#define quad(hi,lo) (((uint64_t)(hi)) << 32 | (lo))
/* Only for 32bit values */
-#define bit(n) (1U << (n))
-#define bitmask(h,l) ((bit(h)|(bit(h)-1)) & ~(bit(l)-1))
-#define bitfield(x,h,l) ((((x) & bitmask(h,l)) >> l))
+#define bit32(n) (1U << (n))
+#define bitmask32(h,l) ((bit32(h)|(bit32(h)-1)) & ~(bit32(l)-1))
+#define bitfield32(x,h,l) ((((x) & bitmask32(h,l)) >> l))
/*
* Leaf 2 cache descriptor encodings.
{ 0xD0, CACHE, L3, 4, 512*K, 64 },
{ 0xD1, CACHE, L3, 4, 1*M, 64 },
{ 0xD2, CACHE, L3, 4, 2*M, 64 },
+ { 0xD3, CACHE, L3, 4, 4*M, 64 },
+ { 0xD4, CACHE, L3, 4, 8*M, 64 },
{ 0xD6, CACHE, L3, 8, 1*M, 64 },
{ 0xD7, CACHE, L3, 8, 2*M, 64 },
{ 0xD8, CACHE, L3, 8, 4*M, 64 },
+ { 0xD9, CACHE, L3, 8, 8*M, 64 },
+ { 0xDA, CACHE, L3, 8, 12*M, 64 },
{ 0xDC, CACHE, L3, 12, 1536*K, 64 },
{ 0xDD, CACHE, L3, 12, 3*M, 64 },
{ 0xDE, CACHE, L3, 12, 6*M, 64 },
+ { 0xDF, CACHE, L3, 12, 12*M, 64 },
+ { 0xE0, CACHE, L3, 12, 18*M, 64 },
{ 0xE2, CACHE, L3, 16, 2*M, 64 },
{ 0xE3, CACHE, L3, 16, 4*M, 64 },
{ 0xE4, CACHE, L3, 16, 8*M, 64 },
+ { 0xE5, CACHE, L3, 16, 16*M, 64 },
+ { 0xE6, CACHE, L3, 16, 24*M, 64 },
{ 0xF0, PREFETCH, NA, NA, 64, NA },
{ 0xF1, PREFETCH, NA, NA, 128, NA }
};
static i386_cpu_info_t cpuid_cpu_info;
#if defined(__x86_64__)
-static void _do_cpuid(uint32_t selector, uint32_t *result)
+static void cpuid_fn(uint32_t selector, uint32_t *result)
{
do_cpuid(selector, result);
}
#else
-static void _do_cpuid(uint32_t selector, uint32_t *result)
+static void cpuid_fn(uint32_t selector, uint32_t *result)
{
if (cpu_mode_is64bit()) {
asm("call _cpuid64"
/* Get processor cache descriptor info using leaf 2. We don't use
* this internally, but must publish it for KEXTs.
*/
- _do_cpuid(2, cpuid_result);
+ cpuid_fn(2, cpuid_result);
for (j = 0; j < 4; j++) {
if ((cpuid_result[j] >> 31) == 1) /* bit31 is validity */
continue;
for (i = 1; i < info_p->cache_info[0]; i++) {
if (i*16 > sizeof(info_p->cache_info))
break;
- _do_cpuid(2, cpuid_result);
+ cpuid_fn(2, cpuid_result);
for (j = 0; j < 4; j++) {
if ((cpuid_result[j] >> 31) == 1)
continue;
* Most processors Mac OS X supports implement this flavor of CPUID.
* Loop over each cache on the processor.
