/*
- * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
+ * Copyright (c) 2000-2014 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
#include <sys/time.h>
#include <sys/kernel.h>
#include <sys/resourcevar.h>
+#include <miscfs/specfs/specdev.h>
#include <sys/uio_internal.h>
#include <libkern/libkern.h>
#include <machine/machine_routines.h>
#include <mach/memory_object_types.h>
#include <mach/vm_map.h>
#include <mach/upl.h>
+#include <kern/task.h>
+#include <kern/policy_internal.h>
#include <vm/vm_kern.h>
#include <vm/vm_map.h>
#include <vm/vm_pageout.h>
+#include <vm/vm_fault.h>
#include <sys/kdebug.h>
#include <libkern/OSAtomic.h>
+#include <sys/sdt.h>
+
+#include <stdbool.h>
+
#if 0
#undef KERNEL_DEBUG
#define KERNEL_DEBUG KERNEL_DEBUG_CONSTANT
#define CL_DIRECT_IO 0x1000
#define CL_PASSIVE 0x2000
#define CL_IOSTREAMING 0x4000
+#define CL_CLOSE 0x8000
+#define CL_ENCRYPTED 0x10000
+#define CL_RAW_ENCRYPTED 0x20000
+#define CL_NOCACHE 0x40000
#define MAX_VECTOR_UPL_ELEMENTS 8
-#define MAX_VECTOR_UPL_SIZE (2 * MAX_UPL_SIZE) * PAGE_SIZE
+#define MAX_VECTOR_UPL_SIZE (2 * MAX_UPL_SIZE_BYTES)
+
+#define CLUSTER_IO_WAITING ((buf_t)1)
extern upl_t vector_upl_create(vm_offset_t);
extern boolean_t vector_upl_is_valid(upl_t);
extern void vector_upl_set_iostate(upl_t, upl_t, vm_offset_t, u_int32_t);
struct clios {
+ lck_mtx_t io_mtxp;
u_int io_completed; /* amount of io that has currently completed */
u_int io_issued; /* amount of io that was successfully issued */
int io_error; /* error code of first error encountered */
int io_wanted; /* someone is sleeping waiting for a change in state */
};
+struct cl_direct_read_lock {
+ LIST_ENTRY(cl_direct_read_lock) chain;
+ int32_t ref_count;
+ vnode_t vp;
+ lck_rw_t rw_lock;
+};
+
+#define CL_DIRECT_READ_LOCK_BUCKETS 61
+
+static LIST_HEAD(cl_direct_read_locks, cl_direct_read_lock)
+ cl_direct_read_locks[CL_DIRECT_READ_LOCK_BUCKETS];
+
+static lck_spin_t cl_direct_read_spin_lock;
+
static lck_grp_t *cl_mtx_grp;
static lck_attr_t *cl_mtx_attr;
static lck_grp_attr_t *cl_mtx_grp_attr;
-static lck_mtx_t *cl_mtxp;
-
+static lck_mtx_t *cl_transaction_mtxp;
#define IO_UNKNOWN 0
#define IO_DIRECT 1
static int cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size,
int flags, buf_t real_bp, struct clios *iostate, int (*)(buf_t, void *), void *callback_arg);
static int cluster_iodone(buf_t bp, void *callback_arg);
-static int cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags);
-static int cluster_hard_throttle_on(vnode_t vp, uint32_t);
+static int cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags, vnode_t vp);
+static int cluster_is_throttled(vnode_t vp);
+
+static void cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name);
-static void cluster_syncup(vnode_t vp, off_t newEOF, int (*)(buf_t, void *), void *callback_arg);
+static void cluster_syncup(vnode_t vp, off_t newEOF, int (*)(buf_t, void *), void *callback_arg, int flags);
static void cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int take_reference);
static int cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference);
static int cluster_push_now(vnode_t vp, struct cl_extent *, off_t EOF, int flags, int (*)(buf_t, void *), void *callback_arg);
-static int cluster_try_push(struct cl_writebehind *, vnode_t vp, off_t EOF, int push_flag, int (*)(buf_t, void *), void *callback_arg);
+static int cluster_try_push(struct cl_writebehind *, vnode_t vp, off_t EOF, int push_flag, int flags, int (*)(buf_t, void *), void *callback_arg, int *err);
static void sparse_cluster_switch(struct cl_writebehind *, vnode_t vp, off_t EOF, int (*)(buf_t, void *), void *callback_arg);
-static void sparse_cluster_push(void **cmapp, vnode_t vp, off_t EOF, int push_flag, int (*)(buf_t, void *), void *callback_arg);
+static int sparse_cluster_push(void **cmapp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*)(buf_t, void *), void *callback_arg);
static void sparse_cluster_add(void **cmapp, vnode_t vp, struct cl_extent *, off_t EOF, int (*)(buf_t, void *), void *callback_arg);
static kern_return_t vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp);
static kern_return_t vfs_drt_control(void **cmapp, int op_type);
+/*
+ * For throttled IO to check whether
+ * a block is cached by the boot cache
+ * and thus it can avoid delaying the IO.
+ *
+ * bootcache_contains_block is initially
+ * NULL. The BootCache will set it while
+ * the cache is active and clear it when
+ * the cache is jettisoned.
+ *
+ * Returns 0 if the block is not
+ * contained in the cache, 1 if it is
+ * contained.
+ *
+ * The function pointer remains valid
+ * after the cache has been evicted even
+ * if bootcache_contains_block has been
+ * cleared.
+ *
+ * See rdar://9974130 The new throttling mechanism breaks the boot cache for throttled IOs
+ */
+int (*bootcache_contains_block)(dev_t device, u_int64_t blkno) = NULL;
+
+
/*
* limit the internal I/O size so that we
* can represent it in a 32 bit int
*/
#define MAX_IO_REQUEST_SIZE (1024 * 1024 * 512)
-#define MAX_IO_CONTIG_SIZE (MAX_UPL_SIZE * PAGE_SIZE)
+#define MAX_IO_CONTIG_SIZE MAX_UPL_SIZE_BYTES
#define MAX_VECTS 16
-#define MIN_DIRECT_WRITE_SIZE (4 * PAGE_SIZE)
+/*
+ * The MIN_DIRECT_WRITE_SIZE governs how much I/O should be issued before we consider
+ * allowing the caller to bypass the buffer cache. For small I/Os (less than 16k),
+ * we have not historically allowed the write to bypass the UBC.
+ */
+#define MIN_DIRECT_WRITE_SIZE (16384)
-#define IO_SCALE(vp, base) (vp->v_mount->mnt_ioscale * base)
-#define MAX_CLUSTER_SIZE(vp) (cluster_max_io_size(vp->v_mount, CL_WRITE))
-#define MAX_PREFETCH(vp, io_size) (io_size * IO_SCALE(vp, 3))
+#define WRITE_THROTTLE 6
+#define WRITE_THROTTLE_SSD 2
+#define WRITE_BEHIND 1
+#define WRITE_BEHIND_SSD 1
+
+#define PREFETCH 3
+#define PREFETCH_SSD 2
+uint32_t speculative_prefetch_max = (MAX_UPL_SIZE_BYTES * 3); /* maximum bytes in a specluative read-ahead */
+uint32_t speculative_prefetch_max_iosize = (512 * 1024); /* maximum I/O size to use in a specluative read-ahead on SSDs*/
-int speculative_reads_disabled = 0;
+#define IO_SCALE(vp, base) (vp->v_mount->mnt_ioscale * (base))
+#define MAX_CLUSTER_SIZE(vp) (cluster_max_io_size(vp->v_mount, CL_WRITE))
+#define MAX_PREFETCH(vp, size, is_ssd) (size * IO_SCALE(vp, ((is_ssd && !ignore_is_ssd) ? PREFETCH_SSD : PREFETCH)))
+
+int ignore_is_ssd = 0;
+int speculative_reads_disabled = 0;
/*
* throttle the number of async writes that
* can be outstanding on a single vnode
* before we issue a synchronous write
*/
-#define HARD_THROTTLE_MAXCNT 0
-#define HARD_THROTTLE_MAXSIZE (32 * 1024)
+#define THROTTLE_MAXCNT 0
-int hard_throttle_on_root = 0;
-struct timeval priority_IO_timestamp_for_root;
+uint32_t throttle_max_iosize = (128 * 1024);
+
+#define THROTTLE_MAX_IOSIZE (throttle_max_iosize)
+
+SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_max_iosize, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_max_iosize, 0, "");
void
*/
cl_mtx_attr = lck_attr_alloc_init();
- /*
- * allocate and initialize mutex's used to protect updates and waits
- * on the cluster_io context
- */
- cl_mtxp = lck_mtx_alloc_init(cl_mtx_grp, cl_mtx_attr);
+ cl_transaction_mtxp = lck_mtx_alloc_init(cl_mtx_grp, cl_mtx_attr);
- if (cl_mtxp == NULL)
- panic("cluster_init: failed to allocate cl_mtxp");
+ if (cl_transaction_mtxp == NULL)
+ panic("cluster_init: failed to allocate cl_transaction_mtxp");
+
+ lck_spin_init(&cl_direct_read_spin_lock, cl_mtx_grp, cl_mtx_attr);
+
+ for (int i = 0; i < CL_DIRECT_READ_LOCK_BUCKETS; ++i)
+ LIST_INIT(&cl_direct_read_locks[i]);
}
maxcnt = min(mp->mnt_maxreadcnt, mp->mnt_maxwritecnt);
break;
}
- if (segcnt > MAX_UPL_SIZE) {
+ if (segcnt > (MAX_UPL_SIZE_BYTES >> PAGE_SHIFT)) {
/*
* don't allow a size beyond the max UPL size we can create
*/
- segcnt = MAX_UPL_SIZE;
+ segcnt = MAX_UPL_SIZE_BYTES >> PAGE_SHIFT;
}
max_io_size = min((segcnt * PAGE_SIZE), maxcnt);
- if (max_io_size < (MAX_UPL_TRANSFER * PAGE_SIZE)) {
+ if (max_io_size < MAX_UPL_TRANSFER_BYTES) {
/*
* don't allow a size smaller than the old fixed limit
*/
- max_io_size = (MAX_UPL_TRANSFER * PAGE_SIZE);
+ max_io_size = MAX_UPL_TRANSFER_BYTES;
} else {
/*
* make sure the size specified is a multiple of PAGE_SIZE
static void
-cluster_syncup(vnode_t vp, off_t newEOF, int (*callback)(buf_t, void *), void *callback_arg)
+cluster_syncup(vnode_t vp, off_t newEOF, int (*callback)(buf_t, void *), void *callback_arg, int flags)
{
struct cl_writebehind *wbp;
if (wbp->cl_number) {
lck_mtx_lock(&wbp->cl_lockw);
- cluster_try_push(wbp, vp, newEOF, PUSH_ALL | PUSH_SYNC, callback, callback_arg);
+ cluster_try_push(wbp, vp, newEOF, PUSH_ALL | flags, 0, callback, callback_arg, NULL);
lck_mtx_unlock(&wbp->cl_lockw);
}
}
+static int
+cluster_io_present_in_BC(vnode_t vp, off_t f_offset)
+{
+ daddr64_t blkno;
+ size_t io_size;
+ int (*bootcache_check_fn)(dev_t device, u_int64_t blkno) = bootcache_contains_block;
+
+ if (bootcache_check_fn) {
+ if (VNOP_BLOCKMAP(vp, f_offset, PAGE_SIZE, &blkno, &io_size, NULL, VNODE_READ, NULL))
+ return(0);
+
+ if (io_size == 0)
+ return (0);
+
+ if (bootcache_check_fn(vp->v_mount->mnt_devvp->v_rdev, blkno))
+ return(1);
+ }
+ return(0);
+}
+
+
static int
-cluster_hard_throttle_on(vnode_t vp, uint32_t hard_throttle)
+cluster_is_throttled(vnode_t vp)
+{
+ return (throttle_io_will_be_throttled(-1, vp->v_mount));
+}
+
+
+static void
+cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name)
+{
+
+ lck_mtx_lock(&iostate->io_mtxp);
+
+ while ((iostate->io_issued - iostate->io_completed) > target) {
+
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START,
+ iostate->io_issued, iostate->io_completed, target, 0, 0);
+
+ iostate->io_wanted = 1;
+ msleep((caddr_t)&iostate->io_wanted, &iostate->io_mtxp, PRIBIO + 1, wait_name, NULL);
+
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END,
+ iostate->io_issued, iostate->io_completed, target, 0, 0);
+ }
+ lck_mtx_unlock(&iostate->io_mtxp);
+}
+
+static void cluster_handle_associated_upl(struct clios *iostate, upl_t upl,
+ upl_offset_t upl_offset, upl_size_t size)
{
- struct uthread *ut;
+ if (!size)
+ return;
+
+ upl_t associated_upl = upl_associated_upl(upl);
+
+ if (!associated_upl)
+ return;
+
+#if 0
+ printf("1: %d %d\n", upl_offset, upl_offset + size);
+#endif
+
+ /*
+ * The associated UPL is page aligned to file offsets whereas the
+ * UPL it's attached to has different alignment requirements. The
+ * upl_offset that we have refers to @upl. The code that follows
+ * has to deal with the first and last pages in this transaction
+ * which might straddle pages in the associated UPL. To keep
+ * track of these pages, we use the mark bits: if the mark bit is
+ * set, we know another transaction has completed its part of that
+ * page and so we can unlock that page here.
