* Copyright (c) 2000-2008 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
- *
+ *
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
- *
+ *
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
- *
+ *
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
- *
+ *
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
#include <sys/kauth.h>
#include <sys/vnode.h>
#include <sys/time.h>
+#include <sys/priv.h>
#include <sys/mount_internal.h>
#include <sys/sysproto.h>
#include <sys/signalvar.h>
+#include <sys/protosw.h> /* for net_uptime2timeval() */
#include <kern/clock.h>
#include <kern/task.h>
#if CONFIG_MACF
#include <security/mac_framework.h>
#endif
+#include <IOKit/IOBSD.h>
+#include <sys/time.h>
+#include <kern/remote_time.h>
-#define HZ 100 /* XXX */
+#define HZ 100 /* XXX */
/* simple lock used to access timezone, tz structure */
lck_spin_t * tz_slock;
lck_grp_t * tz_slock_grp;
lck_attr_t * tz_slock_attr;
-lck_grp_attr_t *tz_slock_grp_attr;
+lck_grp_attr_t *tz_slock_grp_attr;
-static void setthetime(
- struct timeval *tv);
+static void setthetime(
+ struct timeval *tv);
-void time_zone_slock_init(void) __attribute__((section("__TEXT, initcode")));
+void time_zone_slock_init(void);
+static boolean_t timeval_fixusec(struct timeval *t1);
-/*
+/*
* Time of day and interval timer support.
*
* These routines provide the kernel entry points to get and set
/* ARGSUSED */
int
gettimeofday(
-__unused struct proc *p,
- struct gettimeofday_args *uap,
- int32_t *retval)
+ struct proc *p,
+ struct gettimeofday_args *uap,
+ __unused int32_t *retval)
{
int error = 0;
struct timezone ltz; /* local copy */
+ clock_sec_t secs;
+ clock_usec_t usecs;
+ uint64_t mach_time;
- if (uap->tp) {
- clock_sec_t secs;
- clock_usec_t usecs;
+ if (uap->tp || uap->mach_absolute_time) {
+ clock_gettimeofday_and_absolute_time(&secs, &usecs, &mach_time);
+ }
- clock_gettimeofday(&secs, &usecs);
- retval[0] = secs;
- retval[1] = usecs;
+ if (uap->tp) {
+ /* Casting secs through a uint32_t to match arm64 commpage */
+ if (IS_64BIT_PROCESS(p)) {
+ struct user64_timeval user_atv = {};
+ user_atv.tv_sec = (uint32_t)secs;
+ user_atv.tv_usec = usecs;
+ error = copyout(&user_atv, uap->tp, sizeof(user_atv));
+ } else {
+ struct user32_timeval user_atv = {};
+ user_atv.tv_sec = (uint32_t)secs;
+ user_atv.tv_usec = usecs;
+ error = copyout(&user_atv, uap->tp, sizeof(user_atv));
+ }
+ if (error) {
+ return error;
+ }
}
-
+
if (uap->tzp) {
lck_spin_lock(tz_slock);
ltz = tz;
lck_spin_unlock(tz_slock);
- error = copyout((caddr_t)<z, CAST_USER_ADDR_T(uap->tzp), sizeof (tz));
+ error = copyout((caddr_t)<z, CAST_USER_ADDR_T(uap->tzp), sizeof(tz));
+ }
+
+ if (error == 0 && uap->mach_absolute_time) {
+ error = copyout(&mach_time, uap->mach_absolute_time, sizeof(mach_time));
}
- return (error);
+ return error;
}
/*
bzero(&atv, sizeof(atv));
+ /* Check that this task is entitled to set the time or it is root */
+ if (!IOTaskHasEntitlement(current_task(), SETTIME_ENTITLEMENT)) {
#if CONFIG_MACF
- error = mac_system_check_settime(kauth_cred_get());
- if (error)
- return (error);
+ error = mac_system_check_settime(kauth_cred_get());
+ if (error) {
+ return error;
+ }
#endif
