatile long mp_rv_exit __attribute__((aligned(64)));
-static volatile long mp_rv_complete __attribute__((aligned(64)));
-
-volatile uint64_t debugger_entry_time;
-volatile uint64_t debugger_exit_time;
+decl_simple_lock_data(, mp_rv_lock);
+static void (*mp_rv_setup_func)(void *arg);
+static void (*mp_rv_action_func)(void *arg);
+static void (*mp_rv_teardown_func)(void *arg);
+static void *mp_rv_func_arg;
+static volatile int mp_rv_ncpus;
+/* Cache-aligned barriers: */
+static volatile long mp_rv_entry __attribute__((aligned(64)));
+static volatile long mp_rv_exit __attribute__((aligned(64)));
+static volatile long mp_rv_complete __attribute__((aligned(64)));
+
+volatile uint64_t debugger_entry_time;
+volatile uint64_t debugger_exit_time;
#if MACH_KDP
-
+#include <kdp/kdp.h>
+extern int kdp_snapshot;
static struct _kdp_xcpu_call_func {
kdp_x86_xcpu_func_t func;
void *arg0, *arg1;
/* Variables needed for MP broadcast. */
static void (*mp_bc_action_func)(void *arg);
static void *mp_bc_func_arg;
-static int mp_bc_ncpus;
+static int mp_bc_ncpus;
static volatile long mp_bc_count;
decl_lck_mtx_data(static, mp_bc_lock);
-lck_mtx_ext_t mp_bc_lock_ext;
-static volatile int debugger_cpu = -1;
-
-static void mp_cpus_call_action(void);
-static void mp_call_PM(void);
-
-char mp_slave_stack[PAGE_SIZE] __attribute__((aligned(PAGE_SIZE))); // Temp stack for slave init
-
-
-#if GPROF
-/*
- * Initialize dummy structs for profiling. These aren't used but
- * allows hertz_tick() to be built with GPROF defined.
- */
-struct profile_vars _profile_vars;
-struct profile_vars *_profile_vars_cpus[MAX_CPUS] = { &_profile_vars };
-#define GPROF_INIT() \
-{ \
- int i; \
- \
- /* Hack to initialize pointers to unused profiling structs */ \
- for (i = 1; i < MAX_CPUS; i++) \
- _profile_vars_cpus[i] = &_profile_vars; \
-}
-#else
-#define GPROF_INIT()
-#endif /* GPROF */
-
-static lck_grp_t smp_lck_grp;
-static lck_grp_attr_t smp_lck_grp_attr;
-
-extern void slave_pstart(void);
+lck_mtx_ext_t mp_bc_lock_ext;
+static volatile int debugger_cpu = -1;
+volatile long NMIPI_acks = 0;
+volatile long NMI_count = 0;
+static NMI_reason_t NMI_panic_reason = NONE;
+static int vector_timed_out;
+
+extern void NMI_cpus(void);
+
+static void mp_cpus_call_init(void);
+static void mp_cpus_call_action(void);
+static void mp_call_PM(void);
+
+char mp_slave_stack[PAGE_SIZE] __attribute__((aligned(PAGE_SIZE))); // Temp stack for slave init
+
+/* PAL-related routines */
+boolean_t i386_smp_init(int nmi_vector, i386_intr_func_t nmi_handler,
+ int ipi_vector, i386_intr_func_t ipi_handler);
+void i386_start_cpu(int lapic_id, int cpu_num);
+void i386_send_NMI(int cpu);
+void NMIPI_enable(boolean_t);
+
+static lck_grp_t smp_lck_grp;
+static lck_grp_attr_t smp_lck_grp_attr;
+
+#define NUM_CPU_WARM_CALLS 20
+struct timer_call cpu_warm_call_arr[NUM_CPU_WARM_CALLS];
+queue_head_t cpu_warm_call_list;
+decl_simple_lock_data(static, cpu_warm_lock);
+
+typedef struct cpu_warm_data {
+ timer_call_t cwd_call;
+ uint64_t cwd_deadline;
+ int cwd_result;
+} *cpu_warm_data_t;
+
+static void cpu_prewarm_init(void);
+static void cpu_warm_timer_call_func(call_entry_param_t p0, call_entry_param_t p1);
+static void _cpu_warm_setup(void *arg);
+static timer_call_t grab_warm_timer_call(void);
+static void free_warm_timer_call(timer_call_t call);
void
smp_init(void)
{
- simple_lock_init(&mp_kdp_lock, 0);
simple_lock_init(&mp_rv_lock, 0);
+ simple_lock_init(&debugger_callback_lock, 0);
lck_grp_attr_setdefault(&smp_lck_grp_attr);
lck_grp_init(&smp_lck_grp, "i386_smp", &smp_lck_grp_attr);
lck_mtx_init_ext(&mp_cpu_boot_lock, &mp_cpu_boot_lock_ext, &smp_lck_grp, LCK_ATTR_NULL);
lck_mtx_init_ext(&mp_bc_lock, &mp_bc_lock_ext, &smp_lck_grp, LCK_ATTR_NULL);
console_init();
- /* Local APIC? */
- if (!lapic_probe())
+ if (!i386_smp_init(LAPIC_NMI_INTERRUPT, NMIInterruptHandler,
+ LAPIC_VECTOR(INTERPROCESSOR), cpu_signal_handler)) {
return;
-
- lapic_init();
- lapic_configure();
- lapic_set_intr_func(LAPIC_NMI_INTERRUPT, NMIInterruptHandler);
- lapic_set_intr_func(LAPIC_VECTOR(INTERPROCESSOR), cpu_signal_handler);
+ }
cpu_thread_init();
- GPROF_INIT();
DBGLOG_CPU_INIT(master_cpu);
- install_real_mode_bootstrap(slave_pstart);
+ mp_cpus_call_init();
+ mp_cpus_call_cpu_init(master_cpu);
+
+#if DEBUG || DEVELOPMENT
+ if (PE_parse_boot_argn("interrupt_watchdog",
+ &mp_interrupt_watchdog_enabled,
+ sizeof(mp_interrupt_watchdog_enabled))) {
+ kprintf("Interrupt watchdog %sabled\n",
+ mp_interrupt_watchdog_enabled ? "en" : "dis");
+ }
+#endif
+ if (PE_parse_boot_argn("TSC_sync_margin",
+ &TSC_sync_margin, sizeof(TSC_sync_margin))) {
+ kprintf("TSC sync Margin 0x%x\n", TSC_sync_margin);
+ } else if (cpuid_vmm_present()) {
+ kprintf("TSC sync margin disabled\n");
+ TSC_sync_margin = 0;
+ }
smp_initialized = TRUE;
+ cpu_prewarm_init();
+
return;
}
+typedef struct {
+ int target_cpu;
+ int target_lapic;
+ int starter_cpu;
+} processor_start_info_t;
+static processor_start_info_t start_info __attribute__((aligned(64)));
+
+/*
+ * Cache-alignment is to avoid cross-cpu false-sharing interference.
+ */
+static volatile long tsc_entry_barrier __attribute__((aligned(64)));
+static volatile long tsc_exit_barrier __attribute__((aligned(64)));
+static volatile uint64_t tsc_target __attribute__((aligned(64)));
+
/*
* Poll a CPU to see when it has marked itself as running.
*/
static void
mp_wait_for_cpu_up(int slot_num, unsigned int iters, unsigned int usecdelay)
{
- while (iters-- > 0) {
- if (cpu_datap(slot_num)->cpu_running)
- break;
+ while (iters-- > 0) {
+ if (cpu_datap(slot_num)->cpu_running) {
+ break;
+ }
delay(usecdelay);
}
}
kern_return_t
intel_startCPU_fast(int slot_num)
{
- kern_return_t rc;
+ kern_return_t rc;
/*
* Try to perform a fast restart
*/
rc = pmCPUExitHalt(slot_num);
- if (rc != KERN_SUCCESS)
+ if (rc != KERN_SUCCESS) {
/*
* The CPU was not eligible for a fast restart.
*/
- return(rc);
+ return rc;
+ }
+
+ KERNEL_DEBUG_CONSTANT(
+ TRACE_MP_CPU_FAST_START | DBG_FUNC_START,
+ slot_num, 0, 0, 0, 0);
/*
* Wait until the CPU is back online.
*/
mp_disable_preemption();
-
+
/*
* We use short pauses (1us) for low latency. 30,000 iterations is
* longer than a full restart would require so it should be more
* than long enough.
*/
+
mp_wait_for_cpu_up(slot_num, 30000, 1);
mp_enable_preemption();
+ KERNEL_DEBUG_CONSTANT(
+ TRACE_MP_CPU_FAST_START | DBG_FUNC_END,
+ slot_num, cpu_datap(slot_num)->cpu_running, 0, 0, 0);
+
/*
* Check to make sure that the CPU is really running. If not,
* go through the slow path.
*/
- if (cpu_datap(slot_num)->cpu_running)
- return(KERN_SUCCESS);
- else
- return(KERN_FAILURE);
+ if (cpu_datap(slot_num)->cpu_running) {
+ return KERN_SUCCESS;
+ } else {
+ return KERN_FAILURE;
+ }
}
-typedef struct {
- int target_cpu;
- int target_lapic;
- int starter_cpu;
-} processor_start_info_t;
+static void
+started_cpu(void)
+{
+ /* Here on the started cpu with cpu_running set TRUE */
-static processor_start_info_t start_info;
+ if (TSC_sync_margin &&
+ start_info.target_cpu == cpu_number()) {
+ /*
+ * I've just started-up, synchronize again with the starter cpu
+ * and then snap my TSC.
+ */
+ tsc_target = 0;
+ atomic_decl(&tsc_entry_barrier, 1);
+ while (tsc_entry_barrier != 0) {
+ ; /* spin for starter and target at barrier */
+ }
+ tsc_target = rdtsc64();
+ atomic_decl(&tsc_exit_barrier, 1);
+ }
+}
static void
start_cpu(void *arg)
{
- int i = 1000;
- processor_start_info_t *psip = (processor_start_info_t *) arg;
+ int i = 1000;
+ processor_start_info_t *psip = (processor_start_info_t *) arg;
/* Ignore this if the current processor is not the starter */
- if (cpu_number() != psip->starter_cpu)
+ if (cpu_number() != psip->starter_cpu) {
return;
+ }
- LAPIC_WRITE(ICRD, psip->target_lapic << LAPIC_ICRD_DEST_SHIFT);
- LAPIC_WRITE(ICR, LAPIC_ICR_DM_INIT);
- delay(100);
+ DBG("start_cpu(%p) about to start cpu %d, lapic %d\n",
+ arg, psip->target_cpu, psip->target_lapic);
- LAPIC_WRITE(ICRD, psip->target_lapic << LAPIC_ICRD_DEST_SHIFT);
- LAPIC_WRITE(ICR, LAPIC_ICR_DM_STARTUP|(REAL_MODE_BOOTSTRAP_OFFSET>>12));
+ KERNEL_DEBUG_CONSTANT(
+ TRACE_MP_CPU_START | DBG_FUNC_START,
+ psip->target_cpu,
+ psip->target_lapic, 0, 0, 0);
-#ifdef POSTCODE_DELAY
+ i386_start_cpu(psip->target_lapic, psip->target_cpu);
+
+#ifdef POSTCODE_DELAY
/* Wait much longer if postcodes are displayed for a delay period. */
i *= 10000;
#endif
- mp_wait_for_cpu_up(psip->target_cpu, i*100, 100);
-}
+ DBG("start_cpu(%p) about to wait for cpu %d\n",
+ arg, psip->target_cpu);
+
+ mp_wait_for_cpu_up(psip->target_cpu, i * 100, 100);
+
+ KERNEL_DEBUG_CONSTANT(
+ TRACE_MP_CPU_START | DBG_FUNC_END,
+ psip->target_cpu,
+ cpu_datap(psip->target_cpu)->cpu_running, 0, 0, 0);
-extern char prot_mode_gdt[];
-extern char slave_boot_base[];
-extern char real_mode_bootstrap_base[];
-extern char real_mode_bootstrap_end[];
-extern char slave_boot_end[];
+ if (TSC_sync_margin &&
+ cpu_datap(psip->target_cpu)->cpu_running) {
+ /*
+ * Compare the TSC from the started processor with ours.