+ *
+ * The following illustrates what we have to deal with:
+ *
+ * MEM u <------------ 1 PAGE ------------> e
+ * +-------------+----------------------+-----------------
+ * | |######################|#################
+ * +-------------+----------------------+-----------------
+ * FILE | <--- a ---> o <------------ 1 PAGE ------------>
+ *
+ * So here we show a write to offset @o. The data that is to be
+ * written is in a buffer that is not page aligned; it has offset
+ * @a in the page. The upl that carries the data starts in memory
+ * at @u. The associated upl starts in the file at offset @o. A
+ * transaction will always end on a page boundary (like @e above)
+ * except for the very last transaction in the group. We cannot
+ * unlock the page at @o in the associated upl until both the
+ * transaction ending at @e and the following transaction (that
+ * starts at @e) has completed.
+ */
+
+ /*
+ * We record whether or not the two UPLs are aligned as the mark
+ * bit in the first page of @upl.
+ */
+ upl_page_info_t *pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
+ bool is_unaligned = upl_page_get_mark(pl, 0);
+
+ if (is_unaligned) {
+ upl_page_info_t *assoc_pl = UPL_GET_INTERNAL_PAGE_LIST(associated_upl);
- if (hard_throttle) {
- static struct timeval hard_throttle_maxelapsed = { 0, 200000 };
+ upl_offset_t upl_end = upl_offset + size;
+ assert(upl_end >= PAGE_SIZE);
- if (vp->v_mount->mnt_kern_flag & MNTK_ROOTDEV) {
- struct timeval elapsed;
+ upl_size_t assoc_upl_size = upl_get_size(associated_upl);
- if (hard_throttle_on_root)
- return(1);
+ /*
+ * In the very first transaction in the group, upl_offset will
+ * not be page aligned, but after that it will be and in that
+ * case we want the preceding page in the associated UPL hence
+ * the minus one.
+ */
+ assert(upl_offset);
+ if (upl_offset)
+ upl_offset = trunc_page_32(upl_offset - 1);
- microuptime(&elapsed);
- timevalsub(&elapsed, &priority_IO_timestamp_for_root);
+ lck_mtx_lock_spin(&iostate->io_mtxp);
- if (timevalcmp(&elapsed, &hard_throttle_maxelapsed, <))
- return(1);
+ // Look at the first page...
+ if (upl_offset
+ && !upl_page_get_mark(assoc_pl, upl_offset >> PAGE_SHIFT)) {
+ /*
+ * The first page isn't marked so let another transaction
+ * completion handle it.
+ */
+ upl_page_set_mark(assoc_pl, upl_offset >> PAGE_SHIFT, true);
+ upl_offset += PAGE_SIZE;
}
- }
- if (throttle_get_io_policy(&ut) == IOPOL_THROTTLE) {
- if (throttle_io_will_be_throttled(-1, vp->v_mount)) {
- return(1);
+
+ // And now the last page...
+
+ /*
+ * This needs to be > rather than >= because if it's equal, it
+ * means there's another transaction that is sharing the last
+ * page.
+ */
+ if (upl_end > assoc_upl_size)
+ upl_end = assoc_upl_size;
+ else {
+ upl_end = trunc_page_32(upl_end);
+ const int last_pg = (upl_end >> PAGE_SHIFT) - 1;
+
+ if (!upl_page_get_mark(assoc_pl, last_pg)) {
+ /*
+ * The last page isn't marked so mark the page and let another
+ * transaction completion handle it.
+ */
+ upl_page_set_mark(assoc_pl, last_pg, true);
+ upl_end -= PAGE_SIZE;
+ }
}
+
+ lck_mtx_unlock(&iostate->io_mtxp);
+
+#if 0
+ printf("2: %d %d\n", upl_offset, upl_end);
+#endif
+
+ if (upl_end <= upl_offset)
+ return;
+
+ size = upl_end - upl_offset;
+ } else {
+ assert(!(upl_offset & PAGE_MASK));
+ assert(!(size & PAGE_MASK));
}
- return(0);
-}
+ boolean_t empty;
+
+ /*
+ * We can unlock these pages now and as this is for a
+ * direct/uncached write, we want to dump the pages too.
+ */
+ kern_return_t kr = upl_abort_range(associated_upl, upl_offset, size,
+ UPL_ABORT_DUMP_PAGES, &empty);
+
+ assert(!kr);
+
+ if (!kr && empty) {
+ upl_set_associated_upl(upl, NULL);
+ upl_deallocate(associated_upl);
+ }
+}
static int
-cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags)
+cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags, vnode_t vp)
{
int upl_abort_code = 0;
int page_in = 0;
int page_out = 0;
- if (io_flags & B_PHYS)
+ if ((io_flags & (B_PHYS | B_CACHE)) == (B_PHYS | B_CACHE))
/*
* direct write of any flavor, or a direct read that wasn't aligned
*/
* leave pages in the cache unchanged on error
*/
upl_abort_code = UPL_ABORT_FREE_ON_EMPTY;
- else if (page_out && (error != ENXIO))
+ else if (page_out && ((error != ENXIO) || vnode_isswap(vp)))
/*
* transient error... leave pages unchanged
*/
buf_t cbp_head;
buf_t cbp_next;
buf_t real_bp;
+ vnode_t vp;
struct clios *iostate;
boolean_t transaction_complete = FALSE;
- cbp_head = (buf_t)(bp->b_trans_head);
+ __IGNORE_WCASTALIGN(cbp_head = (buf_t)(bp->b_trans_head));
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_START,
cbp_head, bp->b_lblkno, bp->b_bcount, bp->b_flags, 0);
- for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) {
- /*
- * all I/O requests that are part of this transaction
- * have to complete before we can process it
- */
- if ( !(cbp->b_flags & B_DONE)) {
+ if (cbp_head->b_trans_next || !(cbp_head->b_flags & B_EOT)) {
+ lck_mtx_lock_spin(cl_transaction_mtxp);
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
- cbp_head, cbp, cbp->b_bcount, cbp->b_flags, 0);
+ bp->b_flags |= B_TDONE;
- return 0;
+ for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) {
+ /*
+ * all I/O requests that are part of this transaction
+ * have to complete before we can process it
+ */
+ if ( !(cbp->b_flags & B_TDONE)) {
+
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
+ cbp_head, cbp, cbp->b_bcount, cbp->b_flags, 0);
+
+ lck_mtx_unlock(cl_transaction_mtxp);
+
+ return 0;
+ }
+
+ if (cbp->b_trans_next == CLUSTER_IO_WAITING) {
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
+ cbp_head, cbp, cbp->b_bcount, cbp->b_flags, 0);
+
+ lck_mtx_unlock(cl_transaction_mtxp);
+ wakeup(cbp);
+
+ return 0;
+ }
+
+ if (cbp->b_flags & B_EOT)
+ transaction_complete = TRUE;
}
- if (cbp->b_flags & B_EOT)
- transaction_complete = TRUE;
- }
- if (transaction_complete == FALSE) {
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
- cbp_head, 0, 0, 0, 0);
+ lck_mtx_unlock(cl_transaction_mtxp);
- return 0;
+ if (transaction_complete == FALSE) {
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
+ cbp_head, 0, 0, 0, 0);
+ return 0;
+ }
}
error = 0;
total_size = 0;
total_resid = 0;
cbp = cbp_head;
+ vp = cbp->b_vp;
upl_offset = cbp->b_uploffset;
upl = cbp->b_upl;
b_flags = cbp->b_flags;
cbp = cbp_next;
}
+
+ if (ISSET(b_flags, B_COMMIT_UPL)) {
+ cluster_handle_associated_upl(iostate,
+ cbp_head->b_upl,
+ upl_offset,
+ transaction_size);
+ }
+
if (error == 0 && total_resid)
error = EIO;
* someone has issued multiple I/Os asynchrounsly
* and is waiting for them to complete (streaming)
*/
- lck_mtx_lock_spin(cl_mtxp);
+ lck_mtx_lock_spin(&iostate->io_mtxp);
if (error && iostate->io_error == 0)
iostate->io_error = error;
iostate->io_wanted = 0;
need_wakeup = 1;
}
- lck_mtx_unlock(cl_mtxp);
+ lck_mtx_unlock(&iostate->io_mtxp);
if (need_wakeup)
wakeup((caddr_t)&iostate->io_wanted);
}
if (b_flags & B_COMMIT_UPL) {
-
- pg_offset = upl_offset & PAGE_MASK;
+ pg_offset = upl_offset & PAGE_MASK;
commit_size = (pg_offset + transaction_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
if (error)
- upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, commit_size, error, b_flags);
+ upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, commit_size, error, b_flags, vp);
else {
- upl_flags = UPL_COMMIT_FREE_ON_EMPTY;
+ upl_flags = UPL_COMMIT_FREE_ON_EMPTY;
if ((b_flags & B_PHYS) && (b_flags & B_READ))
upl_flags |= UPL_COMMIT_SET_DIRTY;
ubc_upl_commit_range(upl, upl_offset - pg_offset, commit_size, upl_flags);
}
}
- if ((b_flags & B_NEED_IODONE) && real_bp) {
+ if (real_bp) {
if (error) {
real_bp->b_flags |= B_ERROR;
real_bp->b_error = error;
uint32_t
-cluster_hard_throttle_limit(vnode_t vp, uint32_t *limit, uint32_t hard_throttle)
+cluster_throttle_io_limit(vnode_t vp, uint32_t *limit)
{
- if (cluster_hard_throttle_on(vp, hard_throttle)) {
- *limit = HARD_THROTTLE_MAXSIZE;
+ if (cluster_is_throttled(vp)) {
+ *limit = THROTTLE_MAX_IOSIZE;
return 1;
}
return 0;
pl = ubc_upl_pageinfo(upl);
if (upl_device_page(pl) == TRUE) {
- zero_addr = ((addr64_t)upl_phys_page(pl, 0) << 12) + upl_offset;
+ zero_addr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + upl_offset;
bzero_phys_nc(zero_addr, size);
} else {
page_index = upl_offset / PAGE_SIZE;
page_offset = upl_offset & PAGE_MASK;
- zero_addr = ((addr64_t)upl_phys_page(pl, page_index) << 12) + page_offset;
+ zero_addr = ((addr64_t)upl_phys_page(pl, page_index) << PAGE_SHIFT) + page_offset;
zero_cnt = min(PAGE_SIZE - page_offset, size);
bzero_phys(zero_addr, zero_cnt);
buf_t cbp;
if (async) {
- /*
- * async callback completion will not normally
- * generate a wakeup upon I/O completion...
- * by setting BL_WANTED, we will force a wakeup
- * to occur as any outstanding I/Os complete...
- * I/Os already completed will have BL_CALLDONE already
- * set and we won't block in buf_biowait_callback..
- * note that we're actually waiting for the bp to have
- * completed the callback function... only then
- * can we safely take back ownership of the bp
- * need the main buf mutex in order to safely
- * update b_lflags
+ /*
+ * Async callback completion will not normally generate a
+ * wakeup upon I/O completion. To get woken up, we set
+ * b_trans_next (which is safe for us to modify) on the last
+ * buffer to CLUSTER_IO_WAITING so that cluster_iodone knows
+ * to wake us up when all buffers as part of this transaction
+ * are completed. This is done under the umbrella of
+ * cl_transaction_mtxp which is also taken in cluster_iodone.
