/*
- * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
+ * Copyright (c) 2000-2016 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
- *
+ *
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
- *
+ *
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
- *
+ *
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
- *
+ *
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*
*/
#include <sys/kernel.h>
#include <sys/proc_internal.h>
#include <sys/kauth.h>
-#include <sys/malloc.h>
+#include <sys/malloc.h>
#include <sys/unistd.h>
#include <sys/file_internal.h>
#include <sys/fcntl.h>
#include <sys/vnode_internal.h>
#include <string.h>
#include <sys/proc_info.h>
+#include <sys/codesign.h>
+#include <sys/pthread_shims.h>
-#include <kern/lock.h>
+#include <kern/locks.h>
#include <kern/clock.h>
+#include <kern/policy_internal.h>
#include <kern/thread_call.h>
#include <kern/sched_prim.h>
+#include <kern/waitq.h>
#include <kern/zalloc.h>
+#include <kern/kalloc.h>
#include <kern/assert.h>
#include <libkern/libkern.h>
#include "net/net_str_id.h"
+#include <mach/task.h>
+
+#if CONFIG_MEMORYSTATUS
+#include <sys/kern_memorystatus.h>
+#endif
+
+/*
+ * JMM - this typedef needs to be unified with pthread_priority_t
+ * and mach_msg_priority_t. It also needs to be the same type
+ * everywhere.
+ */
+typedef int32_t qos_t;
+
MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
-#define KQ_EVENT NULL
+#define KQ_EVENT NO_EVENT64
static inline void kqlock(struct kqueue *kq);
static inline void kqunlock(struct kqueue *kq);
-static int kqlock2knoteuse(struct kqueue *kq, struct knote *kn);
-static int kqlock2knoteusewait(struct kqueue *kq, struct knote *kn);
-static int kqlock2knotedrop(struct kqueue *kq, struct knote *kn);
-static int knoteuse2kqlock(struct kqueue *kq, struct knote *kn);
-
-static void kqueue_wakeup(struct kqueue *kq, int closed);
-static int kqueue_read(struct fileproc *fp, struct uio *uio,
- int flags, vfs_context_t ctx);
-static int kqueue_write(struct fileproc *fp, struct uio *uio,
- int flags, vfs_context_t ctx);
-static int kqueue_ioctl(struct fileproc *fp, u_long com, caddr_t data,
- vfs_context_t ctx);
-static int kqueue_select(struct fileproc *fp, int which, void *wql,
- vfs_context_t ctx);
-static int kqueue_close(struct fileglob *fg, vfs_context_t ctx);
-static int kqueue_kqfilter(struct fileproc *fp, struct knote *kn, vfs_context_t ctx);
-static int kqueue_drain(struct fileproc *fp, vfs_context_t ctx);
-extern int kqueue_stat(struct fileproc *fp, void *ub, int isstat64, vfs_context_t ctx);
-
-static struct fileops kqueueops = {
- .fo_read = kqueue_read,
- .fo_write = kqueue_write,
- .fo_ioctl = kqueue_ioctl,
- .fo_select = kqueue_select,
- .fo_close = kqueue_close,
- .fo_kqfilter = kqueue_kqfilter,
+static int kqlock2knoteuse(struct kqueue *kq, struct knote *kn);
+static int kqlock2knotedrop(struct kqueue *kq, struct knote *kn);
+static int kqlock2knotedetach(struct kqueue *kq, struct knote *kn);
+static int knoteuse2kqlock(struct kqueue *kq, struct knote *kn, int defer_drop);
+
+static int kqueue_read(struct fileproc *fp, struct uio *uio,
+ int flags, vfs_context_t ctx);
+static int kqueue_write(struct fileproc *fp, struct uio *uio,
+ int flags, vfs_context_t ctx);
+static int kqueue_ioctl(struct fileproc *fp, u_long com, caddr_t data,
+ vfs_context_t ctx);
+static int kqueue_select(struct fileproc *fp, int which, void *wq_link_id,
+ vfs_context_t ctx);
+static int kqueue_close(struct fileglob *fg, vfs_context_t ctx);
+static int kqueue_kqfilter(struct fileproc *fp, struct knote *kn,
+ vfs_context_t ctx);
+static int kqueue_drain(struct fileproc *fp, vfs_context_t ctx);
+
+static const struct fileops kqueueops = {
+ .fo_type = DTYPE_KQUEUE,
+ .fo_read = kqueue_read,
+ .fo_write = kqueue_write,
+ .fo_ioctl = kqueue_ioctl,
+ .fo_select = kqueue_select,
+ .fo_close = kqueue_close,
+ .fo_kqfilter = kqueue_kqfilter,
.fo_drain = kqueue_drain,
};
-static int kevent_internal(struct proc *p, int iskev64, user_addr_t changelist,
- int nchanges, user_addr_t eventlist, int nevents, int fd,
- user_addr_t utimeout, unsigned int flags, int32_t *retval);
-static int kevent_copyin(user_addr_t *addrp, struct kevent64_s *kevp, struct proc *p, int iskev64);
-static int kevent_copyout(struct kevent64_s *kevp, user_addr_t *addrp, struct proc *p, int iskev64);
-char * kevent_description(struct kevent64_s *kevp, char *s, size_t n);
-
-static int kevent_callback(struct kqueue *kq, struct kevent64_s *kevp, void *data);
-static void kevent_continue(struct kqueue *kq, void *data, int error);
-static void kqueue_scan_continue(void *contp, wait_result_t wait_result);
-static int kqueue_process(struct kqueue *kq, kevent_callback_t callback,
- void *data, int *countp, struct proc *p);
-static int knote_process(struct knote *kn, kevent_callback_t callback,
- void *data, struct kqtailq *inprocessp, struct proc *p);
-static void knote_put(struct knote *kn);
-static int knote_fdpattach(struct knote *kn, struct filedesc *fdp, struct proc *p);
-static void knote_drop(struct knote *kn, struct proc *p);
-static void knote_activate(struct knote *kn, int);
-static void knote_deactivate(struct knote *kn);
-static void knote_enqueue(struct knote *kn);
-static void knote_dequeue(struct knote *kn);
-static struct knote *knote_alloc(void);
-static void knote_free(struct knote *kn);
-
-static int filt_fileattach(struct knote *kn);
+static int kevent_internal(struct proc *p, int fd,
+ user_addr_t changelist, int nchanges,
+ user_addr_t eventlist, int nevents,
+ user_addr_t data_out, uint64_t data_available,
+ unsigned int flags, user_addr_t utimeout,
+ kqueue_continue_t continuation,
+ int32_t *retval);
+static int kevent_copyin(user_addr_t *addrp, struct kevent_internal_s *kevp,
+ struct proc *p, unsigned int flags);
+static int kevent_copyout(struct kevent_internal_s *kevp, user_addr_t *addrp,
+ struct proc *p, unsigned int flags);
+char * kevent_description(struct kevent_internal_s *kevp, char *s, size_t n);
+
+static void kqueue_interrupt(struct kqueue *kq);
+static int kevent_callback(struct kqueue *kq, struct kevent_internal_s *kevp,
+ void *data);
+static void kevent_continue(struct kqueue *kq, void *data, int error);
+static void kqueue_scan_continue(void *contp, wait_result_t wait_result);
+static int kqueue_process(struct kqueue *kq, kevent_callback_t callback, void *callback_data,
+ struct filt_process_s *process_data, kq_index_t servicer_qos_index,
+ int *countp, struct proc *p);
+static int kqueue_begin_processing(struct kqueue *kq, kq_index_t qos_index, unsigned int flags);
+static void kqueue_end_processing(struct kqueue *kq, kq_index_t qos_index, unsigned int flags);
+static struct kqtailq *kqueue_get_base_queue(struct kqueue *kq, kq_index_t qos_index);
+static struct kqtailq *kqueue_get_high_queue(struct kqueue *kq, kq_index_t qos_index);
+static int kqueue_queue_empty(struct kqueue *kq, kq_index_t qos_index);
+
+static struct kqtailq *kqueue_get_suppressed_queue(struct kqueue *kq, kq_index_t qos_index);
+
+static void kqworkq_request_thread(struct kqworkq *kqwq, kq_index_t qos_index);
+static void kqworkq_request_help(struct kqworkq *kqwq, kq_index_t qos_index, uint32_t type);
+static void kqworkq_update_override(struct kqworkq *kqwq, kq_index_t qos_index, kq_index_t override_index);
+static void kqworkq_bind_thread(struct kqworkq *kqwq, kq_index_t qos_index, thread_t thread, unsigned int flags);
+static void kqworkq_unbind_thread(struct kqworkq *kqwq, kq_index_t qos_index, thread_t thread, unsigned int flags);
+static struct kqrequest *kqworkq_get_request(struct kqworkq *kqwq, kq_index_t qos_index);
+
+
+static int knote_process(struct knote *kn, kevent_callback_t callback, void *callback_data,
+ struct filt_process_s *process_data, struct proc *p);
+#if 0
+static void knote_put(struct knote *kn);
+#endif
+
+static int knote_fdadd(struct knote *kn, struct proc *p);
+static void knote_fdremove(struct knote *kn, struct proc *p);
+static struct knote *knote_fdfind(struct kqueue *kq, struct kevent_internal_s *kev, struct proc *p);
+
+static void knote_drop(struct knote *kn, struct proc *p);
+static struct knote *knote_alloc(void);
+static void knote_free(struct knote *kn);
+
+static void knote_activate(struct knote *kn);
+static void knote_deactivate(struct knote *kn);
+
+static void knote_enable(struct knote *kn);
+static void knote_disable(struct knote *kn);
+
+static int knote_enqueue(struct knote *kn);
+static void knote_dequeue(struct knote *kn);
+
+static void knote_suppress(struct knote *kn);
+static void knote_unsuppress(struct knote *kn);
+static void knote_wakeup(struct knote *kn);
+
+static kq_index_t knote_get_queue_index(struct knote *kn);
+static struct kqtailq *knote_get_queue(struct knote *kn);
+static struct kqtailq *knote_get_suppressed_queue(struct knote *kn);
+static kq_index_t knote_get_req_index(struct knote *kn);
+static kq_index_t knote_get_qos_index(struct knote *kn);
+static void knote_set_qos_index(struct knote *kn, kq_index_t qos_index);
+static kq_index_t knote_get_qos_override_index(struct knote *kn);
+static void knote_set_qos_override_index(struct knote *kn, kq_index_t qos_index);
+
+static int filt_fileattach(struct knote *kn);
static struct filterops file_filtops = {
- .f_isfd = 1,
- .f_attach = filt_fileattach,
+ .f_isfd = 1,
+ .f_attach = filt_fileattach,
};
-static void filt_kqdetach(struct knote *kn);
-static int filt_kqueue(struct knote *kn, long hint);
+static void filt_kqdetach(struct knote *kn);
+static int filt_kqueue(struct knote *kn, long hint);
+static int filt_kqtouch(struct knote *kn, struct kevent_internal_s *kev);
+static int filt_kqprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev);
static struct filterops kqread_filtops = {
- .f_isfd = 1,
- .f_detach = filt_kqdetach,
- .f_event = filt_kqueue,
+ .f_isfd = 1,
+ .f_detach = filt_kqdetach,
+ .f_event = filt_kqueue,
+ .f_touch = filt_kqtouch,
+ .f_process = filt_kqprocess,
};
-/*
- * placeholder for not-yet-implemented filters
- */
-static int filt_badattach(struct knote *kn);
+/* placeholder for not-yet-implemented filters */
+static int filt_badattach(struct knote *kn);
static struct filterops bad_filtops = {
- .f_attach = filt_badattach,
+ .f_attach = filt_badattach,
};
-static int filt_procattach(struct knote *kn);
-static void filt_procdetach(struct knote *kn);
-static int filt_proc(struct knote *kn, long hint);
+static int filt_procattach(struct knote *kn);
+static void filt_procdetach(struct knote *kn);
+static int filt_proc(struct knote *kn, long hint);
+static int filt_proctouch(struct knote *kn, struct kevent_internal_s *kev);
+static int filt_procprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev);
static struct filterops proc_filtops = {
- .f_attach = filt_procattach,
- .f_detach = filt_procdetach,
- .f_event = filt_proc,
+ .f_attach = filt_procattach,
+ .f_detach = filt_procdetach,
+ .f_event = filt_proc,
+ .f_touch = filt_proctouch,
+ .f_process = filt_procprocess,
};
+#if CONFIG_MEMORYSTATUS
+extern struct filterops memorystatus_filtops;
+#endif /* CONFIG_MEMORYSTATUS */
+
extern struct filterops fs_filtops;
extern struct filterops sig_filtops;
/* Timer filter */
-static int filt_timerattach(struct knote *kn);
-static void filt_timerdetach(struct knote *kn);
-static int filt_timer(struct knote *kn, long hint);
-static void filt_timertouch(struct knote *kn, struct kevent64_s *kev,
- long type);
+static int filt_timerattach(struct knote *kn);
+static void filt_timerdetach(struct knote *kn);
+static int filt_timer(struct knote *kn, long hint);
+static int filt_timertouch(struct knote *kn, struct kevent_internal_s *kev);
+static int filt_timerprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev);
static struct filterops timer_filtops = {
- .f_attach = filt_timerattach,
- .f_detach = filt_timerdetach,
- .f_event = filt_timer,
- .f_touch = filt_timertouch,
+ .f_attach = filt_timerattach,
+ .f_detach = filt_timerdetach,
+ .f_event = filt_timer,
+ .f_touch = filt_timertouch,
+ .f_process = filt_timerprocess,
};
/* Helpers */
+static void filt_timerexpire(void *knx, void *param1);
+static int filt_timervalidate(struct knote *kn);
+static void filt_timerupdate(struct knote *kn, int num_fired);
+static void filt_timercancel(struct knote *kn);
-static void filt_timerexpire(void *knx, void *param1);
-static int filt_timervalidate(struct knote *kn);
-static void filt_timerupdate(struct knote *kn);
-static void filt_timercancel(struct knote *kn);
-
-#define TIMER_RUNNING 0x1
-#define TIMER_CANCELWAIT 0x2
+#define TIMER_RUNNING 0x1
+#define TIMER_CANCELWAIT 0x2
static lck_mtx_t _filt_timerlock;
-static void filt_timerlock(void);
-static void filt_timerunlock(void);
+static void filt_timerlock(void);
+static void filt_timerunlock(void);
-static zone_t knote_zone;
+static zone_t knote_zone;
+static zone_t kqfile_zone;
+static zone_t kqworkq_zone;
-#define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
+#define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
#if 0
extern struct filterops aio_filtops;
extern struct filterops machport_filtops;
/* User filter */
-static int filt_userattach(struct knote *kn);
-static void filt_userdetach(struct knote *kn);
-static int filt_user(struct knote *kn, long hint);
-static void filt_usertouch(struct knote *kn, struct kevent64_s *kev,
- long type);
+static int filt_userattach(struct knote *kn);
+static void filt_userdetach(struct knote *kn);
+static int filt_user(struct knote *kn, long hint);
+static int filt_usertouch(struct knote *kn, struct kevent_internal_s *kev);
+static int filt_userprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev);
static struct filterops user_filtops = {
- .f_attach = filt_userattach,
- .f_detach = filt_userdetach,
- .f_event = filt_user,
- .f_touch = filt_usertouch,
+ .f_attach = filt_userattach,
+ .f_detach = filt_userdetach,
+ .f_event = filt_user,
+ .f_touch = filt_usertouch,
+ .f_process = filt_userprocess,
};
-#if CONFIG_AUDIT
-/* Audit session filter */
-extern struct filterops audit_session_filtops;
-#endif
+static lck_spin_t _filt_userlock;
+static void filt_userlock(void);
+static void filt_userunlock(void);
+
+extern struct filterops pipe_rfiltops;
+extern struct filterops pipe_wfiltops;
+extern struct filterops ptsd_kqops;
+extern struct filterops soread_filtops;
+extern struct filterops sowrite_filtops;
+extern struct filterops sock_filtops;
+extern struct filterops soexcept_filtops;
+extern struct filterops spec_filtops;
+extern struct filterops bpfread_filtops;
+extern struct filterops necp_fd_rfiltops;
+extern struct filterops skywalk_channel_rfiltops;
+extern struct filterops skywalk_channel_wfiltops;
+extern struct filterops fsevent_filtops;
+extern struct filterops vnode_filtops;
/*
- * Table for for all system-defined filters.
+ *
+ * Rules for adding new filters to the system:
+ * Public filters:
+ * - Add a new "EVFILT_" option value to bsd/sys/event.h (typically a negative value)
+ * in the exported section of the header
+ * - Update the EVFILT_SYSCOUNT value to reflect the new addition
+ * - Add a filterops to the sysfilt_ops array. Public filters should be added at the end
+ * of the Public Filters section in the array.
+ * Private filters:
+ * - Add a new "EVFILT_" value to bsd/sys/event.h (typically a positive value)
+ * in the XNU_KERNEL_PRIVATE section of the header
+ * - Update the EVFILTID_MAX value to reflect the new addition
+ * - Add a filterops to the sysfilt_ops. Private filters should be added at the end of
+ * the Private filters section of the array.
*/
-static struct filterops *sysfilt_ops[] = {
- &file_filtops, /* EVFILT_READ */
- &file_filtops, /* EVFILT_WRITE */
-#if 0
- &aio_filtops, /* EVFILT_AIO */
-#else
- &bad_filtops, /* EVFILT_AIO */
-#endif
- &file_filtops, /* EVFILT_VNODE */
- &proc_filtops, /* EVFILT_PROC */
- &sig_filtops, /* EVFILT_SIGNAL */
- &timer_filtops, /* EVFILT_TIMER */
- &machport_filtops, /* EVFILT_MACHPORT */
- &fs_filtops, /* EVFILT_FS */
- &user_filtops, /* EVFILT_USER */
-#if CONFIG_AUDIT
- &audit_session_filtops, /* EVFILT_SESSION */
+static struct filterops *sysfilt_ops[EVFILTID_MAX] = {
+ /* Public Filters */
+ [~EVFILT_READ] = &file_filtops,
+ [~EVFILT_WRITE] = &file_filtops,
+ [~EVFILT_AIO] = &bad_filtops,
+ [~EVFILT_VNODE] = &file_filtops,
+ [~EVFILT_PROC] = &proc_filtops,
+ [~EVFILT_SIGNAL] = &sig_filtops,
+ [~EVFILT_TIMER] = &timer_filtops,
+ [~EVFILT_MACHPORT] = &machport_filtops,
+ [~EVFILT_FS] = &fs_filtops,
+ [~EVFILT_USER] = &user_filtops,
+ &bad_filtops,
+ &bad_filtops,
+ [~EVFILT_SOCK] = &file_filtops,
+#if CONFIG_MEMORYSTATUS
+ [~EVFILT_MEMORYSTATUS] = &memorystatus_filtops,
#else
- &bad_filtops,
+ [~EVFILT_MEMORYSTATUS] = &bad_filtops,
#endif
+ [~EVFILT_EXCEPT] = &file_filtops,
+
+ /* Private filters */
+ [EVFILTID_KQREAD] = &kqread_filtops,
+ [EVFILTID_PIPE_R] = &pipe_rfiltops,
+ [EVFILTID_PIPE_W] = &pipe_wfiltops,
+ [EVFILTID_PTSD] = &ptsd_kqops,
+ [EVFILTID_SOREAD] = &soread_filtops,
+ [EVFILTID_SOWRITE] = &sowrite_filtops,
+ [EVFILTID_SCK] = &sock_filtops,
+ [EVFILTID_SOEXCEPT] = &soexcept_filtops,
+ [EVFILTID_SPEC] = &spec_filtops,
+ [EVFILTID_BPFREAD] = &bpfread_filtops,
+ [EVFILTID_NECP_FD] = &necp_fd_rfiltops,
+ [EVFILTID_FSEVENT] = &fsevent_filtops,
+ [EVFILTID_VN] = &vnode_filtops
};
+/* waitq prepost callback */
+void waitq_set__CALLING_PREPOST_HOOK__(void *kq_hook, void *knote_hook, int qos);
+
+#ifndef _PTHREAD_PRIORITY_EVENT_MANAGER_FLAG
+#define _PTHREAD_PRIORITY_EVENT_MANAGER_FLAG 0x02000000 /* pthread event manager bit */
+#endif
+#ifndef _PTHREAD_PRIORITY_OVERCOMMIT_FLAG
+#define _PTHREAD_PRIORITY_OVERCOMMIT_FLAG 0x80000000 /* request overcommit threads */
+#endif
+#ifndef _PTHREAD_PRIORITY_QOS_CLASS_MASK
+#define _PTHREAD_PRIORITY_QOS_CLASS_MASK 0x003fff00 /* QoS class mask */
+#endif
+#ifndef _PTHREAD_PRIORITY_QOS_CLASS_SHIFT_32
+#define _PTHREAD_PRIORITY_QOS_CLASS_SHIFT_32 8
+#endif
+
+static inline
+qos_t canonicalize_kevent_qos(qos_t qos)
+{
+ unsigned long canonical;
+
+ /* preserve manager and overcommit flags in this case */
+ canonical = pthread_priority_canonicalize(qos, FALSE);
+ return (qos_t)canonical;
+}
+
+static inline
+kq_index_t qos_index_from_qos(qos_t qos, boolean_t propagation)
+{
+ kq_index_t qos_index;
+ unsigned long flags = 0;
+
+ qos_index = (kq_index_t)thread_qos_from_pthread_priority(
+ (unsigned long)qos, &flags);
+
+ if (!propagation && (flags & _PTHREAD_PRIORITY_EVENT_MANAGER_FLAG))
+ return KQWQ_QOS_MANAGER;
+
+ return qos_index;
+}
+
+static inline
+qos_t qos_from_qos_index(kq_index_t qos_index)
+{
+ if (qos_index == KQWQ_QOS_MANAGER)
+ return _PTHREAD_PRIORITY_EVENT_MANAGER_FLAG;
+
+ if (qos_index == 0)
+ return 0; /* Unspecified */
+
+ /* Should have support from pthread kext support */
+ return (1 << (qos_index - 1 +
+ _PTHREAD_PRIORITY_QOS_CLASS_SHIFT_32));
+}
+
+static inline
+kq_index_t qos_index_for_servicer(int qos_class, thread_t thread, int flags)
+{
+ kq_index_t qos_index;
+
+ if (flags & KEVENT_FLAG_WORKQ_MANAGER)
+ return KQWQ_QOS_MANAGER;
+
+ /*
+ * If the caller didn't pass in a class (legacy pthread kext)
+ * the we use the thread policy QoS of the current thread.
+ */
+ assert(qos_class != -1);
+ if (qos_class == -1)
+ qos_index = proc_get_thread_policy(thread,
+ TASK_POLICY_ATTRIBUTE,
+ TASK_POLICY_QOS);
+ else
+ qos_index = (kq_index_t)qos_class;
+
+ assert(qos_index > 0 && qos_index < KQWQ_NQOS);
+
+ return qos_index;
+}
+
/*
- * kqueue/note lock attributes and implementations
+ * kqueue/note lock implementations
*
- * kqueues have locks, while knotes have use counts
- * Most of the knote state is guarded by the object lock.
- * the knote "inuse" count and status use the kqueue lock.
+ * The kqueue lock guards the kq state, the state of its queues,
+ * and the kqueue-aware status and use counts of individual knotes.
+ *
+ * The kqueue workq lock is used to protect state guarding the
+ * interaction of the kqueue with the workq. This state cannot
+ * be guarded by the kq lock - as it needs to be taken when we
+ * already have the waitq set lock held (during the waitq hook
+ * callback). It might be better to use the waitq lock itself
+ * for this, but the IRQ requirements make that difficult).
+ *
+ * Knote flags, filter flags, and associated data are protected
+ * by the underlying object lock - and are only ever looked at
+ * by calling the filter to get a [consistent] snapshot of that
+ * data.
*/
lck_grp_attr_t * kq_lck_grp_attr;
lck_grp_t * kq_lck_grp;
lck_spin_unlock(&kq->kq_lock);
}
-/*
+
+/*
* Convert a kq lock to a knote use referece.
*
- * If the knote is being dropped, we can't get
- * a use reference, so just return with it
- * still locked.
- *
+ * If the knote is being dropped, or has
+ * vanished, we can't get a use reference.
+ * Just return with it still locked.
+ *
* - kq locked at entry
* - unlock on exit if we get the use reference
*/
static int
kqlock2knoteuse(struct kqueue *kq, struct knote *kn)
{
- if (kn->kn_status & KN_DROPPING)
- return 0;
- kn->kn_inuse++;
- kqunlock(kq);
- return 1;
- }
+ if (kn->kn_status & (KN_DROPPING | KN_VANISHED))
+ return (0);
-/*
- * Convert a kq lock to a knote use referece,
- * but wait for attach and drop events to complete.
- *
- * If the knote is being dropped, we can't get
- * a use reference, so just return with it
- * still locked.
- *
- * - kq locked at entry
- * - kq always unlocked on exit
- */
-static int
-kqlock2knoteusewait(struct kqueue *kq, struct knote *kn)
-{
- if ((kn->kn_status & (KN_DROPPING | KN_ATTACHING)) != 0) {
- kn->kn_status |= KN_USEWAIT;
- wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, &kn->kn_status, THREAD_UNINT, 0);
- kqunlock(kq);
- thread_block(THREAD_CONTINUE_NULL);
- return 0;
- }
+ assert(kn->kn_status & KN_ATTACHED);
kn->kn_inuse++;
kqunlock(kq);
- return 1;
- }
+ return (1);
+}
-/*
+/*
* Convert from a knote use reference back to kq lock.
*
* Drop a use reference and wake any waiters if
* this is the last one.
*
- * The exit return indicates if the knote is
- * still alive - but the kqueue lock is taken
- * unconditionally.
+ * If someone is trying to drop the knote, but the
+ * caller has events they must deliver, take
+ * responsibility for the drop later - and wake the
+ * other attempted dropper in a manner that informs
+ * him of the transfer of responsibility.
+ *
+ * The exit return indicates if the knote is still alive
+ * (or if not, the other dropper has been given the green
+ * light to drop it).
+ *
+ * The kqueue lock is re-taken unconditionally.
*/
static int
-knoteuse2kqlock(struct kqueue *kq, struct knote *kn)
+knoteuse2kqlock(struct kqueue *kq, struct knote *kn, int steal_drop)
{
+ int dropped = 0;
+
kqlock(kq);
if (--kn->kn_inuse == 0) {
+
if ((kn->kn_status & KN_ATTACHING) != 0) {
kn->kn_status &= ~KN_ATTACHING;
}
+
if ((kn->kn_status & KN_USEWAIT) != 0) {
+ wait_result_t result;
+
+ /* If we need to, try and steal the drop */
+ if (kn->kn_status & KN_DROPPING) {
+ if (steal_drop && !(kn->kn_status & KN_STOLENDROP)) {
+ kn->kn_status |= KN_STOLENDROP;
+ } else {
+ dropped = 1;
+ }
+ }
+
+ /* wakeup indicating if ANY USE stole the drop */
+ result = (kn->kn_status & KN_STOLENDROP) ?
+ THREAD_RESTART : THREAD_AWAKENED;
+
kn->kn_status &= ~KN_USEWAIT;
- wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, &kn->kn_status, THREAD_AWAKENED);
+ waitq_wakeup64_all((struct waitq *)&kq->kq_wqs,
+ CAST_EVENT64_T(&kn->kn_status),
+ result,
+ WAITQ_ALL_PRIORITIES);
+ } else {
+ /* should have seen use-wait if dropping with use refs */
+ assert((kn->kn_status & (KN_DROPPING|KN_STOLENDROP)) == 0);
+ }
+
+ } else if (kn->kn_status & KN_DROPPING) {
+ /* not the last ref but want to steal a drop if present */
+ if (steal_drop && ((kn->kn_status & KN_STOLENDROP) == 0)) {
+ kn->kn_status |= KN_STOLENDROP;
+
+ /* but we now have to wait to be the last ref */
+ kn->kn_status |= KN_USEWAIT;
+ waitq_assert_wait64((struct waitq *)&kq->kq_wqs,
+ CAST_EVENT64_T(&kn->kn_status),
+ THREAD_UNINT, TIMEOUT_WAIT_FOREVER);
+ kqunlock(kq);
+ thread_block(THREAD_CONTINUE_NULL);
+ kqlock(kq);
+ } else {
+ dropped = 1;
}
}
- return ((kn->kn_status & KN_DROPPING) == 0);
- }
-/*
- * Convert a kq lock to a knote drop referece.
+ return (!dropped);
+}
+
+/*
+ * Convert a kq lock to a knote use reference
+ * (for the purpose of detaching AND vanishing it).
+ *
+ * If the knote is being dropped, we can't get
+ * a detach reference, so wait for the knote to
+ * finish dropping before returning.
+ *
+ * If the knote is being used for other purposes,
+ * we cannot detach it until those uses are done
+ * as well. Again, just wait for them to finish
+ * (caller will start over at lookup).