+ * Report and log/panic if it diverges by more than
+ * TSC_sync_margin (TSC_SYNC_MARGIN) ticks. This margin
+ * can be overriden by boot-arg (with 0 meaning no checking).
+ */
+ uint64_t tsc_starter;
+ int64_t tsc_delta;
+ atomic_decl(&tsc_entry_barrier, 1);
+ while (tsc_entry_barrier != 0) {
+ ; /* spin for both processors at barrier */
+ }
+ tsc_starter = rdtsc64();
+ atomic_decl(&tsc_exit_barrier, 1);
+ while (tsc_exit_barrier != 0) {
+ ; /* spin for target to store its TSC */
+ }
+ tsc_delta = tsc_target - tsc_starter;
+ kprintf("TSC sync for cpu %d: 0x%016llx delta 0x%llx (%lld)\n",
+ psip->target_cpu, tsc_target, tsc_delta, tsc_delta);
+ if (ABS(tsc_delta) > (int64_t) TSC_sync_margin) {
+#if DEBUG
+ panic(
+#else
+ printf(
+#endif
+ "Unsynchronized TSC for cpu %d: "
+ "0x%016llx, delta 0x%llx\n",
+ psip->target_cpu, tsc_target, tsc_delta);
+ }
+ }
+}
kern_return_t
intel_startCPU(
- int slot_num)
+ int slot_num)
{
- int lapic = cpu_to_lapic[slot_num];
- boolean_t istate;
+ int lapic = cpu_to_lapic[slot_num];
+ boolean_t istate;
assert(lapic != -1);
DBGLOG_CPU_INIT(slot_num);
DBG("intel_startCPU(%d) lapic_id=%d\n", slot_num, lapic);
- DBG("IdlePTD(%p): 0x%x\n", &IdlePTD, (int) IdlePTD);
+ DBG("IdlePTD(%p): 0x%x\n", &IdlePTD, (int) (uintptr_t)IdlePTD);
/*
* Initialize (or re-initialize) the descriptor tables for this cpu.
* Propagate processor mode to slave.
*/
- if (cpu_mode_is64bit())
- cpu_desc_init64(cpu_datap(slot_num));
- else
- cpu_desc_init(cpu_datap(slot_num));
+ cpu_desc_init(cpu_datap(slot_num));
/* Serialize use of the slave boot stack, etc. */
lck_mtx_lock(&mp_cpu_boot_lock);
start_info.starter_cpu = cpu_number();
start_info.target_cpu = slot_num;
start_info.target_lapic = lapic;
+ tsc_entry_barrier = 2;
+ tsc_exit_barrier = 2;
/*
* Perform the processor startup sequence with all running
*/
mp_rendezvous_no_intrs(start_cpu, (void *) &start_info);
+ start_info.target_cpu = 0;
+
ml_set_interrupts_enabled(istate);
lck_mtx_unlock(&mp_cpu_boot_lock);
}
}
-#if MP_DEBUG
-cpu_signal_event_log_t *cpu_signal[MAX_CPUS];
-cpu_signal_event_log_t *cpu_handle[MAX_CPUS];
+#if MP_DEBUG
+cpu_signal_event_log_t *cpu_signal[MAX_CPUS];
+cpu_signal_event_log_t *cpu_handle[MAX_CPUS];
MP_EVENT_NAME_DECL();
-#endif /* MP_DEBUG */
+#endif /* MP_DEBUG */
+/*
+ * Note: called with NULL state when polling for TLB flush and cross-calls.
+ */
int
cpu_signal_handler(x86_saved_state_t *regs)
{
- int my_cpu;
- volatile int *my_word;
-#if MACH_KDB && MACH_ASSERT
- int i=100;
-#endif /* MACH_KDB && MACH_ASSERT */
+#if !MACH_KDP
+#pragma unused (regs)
+#endif /* !MACH_KDP */
+ int my_cpu;
+ volatile int *my_word;
- mp_disable_preemption();
+ SCHED_STATS_IPI(current_processor());
my_cpu = cpu_number();
- my_word = ¤t_cpu_datap()->cpu_signals;
+ my_word = &cpu_data_ptr[my_cpu]->cpu_signals;
+ /* Store the initial set of signals for diagnostics. New
+ * signals could arrive while these are being processed
+ * so it's no more than a hint.
+ */
+
+ cpu_data_ptr[my_cpu]->cpu_prior_signals = *my_word;
do {
-#if MACH_KDB && MACH_ASSERT
- if (i-- <= 0)
- Debugger("cpu_signal_handler: signals did not clear");
-#endif /* MACH_KDB && MACH_ASSERT */
-#if MACH_KDP
+#if MACH_KDP
if (i_bit(MP_KDP, my_word)) {
- DBGLOG(cpu_handle,my_cpu,MP_KDP);
+ DBGLOG(cpu_handle, my_cpu, MP_KDP);
i_bit_clear(MP_KDP, my_word);
/* Ensure that the i386_kernel_state at the base of the
* current thread's stack (if any) is synchronized with the
* access through the debugger.
*/
sync_iss_to_iks(regs);
+ if (pmsafe_debug && !kdp_snapshot) {
+ pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE);
+ }
mp_kdp_wait(TRUE, FALSE);
+ if (pmsafe_debug && !kdp_snapshot) {
+ pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_NORMAL);
+ }
} else
-#endif /* MACH_KDP */
+#endif /* MACH_KDP */
if (i_bit(MP_TLB_FLUSH, my_word)) {
- DBGLOG(cpu_handle,my_cpu,MP_TLB_FLUSH);
+ DBGLOG(cpu_handle, my_cpu, MP_TLB_FLUSH);
i_bit_clear(MP_TLB_FLUSH, my_word);
pmap_update_interrupt();
- } else if (i_bit(MP_AST, my_word)) {
- DBGLOG(cpu_handle,my_cpu,MP_AST);
- i_bit_clear(MP_AST, my_word);
- ast_check(cpu_to_processor(my_cpu));
-#if MACH_KDB
- } else if (i_bit(MP_KDB, my_word)) {
-
- i_bit_clear(MP_KDB, my_word);
- current_cpu_datap()->cpu_kdb_is_slave++;
- mp_kdb_wait();
- current_cpu_datap()->cpu_kdb_is_slave--;
-#endif /* MACH_KDB */
- } else if (i_bit(MP_RENDEZVOUS, my_word)) {
- DBGLOG(cpu_handle,my_cpu,MP_RENDEZVOUS);
- i_bit_clear(MP_RENDEZVOUS, my_word);
- mp_rendezvous_action();
- } else if (i_bit(MP_BROADCAST, my_word)) {
- DBGLOG(cpu_handle,my_cpu,MP_BROADCAST);
- i_bit_clear(MP_BROADCAST, my_word);
- mp_broadcast_action();
- } else if (i_bit(MP_CHUD, my_word)) {
- DBGLOG(cpu_handle,my_cpu,MP_CHUD);
- i_bit_clear(MP_CHUD, my_word);
- chudxnu_cpu_signal_handler();
} else if (i_bit(MP_CALL, my_word)) {
- DBGLOG(cpu_handle,my_cpu,MP_CALL);
+ DBGLOG(cpu_handle, my_cpu, MP_CALL);
i_bit_clear(MP_CALL, my_word);
mp_cpus_call_action();
} else if (i_bit(MP_CALL_PM, my_word)) {
- DBGLOG(cpu_handle,my_cpu,MP_CALL_PM);
+ DBGLOG(cpu_handle, my_cpu, MP_CALL_PM);
i_bit_clear(MP_CALL_PM, my_word);
mp_call_PM();
}
+ if (regs == NULL) {
+ /* Called to poll only for cross-calls and TLB flush */
+ break;
+ } else if (i_bit(MP_AST, my_word)) {
+ DBGLOG(cpu_handle, my_cpu, MP_AST);
+ i_bit_clear(MP_AST, my_word);
+ ast_check(cpu_to_processor(my_cpu));
+ }
} while (*my_word);
- mp_enable_preemption();
-
return 0;
}
-static int
+extern void kprintf_break_lock(void);
+int
NMIInterruptHandler(x86_saved_state_t *regs)
{
- void *stackptr;
-
+ void *stackptr;
+ char pstr[256];
+ uint64_t now = mach_absolute_time();
+
+ if (panic_active() && !panicDebugging) {
+ if (pmsafe_debug) {
+ pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE);
+ }
+ for (;;) {
+ cpu_pause();
+ }
+ }
+
+ atomic_incl(&NMIPI_acks, 1);
+ atomic_incl(&NMI_count, 1);
sync_iss_to_iks_unconditionally(regs);
-#if defined (__i386__)
- __asm__ volatile("movl %%ebp, %0" : "=m" (stackptr));
-#elif defined (__x86_64__)
- __asm__ volatile("movq %%rbp, %0" : "=m" (stackptr));
-#endif
+ __asm__ volatile ("movq %%rbp, %0" : "=m" (stackptr));
- if (cpu_number() == debugger_cpu)
- goto NMExit;
+ if (cpu_number() == debugger_cpu) {
+ goto NMExit;
+ }
- if (pmap_tlb_flush_timeout == TRUE && current_cpu_datap()->cpu_tlb_invalid) {
- char pstr[128];
- snprintf(&pstr[0], sizeof(pstr), "Panic(CPU %d): Unresponsive processor\n", cpu_number());
- panic_i386_backtrace(stackptr, 16, &pstr[0], TRUE, regs);
+ if (NMI_panic_reason == SPINLOCK_TIMEOUT) {
+ snprintf(&pstr[0], sizeof(pstr),
+ "Panic(CPU %d, time %llu): NMIPI for spinlock acquisition timeout, spinlock: %p, spinlock owner: %p, current_thread: %p, spinlock_owner_cpu: 0x%x\n",
+ cpu_number(), now, spinlock_timed_out, (void *) spinlock_timed_out->interlock.lock_data, current_thread(), spinlock_owner_cpu);
+ panic_i386_backtrace(stackptr, 64, &pstr[0], TRUE, regs);
+ } else if (NMI_panic_reason == TLB_FLUSH_TIMEOUT) {
+ snprintf(&pstr[0], sizeof(pstr),
+ "Panic(CPU %d, time %llu): NMIPI for unresponsive processor: TLB flush timeout, TLB state:0x%x\n",
+ cpu_number(), now, current_cpu_datap()->cpu_tlb_invalid);
+ panic_i386_backtrace(stackptr, 48, &pstr[0], TRUE, regs);
+ } else if (NMI_panic_reason == CROSSCALL_TIMEOUT) {
+ snprintf(&pstr[0], sizeof(pstr),
+ "Panic(CPU %d, time %llu): NMIPI for unresponsive processor: cross-call timeout\n",
+ cpu_number(), now);
+ panic_i386_backtrace(stackptr, 64, &pstr[0], TRUE, regs);
+ } else if (NMI_panic_reason == INTERRUPT_WATCHDOG) {
+ snprintf(&pstr[0], sizeof(pstr),
+ "Panic(CPU %d, time %llu): NMIPI for unresponsive processor: interrupt watchdog for vector 0x%x\n",
+ cpu_number(), now, vector_timed_out);
+ panic_i386_backtrace(stackptr, 64, &pstr[0], TRUE, regs);
}
#if MACH_KDP
- mp_kdp_wait(FALSE, pmap_tlb_flush_timeout);
-#endif
-NMExit:
- return 1;
-}
-
-#ifdef MP_DEBUG
-int max_lock_loops = 100000000;
-int trappedalready = 0; /* (BRINGUP) */
-#endif /* MP_DEBUG */
-
-static void
-i386_cpu_IPI(int cpu)
-{
- boolean_t state;
-
-#ifdef MP_DEBUG
- if(cpu_datap(cpu)->cpu_signals & 6) { /* (BRINGUP) */
- kprintf("i386_cpu_IPI: sending enter debugger signal (%08X) to cpu %d\n", cpu_datap(cpu)->cpu_signals, cpu);
- }
-#endif /* MP_DEBUG */
-
-#if MACH_KDB
-#ifdef MP_DEBUG
- if(!trappedalready && (cpu_datap(cpu)->cpu_signals & 6)) { /* (BRINGUP) */
- if(kdb_cpu != cpu_number()) {
- trappedalready = 1;
- panic("i386_cpu_IPI: sending enter debugger signal (%08X) to cpu %d and I do not own debugger, owner = %08X\n",
- cpu_datap(cpu)->cpu_signals, cpu, kdb_cpu);
+ if (pmsafe_debug && !kdp_snapshot) {
+ pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE);
+ }
+ current_cpu_datap()->cpu_NMI_acknowledged = TRUE;
+ i_bit_clear(MP_KDP, ¤t_cpu_datap()->cpu_signals);
+ if (panic_active() || NMI_panic_reason != NONE) {
+ mp_kdp_wait(FALSE, TRUE);
+ } else if (!mp_kdp_trap &&
+ !mp_kdp_is_NMI &&
+ virtualized && (debug_boot_arg & DB_NMI)) {
+ /*
+ * Under a VMM with the debug boot-arg set, drop into kdp.