#ifndef CONFIG_EMBEDDED
- if ((error = suser(kauth_cred_get(), &p->p_acflag)))
- return (error);
+ if ((error = suser(kauth_cred_get(), &p->p_acflag))) {
+ return error;
+ }
#endif
+ }
+
/* Verify all parameters before changing time */
if (uap->tv) {
if (IS_64BIT_PROCESS(p)) {
atv.tv_sec = user_atv.tv_sec;
atv.tv_usec = user_atv.tv_usec;
}
- if (error)
- return (error);
+ if (error) {
+ return error;
+ }
+ }
+ if (uap->tzp && (error = copyin(uap->tzp, (caddr_t)&atz, sizeof(atz)))) {
+ return error;
}
- if (uap->tzp && (error = copyin(uap->tzp, (caddr_t)&atz, sizeof(atz))))
- return (error);
if (uap->tv) {
- timevalfix(&atv);
- if (atv.tv_sec < 0 || (atv.tv_sec == 0 && atv.tv_usec < 0))
- return (EPERM);
+ /* only positive values of sec/usec are accepted */
+ if (atv.tv_sec < 0 || atv.tv_usec < 0) {
+ return EPERM;
+ }
+ if (!timeval_fixusec(&atv)) {
+ return EPERM;
+ }
setthetime(&atv);
}
if (uap->tzp) {
tz = atz;
lck_spin_unlock(tz_slock);
}
- return (0);
+ return 0;
}
static void
setthetime(
- struct timeval *tv)
+ struct timeval *tv)
{
clock_set_calendar_microtime(tv->tv_sec, tv->tv_usec);
}
-/*
- * XXX Y2038 bug because of clock_adjtime() first argument
- */
-/* ARGSUSED */
-int
-adjtime(struct proc *p, struct adjtime_args *uap, __unused int32_t *retval)
-{
- struct timeval atv;
- int error;
-
-#if CONFIG_MACF
- error = mac_system_check_settime(kauth_cred_get());
- if (error)
- return (error);
-#endif
- if ((error = suser(kauth_cred_get(), &p->p_acflag)))
- return (error);
- if (IS_64BIT_PROCESS(p)) {
- struct user64_timeval user_atv;
- error = copyin(uap->delta, &user_atv, sizeof(user_atv));
- atv.tv_sec = user_atv.tv_sec;
- atv.tv_usec = user_atv.tv_usec;
- } else {
- struct user32_timeval user_atv;
- error = copyin(uap->delta, &user_atv, sizeof(user_atv));
- atv.tv_sec = user_atv.tv_sec;
- atv.tv_usec = user_atv.tv_usec;
- }
- if (error)
- return (error);
-
- /*
- * Compute the total correction and the rate at which to apply it.
- */
- clock_adjtime(&atv.tv_sec, &atv.tv_usec);
-
- if (uap->olddelta) {
- if (IS_64BIT_PROCESS(p)) {
- struct user64_timeval user_atv;
- user_atv.tv_sec = atv.tv_sec;
- user_atv.tv_usec = atv.tv_usec;
- error = copyout(&user_atv, uap->olddelta, sizeof(user_atv));
- } else {
- struct user32_timeval user_atv;
- user_atv.tv_sec = atv.tv_sec;
- user_atv.tv_usec = atv.tv_usec;
- error = copyout(&user_atv, uap->olddelta, sizeof(user_atv));
- }
- }
-
- return (0);
-}
-
/*
* Verify the calendar value. If negative,
* reset to zero (the epoch).
*/
void
inittodr(
- __unused time_t base)
+ __unused time_t base)
{
- struct timeval tv;
+ struct timeval tv;
/*
* Assertion:
microtime(&tv);
if (tv.tv_sec < 0 || tv.tv_usec < 0) {
- printf ("WARNING: preposterous time in Real Time Clock");
- tv.tv_sec = 0; /* the UNIX epoch */
+ printf("WARNING: preposterous time in Real Time Clock");
+ tv.tv_sec = 0; /* the UNIX epoch */
tv.tv_usec = 0;
setthetime(&tv);
printf(" -- CHECK AND RESET THE DATE!\n");
time_t
boottime_sec(void)
{
- clock_sec_t secs;
- clock_nsec_t nanosecs;
+ clock_sec_t secs;
+ clock_nsec_t nanosecs;
clock_get_boottime_nanotime(&secs, &nanosecs);
- return (secs);
+ return secs;
+}
+
+void