+ *
+ * - kq locked at entry
+ * - unlocked on exit
+ */
+static int
+kqlock2knotedetach(struct kqueue *kq, struct knote *kn)
+{
+ if ((kn->kn_status & KN_DROPPING) || kn->kn_inuse) {
+ /* have to wait for dropper or current uses to go away */
+ kn->kn_status |= KN_USEWAIT;
+ waitq_assert_wait64((struct waitq *)&kq->kq_wqs,
+ CAST_EVENT64_T(&kn->kn_status),
+ THREAD_UNINT, TIMEOUT_WAIT_FOREVER);
+ kqunlock(kq);
+ thread_block(THREAD_CONTINUE_NULL);
+ return (0);
+ }
+ assert((kn->kn_status & KN_VANISHED) == 0);
+ assert(kn->kn_status & KN_ATTACHED);
+ kn->kn_status &= ~KN_ATTACHED;
+ kn->kn_status |= KN_VANISHED;
+ kn->kn_inuse++;
+ kqunlock(kq);
+ return (1);
+}
+
+/*
+ * Convert a kq lock to a knote drop reference.
*
* If the knote is in use, wait for the use count
* to subside. We first mark our intention to drop
* it - keeping other users from "piling on."
* If we are too late, we have to wait for the
* other drop to complete.
- *
+ *
* - kq locked at entry
* - always unlocked on exit.
* - caller can't hold any locks that would prevent
kqlock2knotedrop(struct kqueue *kq, struct knote *kn)
{
int oktodrop;
+ wait_result_t result;
oktodrop = ((kn->kn_status & (KN_DROPPING | KN_ATTACHING)) == 0);
+ /* if another thread is attaching, they will become the dropping thread */
kn->kn_status |= KN_DROPPING;
+ knote_unsuppress(kn);
+ knote_dequeue(kn);
if (oktodrop) {
if (kn->kn_inuse == 0) {
kqunlock(kq);
- return oktodrop;
+ return (oktodrop);
}
}
kn->kn_status |= KN_USEWAIT;
- wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, &kn->kn_status, THREAD_UNINT, 0);
+ waitq_assert_wait64((struct waitq *)&kq->kq_wqs,
+ CAST_EVENT64_T(&kn->kn_status),
+ THREAD_UNINT, TIMEOUT_WAIT_FOREVER);
kqunlock(kq);
- thread_block(THREAD_CONTINUE_NULL);
- return oktodrop;
+ result = thread_block(THREAD_CONTINUE_NULL);
+ /* THREAD_RESTART == another thread stole the knote drop */
+ return (result == THREAD_AWAKENED);
}
-
-/*
+
+#if 0
+/*
* Release a knote use count reference.
*/
static void
knote_put(struct knote *kn)
{
- struct kqueue *kq = kn->kn_kq;
+ struct kqueue *kq = knote_get_kq(kn);
kqlock(kq);
if (--kn->kn_inuse == 0) {
if ((kn->kn_status & KN_USEWAIT) != 0) {
kn->kn_status &= ~KN_USEWAIT;
- wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, &kn->kn_status, THREAD_AWAKENED);
+ waitq_wakeup64_all((struct waitq *)&kq->kq_wqs,
+ CAST_EVENT64_T(&kn->kn_status),
+ THREAD_AWAKENED,
+ WAITQ_ALL_PRIORITIES);
}
}
kqunlock(kq);
- }
+}
+#endif
static int
filt_fileattach(struct knote *kn)
{
-
return (fo_kqfilter(kn->kn_fp, kn, vfs_context_current()));
}
-#define f_flag f_fglob->fg_flag
-#define f_type f_fglob->fg_type
-#define f_msgcount f_fglob->fg_msgcount
-#define f_cred f_fglob->fg_cred
-#define f_ops f_fglob->fg_ops
-#define f_offset f_fglob->fg_offset
-#define f_data f_fglob->fg_data
+#define f_flag f_fglob->fg_flag
+#define f_msgcount f_fglob->fg_msgcount
+#define f_cred f_fglob->fg_cred
+#define f_ops f_fglob->fg_ops
+#define f_offset f_fglob->fg_offset
+#define f_data f_fglob->fg_data
static void
filt_kqdetach(struct knote *kn)
{
- struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
+ struct kqfile *kqf = (struct kqfile *)kn->kn_fp->f_data;
+ struct kqueue *kq = &kqf->kqf_kqueue;
kqlock(kq);
- KNOTE_DETACH(&kq->kq_sel.si_note, kn);
+ KNOTE_DETACH(&kqf->kqf_sel.si_note, kn);
kqunlock(kq);
}
filt_kqueue(struct knote *kn, __unused long hint)
{
struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
+ int count;
+
+ count = kq->kq_count;
+ return (count > 0);
+}
+
+static int
+filt_kqtouch(struct knote *kn, struct kevent_internal_s *kev)
+{
+#pragma unused(kev)
+ struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
+ int res;
+
+ kqlock(kq);
+ kn->kn_data = kq->kq_count;
+ if ((kn->kn_status & KN_UDATA_SPECIFIC) == 0)
+ kn->kn_udata = kev->udata;
+ res = (kn->kn_data > 0);
+
+ kqunlock(kq);
+
+ return res;
+}
+
+static int
+filt_kqprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev)
+{
+#pragma unused(data)
+ struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
+ int res;
+ kqlock(kq);
kn->kn_data = kq->kq_count;
- return (kn->kn_data > 0);
+ res = (kn->kn_data > 0);
+ if (res) {
+ *kev = kn->kn_kevent;
+ if (kn->kn_flags & EV_CLEAR)
+ kn->kn_data = 0;
+ }
+ kqunlock(kq);
+
+ return res;
}
static int
struct proc *p;
assert(PID_MAX < NOTE_PDATAMASK);
-
- if ((kn->kn_sfflags & (NOTE_TRACK | NOTE_TRACKERR | NOTE_CHILD)) != 0)
- return(ENOTSUP);
+
+ if ((kn->kn_sfflags & (NOTE_TRACK | NOTE_TRACKERR | NOTE_CHILD)) != 0) {
+ kn->kn_flags = EV_ERROR;
+ kn->kn_data = ENOTSUP;
+ return 0;
+ }
p = proc_find(kn->kn_id);
if (p == NULL) {
- return (ESRCH);
+ kn->kn_flags = EV_ERROR;
+ kn->kn_data = ESRCH;
+ return 0;
}
+ const int NoteExitStatusBits = NOTE_EXIT | NOTE_EXITSTATUS;
+
+ if ((kn->kn_sfflags & NoteExitStatusBits) == NoteExitStatusBits)
+ do {
+ pid_t selfpid = proc_selfpid();
+
+ if (p->p_ppid == selfpid)
+ break; /* parent => ok */
+
+ if ((p->p_lflag & P_LTRACED) != 0 &&
+ (p->p_oppid == selfpid))
+ break; /* parent-in-waiting => ok */
+
+ proc_rele(p);
+ kn->kn_flags = EV_ERROR;
+ kn->kn_data = EACCES;
+ return 0;
+ } while (0);
+
proc_klist_lock();
- kn->kn_flags |= EV_CLEAR; /* automatically set */
kn->kn_ptr.p_proc = p; /* store the proc handle */
KNOTE_ATTACH(&p->p_klist, kn);
proc_rele(p);
+ /*
+ * only captures edge-triggered events after this point
+ * so it can't already be fired.
+ */
return (0);
}
+
/*
* The knote may be attached to a different process, which may exit,
* leaving nothing for the knote to be attached to. In that case,
struct proc *p;
proc_klist_lock();
-
+
p = kn->kn_ptr.p_proc;
if (p != PROC_NULL) {
kn->kn_ptr.p_proc = PROC_NULL;
static int
filt_proc(struct knote *kn, long hint)
{
- /* hint is 0 when called from above */
- if (hint != 0) {
- u_int event;
+ u_int event;
- /* ALWAYS CALLED WITH proc_klist_lock when (hint != 0) */
+ /* ALWAYS CALLED WITH proc_klist_lock */
- /*
- * mask off extra data
- */
- event = (u_int)hint & NOTE_PCTRLMASK;
+ /*
+ * Note: a lot of bits in hint may be obtained from the knote
+ * To free some of those bits, see <rdar://problem/12592988> Freeing up
+ * bits in hint for filt_proc
+ *
+ * mask off extra data
+ */
+ event = (u_int)hint & NOTE_PCTRLMASK;
+
+ /*
+ * termination lifecycle events can happen while a debugger
+ * has reparented a process, in which case notifications
+ * should be quashed except to the tracing parent. When
+ * the debugger reaps the child (either via wait4(2) or
+ * process exit), the child will be reparented to the original
+ * parent and these knotes re-fired.
+ */
+ if (event & NOTE_EXIT) {
+ if ((kn->kn_ptr.p_proc->p_oppid != 0)
+ && (knote_get_kq(kn)->kq_p->p_pid != kn->kn_ptr.p_proc->p_ppid)) {
+ /*
+ * This knote is not for the current ptrace(2) parent, ignore.
+ */
+ return 0;
+ }
+ }
+
+ /*
+ * if the user is interested in this event, record it.
+ */
+ if (kn->kn_sfflags & event)
+ kn->kn_fflags |= event;
+
+#pragma clang diagnostic push
+#pragma clang diagnostic ignored "-Wdeprecated-declarations"
+ if ((event == NOTE_REAP) || ((event == NOTE_EXIT) && !(kn->kn_sfflags & NOTE_REAP))) {
+ kn->kn_flags |= (EV_EOF | EV_ONESHOT);
+ }
+#pragma clang diagnostic pop
- /*
- * if the user is interested in this event, record it.
- */
- if (kn->kn_sfflags & event)
- kn->kn_fflags |= event;
- if (event == NOTE_REAP || (event == NOTE_EXIT && !(kn->kn_sfflags & NOTE_REAP))) {
- kn->kn_flags |= (EV_EOF | EV_ONESHOT);
+ /*
+ * The kernel has a wrapper in place that returns the same data
+ * as is collected here, in kn_data. Any changes to how
+ * NOTE_EXITSTATUS and NOTE_EXIT_DETAIL are collected
+ * should also be reflected in the proc_pidnoteexit() wrapper.
+ */
+ if (event == NOTE_EXIT) {
+ kn->kn_data = 0;
+ if ((kn->kn_sfflags & NOTE_EXITSTATUS) != 0) {
+ kn->kn_fflags |= NOTE_EXITSTATUS;
+ kn->kn_data |= (hint & NOTE_PDATAMASK);
+ }
+ if ((kn->kn_sfflags & NOTE_EXIT_DETAIL) != 0) {
+ kn->kn_fflags |= NOTE_EXIT_DETAIL;
+ if ((kn->kn_ptr.p_proc->p_lflag &
+ P_LTERM_DECRYPTFAIL) != 0) {
+ kn->kn_data |= NOTE_EXIT_DECRYPTFAIL;
+ }
+ if ((kn->kn_ptr.p_proc->p_lflag &
+ P_LTERM_JETSAM) != 0) {
+ kn->kn_data |= NOTE_EXIT_MEMORY;
+ switch (kn->kn_ptr.p_proc->p_lflag & P_JETSAM_MASK) {
+ case P_JETSAM_VMPAGESHORTAGE:
+ kn->kn_data |= NOTE_EXIT_MEMORY_VMPAGESHORTAGE;
+ break;
+ case P_JETSAM_VMTHRASHING:
+ kn->kn_data |= NOTE_EXIT_MEMORY_VMTHRASHING;
+ break;
+ case P_JETSAM_FCTHRASHING:
+ kn->kn_data |= NOTE_EXIT_MEMORY_FCTHRASHING;
+ break;
+ case P_JETSAM_VNODE:
+ kn->kn_data |= NOTE_EXIT_MEMORY_VNODE;
+ break;
+ case P_JETSAM_HIWAT:
+ kn->kn_data |= NOTE_EXIT_MEMORY_HIWAT;
+ break;
+ case P_JETSAM_PID:
+ kn->kn_data |= NOTE_EXIT_MEMORY_PID;
+ break;
+ case P_JETSAM_IDLEEXIT:
+ kn->kn_data |= NOTE_EXIT_MEMORY_IDLE;
+ break;
+ }
+ }
+ if ((kn->kn_ptr.p_proc->p_csflags &
+ CS_KILLED) != 0) {
+ kn->kn_data |= NOTE_EXIT_CSERROR;
+ }
}
}
- /* atomic check, no locking need when called from above */
- return (kn->kn_fflags != 0);
+ /* if we have any matching state, activate the knote */
+ return (kn->kn_fflags != 0);
+}
+
+static int
+filt_proctouch(struct knote *kn, struct kevent_internal_s *kev)
+{
+ int res;
+
+ proc_klist_lock();
+
+ /* accept new filter flags and mask off output events no long interesting */
+ kn->kn_sfflags = kev->fflags;
+ if ((kn->kn_status & KN_UDATA_SPECIFIC) == 0)
+ kn->kn_udata = kev->udata;
+
+ /* restrict the current results to the (smaller?) set of new interest */
+ /*
+ * For compatibility with previous implementations, we leave kn_fflags
+ * as they were before.
+ */
+ //kn->kn_fflags &= kn->kn_sfflags;
+
+ res = (kn->kn_fflags != 0);
+
+ proc_klist_unlock();
+
+ return res;
}
+static int
+filt_procprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev)
+{
+#pragma unused(data)
+ int res;
+
+ proc_klist_lock();
+ res = (kn->kn_fflags != 0);
+ if (res) {
+ *kev = kn->kn_kevent;
+ kn->kn_flags |= EV_CLEAR; /* automatically set */
+ kn->kn_fflags = 0;
+ kn->kn_data = 0;
+ }
+ proc_klist_unlock();
+ return res;
+}
/*
* filt_timervalidate - process data from user
- *
- * Converts to either interval or deadline format.
- *
+ *
+ * Converts to either interval or deadline format.
+ *
* The saved-data field in the knote contains the
* time value. The saved filter-flags indicates
* the unit of measurement.
*
- * After validation, either the saved-data field
- * contains the interval in absolute time, or ext[0]
- * contains the expected deadline. If that deadline
+ * After validation, either the saved-data field
+ * contains the interval in absolute time, or ext[0]
+ * contains the expected deadline. If that deadline
* is in the past, ext[0] is 0.
*
* Returns EINVAL for unrecognized units of time.
filt_timervalidate(struct knote *kn)
{
uint64_t multiplier;
- uint64_t raw;
+ uint64_t raw = 0;
switch (kn->kn_sfflags & (NOTE_SECONDS|NOTE_USECONDS|NOTE_NSECONDS)) {
case NOTE_SECONDS:
multiplier = NSEC_PER_SEC / 1000;
break;
default:
- return EINVAL;
+ return (EINVAL);
+ }
+
+ /* transform the slop delta(leeway) in kn_ext[1] if passed to same time scale */
+ if(kn->kn_sfflags & NOTE_LEEWAY){
+ nanoseconds_to_absolutetime((uint64_t)kn->kn_ext[1] * multiplier, &raw);
+ kn->kn_ext[1] = raw;
}
nanoseconds_to_absolutetime((uint64_t)kn->kn_sdata * multiplier, &raw);
uint64_t now;
clock_get_calendar_nanotime(&seconds, &nanoseconds);
- nanoseconds_to_absolutetime((uint64_t)seconds * NSEC_PER_SEC +
- nanoseconds, &now);
+ nanoseconds_to_absolutetime((uint64_t)seconds * NSEC_PER_SEC +
+ nanoseconds, &now);
- if (raw < now) {
- /* time has already passed */
- kn->kn_ext[0] = 0;
- } else {
+ /* if time is in the future */
+ if (now < raw) {
raw -= now;
- clock_absolutetime_interval_to_deadline(raw,
- &kn->kn_ext[0]);
+
+ if (kn->kn_sfflags & NOTE_MACH_CONTINUOUS_TIME) {
+ clock_continuoustime_interval_to_deadline(raw,
+ &kn->kn_ext[0]);
+ } else {
+ clock_absolutetime_interval_to_deadline(raw,
+ &kn->kn_ext[0]);
+ }
}
} else {
kn->kn_sdata = raw;
}
- return 0;
+ return (0);
}
/*
*
* Timer filter lock is held.
*/
-static void
-filt_timerupdate(struct knote *kn)
+static void
+filt_timerupdate(struct knote *kn, int num_fired)
{
+ assert(num_fired > 0);
+
/* if there's no interval, deadline is just in kn_ext[0] */
if (kn->kn_sdata == 0)
return;
/* if timer hasn't fired before, fire in interval nsecs */
if (kn->kn_ext[0] == 0) {
- clock_absolutetime_interval_to_deadline(kn->kn_sdata,
- &kn->kn_ext[0]);
+ assert(num_fired == 1);
+ if (kn->kn_sfflags & NOTE_MACH_CONTINUOUS_TIME) {
+ clock_continuoustime_interval_to_deadline(kn->kn_sdata,
+ &kn->kn_ext[0]);
+ } else {
+ clock_absolutetime_interval_to_deadline(kn->kn_sdata,
+ &kn->kn_ext[0]);
+ }
} else {
- /*
- * If timer has fired before, schedule the next pop
- * relative to the last intended deadline.
+ /*
+ * If timer has fired before, schedule the next pop
+ * relative to the last intended deadline.
*
- * We could check for whether the deadline has expired,
+ * We could check for whether the deadline has expired,
* but the thread call layer can handle that.
+ *
+ * Go forward an additional number of periods, in the case the
+ * timer fired multiple times while the system was asleep.
*/
- kn->kn_ext[0] += kn->kn_sdata;
+ kn->kn_ext[0] += (kn->kn_sdata * num_fired);
}
}
-/*
+/*
* filt_timerexpire - the timer callout routine
*
- * Just propagate the timer event into the knote
- * filter routine (by going through the knote
- * synchronization point). Pass a hint to
- * indicate this is a real event, not just a
- * query from above.
+ * Just propagate the timer event into the knote
+ * filter routine (by going through the knote
+ * synchronization point). Pass a hint to
+ * indicate this is a real event, not just a
+ * query from above.
*/
static void
filt_timerexpire(void *knx, __unused void *spare)
/* no "object" for timers, so fake a list */
SLIST_INIT(&timer_list);
- SLIST_INSERT_HEAD(&timer_list, kn, kn_selnext);
+ SLIST_INSERT_HEAD(&timer_list, kn, kn_selnext);
KNOTE(&timer_list, 1);
/* if someone is waiting for timer to pop */
if (kn->kn_hookid & TIMER_CANCELWAIT) {
- struct kqueue *kq = kn->kn_kq;
- wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, &kn->kn_hook,
- THREAD_AWAKENED);
+ struct kqueue *kq = knote_get_kq(kn);
+ waitq_wakeup64_all((struct waitq *)&kq->kq_wqs,
+ CAST_EVENT64_T(&kn->kn_hook),
+ THREAD_AWAKENED,
+ WAITQ_ALL_PRIORITIES);
}
filt_timerunlock();
static void
filt_timercancel(struct knote *kn)
{
- struct kqueue *kq = kn->kn_kq;
+ struct kqueue *kq = knote_get_kq(kn);
thread_call_t callout = kn->kn_hook;
boolean_t cancelled;
} else {
/* we have to wait for the expire routine. */
kn->kn_hookid |= TIMER_CANCELWAIT;
- wait_queue_assert_wait((wait_queue_t)kq->kq_wqs,
- &kn->kn_hook, THREAD_UNINT, 0);
+ waitq_assert_wait64((struct waitq *)&kq->kq_wqs,
+ CAST_EVENT64_T(&kn->kn_hook),
+ THREAD_UNINT, TIMEOUT_WAIT_FOREVER);
filt_timerunlock();
thread_block(THREAD_CONTINUE_NULL);
filt_timerlock();
/*
* Allocate a thread call for the knote's lifetime, and kick off the timer.
- */
+ */
static int
filt_timerattach(struct knote *kn)
{
thread_call_t callout;
int error;
+ int res;
callout = thread_call_allocate(filt_timerexpire, kn);
- if (NULL == callout)
- return (ENOMEM);
-
+ if (NULL == callout) {
+ kn->kn_flags = EV_ERROR;
+ kn->kn_data = ENOMEM;
+ return 0;
+ }
+
filt_timerlock();
error = filt_timervalidate(kn);
- if (error) {
+ if (error != 0) {
filt_timerunlock();
- return (error);
+ thread_call_free(callout);
+ kn->kn_flags = EV_ERROR;
+ kn->kn_data = error;
+ return 0;
}
kn->kn_hook = (void*)callout;
/* absolute=EV_ONESHOT */
if (kn->kn_sfflags & NOTE_ABSOLUTE)
- kn->kn_flags |= EV_ONESHOT;
+ kn->kn_flags |= EV_ONESHOT;
- filt_timerupdate(kn);
+ filt_timerupdate(kn, 1);
if (kn->kn_ext[0]) {
kn->kn_flags |= EV_CLEAR;
- thread_call_enter_delayed(callout, kn->kn_ext[0]);
+ unsigned int timer_flags = 0;
+ if (kn->kn_sfflags & NOTE_CRITICAL)
+ timer_flags |= THREAD_CALL_DELAY_USER_CRITICAL;
+ else if (kn->kn_sfflags & NOTE_BACKGROUND)
+ timer_flags |= THREAD_CALL_DELAY_USER_BACKGROUND;
+ else
+ timer_flags |= THREAD_CALL_DELAY_USER_NORMAL;
+
+ if (kn->kn_sfflags & NOTE_LEEWAY)
+ timer_flags |= THREAD_CALL_DELAY_LEEWAY;
+ if (kn->kn_sfflags & NOTE_MACH_CONTINUOUS_TIME)
+ timer_flags |= THREAD_CALL_CONTINUOUS;
+
+ thread_call_enter_delayed_with_leeway(callout, NULL,
+ kn->kn_ext[0], kn->kn_ext[1], timer_flags);
+
kn->kn_hookid |= TIMER_RUNNING;
} else {
/* fake immediate */
kn->kn_data = 1;
}
+ res = (kn->kn_data > 0);
+
filt_timerunlock();
- return (0);
+
+ return res;
}
/*
callout = (thread_call_t)kn->kn_hook;
filt_timercancel(kn);
-
- filt_timerunlock();
+
+ filt_timerunlock();
thread_call_free(callout);
}
+static int filt_timer_num_fired(struct knote *kn)
+{
+ /* by default we fire a timer once */
+ int num_fired = 1;
+
+ /*
+ * When the time base is mach_continuous_time, we have to calculate
+ * the number of times the timer fired while we were asleep.
+ */
+ if ((kn->kn_sfflags & NOTE_MACH_CONTINUOUS_TIME) &&
+ (kn->kn_sdata != 0) &&
+ (kn->kn_ext[0] != 0))
+ {
+ const uint64_t now = mach_continuous_time();
+ // time for timer to fire (right now) is kn_ext[0]
+ // kn_sdata is period for timer to fire
+ assert(now >= kn->kn_ext[0]);
+ assert(kn->kn_sdata > 0);
+
+ const uint64_t overrun_ticks = now - kn->kn_ext[0];
+ const uint64_t kn_sdata = kn->kn_sdata;
+
+ if (overrun_ticks < kn_sdata) {
+ num_fired = 1;
+ } else if (overrun_ticks < (kn_sdata << 1)) {
+ num_fired = 2;
+ } else {
+ num_fired = (overrun_ticks / kn_sdata) + 1;
+ }
+ }
+ return num_fired;
+}
+
+/*
+ * filt_timer - post events to a timer knote
+ *
+ * Count the timer fire and re-arm as requested.
+ * This always crosses the threshold of interest,
+ * so always return an indication that the knote
+ * should be activated (if not already).
+ */
static int
-filt_timer(struct knote *kn, long hint)
+filt_timer(
+ struct knote *kn,
+ long hint)
{
- int result;
-
- if (hint) {
- /* real timer pop -- timer lock held by filt_timerexpire */
+#pragma unused(hint)
- kn->kn_data++;
+ /* real timer pop -- timer lock held by filt_timerexpire */
+ int num_fired = filt_timer_num_fired(kn);
+ kn->kn_data += num_fired;
- if (((kn->kn_hookid & TIMER_CANCELWAIT) == 0) &&
- ((kn->kn_flags & EV_ONESHOT) == 0)) {
+ if (((kn->kn_hookid & TIMER_CANCELWAIT) == 0) &&
+ ((kn->kn_flags & EV_ONESHOT) == 0)) {
+ /* evaluate next time to fire */
+ filt_timerupdate(kn, num_fired);
- /* evaluate next time to fire */
- filt_timerupdate(kn);
-
- if (kn->kn_ext[0]) {
- /* keep the callout and re-arm */
- thread_call_enter_delayed(kn->kn_hook,
- kn->kn_ext[0]);
- kn->kn_hookid |= TIMER_RUNNING;
- }
- }
+ if (kn->kn_ext[0]) {
+ unsigned int timer_flags = 0;
- return 1;
- }
+ /* keep the callout and re-arm */
+ if (kn->kn_sfflags & NOTE_CRITICAL)
+ timer_flags |= THREAD_CALL_DELAY_USER_CRITICAL;
+ else if (kn->kn_sfflags & NOTE_BACKGROUND)
+ timer_flags |= THREAD_CALL_DELAY_USER_BACKGROUND;
+ else
+ timer_flags |= THREAD_CALL_DELAY_USER_NORMAL;
- /* user-query */
- filt_timerlock();
+ if (kn->kn_sfflags & NOTE_LEEWAY)
+ timer_flags |= THREAD_CALL_DELAY_LEEWAY;
- result = (kn->kn_data != 0);
+ thread_call_enter_delayed_with_leeway(kn->kn_hook, NULL,
+ kn->kn_ext[0], kn->kn_ext[1], timer_flags);
- filt_timerunlock();
- return result;
+ kn->kn_hookid |= TIMER_RUNNING;
+ }
+ }
+ return (1);
}
+
/*
- * filt_timertouch - update knote with new user input
+ * filt_timertouch - update timer knote with new user input
*
- * Cancel and restart the timer based on new user data. When
- * the user picks up a knote, clear the count of how many timer
- * pops have gone off (in kn_data).
+ * Cancel and restart the timer based on new user data. When
+ * the user picks up a knote, clear the count of how many timer
+ * pops have gone off (in kn_data).
*/
-static void
-filt_timertouch(struct knote *kn, struct kevent64_s *kev, long type)
+static int
+filt_timertouch(
+ struct knote *kn,
+ struct kevent_internal_s *kev)
{
int error;
+ int res;
+
filt_timerlock();
- switch (type) {
- case EVENT_REGISTER:
- /* cancel current call */
- filt_timercancel(kn);
+ /* cancel current call */
+ filt_timercancel(kn);
- /* recalculate deadline */
- kn->kn_sdata = kev->data;
- kn->kn_sfflags = kev->fflags;
+ /* capture the new values used to compute deadline */
+ kn->kn_sdata = kev->data;
+ kn->kn_sfflags = kev->fflags;
+ kn->kn_ext[0] = kev->ext[0];
+ kn->kn_ext[1] = kev->ext[1];
- error = filt_timervalidate(kn);
- if (error) {
- /* no way to report error, so mark it in the knote */
- kn->kn_flags |= EV_ERROR;
- kn->kn_data = error;
- break;
- }
+ if ((kn->kn_status & KN_UDATA_SPECIFIC) == 0)
+ kn->kn_udata = kev->udata;
- /* start timer if necessary */
- filt_timerupdate(kn);
- if (kn->kn_ext[0]) {
- thread_call_enter_delayed(kn->kn_hook, kn->kn_ext[0]);
- kn->kn_hookid |= TIMER_RUNNING;
- } else {
- /* pretend the timer has fired */
- kn->kn_data = 1;
- }
+ /* recalculate deadline */
+ error = filt_timervalidate(kn);
+ if (error) {
+ /* no way to report error, so mark it in the knote */
+ filt_timerunlock();
+ kn->kn_flags |= EV_ERROR;
+ kn->kn_data = error;
+ return 1;
+ }
- break;
+ /* start timer if necessary */
+ filt_timerupdate(kn, 1);
- case EVENT_PROCESS:
- /* reset the timer pop count in kn_data */
- *kev = kn->kn_kevent;
- kev->ext[0] = 0;
- kn->kn_data = 0;
- if (kn->kn_flags & EV_CLEAR)
- kn->kn_fflags = 0;
- break;
- default:
- panic("filt_timertouch() - invalid type (%ld)", type);
- break;
+ if (kn->kn_ext[0]) {
+ unsigned int timer_flags = 0;
+ if (kn->kn_sfflags & NOTE_CRITICAL)
+ timer_flags |= THREAD_CALL_DELAY_USER_CRITICAL;
+ else if (kn->kn_sfflags & NOTE_BACKGROUND)
+ timer_flags |= THREAD_CALL_DELAY_USER_BACKGROUND;
+ else
+ timer_flags |= THREAD_CALL_DELAY_USER_NORMAL;
+
+ if (kn->kn_sfflags & NOTE_LEEWAY)
+ timer_flags |= THREAD_CALL_DELAY_LEEWAY;
+
+ thread_call_enter_delayed_with_leeway(kn->kn_hook, NULL,
+ kn->kn_ext[0], kn->kn_ext[1], timer_flags);
+
+ kn->kn_hookid |= TIMER_RUNNING;
+ } else {
+ /* pretend the timer has fired */
+ kn->kn_data = 1;
+ }
+
+ /* capture if already fired */
+ res = (kn->kn_data > 0);
+
+ filt_timerunlock();
+
+ return res;
+}
+
+/*
+ * filt_timerprocess - query state of knote and snapshot event data
+ *
+ * Determine if the timer has fired in the past, snapshot the state
+ * of the kevent for returning to user-space, and clear pending event
+ * counters for the next time.