*/
- _do_cpuid(0, cpuid_result);
+ cpuid_fn(0, cpuid_result);
if (cpuid_result[eax] >= 4)
cpuid_deterministic_supported = TRUE;
reg[ecx] = index; /* index starting at 0 */
cpuid(reg);
//kprintf("cpuid(4) index=%d eax=%p\n", index, reg[eax]);
- cache_type = bitfield(reg[eax], 4, 0);
+ cache_type = bitfield32(reg[eax], 4, 0);
if (cache_type == 0)
break; /* no more caches */
- cache_level = bitfield(reg[eax], 7, 5);
- cache_sharing = bitfield(reg[eax], 25, 14) + 1;
+ cache_level = bitfield32(reg[eax], 7, 5);
+ cache_sharing = bitfield32(reg[eax], 25, 14) + 1;
info_p->cpuid_cores_per_package
- = bitfield(reg[eax], 31, 26) + 1;
- cache_linesize = bitfield(reg[ebx], 11, 0) + 1;
- cache_partitions = bitfield(reg[ebx], 21, 12) + 1;
- cache_associativity = bitfield(reg[ebx], 31, 22) + 1;
- cache_sets = bitfield(reg[ecx], 31, 0) + 1;
+ = bitfield32(reg[eax], 31, 26) + 1;
+ cache_linesize = bitfield32(reg[ebx], 11, 0) + 1;
+ cache_partitions = bitfield32(reg[ebx], 21, 12) + 1;
+ cache_associativity = bitfield32(reg[ebx], 31, 22) + 1;
+ cache_sets = bitfield32(reg[ecx], 31, 0) + 1;
/* Map type/levels returned by CPUID into cache_type_t */
switch (cache_level) {
static void
cpuid_set_generic_info(i386_cpu_info_t *info_p)
{
- uint32_t cpuid_reg[4];
+ uint32_t reg[4];
char str[128], *p;
/* do cpuid 0 to get vendor */
- _do_cpuid(0, cpuid_reg);
- info_p->cpuid_max_basic = cpuid_reg[eax];
- bcopy((char *)&cpuid_reg[ebx], &info_p->cpuid_vendor[0], 4); /* ug */
- bcopy((char *)&cpuid_reg[ecx], &info_p->cpuid_vendor[8], 4);
- bcopy((char *)&cpuid_reg[edx], &info_p->cpuid_vendor[4], 4);
+ cpuid_fn(0, reg);
+ info_p->cpuid_max_basic = reg[eax];
+ bcopy((char *)®[ebx], &info_p->cpuid_vendor[0], 4); /* ug */
+ bcopy((char *)®[ecx], &info_p->cpuid_vendor[8], 4);
+ bcopy((char *)®[edx], &info_p->cpuid_vendor[4], 4);
info_p->cpuid_vendor[12] = 0;
/* get extended cpuid results */
- _do_cpuid(0x80000000, cpuid_reg);
- info_p->cpuid_max_ext = cpuid_reg[eax];
+ cpuid_fn(0x80000000, reg);
+ info_p->cpuid_max_ext = reg[eax];
/* check to see if we can get brand string */
if (info_p->cpuid_max_ext >= 0x80000004) {
* The brand string 48 bytes (max), guaranteed to
* be NUL terminated.