+boottime_timeval(struct timeval *tv)
+{
+ clock_sec_t secs;
+ clock_usec_t microsecs;
+
+ clock_get_boottime_microtime(&secs, µsecs);
+
+ tv->tv_sec = secs;
+ tv->tv_usec = microsecs;
}
/*
{
struct itimerval aitv;
- if (uap->which > ITIMER_PROF)
- return(EINVAL);
+ if (uap->which > ITIMER_PROF) {
+ return EINVAL;
+ }
bzero(&aitv, sizeof(aitv));
proc_spinlock(p);
switch (uap->which) {
-
case ITIMER_REAL:
/*
* If time for real time timer has passed return 0,
*/
aitv = p->p_realtimer;
if (timerisset(&p->p_rtime)) {
- struct timeval now;
+ struct timeval now;
microuptime(&now);
- if (timercmp(&p->p_rtime, &now, <))
+ if (timercmp(&p->p_rtime, &now, <)) {
timerclear(&aitv.it_value);
- else {
+ } else {
aitv.it_value = p->p_rtime;
timevalsub(&aitv.it_value, &now);
}
- }
- else
+ } else {
timerclear(&aitv.it_value);
+ }
break;
case ITIMER_VIRTUAL:
if (IS_64BIT_PROCESS(p)) {
struct user64_itimerval user_itv;
+ bzero(&user_itv, sizeof(user_itv));
user_itv.it_interval.tv_sec = aitv.it_interval.tv_sec;
user_itv.it_interval.tv_usec = aitv.it_interval.tv_usec;
user_itv.it_value.tv_sec = aitv.it_value.tv_sec;
user_itv.it_value.tv_usec = aitv.it_value.tv_usec;
- return (copyout((caddr_t)&user_itv, uap->itv, sizeof (user_itv)));
+ return copyout((caddr_t)&user_itv, uap->itv, sizeof(user_itv));
} else {
struct user32_itimerval user_itv;
+ bzero(&user_itv, sizeof(user_itv));
user_itv.it_interval.tv_sec = aitv.it_interval.tv_sec;
user_itv.it_interval.tv_usec = aitv.it_interval.tv_usec;
user_itv.it_value.tv_sec = aitv.it_value.tv_sec;
user_itv.it_value.tv_usec = aitv.it_value.tv_usec;
- return (copyout((caddr_t)&user_itv, uap->itv, sizeof (user_itv)));
+ return copyout((caddr_t)&user_itv, uap->itv, sizeof(user_itv));
}
}
bzero(&aitv, sizeof(aitv));
- if (uap->which > ITIMER_PROF)
- return (EINVAL);
+ if (uap->which > ITIMER_PROF) {
+ return EINVAL;
+ }
if ((itvp = uap->itv)) {
if (IS_64BIT_PROCESS(p)) {
struct user64_itimerval user_itv;
- if ((error = copyin(itvp, (caddr_t)&user_itv, sizeof (user_itv))))
- return (error);
+ if ((error = copyin(itvp, (caddr_t)&user_itv, sizeof(user_itv)))) {
+ return error;
+ }
aitv.it_interval.tv_sec = user_itv.it_interval.tv_sec;
aitv.it_interval.tv_usec = user_itv.it_interval.tv_usec;
aitv.it_value.tv_sec = user_itv.it_value.tv_sec;
aitv.it_value.tv_usec = user_itv.it_value.tv_usec;
- } else {
+ } else {
struct user32_itimerval user_itv;
- if ((error = copyin(itvp, (caddr_t)&user_itv, sizeof (user_itv))))
- return (error);
+ if ((error = copyin(itvp, (caddr_t)&user_itv, sizeof(user_itv)))) {
+ return error;
+ }
aitv.it_interval.tv_sec = user_itv.it_interval.tv_sec;
aitv.it_interval.tv_usec = user_itv.it_interval.tv_usec;
aitv.it_value.tv_sec = user_itv.it_value.tv_sec;
aitv.it_value.tv_usec = user_itv.it_value.tv_usec;
}
}
- if ((uap->itv = uap->oitv) && (error = getitimer(p, (struct getitimer_args *)uap, retval)))
- return (error);
- if (itvp == 0)
- return (0);
- if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
- return (EINVAL);
+ if ((uap->itv = uap->oitv) && (error = getitimer(p, (struct getitimer_args *)uap, retval))) {
+ return error;
+ }
+ if (itvp == 0) {
+ return 0;
+ }
+ if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval)) {