+ */
+static int
+filt_timerprocess(
+ struct knote *kn,
+ __unused struct filt_process_s *data,
+ struct kevent_internal_s *kev)
+{
+ filt_timerlock();
+
+ /* user-query */
+ if (kn->kn_data == 0) {
+ filt_timerunlock();
+ return 0;
}
+ /*
+ * Copy out the interesting kevent state,
+ * but don't leak out the raw time calculations.
+ */
+ *kev = kn->kn_kevent;
+ kev->ext[0] = 0;
+ /* kev->ext[1] = 0; JMM - shouldn't we hide this too? */
+
+ /*
+ * reset the timer pop count in kn_data
+ * and (optionally) clear the fflags.
+ */
+ kn->kn_data = 0;
+ if (kn->kn_flags & EV_CLEAR)
+ kn->kn_fflags = 0;
+
filt_timerunlock();
+ return 1;
}
static void
lck_mtx_unlock(&_filt_timerlock);
}
+static void
+filt_userlock(void)
+{
+ lck_spin_lock(&_filt_userlock);
+}
+
+static void
+filt_userunlock(void)
+{
+ lck_spin_unlock(&_filt_userlock);
+}
+
static int
filt_userattach(struct knote *kn)
{
- /* EVFILT_USER knotes are not attached to anything in the kernel */
- kn->kn_hook = NULL;
- if (kn->kn_fflags & NOTE_TRIGGER || kn->kn_flags & EV_TRIGGER) {
+ /* EVFILT_USER knotes are not attached to anything in the kernel */
+ /* Cant discover this knote until after attach - so no lock needed */
+ kn->kn_hook = NULL;
+ if (kn->kn_fflags & NOTE_TRIGGER) {
kn->kn_hookid = 1;
} else {
kn->kn_hookid = 0;
}
- return 0;
+ return (kn->kn_hookid);
}
static void
filt_userdetach(__unused struct knote *kn)
{
- /* EVFILT_USER knotes are not attached to anything in the kernel */
+ /* EVFILT_USER knotes are not attached to anything in the kernel */
}
static int
-filt_user(struct knote *kn, __unused long hint)
+filt_user(
+ __unused struct knote *kn,
+ __unused long hint)
{
- return kn->kn_hookid;
+ panic("filt_user");
+ return 0;
}
-static void
-filt_usertouch(struct knote *kn, struct kevent64_s *kev, long type)
-{
- int ffctrl;
- switch (type) {
- case EVENT_REGISTER:
- if (kev->fflags & NOTE_TRIGGER || kev->flags & EV_TRIGGER) {
- kn->kn_hookid = 1;
- }
-
- ffctrl = kev->fflags & NOTE_FFCTRLMASK;
- kev->fflags &= NOTE_FFLAGSMASK;
- switch (ffctrl) {
- case NOTE_FFNOP:
- break;
- case NOTE_FFAND:
- OSBitAndAtomic(kev->fflags, &kn->kn_sfflags);
- break;
- case NOTE_FFOR:
- OSBitOrAtomic(kev->fflags, &kn->kn_sfflags);
- break;
- case NOTE_FFCOPY:
- kn->kn_sfflags = kev->fflags;
- break;
- }
- kn->kn_sdata = kev->data;
- break;
- case EVENT_PROCESS:
- *kev = kn->kn_kevent;
- kev->fflags = (volatile UInt32)kn->kn_sfflags;
- kev->data = kn->kn_sdata;
- if (kn->kn_flags & EV_CLEAR) {
- kn->kn_hookid = 0;
- kn->kn_data = 0;
- kn->kn_fflags = 0;
- }
- break;
- default:
- panic("filt_usertouch() - invalid type (%ld)", type);
- break;
- }
+static int
+filt_usertouch(
+ struct knote *kn,
+ struct kevent_internal_s *kev)
+{
+ uint32_t ffctrl;
+ int fflags;
+ int active;
+
+ filt_userlock();
+
+ ffctrl = kev->fflags & NOTE_FFCTRLMASK;
+ fflags = kev->fflags & NOTE_FFLAGSMASK;
+ switch (ffctrl) {
+ case NOTE_FFNOP:
+ break;
+ case NOTE_FFAND:
+ kn->kn_sfflags &= fflags;
+ break;
+ case NOTE_FFOR:
+ kn->kn_sfflags |= fflags;
+ break;
+ case NOTE_FFCOPY:
+ kn->kn_sfflags = fflags;
+ break;
+ }
+ kn->kn_sdata = kev->data;
+
+ if ((kn->kn_status & KN_UDATA_SPECIFIC) == 0)
+ kn->kn_udata = kev->udata;
+
+ if (kev->fflags & NOTE_TRIGGER) {
+ kn->kn_hookid = 1;
+ }
+ active = kn->kn_hookid;
+
+ filt_userunlock();
+
+ return (active);
+}
+
+static int
+filt_userprocess(
+ struct knote *kn,
+ __unused struct filt_process_s *data,
+ struct kevent_internal_s *kev)
+{
+ filt_userlock();
+
+ if (kn->kn_hookid == 0) {
+ filt_userunlock();
+ return 0;
+ }
+
+ *kev = kn->kn_kevent;
+ kev->fflags = (volatile UInt32)kn->kn_sfflags;
+ kev->data = kn->kn_sdata;
+ if (kn->kn_flags & EV_CLEAR) {
+ kn->kn_hookid = 0;
+ kn->kn_data = 0;
+ kn->kn_fflags = 0;
+ }
+ filt_userunlock();
+
+ return 1;
}
/*
* JMM - placeholder for not-yet-implemented filters
- */
+ */
static int
filt_badattach(__unused struct knote *kn)
{
- return(ENOTSUP);
+ kn->kn_flags |= EV_ERROR;
+ kn->kn_data = ENOTSUP;
+ return 0;
}
-
struct kqueue *
-kqueue_alloc(struct proc *p)
+kqueue_alloc(struct proc *p, unsigned int flags)
{
struct filedesc *fdp = p->p_fd;
- struct kqueue *kq;
+ struct kqueue *kq = NULL;
+ int policy;
+ void *hook;
+ uint64_t kq_addr_offset;
- MALLOC_ZONE(kq, struct kqueue *, sizeof(struct kqueue), M_KQUEUE, M_WAITOK);
- if (kq != NULL) {
- wait_queue_set_t wqs;
-
- wqs = wait_queue_set_alloc(SYNC_POLICY_FIFO | SYNC_POLICY_PREPOST);
- if (wqs != NULL) {
- bzero(kq, sizeof(struct kqueue));
- lck_spin_init(&kq->kq_lock, kq_lck_grp, kq_lck_attr);
- TAILQ_INIT(&kq->kq_head);
- kq->kq_wqs = wqs;
- kq->kq_p = p;
- } else {
- FREE_ZONE(kq, sizeof(struct kqueue), M_KQUEUE);
+ if (flags & KEVENT_FLAG_WORKQ) {
+ struct kqworkq *kqwq;
+ int i;
+
+ kqwq = (struct kqworkq *)zalloc(kqworkq_zone);
+ if (kqwq == NULL)
+ return NULL;
+
+ kq = &kqwq->kqwq_kqueue;
+ bzero(kqwq, sizeof (struct kqworkq));
+
+ kqwq->kqwq_state = KQ_WORKQ;
+
+ for (i = 0; i < KQWQ_NBUCKETS; i++) {
+ TAILQ_INIT(&kq->kq_queue[i]);
}
+ for (i = 0; i < KQWQ_NQOS; i++) {
+ TAILQ_INIT(&kqwq->kqwq_request[i].kqr_suppressed);
+ }
+
+ lck_spin_init(&kqwq->kqwq_reqlock, kq_lck_grp, kq_lck_attr);
+ policy = SYNC_POLICY_FIFO;
+ hook = (void *)kqwq;
+
+ } else {
+ struct kqfile *kqf;
+
+ kqf = (struct kqfile *)zalloc(kqfile_zone);
+ if (kqf == NULL)
+ return NULL;
+
+ kq = &kqf->kqf_kqueue;
+ bzero(kqf, sizeof (struct kqfile));
+ TAILQ_INIT(&kq->kq_queue[0]);
+ TAILQ_INIT(&kqf->kqf_suppressed);
+
+ policy = SYNC_POLICY_FIFO | SYNC_POLICY_PREPOST;
+ hook = NULL;
+
}
+ waitq_set_init(&kq->kq_wqs, policy, NULL, hook);
+ lck_spin_init(&kq->kq_lock, kq_lck_grp, kq_lck_attr);
+ kq->kq_p = p;
+
if (fdp->fd_knlistsize < 0) {
proc_fdlock(p);
if (fdp->fd_knlistsize < 0)
- fdp->fd_knlistsize = 0; /* this process has had a kq */
+ fdp->fd_knlistsize = 0; /* this process has had a kq */
proc_fdunlock(p);
}
- return kq;
+ kq_addr_offset = ((uintptr_t)kq - (uintptr_t)VM_MIN_KERNEL_AND_KEXT_ADDRESS);
+ /* Assert that the address can be pointer compacted for use with knote */
+ assert(kq_addr_offset < (uint64_t)(1ull << KNOTE_KQ_BITSIZE));
+ return (kq);
}
-
/*
* kqueue_dealloc - detach all knotes from a kqueue and free it
*
void
kqueue_dealloc(struct kqueue *kq)
{
- struct proc *p = kq->kq_p;
- struct filedesc *fdp = p->p_fd;
+ struct proc *p;
+ struct filedesc *fdp;
struct knote *kn;
int i;
+ if (kq == NULL)
+ return;
+
+ p = kq->kq_p;
+ fdp = p->p_fd;
+
proc_fdlock(p);
for (i = 0; i < fdp->fd_knlistsize; i++) {
kn = SLIST_FIRST(&fdp->fd_knlist[i]);
while (kn != NULL) {
- if (kq == kn->kn_kq) {
+ if (kq == knote_get_kq(kn)) {
kqlock(kq);
proc_fdunlock(p);
/* drop it ourselves or wait */
if (kqlock2knotedrop(kq, kn)) {
- kn->kn_fop->f_detach(kn);
knote_drop(kn, p);
}
proc_fdlock(p);
for (i = 0; i < (int)fdp->fd_knhashmask + 1; i++) {
kn = SLIST_FIRST(&fdp->fd_knhash[i]);
while (kn != NULL) {
- if (kq == kn->kn_kq) {
+ if (kq == knote_get_kq(kn)) {
kqlock(kq);
proc_fdunlock(p);
/* drop it ourselves or wait */
if (kqlock2knotedrop(kq, kn)) {
- kn->kn_fop->f_detach(kn);
knote_drop(kn, p);
}
proc_fdlock(p);
}
proc_fdunlock(p);
- /*
- * before freeing the wait queue set for this kqueue,
- * make sure it is unlinked from all its containing (select) sets.
+ /*
+ * waitq_set_deinit() remove the KQ's waitq set from
+ * any select sets to which it may belong.
*/
- wait_queue_unlink_all((wait_queue_t)kq->kq_wqs);
- wait_queue_set_free(kq->kq_wqs);
+ waitq_set_deinit(&kq->kq_wqs);
lck_spin_destroy(&kq->kq_lock, kq_lck_grp);
- FREE_ZONE(kq, sizeof(struct kqueue), M_KQUEUE);
+
+ if (kq->kq_state & KQ_WORKQ) {
+ struct kqworkq *kqwq = (struct kqworkq *)kq;
+
+ lck_spin_destroy(&kqwq->kqwq_reqlock, kq_lck_grp);
+ zfree(kqworkq_zone, kqwq);
+ } else {
+ struct kqfile *kqf = (struct kqfile *)kq;
+
+ zfree(kqfile_zone, kqf);
+ }
}
int
-kqueue(struct proc *p, __unused struct kqueue_args *uap, int32_t *retval)
+kqueue_body(struct proc *p, fp_allocfn_t fp_zalloc, void *cra, int32_t *retval)
{
struct kqueue *kq;
struct fileproc *fp;
int fd, error;
- error = falloc(p, &fp, &fd, vfs_context_current());
+ error = falloc_withalloc(p,
+ &fp, &fd, vfs_context_current(), fp_zalloc, cra);
if (error) {
return (error);
}
- kq = kqueue_alloc(p);
+ kq = kqueue_alloc(p, 0);
if (kq == NULL) {
fp_free(p, fd, fp);
return (ENOMEM);
}
fp->f_flag = FREAD | FWRITE;
- fp->f_type = DTYPE_KQUEUE;
fp->f_ops = &kqueueops;
- fp->f_data = (caddr_t)kq;
+ fp->f_data = kq;
proc_fdlock(p);
+ *fdflags(p, fd) |= UF_EXCLOSE;
procfdtbl_releasefd(p, fd, NULL);
fp_drop(p, fd, fp, 1);
proc_fdunlock(p);
return (error);
}
+int
+kqueue(struct proc *p, __unused struct kqueue_args *uap, int32_t *retval)
+{
+ return (kqueue_body(p, fileproc_alloc_init, NULL, retval));
+}
+
static int
-kevent_copyin(user_addr_t *addrp, struct kevent64_s *kevp, struct proc *p, int iskev64)
+kevent_copyin(user_addr_t *addrp, struct kevent_internal_s *kevp, struct proc *p,
+ unsigned int flags)
{
int advance;
int error;
- if (iskev64) {
- advance = sizeof(struct kevent64_s);
- error = copyin(*addrp, (caddr_t)kevp, advance);
- } else if (IS_64BIT_PROCESS(p)) {
- struct user64_kevent kev64;
- bzero(kevp, sizeof(struct kevent64_s));
+ if (flags & KEVENT_FLAG_LEGACY32) {
+ bzero(kevp, sizeof (*kevp));
- advance = sizeof(kev64);
+ if (IS_64BIT_PROCESS(p)) {
+ struct user64_kevent kev64;
+
+ advance = sizeof (kev64);
+ error = copyin(*addrp, (caddr_t)&kev64, advance);
+ if (error)
+ return (error);
+ kevp->ident = kev64.ident;
+ kevp->filter = kev64.filter;
+ kevp->flags = kev64.flags;
+ kevp->udata = kev64.udata;
+ kevp->fflags = kev64.fflags;
+ kevp->data = kev64.data;
+ } else {
+ struct user32_kevent kev32;
+
+ advance = sizeof (kev32);
+ error = copyin(*addrp, (caddr_t)&kev32, advance);
+ if (error)
+ return (error);
+ kevp->ident = (uintptr_t)kev32.ident;
+ kevp->filter = kev32.filter;
+ kevp->flags = kev32.flags;
+ kevp->udata = CAST_USER_ADDR_T(kev32.udata);
+ kevp->fflags = kev32.fflags;
+ kevp->data = (intptr_t)kev32.data;
+ }
+ } else if (flags & KEVENT_FLAG_LEGACY64) {
+ struct kevent64_s kev64;
+
+ bzero(kevp, sizeof (*kevp));
+
+ advance = sizeof (struct kevent64_s);
error = copyin(*addrp, (caddr_t)&kev64, advance);
if (error)
- return error;
+ return(error);
kevp->ident = kev64.ident;
kevp->filter = kev64.filter;
kevp->flags = kev64.flags;
+ kevp->udata = kev64.udata;
kevp->fflags = kev64.fflags;
kevp->data = kev64.data;
- kevp->udata = kev64.udata;
+ kevp->ext[0] = kev64.ext[0];
+ kevp->ext[1] = kev64.ext[1];
+
} else {
- struct user32_kevent kev32;
- bzero(kevp, sizeof(struct kevent64_s));
+ struct kevent_qos_s kevqos;
+
+ bzero(kevp, sizeof (*kevp));
- advance = sizeof(kev32);
- error = copyin(*addrp, (caddr_t)&kev32, advance);
+ advance = sizeof (struct kevent_qos_s);
+ error = copyin(*addrp, (caddr_t)&kevqos, advance);
if (error)
return error;
- kevp->ident = (uintptr_t)kev32.ident;
- kevp->filter = kev32.filter;
- kevp->flags = kev32.flags;
- kevp->fflags = kev32.fflags;
- kevp->data = (intptr_t)kev32.data;
- kevp->udata = CAST_USER_ADDR_T(kev32.udata);
+ kevp->ident = kevqos.ident;
+ kevp->filter = kevqos.filter;
+ kevp->flags = kevqos.flags;
+ kevp->qos = kevqos.qos;
+// kevp->xflags = kevqos.xflags;
+ kevp->udata = kevqos.udata;
+ kevp->fflags = kevqos.fflags;
+ kevp->data = kevqos.data;
+ kevp->ext[0] = kevqos.ext[0];
+ kevp->ext[1] = kevqos.ext[1];
+ kevp->ext[2] = kevqos.ext[2];
+ kevp->ext[3] = kevqos.ext[3];
}
if (!error)
*addrp += advance;
- return error;
+ return (error);
}
static int
-kevent_copyout(struct kevent64_s *kevp, user_addr_t *addrp, struct proc *p, int iskev64)
+kevent_copyout(struct kevent_internal_s *kevp, user_addr_t *addrp, struct proc *p,
+ unsigned int flags)
{
+ user_addr_t addr = *addrp;
int advance;
int error;
- if (iskev64) {
- advance = sizeof(struct kevent64_s);
- error = copyout((caddr_t)kevp, *addrp, advance);
- } else if (IS_64BIT_PROCESS(p)) {
- struct user64_kevent kev64;
+ /*
+ * fully initialize the differnt output event structure
+ * types from the internal kevent (and some universal
+ * defaults for fields not represented in the internal
+ * form).
+ */
+ if (flags & KEVENT_FLAG_LEGACY32) {
+ assert((flags & KEVENT_FLAG_STACK_EVENTS) == 0);
- /*
- * deal with the special case of a user-supplied
- * value of (uintptr_t)-1.
- */
- kev64.ident = (kevp->ident == (uintptr_t)-1) ?
- (uint64_t)-1LL : (uint64_t)kevp->ident;
+ if (IS_64BIT_PROCESS(p)) {
+ struct user64_kevent kev64;
+
+ advance = sizeof (kev64);
+ bzero(&kev64, advance);
+
+ /*
+ * deal with the special case of a user-supplied
+ * value of (uintptr_t)-1.
+ */
+ kev64.ident = (kevp->ident == (uintptr_t)-1) ?
+ (uint64_t)-1LL : (uint64_t)kevp->ident;
+
+ kev64.filter = kevp->filter;
+ kev64.flags = kevp->flags;
+ kev64.fflags = kevp->fflags;
+ kev64.data = (int64_t) kevp->data;
+ kev64.udata = kevp->udata;
+ error = copyout((caddr_t)&kev64, addr, advance);
+ } else {
+ struct user32_kevent kev32;
+
+ advance = sizeof (kev32);
+ bzero(&kev32, advance);
+ kev32.ident = (uint32_t)kevp->ident;
+ kev32.filter = kevp->filter;
+ kev32.flags = kevp->flags;
+ kev32.fflags = kevp->fflags;
+ kev32.data = (int32_t)kevp->data;
+ kev32.udata = kevp->udata;
+ error = copyout((caddr_t)&kev32, addr, advance);
+ }
+ } else if (flags & KEVENT_FLAG_LEGACY64) {
+ struct kevent64_s kev64;
+ advance = sizeof (struct kevent64_s);
+ if (flags & KEVENT_FLAG_STACK_EVENTS) {
+ addr -= advance;
+ }
+ bzero(&kev64, advance);
+ kev64.ident = kevp->ident;
kev64.filter = kevp->filter;
kev64.flags = kevp->flags;
kev64.fflags = kevp->fflags;
kev64.data = (int64_t) kevp->data;
kev64.udata = kevp->udata;
- advance = sizeof(kev64);
- error = copyout((caddr_t)&kev64, *addrp, advance);
+ kev64.ext[0] = kevp->ext[0];
+ kev64.ext[1] = kevp->ext[1];
+ error = copyout((caddr_t)&kev64, addr, advance);
} else {
- struct user32_kevent kev32;
+ struct kevent_qos_s kevqos;
+
+ advance = sizeof (struct kevent_qos_s);
+ if (flags & KEVENT_FLAG_STACK_EVENTS) {
+ addr -= advance;
+ }
+ bzero(&kevqos, advance);
+ kevqos.ident = kevp->ident;
+ kevqos.filter = kevp->filter;
+ kevqos.flags = kevp->flags;
+ kevqos.qos = kevp->qos;
+ kevqos.udata = kevp->udata;
+ kevqos.fflags = kevp->fflags;
+ kevqos.xflags = 0;
+ kevqos.data = (int64_t) kevp->data;
+ kevqos.ext[0] = kevp->ext[0];
+ kevqos.ext[1] = kevp->ext[1];
+ kevqos.ext[2] = kevp->ext[2];
+ kevqos.ext[3] = kevp->ext[3];
+ error = copyout((caddr_t)&kevqos, addr, advance);
+ }
+ if (!error) {
+ if (flags & KEVENT_FLAG_STACK_EVENTS)
+ *addrp = addr;
+ else
+ *addrp = addr + advance;
+ }
+ return (error);
+}
+
+static int
+kevent_get_data_size(struct proc *p,
+ uint64_t data_available,
+ unsigned int flags,
+ user_size_t *residp)
+{
+ user_size_t resid;
+ int error = 0;
- kev32.ident = (uint32_t)kevp->ident;
- kev32.filter = kevp->filter;
- kev32.flags = kevp->flags;
- kev32.fflags = kevp->fflags;
- kev32.data = (int32_t)kevp->data;
- kev32.udata = kevp->udata;
- advance = sizeof(kev32);
- error = copyout((caddr_t)&kev32, *addrp, advance);
+ if (data_available != USER_ADDR_NULL) {
+ if (flags & KEVENT_FLAG_KERNEL) {
+ resid = *(user_size_t *)(uintptr_t)data_available;
+ } else if (IS_64BIT_PROCESS(p)) {
+ user64_size_t usize;
+ error = copyin((user_addr_t)data_available, &usize, sizeof(usize));
+ resid = (user_size_t)usize;
+ } else {
+ user32_size_t usize;
+ error = copyin((user_addr_t)data_available, &usize, sizeof(usize));
+ resid = (user_size_t)usize;
+ }
+ if (error)
+ return(error);
+ } else {
+ resid = 0;
+ }
+ *residp = resid;
+ return 0;
+}
+
+static int
+kevent_put_data_size(struct proc *p,
+ uint64_t data_available,
+ unsigned int flags,
+ user_size_t resid)
+{
+ int error = 0;
+
+ if (data_available) {
+ if (flags & KEVENT_FLAG_KERNEL) {
+ *(user_size_t *)(uintptr_t)data_available = resid;
+ } else if (IS_64BIT_PROCESS(p)) {
+ user64_size_t usize = (user64_size_t)resid;
+ error = copyout(&usize, (user_addr_t)data_available, sizeof(usize));
+ } else {
+ user32_size_t usize = (user32_size_t)resid;
+ error = copyout(&usize, (user_addr_t)data_available, sizeof(usize));
+ }
}
- if (!error)
- *addrp += advance;
return error;
}
* assume we inherit a use count on the kq fileglob.
*/
+__attribute__((noreturn))
static void
kevent_continue(__unused struct kqueue *kq, void *data, int error)
{
struct _kevent *cont_args;
struct fileproc *fp;
+ uint64_t data_available;
+ user_size_t data_size;
+ user_size_t data_resid;
+ unsigned int flags;
int32_t *retval;
int noutputs;
int fd;
struct proc *p = current_proc();
cont_args = (struct _kevent *)data;
+ data_available = cont_args->data_available;
+ flags = cont_args->process_data.fp_flags;
+ data_size = cont_args->process_data.fp_data_size;
+ data_resid = cont_args->process_data.fp_data_resid;
noutputs = cont_args->eventout;
retval = cont_args->retval;
fd = cont_args->fd;
fp = cont_args->fp;
- fp_drop(p, fd, fp, 0);
+ if (fp != NULL)
+ fp_drop(p, fd, fp, 0);
+
+ /* don't abandon other output just because of residual copyout failures */
+ if (error == 0 && data_available && data_resid != data_size) {
+ (void)kevent_put_data_size(p, data_available, flags, data_resid);
+ }
/* don't restart after signals... */
if (error == ERESTART)
int
kevent(struct proc *p, struct kevent_args *uap, int32_t *retval)
{
- return kevent_internal(p,
- 0,
- uap->changelist,
- uap->nchanges,
- uap->eventlist,
- uap->nevents,
- uap->fd,
- uap->timeout,
- 0, /* no flags from old kevent() call */
- retval);
-}
-
+ unsigned int flags = KEVENT_FLAG_LEGACY32;
+
+ return kevent_internal(p,
+ uap->fd,
+ uap->changelist, uap->nchanges,
+ uap->eventlist, uap->nevents,
+ 0ULL, 0ULL,
+ flags,
+ uap->timeout,
+ kevent_continue,
+ retval);
+}
+
int
kevent64(struct proc *p, struct kevent64_args *uap, int32_t *retval)
{
- return kevent_internal(p,
- 1,
- uap->changelist,
- uap->nchanges,
- uap->eventlist,
- uap->nevents,
- uap->fd,
- uap->timeout,
- uap->flags,
- retval);
+ unsigned int flags;
+
+ /* restrict to user flags and set legacy64 */
+ flags = uap->flags & KEVENT_FLAG_USER;
+ flags |= KEVENT_FLAG_LEGACY64;
+
+ return kevent_internal(p,
+ uap->fd,
+ uap->changelist, uap->nchanges,
+ uap->eventlist, uap->nevents,
+ 0ULL, 0ULL,
+ flags,
+ uap->timeout,
+ kevent_continue,
+ retval);
+}
+
+int
+kevent_qos(struct proc *p, struct kevent_qos_args *uap, int32_t *retval)
+{
+ /* restrict to user flags */
+ uap->flags &= KEVENT_FLAG_USER;
+
+ return kevent_internal(p,
+ uap->fd,
+ uap->changelist, uap->nchanges,
+ uap->eventlist, uap->nevents,
+ uap->data_out, (uint64_t)uap->data_available,
+ uap->flags,
+ 0ULL,
+ kevent_continue,
+ retval);
}
+int
+kevent_qos_internal(struct proc *p, int fd,
+ user_addr_t changelist, int nchanges,
+ user_addr_t eventlist, int nevents,
+ user_addr_t data_out, user_size_t *data_available,
+ unsigned int flags,
+ int32_t *retval)
+{
+ return kevent_internal(p,
+ fd,
+ changelist, nchanges,
+ eventlist, nevents,
+ data_out, (uint64_t)data_available,
+ (flags | KEVENT_FLAG_KERNEL),
+ 0ULL,
+ NULL,
+ retval);
+}
+
static int
-kevent_internal(struct proc *p, int iskev64, user_addr_t changelist,
- int nchanges, user_addr_t ueventlist, int nevents, int fd,
- user_addr_t utimeout, __unused unsigned int flags,
- int32_t *retval)
+kevent_get_timeout(struct proc *p,
+ user_addr_t utimeout,
+ unsigned int flags,
+ struct timeval *atvp)
{
- struct _kevent *cont_args;
- uthread_t ut;
- struct kqueue *kq;
- struct fileproc *fp;
- struct kevent64_s kev;
- int error, noutputs;
struct timeval atv;
+ int error = 0;
- /* convert timeout to absolute - if we have one */
- if (utimeout != USER_ADDR_NULL) {
+ if (flags & KEVENT_FLAG_IMMEDIATE) {
+ getmicrouptime(&atv);
+ } else if (utimeout != USER_ADDR_NULL) {
struct timeval rtv;
- if (IS_64BIT_PROCESS(p)) {
+ if (flags & KEVENT_FLAG_KERNEL) {
+ struct timespec *tsp = (struct timespec *)utimeout;
+ TIMESPEC_TO_TIMEVAL(&rtv, tsp);
+ } else if (IS_64BIT_PROCESS(p)) {
struct user64_timespec ts;
error = copyin(utimeout, &ts, sizeof(ts));
if ((ts.tv_sec & 0xFFFFFFFF00000000ull) != 0)
TIMESPEC_TO_TIMEVAL(&rtv, &ts);
}
if (error)
- return error;
+ return (error);
if (itimerfix(&rtv))
- return EINVAL;
+ return (EINVAL);
getmicrouptime(&atv);
timevaladd(&atv, &rtv);
} else {
+ /* wait forever value */
atv.tv_sec = 0;
atv.tv_usec = 0;
}
+ *atvp = atv;
+ return 0;
+}
- /* get a usecount for the kq itself */
- if ((error = fp_getfkq(p, fd, &fp, &kq)) != 0)
- return(error);
-
+static int
+kevent_set_kq_mode(struct kqueue *kq, unsigned int flags)
+{
/* each kq should only be used for events of one type */
kqlock(kq);
- if (kq->kq_state & (KQ_KEV32 | KQ_KEV64)) {
- if (((iskev64 && (kq->kq_state & KQ_KEV32)) ||
- (!iskev64 && (kq->kq_state & KQ_KEV64)))) {
- error = EINVAL;
- kqunlock(kq);
- goto errorout;
+ if (kq->kq_state & (KQ_KEV32 | KQ_KEV64 | KQ_KEV_QOS)) {
+ if (flags & KEVENT_FLAG_LEGACY32) {
+ if ((kq->kq_state & KQ_KEV32) == 0) {
+ kqunlock(kq);
+ return EINVAL;
+ }
+ } else if (kq->kq_state & KQ_KEV32) {
+ kqunlock(kq);
+ return EINVAL;
}
+ } else if (flags & KEVENT_FLAG_LEGACY32) {
+ kq->kq_state |= KQ_KEV32;
} else {
- kq->kq_state |= (iskev64 ? KQ_KEV64 : KQ_KEV32);
+ /* JMM - set KQ_KEVQOS when we are ready for exclusive */
+ kq->kq_state |= KQ_KEV64;
}
kqunlock(kq);
+ return 0;
+}
+
+static int
+kevent_get_kq(struct proc *p, int fd, unsigned int flags, struct fileproc **fpp, struct kqueue **kqp)
+{
+ struct fileproc *fp = NULL;
+ struct kqueue *kq;
+ int error;
+
+ if (flags & KEVENT_FLAG_WORKQ) {
+ /*
+ * use the private kq associated with the proc workq.