+ * Since an NMI is involved, there's a risk of contending with
+ * a panic. And side-effects of NMIs may result in entry into,
+ * and continuing from, the debugger being unreliable.
+ */
+ if (__sync_bool_compare_and_swap(&mp_kdp_is_NMI, FALSE, TRUE)) {
+ kprintf_break_lock();
+ kprintf("Debugger entry requested by NMI\n");
+ kdp_i386_trap(T_DEBUG, saved_state64(regs), 0, 0);
+ printf("Debugger entry requested by NMI\n");
+ mp_kdp_is_NMI = FALSE;
+ } else {
+ mp_kdp_wait(FALSE, FALSE);
}
+ } else {
+ mp_kdp_wait(FALSE, FALSE);
}
-#endif /* MP_DEBUG */
-#endif
-
- /* Wait for previous interrupt to be delivered... */
-#ifdef MP_DEBUG
- int pending_busy_count = 0;
- while (LAPIC_READ(ICR) & LAPIC_ICR_DS_PENDING) {
- if (++pending_busy_count > max_lock_loops)
- panic("i386_cpu_IPI() deadlock\n");
-#else
- while (LAPIC_READ(ICR) & LAPIC_ICR_DS_PENDING) {
-#endif /* MP_DEBUG */
- cpu_pause();
+ if (pmsafe_debug && !kdp_snapshot) {
+ pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_NORMAL);
}
-
- state = ml_set_interrupts_enabled(FALSE);
- LAPIC_WRITE(ICRD, cpu_to_lapic[cpu] << LAPIC_ICRD_DEST_SHIFT);
- LAPIC_WRITE(ICR, LAPIC_VECTOR(INTERPROCESSOR) | LAPIC_ICR_DM_FIXED);
- (void) ml_set_interrupts_enabled(state);
+#endif
+NMExit:
+ return 1;
}
+
/*
* cpu_interrupt is really just to be used by the scheduler to
* get a CPU's attention it may not always issue an IPI. If an
void
cpu_interrupt(int cpu)
{
+ boolean_t did_IPI = FALSE;
+
if (smp_initialized
&& pmCPUExitIdle(cpu_datap(cpu))) {
i386_cpu_IPI(cpu);
+ did_IPI = TRUE;
}
+
+ KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_REMOTE_AST), cpu, did_IPI, 0, 0, 0);
}
/*
void
cpu_NMI_interrupt(int cpu)
{
- boolean_t state;
-
if (smp_initialized) {
- state = ml_set_interrupts_enabled(FALSE);
-/* Program the interrupt command register */
- LAPIC_WRITE(ICRD, cpu_to_lapic[cpu] << LAPIC_ICRD_DEST_SHIFT);
-/* The vector is ignored in this case--the target CPU will enter on the
- * NMI vector.
- */
- LAPIC_WRITE(ICR, LAPIC_VECTOR(INTERPROCESSOR)|LAPIC_ICR_DM_NMI);
- (void) ml_set_interrupts_enabled(state);
+ i386_send_NMI(cpu);
+ }
+}
+
+void
+NMI_cpus(void)
+{
+ unsigned int cpu;
+ boolean_t intrs_enabled;
+ uint64_t tsc_timeout;
+
+ intrs_enabled = ml_set_interrupts_enabled(FALSE);
+ NMIPI_enable(TRUE);
+ for (cpu = 0; cpu < real_ncpus; cpu++) {
+ if (!cpu_is_running(cpu)) {
+ continue;
+ }
+ cpu_datap(cpu)->cpu_NMI_acknowledged = FALSE;
+ cpu_NMI_interrupt(cpu);
+ tsc_timeout = !machine_timeout_suspended() ?
+ rdtsc64() + (1000 * 1000 * 1000 * 10ULL) :
+ ~0ULL;
+ while (!cpu_datap(cpu)->cpu_NMI_acknowledged) {
+ handle_pending_TLB_flushes();
+ cpu_pause();
+ if (rdtsc64() > tsc_timeout) {
+ panic("NMI_cpus() timeout cpu %d", cpu);
+ }
+ }
+ cpu_datap(cpu)->cpu_NMI_acknowledged = FALSE;
}
+ NMIPI_enable(FALSE);
+
+ ml_set_interrupts_enabled(intrs_enabled);
}
-static void (* volatile mp_PM_func)(void) = NULL;
+static void(*volatile mp_PM_func)(void) = NULL;
static void
mp_call_PM(void)
{
assert(!ml_get_interrupts_enabled());
- if (mp_PM_func != NULL)
+ if (mp_PM_func != NULL) {
mp_PM_func();
+ }
}
void
assert(!ml_get_interrupts_enabled());
if (mp_PM_func != NULL) {
- if (cpu == cpu_number())
+ if (cpu == cpu_number()) {
mp_PM_func();
- else
+ } else {
i386_signal_cpu(cpu, MP_CALL_PM, ASYNC);
+ }
}
}
void
i386_signal_cpu(int cpu, mp_event_t event, mp_sync_t mode)
{
- volatile int *signals = &cpu_datap(cpu)->cpu_signals;
- uint64_t tsc_timeout;
+ volatile int *signals = &cpu_datap(cpu)->cpu_signals;
+ uint64_t tsc_timeout;
-
- if (!cpu_datap(cpu)->cpu_running)
+
+ if (!cpu_datap(cpu)->cpu_running) {
return;
+ }
- if (event == MP_TLB_FLUSH)
- KERNEL_DEBUG(0xef800020 | DBG_FUNC_START, cpu, 0, 0, 0, 0);
+ if (event == MP_TLB_FLUSH) {
+ KERNEL_DEBUG(TRACE_MP_TLB_FLUSH | DBG_FUNC_START, cpu, 0, 0, 0, 0);
+ }
DBGLOG(cpu_signal, cpu, event);
-
+
i_bit_set(event, signals);
i386_cpu_IPI(cpu);
if (mode == SYNC) {
- again:
- tsc_timeout = rdtsc64() + (1000*1000*1000);
+again:
+ tsc_timeout = !machine_timeout_suspended() ?
+ rdtsc64() + (1000 * 1000 * 1000) :
+ ~0ULL;
while (i_bit(event, signals) && rdtsc64() < tsc_timeout) {
cpu_pause();
}
if (i_bit(event, signals)) {
DBG("i386_signal_cpu(%d, 0x%x, SYNC) timed out\n",
- cpu, event);
+ cpu, event);
goto again;
}
}
- if (event == MP_TLB_FLUSH)
- KERNEL_DEBUG(0xef800020 | DBG_FUNC_END, cpu, 0, 0, 0, 0);
+ if (event == MP_TLB_FLUSH) {
+ KERNEL_DEBUG(TRACE_MP_TLB_FLUSH | DBG_FUNC_END, cpu, 0, 0, 0, 0);
+ }
}
/*
- * Send event to all running cpus.
- * Called with the topology locked.
+ * Helper function called when busy-waiting: panic if too long
+ * a TSC-based time has elapsed since the start of the spin.
*/
-void
-i386_signal_cpus(mp_event_t event, mp_sync_t mode)
+static boolean_t
+mp_spin_timeout(uint64_t tsc_start)
{
- unsigned int cpu;
- unsigned int my_cpu = cpu_number();
-
- assert(hw_lock_held((hw_lock_t)&x86_topo_lock));
+ uint64_t tsc_timeout;
- for (cpu = 0; cpu < real_ncpus; cpu++) {
- if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running)
- continue;
- i386_signal_cpu(cpu, event, mode);
+ cpu_pause();
+ if (machine_timeout_suspended()) {
+ return FALSE;
}
+
+ /*
+ * The timeout is 4 * the spinlock timeout period
+ * unless we have serial console printing (kprintf) enabled
+ * in which case we allow an even greater margin.
+ */
+ tsc_timeout = disable_serial_output ? LockTimeOutTSC << 2
+ : LockTimeOutTSC << 4;
+ return rdtsc64() > tsc_start + tsc_timeout;
}
/*
- * Return the number of running cpus.
- * Called with the topology locked.
+ * Helper function to take a spinlock while ensuring that incoming IPIs
+ * are still serviced if interrupts are masked while we spin.
+ * Returns current interrupt state.
*/
-int
-i386_active_cpus(void)
+boolean_t
+mp_safe_spin_lock(usimple_lock_t lock)
{
- unsigned int cpu;
- unsigned int ncpus = 0;
-
- assert(hw_lock_held((hw_lock_t)&x86_topo_lock));
-
- for (cpu = 0; cpu < real_ncpus; cpu++) {
- if (cpu_datap(cpu)->cpu_running)
- ncpus++;
+ if (ml_get_interrupts_enabled()) {
+ simple_lock(lock, LCK_GRP_NULL);
+ return TRUE;
+ } else {
+ uint64_t tsc_spin_start = rdtsc64();
+ while (!simple_lock_try(lock, LCK_GRP_NULL)) {
+ cpu_signal_handler(NULL);
+ if (mp_spin_timeout(tsc_spin_start)) {
+ uint32_t lock_cpu;
+ uintptr_t lowner = (uintptr_t)
+ lock->interlock.lock_data;
+ spinlock_timed_out = lock;
+ lock_cpu = spinlock_timeout_NMI(lowner);
+ NMIPI_panic(cpu_to_cpumask(lock_cpu), SPINLOCK_TIMEOUT);
+ panic("mp_safe_spin_lock() timed out, lock: %p, owner thread: 0x%lx, current_thread: %p, owner on CPU 0x%x, time: %llu",
+ lock, lowner, current_thread(), lock_cpu, mach_absolute_time());
+ }
+ }
+ return FALSE;
}
- return(ncpus);
}
/*
* All-CPU rendezvous:
- * - CPUs are signalled,
+ * - CPUs are signalled,
* - all execute the setup function (if specified),
* - rendezvous (i.e. all cpus reach a barrier),
* - all execute the action function (if specified),
*/
static void
-mp_rendezvous_action(void)
+mp_rendezvous_action(__unused void *null)
{
- boolean_t intrs_enabled;
+ boolean_t intrs_enabled;
+ uint64_t tsc_spin_start;
+
+ /*
+ * Note that mp_rv_lock was acquired by the thread that initiated the
+ * rendezvous and must have been acquired before we enter
+ * mp_rendezvous_action().