*/
- _do_cpuid(0x80000002, cpuid_reg);
- bcopy((char *)cpuid_reg, &str[0], 16);
- _do_cpuid(0x80000003, cpuid_reg);
- bcopy((char *)cpuid_reg, &str[16], 16);
- _do_cpuid(0x80000004, cpuid_reg);
- bcopy((char *)cpuid_reg, &str[32], 16);
+ cpuid_fn(0x80000002, reg);
+ bcopy((char *)reg, &str[0], 16);
+ cpuid_fn(0x80000003, reg);
+ bcopy((char *)reg, &str[16], 16);
+ cpuid_fn(0x80000004, reg);
+ bcopy((char *)reg, &str[32], 16);
for (p = str; *p != '\0'; p++) {
if (*p != ' ') break;
}
/* Get cache and addressing info. */
if (info_p->cpuid_max_ext >= 0x80000006) {
- _do_cpuid(0x80000006, cpuid_reg);
- info_p->cpuid_cache_linesize = bitfield(cpuid_reg[ecx], 7, 0);
+ cpuid_fn(0x80000006, reg);
+ info_p->cpuid_cache_linesize = bitfield32(reg[ecx], 7, 0);
info_p->cpuid_cache_L2_associativity =
- bitfield(cpuid_reg[ecx],15,12);
- info_p->cpuid_cache_size = bitfield(cpuid_reg[ecx],31,16);
- _do_cpuid(0x80000008, cpuid_reg);
+ bitfield32(reg[ecx],15,12);
+ info_p->cpuid_cache_size = bitfield32(reg[ecx],31,16);
+ cpuid_fn(0x80000008, reg);
info_p->cpuid_address_bits_physical =
- bitfield(cpuid_reg[eax], 7, 0);
+ bitfield32(reg[eax], 7, 0);
info_p->cpuid_address_bits_virtual =
- bitfield(cpuid_reg[eax],15, 8);
+ bitfield32(reg[eax],15, 8);
}
/* get processor signature and decode */
- _do_cpuid(1, cpuid_reg);
- info_p->cpuid_signature = cpuid_reg[eax];
- info_p->cpuid_stepping = bitfield(cpuid_reg[eax], 3, 0);
- info_p->cpuid_model = bitfield(cpuid_reg[eax], 7, 4);
- info_p->cpuid_family = bitfield(cpuid_reg[eax], 11, 8);
- info_p->cpuid_type = bitfield(cpuid_reg[eax], 13, 12);
- info_p->cpuid_extmodel = bitfield(cpuid_reg[eax], 19, 16);
- info_p->cpuid_extfamily = bitfield(cpuid_reg[eax], 27, 20);
- info_p->cpuid_brand = bitfield(cpuid_reg[ebx], 7, 0);
- info_p->cpuid_features = quad(cpuid_reg[ecx], cpuid_reg[edx]);
+ cpuid_fn(1, reg);
+ info_p->cpuid_signature = reg[eax];
+ info_p->cpuid_stepping = bitfield32(reg[eax], 3, 0);
+ info_p->cpuid_model = bitfield32(reg[eax], 7, 4);
+ info_p->cpuid_family = bitfield32(reg[eax], 11, 8);
+ info_p->cpuid_type = bitfield32(reg[eax], 13, 12);
+ info_p->cpuid_extmodel = bitfield32(reg[eax], 19, 16);
+ info_p->cpuid_extfamily = bitfield32(reg[eax], 27, 20);
+ info_p->cpuid_brand = bitfield32(reg[ebx], 7, 0);
+ info_p->cpuid_features = quad(reg[ecx], reg[edx]);
/* Fold extensions into family/model */
if (info_p->cpuid_family == 0x0f)
if (info_p->cpuid_features & CPUID_FEATURE_HTT)
info_p->cpuid_logical_per_package =
- bitfield(cpuid_reg[ebx], 23, 16);
+ bitfield32(reg[ebx], 23, 16);
else
info_p->cpuid_logical_per_package = 1;
if (info_p->cpuid_max_ext >= 0x80000001) {
- _do_cpuid(0x80000001, cpuid_reg);
+ cpuid_fn(0x80000001, reg);
info_p->cpuid_extfeatures =
- quad(cpuid_reg[ecx], cpuid_reg[edx]);
+ quad(reg[ecx], reg[edx]);
}
/* Fold in the Invariant TSC feature bit, if present */
if (info_p->cpuid_max_ext >= 0x80000007) {
- _do_cpuid(0x80000007, cpuid_reg);
+ cpuid_fn(0x80000007, reg);
info_p->cpuid_extfeatures |=
- cpuid_reg[edx] & (uint32_t)CPUID_EXTFEATURE_TSCI;
+ reg[edx] & (uint32_t)CPUID_EXTFEATURE_TSCI;
}
/* Find the microcode version number a.k.a. signature a.k.a. BIOS ID */
info_p->cpuid_microcode_version =
(uint32_t) (rdmsr64(MSR_IA32_BIOS_SIGN_ID) >> 32);
- if (info_p->cpuid_model == CPUID_MODEL_NEHALEM) {
- /*
- * For Nehalem, find the number of enabled cores and threads
- * (which determines whether SMT/Hyperthreading is active).