+ * Just being a thread within the process (and not
+ * being the exit/exec thread) is enough to hold a
+ * reference on this special kq.
+ */
+ kq = p->p_wqkqueue;
+ if (kq == NULL) {
+ struct kqueue *alloc_kq = kqueue_alloc(p, KEVENT_FLAG_WORKQ);
+ if (alloc_kq == NULL)
+ return ENOMEM;
+
+ proc_fdlock(p);
+ if (p->p_wqkqueue == NULL) {
+ kq = p->p_wqkqueue = alloc_kq;
+ proc_fdunlock(p);
+ } else {
+ proc_fdunlock(p);
+ kq = p->p_wqkqueue;
+ kqueue_dealloc(alloc_kq);
+ }
+ }
+ } else {
+ /* get a usecount for the kq itself */
+ if ((error = fp_getfkq(p, fd, &fp, &kq)) != 0)
+ return (error);
+ }
+ if ((error = kevent_set_kq_mode(kq, flags)) != 0) {
+ /* drop the usecount */
+ if (fp != NULL)
+ fp_drop(p, fd, fp, 0);
+ return error;
+ }
+
+ *fpp = fp;
+ *kqp = kq;
+ return 0;
+}
+
+
+static int
+kevent_internal(struct proc *p,
+ int fd,
+ user_addr_t changelist, int nchanges,
+ user_addr_t ueventlist, int nevents,
+ user_addr_t data_out, uint64_t data_available,
+ unsigned int flags,
+ user_addr_t utimeout,
+ kqueue_continue_t continuation,
+ int32_t *retval)
+{
+ struct _kevent *cont_args;
+ uthread_t ut;
+ struct kqueue *kq;
+ struct fileproc *fp = NULL;
+ struct kevent_internal_s kev;
+ int error, noutputs;
+ struct timeval atv;
+ user_size_t data_size;
+ user_size_t data_resid;
+
+ /* Don't allow user-space threads to process output events from the workq kq */
+ if ((flags & (KEVENT_FLAG_WORKQ | KEVENT_FLAG_KERNEL)) == KEVENT_FLAG_WORKQ &&
+ !(flags & KEVENT_FLAG_ERROR_EVENTS) && nevents > 0)
+ return EINVAL;
+
+ /* prepare to deal with stack-wise allocation of out events */
+ if (flags & KEVENT_FLAG_STACK_EVENTS) {
+ int scale = ((flags & KEVENT_FLAG_LEGACY32) ?
+ (IS_64BIT_PROCESS(p) ? sizeof(struct user64_kevent) :
+ sizeof(struct user32_kevent)) :
+ ((flags & KEVENT_FLAG_LEGACY64) ? sizeof(struct kevent64_s) :
+ sizeof(struct kevent_qos_s)));
+ ueventlist += nevents * scale;
+ }
+
+ /* convert timeout to absolute - if we have one (and not immediate) */
+ error = kevent_get_timeout(p, utimeout, flags, &atv);
+ if (error)
+ return error;
+
+ /* copyin initial value of data residual from data_available */
+ error = kevent_get_data_size(p, data_available, flags, &data_size);
+ if (error)
+ return error;
+
+ /* get the kq we are going to be working on */
+ error = kevent_get_kq(p, fd, flags, &fp, &kq);
+ if (error)
+ return error;
/* register all the change requests the user provided... */
noutputs = 0;
while (nchanges > 0 && error == 0) {
- error = kevent_copyin(&changelist, &kev, p, iskev64);
+ error = kevent_copyin(&changelist, &kev, p, flags);
if (error)
break;
-
+
+ /* Make sure user doesn't pass in any system flags */
kev.flags &= ~EV_SYSFLAGS;
- error = kevent_register(kq, &kev, p);
- if ((error || (kev.flags & EV_RECEIPT)) && nevents > 0) {
- kev.flags = EV_ERROR;
- kev.data = error;
- error = kevent_copyout(&kev, &ueventlist, p, iskev64);
+
+ kevent_register(kq, &kev, p);
+
+ if (nevents > 0 &&
+ ((kev.flags & EV_ERROR) || (kev.flags & EV_RECEIPT))) {
+ if (kev.flags & EV_RECEIPT) {
+ kev.flags |= EV_ERROR;
+ kev.data = 0;
+ }
+ error = kevent_copyout(&kev, &ueventlist, p, flags);
if (error == 0) {
nevents--;
noutputs++;
}
+ } else if (kev.flags & EV_ERROR) {
+ error = kev.data;
}
nchanges--;
}
- /* store the continuation/completion data in the uthread */
- ut = (uthread_t)get_bsdthread_info(current_thread());
- cont_args = &ut->uu_kevent.ss_kevent;
- cont_args->fp = fp;
- cont_args->fd = fd;
- cont_args->retval = retval;
- cont_args->eventlist = ueventlist;
- cont_args->eventcount = nevents;
- cont_args->eventout = noutputs;
- cont_args->eventsize = iskev64;
+ /* short-circuit the scan if we only want error events */
+ if (flags & KEVENT_FLAG_ERROR_EVENTS)
+ nevents = 0;
+
+ /* process pending events */
+ if (nevents > 0 && noutputs == 0 && error == 0) {
+
+ /* store the continuation/completion data in the uthread */
+ ut = (uthread_t)get_bsdthread_info(current_thread());
+ cont_args = &ut->uu_kevent.ss_kevent;
+ cont_args->fp = fp;
+ cont_args->fd = fd;
+ cont_args->retval = retval;
+ cont_args->eventlist = ueventlist;
+ cont_args->eventcount = nevents;
+ cont_args->eventout = noutputs;
+ cont_args->data_available = data_available;
+ cont_args->process_data.fp_fd = fd;
+ cont_args->process_data.fp_flags = flags;
+ cont_args->process_data.fp_data_out = data_out;
+ cont_args->process_data.fp_data_size = data_size;
+ cont_args->process_data.fp_data_resid = data_size;
- if (nevents > 0 && noutputs == 0 && error == 0)
error = kqueue_scan(kq, kevent_callback,
- kevent_continue, cont_args,
- &atv, p);
- kevent_continue(kq, cont_args, error);
+ continuation, cont_args,
+ &cont_args->process_data,
+ &atv, p);
+
+ /* process remaining outputs */
+ noutputs = cont_args->eventout;
+ data_resid = cont_args->process_data.fp_data_resid;
+
+ /* copyout residual data size value (if it needs to be copied out) */
+ /* don't abandon other output just because of residual copyout failures */
+ if (error == 0 && data_available && data_resid != data_size) {
+ (void)kevent_put_data_size(p, data_available, flags, data_resid);
+ }
+ }
-errorout:
- fp_drop(p, fd, fp, 0);
- return error;
+ /* don't restart after signals... */
+ if (error == ERESTART)
+ error = EINTR;
+ else if (error == EWOULDBLOCK)
+ error = 0;
+ if (error == 0)
+ *retval = noutputs;
+ if (fp != NULL)
+ fp_drop(p, fd, fp, 0);
+ return (error);
}
/*
* kevent_callback - callback for each individual event
*
- * called with nothing locked
- * caller holds a reference on the kqueue
+ * called with nothing locked
+ * caller holds a reference on the kqueue
*/
-
static int
-kevent_callback(__unused struct kqueue *kq, struct kevent64_s *kevp,
- void *data)
+kevent_callback(__unused struct kqueue *kq, struct kevent_internal_s *kevp,
+ void *data)
{
struct _kevent *cont_args;
int error;
- int iskev64;
cont_args = (struct _kevent *)data;
assert(cont_args->eventout < cont_args->eventcount);
- iskev64 = cont_args->eventsize;
-
/*
* Copy out the appropriate amount of event data for this user.
*/
- error = kevent_copyout(kevp, &cont_args->eventlist, current_proc(), iskev64);
+ error = kevent_copyout(kevp, &cont_args->eventlist, current_proc(),
+ cont_args->process_data.fp_flags);
/*
* If there isn't space for additional events, return
* a harmless error to stop the processing here
*/
if (error == 0 && ++cont_args->eventout == cont_args->eventcount)
- error = EWOULDBLOCK;
- return error;
+ error = EWOULDBLOCK;
+ return (error);
}
/*
* kevent_description - format a description of a kevent for diagnostic output
*
- * called with a 128-byte string buffer
+ * called with a 256-byte string buffer
*/
char *
-kevent_description(struct kevent64_s *kevp, char *s, size_t n)
-{
- snprintf(s, n,
- "kevent="
- "{.ident=%#llx, .filter=%d, .flags=%#x, .fflags=%#x, .data=%#llx, .udata=%#llx, .ext[0]=%#llx, .ext[1]=%#llx}",
- kevp->ident,
- kevp->filter,
- kevp->flags,
- kevp->fflags,
- kevp->data,
- kevp->udata,
- kevp->ext[0],
- kevp->ext[1]);
- return s;
+kevent_description(struct kevent_internal_s *kevp, char *s, size_t n)
+{
+ snprintf(s, n,
+ "kevent="
+ "{.ident=%#llx, .filter=%d, .flags=%#x, .udata=%#llx, .fflags=%#x, .data=%#llx, .ext[0]=%#llx, .ext[1]=%#llx}",
+ kevp->ident,
+ kevp->filter,
+ kevp->flags,
+ kevp->udata,
+ kevp->fflags,
+ kevp->data,
+ kevp->ext[0],
+ kevp->ext[1] );
+
+ return (s);
}
/*
* caller holds a reference on the kqueue
*/
-int
-kevent_register(struct kqueue *kq, struct kevent64_s *kev, __unused struct proc *ctxp)
+void
+kevent_register(struct kqueue *kq, struct kevent_internal_s *kev,
+ __unused struct proc *ctxp)
{
struct proc *p = kq->kq_p;
- struct filedesc *fdp = p->p_fd;
struct filterops *fops;
- struct fileproc *fp = NULL;
struct knote *kn = NULL;
+ int result = 0;
int error = 0;
if (kev->filter < 0) {
- if (kev->filter + EVFILT_SYSCOUNT < 0)
- return (EINVAL);
+ if (kev->filter + EVFILT_SYSCOUNT < 0) {
+ error = EINVAL;
+ goto out;
+ }
fops = sysfilt_ops[~kev->filter]; /* to 0-base index */
} else {
- /*
- * XXX
- * filter attach routine is responsible for insuring that
- * the identifier can be attached to it.
- */
- printf("unknown filter: %d\n", kev->filter);
- return (EINVAL);
+ error = EINVAL;
+ goto out;
}
- restart:
- /* this iocount needs to be dropped if it is not registered */
- proc_fdlock(p);
- if (fops->f_isfd && (error = fp_lookup(p, kev->ident, &fp, 1)) != 0) {
- proc_fdunlock(p);
- return(error);
+ /* restrict EV_VANISHED to adding udata-specific dispatch kevents */
+ if ((kev->flags & EV_VANISHED) &&
+ (kev->flags & (EV_ADD | EV_DISPATCH2)) != (EV_ADD | EV_DISPATCH2)) {
+ error = EINVAL;
+ goto out;
}
- if (fops->f_isfd) {
- /* fd-based knotes are linked off the fd table */
- if (kev->ident < (u_int)fdp->fd_knlistsize) {
- SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link)
- if (kq == kn->kn_kq &&
- kev->filter == kn->kn_filter)
- break;
- }
- } else {
- /* hash non-fd knotes here too */
- if (fdp->fd_knhashmask != 0) {
- struct klist *list;
-
- list = &fdp->fd_knhash[
- KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
- SLIST_FOREACH(kn, list, kn_link)
- if (kev->ident == kn->kn_id &&
- kq == kn->kn_kq &&
- kev->filter == kn->kn_filter)
- break;
- }
- }
+ /* Simplify the flags - delete and disable overrule */
+ if (kev->flags & EV_DELETE)
+ kev->flags &= ~EV_ADD;
+ if (kev->flags & EV_DISABLE)
+ kev->flags &= ~EV_ENABLE;
+
+restart:
+
+ proc_fdlock(p);
+
+ /* find the matching knote from the fd tables/hashes */
+ kn = knote_fdfind(kq, kev, p);
- /*
- * kn now contains the matching knote, or NULL if no match
- */
if (kn == NULL) {
- if ((kev->flags & (EV_ADD|EV_DELETE)) == EV_ADD) {
+ if (kev->flags & EV_ADD) {
+ struct fileproc *fp = NULL;
+
+ /* grab a file reference for the new knote */
+ if (fops->f_isfd) {
+ if ((error = fp_lookup(p, kev->ident, &fp, 1)) != 0) {
+ proc_fdunlock(p);
+ goto out;
+ }
+ }
+
kn = knote_alloc();
if (kn == NULL) {
proc_fdunlock(p);
error = ENOMEM;
- goto done;
+ if (fp != NULL)
+ fp_drop(p, kev->ident, fp, 0);
+ goto out;
}
+
kn->kn_fp = fp;
- kn->kn_kq = kq;
- kn->kn_tq = &kq->kq_head;
- kn->kn_fop = fops;
+ knote_set_kq(kn,kq);
+ kn->kn_filtid = ~kev->filter;
+ kn->kn_inuse = 1; /* for f_attach() */
+ kn->kn_status = KN_ATTACHING | KN_ATTACHED;
+
+ /* was vanish support requested */
+ if (kev->flags & EV_VANISHED) {
+ kev->flags &= ~EV_VANISHED;
+ kn->kn_status |= KN_REQVANISH;
+ }
+
+ /* snapshot matching/dispatching protcol flags into knote */
+ if (kev->flags & EV_DISPATCH)
+ kn->kn_status |= KN_DISPATCH;
+ if (kev->flags & EV_UDATA_SPECIFIC)
+ kn->kn_status |= KN_UDATA_SPECIFIC;
+
+ /*
+ * copy the kevent state into knote
+ * protocol is that fflags and data
+ * are saved off, and cleared before
+ * calling the attach routine.
+ */
+ kn->kn_kevent = *kev;
kn->kn_sfflags = kev->fflags;
kn->kn_sdata = kev->data;
- kev->fflags = 0;
- kev->data = 0;
- kn->kn_kevent = *kev;
- kn->kn_inuse = 1; /* for f_attach() */
- kn->kn_status = KN_ATTACHING;
+ kn->kn_fflags = 0;
+ kn->kn_data = 0;
+
+ /* invoke pthread kext to convert kevent qos to thread qos */
+ if (kq->kq_state & KQ_WORKQ) {
+ kn->kn_qos = canonicalize_kevent_qos(kn->kn_qos);
+ knote_set_qos_index(kn, qos_index_from_qos(kn->kn_qos, FALSE));
+ knote_set_qos_override_index(kn, QOS_INDEX_KQFILE);
+ assert(knote_get_qos_index(kn) < KQWQ_NQOS);
+ } else {
+ knote_set_qos_index(kn, QOS_INDEX_KQFILE);
+ knote_set_qos_override_index(kn, QOS_INDEX_KQFILE);
+ }
/* before anyone can find it */
if (kev->flags & EV_DISABLE)
- kn->kn_status |= KN_DISABLED;
+ knote_disable(kn);
- error = knote_fdpattach(kn, fdp, p);
+ /* Add the knote for lookup thru the fd table */
+ error = knote_fdadd(kn, p);
proc_fdunlock(p);
if (error) {
knote_free(kn);
- goto done;
+ if (fp != NULL)
+ fp_drop(p, kev->ident, fp, 0);
+ goto out;
}
- /*
- * apply reference count to knote structure, and
- * do not release it at the end of this routine.
- */
- fp = NULL;
+ /* fp reference count now applies to knote */
- error = fops->f_attach(kn);
+ /* call filter attach routine */
+ result = fops->f_attach(kn);
/*
- * Anyone trying to drop this knote will yield to
- * us, since KN_ATTACHING is set.
+ * Trade knote use count for kq lock.
+ * Cannot be dropped because we held
+ * KN_ATTACHING throughout.
*/
- kqlock(kq);
- if (error != 0 || (kn->kn_status & KN_DROPPING)) {
- if (error == 0) {
- kn->kn_fop->f_detach(kn);
- }
+ knoteuse2kqlock(kq, kn, 1);
+
+ if (kn->kn_flags & EV_ERROR) {
+ /*
+ * Failed to attach correctly, so drop.
+ * All other possible users/droppers
+ * have deferred to us. Save the error
+ * to return to our caller.
+ */
+ kn->kn_status &= ~KN_ATTACHED;
kn->kn_status |= KN_DROPPING;
+ error = kn->kn_data;
kqunlock(kq);
knote_drop(kn, p);
- goto done;
+ goto out;
}
+
+ /* end "attaching" phase - now just attached */
kn->kn_status &= ~KN_ATTACHING;
- kqunlock(kq);
+
+ if (kn->kn_status & KN_DROPPING) {
+ /*
+ * Attach succeeded, but someone else
+ * deferred their drop - now we have
+ * to do it for them.
+ */
+ kqunlock(kq);
+ knote_drop(kn, p);
+ goto out;
+ }
+
+ /*
+ * If the attach routine indicated that an
+ * event is already fired, activate the knote.
+ */
+ if (result)
+ knote_activate(kn);
+
} else {
proc_fdunlock(p);
error = ENOENT;
- goto done;
+ goto out;
}
+
} else {
/* existing knote - get kqueue lock */
kqlock(kq);
proc_fdunlock(p);
-
+
+ if ((kn->kn_status & (KN_DROPPING | KN_ATTACHING)) != 0) {
+ /*
+ * The knote is not in a stable state, wait for that
+ * transition to complete and then redrive the lookup.
+ */
+ kn->kn_status |= KN_USEWAIT;
+ waitq_assert_wait64((struct waitq *)&kq->kq_wqs,
+ CAST_EVENT64_T(&kn->kn_status),
+ THREAD_UNINT, TIMEOUT_WAIT_FOREVER);
+ kqunlock(kq);
+ thread_block(THREAD_CONTINUE_NULL);
+ goto restart;
+ }
+
if (kev->flags & EV_DELETE) {
- knote_dequeue(kn);
- kn->kn_status |= KN_DISABLED;
- if (kqlock2knotedrop(kq, kn)) {
- kn->kn_fop->f_detach(kn);
+
+ /*
+ * If attempting to delete a disabled dispatch2 knote,
+ * we must wait for the knote to be re-enabled (unless
+ * it is being re-enabled atomically here).
+ */
+ if ((kev->flags & EV_ENABLE) == 0 &&
+ (kn->kn_status & (KN_DISPATCH2 | KN_DISABLED)) ==
+ (KN_DISPATCH2 | KN_DISABLED)) {
+ kn->kn_status |= KN_DEFERDELETE;
+ kqunlock(kq);
+ error = EINPROGRESS;
+ } else if (kqlock2knotedrop(kq, kn)) {
knote_drop(kn, p);
+ } else {
+ /*
+ * The kqueue is unlocked, it's not being
+ * dropped, and kqlock2knotedrop returned 0:
+ * this means that someone stole the drop of
+ * the knote from us.
+ */
+ error = EINPROGRESS;
}
- goto done;
- }
-
- /* update status flags for existing knote */
- if (kev->flags & EV_DISABLE) {
- knote_dequeue(kn);
- kn->kn_status |= KN_DISABLED;
- } else if (kev->flags & EV_ENABLE) {
- kn->kn_status &= ~KN_DISABLED;
- if (kn->kn_status & KN_ACTIVE)
- knote_enqueue(kn);
+ goto out;
}
/*
- * If somebody is in the middle of dropping this
- * knote - go find/insert a new one. But we have
- * wait for this one to go away first. Attaches
- * running in parallel may also drop/modify the
- * knote. Wait for those to complete as well and
- * then start over if we encounter one.
+ * If we are re-enabling a deferred-delete knote,
+ * just enable it now and avoid calling the
+ * filter touch routine (it has delivered its
+ * last event already).
*/
- if (!kqlock2knoteusewait(kq, kn)) {
- /* kqueue, proc_fdlock both unlocked */
- goto restart;
+ if ((kev->flags & EV_ENABLE) &&
+ (kn->kn_status & KN_DEFERDELETE)) {
+ assert(kn->kn_status & KN_DISABLED);
+ knote_activate(kn);
+ knote_enable(kn);
+ kqunlock(kq);
+ goto out;
}
/*
- * The user may change some filter values after the
- * initial EV_ADD, but doing so will not reset any
- * filter which have already been triggered.
+ * If we are disabling, do it before unlocking and
+ * calling the touch routine (so no processing can
+ * see the new kevent state before the disable is
+ * applied).
*/
- kn->kn_kevent.udata = kev->udata;
- if (!fops->f_isfd && fops->f_touch != NULL)
- fops->f_touch(kn, kev, EVENT_REGISTER);
- else {
- kn->kn_sfflags = kev->fflags;
- kn->kn_sdata = kev->data;
- }
+ if (kev->flags & EV_DISABLE)
+ knote_disable(kn);
+
+ /*
+ * Convert the kqlock to a use reference on the
+ * knote so we can call the filter touch routine.
+ */
+ if (kqlock2knoteuse(kq, kn)) {
+
+ /*
+ * Call touch routine to notify filter of changes
+ * in filter values (and to re-determine if any
+ * events are fired).
+ */
+ result = knote_fops(kn)->f_touch(kn, kev);
+
+ /* Get the kq lock back (don't defer droppers). */
+ if (!knoteuse2kqlock(kq, kn, 0)) {
+ kqunlock(kq);
+ goto out;
+ }
- /* We may need to push some info down to a networked filesystem */
- if (kn->kn_filter == EVFILT_VNODE) {
- vnode_knoteupdate(kn);
+ /* Activate it if the touch routine said to */
+ if (result)
+ knote_activate(kn);
}
- }
- /* still have use ref on knote */
- /*
- * If the knote is not marked to always stay enqueued,
- * invoke the filter routine to see if it should be
- * enqueued now.
- */
- if ((kn->kn_status & KN_STAYQUEUED) == 0 && kn->kn_fop->f_event(kn, 0)) {
- if (knoteuse2kqlock(kq, kn))
- knote_activate(kn, 1);
- kqunlock(kq);
- } else {
- knote_put(kn);
+ /* Enable the knote if called for */
+ if (kev->flags & EV_ENABLE)
+ knote_enable(kn);
+
}
-done:
- if (fp != NULL)
- fp_drop(p, kev->ident, fp, 0);
- return (error);
+ /* still have kqlock held and knote is valid */
+ kqunlock(kq);
+
+ out:
+ /* output local errors through the kevent */
+ if (error) {
+ kev->flags |= EV_ERROR;
+ kev->data = error;
+ }
}
* Validate that it is really still a triggered event
* by calling the filter routines (if necessary). Hold
* a use reference on the knote to avoid it being detached.
- * If it is still considered triggered, invoke the callback
- * routine provided and move it to the provided inprocess
- * queue.
+ *
+ * If it is still considered triggered, we will have taken
+ * a copy of the state under the filter lock. We use that
+ * snapshot to dispatch the knote for future processing (or
+ * not, if this was a lost event).
+ *
+ * Our caller assures us that nobody else can be processing
+ * events from this knote during the whole operation. But
+ * others can be touching or posting events to the knote
+ * interspersed with our processing it.
*
* caller holds a reference on the kqueue.
* kqueue locked on entry and exit - but may be dropped
*/
static int
-knote_process(struct knote *kn,
- kevent_callback_t callback,
- void *data,
- struct kqtailq *inprocessp,
- struct proc *p)
-{
- struct kqueue *kq = kn->kn_kq;
- struct kevent64_s kev;
- int touch;
- int result;
- int error;
+knote_process(struct knote *kn,
+ kevent_callback_t callback,
+ void *callback_data,
+ struct filt_process_s *process_data,
+ struct proc *p)
+{
+ struct kevent_internal_s kev;
+ struct kqueue *kq = knote_get_kq(kn);
+ int result = 0;
+ int error = 0;
+
+ bzero(&kev, sizeof(kev));
/*
- * Determine the kevent state we want to return.
- *
- * Some event states need to be revalidated before returning
- * them, others we take the snapshot at the time the event
- * was enqueued.
- *
- * Events with non-NULL f_touch operations must be touched.
- * Triggered events must fill in kev for the callback.
- *
- * Convert our lock to a use-count and call the event's
- * filter routine(s) to update.
+ * Must be active or stayactive
+ * Must be queued and not disabled/suppressed
*/
- if ((kn->kn_status & KN_DISABLED) != 0) {
- result = 0;
- touch = 0;
- } else {
- int revalidate;
+ assert(kn->kn_status & KN_QUEUED);
+ assert(kn->kn_status & (KN_ACTIVE|KN_STAYACTIVE));
+ assert(!(kn->kn_status & (KN_DISABLED|KN_SUPPRESSED|KN_DROPPING)));
+ /*
+ * For deferred-drop or vanished events, we just create a fake
+ * event to acknowledge end-of-life. Otherwise, we call the
+ * filter's process routine to snapshot the kevent state under
+ * the filter's locking protocol.
+ */
+ if (kn->kn_status & (KN_DEFERDELETE | KN_VANISHED)) {
+ /* create fake event */
+ kev.filter = kn->kn_filter;
+ kev.ident = kn->kn_id;
+ kev.qos = kn->kn_qos;
+ kev.flags = (kn->kn_status & KN_DEFERDELETE) ?
+ EV_DELETE : EV_VANISHED;
+ kev.flags |= (EV_DISPATCH2 | EV_ONESHOT);
+ kev.udata = kn->kn_udata;
result = 1;
- revalidate = ((kn->kn_status & KN_STAYQUEUED) != 0 ||
- (kn->kn_flags & EV_ONESHOT) == 0);
- touch = (!kn->kn_fop->f_isfd && kn->kn_fop->f_touch != NULL);
- if (revalidate || touch) {
- if (revalidate)
- knote_deactivate(kn);
-
- /* call the filter/touch routines with just a ref */
- if (kqlock2knoteuse(kq, kn)) {
-
- /* if we have to revalidate, call the filter */
- if (revalidate) {
- result = kn->kn_fop->f_event(kn, 0);
- }
+ knote_suppress(kn);
+ } else {
- /* capture the kevent data - using touch if specified */
- if (result) {
- if (touch) {
- kn->kn_fop->f_touch(kn, &kev, EVENT_PROCESS);
- } else {
- kev = kn->kn_kevent;
- }
- }
- /* convert back to a kqlock - bail if the knote went away */
- if (!knoteuse2kqlock(kq, kn)) {
- return EJUSTRETURN;
- } else if (result) {
- /* if revalidated as alive, make sure it's active */
- if (!(kn->kn_status & KN_ACTIVE)) {
- knote_activate(kn, 0);
- }
- } else if ((kn->kn_status & KN_STAYQUEUED) == 0) {
- /* was already dequeued, so just bail on this one */
- return EJUSTRETURN;
+ /* deactivate - so new activations indicate a wakeup */
+ knote_deactivate(kn);
+
+ /* suppress knotes to avoid returning the same event multiple times in a single call. */
+ knote_suppress(kn);
+
+ /* convert lock to a knote use reference */
+ if (!kqlock2knoteuse(kq, kn))
+ panic("dropping knote found on queue\n");
+
+ /* call out to the filter to process with just a ref */
+ result = knote_fops(kn)->f_process(kn, process_data, &kev);
+
+ /*
+ * convert our reference back to a lock. accept drop
+ * responsibility from others if we've committed to
+ * delivering event data.
+ */
+ if (!knoteuse2kqlock(kq, kn, result)) {
+ /* knote dropped */
+ kn = NULL;
+ }
+ }
+
+ if (kn != NULL) {
+ /*
+ * Determine how to dispatch the knote for future event handling.
+ * not-fired: just return (do not callout, leave deactivated).
+ * One-shot: If dispatch2, enter deferred-delete mode (unless this is
+ * is the deferred delete event delivery itself). Otherwise,
+ * drop it.
+ * stolendrop:We took responsibility for someone else's drop attempt.
+ * treat this just like one-shot and prepare to turn it back
+ * into a deferred delete if required.
+ * Dispatch: don't clear state, just mark it disabled.
+ * Cleared: just leave it deactivated.
+ * Others: re-activate as there may be more events to handle.
+ * This will not wake up more handlers right now, but
+ * at the completion of handling events it may trigger
+ * more handler threads (TODO: optimize based on more than
+ * just this one event being detected by the filter).