+ */
+ current_cpu_datap()->cpu_rendezvous_in_progress = TRUE;
/* setup function */
- if (mp_rv_setup_func != NULL)
+ if (mp_rv_setup_func != NULL) {
mp_rv_setup_func(mp_rv_func_arg);
+ }
intrs_enabled = ml_get_interrupts_enabled();
-
/* spin on entry rendezvous */
atomic_incl(&mp_rv_entry, 1);
+ tsc_spin_start = rdtsc64();
+
while (mp_rv_entry < mp_rv_ncpus) {
/* poll for pesky tlb flushes if interrupts disabled */
- if (!intrs_enabled)
+ if (!intrs_enabled) {
handle_pending_TLB_flushes();
- cpu_pause();
+ }
+ if (mp_spin_timeout(tsc_spin_start)) {
+ panic("mp_rv_action() entry: %ld of %d responses, start: 0x%llx, cur: 0x%llx", mp_rv_entry, mp_rv_ncpus, tsc_spin_start, rdtsc64());
+ }
}
+
/* action function */
- if (mp_rv_action_func != NULL)
+ if (mp_rv_action_func != NULL) {
mp_rv_action_func(mp_rv_func_arg);
+ }
+
/* spin on exit rendezvous */
atomic_incl(&mp_rv_exit, 1);
+ tsc_spin_start = rdtsc64();
while (mp_rv_exit < mp_rv_ncpus) {
- if (!intrs_enabled)
+ if (!intrs_enabled) {
handle_pending_TLB_flushes();
- cpu_pause();
+ }
+ if (mp_spin_timeout(tsc_spin_start)) {
+ panic("mp_rv_action() exit: %ld of %d responses, start: 0x%llx, cur: 0x%llx", mp_rv_exit, mp_rv_ncpus, tsc_spin_start, rdtsc64());
+ }
}
+
/* teardown function */
- if (mp_rv_teardown_func != NULL)
+ if (mp_rv_teardown_func != NULL) {
mp_rv_teardown_func(mp_rv_func_arg);
+ }
+
+ current_cpu_datap()->cpu_rendezvous_in_progress = FALSE;
/* Bump completion count */
atomic_incl(&mp_rv_complete, 1);
}
void
-mp_rendezvous(void (*setup_func)(void *),
- void (*action_func)(void *),
- void (*teardown_func)(void *),
- void *arg)
+mp_rendezvous(void (*setup_func)(void *),
+ void (*action_func)(void *),
+ void (*teardown_func)(void *),
+ void *arg)
{
+ uint64_t tsc_spin_start;
if (!smp_initialized) {
- if (setup_func != NULL)
+ if (setup_func != NULL) {
setup_func(arg);
- if (action_func != NULL)
+ }
+ if (action_func != NULL) {
action_func(arg);
- if (teardown_func != NULL)
+ }
+ if (teardown_func != NULL) {
teardown_func(arg);
+ }
return;
}
-
+
/* obtain rendezvous lock */
- simple_lock(&mp_rv_lock);
+ mp_rendezvous_lock();
/* set static function pointers */
mp_rv_setup_func = setup_func;
* signal other processors, which will call mp_rendezvous_action()
* with interrupts disabled
*/
- simple_lock(&x86_topo_lock);
- mp_rv_ncpus = i386_active_cpus();
- i386_signal_cpus(MP_RENDEZVOUS, ASYNC);
- simple_unlock(&x86_topo_lock);
+ mp_rv_ncpus = mp_cpus_call(CPUMASK_OTHERS, NOSYNC, &mp_rendezvous_action, NULL) + 1;
/* call executor function on this cpu */
- mp_rendezvous_action();
+ mp_rendezvous_action(NULL);
/*
* Spin for everyone to complete.
* This is necessary to ensure that all processors have proceeded
* from the exit barrier before we release the rendezvous structure.
*/
+ tsc_spin_start = rdtsc64();
while (mp_rv_complete < mp_rv_ncpus) {
- cpu_pause();
+ if (mp_spin_timeout(tsc_spin_start)) {
+ panic("mp_rendezvous() timeout: %ld of %d responses, start: 0x%llx, cur: 0x%llx", mp_rv_complete, mp_rv_ncpus, tsc_spin_start, rdtsc64());
+ }
}
-
+
/* Tidy up */
mp_rv_setup_func = NULL;
mp_rv_action_func = NULL;
mp_rv_func_arg = NULL;
/* release lock */
+ mp_rendezvous_unlock();
+}
+
+void
+mp_rendezvous_lock(void)
+{
+ (void) mp_safe_spin_lock(&mp_rv_lock);
+}
+
+void
+mp_rendezvous_unlock(void)
+{
simple_unlock(&mp_rv_lock);
}
*/
void
mp_rendezvous_no_intrs(
- void (*action_func)(void *),
- void *arg)
+ void (*action_func)(void *),
+ void *arg)
{
mp_rendezvous(setup_disable_intrs,
- action_func,
- teardown_restore_intrs,
- arg);
+ action_func,
+ teardown_restore_intrs,
+ arg);
}
-void
-handle_pending_TLB_flushes(void)
-{
- volatile int *my_word = ¤t_cpu_datap()->cpu_signals;
- if (i_bit(MP_TLB_FLUSH, my_word)) {
- DBGLOG(cpu_handle, cpu_number(), MP_TLB_FLUSH);
- i_bit_clear(MP_TLB_FLUSH, my_word);
- pmap_update_interrupt();
- }
-}
+typedef struct {
+ queue_chain_t link; /* queue linkage */
+ void (*func)(void *, void *); /* routine to call */
+ void *arg0; /* routine's 1st arg */
+ void *arg1; /* routine's 2nd arg */
+ cpumask_t *maskp; /* completion response mask */
+} mp_call_t;
-/*
- * This is called from cpu_signal_handler() to process an MP_CALL signal.
- */
-static void
-mp_cpus_call_action(void)
+
+typedef struct {
+ queue_head_t queue;
+ decl_simple_lock_data(, lock);
+} mp_call_queue_t;
+#define MP_CPUS_CALL_BUFS_PER_CPU MAX_CPUS
+static mp_call_queue_t mp_cpus_call_freelist;
+static mp_call_queue_t mp_cpus_call_head[MAX_CPUS];
+
+static inline boolean_t
+mp_call_head_lock(mp_call_queue_t *cqp)
{
- if (mp_rv_action_func != NULL)
- mp_rv_action_func(mp_rv_func_arg);
- atomic_incl(&mp_rv_complete, 1);
+ boolean_t intrs_enabled;
+
+ intrs_enabled = ml_set_interrupts_enabled(FALSE);
+ simple_lock(&cqp->lock, LCK_GRP_NULL);
+
+ return intrs_enabled;
}
/*
- * mp_cpus_call() runs a given function on cpus specified in a given cpu mask.
- * If the mode is SYNC, the function is called serially on the target cpus
- * in logical cpu order. If the mode is ASYNC, the function is called in
- * parallel over the specified cpus.
- * The action function may be NULL.
- * The cpu mask may include the local cpu. Offline cpus are ignored.
- * Return does not occur until the function has completed on all cpus.
- * The return value is the number of cpus on which the function was called.
+ * Deliver an NMIPI to a set of processors to cause them to panic .
*/
-cpu_t
-mp_cpus_call(
- cpumask_t cpus,
- mp_sync_t mode,
- void (*action_func)(void *),
- void *arg)
+void
+NMIPI_panic(cpumask_t cpu_mask, NMI_reason_t why)
{
- cpu_t cpu;
- boolean_t intrs_enabled = ml_get_interrupts_enabled();
- boolean_t call_self = FALSE;
-
- if (!smp_initialized) {
- if ((cpus & CPUMASK_SELF) == 0)
- return 0;
- if (action_func != NULL) {
- (void) ml_set_interrupts_enabled(FALSE);
- action_func(arg);
- ml_set_interrupts_enabled(intrs_enabled);
- }
- return 1;
- }
-
- /* obtain rendezvous lock */
- simple_lock(&mp_rv_lock);
+ unsigned int cpu;
+ cpumask_t cpu_bit;
+ uint64_t deadline;
- /* Use the rendezvous data structures for this call */
- mp_rv_action_func = action_func;
- mp_rv_func_arg = arg;
- mp_rv_ncpus = 0;
- mp_rv_complete = 0;
+ NMIPI_enable(TRUE);
+ NMI_panic_reason = why;
- simple_lock(&x86_topo_lock);
- for (cpu = 0; cpu < (cpu_t) real_ncpus; cpu++) {
- if (((cpu_to_cpumask(cpu) & cpus) == 0) ||
- !cpu_datap(cpu)->cpu_running)
+ for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) {
+ if ((cpu_mask & cpu_bit) == 0) {
continue;
- if (cpu == (cpu_t) cpu_number()) {
- /*
- * We don't IPI ourself and if calling asynchronously,
- * we defer our call until we have signalled all others.
- */
- call_self = TRUE;
- if (mode == SYNC && action_func != NULL) {
- (void) ml_set_interrupts_enabled(FALSE);
- action_func(arg);
- ml_set_interrupts_enabled(intrs_enabled);
- }
- } else {
- /*
- * Bump count of other cpus called and signal this cpu.
- * Note: we signal asynchronously regardless of mode
- * because we wait on mp_rv_complete either here
- * (if mode == SYNC) or later (if mode == ASYNC).
- * While spinning, poll for TLB flushes if interrupts
- * are disabled.
- */
- mp_rv_ncpus++;
- i386_signal_cpu(cpu, MP_CALL, ASYNC);
- if (mode == SYNC) {
- simple_unlock(&x86_topo_lock);
- while (mp_rv_complete < mp_rv_ncpus) {
- if (!intrs_enabled)
- handle_pending_TLB_flushes();
- cpu_pause();
- }
- simple_lock(&x86_topo_lock);
- }
}
+ cpu_datap(cpu)->cpu_NMI_acknowledged = FALSE;
+ cpu_NMI_interrupt(cpu);
}
- simple_unlock(&x86_topo_lock);
- /*
- * If calls are being made asynchronously,
- * make the local call now if needed, and then
- * wait for all other cpus to finish their calls.