- */
- uint64_t msr_core_thread_count = rdmsr64(MSR_CORE_THREAD_COUNT);
- info_p->core_count = bitfield((uint32_t)msr_core_thread_count, 31, 16);
- info_p->thread_count = bitfield((uint32_t)msr_core_thread_count, 15, 0);
- }
-
if (info_p->cpuid_max_basic >= 0x5) {
+ cpuid_mwait_leaf_t *cmp = &info_p->cpuid_mwait_leaf;
+
/*
* Extract the Monitor/Mwait Leaf info:
*/
- _do_cpuid(5, cpuid_reg);
- info_p->cpuid_mwait_linesize_min = cpuid_reg[eax];
- info_p->cpuid_mwait_linesize_max = cpuid_reg[ebx];
- info_p->cpuid_mwait_extensions = cpuid_reg[ecx];
- info_p->cpuid_mwait_sub_Cstates = cpuid_reg[edx];
+ cpuid_fn(5, reg);
+ cmp->linesize_min = reg[eax];
+ cmp->linesize_max = reg[ebx];
+ cmp->extensions = reg[ecx];
+ cmp->sub_Cstates = reg[edx];
+ info_p->cpuid_mwait_leafp = cmp;
}
if (info_p->cpuid_max_basic >= 0x6) {
+ cpuid_thermal_leaf_t *ctp = &info_p->cpuid_thermal_leaf;
+
/*
* The thermal and Power Leaf:
*/
- _do_cpuid(6, cpuid_reg);
- info_p->cpuid_thermal_sensor =
- bitfield(cpuid_reg[eax], 0, 0);
- info_p->cpuid_thermal_dynamic_acceleration =
- bitfield(cpuid_reg[eax], 1, 1);
- info_p->cpuid_thermal_thresholds =
- bitfield(cpuid_reg[ebx], 3, 0);
- info_p->cpuid_thermal_ACNT_MCNT =
- bitfield(cpuid_reg[ecx], 0, 0);
+ cpuid_fn(6, reg);
+ ctp->sensor = bitfield32(reg[eax], 0, 0);
+ ctp->dynamic_acceleration = bitfield32(reg[eax], 1, 1);
+ ctp->thresholds = bitfield32(reg[ebx], 3, 0);
+ ctp->ACNT_MCNT = bitfield32(reg[ecx], 0, 0);
+ info_p->cpuid_thermal_leafp = ctp;
}
if (info_p->cpuid_max_basic >= 0xa) {
+ cpuid_arch_perf_leaf_t *capp = &info_p->cpuid_arch_perf_leaf;
+
/*
* Architectural Performance Monitoring Leaf:
*/
- _do_cpuid(0xa, cpuid_reg);
- info_p->cpuid_arch_perf_version =
- bitfield(cpuid_reg[eax], 7, 0);
- info_p->cpuid_arch_perf_number =
- bitfield(cpuid_reg[eax],15, 8);
- info_p->cpuid_arch_perf_width =
- bitfield(cpuid_reg[eax],23,16);
- info_p->cpuid_arch_perf_events_number =
- bitfield(cpuid_reg[eax],31,24);
- info_p->cpuid_arch_perf_events =
- cpuid_reg[ebx];
- info_p->cpuid_arch_perf_fixed_number =
- bitfield(cpuid_reg[edx], 4, 0);
- info_p->cpuid_arch_perf_fixed_width =
- bitfield(cpuid_reg[edx],12, 5);
+ cpuid_fn(0xa, reg);
+ capp->version = bitfield32(reg[eax], 7, 0);
+ capp->number = bitfield32(reg[eax], 15, 8);
+ capp->width = bitfield32(reg[eax], 23, 16);
+ capp->events_number = bitfield32(reg[eax], 31, 24);
+ capp->events = reg[ebx];
+ capp->fixed_number = bitfield32(reg[edx], 4, 0);
+ capp->fixed_width = bitfield32(reg[edx], 12, 5);
+ info_p->cpuid_arch_perf_leafp = capp;