+ */
+
+ if (result == 0)
+ return (EJUSTRETURN);
+
+ if ((kev.flags & EV_ONESHOT) || (kn->kn_status & KN_STOLENDROP)) {
+ if ((kn->kn_status & (KN_DISPATCH2 | KN_DEFERDELETE)) == KN_DISPATCH2) {
+ /* defer dropping non-delete oneshot dispatch2 events */
+ kn->kn_status |= KN_DEFERDELETE;
+ knote_disable(kn);
+
+ /* if we took over another's drop clear those flags here */
+ if (kn->kn_status & KN_STOLENDROP) {
+ assert(kn->kn_status & KN_DROPPING);
+ /*
+ * the knote will be dropped when the
+ * deferred deletion occurs
+ */
+ kn->kn_status &= ~(KN_DROPPING|KN_STOLENDROP);
}
- } else {
- return EJUSTRETURN;
+ } else if (kn->kn_status & KN_STOLENDROP) {
+ /* We now own the drop of the knote. */
+ assert(kn->kn_status & KN_DROPPING);
+ knote_unsuppress(kn);
+ kqunlock(kq);
+ knote_drop(kn, p);
+ kqlock(kq);
+ } else if (kqlock2knotedrop(kq, kn)) {
+ /* just EV_ONESHOT, _not_ DISPATCH2 */
+ knote_drop(kn, p);
+ kqlock(kq);
}
- } else {
- kev = kn->kn_kevent;
+ } else if (kn->kn_status & KN_DISPATCH) {
+ /* disable all dispatch knotes */
+ knote_disable(kn);
+ } else if ((kev.flags & EV_CLEAR) == 0) {
+ /* re-activate in case there are more events */
+ knote_activate(kn);
}
}
-
- /* move knote onto inprocess queue */
- assert(kn->kn_tq == &kq->kq_head);
- TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
- kn->kn_tq = inprocessp;
- TAILQ_INSERT_TAIL(inprocessp, kn, kn_tqe);
/*
- * Determine how to dispatch the knote for future event handling.
- * not-fired: just return (do not callout).
- * One-shot: deactivate it.
- * Clear: deactivate and clear the state.
- * Dispatch: don't clear state, just deactivate it and mark it disabled.
- * All others: just leave where they are.
+ * callback to handle each event as we find it.
+ * If we have to detach and drop the knote, do
+ * it while we have the kq unlocked.
*/
-
- if (result == 0) {
- return EJUSTRETURN;
- } else if (kn->kn_flags & EV_ONESHOT) {
- knote_deactivate(kn);
- if (kqlock2knotedrop(kq, kn)) {
- kn->kn_fop->f_detach(kn);
- knote_drop(kn, p);
- }
- } else if (kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) {
- knote_deactivate(kn);
- /* manually clear knotes who weren't 'touch'ed */
- if ((touch == 0) && (kn->kn_flags & EV_CLEAR)) {
- kn->kn_data = 0;
- kn->kn_fflags = 0;
- }
- if (kn->kn_flags & EV_DISPATCH)
- kn->kn_status |= KN_DISABLED;
- kqunlock(kq);
- } else {
- /*
- * leave on inprocess queue. We'll
- * move all the remaining ones back
- * the kq queue and wakeup any
- * waiters when we are done.
- */
+ if (result) {
kqunlock(kq);
+ error = (callback)(kq, &kev, callback_data);
+ kqlock(kq);
}
-
- /* callback to handle each event as we find it */
- error = (callback)(kq, &kev, data);
-
- kqlock(kq);
- return error;
+ return (error);
}
/*
- * kqueue_process - process the triggered events in a kqueue
- *
- * Walk the queued knotes and validate that they are
- * really still triggered events by calling the filter
- * routines (if necessary). Hold a use reference on
- * the knote to avoid it being detached. For each event
- * that is still considered triggered, invoke the
- * callback routine provided.
+ * Return 0 to indicate that processing should proceed,
+ * -1 if there is nothing to process.
*
- * caller holds a reference on the kqueue.
- * kqueue locked on entry and exit - but may be dropped
- * kqueue list locked (held for duration of call)
+ * Called with kqueue locked and returns the same way,
+ * but may drop lock temporarily.
*/
-
static int
-kqueue_process(struct kqueue *kq,
- kevent_callback_t callback,
- void *data,
- int *countp,
- struct proc *p)
+kqworkq_begin_processing(struct kqworkq *kqwq, kq_index_t qos_index, int flags)
{
- struct kqtailq inprocess;
- struct knote *kn;
- int nevents;
- int error;
+ struct kqrequest *kqr;
+ thread_t self = current_thread();
+ __assert_only struct uthread *ut = get_bsdthread_info(self);
+ thread_t thread;
- TAILQ_INIT(&inprocess);
- restart:
- if (kq->kq_count == 0) {
- *countp = 0;
- return 0;
- }
+ assert(kqwq->kqwq_state & KQ_WORKQ);
+ assert(qos_index < KQWQ_NQOS);
- /* if someone else is processing the queue, wait */
- if (hw_atomic_add(&kq->kq_nprocess, 1) != 1) {
- hw_atomic_sub(&kq->kq_nprocess, 1);
- wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, &kq->kq_nprocess, THREAD_UNINT, 0);
+ kqwq_req_lock(kqwq);
+ kqr = kqworkq_get_request(kqwq, qos_index);
+
+ thread = kqr->kqr_thread;
+
+ /* manager skips buckets that haven't ask for its help */
+ if (flags & KEVENT_FLAG_WORKQ_MANAGER) {
+
+ /* If nothing for manager to do, just return */
+ if ((kqr->kqr_state & KQWQ_THMANAGER) == 0) {
+ assert(kqr->kqr_thread != self);
+ kqwq_req_unlock(kqwq);
+ return -1;
+ }
+
+ /* bind manager thread from this time on */
+ kqworkq_bind_thread(kqwq, qos_index, self, flags);
+
+ } else {
+ /* must have been bound by now */
+ assert(thread == self);
+ assert(ut->uu_kqueue_bound == qos_index);
+ assert((ut->uu_kqueue_flags & flags) == ut->uu_kqueue_flags);
+ }
+
+ /* nobody else should still be processing */
+ assert(kqr->kqr_state & KQWQ_THREQUESTED);
+ assert((kqr->kqr_state & KQWQ_PROCESSING) == 0);
+
+ /* anything left to process? */
+ if (kqueue_queue_empty(&kqwq->kqwq_kqueue, qos_index)) {
+ kqwq_req_unlock(kqwq);
+ return -1;
+ }
+
+ /* convert to processing mode */
+ /* reset workq triggers and thread requests - maybe processing */
+ kqr->kqr_state &= ~(KQWQ_HOOKCALLED | KQWQ_WAKEUP);
+ kqr->kqr_state |= KQWQ_PROCESSING;
+ kqwq_req_unlock(kqwq);
+ return 0;
+}
+
+/*
+ * Return 0 to indicate that processing should proceed,
+ * -1 if there is nothing to process.
+ *
+ * Called with kqueue locked and returns the same way,
+ * but may drop lock temporarily.
+ * May block.
+ */
+static int
+kqueue_begin_processing(struct kqueue *kq, kq_index_t qos_index, unsigned int flags)
+{
+ struct kqtailq *suppressq;
+
+ if (kq->kq_state & KQ_WORKQ)
+ return kqworkq_begin_processing((struct kqworkq *)kq, qos_index, flags);
+
+ assert(qos_index == QOS_INDEX_KQFILE);
+
+ /* wait to become the exclusive processing thread */
+ for (;;) {
+ if (kq->kq_state & KQ_DRAIN)
+ return -1;
+
+ if ((kq->kq_state & KQ_PROCESSING) == 0)
+ break;
+
+ /* if someone else is processing the queue, wait */
kq->kq_state |= KQ_PROCWAIT;
+ suppressq = kqueue_get_suppressed_queue(kq, qos_index);
+ waitq_assert_wait64((struct waitq *)&kq->kq_wqs,
+ CAST_EVENT64_T(suppressq),
+ THREAD_UNINT, TIMEOUT_WAIT_FOREVER);
+
kqunlock(kq);
thread_block(THREAD_CONTINUE_NULL);
kqlock(kq);
- goto restart;
}
+ /* Nobody else processing */
+
+ /* clear pre-posts and KQ_WAKEUP now, in case we bail early */
+ waitq_set_clear_preposts(&kq->kq_wqs);
+ kq->kq_state &= ~KQ_WAKEUP;
+
+ /* anything left to process? */
+ if (kqueue_queue_empty(kq, qos_index))
+ return -1;
+
+ /* convert to processing mode */
+ kq->kq_state |= KQ_PROCESSING;
+
+ return 0;
+}
+
+/*
+ * kqworkq_end_processing - Complete the processing of a workq kqueue
+ *
+ * We may have to request new threads.
+ * This can happen there are no waiting processing threads and:
+ * - there were active events we never got to (count > 0)
+ * - we pended waitq hook callouts during processing
+ * - we pended wakeups while processing (or unsuppressing)
+ *
+ * Called with kqueue lock held.
+ */
+static void
+kqworkq_end_processing(struct kqworkq *kqwq, kq_index_t qos_index, int flags)
+{
+#pragma unused(flags)
+
+ struct kqueue *kq = &kqwq->kqwq_kqueue;
+ struct kqtailq *suppressq = kqueue_get_suppressed_queue(kq, qos_index);
+
+ thread_t self = current_thread();
+ __assert_only struct uthread *ut = get_bsdthread_info(self);
+ struct knote *kn;
+ struct kqrequest *kqr;
+ int queued_events;
+ uint16_t pended;
+ thread_t thread;
+
+ assert(kqwq->kqwq_state & KQ_WORKQ);
+ assert(qos_index < KQWQ_NQOS);
+
+ /* leave early if we are not even processing */
+ kqwq_req_lock(kqwq);
+ kqr = kqworkq_get_request(kqwq, qos_index);
+ thread = kqr->kqr_thread;
+
+ if (flags & KEVENT_FLAG_WORKQ_MANAGER) {
+ assert(ut->uu_kqueue_bound == KQWQ_QOS_MANAGER);
+ assert(ut->uu_kqueue_flags & KEVENT_FLAG_WORKQ_MANAGER);
+
+ /* if this bucket didn't need manager help, bail */
+ if ((kqr->kqr_state & KQWQ_THMANAGER) == 0) {
+ assert(thread != self);
+ kqwq_req_unlock(kqwq);
+ return;
+ }
+
+ assert(kqr->kqr_state & KQWQ_THREQUESTED);
+
+ /* unbound bucket - see if still needs servicing */
+ if (thread == THREAD_NULL) {
+ assert((kqr->kqr_state & KQWQ_PROCESSING) == 0);
+ assert(TAILQ_EMPTY(suppressq));
+ } else {
+ assert(thread == self);
+ }
+
+ } else {
+ assert(thread == self);
+ assert(ut->uu_kqueue_bound == qos_index);
+ assert((ut->uu_kqueue_flags & KEVENT_FLAG_WORKQ_MANAGER) == 0);
+ }
+
+ kqwq_req_unlock(kqwq);
+
+ /* Any events queued before we put suppressed ones back? */
+ queued_events = !kqueue_queue_empty(kq, qos_index);
+
/*
- * Clear any pre-posted status from previous runs, so we only
- * detect events that occur during this run.
+ * Return suppressed knotes to their original state.
+ * For workq kqueues, suppressed ones that are still
+ * truly active (not just forced into the queue) will
+ * set flags we check below to see if anything got
+ * woken up.
*/
- wait_queue_sub_clearrefs(kq->kq_wqs);
+ while ((kn = TAILQ_FIRST(suppressq)) != NULL) {
+ assert(kn->kn_status & KN_SUPPRESSED);
+ knote_unsuppress(kn);
+ }
+
+ kqwq_req_lock(kqwq);
+
+ /* Determine if wakeup-type events were pended during servicing */
+ pended = (kqr->kqr_state & (KQWQ_HOOKCALLED | KQWQ_WAKEUP));
+
+ /* unbind thread thread */
+ kqworkq_unbind_thread(kqwq, qos_index, self, flags);
+
+ /* Indicate that we are done processing */
+ kqr->kqr_state &= ~(KQWQ_PROCESSING | \
+ KQWQ_THREQUESTED | KQWQ_THMANAGER);
/*
- * loop through the enqueued knotes, processing each one and
- * revalidating those that need it. As they are processed,
- * they get moved to the inprocess queue (so the loop can end).
+ * request a new thread if events have happened
+ * (not just putting stay-active events back).
*/
- error = 0;
- nevents = 0;
+ if ((queued_events || pended) &&
+ !kqueue_queue_empty(kq, qos_index)) {
+ kqworkq_request_thread(kqwq, qos_index);
+ }
- while (error == 0 &&
- (kn = TAILQ_FIRST(&kq->kq_head)) != NULL) {
- error = knote_process(kn, callback, data, &inprocess, p);
- if (error == EJUSTRETURN)
- error = 0;
- else
- nevents++;
+ kqwq_req_unlock(kqwq);
+}
+
+/*
+ * Called with kqueue lock held.
+ */
+static void
+kqueue_end_processing(struct kqueue *kq, kq_index_t qos_index, unsigned int flags)
+{
+ struct knote *kn;
+ struct kqtailq *suppressq;
+ int procwait;
+
+ if (kq->kq_state & KQ_WORKQ) {
+ kqworkq_end_processing((struct kqworkq *)kq, qos_index, flags);
+ return;
}
+ assert(qos_index == QOS_INDEX_KQFILE);
+
/*
- * With the kqueue still locked, move any knotes
- * remaining on the inprocess queue back to the
- * kq's queue and wake up any waiters.
+ * Return suppressed knotes to their original state.
+ * For workq kqueues, suppressed ones that are still
+ * truly active (not just forced into the queue) will
+ * set flags we check below to see if anything got
+ * woken up.
*/
- while ((kn = TAILQ_FIRST(&inprocess)) != NULL) {
- assert(kn->kn_tq == &inprocess);
- TAILQ_REMOVE(&inprocess, kn, kn_tqe);
- kn->kn_tq = &kq->kq_head;
- TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
+ suppressq = kqueue_get_suppressed_queue(kq, qos_index);
+ while ((kn = TAILQ_FIRST(suppressq)) != NULL) {
+ assert(kn->kn_status & KN_SUPPRESSED);
+ knote_unsuppress(kn);
}
- hw_atomic_sub(&kq->kq_nprocess, 1);
- if (kq->kq_state & KQ_PROCWAIT) {
- kq->kq_state &= ~KQ_PROCWAIT;
- wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, &kq->kq_nprocess, THREAD_AWAKENED);
+
+ procwait = (kq->kq_state & KQ_PROCWAIT);
+ kq->kq_state &= ~(KQ_PROCESSING | KQ_PROCWAIT);
+
+ if (procwait) {
+ /* first wake up any thread already waiting to process */
+ waitq_wakeup64_all((struct waitq *)&kq->kq_wqs,
+ CAST_EVENT64_T(suppressq),
+ THREAD_AWAKENED,
+ WAITQ_ALL_PRIORITIES);
+ }
+}
+
+/*
+ * kevent_qos_internal_bind - bind thread to processing kqueue
+ *
+ * Indicates that the provided thread will be responsible for
+ * servicing the particular QoS class index specified in the
+ * parameters. Once the binding is done, any overrides that may
+ * be associated with the cooresponding events can be applied.
+ *
+ * This should be called as soon as the thread identity is known,
+ * preferably while still at high priority during creation.
+ *
+ * - caller holds a reference on the kqueue.
+ * - the thread MUST call kevent_qos_internal after being bound
+ * or the bucket of events may never be delivered.
+ * - Nothing locked (may take mutex or block).
+ */
+
+int
+kevent_qos_internal_bind(
+ struct proc *p,
+ int qos_class,
+ thread_t thread,
+ unsigned int flags)
+{
+ struct fileproc *fp = NULL;
+ struct kqueue *kq = NULL;
+ struct kqworkq *kqwq;
+ struct kqrequest *kqr;
+ struct uthread *ut;
+ kq_index_t qos_index;
+ int res = 0;
+
+ assert(thread != THREAD_NULL);
+ assert(flags & KEVENT_FLAG_WORKQ);
+
+ if (thread == THREAD_NULL ||
+ (flags & KEVENT_FLAG_WORKQ) == 0) {
+ return EINVAL;
}
- *countp = nevents;
- return error;
+ ut = get_bsdthread_info(thread);
+
+ /* find the kqueue */
+ res = kevent_get_kq(p, -1, flags, &fp, &kq);
+ assert(fp == NULL);
+ if (res)
+ return res;
+
+ /* get the qos index we're going to service */
+ qos_index = qos_index_for_servicer(qos_class, thread, flags);
+
+ /* No need to bind the manager thread to any bucket */
+ if (qos_index == KQWQ_QOS_MANAGER) {
+ assert(ut->uu_kqueue_bound == 0);
+ ut->uu_kqueue_bound = qos_index;
+ ut->uu_kqueue_flags = flags;
+ return 0;
+ }
+
+ kqlock(kq);
+ assert(kq->kq_state & KQ_WORKQ);
+
+ kqwq = (struct kqworkq *)kq;
+ kqr = kqworkq_get_request(kqwq, qos_index);
+
+ kqwq_req_lock(kqwq);
+
+ /*
+ * A (non-emergency) request should have been made
+ * and nobody should already be servicing this bucket.
+ */
+ assert(kqr->kqr_state & KQWQ_THREQUESTED);
+ assert((kqr->kqr_state & KQWQ_THMANAGER) == 0);
+ assert((kqr->kqr_state & KQWQ_PROCESSING) == 0);
+
+ /* Is this is an extraneous bind? */
+ if (thread == kqr->kqr_thread) {
+ assert(ut->uu_kqueue_bound == qos_index);
+ goto out;
+ }
+
+ /* nobody else bound and we're not bound elsewhere */
+ assert(ut->uu_kqueue_bound == 0);
+ assert(ut->uu_kqueue_flags == 0);
+ assert(kqr->kqr_thread == THREAD_NULL);
+
+ /* Don't bind if there is a conflict */
+ if (kqr->kqr_thread != THREAD_NULL ||
+ (kqr->kqr_state & KQWQ_THMANAGER)) {
+ res = EINPROGRESS;
+ goto out;
+ }
+
+ /* finally bind the thread */
+ kqr->kqr_thread = thread;
+ ut->uu_kqueue_bound = qos_index;
+ ut->uu_kqueue_flags = flags;
+
+ /* add any pending overrides to the thread */
+ if (kqr->kqr_override_delta) {
+ thread_add_ipc_override(thread, qos_index + kqr->kqr_override_delta);
+ }
+
+out:
+ kqwq_req_unlock(kqwq);
+ kqunlock(kq);
+
+ return res;
+}
+
+/*
+ * kevent_qos_internal_unbind - unbind thread from processing kqueue
+ *
+ * End processing the per-QoS bucket of events and allow other threads
+ * to be requested for future servicing.
+ *
+ * caller holds a reference on the kqueue.
+ * thread is the current thread.
+ */
+
+int
+kevent_qos_internal_unbind(
+ struct proc *p,
+ int qos_class,
+ thread_t thread,
+ unsigned int flags)
+{
+ struct kqueue *kq;
+ struct uthread *ut;
+ struct fileproc *fp = NULL;
+ kq_index_t qos_index;
+ kq_index_t end_index;
+ int res;
+
+ assert(flags & KEVENT_FLAG_WORKQ);
+ assert(thread == current_thread());
+
+ if (thread == THREAD_NULL ||
+ (flags & KEVENT_FLAG_WORKQ) == 0)
+ return EINVAL;
+
+ /* get the kq */
+ res = kevent_get_kq(p, -1, flags, &fp, &kq);
+ assert(fp == NULL);
+ if (res)
+ return res;
+
+ assert(kq->kq_state & KQ_WORKQ);
+
+ /* get the index we have been servicing */
+ qos_index = qos_index_for_servicer(qos_class, thread, flags);
+
+ ut = get_bsdthread_info(thread);
+
+ /* early out if we were already unbound - or never bound */
+ if (ut->uu_kqueue_bound != qos_index) {
+ __assert_only struct kqworkq *kqwq = (struct kqworkq *)kq;
+ __assert_only struct kqrequest *kqr = kqworkq_get_request(kqwq, qos_index);
+
+ assert(ut->uu_kqueue_bound == 0);
+ assert(ut->uu_kqueue_flags == 0);
+ assert(kqr->kqr_thread != thread);
+ return EALREADY;
+ }
+
+ /* unbind from all the buckets we might own */
+ end_index = (qos_index == KQWQ_QOS_MANAGER) ?
+ 0 : qos_index;
+ kqlock(kq);
+ do {
+ kqueue_end_processing(kq, qos_index, flags);
+ } while (qos_index-- > end_index);
+ kqunlock(kq);
+
+ /* indicate that we are done processing in the uthread */
+ ut->uu_kqueue_bound = 0;
+ ut->uu_kqueue_flags = 0;
+
+ return 0;
}
+/*
+ * kqueue_process - process the triggered events in a kqueue
+ *
+ * Walk the queued knotes and validate that they are
+ * really still triggered events by calling the filter
+ * routines (if necessary). Hold a use reference on
+ * the knote to avoid it being detached. For each event
+ * that is still considered triggered, invoke the
+ * callback routine provided.
+ *
+ * caller holds a reference on the kqueue.
+ * kqueue locked on entry and exit - but may be dropped
+ * kqueue list locked (held for duration of call)
+ */
+
+static int
+kqueue_process(struct kqueue *kq,
+ kevent_callback_t callback,
+ void *callback_data,
+ struct filt_process_s *process_data,
+ kq_index_t servicer_qos_index,
+ int *countp,
+ struct proc *p)
+{
+ unsigned int flags = process_data ? process_data->fp_flags : 0;
+ kq_index_t start_index, end_index, i;
+ struct knote *kn;
+ int nevents = 0;
+ int error = 0;
+
+ /*
+ * Based on the native QoS of the servicer,
+ * determine the range of QoSes that need checking
+ */
+ start_index = servicer_qos_index;
+ end_index = (start_index == KQWQ_QOS_MANAGER) ? 0 : start_index;
+
+ i = start_index;
+
+ do {
+ if (kqueue_begin_processing(kq, i, flags) == -1) {
+ *countp = 0;
+ /* Nothing to process */
+ continue;
+ }
+
+ /*
+ * loop through the enqueued knotes, processing each one and
+ * revalidating those that need it. As they are processed,
+ * they get moved to the inprocess queue (so the loop can end).
+ */
+ error = 0;
+
+ struct kqtailq *base_queue = kqueue_get_base_queue(kq, i);
+ struct kqtailq *queue = kqueue_get_high_queue(kq, i);
+ do {
+ while (error == 0 &&
+ (kn = TAILQ_FIRST(queue)) != NULL) {
+ /* Process the knote */
+ error = knote_process(kn, callback, callback_data, process_data, p);
+ if (error == EJUSTRETURN)
+ error = 0;
+ else
+ nevents++;
+
+ /* break out if no more space for additional events */
+ if (error == EWOULDBLOCK) {
+ if ((kq->kq_state & KQ_WORKQ) == 0)
+ kqueue_end_processing(kq, i, flags);
+ error = 0;
+ goto out;
+ }
+ }
+ } while (error == 0 && queue-- > base_queue);
+
+ /* let somebody else process events if we're not in workq mode */
+ if ((kq->kq_state & KQ_WORKQ) == 0)
+ kqueue_end_processing(kq, i, flags);
+
+ } while (i-- > end_index);
+
+out:
+ *countp = nevents;
+ return (error);
+}
static void
kqueue_scan_continue(void *data, wait_result_t wait_result)
uthread_t ut = (uthread_t)get_bsdthread_info(self);
struct _kqueue_scan * cont_args = &ut->uu_kevent.ss_kqueue_scan;
struct kqueue *kq = (struct kqueue *)data;
+ struct filt_process_s *process_data = cont_args->process_data;
int error;
int count;
/* convert the (previous) wait_result to a proper error */
switch (wait_result) {
- case THREAD_AWAKENED:
+ case THREAD_AWAKENED: {
kqlock(kq);
- error = kqueue_process(kq, cont_args->call, cont_args, &count, current_proc());
+ retry:
+ error = kqueue_process(kq, cont_args->call, cont_args->data,
+ process_data, cont_args->servicer_qos_index,
+ &count, current_proc());
if (error == 0 && count == 0) {
- wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, KQ_EVENT,
- THREAD_ABORTSAFE, cont_args->deadline);
+ if (kq->kq_state & KQ_WAKEUP)
+ goto retry;
+ waitq_assert_wait64((struct waitq *)&kq->kq_wqs,
+ KQ_EVENT, THREAD_ABORTSAFE,
+ cont_args->deadline);
kq->kq_state |= KQ_SLEEP;
kqunlock(kq);
thread_block_parameter(kqueue_scan_continue, kq);
/* NOTREACHED */
}
kqunlock(kq);
- break;
+ } break;
case THREAD_TIMED_OUT:
- error = EWOULDBLOCK;
+ error = EWOULDBLOCK;
break;
case THREAD_INTERRUPTED:
error = EINTR;
break;
+ case THREAD_RESTART:
+ error = EBADF;
+ break;
default:
- panic("kevent_scan_cont() - invalid wait_result (%d)", wait_result);
+ panic("%s: - invalid wait_result (%d)", __func__,
+ wait_result);
error = 0;
}
-
+
/* call the continuation with the results */
assert(cont_args->cont != NULL);
(cont_args->cont)(kq, cont_args->data, error);
*/
int
-kqueue_scan(struct kqueue *kq,
+kqueue_scan(struct kqueue *kq,
kevent_callback_t callback,
kqueue_continue_t continuation,
- void *data,
+ void *callback_data,
+ struct filt_process_s *process_data,
struct timeval *atvp,
struct proc *p)
{
thread_continue_t cont = THREAD_CONTINUE_NULL;
+ kq_index_t servicer_qos_index;
+ unsigned int flags;
uint64_t deadline;
int error;
int first;
+ int fd;
assert(callback != NULL);
+ /*
+ * Determine which QoS index we are servicing
+ */
+ flags = (process_data) ? process_data->fp_flags : 0;
+ fd = (process_data) ? process_data->fp_fd : -1;
+ servicer_qos_index = (kq->kq_state & KQ_WORKQ) ?
+ qos_index_for_servicer(fd, current_thread(), flags) :
+ QOS_INDEX_KQFILE;
+
first = 1;
for (;;) {
wait_result_t wait_result;
/*
* Make a pass through the kq to find events already
- * triggered.
+ * triggered.
*/
kqlock(kq);
- error = kqueue_process(kq, callback, data, &count, p);
+ error = kqueue_process(kq, callback, callback_data,
+ process_data, servicer_qos_index,
+ &count, p);
if (error || count)
break; /* lock still held */
/* convert the timeout to a deadline once */
if (atvp->tv_sec || atvp->tv_usec) {
uint64_t now;
-
+
clock_get_uptime(&now);
nanoseconds_to_absolutetime((uint64_t)atvp->tv_sec * NSEC_PER_SEC +
- atvp->tv_usec * NSEC_PER_USEC,
+ atvp->tv_usec * (long)NSEC_PER_USEC,
&deadline);
if (now >= deadline) {
/* non-blocking call */
if (continuation) {
uthread_t ut = (uthread_t)get_bsdthread_info(current_thread());
struct _kqueue_scan *cont_args = &ut->uu_kevent.ss_kqueue_scan;
-
+
cont_args->call = callback;
cont_args->cont = continuation;
cont_args->deadline = deadline;
- cont_args->data = data;
+ cont_args->data = callback_data;
+ cont_args->process_data = process_data;
+ cont_args->servicer_qos_index = servicer_qos_index;
cont = kqueue_scan_continue;
}
}
+ /* If awakened during processing, try again */
+ if (kq->kq_state & KQ_WAKEUP) {
+ kqunlock(kq);
+ continue;
+ }
+
/* go ahead and wait */
- wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, KQ_EVENT, THREAD_ABORTSAFE, deadline);
+ waitq_assert_wait64_leeway((struct waitq *)&kq->kq_wqs,
+ KQ_EVENT, THREAD_ABORTSAFE,
+ TIMEOUT_URGENCY_USER_NORMAL,
+ deadline, TIMEOUT_NO_LEEWAY);
kq->kq_state |= KQ_SLEEP;
kqunlock(kq);
wait_result = thread_block_parameter(cont, kq);
case THREAD_AWAKENED:
continue;
case THREAD_TIMED_OUT:
- return EWOULDBLOCK;
+ return EWOULDBLOCK;
case THREAD_INTERRUPTED:
return EINTR;
+ case THREAD_RESTART:
+ return EBADF;
default:
- panic("kevent_scan - bad wait_result (%d)",
- wait_result);
+ panic("%s: - bad wait_result (%d)", __func__,
+ wait_result);
error = 0;
}
}
kqunlock(kq);
- return error;
+ return (error);
}
*/
/*ARGSUSED*/
static int
-kqueue_read(__unused struct fileproc *fp,
- __unused struct uio *uio,
- __unused int flags,
- __unused vfs_context_t ctx)
+kqueue_read(__unused struct fileproc *fp,
+ __unused struct uio *uio,
+ __unused int flags,
+ __unused vfs_context_t ctx)
{
return (ENXIO);
}
/*ARGSUSED*/
static int
-kqueue_write(__unused struct fileproc *fp,
- __unused struct uio *uio,
- __unused int flags,
- __unused vfs_context_t ctx)
+kqueue_write(__unused struct fileproc *fp,
+ __unused struct uio *uio,
+ __unused int flags,
+ __unused vfs_context_t ctx)
{
return (ENXIO);
}
/*ARGSUSED*/
static int
-kqueue_ioctl(__unused struct fileproc *fp,
- __unused u_long com,
- __unused caddr_t data,
- __unused vfs_context_t ctx)
+kqueue_ioctl(__unused struct fileproc *fp,
+ __unused u_long com,
+ __unused caddr_t data,
+ __unused vfs_context_t ctx)
{
return (ENOTTY);
}
/*ARGSUSED*/
static int
-kqueue_select(struct fileproc *fp, int which, void *wql, __unused vfs_context_t ctx)
+kqueue_select(struct fileproc *fp, int which, void *wq_link_id,
+ __unused vfs_context_t ctx)
{
struct kqueue *kq = (struct kqueue *)fp->f_data;
- int again;
+ struct kqtailq *queue;
+ struct kqtailq *suppressq;
+ struct knote *kn;
+ int retnum = 0;
if (which != FREAD)
- return 0;
+ return (0);
kqlock(kq);
- /*
+
+ assert((kq->kq_state & KQ_WORKQ) == 0);
+
+ /*
* If this is the first pass, link the wait queue associated with the
* the kqueue onto the wait queue set for the select(). Normally we
* use selrecord() for this, but it uses the wait queue within the
* catch events from KN_STAYQUEUED sources. So we do the linkage manually.