- */
- if (mode == ASYNC) {
- if (call_self && action_func != NULL) {
- (void) ml_set_interrupts_enabled(FALSE);
- action_func(arg);
- ml_set_interrupts_enabled(intrs_enabled);
+ /* Wait (only so long) for NMi'ed cpus to respond */
+ deadline = mach_absolute_time() + LockTimeOut;
+ for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) {
+ if ((cpu_mask & cpu_bit) == 0) {
+ continue;
}
- while (mp_rv_complete < mp_rv_ncpus) {
- if (!intrs_enabled)
- handle_pending_TLB_flushes();
+ while (!cpu_datap(cpu)->cpu_NMI_acknowledged &&
+ mach_absolute_time() < deadline) {
cpu_pause();
}
}
-
- /* Determine the number of cpus called */
- cpu = mp_rv_ncpus + (call_self ? 1 : 0);
-
- simple_unlock(&mp_rv_lock);
-
- return cpu;
}
-static void
-mp_broadcast_action(void)
+#if MACH_ASSERT
+static inline boolean_t
+mp_call_head_is_locked(mp_call_queue_t *cqp)
{
- /* call action function */
- if (mp_bc_action_func != NULL)
- mp_bc_action_func(mp_bc_func_arg);
-
- /* if we're the last one through, wake up the instigator */
- if (atomic_decl_and_test(&mp_bc_count, 1))
- thread_wakeup(((event_t)(uintptr_t) &mp_bc_count));
+ return !ml_get_interrupts_enabled() &&
+ hw_lock_held((hw_lock_t)&cqp->lock);
+}
+#endif
+
+static inline void
+mp_call_head_unlock(mp_call_queue_t *cqp, boolean_t intrs_enabled)
+{
+ simple_unlock(&cqp->lock);
+ ml_set_interrupts_enabled(intrs_enabled);
+}
+
+static inline mp_call_t *
+mp_call_alloc(void)
+{
+ mp_call_t *callp = NULL;
+ boolean_t intrs_enabled;
+ mp_call_queue_t *cqp = &mp_cpus_call_freelist;
+
+ intrs_enabled = mp_call_head_lock(cqp);
+ if (!queue_empty(&cqp->queue)) {
+ queue_remove_first(&cqp->queue, callp, typeof(callp), link);
+ }
+ mp_call_head_unlock(cqp, intrs_enabled);
+
+ return callp;
+}
+
+static inline void
+mp_call_free(mp_call_t *callp)
+{
+ boolean_t intrs_enabled;
+ mp_call_queue_t *cqp = &mp_cpus_call_freelist;
+
+ intrs_enabled = mp_call_head_lock(cqp);
+ queue_enter_first(&cqp->queue, callp, typeof(callp), link);
+ mp_call_head_unlock(cqp, intrs_enabled);
+}
+
+static inline mp_call_t *
+mp_call_dequeue_locked(mp_call_queue_t *cqp)
+{
+ mp_call_t *callp = NULL;
+
+ assert(mp_call_head_is_locked(cqp));
+ if (!queue_empty(&cqp->queue)) {
+ queue_remove_first(&cqp->queue, callp, typeof(callp), link);
+ }
+ return callp;
+}
+
+static inline void
+mp_call_enqueue_locked(
+ mp_call_queue_t *cqp,
+ mp_call_t *callp)
+{
+ queue_enter(&cqp->queue, callp, typeof(callp), link);
+}
+
+/* Called on the boot processor to initialize global structures */
+static void
+mp_cpus_call_init(void)
+{
+ mp_call_queue_t *cqp = &mp_cpus_call_freelist;
+
+ DBG("mp_cpus_call_init()\n");
+ simple_lock_init(&cqp->lock, 0);
+ queue_init(&cqp->queue);
+}
+
+/*
+ * Called at processor registration to add call buffers to the free list
+ * and to initialize the per-cpu call queue.
+ */
+void
+mp_cpus_call_cpu_init(int cpu)
+{
+ int i;
+ mp_call_queue_t *cqp = &mp_cpus_call_head[cpu];
+ mp_call_t *callp;
+
+ simple_lock_init(&cqp->lock, 0);
+ queue_init(&cqp->queue);
+ for (i = 0; i < MP_CPUS_CALL_BUFS_PER_CPU; i++) {
+ callp = (mp_call_t *) kalloc(sizeof(mp_call_t));
+ mp_call_free(callp);
+ }
+
+ DBG("mp_cpus_call_init(%d) done\n", cpu);
+}
+
+/*
+ * This is called from cpu_signal_handler() to process an MP_CALL signal.
+ * And also from i386_deactivate_cpu() when a cpu is being taken offline.
+ */
+static void
+mp_cpus_call_action(void)
+{
+ mp_call_queue_t *cqp;
+ boolean_t intrs_enabled;
+ mp_call_t *callp;
+ mp_call_t call;
+
+ assert(!ml_get_interrupts_enabled());
+ cqp = &mp_cpus_call_head[cpu_number()];
+ intrs_enabled = mp_call_head_lock(cqp);
+ while ((callp = mp_call_dequeue_locked(cqp)) != NULL) {
+ /* Copy call request to the stack to free buffer */
+ call = *callp;
+ mp_call_free(callp);
+ if (call.func != NULL) {
+ mp_call_head_unlock(cqp, intrs_enabled);
+ KERNEL_DEBUG_CONSTANT(
+ TRACE_MP_CPUS_CALL_ACTION,
+ VM_KERNEL_UNSLIDE(call.func), VM_KERNEL_UNSLIDE_OR_PERM(call.arg0),
+ VM_KERNEL_UNSLIDE_OR_PERM(call.arg1), VM_KERNEL_ADDRPERM(call.maskp), 0);
+ call.func(call.arg0, call.arg1);
+ (void) mp_call_head_lock(cqp);
+ }
+ if (call.maskp != NULL) {
+ i_bit_set(cpu_number(), call.maskp);
+ }
+ }
+ mp_call_head_unlock(cqp, intrs_enabled);
+}
+
+/*
+ * mp_cpus_call() runs a given function on cpus specified in a given cpu mask.
+ * Possible modes are:
+ * SYNC: function is called serially on target cpus in logical cpu order
+ * waiting for each call to be acknowledged before proceeding
+ * ASYNC: function call is queued to the specified cpus
+ * waiting for all calls to complete in parallel before returning
+ * NOSYNC: function calls are queued
+ * but we return before confirmation of calls completing.
+ * The action function may be NULL.
+ * The cpu mask may include the local cpu. Offline cpus are ignored.
+ * The return value is the number of cpus on which the call was made or queued.
+ */
+cpu_t
+mp_cpus_call(
+ cpumask_t cpus,
+ mp_sync_t mode,
+ void (*action_func)(void *),
+ void *arg)
+{
+ return mp_cpus_call1(
+ cpus,
+ mode,
+ (void (*)(void *, void *))action_func,
+ arg,
+ NULL,
+ NULL);
+}
+
+static void
+mp_cpus_call_wait(boolean_t intrs_enabled,
+ cpumask_t cpus_called,
+ cpumask_t *cpus_responded)
+{
+ mp_call_queue_t *cqp;
+ uint64_t tsc_spin_start;
+
+ assert(ml_get_interrupts_enabled() == 0 || get_preemption_level() != 0);
+ cqp = &mp_cpus_call_head[cpu_number()];
+
+ tsc_spin_start = rdtsc64();
+ while (*cpus_responded != cpus_called) {
+ if (!intrs_enabled) {
+ /* Sniffing w/o locking */
+ if (!queue_empty(&cqp->queue)) {
+ mp_cpus_call_action();
+ }
+ cpu_signal_handler(NULL);
+ }
+ if (mp_spin_timeout(tsc_spin_start)) {
+ cpumask_t cpus_unresponsive;
+
+ cpus_unresponsive = cpus_called & ~(*cpus_responded);
+ NMIPI_panic(cpus_unresponsive, CROSSCALL_TIMEOUT);
+ panic("mp_cpus_call_wait() timeout, cpus: 0x%llx",
+ cpus_unresponsive);
+ }
+ }
+}
+
+cpu_t
+mp_cpus_call1(
+ cpumask_t cpus,
+ mp_sync_t mode,
+ void (*action_func)(void *, void *),
+ void *arg0,
+ void *arg1,
+ cpumask_t *cpus_calledp)
+{
+ cpu_t cpu = 0;
+ boolean_t intrs_enabled = FALSE;
+ boolean_t call_self = FALSE;
+ cpumask_t cpus_called = 0;
+ cpumask_t cpus_responded = 0;
+ long cpus_call_count = 0;
+ uint64_t tsc_spin_start;
+ boolean_t topo_lock;
+
+ KERNEL_DEBUG_CONSTANT(
+ TRACE_MP_CPUS_CALL | DBG_FUNC_START,
+ cpus, mode, VM_KERNEL_UNSLIDE(action_func), VM_KERNEL_UNSLIDE_OR_PERM(arg0), VM_KERNEL_UNSLIDE_OR_PERM(arg1));
+
+ if (!smp_initialized) {
+ if ((cpus & CPUMASK_SELF) == 0) {
+ goto out;
+ }
+ if (action_func != NULL) {
+ intrs_enabled = ml_set_interrupts_enabled(FALSE);
+ action_func(arg0, arg1);
+ ml_set_interrupts_enabled(intrs_enabled);
+ }
+ call_self = TRUE;
+ goto out;
+ }
+
+ /*
+ * Queue the call for each non-local requested cpu.
+ * This is performed under the topo lock to prevent changes to
+ * cpus online state and to prevent concurrent rendezvouses --
+ * although an exception is made if we're calling only the master
+ * processor since that always remains active. Note: this exception
+ * is expected for longterm timer nosync cross-calls to the master cpu.
+ */
+ mp_disable_preemption();
+ intrs_enabled = ml_get_interrupts_enabled();
+ topo_lock = (cpus != cpu_to_cpumask(master_cpu));
+ if (topo_lock) {
+ ml_set_interrupts_enabled(FALSE);
+ (void) mp_safe_spin_lock(&x86_topo_lock);
+ }
+ for (cpu = 0; cpu < (cpu_t) real_ncpus; cpu++) {
+ if (((cpu_to_cpumask(cpu) & cpus) == 0) ||
+ !cpu_is_running(cpu)) {
+ continue;
+ }
+ tsc_spin_start = rdtsc64();
+ if (cpu == (cpu_t) cpu_number()) {
+ /*
+ * We don't IPI ourself and if calling asynchronously,
+ * we defer our call until we have signalled all others.
+ */
+ call_self = TRUE;
+ if (mode == SYNC && action_func != NULL) {
+ KERNEL_DEBUG_CONSTANT(
+ TRACE_MP_CPUS_CALL_LOCAL,
+ VM_KERNEL_UNSLIDE(action_func),
+ VM_KERNEL_UNSLIDE_OR_PERM(arg0), VM_KERNEL_UNSLIDE_OR_PERM(arg1), 0, 0);
+ action_func(arg0, arg1);
+ }
+ } else {
+ /*
+ * Here to queue a call to cpu and IPI.