}
return;
}
+static uint32_t
+cpuid_set_cpufamily(i386_cpu_info_t *info_p)
+{
+ uint32_t cpufamily = CPUFAMILY_UNKNOWN;
+
+ switch (info_p->cpuid_family) {
+ case 6:
+ switch (info_p->cpuid_model) {
+ case 13:
+ cpufamily = CPUFAMILY_INTEL_6_13;
+ break;
+ case 14:
+ cpufamily = CPUFAMILY_INTEL_YONAH;
+ break;
+ case 15:
+ cpufamily = CPUFAMILY_INTEL_MEROM;
+ break;
+ case 23:
+ cpufamily = CPUFAMILY_INTEL_PENRYN;
+ break;
+ case CPUID_MODEL_NEHALEM:
+ case CPUID_MODEL_FIELDS:
+ case CPUID_MODEL_DALES:
+ case CPUID_MODEL_NEHALEM_EX:
+ cpufamily = CPUFAMILY_INTEL_NEHALEM;
+ break;
+ }
+ break;
+ }
+
+ info_p->cpuid_cpufamily = cpufamily;
+ return cpufamily;
+}
+
void
cpuid_set_info(void)
{
- bzero((void *)&cpuid_cpu_info, sizeof(cpuid_cpu_info));
+ i386_cpu_info_t *info_p = &cpuid_cpu_info;
+
+ bzero((void *)info_p, sizeof(cpuid_cpu_info));
- cpuid_set_generic_info(&cpuid_cpu_info);
+ cpuid_set_generic_info(info_p);
/* verify we are running on a supported CPU */
- if ((strncmp(CPUID_VID_INTEL, cpuid_cpu_info.cpuid_vendor,
+ if ((strncmp(CPUID_VID_INTEL, info_p->cpuid_vendor,
min(strlen(CPUID_STRING_UNKNOWN) + 1,
- sizeof(cpuid_cpu_info.cpuid_vendor)))) ||
- (cpuid_cpu_info.cpuid_family != 6) ||
- (cpuid_cpu_info.cpuid_model < 13))
+ sizeof(info_p->cpuid_vendor)))) ||
+ (cpuid_set_cpufamily(info_p) == CPUFAMILY_UNKNOWN))
panic("Unsupported CPU");
- cpuid_cpu_info.cpuid_cpu_type = CPU_TYPE_X86;
- cpuid_cpu_info.cpuid_cpu_subtype = CPU_SUBTYPE_X86_ARCH1;
+ info_p->cpuid_cpu_type = CPU_TYPE_X86;
+ info_p->cpuid_cpu_subtype = CPU_SUBTYPE_X86_ARCH1;
cpuid_set_cache_info(&cpuid_cpu_info);
- if (cpuid_cpu_info.core_count == 0) {
- cpuid_cpu_info.core_count =
- cpuid_cpu_info.cpuid_cores_per_package;
- cpuid_cpu_info.thread_count =
- cpuid_cpu_info.cpuid_logical_per_package;
+ /*
+ * Find the number of enabled cores and threads
+ * (which determines whether SMT/Hyperthreading is active).
+ */
+ switch (info_p->cpuid_cpufamily) {
+ case CPUFAMILY_INTEL_NEHALEM: {
+ uint64_t msr = rdmsr64(MSR_CORE_THREAD_COUNT);
+ info_p->core_count = bitfield32((uint32_t)msr, 31, 16);
+ info_p->thread_count = bitfield32((uint32_t)msr, 15, 0);
+ break;
+ }
+ }
+ if (info_p->core_count == 0) {
+ info_p->core_count = info_p->cpuid_cores_per_package;
+ info_p->thread_count = info_p->cpuid_logical_per_package;
}
cpuid_cpu_info.cpuid_model_string = ""; /* deprecated */
return cpuid_info()->cpuid_family;
}
+uint32_t
+cpuid_cpufamily(void)
+{
+ return cpuid_info()->cpuid_cpufamily;
+}
+
cpu_type_t
cpuid_cputype(void)
{