*/
- buf_list_lock();
+ bool done = true;
+ buf_t last = NULL;
- for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next)
- cbp->b_lflags |= BL_WANTED;
+ lck_mtx_lock_spin(cl_transaction_mtxp);
- buf_list_unlock();
- }
- for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) {
- if (async)
- buf_biowait_callback(cbp);
- else
- buf_biowait(cbp);
+ for (cbp = cbp_head; cbp; last = cbp, cbp = cbp->b_trans_next) {
+ if (!ISSET(cbp->b_flags, B_TDONE))
+ done = false;
+ }
+
+ if (!done) {
+ last->b_trans_next = CLUSTER_IO_WAITING;
+
+ DTRACE_IO1(wait__start, buf_t, last);
+ do {
+ msleep(last, cl_transaction_mtxp, PSPIN | (PRIBIO+1), "cluster_wait_IO", NULL);
+
+ /*
+ * We should only have been woken up if all the
+ * buffers are completed, but just in case...
+ */
+ done = true;
+ for (cbp = cbp_head; cbp != CLUSTER_IO_WAITING; cbp = cbp->b_trans_next) {
+ if (!ISSET(cbp->b_flags, B_TDONE)) {
+ done = false;
+ break;
+ }
+ }
+ } while (!done);
+ DTRACE_IO1(wait__done, buf_t, last);
+
+ last->b_trans_next = NULL;
+ }
+
+ lck_mtx_unlock(cl_transaction_mtxp);
+ } else { // !async
+ for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next)
+ buf_biowait(cbp);
}
}
{
buf_t cbp;
int error;
+ boolean_t isswapout = FALSE;
/*
* cluster_complete_transaction will
for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next)
buf_biowait(cbp);
}
- error = cluster_iodone(*cbp_head, callback_arg);
+ /*
+ * we've already waited on all of the I/Os in this transaction,
+ * so mark all of the buf_t's in this transaction as B_TDONE
+ * so that cluster_iodone sees the transaction as completed
+ */
+ for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next)
+ cbp->b_flags |= B_TDONE;
+ cbp = *cbp_head;
+
+ if ((flags & (CL_ASYNC | CL_PAGEOUT)) == CL_PAGEOUT && vnode_isswap(cbp->b_vp))
+ isswapout = TRUE;
+
+ error = cluster_iodone(cbp, callback_arg);
if ( !(flags & CL_ASYNC) && error && *retval == 0) {
- if (((flags & (CL_PAGEOUT | CL_KEEPCACHED)) != CL_PAGEOUT) || (error != ENXIO))
- *retval = error;
+ if (((flags & (CL_PAGEOUT | CL_KEEPCACHED)) != CL_PAGEOUT) || (error != ENXIO))
+ *retval = error;
+ else if (isswapout == TRUE)
+ *retval = error;
}
*cbp_head = (buf_t)NULL;
}
max_iosize = PAGE_SIZE;
if (flags & CL_THROTTLE) {
- if ( !(flags & CL_PAGEOUT) && cluster_hard_throttle_on(vp, 1)) {
- if (max_iosize > HARD_THROTTLE_MAXSIZE)
- max_iosize = HARD_THROTTLE_MAXSIZE;
- async_throttle = HARD_THROTTLE_MAXCNT;
+ if ( !(flags & CL_PAGEOUT) && cluster_is_throttled(vp)) {
+ if (max_iosize > THROTTLE_MAX_IOSIZE)
+ max_iosize = THROTTLE_MAX_IOSIZE;
+ async_throttle = THROTTLE_MAXCNT;
} else {
if ( (flags & CL_DEV_MEMORY) )
async_throttle = IO_SCALE(vp, VNODE_ASYNC_THROTTLE);
else {
u_int max_cluster;
u_int max_cluster_size;
- u_int max_prefetch;
-
- max_cluster_size = MAX_CLUSTER_SIZE(vp);
- max_prefetch = MAX_PREFETCH(vp, cluster_max_io_size(vp->v_mount, CL_READ));
+ u_int scale;
+
+ if (vp->v_mount->mnt_minsaturationbytecount) {
+ max_cluster_size = vp->v_mount->mnt_minsaturationbytecount;
+
+ scale = 1;
+ } else {
+ max_cluster_size = MAX_CLUSTER_SIZE(vp);
+ if ((vp->v_mount->mnt_kern_flag & MNTK_SSD) && !ignore_is_ssd)
+ scale = WRITE_THROTTLE_SSD;
+ else
+ scale = WRITE_THROTTLE;
+ }
if (max_iosize > max_cluster_size)
max_cluster = max_cluster_size;
else
if (size < max_cluster)
max_cluster = size;
-
- async_throttle = min(IO_SCALE(vp, VNODE_ASYNC_THROTTLE), (max_prefetch / max_cluster) - 1);
+
+ if (flags & CL_CLOSE)
+ scale += MAX_CLUSTERS;
+
+ async_throttle = min(IO_SCALE(vp, VNODE_ASYNC_THROTTLE), ((scale * max_cluster_size) / max_cluster) - 1);
}
}
}
io_flags |= B_IOSTREAMING;
if (flags & CL_COMMIT)
io_flags |= B_COMMIT_UPL;
- if (flags & CL_PRESERVE)
+ if (flags & CL_DIRECT_IO)
io_flags |= B_PHYS;
- if (flags & CL_KEEPCACHED)
- io_flags |= B_CACHE;
+ if (flags & (CL_PRESERVE | CL_KEEPCACHED))
+ io_flags |= B_CACHE;
if (flags & CL_PASSIVE)
io_flags |= B_PASSIVE;
+ if (flags & CL_ENCRYPTED)
+ io_flags |= B_ENCRYPTED_IO;
+
if (vp->v_flag & VSYSTEM)
io_flags |= B_META;
* read in from the file
*/
zero_offset = upl_offset + non_rounded_size;
+ } else if (!ISSET(flags, CL_READ) && ISSET(flags, CL_DIRECT_IO)) {
+ assert(ISSET(flags, CL_COMMIT));
+
+ // For a direct/uncached write, we need to lock pages...
+
+ upl_t cached_upl;
+
+ /*
+ * Create a UPL to lock the pages in the cache whilst the
+ * write is in progress.
+ */
+ ubc_create_upl(vp, f_offset, non_rounded_size, &cached_upl,
+ NULL, UPL_SET_LITE);
+
+ /*
+ * Attach this UPL to the other UPL so that we can find it
+ * later.
+ */
+ upl_set_associated_upl(upl, cached_upl);
+
+ if (upl_offset & PAGE_MASK) {
+ /*
+ * The two UPLs are not aligned, so mark the first page in
+ * @upl so that cluster_handle_associated_upl can handle
+ * it accordingly.
+ */
+ upl_page_info_t *pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
+ upl_page_set_mark(pl, 0, true);
+ }
}
+
while (size) {
daddr64_t blkno;
daddr64_t lblkno;
off_t e_offset;
int pageout_flags;
- if(upl_get_internal_vectorupl(upl))
+ if (upl_get_internal_vectorupl(upl))
panic("Vector UPLs should not take this code-path\n");
/*
* we're writing into a 'hole'
*
* go direct to vnode_pageout so that we don't have to
* unbusy the page from the UPL... we used to do this
- * so that we could call ubc_sync_range, but that results
+ * so that we could call ubc_msync, but that results
* in a potential deadlock if someone else races us to acquire
* that page and wins and in addition needs one of the pages
* we're continuing to hold in the UPL
pageout_flags |= UPL_NOCOMMIT;
if (cbp_head) {
- buf_t last_cbp;
+ buf_t prev_cbp;
+ int bytes_in_last_page;
/*
* first we have to wait for the the current outstanding I/Os
* to complete... EOT hasn't been set yet on this transaction
- * so the pages won't be released just because all of the current
- * I/O linked to this transaction has completed...
+ * so the pages won't be released
*/
cluster_wait_IO(cbp_head, (flags & CL_ASYNC));
- /*
- * we've got a transcation that
- * includes the page we're about to push out through vnode_pageout...
- * find the last bp in the list which will be the one that
- * includes the head of this page and round it's iosize down
- * to a page boundary...
- */
- for (last_cbp = cbp = cbp_head; cbp->b_trans_next; cbp = cbp->b_trans_next)
- last_cbp = cbp;
-
- cbp->b_bcount &= ~PAGE_MASK;
-
- if (cbp->b_bcount == 0) {
- /*
- * this buf no longer has any I/O associated with it
+ bytes_in_last_page = cbp_head->b_uploffset & PAGE_MASK;
+ for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next)
+ bytes_in_last_page += cbp->b_bcount;
+ bytes_in_last_page &= PAGE_MASK;
+
+ while (bytes_in_last_page) {
+ /*
+ * we've got a transcation that
+ * includes the page we're about to push out through vnode_pageout...
+ * find the bp's in the list which intersect this page and either
+ * remove them entirely from the transaction (there could be multiple bp's), or
+ * round it's iosize down to the page boundary (there can only be one)...
+ *
+ * find the last bp in the list and act on it
*/
- free_io_buf(cbp);
+ for (prev_cbp = cbp = cbp_head; cbp->b_trans_next; cbp = cbp->b_trans_next)
+ prev_cbp = cbp;
- if (cbp == cbp_head) {
- /*
- * the buf we just freed was the only buf in
- * this transaction... so there's no I/O to do
+ if (bytes_in_last_page >= cbp->b_bcount) {
+ /*
+ * this buf no longer has any I/O associated with it
*/
- cbp_head = NULL;
+ bytes_in_last_page -= cbp->b_bcount;
+ cbp->b_bcount = 0;
+
+ free_io_buf(cbp);
+
+ if (cbp == cbp_head) {
+ assert(bytes_in_last_page == 0);
+ /*
+ * the buf we just freed was the only buf in
+ * this transaction... so there's no I/O to do
+ */
+ cbp_head = NULL;
+ cbp_tail = NULL;
+ } else {
+ /*
+ * remove the buf we just freed from
+ * the transaction list
+ */
+ prev_cbp->b_trans_next = NULL;
+ cbp_tail = prev_cbp;
+ }
} else {
- /*
- * remove the buf we just freed from
- * the transaction list
+ /*
+ * this is the last bp that has I/O
+ * intersecting the page of interest
+ * only some of the I/O is in the intersection
+ * so clip the size but keep it in the transaction list
*/
- last_cbp->b_trans_next = NULL;
- cbp_tail = last_cbp;
+ cbp->b_bcount -= bytes_in_last_page;
+ cbp_tail = cbp;
+ bytes_in_last_page = 0;
}
}
if (cbp_head) {
}
if (vnode_pageout(vp, upl, trunc_page(upl_offset), trunc_page_64(f_offset), PAGE_SIZE, pageout_flags, NULL) != PAGER_SUCCESS) {
error = EINVAL;
- break;
}
e_offset = round_page_64(f_offset + 1);
io_size = e_offset - f_offset;
*/
size = 0;
}
+ if (error) {
+ if (size == 0)
+ flags &= ~CL_COMMIT;
+ break;
+ }
continue;
}
- lblkno = (daddr64_t)(f_offset / PAGE_SIZE_64);
+ lblkno = (daddr64_t)(f_offset / 0x1000);
/*
* we have now figured out how much I/O we can do - this is in 'io_size'
* pg_offset is the starting point in the first page for the I/O
commit_offset = upl_offset & ~PAGE_MASK;
}
+
+ // Associated UPL is currently only used in the direct write path
+ assert(!upl_associated_upl(upl));
+
if ( (flags & CL_COMMIT) && pg_count) {
ubc_upl_commit_range(upl, commit_offset, pg_count * PAGE_SIZE,
UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY);
if (flags & CL_PAGEOUT) {
u_int i;
- for (i = 0; i < pg_count; i++) {
- if (buf_invalblkno(vp, lblkno + i, 0) == EBUSY)
- panic("BUSY bp found in cluster_io");
+ /*
+ * since blocks are in offsets of 0x1000, scale
+ * iteration to (PAGE_SIZE * pg_count) of blks.
+ */
+ for (i = 0; i < (PAGE_SIZE * pg_count)/0x1000; i++) {
+ if (buf_invalblkno(vp, lblkno + i, 0) == EBUSY)
+ panic("BUSY bp found in cluster_io");
}
}
if (flags & CL_ASYNC) {
}
cbp->b_cliodone = (void *)callback;
cbp->b_flags |= io_flags;
+ if (flags & CL_NOCACHE)
+ cbp->b_attr.ba_flags |= BA_NOCACHE;
cbp->b_lblkno = lblkno;
cbp->b_blkno = blkno;
if (buf_setupl(cbp, upl, upl_offset))
panic("buf_setupl failed\n");
-
+#if CONFIG_IOSCHED
+ upl_set_blkno(upl, upl_offset, io_size, blkno);
+#endif
cbp->b_trans_next = (buf_t)NULL;
if ((cbp->b_iostate = (void *)iostate))
cbp_head = cbp;
cbp_tail = cbp;
- if ( (cbp_head->b_real_bp = real_bp) ) {
- cbp_head->b_flags |= B_NEED_IODONE;
+ if ( (cbp_head->b_real_bp = real_bp) )
real_bp = (buf_t)NULL;
- }
}
*(buf_t *)(&cbp->b_trans_head) = cbp_head;
if ( !(io_flags & B_READ))
vnode_startwrite(vp);
+ if (flags & CL_RAW_ENCRYPTED) {
+ /*
+ * User requested raw encrypted bytes.