+ */
+ mp_call_t *callp = NULL;
+ mp_call_queue_t *cqp = &mp_cpus_call_head[cpu];
+ boolean_t intrs_inner;
+
+queue_call:
+ if (callp == NULL) {
+ callp = mp_call_alloc();
+ }
+ intrs_inner = mp_call_head_lock(cqp);
+ if (callp == NULL) {
+ mp_call_head_unlock(cqp, intrs_inner);
+ KERNEL_DEBUG_CONSTANT(
+ TRACE_MP_CPUS_CALL_NOBUF,
+ cpu, 0, 0, 0, 0);
+ if (!intrs_inner) {
+ /* Sniffing w/o locking */
+ if (!queue_empty(&cqp->queue)) {
+ mp_cpus_call_action();
+ }
+ handle_pending_TLB_flushes();
+ }
+ if (mp_spin_timeout(tsc_spin_start)) {
+ panic("mp_cpus_call1() timeout start: 0x%llx, cur: 0x%llx",
+ tsc_spin_start, rdtsc64());
+ }
+ goto queue_call;
+ }
+ callp->maskp = (mode == NOSYNC) ? NULL : &cpus_responded;
+ callp->func = action_func;
+ callp->arg0 = arg0;
+ callp->arg1 = arg1;
+ mp_call_enqueue_locked(cqp, callp);
+ cpus_call_count++;
+ cpus_called |= cpu_to_cpumask(cpu);
+ i386_signal_cpu(cpu, MP_CALL, ASYNC);
+ mp_call_head_unlock(cqp, intrs_inner);
+ if (mode == SYNC) {
+ mp_cpus_call_wait(intrs_inner, cpus_called, &cpus_responded);
+ }
+ }
+ }
+ if (topo_lock) {
+ simple_unlock(&x86_topo_lock);
+ ml_set_interrupts_enabled(intrs_enabled);
+ }
+
+ /* Call locally if mode not SYNC */
+ if (mode != SYNC && call_self) {
+ KERNEL_DEBUG_CONSTANT(
+ TRACE_MP_CPUS_CALL_LOCAL,
+ VM_KERNEL_UNSLIDE(action_func), VM_KERNEL_UNSLIDE_OR_PERM(arg0), VM_KERNEL_UNSLIDE_OR_PERM(arg1), 0, 0);
+ if (action_func != NULL) {
+ ml_set_interrupts_enabled(FALSE);
+ action_func(arg0, arg1);
+ ml_set_interrupts_enabled(intrs_enabled);
+ }
+ }
+
+ /* For ASYNC, now wait for all signaled cpus to complete their calls */
+ if (mode == ASYNC) {
+ mp_cpus_call_wait(intrs_enabled, cpus_called, &cpus_responded);
+ }
+
+ /* Safe to allow pre-emption now */
+ mp_enable_preemption();
+
+out:
+ if (call_self) {
+ cpus_called |= cpu_to_cpumask(cpu);
+ cpus_call_count++;
+ }
+
+ if (cpus_calledp) {
+ *cpus_calledp = cpus_called;
+ }
+
+ KERNEL_DEBUG_CONSTANT(
+ TRACE_MP_CPUS_CALL | DBG_FUNC_END,
+ cpus_call_count, cpus_called, 0, 0, 0);
+
+ return (cpu_t) cpus_call_count;
+}
+
+
+static void
+mp_broadcast_action(__unused void *null)
+{
+ /* call action function */
+ if (mp_bc_action_func != NULL) {
+ mp_bc_action_func(mp_bc_func_arg);
+ }
+
+ /* if we're the last one through, wake up the instigator */
+ if (atomic_decl_and_test(&mp_bc_count, 1)) {
+ thread_wakeup(((event_t)(uintptr_t) &mp_bc_count));
+ }
}
/*
* mp_broadcast() runs a given function on all active cpus.
* The caller blocks until the functions has run on all cpus.
- * The caller will also block if there is another pending braodcast.
+ * The caller will also block if there is another pending broadcast.
*/
void
mp_broadcast(
- void (*action_func)(void *),
- void *arg)
-{
- if (!smp_initialized) {
- if (action_func != NULL)
- action_func(arg);
- return;
- }
-
- /* obtain broadcast lock */
- lck_mtx_lock(&mp_bc_lock);
-
- /* set static function pointers */
- mp_bc_action_func = action_func;
- mp_bc_func_arg = arg;
-
- assert_wait((event_t)(uintptr_t)&mp_bc_count, THREAD_UNINT);
-
- /*
- * signal other processors, which will call mp_broadcast_action()
- */
- simple_lock(&x86_topo_lock);
- mp_bc_ncpus = i386_active_cpus(); /* total including this cpu */
- mp_bc_count = mp_bc_ncpus;
- i386_signal_cpus(MP_BROADCAST, ASYNC);
-
- /* call executor function on this cpu */
- mp_broadcast_action();
- simple_unlock(&x86_topo_lock);
-
- /* block for all cpus to have run action_func */
- if (mp_bc_ncpus > 1)
- thread_block(THREAD_CONTINUE_NULL);
- else
- clear_wait(current_thread(), THREAD_AWAKENED);
-
- /* release lock */
- lck_mtx_unlock(&mp_bc_lock);
+ void (*action_func)(void *),
+ void *arg)
+{
+ if (!smp_initialized) {
+ if (action_func != NULL) {
+ action_func(arg);
+ }
+ return;
+ }
+
+ /* obtain broadcast lock */
+ lck_mtx_lock(&mp_bc_lock);
+
+ /* set static function pointers */
+ mp_bc_action_func = action_func;
+ mp_bc_func_arg = arg;
+
+ assert_wait((event_t)(uintptr_t)&mp_bc_count, THREAD_UNINT);
+
+ /*
+ * signal other processors, which will call mp_broadcast_action()
+ */
+ mp_bc_count = real_ncpus; /* assume max possible active */
+ mp_bc_ncpus = mp_cpus_call(CPUMASK_ALL, NOSYNC, *mp_broadcast_action, NULL);
+ atomic_decl(&mp_bc_count, real_ncpus - mp_bc_ncpus); /* subtract inactive */
+
+ /* block for other cpus to have run action_func */
+ if (mp_bc_ncpus > 1) {
+ thread_block(THREAD_CONTINUE_NULL);
+ } else {
+ clear_wait(current_thread(), THREAD_AWAKENED);
+ }
+
+ /* release lock */
+ lck_mtx_unlock(&mp_bc_lock);
+}
+
+void
+mp_cpus_kick(cpumask_t cpus)
+{
+ cpu_t cpu;
+ boolean_t intrs_enabled = FALSE;
+
+ intrs_enabled = ml_set_interrupts_enabled(FALSE);
+ mp_safe_spin_lock(&x86_topo_lock);
+
+ for (cpu = 0; cpu < (cpu_t) real_ncpus; cpu++) {
+ if ((cpu == (cpu_t) cpu_number())
+ || ((cpu_to_cpumask(cpu) & cpus) == 0)
+ || !cpu_is_running(cpu)) {
+ continue;
+ }
+
+ lapic_send_ipi(cpu, LAPIC_VECTOR(KICK));
+ }
+
+ simple_unlock(&x86_topo_lock);
+ ml_set_interrupts_enabled(intrs_enabled);
}
void
i386_activate_cpu(void)
{
- cpu_data_t *cdp = current_cpu_datap();
+ cpu_data_t *cdp = current_cpu_datap();
assert(!ml_get_interrupts_enabled());
return;
}
- simple_lock(&x86_topo_lock);
+ mp_safe_spin_lock(&x86_topo_lock);
cdp->cpu_running = TRUE;
+ started_cpu();
+ pmap_tlbi_range(0, ~0ULL, true, 0);
simple_unlock(&x86_topo_lock);
}
-extern void etimer_timer_expire(void *arg);
-
void
i386_deactivate_cpu(void)
{
- cpu_data_t *cdp = current_cpu_datap();
+ cpu_data_t *cdp = current_cpu_datap();
assert(!ml_get_interrupts_enabled());
- simple_lock(&x86_topo_lock);
+ KERNEL_DEBUG_CONSTANT(
+ TRACE_MP_CPU_DEACTIVATE | DBG_FUNC_START,
+ 0, 0, 0, 0, 0);
+
+ mp_safe_spin_lock(&x86_topo_lock);
cdp->cpu_running = FALSE;
simple_unlock(&x86_topo_lock);
+ /*
+ * Move all of this cpu's timers to the master/boot cpu,
+ * and poke it in case there's a sooner deadline for it to schedule.
+ */
timer_queue_shutdown(&cdp->rtclock_timer.queue);
- cdp->rtclock_timer.deadline = EndOfAllTime;
- mp_cpus_call(cpu_to_cpumask(master_cpu), ASYNC, etimer_timer_expire, NULL);
+ mp_cpus_call(cpu_to_cpumask(master_cpu), ASYNC, timer_queue_expire_local, NULL);
+
+#if MONOTONIC
+ mt_cpu_down(cdp);
+#endif /* MONOTONIC */
/*
- * In case a rendezvous/braodcast/call was initiated to this cpu
- * before we cleared cpu_running, we must perform any actions due.
+ * Open an interrupt window
+ * and ensure any pending IPI or timer is serviced
+ */
+ mp_disable_preemption();
+ ml_set_interrupts_enabled(TRUE);
+
+ while (cdp->cpu_signals && x86_lcpu()->rtcDeadline != EndOfAllTime) {
+ cpu_pause();
+ }
+ /*
+ * Ensure there's no remaining timer deadline set
+ * - AICPM may have left one active.
*/
- if (i_bit(MP_RENDEZVOUS, &cdp->cpu_signals))
- mp_rendezvous_action();
- if (i_bit(MP_BROADCAST, &cdp->cpu_signals))
- mp_broadcast_action();
- if (i_bit(MP_CALL, &cdp->cpu_signals))
- mp_cpus_call_action();
- cdp->cpu_signals = 0; /* all clear */
+ setPop(0);
+
+ ml_set_interrupts_enabled(FALSE);
+ mp_enable_preemption();
+
+ KERNEL_DEBUG_CONSTANT(
+ TRACE_MP_CPU_DEACTIVATE | DBG_FUNC_END,
+ 0, 0, 0, 0, 0);
}
-int pmsafe_debug = 1;
+int pmsafe_debug = 1;
-#if MACH_KDP
-volatile boolean_t mp_kdp_trap = FALSE;
-volatile unsigned long mp_kdp_ncpus;
-boolean_t mp_kdp_state;
+#if MACH_KDP
+volatile boolean_t mp_kdp_trap = FALSE;
+volatile boolean_t mp_kdp_is_NMI = FALSE;
+volatile unsigned long mp_kdp_ncpus;
+boolean_t mp_kdp_state;
void
-mp_kdp_enter(void)
+mp_kdp_enter(boolean_t proceed_on_failure)
{
- unsigned int cpu;
- unsigned int ncpus;
- unsigned int my_cpu;
- uint64_t tsc_timeout;
+ unsigned int cpu;
+ unsigned int ncpus = 0;
+ unsigned int my_cpu;
+ uint64_t tsc_timeout;
DBG("mp_kdp_enter()\n");
* stopping others.
*/
mp_kdp_state = ml_set_interrupts_enabled(FALSE);
- simple_lock(&mp_kdp_lock);
- debugger_entry_time = mach_absolute_time();
- if (pmsafe_debug)
- pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE);
-
- while (mp_kdp_trap) {
- simple_unlock(&mp_kdp_lock);
- DBG("mp_kdp_enter() race lost\n");
+ my_cpu = cpu_number();
+
+ if (my_cpu == (unsigned) debugger_cpu) {
+ kprintf("\n\nRECURSIVE DEBUGGER ENTRY DETECTED\n\n");
+ kdp_reset();
+ return;
+ }
+
+ uint64_t start_time = cpu_datap(my_cpu)->debugger_entry_time = mach_absolute_time();
+ int locked = 0;
+ while (!locked || mp_kdp_trap) {
+ if (locked) {
+ simple_unlock(&x86_topo_lock);
+ }
+ if (proceed_on_failure) {
+ if (mach_absolute_time() - start_time > 500000000ll) {
+ paniclog_append_noflush("mp_kdp_enter() can't get x86_topo_lock! Debugging anyway! #YOLO\n");
+ break;
+ }
+ locked = simple_lock_try(&x86_topo_lock, LCK_GRP_NULL);
+ if (!locked) {
+ cpu_pause();
+ }
+ } else {
+ mp_safe_spin_lock(&x86_topo_lock);
+ locked = TRUE;
+ }
+
+ if (locked && mp_kdp_trap) {
+ simple_unlock(&x86_topo_lock);
+ DBG("mp_kdp_enter() race lost\n");
#if MACH_KDP
- mp_kdp_wait(TRUE, FALSE);
+ mp_kdp_wait(TRUE, FALSE);
#endif
- simple_lock(&mp_kdp_lock);
+ locked = FALSE;
+ }
}
- my_cpu = cpu_number();
+
+ if (pmsafe_debug && !kdp_snapshot) {
+ pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE);
+ }
+
debugger_cpu = my_cpu;
- mp_kdp_ncpus = 1; /* self */
+ ncpus = 1;
+ atomic_incl((volatile long *)&mp_kdp_ncpus, 1);
mp_kdp_trap = TRUE;
- simple_unlock(&mp_kdp_lock);
+ debugger_entry_time = cpu_datap(my_cpu)->debugger_entry_time;
/*
* Deliver a nudge to other cpus, counting how many
*/
DBG("mp_kdp_enter() signaling other processors\n");
if (force_immediate_debugger_NMI == FALSE) {
- for (ncpus = 1, cpu = 0; cpu < real_ncpus; cpu++) {
- if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running)
+ for (cpu = 0; cpu < real_ncpus; cpu++) {
+ if (cpu == my_cpu || !cpu_is_running(cpu)) {
continue;
+ }
ncpus++;
i386_signal_cpu(cpu, MP_KDP, ASYNC);
}
* "unsafe-to-interrupt" points such as the trampolines,
* but neither do we want to lose state by waiting too long.