* (The select() call will unlink them when it ends).
*/
- if (wql != NULL) {
- thread_t cur_act = current_thread();
+ if (wq_link_id != NULL) {
+ thread_t cur_act = current_thread();
struct uthread * ut = get_bsdthread_info(cur_act);
kq->kq_state |= KQ_SEL;
- wait_queue_link_noalloc((wait_queue_t)kq->kq_wqs, ut->uu_wqset,
- (wait_queue_link_t)wql);
+ waitq_link((struct waitq *)&kq->kq_wqs, ut->uu_wqset,
+ WAITQ_SHOULD_LOCK, (uint64_t *)wq_link_id);
+
+ /* always consume the reserved link object */
+ waitq_link_release(*(uint64_t *)wq_link_id);
+ *(uint64_t *)wq_link_id = 0;
+
+ /*
+ * selprocess() is expecting that we send it back the waitq
+ * that was just added to the thread's waitq set. In order
+ * to not change the selrecord() API (which is exported to
+ * kexts), we pass this value back through the
+ * void *wq_link_id pointer we were passed. We need to use
+ * memcpy here because the pointer may not be properly aligned
+ * on 32-bit systems.
+ */
+ void *wqptr = &kq->kq_wqs;
+ memcpy(wq_link_id, (void *)&wqptr, sizeof(void *));
}
- retry:
- again = 0;
- if (kq->kq_count != 0) {
- struct knote *kn;
+ if (kqueue_begin_processing(kq, QOS_INDEX_KQFILE, 0) == -1) {
+ kqunlock(kq);
+ return (0);
+ }
+ queue = kqueue_get_base_queue(kq, QOS_INDEX_KQFILE);
+ if (!TAILQ_EMPTY(queue)) {
/*
* there is something queued - but it might be a
- * KN_STAYQUEUED knote, which may or may not have
- * any events pending. So, we have to walk the
- * list of knotes to see, and peek at the stay-
- * queued ones to be really sure.
+ * KN_STAYACTIVE knote, which may or may not have
+ * any events pending. Otherwise, we have to walk
+ * the list of knotes to see, and peek at the
+ * (non-vanished) stay-active ones to be really sure.
*/
- TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
- int retnum = 0;
- if ((kn->kn_status & KN_STAYQUEUED) == 0 ||
- (retnum = kn->kn_fop->f_peek(kn)) > 0) {
- kqunlock(kq);
- return 1;
+ while ((kn = (struct knote *)TAILQ_FIRST(queue)) != NULL) {
+ if (kn->kn_status & KN_ACTIVE) {
+ retnum = 1;
+ goto out;
}
- if (retnum < 0)
- again++;
+ assert(kn->kn_status & KN_STAYACTIVE);
+ knote_suppress(kn);
}
- }
- /*
- * If we stumbled across a knote that couldn't be peeked at,
- * we have to drop the kq lock and try again.
- */
- if (again > 0) {
- kqunlock(kq);
- mutex_pause(0);
- kqlock(kq);
- goto retry;
+ /*
+ * There were no regular events on the queue, so take
+ * a deeper look at the stay-queued ones we suppressed.
+ */
+ suppressq = kqueue_get_suppressed_queue(kq, QOS_INDEX_KQFILE);
+ while ((kn = (struct knote *)TAILQ_FIRST(suppressq)) != NULL) {
+ unsigned peek = 1;
+
+ /* If didn't vanish while suppressed - peek at it */
+ if (kqlock2knoteuse(kq, kn)) {
+
+ peek = knote_fops(kn)->f_peek(kn);
+
+ /* if it dropped while getting lock - move on */
+ if (!knoteuse2kqlock(kq, kn, 0))
+ continue;
+ }
+
+ /* unsuppress it */
+ knote_unsuppress(kn);
+
+ /* has data or it has to report a vanish */
+ if (peek > 0) {
+ retnum = 1;
+ goto out;
+ }
+ }
}
+out:
+ kqueue_end_processing(kq, QOS_INDEX_KQFILE, 0);
kqunlock(kq);
- return 0;
+ return (retnum);
}
/*
static int
kqueue_close(struct fileglob *fg, __unused vfs_context_t ctx)
{
- struct kqueue *kq = (struct kqueue *)fg->fg_data;
+ struct kqfile *kqf = (struct kqfile *)fg->fg_data;
- kqueue_dealloc(kq);
+ assert((kqf->kqf_state & KQ_WORKQ) == 0);
+ kqueue_dealloc(&kqf->kqf_kqueue);
fg->fg_data = NULL;
return (0);
}
static int
kqueue_kqfilter(__unused struct fileproc *fp, struct knote *kn, __unused vfs_context_t ctx)
{
- struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
- struct kqueue *parentkq = kn->kn_kq;
+ struct kqfile *kqf = (struct kqfile *)kn->kn_fp->f_data;
+ struct kqueue *kq = &kqf->kqf_kqueue;
+ struct kqueue *parentkq = knote_get_kq(kn);
+
+ assert((kqf->kqf_state & KQ_WORKQ) == 0);
if (parentkq == kq ||
- kn->kn_filter != EVFILT_READ)
- return (1);
+ kn->kn_filter != EVFILT_READ) {
+ kn->kn_flags = EV_ERROR;
+ kn->kn_data = EINVAL;
+ return 0;
+ }
/*
* We have to avoid creating a cycle when nesting kqueues
*/
kqlock(parentkq);
- if (parentkq->kq_level > 0 &&
+ if (parentkq->kq_level > 0 &&
parentkq->kq_level < kq->kq_level)
{
kqunlock(parentkq);
- return (1);
+ kn->kn_flags = EV_ERROR;
+ kn->kn_data = EINVAL;
+ return 0;
} else {
/* set parent level appropriately */
if (parentkq->kq_level == 0)
parentkq->kq_level = kq->kq_level + 1;
kqunlock(parentkq);
- kn->kn_fop = &kqread_filtops;
+ kn->kn_filtid = EVFILTID_KQREAD;
kqlock(kq);
- KNOTE_ATTACH(&kq->kq_sel.si_note, kn);
+ KNOTE_ATTACH(&kqf->kqf_sel.si_note, kn);
/* indicate nesting in child, if needed */
if (kq->kq_level == 0)
kq->kq_level = 1;
+
+ int count = kq->kq_count;
kqunlock(kq);
- return (0);
+ return (count > 0);
}
}
kqueue_drain(struct fileproc *fp, __unused vfs_context_t ctx)
{
struct kqueue *kq = (struct kqueue *)fp->f_fglob->fg_data;
+
+ assert((kq->kq_state & KQ_WORKQ) == 0);
+
kqlock(kq);
- kqueue_wakeup(kq, 1);
+ kq->kq_state |= KQ_DRAIN;
+ kqueue_interrupt(kq);
kqunlock(kq);
- return 0;
+ return (0);
}
/*ARGSUSED*/
int
-kqueue_stat(struct fileproc *fp, void *ub, int isstat64, __unused vfs_context_t ctx)
+kqueue_stat(struct kqueue *kq, void *ub, int isstat64, proc_t p)
{
+ assert((kq->kq_state & KQ_WORKQ) == 0);
- struct kqueue *kq = (struct kqueue *)fp->f_data;
+ kqlock(kq);
if (isstat64 != 0) {
struct stat64 *sb64 = (struct stat64 *)ub;
bzero((void *)sb64, sizeof(*sb64));
sb64->st_size = kq->kq_count;
- if (kq->kq_state & KQ_KEV64)
+ if (kq->kq_state & KQ_KEV_QOS)
+ sb64->st_blksize = sizeof(struct kevent_qos_s);
+ else if (kq->kq_state & KQ_KEV64)
sb64->st_blksize = sizeof(struct kevent64_s);
+ else if (IS_64BIT_PROCESS(p))
+ sb64->st_blksize = sizeof(struct user64_kevent);
else
- sb64->st_blksize = sizeof(struct kevent);
+ sb64->st_blksize = sizeof(struct user32_kevent);
sb64->st_mode = S_IFIFO;
} else {
struct stat *sb = (struct stat *)ub;
bzero((void *)sb, sizeof(*sb));
sb->st_size = kq->kq_count;
- if (kq->kq_state & KQ_KEV64)
+ if (kq->kq_state & KQ_KEV_QOS)
+ sb->st_blksize = sizeof(struct kevent_qos_s);
+ else if (kq->kq_state & KQ_KEV64)
sb->st_blksize = sizeof(struct kevent64_s);
+ else if (IS_64BIT_PROCESS(p))
+ sb->st_blksize = sizeof(struct user64_kevent);
else
- sb->st_blksize = sizeof(struct kevent);
+ sb->st_blksize = sizeof(struct user32_kevent);
sb->st_mode = S_IFIFO;
}
-
+ kqunlock(kq);
return (0);
}
+
/*
- * Called with the kqueue locked
+ * Interact with the pthread kext to request a servicing there.
+ * Eventually, this will request threads at specific QoS levels.
+ * For now, it only requests a dispatch-manager-QoS thread, and
+ * only one-at-a-time.
+ *
+ * - Caller holds the workq request lock
+ *
+ * - May be called with the kqueue's wait queue set locked,
+ * so cannot do anything that could recurse on that.
*/
static void
-kqueue_wakeup(struct kqueue *kq, int closed)
+kqworkq_request_thread(
+ struct kqworkq *kqwq,
+ kq_index_t qos_index)
{
- if ((kq->kq_state & (KQ_SLEEP | KQ_SEL)) != 0 || kq->kq_nprocess > 0) {
- kq->kq_state &= ~(KQ_SLEEP | KQ_SEL);
- wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, KQ_EVENT,
- (closed) ? THREAD_INTERRUPTED : THREAD_AWAKENED);
- }
-}
+ struct kqrequest *kqr;
-void
-klist_init(struct klist *list)
-{
+ assert(kqwq->kqwq_state & KQ_WORKQ);
+ assert(qos_index < KQWQ_NQOS);
+
+ kqr = kqworkq_get_request(kqwq, qos_index);
+
+ /*
+ * If we have already requested a thread, and it hasn't
+ * started processing yet, there's no use hammering away
+ * on the pthread kext.
+ */
+ if (kqr->kqr_state & KQWQ_THREQUESTED)
+ return;
+
+ assert(kqr->kqr_thread == THREAD_NULL);
+
+ /* request additional workq threads if appropriate */
+ if (pthread_functions != NULL &&
+ pthread_functions->workq_reqthreads != NULL) {
+ unsigned int flags = KEVENT_FLAG_WORKQ;
+
+ /* Compute a priority based on qos_index. */
+ struct workq_reqthreads_req_s request = {
+ .priority = qos_from_qos_index(qos_index),
+ .count = 1
+ };
+
+ thread_t wqthread;
+ wqthread = (*pthread_functions->workq_reqthreads)(kqwq->kqwq_p, 1, &request);
+ kqr->kqr_state |= KQWQ_THREQUESTED;
+
+ /* Have we been switched to the emergency/manager thread? */
+ if (wqthread == (thread_t)-1) {
+ flags |= KEVENT_FLAG_WORKQ_MANAGER;
+ wqthread = THREAD_NULL;
+ } else if (qos_index == KQWQ_QOS_MANAGER)
+ flags |= KEVENT_FLAG_WORKQ_MANAGER;
+
+ /* bind the thread */
+ kqworkq_bind_thread(kqwq, qos_index, wqthread, flags);
+ }
+}
+
+/*
+ * If we aren't already busy processing events [for this QoS],
+ * request workq thread support as appropriate.
+ *
+ * TBD - for now, we don't segregate out processing by QoS.
+ *
+ * - May be called with the kqueue's wait queue set locked,
+ * so cannot do anything that could recurse on that.
+ */
+static void
+kqworkq_request_help(
+ struct kqworkq *kqwq,
+ kq_index_t qos_index,
+ uint32_t type)
+{
+ struct kqrequest *kqr;
+
+ /* convert to thread qos value */
+ assert(qos_index < KQWQ_NQOS);
+
+ kqwq_req_lock(kqwq);
+ kqr = kqworkq_get_request(kqwq, qos_index);
+
+ /*
+ * If someone is processing the queue, just mark what type
+ * of attempt this was (from a kq wakeup or from a waitq hook).
+ * They'll be noticed at the end of servicing and a new thread
+ * will be requested at that point.
+ */
+ if (kqr->kqr_state & KQWQ_PROCESSING) {
+ kqr->kqr_state |= type;
+ kqwq_req_unlock(kqwq);
+ return;
+ }
+
+ kqworkq_request_thread(kqwq, qos_index);
+ kqwq_req_unlock(kqwq);
+}
+
+/*
+ * These arrays described the low and high qindexes for a given qos_index.
+ * The values come from the chart in <sys/eventvar.h> (must stay in sync).
+ */
+static kq_index_t _kq_base_index[KQWQ_NQOS] = {0, 0, 6, 11, 15, 18, 20, 21};
+static kq_index_t _kq_high_index[KQWQ_NQOS] = {0, 5, 10, 14, 17, 19, 20, 21};
+
+static struct kqtailq *
+kqueue_get_base_queue(struct kqueue *kq, kq_index_t qos_index)
+{
+ assert(qos_index < KQWQ_NQOS);
+ return &kq->kq_queue[_kq_base_index[qos_index]];
+}
+
+static struct kqtailq *
+kqueue_get_high_queue(struct kqueue *kq, kq_index_t qos_index)
+{
+ assert(qos_index < KQWQ_NQOS);
+ return &kq->kq_queue[_kq_high_index[qos_index]];
+}
+
+static int
+kqueue_queue_empty(struct kqueue *kq, kq_index_t qos_index)
+{
+ struct kqtailq *base_queue = kqueue_get_base_queue(kq, qos_index);
+ struct kqtailq *queue = kqueue_get_high_queue(kq, qos_index);
+
+ do {
+ if (!TAILQ_EMPTY(queue))
+ return 0;
+ } while (queue-- > base_queue);
+ return 1;
+}
+
+static struct kqtailq *
+kqueue_get_suppressed_queue(struct kqueue *kq, kq_index_t qos_index)
+{
+ if (kq->kq_state & KQ_WORKQ) {
+ struct kqworkq *kqwq = (struct kqworkq *)kq;
+ struct kqrequest *kqr;
+
+ kqr = kqworkq_get_request(kqwq, qos_index);
+ return &kqr->kqr_suppressed;
+ } else {
+ struct kqfile *kqf = (struct kqfile *)kq;
+ return &kqf->kqf_suppressed;
+ }
+}
+
+static kq_index_t
+knote_get_queue_index(struct knote *kn)
+{
+ kq_index_t override_index = knote_get_qos_override_index(kn);
+ kq_index_t qos_index = knote_get_qos_index(kn);
+ struct kqueue *kq = knote_get_kq(kn);
+ kq_index_t res;
+
+ if ((kq->kq_state & KQ_WORKQ) == 0) {
+ assert(qos_index == 0);
+ assert(override_index == 0);
+ }
+ res = _kq_base_index[qos_index];
+ if (override_index > qos_index)
+ res += override_index - qos_index;
+
+ assert(res <= _kq_high_index[qos_index]);
+ return res;
+}
+
+static struct kqtailq *
+knote_get_queue(struct knote *kn)
+{
+ kq_index_t qindex = knote_get_queue_index(kn);
+
+ return &(knote_get_kq(kn))->kq_queue[qindex];
+}
+
+static struct kqtailq *
+knote_get_suppressed_queue(struct knote *kn)
+{
+ kq_index_t qos_index = knote_get_qos_index(kn);
+ struct kqueue *kq = knote_get_kq(kn);
+
+ return kqueue_get_suppressed_queue(kq, qos_index);
+}
+
+static kq_index_t
+knote_get_req_index(struct knote *kn)
+{
+ return kn->kn_req_index;
+}
+
+static kq_index_t
+knote_get_qos_index(struct knote *kn)
+{
+ return kn->kn_qos_index;
+}
+
+static void
+knote_set_qos_index(struct knote *kn, kq_index_t qos_index)
+{
+ struct kqueue *kq = knote_get_kq(kn);
+
+ assert(qos_index < KQWQ_NQOS);
+ assert((kn->kn_status & KN_QUEUED) == 0);
+
+ if (kq->kq_state & KQ_WORKQ)
+ assert(qos_index > QOS_INDEX_KQFILE);
+ else
+ assert(qos_index == QOS_INDEX_KQFILE);
+
+ /* always set requested */
+ kn->kn_req_index = qos_index;
+
+ /* only adjust in-use qos index when not suppressed */
+ if ((kn->kn_status & KN_SUPPRESSED) == 0)
+ kn->kn_qos_index = qos_index;
+}
+
+static kq_index_t
+knote_get_qos_override_index(struct knote *kn)
+{
+ return kn->kn_qos_override;
+}
+
+static void
+knote_set_qos_override_index(struct knote *kn, kq_index_t override_index)
+{
+ struct kqueue *kq = knote_get_kq(kn);
+ kq_index_t qos_index = knote_get_qos_index(kn);
+
+ assert((kn->kn_status & KN_QUEUED) == 0);
+
+ if (override_index == KQWQ_QOS_MANAGER)
+ assert(qos_index == KQWQ_QOS_MANAGER);
+ else
+ assert(override_index < KQWQ_QOS_MANAGER);
+
+ kn->kn_qos_override = override_index;
+
+ /*
+ * If this is a workq kqueue, apply the override to the
+ * workq servicing thread.
+ */
+ if (kq->kq_state & KQ_WORKQ) {
+ struct kqworkq *kqwq = (struct kqworkq *)kq;
+
+ assert(qos_index > QOS_INDEX_KQFILE);
+ kqworkq_update_override(kqwq, qos_index, override_index);
+ }
+}
+
+static void
+kqworkq_update_override(struct kqworkq *kqwq, kq_index_t qos_index, kq_index_t override_index)
+{
+ struct kqrequest *kqr;
+ kq_index_t new_delta;
+ kq_index_t old_delta;
+
+ new_delta = (override_index > qos_index) ?
+ override_index - qos_index : 0;
+
+ kqr = kqworkq_get_request(kqwq, qos_index);
+
+ kqwq_req_lock(kqwq);
+ old_delta = kqr->kqr_override_delta;
+
+ if (new_delta > old_delta) {
+ thread_t wqthread = kqr->kqr_thread;
+
+ /* store the new override delta */
+ kqr->kqr_override_delta = new_delta;
+
+ /* apply the override to [incoming?] servicing thread */
+ if (wqthread) {
+ /* only apply if non-manager */
+ if ((kqr->kqr_state & KQWQ_THMANAGER) == 0) {
+ if (old_delta)
+ thread_update_ipc_override(wqthread, override_index);
+ else
+ thread_add_ipc_override(wqthread, override_index);
+ }
+ }
+ }
+ kqwq_req_unlock(kqwq);
+}
+
+/* called with the kqworkq lock held */
+static void
+kqworkq_bind_thread(
+ struct kqworkq *kqwq,
+ kq_index_t qos_index,
+ thread_t thread,
+ unsigned int flags)
+{
+ struct kqrequest *kqr = kqworkq_get_request(kqwq, qos_index);
+ thread_t old_thread = kqr->kqr_thread;
+ struct uthread *ut;
+
+ assert(kqr->kqr_state & KQWQ_THREQUESTED);
+
+ /* If no identity yet, just set flags as needed */
+ if (thread == THREAD_NULL) {
+ assert(old_thread == THREAD_NULL);
+
+ /* emergency or unindetified */
+ if (flags & KEVENT_FLAG_WORKQ_MANAGER) {
+ assert((kqr->kqr_state & KQWQ_THMANAGER) == 0);
+ kqr->kqr_state |= KQWQ_THMANAGER;
+ }
+ return;
+ }
+
+ /* Known thread identity */
+ ut = get_bsdthread_info(thread);
+
+ /*
+ * If this is a manager, and the manager request bit is
+ * not set, assure no other thread is bound. If the bit
+ * is set, make sure the old thread is us (or not set).
+ */
+ if (flags & KEVENT_FLAG_WORKQ_MANAGER) {
+ if ((kqr->kqr_state & KQWQ_THMANAGER) == 0) {
+ assert(old_thread == THREAD_NULL);
+ kqr->kqr_state |= KQWQ_THMANAGER;
+ } else if (old_thread == THREAD_NULL) {
+ kqr->kqr_thread = thread;
+ ut->uu_kqueue_bound = KQWQ_QOS_MANAGER;
+ ut->uu_kqueue_flags = (KEVENT_FLAG_WORKQ |
+ KEVENT_FLAG_WORKQ_MANAGER);
+ } else {
+ assert(thread == old_thread);
+ assert(ut->uu_kqueue_bound == KQWQ_QOS_MANAGER);
+ assert(ut->uu_kqueue_flags & KEVENT_FLAG_WORKQ_MANAGER);
+ }
+ return;
+ }
+
+ /* Just a normal one-queue servicing thread */
+ assert(old_thread == THREAD_NULL);
+ assert((kqr->kqr_state & KQWQ_THMANAGER) == 0);
+
+ kqr->kqr_thread = thread;
+
+ /* apply an ipc QoS override if one is needed */
+ if (kqr->kqr_override_delta)
+ thread_add_ipc_override(thread, qos_index + kqr->kqr_override_delta);
+
+ /* indicate that we are processing in the uthread */
+ ut->uu_kqueue_bound = qos_index;
+ ut->uu_kqueue_flags = flags;
+}
+
+/* called with the kqworkq lock held */
+static void
+kqworkq_unbind_thread(
+ struct kqworkq *kqwq,
+ kq_index_t qos_index,
+ thread_t thread,
+ __unused unsigned int flags)
+{
+ struct kqrequest *kqr = kqworkq_get_request(kqwq, qos_index);
+ kq_index_t override = 0;
+
+ assert(thread == current_thread());
+
+ /*
+ * If there is an override, drop it from the current thread
+ * and then we are free to recompute (a potentially lower)
+ * minimum override to apply to the next thread request.
+ */
+ if (kqr->kqr_override_delta) {
+ struct kqtailq *base_queue = kqueue_get_base_queue(&kqwq->kqwq_kqueue, qos_index);
+ struct kqtailq *queue = kqueue_get_high_queue(&kqwq->kqwq_kqueue, qos_index);
+
+ /* if not bound to a manager thread, drop the current ipc override */
+ if ((kqr->kqr_state & KQWQ_THMANAGER) == 0) {
+ assert(thread == kqr->kqr_thread);
+ thread_drop_ipc_override(thread);
+ }
+
+ /* recompute the new override */
+ do {
+ if (!TAILQ_EMPTY(queue)) {
+ override = queue - base_queue;
+ break;
+ }
+ } while (queue-- > base_queue);
+ }
+
+ /* unbind the thread and apply the new override */
+ kqr->kqr_thread = THREAD_NULL;
+ kqr->kqr_override_delta = override;
+}
+
+struct kqrequest *
+kqworkq_get_request(struct kqworkq *kqwq, kq_index_t qos_index)
+{
+ assert(qos_index < KQWQ_NQOS);
+ return &kqwq->kqwq_request[qos_index];
+}
+
+void
+knote_adjust_qos(struct knote *kn, qos_t new_qos, qos_t new_override)
+{
+ if (knote_get_kq(kn)->kq_state & KQ_WORKQ) {
+ kq_index_t new_qos_index;
+ kq_index_t new_override_index;
+ kq_index_t servicer_qos_index;
+
+ new_qos_index = qos_index_from_qos(new_qos, FALSE);
+ new_override_index = qos_index_from_qos(new_override, TRUE);
+
+ /* make sure the servicer qos acts as a floor */
+ servicer_qos_index = qos_index_from_qos(kn->kn_qos, FALSE);
+ if (servicer_qos_index > new_qos_index)
+ new_qos_index = servicer_qos_index;
+ if (servicer_qos_index > new_override_index)
+ new_override_index = servicer_qos_index;
+
+ kqlock(knote_get_kq(kn));
+ if (new_qos_index != knote_get_req_index(kn) ||
+ new_override_index != knote_get_qos_override_index(kn)) {
+ if (kn->kn_status & KN_QUEUED) {
+ knote_dequeue(kn);
+ knote_set_qos_index(kn, new_qos_index);
+ knote_set_qos_override_index(kn, new_override_index);
+ knote_enqueue(kn);
+ knote_wakeup(kn);
+ } else {
+ knote_set_qos_index(kn, new_qos_index);
+ knote_set_qos_override_index(kn, new_override_index);
+ }
+ }
+ kqunlock(knote_get_kq(kn));
+ }
+}
+
+static void
+knote_wakeup(struct knote *kn)
+{
+ struct kqueue *kq = knote_get_kq(kn);
+
+ if (kq->kq_state & KQ_WORKQ) {
+ /* request a servicing thread */
+ struct kqworkq *kqwq = (struct kqworkq *)kq;
+ kq_index_t qos_index = knote_get_qos_index(kn);
+
+ kqworkq_request_help(kqwq, qos_index, KQWQ_WAKEUP);
+
+ } else {
+ struct kqfile *kqf = (struct kqfile *)kq;
+
+ /* flag wakeups during processing */
+ if (kq->kq_state & KQ_PROCESSING)
+ kq->kq_state |= KQ_WAKEUP;
+
+ /* wakeup a thread waiting on this queue */
+ if (kq->kq_state & (KQ_SLEEP | KQ_SEL)) {
+ kq->kq_state &= ~(KQ_SLEEP | KQ_SEL);
+ waitq_wakeup64_all((struct waitq *)&kq->kq_wqs,
+ KQ_EVENT,
+ THREAD_AWAKENED,
+ WAITQ_ALL_PRIORITIES);
+ }
+
+ /* wakeup other kqueues/select sets we're inside */
+ KNOTE(&kqf->kqf_sel.si_note, 0);
+ }
+}
+
+/*
+ * Called with the kqueue locked
+ */
+static void
+kqueue_interrupt(struct kqueue *kq)
+{
+ assert((kq->kq_state & KQ_WORKQ) == 0);
+
+ /* wakeup sleeping threads */
+ if ((kq->kq_state & (KQ_SLEEP | KQ_SEL)) != 0) {
+ kq->kq_state &= ~(KQ_SLEEP | KQ_SEL);
+ (void)waitq_wakeup64_all((struct waitq *)&kq->kq_wqs,
+ KQ_EVENT,
+ THREAD_RESTART,
+ WAITQ_ALL_PRIORITIES);
+ }
+
+ /* wakeup threads waiting their turn to process */
+ if (kq->kq_state & KQ_PROCWAIT) {
+ struct kqtailq *suppressq;
+
+ assert(kq->kq_state & KQ_PROCESSING);
+
+ kq->kq_state &= ~KQ_PROCWAIT;
+ suppressq = kqueue_get_suppressed_queue(kq, QOS_INDEX_KQFILE);
+ (void)waitq_wakeup64_all((struct waitq *)&kq->kq_wqs,
+ CAST_EVENT64_T(suppressq),
+ THREAD_RESTART,
+ WAITQ_ALL_PRIORITIES);
+ }
+}
+
+/*
+ * Called back from waitq code when no threads waiting and the hook was set.
+ *
+ * Interrupts are likely disabled and spin locks are held - minimal work
+ * can be done in this context!!!
+ *
+ * JMM - in the future, this will try to determine which knotes match the
+ * wait queue wakeup and apply these wakeups against those knotes themselves.
+ * For now, all the events dispatched this way are dispatch-manager handled,
+ * so hard-code that for now.
+ */
+void
+waitq_set__CALLING_PREPOST_HOOK__(void *kq_hook, void *knote_hook, int qos)
+{
+#pragma unused(knote_hook, qos)
+
+ struct kqworkq *kqwq = (struct kqworkq *)kq_hook;
+
+ assert(kqwq->kqwq_state & KQ_WORKQ);
+ kqworkq_request_help(kqwq, KQWQ_QOS_MANAGER, KQWQ_HOOKCALLED);
+}
+
+void
+klist_init(struct klist *list)
+{
SLIST_INIT(list);
}
*
* The object lock should also hold off pending
* detach/drop operations. But we'll prevent it here
- * too - just in case.