+ * Twiddle the bit in the ba_flags for the buffer
+ */
+ cbp->b_attr.ba_flags |= BA_RAW_ENCRYPTED_IO;
+ }
+
(void) VNOP_STRATEGY(cbp);
if (need_EOT == TRUE) {
}
}
if (error) {
- int abort_size;
+ int abort_size;
io_size = 0;
-
+
if (cbp_head) {
- /*
- * first wait until all of the outstanding I/O
- * for this partial transaction has completed
- */
- cluster_wait_IO(cbp_head, (flags & CL_ASYNC));
+ /*
+ * Wait until all of the outstanding I/O
+ * for this partial transaction has completed
+ */
+ cluster_wait_IO(cbp_head, (flags & CL_ASYNC));
/*
* Rewind the upl offset to the beginning of the
* transaction.
*/
upl_offset = cbp_head->b_uploffset;
+ }
- for (cbp = cbp_head; cbp;) {
- buf_t cbp_next;
-
- size += cbp->b_bcount;
- io_size += cbp->b_bcount;
+ if (ISSET(flags, CL_COMMIT)) {
+ cluster_handle_associated_upl(iostate, upl, upl_offset,
+ upl_end_offset - upl_offset);
+ }
- cbp_next = cbp->b_trans_next;
- free_io_buf(cbp);
- cbp = cbp_next;
- }
+ // Free all the IO buffers in this transaction
+ for (cbp = cbp_head; cbp;) {
+ buf_t cbp_next;
+
+ size += cbp->b_bcount;
+ io_size += cbp->b_bcount;
+
+ cbp_next = cbp->b_trans_next;
+ free_io_buf(cbp);
+ cbp = cbp_next;
}
+
if (iostate) {
int need_wakeup = 0;
* since we never really issued the io
* just go ahead and adjust it back
*/
- lck_mtx_lock_spin(cl_mtxp);
+ lck_mtx_lock_spin(&iostate->io_mtxp);
if (iostate->io_error == 0)
iostate->io_error = error;
iostate->io_wanted = 0;
need_wakeup = 1;
}
- lck_mtx_unlock(cl_mtxp);
+ lck_mtx_unlock(&iostate->io_mtxp);
if (need_wakeup)
wakeup((caddr_t)&iostate->io_wanted);
}
+
if (flags & CL_COMMIT) {
int upl_flags;
- pg_offset = upl_offset & PAGE_MASK;
+ pg_offset = upl_offset & PAGE_MASK;
abort_size = (upl_end_offset - upl_offset + PAGE_MASK) & ~PAGE_MASK;
-
- upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, abort_size, error, io_flags);
+
+ upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, abort_size, error, io_flags, vp);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 28)) | DBG_FUNC_NONE,
upl, upl_offset - pg_offset, abort_size, (error << 24) | upl_flags, 0);
return;
}
- max_prefetch = MAX_PREFETCH(vp, cluster_max_io_size(vp->v_mount, CL_READ));
+ max_prefetch = MAX_PREFETCH(vp, cluster_max_io_size(vp->v_mount, CL_READ), (vp->v_mount->mnt_kern_flag & MNTK_SSD));
- if (extent->e_addr < rap->cl_maxra) {
- if ((rap->cl_maxra - extent->e_addr) > ((max_prefetch / PAGE_SIZE) / 4)) {
+ if (max_prefetch > speculative_prefetch_max)
+ max_prefetch = speculative_prefetch_max;
+
+ if (max_prefetch <= PAGE_SIZE) {
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
+ rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 6, 0);
+ return;
+ }
+ if (extent->e_addr < rap->cl_maxra && rap->cl_ralen >= 4) {
+ if ((rap->cl_maxra - extent->e_addr) > (rap->cl_ralen / 4)) {
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 2, 0);
off_t max_size;
int local_flags;
- if (vp->v_mount->mnt_kern_flag & MNTK_VIRTUALDEV)
- /*
- * if we know we're issuing this I/O to a virtual device (i.e. disk image)
- * then we don't want to enforce this throttle... if we do, we can
- * potentially deadlock since we're stalling the pageout thread at a time
- * when the disk image might need additional memory (which won't be available
- * if the pageout thread can't run)... instead we'll just depend on the throttle
- * that the pageout thread now has in place to deal with external files
- */
- local_flags = CL_PAGEOUT;
- else
- local_flags = CL_PAGEOUT | CL_THROTTLE;
+ local_flags = CL_PAGEOUT | CL_THROTTLE;
if ((flags & UPL_IOSYNC) == 0)
local_flags |= CL_ASYNC;
local_flags |= CL_COMMIT;
if ((flags & UPL_KEEPCACHED))
local_flags |= CL_KEEPCACHED;
+ if (flags & UPL_PAGING_ENCRYPTED)
+ local_flags |= CL_ENCRYPTED;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 52)) | DBG_FUNC_NONE,
local_flags |= CL_COMMIT;
if (flags & UPL_IOSTREAMING)
local_flags |= CL_IOSTREAMING;
+ if (flags & UPL_PAGING_ENCRYPTED)
+ local_flags |= CL_ENCRYPTED;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 56)) | DBG_FUNC_NONE,
else
bflag = 0;
- if (vp->v_flag & VNOCACHE_DATA)
+ if (vp->v_flag & VNOCACHE_DATA){
flags |= IO_NOCACHE;
-
+ bflag |= CL_NOCACHE;
+ }
if (uio == NULL) {
/*
* no user data...
}
/*
* do a write through the cache if one of the following is true....
- * NOCACHE is not true and
+ * NOCACHE is not true or NODIRECT is true
* the uio request doesn't target USERSPACE
* otherwise, find out if we want the direct or contig variant for
* the first vector in the uio request
*/
- if ( (flags & IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg) )
+ if ( ((flags & (IO_NOCACHE | IO_NODIRECT)) == IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg) )
retval = cluster_io_type(uio, &write_type, &write_length, MIN_DIRECT_WRITE_SIZE);
if ( (flags & (IO_TAILZEROFILL | IO_HEADZEROFILL)) && write_type == IO_DIRECT)
upl_size_t upl_size, vector_upl_size = 0;
vm_size_t upl_needed_size;
mach_msg_type_number_t pages_in_pl;
- int upl_flags;
+ upl_control_flags_t upl_flags;
kern_return_t kret;
mach_msg_type_number_t i;
int force_data_sync;
user_addr_t iov_base;
u_int32_t mem_alignment_mask;
u_int32_t devblocksize;
+ u_int32_t max_io_size;
u_int32_t max_upl_size;
+ u_int32_t max_vector_size;
+ u_int32_t bytes_outstanding_limit;
+ boolean_t io_throttled = FALSE;
u_int32_t vector_upl_iosize = 0;
int issueVectorUPL = 0,useVectorUPL = (uio->uio_iovcnt > 1);
if (flags & IO_PASSIVE)
io_flag |= CL_PASSIVE;
+
+ if (flags & IO_NOCACHE)
+ io_flag |= CL_NOCACHE;
+
+ if (flags & IO_SKIP_ENCRYPTION)
+ io_flag |= CL_ENCRYPTED;
iostate.io_completed = 0;
iostate.io_issued = 0;
iostate.io_error = 0;
iostate.io_wanted = 0;
+ lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
+
mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
goto wait_for_dwrites;
}
+ task_update_logical_writes(current_task(), (io_req_size & ~PAGE_MASK), TASK_WRITE_IMMEDIATE, vp);
while (io_req_size >= PAGE_SIZE && uio->uio_offset < newEOF && retval == 0) {
+ int throttle_type;
+
+ if ( (throttle_type = cluster_is_throttled(vp)) ) {
+ /*
+ * we're in the throttle window, at the very least
+ * we want to limit the size of the I/O we're about
+ * to issue
+ */
+ if ( (flags & IO_RETURN_ON_THROTTLE) && throttle_type == THROTTLE_NOW) {
+ /*
+ * we're in the throttle window and at least 1 I/O
+ * has already been issued by a throttleable thread
+ * in this window, so return with EAGAIN to indicate
+ * to the FS issuing the cluster_write call that it
+ * should now throttle after dropping any locks
+ */
+ throttle_info_update_by_mount(vp->v_mount);
+
+ io_throttled = TRUE;
+ goto wait_for_dwrites;
+ }
+ max_vector_size = THROTTLE_MAX_IOSIZE;
+ max_io_size = THROTTLE_MAX_IOSIZE;
+ } else {
+ max_vector_size = MAX_VECTOR_UPL_SIZE;
+ max_io_size = max_upl_size;
+ }
if (first_IO) {
- cluster_syncup(vp, newEOF, callback, callback_arg);
+ cluster_syncup(vp, newEOF, callback, callback_arg, callback ? PUSH_SYNC : 0);
first_IO = 0;
}
io_size = io_req_size & ~PAGE_MASK;
iov_base = uio_curriovbase(uio);
- if (io_size > max_upl_size)
- io_size = max_upl_size;
+ if (io_size > max_io_size)
+ io_size = max_io_size;
if(useVectorUPL && (iov_base & PAGE_MASK)) {
/*
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_START,
(int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0);
+ vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map;
for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) {
pages_in_pl = 0;
upl_size = upl_needed_size;
upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC |
- UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE;
+ UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE
+ | UPL_MEMORY_TAG_MAKE(VM_KERN_MEMORY_FILE);
- kret = vm_map_get_upl(current_map(),
+ kret = vm_map_get_upl(map,
(vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
&upl_size,
&upl,
*/
}
- /*
- * Now look for pages already in the cache
- * and throw them away.