*/
- tsc_timeout = rdtsc64() + (ncpus * 1000 * 1000);
+ tsc_timeout = rdtsc64() + (LockTimeOutTSC);
while (mp_kdp_ncpus != ncpus && rdtsc64() < tsc_timeout) {
/*
cpu_pause();
}
/* If we've timed out, and some processor(s) are still unresponsive,
- * interrupt them with an NMI via the local APIC.
+ * interrupt them with an NMI via the local APIC, iff a panic is
+ * in progress.
*/
+ if (panic_active()) {
+ NMIPI_enable(TRUE);
+ }
if (mp_kdp_ncpus != ncpus) {
+ unsigned int wait_cycles = 0;
+ if (proceed_on_failure) {
+ paniclog_append_noflush("mp_kdp_enter() timed-out on cpu %d, NMI-ing\n", my_cpu);
+ } else {
+ DBG("mp_kdp_enter() timed-out on cpu %d, NMI-ing\n", my_cpu);
+ }
for (cpu = 0; cpu < real_ncpus; cpu++) {
- if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running)
+ if (cpu == my_cpu || !cpu_is_running(cpu)) {
continue;
- if (cpu_signal_pending(cpu, MP_KDP))
+ }
+ if (cpu_signal_pending(cpu, MP_KDP)) {
+ cpu_datap(cpu)->cpu_NMI_acknowledged = FALSE;
cpu_NMI_interrupt(cpu);
+ }
+ }
+ /* Wait again for the same timeout */
+ tsc_timeout = rdtsc64() + (LockTimeOutTSC);
+ while (mp_kdp_ncpus != ncpus && rdtsc64() < tsc_timeout) {
+ handle_pending_TLB_flushes();
+ cpu_pause();
+ ++wait_cycles;
+ }
+ if (mp_kdp_ncpus != ncpus) {
+ paniclog_append_noflush("mp_kdp_enter() NMI pending on cpus:");
+ for (cpu = 0; cpu < real_ncpus; cpu++) {
+ if (cpu_is_running(cpu) && !cpu_datap(cpu)->cpu_NMI_acknowledged) {
+ paniclog_append_noflush(" %d", cpu);
+ }
+ }
+ paniclog_append_noflush("\n");
+ if (proceed_on_failure) {
+ paniclog_append_noflush("mp_kdp_enter() timed-out during %s wait after NMI;"
+ "expected %u acks but received %lu after %u loops in %llu ticks\n",
+ (locked ? "locked" : "unlocked"), ncpus, mp_kdp_ncpus, wait_cycles, LockTimeOutTSC);
+ } else {
+ panic("mp_kdp_enter() timed-out during %s wait after NMI;"
+ "expected %u acks but received %lu after %u loops in %llu ticks",
+ (locked ? "locked" : "unlocked"), ncpus, mp_kdp_ncpus, wait_cycles, LockTimeOutTSC);
+ }
}
}
- }
- else
+ } else {
for (cpu = 0; cpu < real_ncpus; cpu++) {
- if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running)
+ if (cpu == my_cpu || !cpu_is_running(cpu)) {
continue;
+ }
cpu_NMI_interrupt(cpu);
}
+ }
+
+ if (locked) {
+ simple_unlock(&x86_topo_lock);
+ }
+
+ DBG("mp_kdp_enter() %d processors done %s\n",
+ (int)mp_kdp_ncpus, (mp_kdp_ncpus == ncpus) ? "OK" : "timed out");
- DBG("mp_kdp_enter() %u processors done %s\n",
- mp_kdp_ncpus, (mp_kdp_ncpus == ncpus) ? "OK" : "timed out");
-
postcode(MP_KDP_ENTER);
}
+boolean_t
+mp_kdp_all_cpus_halted()
+{
+ unsigned int ncpus = 0, cpu = 0, my_cpu = 0;
+
+ my_cpu = cpu_number();
+ ncpus = 1; /* current CPU */
+ for (cpu = 0; cpu < real_ncpus; cpu++) {
+ if (cpu == my_cpu || !cpu_is_running(cpu)) {
+ continue;
+ }
+ ncpus++;
+ }
+
+ return mp_kdp_ncpus == ncpus;
+}
+
static boolean_t
cpu_signal_pending(int cpu, mp_event_t event)
{
- volatile int *signals = &cpu_datap(cpu)->cpu_signals;
+ volatile int *signals = &cpu_datap(cpu)->cpu_signals;
boolean_t retval = FALSE;
- if (i_bit(event, signals))
+ if (i_bit(event, signals)) {
retval = TRUE;
+ }
return retval;
}
-long kdp_x86_xcpu_invoke(const uint16_t lcpu, kdp_x86_xcpu_func_t func,
- void *arg0, void *arg1)
+long
+kdp_x86_xcpu_invoke(const uint16_t lcpu, kdp_x86_xcpu_func_t func,
+ void *arg0, void *arg1)
{
- if (lcpu > (real_ncpus - 1))
+ if (lcpu > (real_ncpus - 1)) {
return -1;
+ }
- if (func == NULL)
+ if (func == NULL) {
return -1;
+ }
kdp_xcpu_call_func.func = func;
- kdp_xcpu_call_func.ret = -1;
+ kdp_xcpu_call_func.ret = -1;
kdp_xcpu_call_func.arg0 = arg0;
kdp_xcpu_call_func.arg1 = arg1;
kdp_xcpu_call_func.cpu = lcpu;
DBG("Invoking function %p on CPU %d\n", func, (int32_t)lcpu);
- while (kdp_xcpu_call_func.cpu != KDP_XCPU_NONE)
+ while (kdp_xcpu_call_func.cpu != KDP_XCPU_NONE) {
cpu_pause();
- return kdp_xcpu_call_func.ret;
+ }
+ return kdp_xcpu_call_func.ret;
}
static void
kdp_x86_xcpu_poll(void)
{
if ((uint16_t)cpu_number() == kdp_xcpu_call_func.cpu) {
- kdp_xcpu_call_func.ret =
+ kdp_xcpu_call_func.ret =
kdp_xcpu_call_func.func(kdp_xcpu_call_func.arg0,
- kdp_xcpu_call_func.arg1,
- cpu_number());
+ kdp_xcpu_call_func.arg1,
+ cpu_number());
kdp_xcpu_call_func.cpu = KDP_XCPU_NONE;
}
}
mp_kdp_wait(boolean_t flush, boolean_t isNMI)
{
DBG("mp_kdp_wait()\n");
- /* If an I/O port has been specified as a debugging aid, issue a read */
- panic_io_port_read();
+ current_cpu_datap()->debugger_ipi_time = mach_absolute_time();
#if CONFIG_MCA
/* If we've trapped due to a machine-check, save MCA registers */
mca_check_save();
#endif
- if (pmsafe_debug)
- pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE);
-
atomic_incl((volatile long *)&mp_kdp_ncpus, 1);
while (mp_kdp_trap || (isNMI == TRUE)) {
- /*
+ /*
* A TLB shootdown request may be pending--this would result
* in the requesting processor waiting in PMAP_UPDATE_TLBS()
* until this processor handles it.
* Process it, so it can now enter mp_kdp_wait()
*/
- if (flush)
+ if (flush) {
handle_pending_TLB_flushes();
+ }
kdp_x86_xcpu_poll();
cpu_pause();
}
- if (pmsafe_debug)
- pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_NORMAL);
-
atomic_decl((volatile long *)&mp_kdp_ncpus, 1);
DBG("mp_kdp_wait() done\n");
}
debugger_exit_time = mach_absolute_time();
mp_kdp_trap = FALSE;
- __asm__ volatile("mfence");
+ mfence();
/* Wait other processors to stop spinning. XXX needs timeout */
DBG("mp_kdp_exit() waiting for processors to resume\n");
while (mp_kdp_ncpus > 0) {
- /*
+ /*
* a TLB shootdown request may be pending... this would result in the requesting
* processor waiting in PMAP_UPDATE_TLBS() until this processor deals with it.
* Process it, so it can now enter mp_kdp_wait()
*/
- handle_pending_TLB_flushes();
+ handle_pending_TLB_flushes();
cpu_pause();
}
- if (pmsafe_debug)
- pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_NORMAL);
+ if (pmsafe_debug && !kdp_snapshot) {
+ pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_NORMAL);
+ }
+
+ debugger_exit_time = mach_absolute_time();
DBG("mp_kdp_exit() done\n");
(void) ml_set_interrupts_enabled(mp_kdp_state);
- postcode(0);
+ postcode(MP_KDP_EXIT);
}
-#endif /* MACH_KDP */
+
+#endif /* MACH_KDP */
boolean_t
-mp_recent_debugger_activity() {
- return (((mach_absolute_time() - debugger_entry_time) < LastDebuggerEntryAllowance) ||
- ((mach_absolute_time() - debugger_exit_time) < LastDebuggerEntryAllowance));
+mp_recent_debugger_activity(void)
+{
+ uint64_t abstime = mach_absolute_time();
+ return ((abstime - debugger_entry_time) < LastDebuggerEntryAllowance) ||
+ ((abstime - debugger_exit_time) < LastDebuggerEntryAllowance);
}
/*ARGSUSED*/
void
init_ast_check(
- __unused processor_t processor)
+ __unused processor_t processor)
{
}
void
cause_ast_check(
- processor_t processor)
+ processor_t processor)
{
- int cpu = processor->cpu_id;
+ int cpu = processor->cpu_id;
if (cpu != cpu_number()) {
i386_signal_cpu(cpu, MP_AST, ASYNC);
+ KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_REMOTE_AST), cpu, 1, 0, 0, 0);
}
}
-#if MACH_KDB
-/*
- * invoke kdb on slave processors
- */
-
void
-remote_kdb(void)
-{
- unsigned int my_cpu = cpu_number();
- unsigned int cpu;
- int kdb_ncpus;
- uint64_t tsc_timeout = 0;
-
- mp_kdb_trap = TRUE;
- mp_kdb_ncpus = 1;
- for (kdb_ncpus = 1, cpu = 0; cpu < real_ncpus; cpu++) {
- if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running)
- continue;
- kdb_ncpus++;
- i386_signal_cpu(cpu, MP_KDB, ASYNC);
- }
- DBG("remote_kdb() waiting for (%d) processors to suspend\n",kdb_ncpus);
-
- tsc_timeout = rdtsc64() + (kdb_ncpus * 100 * 1000 * 1000);
+slave_machine_init(void *param)
+{
+ /*
+ * Here in process context, but with interrupts disabled.