+ * too (by taking a use reference) - just in case.
*/
void
knote(struct klist *list, long hint)
struct knote *kn;
SLIST_FOREACH(kn, list, kn_selnext) {
- struct kqueue *kq = kn->kn_kq;
+ struct kqueue *kq = knote_get_kq(kn);
kqlock(kq);
+
+ /* If we can get a use reference - deliver event */
if (kqlock2knoteuse(kq, kn)) {
int result;
/* call the event with only a use count */
- result = kn->kn_fop->f_event(kn, hint);
+ result = knote_fops(kn)->f_event(kn, hint);
/* if its not going away and triggered */
- if (knoteuse2kqlock(kq, kn) && result)
- knote_activate(kn, 1);
- /* lock held again */
+ if (knoteuse2kqlock(kq, kn, 0) && result)
+ knote_activate(kn);
+ /* kq lock held */
}
kqunlock(kq);
}
{
int ret = SLIST_EMPTY(list);
SLIST_INSERT_HEAD(list, kn, kn_selnext);
- return ret;
+ return (ret);
}
/*
knote_detach(struct klist *list, struct knote *kn)
{
SLIST_REMOVE(list, kn, knote, kn_selnext);
- return SLIST_EMPTY(list);
+ return (SLIST_EMPTY(list));
+}
+
+/*
+ * knote_vanish - Indicate that the source has vanished
+ *
+ * If the knote has requested EV_VANISHED delivery,
+ * arrange for that. Otherwise, deliver a NOTE_REVOKE
+ * event for backward compatibility.
+ *
+ * The knote is marked as having vanished, but is not
+ * actually detached from the source in this instance.
+ * The actual detach is deferred until the knote drop.
+ *
+ * Our caller already has the object lock held. Calling
+ * the detach routine would try to take that lock
+ * recursively - which likely is not supported.
+ */
+void
+knote_vanish(struct klist *list)
+{
+ struct knote *kn;
+ struct knote *kn_next;
+
+ SLIST_FOREACH_SAFE(kn, list, kn_selnext, kn_next) {
+ struct kqueue *kq = knote_get_kq(kn);
+ int result;
+
+ kqlock(kq);
+ if ((kn->kn_status & KN_DROPPING) == 0) {
+
+ /* If EV_VANISH supported - prepare to deliver one */
+ if (kn->kn_status & KN_REQVANISH) {
+ kn->kn_status |= KN_VANISHED;
+ knote_activate(kn);
+
+ } else if (kqlock2knoteuse(kq, kn)) {
+ /* call the event with only a use count */
+ result = knote_fops(kn)->f_event(kn, NOTE_REVOKE);
+
+ /* if its not going away and triggered */
+ if (knoteuse2kqlock(kq, kn, 0) && result)
+ knote_activate(kn);
+ /* lock held again */
+ }
+ }
+ kqunlock(kq);
+ }
}
/*
* For a given knote, link a provided wait queue directly with the kqueue.
- * Wakeups will happen via recursive wait queue support. But nothing will move
+ * Wakeups will happen via recursive wait queue support. But nothing will move
* the knote to the active list at wakeup (nothing calls knote()). Instead,
* we permanently enqueue them here.
*
* kqueue and knote references are held by caller.
+ * waitq locked by caller.
+ *
+ * caller provides the wait queue link structure.
*/
int
-knote_link_wait_queue(struct knote *kn, struct wait_queue *wq)
+knote_link_waitq(struct knote *kn, struct waitq *wq, uint64_t *reserved_link)
{
- struct kqueue *kq = kn->kn_kq;
+ struct kqueue *kq = knote_get_kq(kn);
kern_return_t kr;
- kr = wait_queue_link(wq, kq->kq_wqs);
+ kr = waitq_link(wq, &kq->kq_wqs, WAITQ_ALREADY_LOCKED, reserved_link);
if (kr == KERN_SUCCESS) {
- kqlock(kq);
- kn->kn_status |= KN_STAYQUEUED;
- knote_enqueue(kn);
- kqunlock(kq);
- return 0;
+ knote_markstayactive(kn);
+ return (0);
} else {
- return ENOMEM;
+ return (EINVAL);
}
}
*
* Note that the unlink may have already happened from the other side, so
* ignore any failures to unlink and just remove it from the kqueue list.
+ *
+ * On success, caller is responsible for the link structure
*/
-void
-knote_unlink_wait_queue(struct knote *kn, struct wait_queue *wq)
+int
+knote_unlink_waitq(struct knote *kn, struct waitq *wq)
{
- struct kqueue *kq = kn->kn_kq;
+ struct kqueue *kq = knote_get_kq(kn);
+ kern_return_t kr;
- (void) wait_queue_unlink(wq, kq->kq_wqs);
- kqlock(kq);
- kn->kn_status &= ~KN_STAYQUEUED;
- knote_dequeue(kn);
- kqunlock(kq);
+ kr = waitq_unlink(wq, &kq->kq_wqs);
+ knote_clearstayactive(kn);
+ return ((kr != KERN_SUCCESS) ? EINVAL : 0);
}
/*
*
* Essentially an inlined knote_remove & knote_drop
* when we know for sure that the thing is a file
- *
+ *
* Entered with the proc_fd lock already held.
* It returns the same way, but may drop it temporarily.
*/
void
-knote_fdclose(struct proc *p, int fd)
+knote_fdclose(struct proc *p, int fd, int force)
{
- struct filedesc *fdp = p->p_fd;
struct klist *list;
struct knote *kn;
- list = &fdp->fd_knlist[fd];
- while ((kn = SLIST_FIRST(list)) != NULL) {
- struct kqueue *kq = kn->kn_kq;
+restart:
+ list = &p->p_fd->fd_knlist[fd];
+ SLIST_FOREACH(kn, list, kn_link) {
+ struct kqueue *kq = knote_get_kq(kn);
+
+ kqlock(kq);
if (kq->kq_p != p)
- panic("knote_fdclose: proc mismatch (kq->kq_p=%p != p=%p)", kq->kq_p, p);
+ panic("%s: proc mismatch (kq->kq_p=%p != p=%p)",
+ __func__, kq->kq_p, p);
+
+ /*
+ * If the knote supports EV_VANISHED delivery,
+ * transition it to vanished mode (or skip over
+ * it if already vanished).
+ */
+ if (!force && (kn->kn_status & KN_REQVANISH)) {
+
+ if ((kn->kn_status & KN_VANISHED) == 0) {
+ proc_fdunlock(p);
+
+ /* get detach reference (also marks vanished) */
+ if (kqlock2knotedetach(kq, kn)) {
+
+ /* detach knote and drop fp use reference */
+ knote_fops(kn)->f_detach(kn);
+ if (knote_fops(kn)->f_isfd)
+ fp_drop(p, kn->kn_id, kn->kn_fp, 0);
+
+ /* activate it if it's still in existence */
+ if (knoteuse2kqlock(kq, kn, 0)) {
+ knote_activate(kn);
+ }
+ kqunlock(kq);
+ }
+ proc_fdlock(p);
+ goto restart;
+ } else {
+ kqunlock(kq);
+ continue;
+ }
+ }
- kqlock(kq);
proc_fdunlock(p);
/*
- * Convert the lock to a drop ref.
+ * Convert the kq lock to a drop ref.
* If we get it, go ahead and drop it.
- * Otherwise, we waited for it to
- * be dropped by the other guy, so
- * it is safe to move on in the list.
+ * Otherwise, we waited for the blocking
+ * condition to complete. Either way,
+ * we dropped the fdlock so start over.
*/
if (kqlock2knotedrop(kq, kn)) {
- kn->kn_fop->f_detach(kn);
knote_drop(kn, p);
}
-
- proc_fdlock(p);
- /* the fd tables may have changed - start over */
- list = &fdp->fd_knlist[fd];
+ proc_fdlock(p);
+ goto restart;
}
}
-/* proc_fdlock held on entry (and exit) */
+/*
+ * knote_fdadd - Add knote to the fd table for process
+ *
+ * All file-based filters associate a list of knotes by file
+ * descriptor index. All other filters hash the knote by ident.
+ *
+ * May have to grow the table of knote lists to cover the
+ * file descriptor index presented.
+ *
+ * proc_fdlock held on entry (and exit)
+ */
static int
-knote_fdpattach(struct knote *kn, struct filedesc *fdp, __unused struct proc *p)
+knote_fdadd(struct knote *kn, struct proc *p)
{
+ struct filedesc *fdp = p->p_fd;
struct klist *list = NULL;
- if (! kn->kn_fop->f_isfd) {
+ if (! knote_fops(kn)->f_isfd) {
if (fdp->fd_knhashmask == 0)
fdp->fd_knhash = hashinit(CONFIG_KN_HASHSIZE, M_KQUEUE,
&fdp->fd_knhashmask);
if ((u_int)fdp->fd_knlistsize <= kn->kn_id) {
u_int size = 0;
+ if (kn->kn_id >= (uint64_t)p->p_rlimit[RLIMIT_NOFILE].rlim_cur
+ || kn->kn_id >= (uint64_t)maxfiles)
+ return (EINVAL);
+
/* have to grow the fd_knlist */
size = fdp->fd_knlistsize;
while (size <= kn->kn_id)
size += KQEXTENT;
+
+ if (size >= (UINT_MAX/sizeof(struct klist *)))
+ return (EINVAL);
+
MALLOC(list, struct klist *,
- size * sizeof(struct klist *), M_KQUEUE, M_WAITOK);
+ size * sizeof(struct klist *), M_KQUEUE, M_WAITOK);
if (list == NULL)
return (ENOMEM);
-
+
bcopy((caddr_t)fdp->fd_knlist, (caddr_t)list,
- fdp->fd_knlistsize * sizeof(struct klist *));
+ fdp->fd_knlistsize * sizeof(struct klist *));
bzero((caddr_t)list +
- fdp->fd_knlistsize * sizeof(struct klist *),
- (size - fdp->fd_knlistsize) * sizeof(struct klist *));
+ fdp->fd_knlistsize * sizeof(struct klist *),
+ (size - fdp->fd_knlistsize) * sizeof(struct klist *));
FREE(fdp->fd_knlist, M_KQUEUE);
fdp->fd_knlist = list;
fdp->fd_knlistsize = size;
return (0);
}
+/*
+ * knote_fdremove - remove a knote from the fd table for process
+ *
+ * If the filter is file-based, remove based on fd index.
+ * Otherwise remove from the hash based on the ident.
+ *
+ * proc_fdlock held on entry (and exit)
+ */
+static void
+knote_fdremove(struct knote *kn, struct proc *p)
+{
+ struct filedesc *fdp = p->p_fd;
+ struct klist *list = NULL;
+ if (knote_fops(kn)->f_isfd) {
+ assert ((u_int)fdp->fd_knlistsize > kn->kn_id);
+ list = &fdp->fd_knlist[kn->kn_id];
+ } else {
+ list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
+ }
+ SLIST_REMOVE(list, kn, knote, kn_link);
+}
+
+/*
+ * knote_fdfind - lookup a knote in the fd table for process
+ *
+ * If the filter is file-based, lookup based on fd index.
+ * Otherwise use a hash based on the ident.
+ *
+ * Matching is based on kq, filter, and ident. Optionally,
+ * it may also be based on the udata field in the kevent -
+ * allowing multiple event registration for the file object
+ * per kqueue.
+ *
+ * proc_fdlock held on entry (and exit)
+ */
+static struct knote *
+knote_fdfind(struct kqueue *kq,
+ struct kevent_internal_s *kev,
+ struct proc *p)
+{
+ struct filedesc *fdp = p->p_fd;
+ struct klist *list = NULL;
+ struct knote *kn = NULL;
+ struct filterops *fops;
+
+ fops = sysfilt_ops[~kev->filter]; /* to 0-base index */
+
+ /*
+ * determine where to look for the knote
+ */
+ if (fops->f_isfd) {
+ /* fd-based knotes are linked off the fd table */
+ if (kev->ident < (u_int)fdp->fd_knlistsize) {
+ list = &fdp->fd_knlist[kev->ident];
+ }
+ } else if (fdp->fd_knhashmask != 0) {
+ /* hash non-fd knotes here too */
+ list = &fdp->fd_knhash[KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
+ }
+
+ /*
+ * scan the selected list looking for a match
+ */
+ if (list != NULL) {
+ SLIST_FOREACH(kn, list, kn_link) {
+ if (kq == knote_get_kq(kn) &&
+ kev->ident == kn->kn_id &&
+ kev->filter == kn->kn_filter) {
+ if (kev->flags & EV_UDATA_SPECIFIC) {
+ if ((kn->kn_status & KN_UDATA_SPECIFIC) &&
+ kev->udata == kn->kn_udata) {
+ break; /* matching udata-specific knote */
+ }
+ } else if ((kn->kn_status & KN_UDATA_SPECIFIC) == 0) {
+ break; /* matching non-udata-specific knote */
+ }
+ }
+ }
+ }
+ return kn;
+}
/*
- * should be called at spl == 0, since we don't want to hold spl
- * while calling fdrop and free.
+ * knote_drop - disconnect and drop the knote
+ *
+ * Called with the kqueue unlocked and holding a
+ * "drop reference" on the knote in question.
+ * This reference is most often aquired thru a call
+ * to kqlock2knotedrop(). But it can also be acquired
+ * through stealing a drop reference via a call to
+ * knoteuse2knotedrop() or during the initial attach
+ * of the knote.
+ *
+ * The knote may have already been detached from
+ * (or not yet attached to) its source object.
*/
static void
knote_drop(struct knote *kn, __unused struct proc *ctxp)
{
- struct kqueue *kq = kn->kn_kq;
+ struct kqueue *kq = knote_get_kq(kn);
struct proc *p = kq->kq_p;
- struct filedesc *fdp = p->p_fd;
- struct klist *list;
int needswakeup;
+ /* We have to have a dropping reference on the knote */
+ assert(kn->kn_status & KN_DROPPING);
+
+ /* If we are attached, disconnect from the source first */
+ if (kn->kn_status & KN_ATTACHED) {
+ knote_fops(kn)->f_detach(kn);
+ }
+
proc_fdlock(p);
- if (kn->kn_fop->f_isfd)
- list = &fdp->fd_knlist[kn->kn_id];
- else
- list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
- SLIST_REMOVE(list, kn, knote, kn_link);
+ /* Remove the source from the appropriate hash */
+ knote_fdremove(kn, p);
+
+ /* trade fdlock for kq lock */
kqlock(kq);
- knote_dequeue(kn);
+ proc_fdunlock(p);
+
+ /* determine if anyone needs to know about the drop */
+ assert((kn->kn_status & (KN_SUPPRESSED | KN_QUEUED)) == 0);
needswakeup = (kn->kn_status & KN_USEWAIT);
kqunlock(kq);
- proc_fdunlock(p);
if (needswakeup)
- wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, &kn->kn_status, THREAD_AWAKENED);
+ waitq_wakeup64_all((struct waitq *)&kq->kq_wqs,
+ CAST_EVENT64_T(&kn->kn_status),
+ THREAD_RESTART,
+ WAITQ_ALL_PRIORITIES);
- if (kn->kn_fop->f_isfd)
+ if (knote_fops(kn)->f_isfd && ((kn->kn_status & KN_VANISHED) == 0))
fp_drop(p, kn->kn_id, kn->kn_fp, 0);
knote_free(kn);
/* called with kqueue lock held */
static void
-knote_activate(struct knote *kn, int propagate)
+knote_activate(struct knote *kn)
{
- struct kqueue *kq = kn->kn_kq;
+ if (kn->kn_status & KN_ACTIVE)
+ return;
kn->kn_status |= KN_ACTIVE;
- knote_enqueue(kn);
- kqueue_wakeup(kq, 0);
-
- /* this is a real event: wake up the parent kq, too */
- if (propagate)
- KNOTE(&kq->kq_sel.si_note, 0);
+ if (knote_enqueue(kn))
+ knote_wakeup(kn);
}
/* called with kqueue lock held */
static void
knote_deactivate(struct knote *kn)
-{
+{
kn->kn_status &= ~KN_ACTIVE;
+ if ((kn->kn_status & KN_STAYACTIVE) == 0)
+ knote_dequeue(kn);
+}
+
+/* called with kqueue lock held */
+static void
+knote_enable(struct knote *kn)
+{
+ if ((kn->kn_status & KN_DISABLED) == 0)
+ return;
+
+ kn->kn_status &= ~KN_DISABLED;
+ if (knote_enqueue(kn))
+ knote_wakeup(kn);
+}
+
+/* called with kqueue lock held */
+static void
+knote_disable(struct knote *kn)
+{
+ if (kn->kn_status & KN_DISABLED)
+ return;
+
+ kn->kn_status |= KN_DISABLED;
+ knote_dequeue(kn);
+}
+
+/* called with kqueue lock held */
+static void
+knote_suppress(struct knote *kn)
+{
+ struct kqtailq *suppressq;
+
+ if (kn->kn_status & KN_SUPPRESSED)
+ return;
+
knote_dequeue(kn);
+ kn->kn_status |= KN_SUPPRESSED;
+ suppressq = knote_get_suppressed_queue(kn);
+ TAILQ_INSERT_TAIL(suppressq, kn, kn_tqe);
}
/* called with kqueue lock held */
static void
+knote_unsuppress(struct knote *kn)
+{
+ struct kqtailq *suppressq;
+
+ if ((kn->kn_status & KN_SUPPRESSED) == 0)
+ return;
+
+ kn->kn_status &= ~KN_SUPPRESSED;
+ suppressq = knote_get_suppressed_queue(kn);
+ TAILQ_REMOVE(suppressq, kn, kn_tqe);
+
+ /* udate in-use qos to equal requested qos */
+ kn->kn_qos_index = kn->kn_req_index;
+
+ /* don't wakeup if unsuppressing just a stay-active knote */
+ if (knote_enqueue(kn) &&
+ (kn->kn_status & KN_ACTIVE))
+ knote_wakeup(kn);
+}
+
+/* called with kqueue lock held */
+static int
knote_enqueue(struct knote *kn)
{
- if ((kn->kn_status & (KN_QUEUED | KN_STAYQUEUED)) == KN_STAYQUEUED ||
- (kn->kn_status & (KN_QUEUED | KN_STAYQUEUED | KN_DISABLED)) == 0) {
- struct kqtailq *tq = kn->kn_tq;
- struct kqueue *kq = kn->kn_kq;
+ if ((kn->kn_status & (KN_ACTIVE | KN_STAYACTIVE)) == 0 ||
+ (kn->kn_status & (KN_DISABLED | KN_SUPPRESSED | KN_DROPPING)))
+ return 0;
- TAILQ_INSERT_TAIL(tq, kn, kn_tqe);
+ if ((kn->kn_status & KN_QUEUED) == 0) {
+ struct kqtailq *queue = knote_get_queue(kn);
+ struct kqueue *kq = knote_get_kq(kn);
+
+ TAILQ_INSERT_TAIL(queue, kn, kn_tqe);
kn->kn_status |= KN_QUEUED;
kq->kq_count++;
+ return 1;
}
+ return ((kn->kn_status & KN_STAYACTIVE) != 0);
}
+
/* called with kqueue lock held */
static void
knote_dequeue(struct knote *kn)
{
- struct kqueue *kq = kn->kn_kq;
+ struct kqueue *kq = knote_get_kq(kn);
+ struct kqtailq *queue;
- if ((kn->kn_status & (KN_QUEUED | KN_STAYQUEUED)) == KN_QUEUED) {
- struct kqtailq *tq = kn->kn_tq;
+ if ((kn->kn_status & KN_QUEUED) == 0)
+ return;
- TAILQ_REMOVE(tq, kn, kn_tqe);
- kn->kn_tq = &kq->kq_head;
- kn->kn_status &= ~KN_QUEUED;
- kq->kq_count--;
- }
+ queue = knote_get_queue(kn);
+ TAILQ_REMOVE(queue, kn, kn_tqe);
+ kn->kn_status &= ~KN_QUEUED;
+ kq->kq_count--;
}
void
knote_init(void)
{
- knote_zone = zinit(sizeof(struct knote), 8192*sizeof(struct knote), 8192, "knote zone");
+ knote_zone = zinit(sizeof(struct knote), 8192*sizeof(struct knote),
+ 8192, "knote zone");
+
+ kqfile_zone = zinit(sizeof(struct kqfile), 8192*sizeof(struct kqfile),
+ 8192, "kqueue file zone");
+
+ kqworkq_zone = zinit(sizeof(struct kqworkq), 8192*sizeof(struct kqworkq),
+ 8192, "kqueue workq zone");
/* allocate kq lock group attribute and group */
- kq_lck_grp_attr= lck_grp_attr_alloc_init();
+ kq_lck_grp_attr = lck_grp_attr_alloc_init();
kq_lck_grp = lck_grp_alloc_init("kqueue", kq_lck_grp_attr);
/* Initialize the timer filter lock */
lck_mtx_init(&_filt_timerlock, kq_lck_grp, kq_lck_attr);
+
+ /* Initialize the user filter lock */
+ lck_spin_init(&_filt_userlock, kq_lck_grp, kq_lck_attr);
+
+#if CONFIG_MEMORYSTATUS
+ /* Initialize the memorystatus list lock */
+ memorystatus_kevent_init(kq_lck_grp, kq_lck_attr);
+#endif
}
SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL)
-static struct knote *
-knote_alloc(void)
-{
- return ((struct knote *)zalloc(knote_zone));
+struct filterops *
+knote_fops(struct knote *kn)
+{
+ return sysfilt_ops[kn->kn_filtid];
+}
+
+static struct knote *
+knote_alloc(void)
+{
+ return ((struct knote *)zalloc(knote_zone));
+}
+
+static void
+knote_free(struct knote *kn)
+{
+ zfree(knote_zone, kn);
+}
+
+#if SOCKETS
+#include <sys/param.h>
+#include <sys/socket.h>
+#include <sys/protosw.h>
+#include <sys/domain.h>
+#include <sys/mbuf.h>
+#include <sys/kern_event.h>
+#include <sys/malloc.h>
+#include <sys/sys_domain.h>
+#include <sys/syslog.h>
+
+#ifndef ROUNDUP64
+#define ROUNDUP64(x) P2ROUNDUP((x), sizeof (u_int64_t))
+#endif
+
+#ifndef ADVANCE64
+#define ADVANCE64(p, n) (void*)((char *)(p) + ROUNDUP64(n))
+#endif
+
+static lck_grp_attr_t *kev_lck_grp_attr;
+static lck_attr_t *kev_lck_attr;
+static lck_grp_t *kev_lck_grp;
+static decl_lck_rw_data(,kev_lck_data);
+static lck_rw_t *kev_rwlock = &kev_lck_data;
+
+static int kev_attach(struct socket *so, int proto, struct proc *p);
+static int kev_detach(struct socket *so);
+static int kev_control(struct socket *so, u_long cmd, caddr_t data,
+ struct ifnet *ifp, struct proc *p);
+static lck_mtx_t * event_getlock(struct socket *, int);
+static int event_lock(struct socket *, int, void *);
+static int event_unlock(struct socket *, int, void *);
+
+static int event_sofreelastref(struct socket *);
+static void kev_delete(struct kern_event_pcb *);
+
+static struct pr_usrreqs event_usrreqs = {
+ .pru_attach = kev_attach,
+ .pru_control = kev_control,
+ .pru_detach = kev_detach,
+ .pru_soreceive = soreceive,
+};
+
+static struct protosw eventsw[] = {
+{
+ .pr_type = SOCK_RAW,
+ .pr_protocol = SYSPROTO_EVENT,
+ .pr_flags = PR_ATOMIC,
+ .pr_usrreqs = &event_usrreqs,
+ .pr_lock = event_lock,
+ .pr_unlock = event_unlock,
+ .pr_getlock = event_getlock,
+}
+};
+
+__private_extern__ int kevt_getstat SYSCTL_HANDLER_ARGS;
+__private_extern__ int kevt_pcblist SYSCTL_HANDLER_ARGS;
+
+SYSCTL_NODE(_net_systm, OID_AUTO, kevt,
+ CTLFLAG_RW|CTLFLAG_LOCKED, 0, "Kernel event family");
+
+struct kevtstat kevtstat;
+SYSCTL_PROC(_net_systm_kevt, OID_AUTO, stats,
+ CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
+ kevt_getstat, "S,kevtstat", "");
+
+SYSCTL_PROC(_net_systm_kevt, OID_AUTO, pcblist,
+ CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
+ kevt_pcblist, "S,xkevtpcb", "");
+
+static lck_mtx_t *
+event_getlock(struct socket *so, int locktype)
+{
+#pragma unused(locktype)
+ struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *)so->so_pcb;
+
+ if (so->so_pcb != NULL) {
+ if (so->so_usecount < 0)
+ panic("%s: so=%p usecount=%d lrh= %s\n", __func__,
+ so, so->so_usecount, solockhistory_nr(so));
+ /* NOTREACHED */
+ } else {
+ panic("%s: so=%p NULL NO so_pcb %s\n", __func__,
+ so, solockhistory_nr(so));
+ /* NOTREACHED */
+ }
+ return (&ev_pcb->evp_mtx);
+}
+
+static int
+event_lock(struct socket *so, int refcount, void *lr)
+{
+ void *lr_saved;
+
+ if (lr == NULL)
+ lr_saved = __builtin_return_address(0);
+ else
+ lr_saved = lr;
+
+ if (so->so_pcb != NULL) {
+ lck_mtx_lock(&((struct kern_event_pcb *)so->so_pcb)->evp_mtx);
+ } else {
+ panic("%s: so=%p NO PCB! lr=%p lrh= %s\n", __func__,
+ so, lr_saved, solockhistory_nr(so));
+ /* NOTREACHED */
+ }
+
+ if (so->so_usecount < 0) {
+ panic("%s: so=%p so_pcb=%p lr=%p ref=%d lrh= %s\n", __func__,
+ so, so->so_pcb, lr_saved, so->so_usecount,
+ solockhistory_nr(so));
+ /* NOTREACHED */
+ }
+
+ if (refcount)
+ so->so_usecount++;
+
+ so->lock_lr[so->next_lock_lr] = lr_saved;
+ so->next_lock_lr = (so->next_lock_lr+1) % SO_LCKDBG_MAX;
+ return (0);
+}
+
+static int
+event_unlock(struct socket *so, int refcount, void *lr)
+{
+ void *lr_saved;
+ lck_mtx_t *mutex_held;
+
+ if (lr == NULL)
+ lr_saved = __builtin_return_address(0);
+ else
+ lr_saved = lr;
+
+ if (refcount) {
+ VERIFY(so->so_usecount > 0);
+ so->so_usecount--;
+ }
+ if (so->so_usecount < 0) {
+ panic("%s: so=%p usecount=%d lrh= %s\n", __func__,
+ so, so->so_usecount, solockhistory_nr(so));
+ /* NOTREACHED */
+ }
+ if (so->so_pcb == NULL) {
+ panic("%s: so=%p NO PCB usecount=%d lr=%p lrh= %s\n", __func__,
+ so, so->so_usecount, (void *)lr_saved,
+ solockhistory_nr(so));
+ /* NOTREACHED */
+ }
+ mutex_held = (&((struct kern_event_pcb *)so->so_pcb)->evp_mtx);
+
+ lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
+ so->unlock_lr[so->next_unlock_lr] = lr_saved;
+ so->next_unlock_lr = (so->next_unlock_lr+1) % SO_LCKDBG_MAX;
+
+ if (so->so_usecount == 0) {
+ VERIFY(so->so_flags & SOF_PCBCLEARING);
+ event_sofreelastref(so);
+ } else {
+ lck_mtx_unlock(mutex_held);
+ }
+
+ return (0);
}
-static void
-knote_free(struct knote *kn)
+static int
+event_sofreelastref(struct socket *so)
{
- zfree(knote_zone, kn);
-}
+ struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *)so->so_pcb;
-#if SOCKETS
-#include <sys/param.h>
-#include <sys/socket.h>
-#include <sys/protosw.h>
-#include <sys/domain.h>
-#include <sys/mbuf.h>
-#include <sys/kern_event.h>
-#include <sys/malloc.h>
-#include <sys/sys_domain.h>
-#include <sys/syslog.h>
+ lck_mtx_assert(&(ev_pcb->evp_mtx), LCK_MTX_ASSERT_OWNED);
+ so->so_pcb = NULL;
-static int kev_attach(struct socket *so, int proto, struct proc *p);
-static int kev_detach(struct socket *so);
-static int kev_control(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp, struct proc *p);
-
-struct pr_usrreqs event_usrreqs = {
- pru_abort_notsupp, pru_accept_notsupp, kev_attach, pru_bind_notsupp, pru_connect_notsupp,
- pru_connect2_notsupp, kev_control, kev_detach, pru_disconnect_notsupp,
- pru_listen_notsupp, pru_peeraddr_notsupp, pru_rcvd_notsupp, pru_rcvoob_notsupp,
- pru_send_notsupp, pru_sense_null, pru_shutdown_notsupp, pru_sockaddr_notsupp,
- pru_sosend_notsupp, soreceive, pru_sopoll_notsupp
-};
+ /*
+ * Disable upcall in the event another thread is in kev_post_msg()
+ * appending record to the receive socket buffer, since sbwakeup()
+ * may release the socket lock otherwise.