- * uio->uio_offset is page aligned within the file
- * io_size is a multiple of PAGE_SIZE
- */
- ubc_range_op(vp, uio->uio_offset, uio->uio_offset + io_size, UPL_ROP_DUMP, NULL);
-
/*
* we want push out these writes asynchronously so that we can overlap
* the preparation of the next I/O
* if there are already too many outstanding writes
* wait until some complete before issuing the next
*/
- if (iostate.io_issued > iostate.io_completed) {
-
- lck_mtx_lock(cl_mtxp);
-
- while ((iostate.io_issued - iostate.io_completed) > (max_upl_size * IO_SCALE(vp, 2))) {
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START,
- iostate.io_issued, iostate.io_completed, max_upl_size * IO_SCALE(vp, 2), 0, 0);
+ if (vp->v_mount->mnt_minsaturationbytecount)
+ bytes_outstanding_limit = vp->v_mount->mnt_minsaturationbytecount;
+ else
+ bytes_outstanding_limit = max_upl_size * IO_SCALE(vp, 2);
- iostate.io_wanted = 1;
- msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_write_direct", NULL);
+ cluster_iostate_wait(&iostate, bytes_outstanding_limit, "cluster_write_direct");
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END,
- iostate.io_issued, iostate.io_completed, max_upl_size * IO_SCALE(vp, 2), 0, 0);
- }
- lck_mtx_unlock(cl_mtxp);
- }
if (iostate.io_error) {
/*
* one of the earlier writes we issued ran into a hard error
vector_upl_iosize += io_size;
vector_upl_size += upl_size;
- if(issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= MAX_VECTOR_UPL_SIZE) {
+ if(issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= max_vector_size) {
retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
reset_vector_run_state();
}
wait_for_dwrites:
- if(retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) {
+ if (retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) {
retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
reset_vector_run_state();
}
+ /*
+ * make sure all async writes issued as part of this stream
+ * have completed before we return
+ */
+ cluster_iostate_wait(&iostate, 0, "cluster_write_direct");
- if (iostate.io_issued > iostate.io_completed) {
- /*
- * make sure all async writes issued as part of this stream
- * have completed before we return
- */
- lck_mtx_lock(cl_mtxp);
-
- while (iostate.io_issued != iostate.io_completed) {
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START,
- iostate.io_issued, iostate.io_completed, 0, 0, 0);
-
- iostate.io_wanted = 1;
- msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_write_direct", NULL);
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END,
- iostate.io_issued, iostate.io_completed, 0, 0, 0);
- }
- lck_mtx_unlock(cl_mtxp);
- }
if (iostate.io_error)
retval = iostate.io_error;
+ lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
+
+ if (io_throttled == TRUE && retval == 0)
+ retval = EAGAIN;
+
if (io_req_size && retval == 0) {
/*
* we couldn't handle the tail of this request in DIRECT mode
upl_size_t upl_size;
vm_size_t upl_needed_size;
mach_msg_type_number_t pages_in_pl;
- int upl_flags;
+ upl_control_flags_t upl_flags;
kern_return_t kret;
struct clios iostate;
int error = 0;
* -- the io_req_size will not exceed iov_len
* -- the target address is physically contiguous
*/
- cluster_syncup(vp, newEOF, callback, callback_arg);
+ cluster_syncup(vp, newEOF, callback, callback_arg, callback ? PUSH_SYNC : 0);
devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
iostate.io_error = 0;
iostate.io_wanted = 0;
+ lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
+
next_cwrite:
io_size = *write_length;
pages_in_pl = 0;
upl_size = upl_needed_size;
upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC |
- UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE;
+ UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE
+ | UPL_MEMORY_TAG_MAKE(VM_KERN_MEMORY_FILE);
- kret = vm_map_get_upl(current_map(),
+ vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map;
+ kret = vm_map_get_upl(map,
(vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
&upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, 0);
}
pl = ubc_upl_pageinfo(upl[cur_upl]);
- src_paddr = ((addr64_t)upl_phys_page(pl, 0) << 12) + (addr64_t)upl_offset;
+ src_paddr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + (addr64_t)upl_offset;
while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) {
u_int32_t head_size;
* if there are already too many outstanding writes
* wait until some have completed before issuing the next
*/
- if (iostate.io_issued > iostate.io_completed) {
- lck_mtx_lock(cl_mtxp);
-
- while ((iostate.io_issued - iostate.io_completed) > (MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2))) {
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START,
- iostate.io_issued, iostate.io_completed, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), 0, 0);
-
- iostate.io_wanted = 1;
- msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_write_contig", NULL);
+ cluster_iostate_wait(&iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), "cluster_write_contig");
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END,
- iostate.io_issued, iostate.io_completed, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), 0, 0);
- }
- lck_mtx_unlock(cl_mtxp);
- }
if (iostate.io_error) {
/*
* one of the earlier writes we issued ran into a hard error
* make sure all async writes that are part of this stream
* have completed before we proceed
*/
- if (iostate.io_issued > iostate.io_completed) {
-
- lck_mtx_lock(cl_mtxp);
-
- while (iostate.io_issued != iostate.io_completed) {
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START,
- iostate.io_issued, iostate.io_completed, 0, 0, 0);
+ cluster_iostate_wait(&iostate, 0, "cluster_write_contig");
- iostate.io_wanted = 1;
- msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_write_contig", NULL);
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END,
- iostate.io_issued, iostate.io_completed, 0, 0, 0);
- }
- lck_mtx_unlock(cl_mtxp);
- }
if (iostate.io_error)
error = iostate.io_error;
+ lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
+
if (error == 0 && tail_size)
error = cluster_align_phys_io(vp, uio, src_paddr, tail_size, 0, callback, callback_arg);
off_t zero_off;
long long zero_cnt1;
off_t zero_off1;
+ off_t write_off = 0;
+ int write_cnt = 0;
+ boolean_t first_pass = FALSE;
struct cl_extent cl;
struct cl_writebehind *wbp;
int bflag;
bflag = CL_PASSIVE;
else
bflag = 0;
+ if (flags & IO_NOCACHE)
+ bflag |= CL_NOCACHE;
+
+ if (flags & IO_SKIP_ENCRYPTION)
+ bflag |= CL_ENCRYPTED;
zero_cnt = 0;
zero_cnt1 = 0;
retval, 0, 0, 0, 0);
return (0);
}
-
+ if (uio) {
+ write_off = uio->uio_offset;
+ write_cnt = uio_resid(uio);
+ /*
+ * delay updating the sequential write info
+ * in the control block until we've obtained
+ * the lock for it
+ */
+ first_pass = TRUE;
+ }
while ((total_size = (io_resid + zero_cnt + zero_cnt1)) && retval == 0) {
/*
* for this iteration of the loop, figure out where our starting point is
* because IO_HEADZEROFILL and IO_TAILZEROFILL not set
*/
if ((start_offset + total_size) > max_io_size)
- total_size -= start_offset;
+ total_size = max_io_size - start_offset;
xfer_resid = total_size;
retval = cluster_copy_ubc_data_internal(vp, uio, &xfer_resid, 1, 1);
*/
wbp->cl_number = 0;
- sparse_cluster_push(&(wbp->cl_scmap), vp, newEOF, PUSH_ALL, callback, callback_arg);
+ sparse_cluster_push(&(wbp->cl_scmap), vp, newEOF, PUSH_ALL, 0, callback, callback_arg);
/*
* no clusters of either type present at this point
* so just go directly to start_new_cluster since
* to avoid the deadlock with sparse_cluster_push
*/
goto start_new_cluster;
- }
+ }
+ if (first_pass) {
+ if (write_off == wbp->cl_last_write)
+ wbp->cl_seq_written += write_cnt;
+ else
+ wbp->cl_seq_written = write_cnt;
+
+ wbp->cl_last_write = write_off + write_cnt;
+
+ first_pass = FALSE;
+ }
if (wbp->cl_number == 0)
/*
* no clusters currently present
*/
goto delay_io;
- if (wbp->cl_number < MAX_CLUSTERS)
+ if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE) &&
+ wbp->cl_number == MAX_CLUSTERS &&
+ wbp->cl_seq_written >= (MAX_CLUSTERS * (max_cluster_pgcount * PAGE_SIZE))) {
+ uint32_t n;
+
+ if (vp->v_mount->mnt_minsaturationbytecount) {
+ n = vp->v_mount->mnt_minsaturationbytecount / MAX_CLUSTER_SIZE(vp);
+
+ if (n > MAX_CLUSTERS)
+ n = MAX_CLUSTERS;
+ } else
+ n = 0;
+
+ if (n == 0) {
+ if (vp->v_mount->mnt_kern_flag & MNTK_SSD)
+ n = WRITE_BEHIND_SSD;
+ else
+ n = WRITE_BEHIND;
+ }
+ while (n--)
+ cluster_try_push(wbp, vp, newEOF, 0, 0, callback, callback_arg, NULL);
+ }
+ if (wbp->cl_number < MAX_CLUSTERS) {
/*
* we didn't find an existing cluster to
* merge into, but there's room to start
* a new one
*/
goto start_new_cluster;
-
+ }
/*
* no exisitng cluster to merge with and no
* room to start a new one... we'll try
*/
if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE)) {
- ret_cluster_try_push = cluster_try_push(wbp, vp, newEOF, (flags & IO_NOCACHE) ? 0 : PUSH_DELAY, callback, callback_arg);
+ ret_cluster_try_push = cluster_try_push(wbp, vp, newEOF, (flags & IO_NOCACHE) ? 0 : PUSH_DELAY, 0, callback, callback_arg, NULL);
}
/*
continue;
}
- /*
- * we pushed one cluster successfully, so we must be sequentially writing this file
- * otherwise, we would have failed and fallen into the sparse cluster support
- * so let's take the opportunity to push out additional clusters...
- * this will give us better I/O locality if we're in a copy loop
- * (i.e. we won't jump back and forth between the read and write points
- */
- if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE)) {
- while (wbp->cl_number)
- cluster_try_push(wbp, vp, newEOF, 0, callback, callback_arg);
- }
-
start_new_cluster:
wbp->cl_clusters[wbp->cl_number].b_addr = cl.b_addr;
wbp->cl_clusters[wbp->cl_number].e_addr = cl.e_addr;
if ((vp->v_flag & VRAOFF) || speculative_reads_disabled)
flags |= IO_RAOFF;
- /*
+ if (flags & IO_SKIP_ENCRYPTION)
+ flags |= IO_ENCRYPTED;
+
+ /*
* do a read through the cache if one of the following is true....
* NOCACHE is not true
* the uio request doesn't target USERSPACE
+ * Alternatively, if IO_ENCRYPTED is set, then we want to bypass the cache as well.
+ * Reading encrypted data from a CP filesystem should never result in the data touching
+ * the UBC.
+ *
* otherwise, find out if we want the direct or contig variant for
* the first vector in the uio request
*/
- if ( (flags & IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg) )
- retval = cluster_io_type(uio, &read_type, &read_length, 0);
+ if ( ((flags & IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg)) || (flags & IO_ENCRYPTED) ) {
+
+ retval = cluster_io_type(uio, &read_type, &read_length, 0);
+ }
while ((cur_resid = uio_resid(uio)) && uio->uio_offset < filesize && retval == 0) {
struct cl_extent extent;
int bflag;
int take_reference = 1;
- struct uthread *ut;
int policy = IOPOL_DEFAULT;
-
+ boolean_t iolock_inited = FALSE;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_START,
(int)uio->uio_offset, io_req_size, (int)filesize, flags, 0);
+
+ if (flags & IO_ENCRYPTED) {
+ panic ("encrypted blocks will hit UBC!");
+ }
- policy = current_proc()->p_iopol_disk;
+ policy = throttle_get_io_policy(NULL);
- ut = get_bsdthread_info(current_thread());
-
- if (ut->uu_iopol_disk != IOPOL_DEFAULT)
- policy = ut->uu_iopol_disk;
-
- if (policy == IOPOL_THROTTLE || (flags & IO_NOCACHE))
+ if (policy == THROTTLE_LEVEL_TIER3 || policy == THROTTLE_LEVEL_TIER2 || (flags & IO_NOCACHE))
take_reference = 0;
if (flags & IO_PASSIVE)
else
bflag = 0;
+ if (flags & IO_NOCACHE)
+ bflag |= CL_NOCACHE;
+
+ if (flags & IO_SKIP_ENCRYPTION)
+ bflag |= CL_ENCRYPTED;
+
max_io_size = cluster_max_io_size(vp->v_mount, CL_READ);
- max_prefetch = MAX_PREFETCH(vp, max_io_size);
+ max_prefetch = MAX_PREFETCH(vp, max_io_size, (vp->v_mount->mnt_kern_flag & MNTK_SSD));
max_rd_size = max_prefetch;
last_request_offset = uio->uio_offset + io_req_size;
rd_ahead_enabled = 0;
rap = NULL;
} else {
- if (cluster_hard_throttle_on(vp, 1)) {
+ if (cluster_is_throttled(vp)) {
+ /*
+ * we're in the throttle window, at the very least
+ * we want to limit the size of the I/O we're about
+ * to issue
+ */
rd_ahead_enabled = 0;
prefetch_enabled = 0;
- max_rd_size = HARD_THROTTLE_MAXSIZE;
- } else if (policy == IOPOL_THROTTLE) {
- rd_ahead_enabled = 0;
- prefetch_enabled = 0;
+ max_rd_size = THROTTLE_MAX_IOSIZE;
}
if ((rap = cluster_get_rap(vp)) == NULL)
rd_ahead_enabled = 0;
io_requested = io_resid;
- retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_resid, 0, last_ioread_offset == 0 ? take_reference : 0);
+ retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_resid, 0, take_reference);
xsize = io_requested - io_resid;
*/
max_size = filesize - uio->uio_offset;
}
+
+ iostate.io_completed = 0;
+ iostate.io_issued = 0;
+ iostate.io_error = 0;
+ iostate.io_wanted = 0;
+
+ if ( (flags & IO_RETURN_ON_THROTTLE) ) {
+ if (cluster_is_throttled(vp) == THROTTLE_NOW) {
+ if ( !cluster_io_present_in_BC(vp, uio->uio_offset)) {
+ /*
+ * we're in the throttle window and at least 1 I/O
+ * has already been issued by a throttleable thread
+ * in this window, so return with EAGAIN to indicate
+ * to the FS issuing the cluster_read call that it
+ * should now throttle after dropping any locks
+ */
+ throttle_info_update_by_mount(vp->v_mount);
+
+ retval = EAGAIN;
+ break;
+ }
+ }
+ }
+
/*
* compute the size of the upl needed to encompass
* the requested read... limit each call to cluster_io
if (upl_size > max_io_size)
upl_size = max_io_size;
} else {
- if (upl_size > max_io_size / 4)
+ if (upl_size > max_io_size / 4) {
upl_size = max_io_size / 4;
+ upl_size &= ~PAGE_MASK;
+
+ if (upl_size == 0)
+ upl_size = PAGE_SIZE;
+ }
}
pages_in_upl = upl_size / PAGE_SIZE;
if (upl_valid_page(pl, last_pg))
break;
}
- iostate.io_completed = 0;
- iostate.io_issued = 0;
- iostate.io_error = 0;
- iostate.io_wanted = 0;
if (start_pg < last_pg) {
/*
* we may have to clip the size of it to keep from reading past
* the end of the last physical block associated with the file
*/
+ if (iolock_inited == FALSE) {
+ lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
+
+ iolock_inited = TRUE;
+ }
upl_offset = start_pg * PAGE_SIZE;
io_size = (last_pg - start_pg) * PAGE_SIZE;
error = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset,
io_size, CL_READ | CL_ASYNC | bflag, (buf_t)NULL, &iostate, callback, callback_arg);
+
+ if (rap) {
+ if (extent.e_addr < rap->cl_maxra) {
+ /*
+ * we've just issued a read for a block that should have been
+ * in the cache courtesy of the read-ahead engine... something
+ * has gone wrong with the pipeline, so reset the read-ahead
+ * logic which will cause us to restart from scratch
+ */
+ rap->cl_maxra = 0;
+ }
+ }
}
if (error == 0) {
/*
rap->cl_lastr = extent.e_addr;
}
}
- if (iostate.io_issued > iostate.io_completed) {
-
- lck_mtx_lock(cl_mtxp);
+ if (iolock_inited == TRUE)
+ cluster_iostate_wait(&iostate, 0, "cluster_read_copy");
- while (iostate.io_issued != iostate.io_completed) {
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START,
- iostate.io_issued, iostate.io_completed, 0, 0, 0);
-
- iostate.io_wanted = 1;
- msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_read_copy", NULL);
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END,
- iostate.io_issued, iostate.io_completed, 0, 0, 0);
- }
- lck_mtx_unlock(cl_mtxp);
- }
if (iostate.io_error)
error = iostate.io_error;
else {
io_req_size -= (val_size - io_requested);
}
+ } else {
+ if (iolock_inited == TRUE)
+ cluster_iostate_wait(&iostate, 0, "cluster_read_copy");
}
if (start_pg < last_pg) {
/*
retval = error;
if (io_req_size) {
- if (cluster_hard_throttle_on(vp, 1)) {
+ if (cluster_is_throttled(vp)) {
+ /*
+ * we're in the throttle window, at the very least
+ * we want to limit the size of the I/O we're about
+ * to issue
+ */
rd_ahead_enabled = 0;
prefetch_enabled = 0;
-
- max_rd_size = HARD_THROTTLE_MAXSIZE;
+ max_rd_size = THROTTLE_MAX_IOSIZE;
} else {
- if (max_rd_size == HARD_THROTTLE_MAXSIZE) {
+ if (max_rd_size == THROTTLE_MAX_IOSIZE) {
/*
* coming out of throttled state
*/
- if (policy != IOPOL_THROTTLE) {
+ if (policy != THROTTLE_LEVEL_TIER3 && policy != THROTTLE_LEVEL_TIER2) {
if (rap != NULL)
rd_ahead_enabled = 1;
prefetch_enabled = 1;
}
}
}
+ if (iolock_inited == TRUE) {
+ /*
+ * cluster_io returned an error after it
+ * had already issued some I/O. we need
+ * to wait for that I/O to complete before
+ * we can destroy the iostate mutex...