+ */
+ DBG("slave_machine_init() CPU%d\n", get_cpu_number());
- while (mp_kdb_ncpus != kdb_ncpus && rdtsc64() < tsc_timeout) {
- /*
- * a TLB shootdown request may be pending... this would result in the requesting
- * processor waiting in PMAP_UPDATE_TLBS() until this processor deals with it.
- * Process it, so it can now enter mp_kdp_wait()
+ if (param == FULL_SLAVE_INIT) {
+ /*
+ * Cold start
*/
- handle_pending_TLB_flushes();
-
- cpu_pause();
+ clock_init();
}
- DBG("mp_kdp_enter() %d processors done %s\n",
- mp_kdb_ncpus, (mp_kdb_ncpus == kdb_ncpus) ? "OK" : "timed out");
+ cpu_machine_init(); /* Interrupts enabled hereafter */
+}
+
+#undef cpu_number
+int
+cpu_number(void)
+{
+ return get_cpu_number();
}
static void
-mp_kdb_wait(void)
+cpu_prewarm_init()
{
- DBG("mp_kdb_wait()\n");
+ int i;
- /* If an I/O port has been specified as a debugging aid, issue a read */
- panic_io_port_read();
+ simple_lock_init(&cpu_warm_lock, 0);
+ queue_init(&cpu_warm_call_list);
+ for (i = 0; i < NUM_CPU_WARM_CALLS; i++) {
+ enqueue_head(&cpu_warm_call_list, (queue_entry_t)&cpu_warm_call_arr[i]);
+ }
+}
- atomic_incl(&mp_kdb_ncpus, 1);
- while (mp_kdb_trap) {
- /*
- * a TLB shootdown request may be pending... this would result in the requesting
- * processor waiting in PMAP_UPDATE_TLBS() until this processor deals with it.
- * Process it, so it can now enter mp_kdp_wait()
- */
- handle_pending_TLB_flushes();
+static timer_call_t
+grab_warm_timer_call()
+{
+ spl_t x;
+ timer_call_t call = NULL;
- cpu_pause();
+ x = splsched();
+ simple_lock(&cpu_warm_lock, LCK_GRP_NULL);
+ if (!queue_empty(&cpu_warm_call_list)) {
+ call = (timer_call_t) dequeue_head(&cpu_warm_call_list);
}
- atomic_decl((volatile long *)&mp_kdb_ncpus, 1);
- DBG("mp_kdb_wait() done\n");
+ simple_unlock(&cpu_warm_lock);
+ splx(x);
+
+ return call;
+}
+
+static void
+free_warm_timer_call(timer_call_t call)
+{
+ spl_t x;
+
+ x = splsched();
+ simple_lock(&cpu_warm_lock, LCK_GRP_NULL);
+ enqueue_head(&cpu_warm_call_list, (queue_entry_t)call);
+ simple_unlock(&cpu_warm_lock);
+ splx(x);
}
/*
- * Clear kdb interrupt
+ * Runs in timer call context (interrupts disabled).
*/
-
-void
-clear_kdb_intr(void)
+static void
+cpu_warm_timer_call_func(
+ call_entry_param_t p0,
+ __unused call_entry_param_t p1)
{
- mp_disable_preemption();
- i_bit_clear(MP_KDB, ¤t_cpu_datap()->cpu_signals);
- mp_enable_preemption();
+ free_warm_timer_call((timer_call_t)p0);
+ return;
}
-void
-mp_kdb_exit(void)
+/*
+ * Runs with interrupts disabled on the CPU we wish to warm (i.e. CPU 0).
+ */
+static void
+_cpu_warm_setup(
+ void *arg)
{
- DBG("mp_kdb_exit()\n");
- atomic_decl((volatile long *)&mp_kdb_ncpus, 1);
- mp_kdb_trap = FALSE;
- __asm__ volatile("mfence");
+ cpu_warm_data_t cwdp = (cpu_warm_data_t)arg;
- while (mp_kdb_ncpus > 0) {
- /*
- * a TLB shootdown request may be pending... this would result in the requesting
- * processor waiting in PMAP_UPDATE_TLBS() until this processor deals with it.
- * Process it, so it can now enter mp_kdp_wait()
- */
- handle_pending_TLB_flushes();
-
- cpu_pause();
- }
+ timer_call_enter(cwdp->cwd_call, cwdp->cwd_deadline, TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL);
+ cwdp->cwd_result = 0;
- DBG("mp_kdb_exit() done\n");
+ return;
}
-#endif /* MACH_KDB */
-
-void
-slave_machine_init(void *param)
+/*
+ * Not safe to call with interrupts disabled.
+ */
+kern_return_t
+ml_interrupt_prewarm(
+ uint64_t deadline)
{
+ struct cpu_warm_data cwd;
+ timer_call_t call;
+ cpu_t ct;
+
+ if (ml_get_interrupts_enabled() == FALSE) {
+ panic("%s: Interrupts disabled?\n", __FUNCTION__);
+ }
+
/*
- * Here in process context, but with interrupts disabled.
+ * If the platform doesn't need our help, say that we succeeded.
*/
- DBG("slave_machine_init() CPU%d\n", get_cpu_number());
+ if (!ml_get_interrupt_prewake_applicable()) {
+ return KERN_SUCCESS;
+ }
- if (param == FULL_SLAVE_INIT) {
- /*
- * Cold start
- */
- clock_init();
+ /*
+ * Grab a timer call to use.
+ */
+ call = grab_warm_timer_call();
+ if (call == NULL) {
+ return KERN_RESOURCE_SHORTAGE;
+ }
- cpu_machine_init(); /* Interrupts enabled hereafter */
+ timer_call_setup(call, cpu_warm_timer_call_func, call);
+ cwd.cwd_call = call;
+ cwd.cwd_deadline = deadline;
+ cwd.cwd_result = 0;
+
+ /*
+ * For now, non-local interrupts happen on the master processor.
+ */
+ ct = mp_cpus_call(cpu_to_cpumask(master_cpu), SYNC, _cpu_warm_setup, &cwd);
+ if (ct == 0) {
+ free_warm_timer_call(call);
+ return KERN_FAILURE;
+ } else {
+ return cwd.cwd_result;
}
}
-#undef cpu_number
-int cpu_number(void)
+#if DEBUG || DEVELOPMENT
+void
+kernel_spin(uint64_t spin_ns)
{
- return get_cpu_number();
-}
+ boolean_t istate;
+ uint64_t spin_abs;
+ uint64_t deadline;
+ cpu_data_t *cdp;
-#if MACH_KDB
-#include <ddb/db_output.h>
+ kprintf("kernel_spin(%llu) spinning uninterruptibly\n", spin_ns);
+ istate = ml_set_interrupts_enabled(FALSE);
+ cdp = current_cpu_datap();
+ nanoseconds_to_absolutetime(spin_ns, &spin_abs);
-#define TRAP_DEBUG 0 /* Must match interrupt.s and spl.s */
+ /* Fake interrupt handler entry for testing mp_interrupt_watchdog() */
+ cdp->cpu_int_event_time = mach_absolute_time();
+ cdp->cpu_int_state = (void *) USER_STATE(current_thread());
+ deadline = mach_absolute_time() + spin_ns;
+ while (mach_absolute_time() < deadline) {
+ cpu_pause();
+ }
-#if TRAP_DEBUG
-#define MTRAPS 100
-struct mp_trap_hist_struct {
- unsigned char type;
- unsigned char data[5];
-} trap_hist[MTRAPS], *cur_trap_hist = trap_hist,
- *max_trap_hist = &trap_hist[MTRAPS];
+ cdp->cpu_int_event_time = 0;
+ cdp->cpu_int_state = NULL;
-void db_trap_hist(void);
+ ml_set_interrupts_enabled(istate);
+ kprintf("kernel_spin() continuing\n");
+}
/*
- * SPL:
- * 1: new spl
- * 2: old spl
- * 3: new tpr
- * 4: old tpr
- * INT:
- * 1: int vec
- * 2: old spl
- * 3: new spl
- * 4: post eoi tpr
- * 5: exit tpr
+ * Called from the scheduler's maintenance thread,
+ * scan running processors for long-running ISRs and:
+ * - panic if longer than LockTimeOut, or
+ * - log if more than a quantum.
*/
-
void
-db_trap_hist(void)
-{
- int i,j;
- for(i=0;i<MTRAPS;i++)
- if (trap_hist[i].type == 1 || trap_hist[i].type == 2) {
- db_printf("%s%s",
- (&trap_hist[i]>=cur_trap_hist)?"*":" ",
- (trap_hist[i].type == 1)?"SPL":"INT");
- for(j=0;j<5;j++)
- db_printf(" %02x", trap_hist[i].data[j]);
- db_printf("\n");
- }
-
-}
-#endif /* TRAP_DEBUG */
-#endif /* MACH_KDB */
+mp_interrupt_watchdog(void)
+{
+ cpu_t cpu;
+ boolean_t intrs_enabled = FALSE;
+ uint16_t cpu_int_num;
+ uint64_t cpu_int_event_time;
+ uint64_t cpu_rip;
+ uint64_t cpu_int_duration;
+ uint64_t now;
+ x86_saved_state_t *cpu_int_state;
+
+ if (__improbable(!mp_interrupt_watchdog_enabled)) {
+ return;
+ }
+
+ intrs_enabled = ml_set_interrupts_enabled(FALSE);
+ now = mach_absolute_time();
+ /*
+ * While timeouts are not suspended,
+ * check all other processors for long outstanding interrupt handling.
+ */
+ for (cpu = 0;
+ cpu < (cpu_t) real_ncpus && !machine_timeout_suspended();
+ cpu++) {
+ if ((cpu == (cpu_t) cpu_number()) ||
+ (!cpu_is_running(cpu))) {
+ continue;
+ }
+ cpu_int_event_time = cpu_datap(cpu)->cpu_int_event_time;
+ if (cpu_int_event_time == 0) {
+ continue;
+ }
+ if (__improbable(now < cpu_int_event_time)) {
+ continue; /* skip due to inter-processor skew */
+ }
+ cpu_int_state = cpu_datap(cpu)->cpu_int_state;
+ if (__improbable(cpu_int_state == NULL)) {
+ /* The interrupt may have been dismissed */
+ continue;
+ }
+ /* Here with a cpu handling an interrupt */
+
+ cpu_int_duration = now - cpu_int_event_time;
+ if (__improbable(cpu_int_duration > LockTimeOut)) {
+ cpu_int_num = saved_state64(cpu_int_state)->isf.trapno;
+ cpu_rip = saved_state64(cpu_int_state)->isf.rip;
+ vector_timed_out = cpu_int_num;
+ NMIPI_panic(cpu_to_cpumask(cpu), INTERRUPT_WATCHDOG);
+ panic("Interrupt watchdog, "
+ "cpu: %d interrupt: 0x%x time: %llu..%llu state: %p RIP: 0x%llx",
+ cpu, cpu_int_num, cpu_int_event_time, now, cpu_int_state, cpu_rip);
+ /* NOT REACHED */
+ } else if (__improbable(cpu_int_duration > (uint64_t) std_quantum)) {
+ mp_interrupt_watchdog_events++;
+ cpu_int_num = saved_state64(cpu_int_state)->isf.trapno;
+ cpu_rip = saved_state64(cpu_int_state)->isf.rip;
+ ml_set_interrupts_enabled(intrs_enabled);
+ printf("Interrupt watchdog, "
+ "cpu: %d interrupt: 0x%x time: %llu..%llu RIP: 0x%llx\n",
+ cpu, cpu_int_num, cpu_int_event_time, now, cpu_rip);
+ return;
+ }
+ }
+
+ ml_set_interrupts_enabled(intrs_enabled);
+}
+#endif