+ */
+ so->so_rcv.sb_flags &= ~SB_UPCALL;
+ so->so_snd.sb_flags &= ~SB_UPCALL;
+ so->so_event = sonullevent;
+ lck_mtx_unlock(&(ev_pcb->evp_mtx));
+
+ lck_mtx_assert(&(ev_pcb->evp_mtx), LCK_MTX_ASSERT_NOTOWNED);
+ lck_rw_lock_exclusive(kev_rwlock);
+ LIST_REMOVE(ev_pcb, evp_link);
+ kevtstat.kes_pcbcount--;
+ kevtstat.kes_gencnt++;
+ lck_rw_done(kev_rwlock);
+ kev_delete(ev_pcb);
+
+ sofreelastref(so, 1);
+ return (0);
+}
-struct protosw eventsw[] = {
- {
- .pr_type = SOCK_RAW,
- .pr_domain = &systemdomain,
- .pr_protocol = SYSPROTO_EVENT,
- .pr_flags = PR_ATOMIC,
- .pr_usrreqs = &event_usrreqs,
- }
-};
+static int event_proto_count = (sizeof (eventsw) / sizeof (struct protosw));
static
struct kern_event_head kern_event_head;
static u_int32_t static_event_id = 0;
-struct domain *sysdom = &systemdomain;
-static lck_mtx_t *sys_mtx;
+
+#define EVPCB_ZONE_MAX 65536
+#define EVPCB_ZONE_NAME "kerneventpcb"
+static struct zone *ev_pcb_zone;
/*
- * Install the protosw's for the NKE manager. Invoked at
- * extension load time
+ * Install the protosw's for the NKE manager. Invoked at extension load time
*/
-int
-kern_event_init(void)
+void
+kern_event_init(struct domain *dp)
{
- int retval;
+ struct protosw *pr;
+ int i;
- if ((retval = net_add_proto(eventsw, &systemdomain)) != 0) {
- log(LOG_WARNING, "Can't install kernel events protocol (%d)\n", retval);
- return(retval);
+ VERIFY(!(dp->dom_flags & DOM_INITIALIZED));
+ VERIFY(dp == systemdomain);
+
+ kev_lck_grp_attr = lck_grp_attr_alloc_init();
+ if (kev_lck_grp_attr == NULL) {
+ panic("%s: lck_grp_attr_alloc_init failed\n", __func__);
+ /* NOTREACHED */
}
-
- /*
- * Use the domain mutex for all system event sockets
- */
- sys_mtx = sysdom->dom_mtx;
-
- return(KERN_SUCCESS);
+
+ kev_lck_grp = lck_grp_alloc_init("Kernel Event Protocol",
+ kev_lck_grp_attr);
+ if (kev_lck_grp == NULL) {
+ panic("%s: lck_grp_alloc_init failed\n", __func__);
+ /* NOTREACHED */
+ }
+
+ kev_lck_attr = lck_attr_alloc_init();
+ if (kev_lck_attr == NULL) {
+ panic("%s: lck_attr_alloc_init failed\n", __func__);
+ /* NOTREACHED */
+ }
+
+ lck_rw_init(kev_rwlock, kev_lck_grp, kev_lck_attr);
+ if (kev_rwlock == NULL) {
+ panic("%s: lck_mtx_alloc_init failed\n", __func__);
+ /* NOTREACHED */
+ }
+
+ for (i = 0, pr = &eventsw[0]; i < event_proto_count; i++, pr++)
+ net_add_proto(pr, dp, 1);
+
+ ev_pcb_zone = zinit(sizeof(struct kern_event_pcb),
+ EVPCB_ZONE_MAX * sizeof(struct kern_event_pcb), 0, EVPCB_ZONE_NAME);
+ if (ev_pcb_zone == NULL) {
+ panic("%s: failed allocating ev_pcb_zone", __func__);
+ /* NOTREACHED */
+ }
+ zone_change(ev_pcb_zone, Z_EXPAND, TRUE);
+ zone_change(ev_pcb_zone, Z_CALLERACCT, TRUE);
}
static int
kev_attach(struct socket *so, __unused int proto, __unused struct proc *p)
{
- int error;
- struct kern_event_pcb *ev_pcb;
+ int error = 0;
+ struct kern_event_pcb *ev_pcb;
- error = soreserve(so, KEV_SNDSPACE, KEV_RECVSPACE);
- if (error)
- return error;
+ error = soreserve(so, KEV_SNDSPACE, KEV_RECVSPACE);
+ if (error != 0)
+ return (error);
- MALLOC(ev_pcb, struct kern_event_pcb *, sizeof(struct kern_event_pcb), M_PCB, M_WAITOK);
- if (ev_pcb == 0)
- return ENOBUFS;
+ if ((ev_pcb = (struct kern_event_pcb *)zalloc(ev_pcb_zone)) == NULL) {
+ return (ENOBUFS);
+ }
+ bzero(ev_pcb, sizeof(struct kern_event_pcb));
+ lck_mtx_init(&ev_pcb->evp_mtx, kev_lck_grp, kev_lck_attr);
- ev_pcb->ev_socket = so;
- ev_pcb->vendor_code_filter = 0xffffffff;
+ ev_pcb->evp_socket = so;
+ ev_pcb->evp_vendor_code_filter = 0xffffffff;
- so->so_pcb = (caddr_t) ev_pcb;
- lck_mtx_lock(sys_mtx);
- LIST_INSERT_HEAD(&kern_event_head, ev_pcb, ev_link);
- lck_mtx_unlock(sys_mtx);
+ so->so_pcb = (caddr_t) ev_pcb;
+ lck_rw_lock_exclusive(kev_rwlock);
+ LIST_INSERT_HEAD(&kern_event_head, ev_pcb, evp_link);
+ kevtstat.kes_pcbcount++;
+ kevtstat.kes_gencnt++;
+ lck_rw_done(kev_rwlock);
- return 0;
+ return (error);
}
+static void
+kev_delete(struct kern_event_pcb *ev_pcb)
+{
+ VERIFY(ev_pcb != NULL);
+ lck_mtx_destroy(&ev_pcb->evp_mtx, kev_lck_grp);
+ zfree(ev_pcb_zone, ev_pcb);
+}
static int
kev_detach(struct socket *so)
{
- struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *) so->so_pcb;
+ struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *) so->so_pcb;
- if (ev_pcb != 0) {
- LIST_REMOVE(ev_pcb, ev_link);
- FREE(ev_pcb, M_PCB);
- so->so_pcb = 0;
+ if (ev_pcb != NULL) {
+ soisdisconnected(so);
so->so_flags |= SOF_PCBCLEARING;
- }
+ }
- return 0;
+ return (0);
}
/*
* For now, kev_vendor_code and mbuf_tags use the same
* mechanism.
*/
-
errno_t kev_vendor_code_find(
const char *string,
u_int32_t *out_vendor_code)
{
if (strlen(string) >= KEV_VENDOR_CODE_MAX_STR_LEN) {
- return EINVAL;
+ return (EINVAL);
}
- return net_str_id_find_internal(string, out_vendor_code, NSI_VENDOR_CODE, 1);
+ return (net_str_id_find_internal(string, out_vendor_code,
+ NSI_VENDOR_CODE, 1));
}
-errno_t kev_msg_post(struct kev_msg *event_msg)
+errno_t
+kev_msg_post(struct kev_msg *event_msg)
{
- mbuf_tag_id_t min_vendor, max_vendor;
-
+ mbuf_tag_id_t min_vendor, max_vendor;
+
net_str_id_first_last(&min_vendor, &max_vendor, NSI_VENDOR_CODE);
-
+
if (event_msg == NULL)
- return EINVAL;
-
- /* Limit third parties to posting events for registered vendor codes only */
+ return (EINVAL);
+
+ /*
+ * Limit third parties to posting events for registered vendor codes
+ * only
+ */
if (event_msg->vendor_code < min_vendor ||
- event_msg->vendor_code > max_vendor)
- {
- return EINVAL;
+ event_msg->vendor_code > max_vendor) {
+ OSIncrementAtomic64((SInt64 *)&kevtstat.kes_badvendor);
+ return (EINVAL);
}
-
- return kev_post_msg(event_msg);
+ return (kev_post_msg(event_msg));
}
-
-int kev_post_msg(struct kev_msg *event_msg)
+int
+kev_post_msg(struct kev_msg *event_msg)
{
- struct mbuf *m, *m2;
- struct kern_event_pcb *ev_pcb;
- struct kern_event_msg *ev;
- char *tmp;
- u_int32_t total_size;
- int i;
+ struct mbuf *m, *m2;
+ struct kern_event_pcb *ev_pcb;
+ struct kern_event_msg *ev;
+ char *tmp;
+ u_int32_t total_size;
+ int i;
/* Verify the message is small enough to fit in one mbuf w/o cluster */
total_size = KEV_MSG_HEADER_SIZE;
-
+
for (i = 0; i < 5; i++) {
if (event_msg->dv[i].data_length == 0)
break;
total_size += event_msg->dv[i].data_length;
}
-
+
if (total_size > MLEN) {
- return EMSGSIZE;
- }
-
- m = m_get(M_DONTWAIT, MT_DATA);
- if (m == 0)
- return ENOBUFS;
-
- ev = mtod(m, struct kern_event_msg *);
- total_size = KEV_MSG_HEADER_SIZE;
-
- tmp = (char *) &ev->event_data[0];
- for (i = 0; i < 5; i++) {
- if (event_msg->dv[i].data_length == 0)
- break;
-
- total_size += event_msg->dv[i].data_length;
- bcopy(event_msg->dv[i].data_ptr, tmp,
- event_msg->dv[i].data_length);
- tmp += event_msg->dv[i].data_length;
- }
-
- ev->id = ++static_event_id;
- ev->total_size = total_size;
- ev->vendor_code = event_msg->vendor_code;
- ev->kev_class = event_msg->kev_class;
- ev->kev_subclass = event_msg->kev_subclass;
- ev->event_code = event_msg->event_code;
-
- m->m_len = total_size;
- lck_mtx_lock(sys_mtx);
- for (ev_pcb = LIST_FIRST(&kern_event_head);
- ev_pcb;
- ev_pcb = LIST_NEXT(ev_pcb, ev_link)) {
-
- if (ev_pcb->vendor_code_filter != KEV_ANY_VENDOR) {
- if (ev_pcb->vendor_code_filter != ev->vendor_code)
- continue;
-
- if (ev_pcb->class_filter != KEV_ANY_CLASS) {
- if (ev_pcb->class_filter != ev->kev_class)
- continue;
-
- if ((ev_pcb->subclass_filter != KEV_ANY_SUBCLASS) &&
- (ev_pcb->subclass_filter != ev->kev_subclass))
- continue;
- }
- }
-
- m2 = m_copym(m, 0, m->m_len, M_NOWAIT);
- if (m2 == 0) {
- m_free(m);
- lck_mtx_unlock(sys_mtx);
- return ENOBUFS;
- }
- /* the socket is already locked because we hold the sys_mtx here */
- if (sbappendrecord(&ev_pcb->ev_socket->so_rcv, m2))
- sorwakeup(ev_pcb->ev_socket);
- }
-
- m_free(m);
- lck_mtx_unlock(sys_mtx);
- return 0;
+ OSIncrementAtomic64((SInt64 *)&kevtstat.kes_toobig);
+ return (EMSGSIZE);
+ }
+
+ m = m_get(M_DONTWAIT, MT_DATA);
+ if (m == 0) {
+ OSIncrementAtomic64((SInt64 *)&kevtstat.kes_nomem);
+ return (ENOMEM);
+ }
+ ev = mtod(m, struct kern_event_msg *);
+ total_size = KEV_MSG_HEADER_SIZE;
+
+ tmp = (char *) &ev->event_data[0];
+ for (i = 0; i < 5; i++) {
+ if (event_msg->dv[i].data_length == 0)
+ break;
+
+ total_size += event_msg->dv[i].data_length;
+ bcopy(event_msg->dv[i].data_ptr, tmp,
+ event_msg->dv[i].data_length);
+ tmp += event_msg->dv[i].data_length;
+ }
+
+ ev->id = ++static_event_id;
+ ev->total_size = total_size;
+ ev->vendor_code = event_msg->vendor_code;
+ ev->kev_class = event_msg->kev_class;
+ ev->kev_subclass = event_msg->kev_subclass;
+ ev->event_code = event_msg->event_code;
+
+ m->m_len = total_size;
+ lck_rw_lock_shared(kev_rwlock);
+ for (ev_pcb = LIST_FIRST(&kern_event_head);
+ ev_pcb;
+ ev_pcb = LIST_NEXT(ev_pcb, evp_link)) {
+ lck_mtx_lock(&ev_pcb->evp_mtx);
+ if (ev_pcb->evp_socket->so_pcb == NULL) {
+ lck_mtx_unlock(&ev_pcb->evp_mtx);
+ continue;
+ }
+ if (ev_pcb->evp_vendor_code_filter != KEV_ANY_VENDOR) {
+ if (ev_pcb->evp_vendor_code_filter != ev->vendor_code) {
+ lck_mtx_unlock(&ev_pcb->evp_mtx);
+ continue;
+ }
+
+ if (ev_pcb->evp_class_filter != KEV_ANY_CLASS) {
+ if (ev_pcb->evp_class_filter != ev->kev_class) {
+ lck_mtx_unlock(&ev_pcb->evp_mtx);
+ continue;
+ }
+
+ if ((ev_pcb->evp_subclass_filter !=
+ KEV_ANY_SUBCLASS) &&
+ (ev_pcb->evp_subclass_filter !=
+ ev->kev_subclass)) {
+ lck_mtx_unlock(&ev_pcb->evp_mtx);
+ continue;
+ }
+ }
+ }
+
+ m2 = m_copym(m, 0, m->m_len, M_NOWAIT);
+ if (m2 == 0) {
+ OSIncrementAtomic64((SInt64 *)&kevtstat.kes_nomem);
+ m_free(m);
+ lck_mtx_unlock(&ev_pcb->evp_mtx);
+ lck_rw_done(kev_rwlock);
+ return (ENOMEM);
+ }
+ if (sbappendrecord(&ev_pcb->evp_socket->so_rcv, m2)) {
+ /*
+ * We use "m" for the socket stats as it would be
+ * unsafe to use "m2"
+ */
+ so_inc_recv_data_stat(ev_pcb->evp_socket,
+ 1, m->m_len, MBUF_TC_BE);
+
+ sorwakeup(ev_pcb->evp_socket);
+ OSIncrementAtomic64((SInt64 *)&kevtstat.kes_posted);
+ } else {
+ OSIncrementAtomic64((SInt64 *)&kevtstat.kes_fullsock);
+ }
+ lck_mtx_unlock(&ev_pcb->evp_mtx);
+ }
+ m_free(m);
+ lck_rw_done(kev_rwlock);
+
+ return (0);
}
static int
-kev_control(struct socket *so,
- u_long cmd,
- caddr_t data,
- __unused struct ifnet *ifp,
- __unused struct proc *p)
+kev_control(struct socket *so,
+ u_long cmd,
+ caddr_t data,
+ __unused struct ifnet *ifp,
+ __unused struct proc *p)
{
struct kev_request *kev_req = (struct kev_request *) data;
struct kern_event_pcb *ev_pcb;
struct kev_vendor_code *kev_vendor;
u_int32_t *id_value = (u_int32_t *) data;
-
-
+
switch (cmd) {
-
case SIOCGKEVID:
*id_value = static_event_id;
break;
-
case SIOCSKEVFILT:
ev_pcb = (struct kern_event_pcb *) so->so_pcb;
- ev_pcb->vendor_code_filter = kev_req->vendor_code;
- ev_pcb->class_filter = kev_req->kev_class;
- ev_pcb->subclass_filter = kev_req->kev_subclass;
+ ev_pcb->evp_vendor_code_filter = kev_req->vendor_code;
+ ev_pcb->evp_class_filter = kev_req->kev_class;
+ ev_pcb->evp_subclass_filter = kev_req->kev_subclass;
break;
-
case SIOCGKEVFILT:
ev_pcb = (struct kern_event_pcb *) so->so_pcb;
- kev_req->vendor_code = ev_pcb->vendor_code_filter;
- kev_req->kev_class = ev_pcb->class_filter;
- kev_req->kev_subclass = ev_pcb->subclass_filter;
+ kev_req->vendor_code = ev_pcb->evp_vendor_code_filter;
+ kev_req->kev_class = ev_pcb->evp_class_filter;
+ kev_req->kev_subclass = ev_pcb->evp_subclass_filter;
break;
-
case SIOCGKEVVENDOR:
- kev_vendor = (struct kev_vendor_code*)data;
-
+ kev_vendor = (struct kev_vendor_code *)data;
/* Make sure string is NULL terminated */
kev_vendor->vendor_string[KEV_VENDOR_CODE_MAX_STR_LEN-1] = 0;
-
- return net_str_id_find_internal(kev_vendor->vendor_string,
- &kev_vendor->vendor_code, NSI_VENDOR_CODE, 0);
-
+ return (net_str_id_find_internal(kev_vendor->vendor_string,
+ &kev_vendor->vendor_code, NSI_VENDOR_CODE, 0));
default:
- return ENOTSUP;
+ return (ENOTSUP);
}
-
- return 0;
+
+ return (0);
+}
+
+int
+kevt_getstat SYSCTL_HANDLER_ARGS
+{
+#pragma unused(oidp, arg1, arg2)
+ int error = 0;
+
+ lck_rw_lock_shared(kev_rwlock);
+
+ if (req->newptr != USER_ADDR_NULL) {
+ error = EPERM;
+ goto done;
+ }
+ if (req->oldptr == USER_ADDR_NULL) {
+ req->oldidx = sizeof(struct kevtstat);
+ goto done;
+ }
+
+ error = SYSCTL_OUT(req, &kevtstat,
+ MIN(sizeof(struct kevtstat), req->oldlen));
+done:
+ lck_rw_done(kev_rwlock);
+
+ return (error);
+}
+
+__private_extern__ int
+kevt_pcblist SYSCTL_HANDLER_ARGS
+{
+#pragma unused(oidp, arg1, arg2)
+ int error = 0;
+ int n, i;
+ struct xsystmgen xsg;
+ void *buf = NULL;
+ size_t item_size = ROUNDUP64(sizeof (struct xkevtpcb)) +
+ ROUNDUP64(sizeof (struct xsocket_n)) +
+ 2 * ROUNDUP64(sizeof (struct xsockbuf_n)) +
+ ROUNDUP64(sizeof (struct xsockstat_n));
+ struct kern_event_pcb *ev_pcb;
+
+ buf = _MALLOC(item_size, M_TEMP, M_WAITOK | M_ZERO);
+ if (buf == NULL)
+ return (ENOMEM);
+
+ lck_rw_lock_shared(kev_rwlock);
+
+ n = kevtstat.kes_pcbcount;
+
+ if (req->oldptr == USER_ADDR_NULL) {
+ req->oldidx = (n + n/8) * item_size;
+ goto done;
+ }
+ if (req->newptr != USER_ADDR_NULL) {
+ error = EPERM;
+ goto done;
+ }
+ bzero(&xsg, sizeof (xsg));
+ xsg.xg_len = sizeof (xsg);
+ xsg.xg_count = n;
+ xsg.xg_gen = kevtstat.kes_gencnt;
+ xsg.xg_sogen = so_gencnt;
+ error = SYSCTL_OUT(req, &xsg, sizeof (xsg));
+ if (error) {
+ goto done;
+ }
+ /*
+ * We are done if there is no pcb
+ */
+ if (n == 0) {
+ goto done;
+ }
+
+ i = 0;
+ for (i = 0, ev_pcb = LIST_FIRST(&kern_event_head);
+ i < n && ev_pcb != NULL;
+ i++, ev_pcb = LIST_NEXT(ev_pcb, evp_link)) {
+ struct xkevtpcb *xk = (struct xkevtpcb *)buf;
+ struct xsocket_n *xso = (struct xsocket_n *)
+ ADVANCE64(xk, sizeof (*xk));
+ struct xsockbuf_n *xsbrcv = (struct xsockbuf_n *)
+ ADVANCE64(xso, sizeof (*xso));
+ struct xsockbuf_n *xsbsnd = (struct xsockbuf_n *)
+ ADVANCE64(xsbrcv, sizeof (*xsbrcv));
+ struct xsockstat_n *xsostats = (struct xsockstat_n *)
+ ADVANCE64(xsbsnd, sizeof (*xsbsnd));
+
+ bzero(buf, item_size);
+
+ lck_mtx_lock(&ev_pcb->evp_mtx);
+
+ xk->kep_len = sizeof(struct xkevtpcb);
+ xk->kep_kind = XSO_EVT;
+ xk->kep_evtpcb = (uint64_t)VM_KERNEL_ADDRPERM(ev_pcb);
+ xk->kep_vendor_code_filter = ev_pcb->evp_vendor_code_filter;
+ xk->kep_class_filter = ev_pcb->evp_class_filter;
+ xk->kep_subclass_filter = ev_pcb->evp_subclass_filter;
+
+ sotoxsocket_n(ev_pcb->evp_socket, xso);
+ sbtoxsockbuf_n(ev_pcb->evp_socket ?
+ &ev_pcb->evp_socket->so_rcv : NULL, xsbrcv);
+ sbtoxsockbuf_n(ev_pcb->evp_socket ?
+ &ev_pcb->evp_socket->so_snd : NULL, xsbsnd);
+ sbtoxsockstat_n(ev_pcb->evp_socket, xsostats);
+
+ lck_mtx_unlock(&ev_pcb->evp_mtx);
+
+ error = SYSCTL_OUT(req, buf, item_size);
+ }
+
+ if (error == 0) {
+ /*
+ * Give the user an updated idea of our state.
+ * If the generation differs from what we told
+ * her before, she knows that something happened
+ * while we were processing this request, and it
+ * might be necessary to retry.
+ */
+ bzero(&xsg, sizeof (xsg));
+ xsg.xg_len = sizeof (xsg);
+ xsg.xg_count = n;
+ xsg.xg_gen = kevtstat.kes_gencnt;
+ xsg.xg_sogen = so_gencnt;
+ error = SYSCTL_OUT(req, &xsg, sizeof (xsg));
+ if (error) {
+ goto done;
+ }
+ }
+
+done:
+ lck_rw_done(kev_rwlock);
+
+ return (error);
}
#endif /* SOCKETS */
{
struct vinfo_stat * st;
- /* No need for the funnel as fd is kept alive */
-
st = &kinfo->kq_stat;
st->vst_size = kq->kq_count;
- if (kq->kq_state & KQ_KEV64)
+ if (kq->kq_state & KQ_KEV_QOS)
+ st->vst_blksize = sizeof(struct kevent_qos_s);
+ else if (kq->kq_state & KQ_KEV64)
st->vst_blksize = sizeof(struct kevent64_s);
else
st->vst_blksize = sizeof(struct kevent);
st->vst_mode = S_IFIFO;
- if (kq->kq_state & KQ_SEL)
- kinfo->kq_state |= PROC_KQUEUE_SELECT;
- if (kq->kq_state & KQ_SLEEP)
- kinfo->kq_state |= PROC_KQUEUE_SLEEP;
- return(0);
+ /* flags exported to libproc as PROC_KQUEUE_* (sys/proc_info.h) */
+#define PROC_KQUEUE_MASK (KQ_SEL|KQ_SLEEP|KQ_KEV32|KQ_KEV64|KQ_KEV_QOS)
+ kinfo->kq_state = kq->kq_state & PROC_KQUEUE_MASK;
+
+ return (0);
+}
+
+
+void
+knote_markstayactive(struct knote *kn)
+{
+ kqlock(knote_get_kq(kn));
+ kn->kn_status |= KN_STAYACTIVE;
+
+ /* handle all stayactive knotes on the manager */
+ if (knote_get_kq(kn)->kq_state & KQ_WORKQ)
+ knote_set_qos_index(kn, KQWQ_QOS_MANAGER);
+
+ knote_activate(kn);
+ kqunlock(knote_get_kq(kn));
+}
+
+void
+knote_clearstayactive(struct knote *kn)
+{
+ kqlock(knote_get_kq(kn));
+ kn->kn_status &= ~KN_STAYACTIVE;
+ knote_deactivate(kn);
+ kqunlock(knote_get_kq(kn));
+}
+
+static unsigned long
+kevent_extinfo_emit(struct kqueue *kq, struct knote *kn, struct kevent_extinfo *buf,
+ unsigned long buflen, unsigned long nknotes)
+{
+ struct kevent_internal_s *kevp;
+ for (; kn; kn = SLIST_NEXT(kn, kn_link)) {
+ if (kq == knote_get_kq(kn)) {
+ if (nknotes < buflen) {
+ struct kevent_extinfo *info = &buf[nknotes];
+ struct kevent_qos_s kevqos;
+
+ kqlock(kq);
+ kevp = &(kn->kn_kevent);
+
+ bzero(&kevqos, sizeof(kevqos));
+ kevqos.ident = kevp->ident;
+ kevqos.filter = kevp->filter;
+ kevqos.flags = kevp->flags;
+ kevqos.fflags = kevp->fflags;
+ kevqos.data = (int64_t) kevp->data;
+ kevqos.udata = kevp->udata;
+ kevqos.ext[0] = kevp->ext[0];
+ kevqos.ext[1] = kevp->ext[1];
+
+ memcpy(&info->kqext_kev, &kevqos, sizeof(info->kqext_kev));
+ info->kqext_sdata = kn->kn_sdata;
+ info->kqext_status = kn->kn_status;
+ info->kqext_sfflags = kn->kn_sfflags;
+
+ kqunlock(kq);
+ }
+
+ /* we return total number of knotes, which may be more than requested */
+ nknotes++;
+ }
+ }
+
+ return nknotes;
+}
+
+int
+pid_kqueue_extinfo(proc_t p, struct kqueue *kq, user_addr_t ubuf,
+ uint32_t bufsize, int32_t *retval)
+{
+ struct knote *kn;
+ int i;
+ int err = 0;
+ struct filedesc *fdp = p->p_fd;
+ unsigned long nknotes = 0;
+ unsigned long buflen = bufsize / sizeof(struct kevent_extinfo);
+ struct kevent_extinfo *kqext = NULL;
+
+ /* arbitrary upper limit to cap kernel memory usage, copyout size, etc. */
+ buflen = min(buflen, PROC_PIDFDKQUEUE_KNOTES_MAX);
+
+ kqext = kalloc(buflen * sizeof(struct kevent_extinfo));
+ if (kqext == NULL) {
+ err = ENOMEM;
+ goto out;
+ }
+ bzero(kqext, buflen * sizeof(struct kevent_extinfo));
+
+ proc_fdlock(p);
+
+ for (i = 0; i < fdp->fd_knlistsize; i++) {
+ kn = SLIST_FIRST(&fdp->fd_knlist[i]);
+ nknotes = kevent_extinfo_emit(kq, kn, kqext, buflen, nknotes);
+ }
+
+ if (fdp->fd_knhashmask != 0) {
+ for (i = 0; i < (int)fdp->fd_knhashmask + 1; i++) {
+ kn = SLIST_FIRST(&fdp->fd_knhash[i]);
+ nknotes = kevent_extinfo_emit(kq, kn, kqext, buflen, nknotes);
+ }
+ }
+
+ proc_fdunlock(p);
+
+ assert(bufsize >= sizeof(struct kevent_extinfo) * min(buflen, nknotes));
+ err = copyout(kqext, ubuf, sizeof(struct kevent_extinfo) * min(buflen, nknotes));
+
+ out:
+ if (kqext) {
+ kfree(kqext, buflen * sizeof(struct kevent_extinfo));
+ kqext = NULL;
+ }
+
+ if (!err) {
+ *retval = min(nknotes, PROC_PIDFDKQUEUE_KNOTES_MAX);
+ }
+ return err;
+}
+
+static unsigned long
+kevent_udatainfo_emit(struct kqueue *kq, struct knote *kn, uint64_t *buf,
+ unsigned long buflen, unsigned long nknotes)
+{
+ struct kevent_internal_s *kevp;
+ for (; kn; kn = SLIST_NEXT(kn, kn_link)) {
+ if (kq == knote_get_kq(kn)) {
+ if (nknotes < buflen) {
+ kqlock(kq);
+ kevp = &(kn->kn_kevent);
+ buf[nknotes] = kevp->udata;
+ kqunlock(kq);
+ }
+
+ /* we return total number of knotes, which may be more than requested */
+ nknotes++;
+ }
+ }
+
+ return nknotes;
+}
+
+int
+pid_kqueue_udatainfo(proc_t p, struct kqueue *kq, uint64_t *buf,
+ uint32_t bufsize)
+{
+ struct knote *kn;
+ int i;
+ struct filedesc *fdp = p->p_fd;
+ unsigned long nknotes = 0;
+ unsigned long buflen = bufsize / sizeof(uint64_t);
+
+ proc_fdlock(p);
+
+ for (i = 0; i < fdp->fd_knlistsize; i++) {
+ kn = SLIST_FIRST(&fdp->fd_knlist[i]);
+ nknotes = kevent_udatainfo_emit(kq, kn, buf, buflen, nknotes);
+ }
+
+ if (fdp->fd_knhashmask != 0) {
+ for (i = 0; i < (int)fdp->fd_knhashmask + 1; i++) {
+ kn = SLIST_FIRST(&fdp->fd_knhash[i]);
+ nknotes = kevent_udatainfo_emit(kq, kn, buf, buflen, nknotes);
+ }
+ }
+
+ proc_fdunlock(p);
+ return (int)nknotes;
}