+ * 'retval' already contains the early error
+ * so no need to pick it up from iostate.io_error
+ */
+ cluster_iostate_wait(&iostate, 0, "cluster_read_copy");
+
+ lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
+ }
if (rap != NULL) {
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END,
(int)uio->uio_offset, io_req_size, rap->cl_lastr, retval, 0);
return (retval);
}
+/*
+ * We don't want another read/write lock for every vnode in the system
+ * so we keep a hash of them here. There should never be very many of
+ * these around at any point in time.
+ */
+cl_direct_read_lock_t *cluster_lock_direct_read(vnode_t vp, lck_rw_type_t type)
+{
+ struct cl_direct_read_locks *head
+ = &cl_direct_read_locks[(uintptr_t)vp / sizeof(*vp)
+ % CL_DIRECT_READ_LOCK_BUCKETS];
+
+ struct cl_direct_read_lock *lck, *new_lck = NULL;
+
+ for (;;) {
+ lck_spin_lock(&cl_direct_read_spin_lock);
+
+ LIST_FOREACH(lck, head, chain) {
+ if (lck->vp == vp) {
+ ++lck->ref_count;
+ lck_spin_unlock(&cl_direct_read_spin_lock);
+ if (new_lck) {
+ // Someone beat us to it, ditch the allocation
+ lck_rw_destroy(&new_lck->rw_lock, cl_mtx_grp);
+ FREE(new_lck, M_TEMP);
+ }
+ lck_rw_lock(&lck->rw_lock, type);
+ return lck;
+ }
+ }
+
+ if (new_lck) {
+ // Use the lock we allocated
+ LIST_INSERT_HEAD(head, new_lck, chain);
+ lck_spin_unlock(&cl_direct_read_spin_lock);
+ lck_rw_lock(&new_lck->rw_lock, type);
+ return new_lck;
+ }
+
+ lck_spin_unlock(&cl_direct_read_spin_lock);
+
+ // Allocate a new lock
+ MALLOC(new_lck, cl_direct_read_lock_t *, sizeof(*new_lck),
+ M_TEMP, M_WAITOK);
+ lck_rw_init(&new_lck->rw_lock, cl_mtx_grp, cl_mtx_attr);
+ new_lck->vp = vp;
+ new_lck->ref_count = 1;
+
+ // Got to go round again
+ }
+}
+
+void cluster_unlock_direct_read(cl_direct_read_lock_t *lck)
+{
+ lck_rw_done(&lck->rw_lock);
+
+ lck_spin_lock(&cl_direct_read_spin_lock);
+ if (lck->ref_count == 1) {
+ LIST_REMOVE(lck, chain);
+ lck_spin_unlock(&cl_direct_read_spin_lock);
+ lck_rw_destroy(&lck->rw_lock, cl_mtx_grp);
+ FREE(lck, M_TEMP);
+ } else {
+ --lck->ref_count;
+ lck_spin_unlock(&cl_direct_read_spin_lock);
+ }
+}
static int
cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length,
upl_size_t upl_size, vector_upl_size = 0;
vm_size_t upl_needed_size;
unsigned int pages_in_pl;
- int upl_flags;
+ upl_control_flags_t upl_flags;
kern_return_t kret;
unsigned int i;
int force_data_sync;
int retval = 0;
int no_zero_fill = 0;
- int abort_flag = 0;
int io_flag = 0;
int misaligned = 0;
struct clios iostate;
u_int32_t max_upl_size;
u_int32_t max_rd_size;
u_int32_t max_rd_ahead;
+ u_int32_t max_vector_size;
+ boolean_t strict_uncached_IO = FALSE;
+ boolean_t io_throttled = FALSE;
u_int32_t vector_upl_iosize = 0;
int issueVectorUPL = 0,useVectorUPL = (uio->uio_iovcnt > 1);
off_t v_upl_uio_offset = 0;
int vector_upl_index=0;
upl_t vector_upl = NULL;
+ cl_direct_read_lock_t *lock = NULL;
+
+ user_addr_t orig_iov_base = 0;
+ user_addr_t last_iov_base = 0;
+ user_addr_t next_iov_base = 0;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_START,
(int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0);
max_rd_ahead = max_rd_size * IO_SCALE(vp, 2);
io_flag = CL_COMMIT | CL_READ | CL_ASYNC | CL_NOZERO | CL_DIRECT_IO;
+
if (flags & IO_PASSIVE)
io_flag |= CL_PASSIVE;
+ if (flags & IO_ENCRYPTED) {
+ io_flag |= CL_RAW_ENCRYPTED;
+ }
+
+ if (flags & IO_NOCACHE) {
+ io_flag |= CL_NOCACHE;
+ }
+
+ if (flags & IO_SKIP_ENCRYPTION)
+ io_flag |= CL_ENCRYPTED;
+
iostate.io_completed = 0;
iostate.io_issued = 0;
iostate.io_error = 0;
iostate.io_wanted = 0;
+ lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
+
devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
*/
devblocksize = PAGE_SIZE;
}
+
+ strict_uncached_IO = ubc_strict_uncached_IO(vp);
+
+ orig_iov_base = uio_curriovbase(uio);
+ last_iov_base = orig_iov_base;
+
next_dread:
io_req_size = *read_length;
iov_base = uio_curriovbase(uio);
- max_io_size = filesize - uio->uio_offset;
-
- if ((off_t)io_req_size > max_io_size)
- io_req_size = max_io_size;
-
offset_in_file = (u_int32_t)uio->uio_offset & (devblocksize - 1);
offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask;
* I/O that ends on a page boundary in cluster_io
*/
misaligned = 1;
- }
+ }
+
+ max_io_size = filesize - uio->uio_offset;
+
+ /*
+ * The user must request IO in aligned chunks. If the
+ * offset into the file is bad, or the userland pointer
+ * is non-aligned, then we cannot service the encrypted IO request.
+ */
+ if (flags & IO_ENCRYPTED) {
+ if (misaligned || (io_req_size & (devblocksize - 1)))
+ retval = EINVAL;
+
+ max_io_size = roundup(max_io_size, devblocksize);
+ }
+
+ if ((off_t)io_req_size > max_io_size)
+ io_req_size = max_io_size;
+
/*
* When we get to this point, we know...
* -- the offset into the file is on a devblocksize boundary
while (io_req_size && retval == 0) {
u_int32_t io_start;
- if (cluster_hard_throttle_on(vp, 1)) {
- max_rd_size = HARD_THROTTLE_MAXSIZE;
- max_rd_ahead = HARD_THROTTLE_MAXSIZE - 1;
+ if (cluster_is_throttled(vp)) {
+ /*
+ * we're in the throttle window, at the very least
+ * we want to limit the size of the I/O we're about
+ * to issue
+ */
+ max_rd_size = THROTTLE_MAX_IOSIZE;
+ max_rd_ahead = THROTTLE_MAX_IOSIZE - 1;
+ max_vector_size = THROTTLE_MAX_IOSIZE;
} else {
max_rd_size = max_upl_size;
max_rd_ahead = max_rd_size * IO_SCALE(vp, 2);
+ max_vector_size = MAX_VECTOR_UPL_SIZE;
}
io_start = io_size = io_req_size;
/*
* First look for pages already in the cache
- * and move them to user space.
+ * and move them to user space. But only do this
+ * check if we are not retrieving encrypted data directly
+ * from the filesystem; those blocks should never
+ * be in the UBC.
*
* cluster_copy_ubc_data returns the resid
* in io_size
*/
- retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_size, 0, 0);
-
+ if ((strict_uncached_IO == FALSE) && ((flags & IO_ENCRYPTED) == 0)) {
+ retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_size, 0, 0);
+ }
/*
* calculate the number of bytes actually copied
* starting size - residual
}
/*
- * check to see if we are finished with this request...
+ * check to see if we are finished with this request.
+ *
+ * If we satisfied this IO already, then io_req_size will be 0.
+ * Otherwise, see if the IO was mis-aligned and needs to go through
+ * the UBC to deal with the 'tail'.
+ *
*/
- if (io_req_size == 0 || misaligned) {
+ if (io_req_size == 0 || (misaligned)) {
/*
* see if there's another uio vector to
* process that's of type IO_DIRECT
* get at the overhang bytes
*/
if (io_size & (devblocksize - 1)) {
- /*
- * request does NOT end on a device block boundary
- * so clip it back to a PAGE_SIZE boundary
+ assert(!(flags & IO_ENCRYPTED));
+ /*
+ * Clip the request to the previous page size boundary
+ * since request does NOT end on a device block boundary
*/
- io_size &= ~PAGE_MASK;
+ io_size &= ~PAGE_MASK;
io_min = PAGE_SIZE;
}
if (retval || io_size < io_min) {
*/
goto wait_for_dreads;
}
- if ((xsize = io_size) > max_rd_size)
- xsize = max_rd_size;
- io_size = 0;
+ /*
+ * Don't re-check the UBC data if we are looking for uncached IO
+ * or asking for encrypted blocks.