+ return EINVAL;
+ }
switch (uap->which) {
-
case ITIMER_REAL:
proc_spinlock(p);
if (timerisset(&aitv.it_value)) {
microuptime(&p->p_rtime);
timevaladd(&p->p_rtime, &aitv.it_value);
p->p_realtimer = aitv;
- if (!thread_call_enter_delayed(p->p_rcall, tvtoabstime(&p->p_rtime)))
+ if (!thread_call_enter_delayed_with_leeway(p->p_rcall, NULL,
+ tvtoabstime(&p->p_rtime), 0, THREAD_CALL_DELAY_USER_NORMAL)) {
p->p_ractive++;
- } else {
+ }
+ } else {
timerclear(&p->p_rtime);
p->p_realtimer = aitv;
- if (thread_call_cancel(p->p_rcall))
+ if (thread_call_cancel(p->p_rcall)) {
p->p_ractive--;
+ }
}
proc_spinunlock(p);
case ITIMER_VIRTUAL:
- if (timerisset(&aitv.it_value))
+ if (timerisset(&aitv.it_value)) {
task_vtimer_set(p->task, TASK_VTIMER_USER);
- else
+ } else {
task_vtimer_clear(p->task, TASK_VTIMER_USER);
+ }
proc_spinlock(p);
p->p_vtimer_user = aitv;
break;
case ITIMER_PROF:
- if (timerisset(&aitv.it_value))
+ if (timerisset(&aitv.it_value)) {
task_vtimer_set(p->task, TASK_VTIMER_PROF);
- else
+ } else {
task_vtimer_clear(p->task, TASK_VTIMER_PROF);
+ }
proc_spinlock(p);
p->p_vtimer_prof = aitv;
break;
}
- return (0);
+ return 0;
}
/*
*/
void
realitexpire(
- struct proc *p)
+ struct proc *p)
{
struct proc *r;
- struct timeval t;
+ struct timeval t;
r = proc_find(p->p_pid);
proc_spinlock(p);
+ assert(p->p_ractive > 0);
+
if (--p->p_ractive > 0 || r != p) {
+ /*
+ * bail, because either proc is exiting
+ * or there's another active thread call
+ */
proc_spinunlock(p);
- if (r != NULL)
+ if (r != NULL) {
proc_rele(r);
+ }
return;
}
-
+
if (!timerisset(&p->p_realtimer.it_interval)) {
+ /*
+ * p_realtimer was cleared while this call was pending,
+ * send one last SIGALRM, but don't re-arm
+ */
timerclear(&p->p_rtime);
proc_spinunlock(p);
return;
}
+ proc_spinunlock(p);
+
+ /*
+ * Send the signal before re-arming the next thread call,
+ * so in case psignal blocks, we won't create yet another thread call.
+ */
+
+ psignal(p, SIGALRM);
+
+ proc_spinlock(p);
+
+ /* Should we still re-arm the next thread call? */
+ if (!timerisset(&p->p_realtimer.it_interval)) {
+ timerclear(&p->p_rtime);
+ proc_spinunlock(p);
+
+ proc_rele(p);
+ return;
+ }
+
microuptime(&t);
timevaladd(&p->p_rtime, &p->p_realtimer.it_interval);
+
if (timercmp(&p->p_rtime, &t, <=)) {
if ((p->p_rtime.tv_sec + 2) >= t.tv_sec) {
for (;;) {
timevaladd(&p->p_rtime, &p->p_realtimer.it_interval);
- if (timercmp(&p->p_rtime, &t, >))
+ if (timercmp(&p->p_rtime, &t, >)) {
break;
+ }
}
- }
- else {
+ } else {
p->p_rtime = p->p_realtimer.it_interval;
timevaladd(&p->p_rtime, &t);
}
}
- if (!thread_call_enter_delayed(p->p_rcall, tvtoabstime(&p->p_rtime)))
+ assert(p->p_rcall != NULL);
+
+ if (!thread_call_enter_delayed_with_leeway(p->p_rcall, NULL, tvtoabstime(&p->p_rtime), 0,
+ THREAD_CALL_DELAY_USER_NORMAL)) {
p->p_ractive++;
+ }
+
proc_spinunlock(p);
- psignal(p, SIGALRM);
proc_rele(p);
}
+/*
+ * Called once in proc_exit to clean up after an armed or pending realitexpire
+ *
+ * This will only be called after the proc refcount is drained,
+ * so realitexpire cannot be currently holding a proc ref.
+ * i.e. it will/has gotten PROC_NULL from proc_find.
+ */
+void
+proc_free_realitimer(proc_t p)
+{
+ proc_spinlock(p);
+
+ assert(p->p_rcall != NULL);
+ assert(p->p_refcount == 0);
+
+ timerclear(&p->p_realtimer.it_interval);
+
+ if (thread_call_cancel(p->p_rcall)) {
+ assert(p->p_ractive > 0);
+ p->p_ractive--;
+ }
+
+ while (p->p_ractive > 0) {
+ proc_spinunlock(p);
+
+ delay(1);
+
+ proc_spinlock(p);
+ }
+
+ thread_call_t call = p->p_rcall;
+ p->p_rcall = NULL;
+
+ proc_spinunlock(p);
+
+ thread_call_free(call);
+}
+
/*
* Check that a proposed value to load into the .it_value or
* .it_interval part of an interval timer is acceptable.
itimerfix(
struct timeval *tv)
{
-
if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
- tv->tv_usec < 0 || tv->tv_usec >= 1000000)
- return (EINVAL);
- return (0);
+ tv->tv_usec < 0 || tv->tv_usec >= 1000000) {
+ return EINVAL;
+ }
+ return 0;
+}
+
+int
+timespec_is_valid(const struct timespec *ts)
+{
+ /* The INT32_MAX limit ensures the timespec is safe for clock_*() functions
+ * which accept 32-bit ints. */
+ if (ts->tv_sec < 0 || ts->tv_sec > INT32_MAX ||
+ ts->tv_nsec < 0 || (unsigned long long)ts->tv_nsec > NSEC_PER_SEC) {
+ return 0;
+ }
+ return 1;
}
/*
*/
int
itimerdecr(proc_t p,
- struct itimerval *itp, int usec)
+ struct itimerval *itp, int usec)
{
-
proc_spinlock(p);
-
+
if (itp->it_value.tv_usec < usec) {
if (itp->it_value.tv_sec == 0) {
/* expired, and already in next interval */
usec = 0;
if (timerisset(&itp->it_value)) {
proc_spinunlock(p);
- return (1);
+ return 1;
}
/* expired, exactly at end of interval */
expire:
if (timerisset(&itp->it_interval)) {
itp->it_value = itp->it_interval;
if (itp->it_value.tv_sec > 0) {
- itp->it_value.tv_usec -= usec;
- if (itp->it_value.tv_usec < 0) {
- itp->it_value.tv_usec += 1000000;
- itp->it_value.tv_sec--;
+ itp->it_value.tv_usec -= usec;
+ if (itp->it_value.tv_usec < 0) {
+ itp->it_value.tv_usec += 1000000;
+ itp->it_value.tv_sec--;
}
}
- } else
- itp->it_value.tv_usec = 0; /* sec is already 0 */
+ } else {
+ itp->it_value.tv_usec = 0; /* sec is already 0 */
+ }
proc_spinunlock(p);
- return (0);
+ return 0;
}
/*
struct timeval *t1,
struct timeval *t2)
{
-
t1->tv_sec += t2->tv_sec;
t1->tv_usec += t2->tv_usec;
timevalfix(t1);
struct timeval *t1,
struct timeval *t2)
{
-
t1->tv_sec -= t2->tv_sec;
t1->tv_usec -= t2->tv_usec;
timevalfix(t1);
timevalfix(
struct timeval *t1)
{
-
if (t1->tv_usec < 0) {
t1->tv_sec--;
t1->tv_usec += 1000000;
}
}
+static boolean_t
+timeval_fixusec(
+ struct timeval *t1)
+{
+ assert(t1->tv_usec >= 0);
+ assert(t1->tv_sec >= 0);
+
+ if (t1->tv_usec >= 1000000) {
+ if (os_add_overflow(t1->tv_sec, t1->tv_usec / 1000000, &t1->tv_sec)) {
+ return FALSE;
+ }
+ t1->tv_usec = t1->tv_usec % 1000000;
+ }
+
+ return TRUE;
+}
+
/*
* Return the best possible estimate of the time in the timeval
* to which tvp points.