+ */
+ if ((strict_uncached_IO == FALSE) && ((flags & IO_ENCRYPTED) == 0)) {
- ubc_range_op(vp, uio->uio_offset, uio->uio_offset + xsize, UPL_ROP_ABSENT, (int *)&io_size);
+ if ((xsize = io_size) > max_rd_size)
+ xsize = max_rd_size;
- if (io_size == 0) {
- /*
- * a page must have just come into the cache
- * since the first page in this range is no
- * longer absent, go back and re-evaluate
- */
- continue;
+ io_size = 0;
+
+ if (!lock) {
+ /*
+ * We hold a lock here between the time we check the
+ * cache and the time we issue I/O. This saves us
+ * from having to lock the pages in the cache. Not
+ * all clients will care about this lock but some
+ * clients may want to guarantee stability between
+ * here and when the I/O is issued in which case they
+ * will take the lock exclusively.
+ */
+ lock = cluster_lock_direct_read(vp, LCK_RW_TYPE_SHARED);
+ }
+
+ ubc_range_op(vp, uio->uio_offset, uio->uio_offset + xsize, UPL_ROP_ABSENT, (int *)&io_size);
+
+ if (io_size == 0) {
+ /*
+ * a page must have just come into the cache
+ * since the first page in this range is no
+ * longer absent, go back and re-evaluate
+ */
+ continue;
+ }
+ }
+ if ( (flags & IO_RETURN_ON_THROTTLE) ) {
+ if (cluster_is_throttled(vp) == THROTTLE_NOW) {
+ if ( !cluster_io_present_in_BC(vp, uio->uio_offset)) {
+ /*
+ * we're in the throttle window and at least 1 I/O
+ * has already been issued by a throttleable thread
+ * in this window, so return with EAGAIN to indicate
+ * to the FS issuing the cluster_read call that it
+ * should now throttle after dropping any locks
+ */
+ throttle_info_update_by_mount(vp->v_mount);
+
+ io_throttled = TRUE;
+ goto wait_for_dreads;
+ }
+ }
}
+ if (io_size > max_rd_size)
+ io_size = max_rd_size;
+
iov_base = uio_curriovbase(uio);
upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_START,
(int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0);
- if (upl_offset == 0 && ((io_size & PAGE_MASK) == 0)) {
+ if (upl_offset == 0 && ((io_size & PAGE_MASK) == 0))
no_zero_fill = 1;
- abort_flag = UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY;
- } else {
+ else
no_zero_fill = 0;
- abort_flag = UPL_ABORT_FREE_ON_EMPTY;
- }
+
+ vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map;
for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) {
pages_in_pl = 0;
upl_size = upl_needed_size;
- upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE;
-
+ upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE
+ | UPL_MEMORY_TAG_MAKE(VM_KERN_MEMORY_FILE);
if (no_zero_fill)
upl_flags |= UPL_NOZEROFILL;
if (force_data_sync)
upl_flags |= UPL_FORCE_DATA_SYNC;
- kret = vm_map_create_upl(current_map(),
+ kret = vm_map_create_upl(map,
(vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
&upl_size, &upl, NULL, &pages_in_pl, &upl_flags);
pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
for (i = 0; i < pages_in_pl; i++) {
- if (!upl_valid_page(pl, i))
+ if (!upl_page_present(pl, i))
break;
}
if (i == pages_in_pl)
break;
- ubc_upl_abort(upl, abort_flag);
+ ubc_upl_abort(upl, 0);
}
if (force_data_sync >= 3) {
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END,
io_size = 0;
}
if (io_size == 0) {
- ubc_upl_abort(upl, abort_flag);
+ ubc_upl_abort(upl, 0);
goto wait_for_dreads;
}
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END,
* if there are already too many outstanding reads
* wait until some have completed before issuing the next read
*/
- if (iostate.io_issued > iostate.io_completed) {
-
- lck_mtx_lock(cl_mtxp);
+ cluster_iostate_wait(&iostate, max_rd_ahead, "cluster_read_direct");
- while ((iostate.io_issued - iostate.io_completed) > max_rd_ahead) {
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START,
- iostate.io_issued, iostate.io_completed, max_rd_ahead, 0, 0);
-
- iostate.io_wanted = 1;
- msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_read_direct", NULL);
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END,
- iostate.io_issued, iostate.io_completed, max_rd_ahead, 0, 0);
- }
- lck_mtx_unlock(cl_mtxp);
- }
if (iostate.io_error) {
/*
* one of the earlier reads we issued ran into a hard error
* go wait for any other reads to complete before
* returning the error to the caller
*/
- ubc_upl_abort(upl, abort_flag);
+ ubc_upl_abort(upl, 0);
goto wait_for_dreads;
}
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_START,
upl, (int)upl_offset, (int)uio->uio_offset, io_size, 0);
-
if(!useVectorUPL) {
if (no_zero_fill)
io_flag &= ~CL_PRESERVE;
vector_upl_size += upl_size;
vector_upl_iosize += io_size;
- if(issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= MAX_VECTOR_UPL_SIZE) {
+ if(issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= max_vector_size) {
retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
reset_vector_run_state();
}
- }
+ }
+ last_iov_base = iov_base + io_size;
+
+ if (lock) {
+ // We don't need to wait for the I/O to complete
+ cluster_unlock_direct_read(lock);
+ lock = NULL;
+ }
+
/*
* update the uio structure
*/
- uio_update(uio, (user_size_t)io_size);
+ if ((flags & IO_ENCRYPTED) && (max_io_size < io_size)) {
+ uio_update(uio, (user_size_t)max_io_size);
+ }
+ else {
+ uio_update(uio, (user_size_t)io_size);
+ }
io_req_size -= io_size;
retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
reset_vector_run_state();
}
+
+ // We don't need to wait for the I/O to complete
+ if (lock)
+ cluster_unlock_direct_read(lock);
+
/*
* make sure all async reads that are part of this stream
* have completed before we return
*/
- if (iostate.io_issued > iostate.io_completed) {
+ cluster_iostate_wait(&iostate, 0, "cluster_read_direct");
- lck_mtx_lock(cl_mtxp);
+ if (iostate.io_error)
+ retval = iostate.io_error;
- while (iostate.io_issued != iostate.io_completed) {
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START,
- iostate.io_issued, iostate.io_completed, 0, 0, 0);
+ lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
- iostate.io_wanted = 1;
- msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_read_direct", NULL);
+ if (io_throttled == TRUE && retval == 0)
+ retval = EAGAIN;
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END,
- iostate.io_issued, iostate.io_completed, 0, 0, 0);
- }
- lck_mtx_unlock(cl_mtxp);
+ for (next_iov_base = orig_iov_base; next_iov_base < last_iov_base; next_iov_base += PAGE_SIZE) {
+ /*
+ * This is specifically done for pmap accounting purposes.
+ * vm_pre_fault() will call vm_fault() to enter the page into
+ * the pmap if there isn't _a_ physical page for that VA already.
+ */
+ vm_pre_fault(vm_map_trunc_page(next_iov_base, PAGE_MASK));
}
- if (iostate.io_error)
- retval = iostate.io_error;
if (io_req_size && retval == 0) {
/*
upl_size_t upl_size;
vm_size_t upl_needed_size;
mach_msg_type_number_t pages_in_pl;
- int upl_flags;
+ upl_control_flags_t upl_flags;
kern_return_t kret;
struct clios iostate;
int error= 0;
bflag = CL_PASSIVE;
else
bflag = 0;
-
+
+ if (flags & IO_NOCACHE)
+ bflag |= CL_NOCACHE;
+
/*
* When we enter this routine, we know
* -- the read_length will not exceed the current iov_len
* -- the target address is physically contiguous for read_length
*/
- cluster_syncup(vp, filesize, callback, callback_arg);
+ cluster_syncup(vp, filesize, callback, callback_arg, PUSH_SYNC);
devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
iostate.io_error = 0;
iostate.io_wanted = 0;
+ lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
+
next_cread:
io_size = *read_length;
pages_in_pl = 0;
upl_size = upl_needed_size;
- upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE;
+ upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE
+ | UPL_MEMORY_TAG_MAKE(VM_KERN_MEMORY_FILE);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_START,
(int)upl_offset, (int)upl_size, (int)iov_base, io_size, 0);
- kret = vm_map_get_upl(current_map(),
+ vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map;
+ kret = vm_map_get_upl(map,
(vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
&upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, 0);
}
pl = ubc_upl_pageinfo(upl[cur_upl]);
- dst_paddr = ((addr64_t)upl_phys_page(pl, 0) << 12) + (addr64_t)upl_offset;
+ dst_paddr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + (addr64_t)upl_offset;
while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) {
u_int32_t head_size;
* if there are already too many outstanding reads
* wait until some have completed before issuing the next
*/
- if (iostate.io_issued > iostate.io_completed) {
- lck_mtx_lock(cl_mtxp);
+ cluster_iostate_wait(&iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), "cluster_read_contig");
- while ((iostate.io_issued - iostate.io_completed) > (MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2))) {
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START,
- iostate.io_issued, iostate.io_completed, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), 0, 0);
-
- iostate.io_wanted = 1;
- msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_read_contig", NULL);
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END,
- iostate.io_issued, iostate.io_completed, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), 0, 0);
- }
- lck_mtx_unlock(cl_mtxp);
- }
if (iostate.io_error) {
/*
* one of the earlier reads we issued ran into a hard error
* make sure all async reads that are part of this stream
* have completed before we proceed
*/
- if (iostate.io_issued > iostate.io_completed) {
-
- lck_mtx_lock(cl_mtxp);
+ cluster_iostate_wait(&iostate, 0, "cluster_read_contig");
- while (iostate.io_issued != iostate.io_completed) {
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START,
- iostate.io_issued, iostate.io_completed, 0, 0, 0);
-
- iostate.io_wanted = 1;
- msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_read_contig", NULL);
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END,
- iostate.io_issued, iostate.io_completed, 0, 0, 0);
- }
- lck_mtx_unlock(cl_mtxp);
- }
if (iostate.io_error)
error = iostate.io_error;
+ lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
+
if (error == 0 && tail_size)
error = cluster_align_phys_io(vp, uio, dst_paddr, tail_size, CL_READ, callback, callback_arg);
user_addr_t iov_base = 0;
upl_t upl;
upl_size_t upl_size;
- int upl_flags;
+ upl_control_flags_t upl_flags;
int retval = 0;
/*
else
upl_size = (u_int32_t)iov_len;
- upl_flags = UPL_QUERY_OBJECT_TYPE;
-
- if ((vm_map_get_upl(current_map(),
+ upl_flags = UPL_QUERY_OBJECT_TYPE | UPL_MEMORY_TAG_MAKE(VM_KERN_MEMORY_FILE);
+
+ vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map;
+ if ((vm_map_get_upl(map,
(vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
&upl_size, &upl, NULL, NULL, &upl_flags, 0)) != KERN_SUCCESS) {
/*
max_io_size = cluster_max_io_size(vp->v_mount, CL_READ);
+ if ((vp->v_mount->mnt_kern_flag & MNTK_SSD) && !ignore_is_ssd) {
+ if (max_io_size > speculative_prefetch_max_iosize)
+ max_io_size = speculative_prefetch_max_iosize;
+ }
+
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_START,
(int)f_offset, resid, (int)filesize, 0, 0);
int
cluster_push_ext(vnode_t vp, int flags, int (*callback)(buf_t, void *), void *callback_arg)
+{
+ return cluster_push_err(vp, flags, callback, callback_arg, NULL);
+}
+
+/* write errors via err, but return the number of clusters written */
+int
+cluster_push_err(vnode_t vp, int flags, int (*callback)(buf_t, void *), void *callback_arg, int *err)
{
int retval;
int my_sparse_wait = 0;
struct cl_writebehind *wbp;
+ if (err)
+ *err = 0;
+
if ( !UBCINFOEXISTS(vp)) {
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, vp, flags, 0, -1, 0);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, kdebug_vnode(vp), flags, 0, -1, 0);
return (0);
}
/* return if deferred write is set */
return (0);
}
if ((wbp = cluster_get_wbp(vp, CLW_RETURNLOCKED)) == NULL) {
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, vp, flags, 0, -2, 0);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, kdebug_vnode(vp), flags, 0, -2, 0);
return (0);
}
- if (wbp->cl_number == 0 && wbp->cl_scmap == NULL) {
+ if (!ISSET(flags, IO_SYNC) && wbp->cl_number == 0 && wbp->cl_scmap == NULL) {
lck_mtx_unlock(&wbp->cl_lockw);
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, vp, flags, 0, -3, 0);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, kdebug_vnode(vp), flags, 0, -3, 0);
return(0);
}
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_START,
* in the sparse map case
*/
while (wbp->cl_sparse_wait) {
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_START, vp, 0, 0, 0, 0);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_START, kdebug_vnode(vp), 0, 0, 0, 0);
msleep((caddr_t)&wbp->cl_sparse_wait, &wbp->cl_lockw, PRIBIO + 1, "cluster_push_ext", NULL);
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_END, vp, 0, 0, 0, 0);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_END, kdebug_vnode(vp), 0, 0, 0, 0);
}
if (flags & IO_SYNC) {
my_sparse_wait = 1;
* fsync actually get cleaned to the disk before this fsync returns
*/
while (wbp->cl_sparse_pushes) {
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_START, vp, 0, 0, 0, 0);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_START, kdebug_vnode(vp), 0, 0, 0, 0);
msleep((caddr_t)&wbp->cl_sparse_pushes, &wbp->cl_lockw, PRIBIO + 1, "cluster_push_ext", NULL);
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_END, vp, 0, 0, 0, 0);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_END, kdebug_vnode(vp), 0, 0, 0, 0);
}
}
if (wbp->cl_scmap) {
lck_mtx_unlock(&wbp->cl_lockw);
- sparse_cluster_push(&scmap, vp, ubc_getsize(vp), PUSH_ALL | IO_PASSIVE, callback, callback_arg);
+ retval = sparse_cluster_push(&scmap, vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg);
lck_mtx_lock(&wbp->cl_lockw);
if (wbp->cl_sparse_wait && wbp->cl_sparse_pushes == 0)
wakeup((caddr_t)&wbp->cl_sparse_pushes);
} else {
- sparse_cluster_push(&(wbp->cl_scmap), vp, ubc_getsize(vp), PUSH_ALL | IO_PASSIVE, callback, callback_arg);
+ retval = sparse_cluster_push(&(wbp->cl_scmap), vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg);
}
+ if (err)
+ *err = retval;
retval = 1;
- } else {
- retval = cluster_try_push(wbp, vp, ubc_getsize(vp), PUSH_ALL | IO_PASSIVE, callback, callback_arg);
+ } else {
+ retval = cluster_try_push(wbp, vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg, err);
}
lck_mtx_unlock(&wbp->cl_lockw);
static int
-cluster_try_push(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int push_flag, int (*callback)(buf_t, void *), void *callback_arg)
+cluster_try_push(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg, int *err)
{
int cl_index;
int cl_index1;
int cl_pushed = 0;
struct cl_wextent l_clusters[MAX_CLUSTERS];
u_int max_cluster_pgcount;
-
+ int error = 0;
max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE;
/*
cl_len = cl_index;
- if ( (push_flag & PUSH_DELAY) && cl_len == MAX_CLUSTERS ) {
+ /* skip switching to the sparse cluster mechanism if on diskimage */
+ if ( ((push_flag & PUSH_DELAY) && cl_len == MAX_CLUSTERS ) &&
+ !(vp->v_mount->mnt_kern_flag & MNTK_VIRTUALDEV) ) {
int i;
/*
for (cl_index = 0; cl_index < cl_len; cl_index++) {
int flags;
struct cl_extent cl;
+ int retval;
+
+ flags = io_flags & (IO_PASSIVE|IO_CLOSE);
/*
* try to push each cluster in turn...