*/
void
microtime(
- struct timeval *tvp)
+ struct timeval *tvp)
{
- clock_sec_t tv_sec;
- clock_usec_t tv_usec;
+ clock_sec_t tv_sec;
+ clock_usec_t tv_usec;
clock_get_calendar_microtime(&tv_sec, &tv_usec);
tvp->tv_usec = tv_usec;
}
+void
+microtime_with_abstime(
+ struct timeval *tvp, uint64_t *abstime)
+{
+ clock_sec_t tv_sec;
+ clock_usec_t tv_usec;
+
+ clock_get_calendar_absolute_and_microtime(&tv_sec, &tv_usec, abstime);
+
+ tvp->tv_sec = tv_sec;
+ tvp->tv_usec = tv_usec;
+}
+
void
microuptime(
- struct timeval *tvp)
+ struct timeval *tvp)
{
- clock_sec_t tv_sec;
- clock_usec_t tv_usec;
+ clock_sec_t tv_sec;
+ clock_usec_t tv_usec;
clock_get_system_microtime(&tv_sec, &tv_usec);
nanotime(
struct timespec *tsp)
{
- clock_sec_t tv_sec;
- clock_nsec_t tv_nsec;
+ clock_sec_t tv_sec;
+ clock_nsec_t tv_nsec;
clock_get_calendar_nanotime(&tv_sec, &tv_nsec);
nanouptime(
struct timespec *tsp)
{
- clock_sec_t tv_sec;
- clock_nsec_t tv_nsec;
+ clock_sec_t tv_sec;
+ clock_nsec_t tv_nsec;
clock_get_system_nanotime(&tv_sec, &tv_nsec);
uint64_t
tvtoabstime(
- struct timeval *tvp)
+ struct timeval *tvp)
{
- uint64_t result, usresult;
+ uint64_t result, usresult;
clock_interval_to_absolutetime_interval(
- tvp->tv_sec, NSEC_PER_SEC, &result);
+ tvp->tv_sec, NSEC_PER_SEC, &result);
clock_interval_to_absolutetime_interval(
- tvp->tv_usec, NSEC_PER_USEC, &usresult);
+ tvp->tv_usec, NSEC_PER_USEC, &usresult);
+
+ return result + usresult;
+}
+
+uint64_t
+tstoabstime(struct timespec *ts)
+{
+ uint64_t abstime_s, abstime_ns;
+ clock_interval_to_absolutetime_interval(ts->tv_sec, NSEC_PER_SEC, &abstime_s);
+ clock_interval_to_absolutetime_interval(ts->tv_nsec, 1, &abstime_ns);
+ return abstime_s + abstime_ns;
+}
+
+#if NETWORKING
+/*
+ * ratecheck(): simple time-based rate-limit checking.
+ */
+int
+ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
+{
+ struct timeval tv, delta;
+ int rv = 0;
+
+ net_uptime2timeval(&tv);
+ delta = tv;
+ timevalsub(&delta, lasttime);
+
+ /*
+ * check for 0,0 is so that the message will be seen at least once,
+ * even if interval is huge.
+ */
+ if (timevalcmp(&delta, mininterval, >=) ||
+ (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
+ *lasttime = tv;
+ rv = 1;
+ }
- return (result + usresult);
+ return rv;
}
+
+/*
+ * ppsratecheck(): packets (or events) per second limitation.
+ */
+int
+ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
+{
+ struct timeval tv, delta;
+ int rv;
+
+ net_uptime2timeval(&tv);
+
+ timersub(&tv, lasttime, &delta);
+
+ /*
+ * Check for 0,0 so that the message will be seen at least once.
+ * If more than one second has passed since the last update of
+ * lasttime, reset the counter.
+ *
+ * we do increment *curpps even in *curpps < maxpps case, as some may
+ * try to use *curpps for stat purposes as well.
+ */
+ if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
+ delta.tv_sec >= 1) {
+ *lasttime = tv;
+ *curpps = 0;
+ rv = 1;
+ } else if (maxpps < 0) {
+ rv = 1;
+ } else if (*curpps < maxpps) {
+ rv = 1;
+ } else {
+ rv = 0;
+ }
+
+#if 1 /* DIAGNOSTIC? */
+ /* be careful about wrap-around */
+ if (*curpps + 1 > 0) {
+ *curpps = *curpps + 1;
+ }
+#else
+ /*
+ * assume that there's not too many calls to this function.
+ * not sure if the assumption holds, as it depends on *caller's*
+ * behavior, not the behavior of this function.
+ * IMHO it is wrong to make assumption on the caller's behavior,
+ * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
+ */
+ *curpps = *curpps + 1;
+#endif
+
+ return rv;
+}
+#endif /* NETWORKING */
+
void
time_zone_slock_init(void)
{
/* Allocate the spin lock */
tz_slock = lck_spin_alloc_init(tz_slock_grp, tz_slock_attr);
}
+
+int
+__mach_bridge_remote_time(__unused struct proc *p, struct __mach_bridge_remote_time_args *mbrt_args, uint64_t *retval)
+{
+ *retval = mach_bridge_remote_time(mbrt_args->local_timestamp);
+ return 0;
+}