*/
if (l_clusters[cl_index].io_flags & CLW_IONOCACHE)
- flags = IO_NOCACHE;
- else
- flags = 0;
+ flags |= IO_NOCACHE;
- if ((l_clusters[cl_index].io_flags & CLW_IOPASSIVE) || (push_flag & IO_PASSIVE))
+ if (l_clusters[cl_index].io_flags & CLW_IOPASSIVE)
flags |= IO_PASSIVE;
if (push_flag & PUSH_SYNC)
cl.b_addr = l_clusters[cl_index].b_addr;
cl.e_addr = l_clusters[cl_index].e_addr;
- cluster_push_now(vp, &cl, EOF, flags, callback, callback_arg);
+ retval = cluster_push_now(vp, &cl, EOF, flags, callback, callback_arg);
+
+ if (error == 0 && retval)
+ error = retval;
l_clusters[cl_index].b_addr = 0;
l_clusters[cl_index].e_addr = 0;
if ( !(push_flag & PUSH_ALL) )
break;
}
+ if (err)
+ *err = error;
+
dont_try:
if (cl_len > cl_pushed) {
/*
kern_return_t kret;
if (flags & IO_PASSIVE)
- bflag = CL_PASSIVE;
+ bflag = CL_PASSIVE;
else
- bflag = 0;
+ bflag = 0;
+
+ if (flags & IO_SKIP_ENCRYPTION)
+ bflag |= CL_ENCRYPTED;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_START,
(int)cl->b_addr, (int)cl->e_addr, (int)EOF, flags, 0);
if ( !(flags & IO_SYNC))
io_flags |= CL_ASYNC;
+ if (flags & IO_CLOSE)
+ io_flags |= CL_CLOSE;
+
+ if (flags & IO_NOCACHE)
+ io_flags |= CL_NOCACHE;
+
retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size,
io_flags, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
{
int cl_index;
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_START, vp, wbp->cl_scmap, 0, 0, 0);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_START, kdebug_vnode(vp), wbp->cl_scmap, 0, 0, 0);
for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) {
int flags;
}
wbp->cl_number = 0;
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_END, vp, wbp->cl_scmap, 0, 0, 0);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_END, kdebug_vnode(vp), wbp->cl_scmap, 0, 0, 0);
}
* still associated with the write-behind context... however, if the scmap has been disassociated
* from the write-behind context (the cluster_push case), the wb lock is not held
*/
-static void
-sparse_cluster_push(void **scmap, vnode_t vp, off_t EOF, int push_flag, int (*callback)(buf_t, void *), void *callback_arg)
+static int
+sparse_cluster_push(void **scmap, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg)
{
struct cl_extent cl;
off_t offset;
u_int length;
+ int error = 0;
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_START, vp, (*scmap), 0, push_flag, 0);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_START, kdebug_vnode(vp), (*scmap), 0, push_flag, 0);
if (push_flag & PUSH_ALL)
vfs_drt_control(scmap, 1);
for (;;) {
+ int retval;
if (vfs_drt_get_cluster(scmap, &offset, &length) != KERN_SUCCESS)
break;
cl.b_addr = (daddr64_t)(offset / PAGE_SIZE_64);
cl.e_addr = (daddr64_t)((offset + length) / PAGE_SIZE_64);
- cluster_push_now(vp, &cl, EOF, push_flag & IO_PASSIVE, callback, callback_arg);
+ retval = cluster_push_now(vp, &cl, EOF, io_flags & (IO_PASSIVE|IO_CLOSE), callback, callback_arg);
+ if (error == 0 && retval)
+ error = retval;
if ( !(push_flag & PUSH_ALL) )
break;
}
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_END, vp, (*scmap), 0, 0, 0);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_END, kdebug_vnode(vp), (*scmap), 0, 0, 0);
+
+ return error;
}
* only a partial update was done
* push out some pages and try again
*/
- sparse_cluster_push(scmap, vp, EOF, 0, callback, callback_arg);
+ sparse_cluster_push(scmap, vp, EOF, 0, 0, callback, callback_arg);
offset += (new_dirty * PAGE_SIZE_64);
length -= (new_dirty * PAGE_SIZE);
}
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_END, vp, (*scmap), 0, 0, 0);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_END, kdebug_vnode(vp), (*scmap), 0, 0, 0);
}
int bflag;
if (flags & IO_PASSIVE)
- bflag = CL_PASSIVE;
+ bflag = CL_PASSIVE;
else
- bflag = 0;
+ bflag = 0;
+
+ if (flags & IO_NOCACHE)
+ bflag |= CL_NOCACHE;
upl_flags = UPL_SET_LITE;
}
did_read = 1;
}
- ubc_paddr = ((addr64_t)upl_phys_page(pl, 0) << 12) + (addr64_t)(uio->uio_offset & PAGE_MASK_64);
+ ubc_paddr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + (addr64_t)(uio->uio_offset & PAGE_MASK_64);
/*
* NOTE: There is no prototype for the following in BSD. It, and the definitions
return (error);
}
-
-
int
cluster_copy_upl_data(struct uio *uio, upl_t upl, int upl_offset, int *io_resid)
{
int retval = 0;
int xsize;
upl_page_info_t *pl;
+ int dirty_count;
xsize = *io_resid;
pg_offset = upl_offset & PAGE_MASK;
csize = min(PAGE_SIZE - pg_offset, xsize);
+ dirty_count = 0;
while (xsize && retval == 0) {
addr64_t paddr;
- paddr = ((addr64_t)upl_phys_page(pl, pg_index) << 12) + pg_offset;
+ paddr = ((addr64_t)upl_phys_page(pl, pg_index) << PAGE_SHIFT) + pg_offset;
+ if ((uio->uio_rw == UIO_WRITE) && (upl_dirty_page(pl, pg_index) == FALSE))
+ dirty_count++;
retval = uiomove64(paddr, csize, uio);
uio->uio_segflg = segflg;
+ task_update_logical_writes(current_task(), (dirty_count * PAGE_SIZE), TASK_WRITE_DEFERRED, upl_lookup_vnode(upl));
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
(int)uio->uio_offset, xsize, retval, segflg, 0);
-
+
return (retval);
}
io_size = *io_resid;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START,
- (int)uio->uio_offset, 0, io_size, 0, 0);
+ (int)uio->uio_offset, io_size, mark_dirty, take_reference, 0);
control = ubc_getobject(vp, UBC_FLAGS_NONE);
* single hashtable entry. Each hashtable entry is aligned to this
* size within the file.
*/
-#define DRT_BITVECTOR_PAGES 256
+#define DRT_BITVECTOR_PAGES ((1024 * 1024) / PAGE_SIZE)
/*
* File offset handling.
*
- * DRT_ADDRESS_MASK is dependent on DRT_BITVECTOR_PAGES;
- * the correct formula is (~(DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1)
+ * DRT_ADDRESS_MASK is dependent on DRT_BITVECTOR_PAGES;
+ * the correct formula is (~((DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1))
*/
-#define DRT_ADDRESS_MASK (~((1 << 20) - 1))
+#define DRT_ADDRESS_MASK (~((DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1))
#define DRT_ALIGN_ADDRESS(addr) ((addr) & DRT_ADDRESS_MASK)
/*
#define DRT_HASH_SMALL_MODULUS 23
#define DRT_HASH_LARGE_MODULUS 401
+/*
+ * Physical memory required before the large hash modulus is permitted.
+ *
+ * On small memory systems, the large hash modulus can lead to phsyical
+ * memory starvation, so we avoid using it there.
+ */
+#define DRT_HASH_LARGE_MEMORY_REQUIRED (1024LL * 1024LL * 1024LL) /* 1GiB */
+
#define DRT_SMALL_ALLOCATION 1024 /* 104 bytes spare */
#define DRT_LARGE_ALLOCATION 16384 /* 344 bytes spare */
*/
struct vfs_drt_hashentry {
u_int64_t dhe_control;
- u_int32_t dhe_bitvector[DRT_BITVECTOR_PAGES / 32];
+/*
+* dhe_bitvector was declared as dhe_bitvector[DRT_BITVECTOR_PAGES / 32];
+* DRT_BITVECTOR_PAGES is defined as ((1024 * 1024) / PAGE_SIZE)
+* Since PAGE_SIZE is only known at boot time,
+* -define MAX_DRT_BITVECTOR_PAGES for smallest supported page size (4k)
+* -declare dhe_bitvector array for largest possible length
+*/
+#define MAX_DRT_BITVECTOR_PAGES (1024 * 1024)/( 4 * 1024)
+ u_int32_t dhe_bitvector[MAX_DRT_BITVECTOR_PAGES/32];
};
/*
* see whether we should grow to the large one.
*/
if (ocmap->scm_modulus == DRT_HASH_SMALL_MODULUS) {
- /* if the ring is nearly full */
- if (active_buckets > (DRT_HASH_SMALL_MODULUS - 5)) {
+ /*
+ * If the ring is nearly full and we are allowed to
+ * use the large modulus, upgrade.
+ */
+ if ((active_buckets > (DRT_HASH_SMALL_MODULUS - 5)) &&
+ (max_mem >= DRT_HASH_LARGE_MEMORY_REQUIRED)) {
nsize = DRT_HASH_LARGE_MODULUS;
} else {
nsize = DRT_HASH_SMALL_MODULUS;
*/
kret = kmem_alloc(kernel_map, (vm_offset_t *)&cmap,
- (nsize == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION);
+ (nsize == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION, VM_KERN_MEMORY_FILE);
if (kret != KERN_SUCCESS)
return(kret);
cmap->scm_magic = DRT_SCM_MAGIC;