+
+ if (type == THING_TASK)
+ maxthings = pset->task_count;
+ else
+ maxthings = pset->thread_count;
+
+ /* do we have the memory we need? */
+
+ size_needed = maxthings * sizeof (mach_port_t);
+ if (size_needed <= size)
+ break;
+
+ /* unlock the pset and allocate more memory */
+ pset_unlock(pset);
+
+ if (size != 0)
+ kfree(addr, size);
+
+ assert(size_needed > 0);
+ size = size_needed;
+
+ addr = kalloc(size);
+ if (addr == 0)
+ return (KERN_RESOURCE_SHORTAGE);
+ }
+
+ /* OK, have memory and the processor_set is locked & active */
+
+ actual = 0;
+ switch (type) {
+
+ case THING_TASK:
+ {
+ task_t task, *tasks = (task_t *)addr;
+
+ for (task = (task_t)queue_first(&pset->tasks);
+ !queue_end(&pset->tasks, (queue_entry_t)task);
+ task = (task_t)queue_next(&task->pset_tasks)) {
+ task_reference_internal(task);
+ tasks[actual++] = task;
+ }
+
+ break;
+ }
+
+ case THING_THREAD:
+ {
+ thread_t thread, *threads = (thread_t *)addr;
+
+ for (i = 0, thread = (thread_t)queue_first(&pset->threads);
+ !queue_end(&pset->threads, (queue_entry_t)thread);
+ thread = (thread_t)queue_next(&thread->pset_threads)) {
+ thread_reference_internal(thread);
+ threads[actual++] = thread;
+ }
+
+ break;
+ }
+ }
+
+ pset_unlock(pset);
+
+ if (actual < maxthings)
+ size_needed = actual * sizeof (mach_port_t);
+
+ if (actual == 0) {
+ /* no things, so return null pointer and deallocate memory */
+ *thing_list = 0;
+ *count = 0;
+
+ if (size != 0)
+ kfree(addr, size);
+ }
+ else {
+ /* if we allocated too much, must copy */
+
+ if (size_needed < size) {
+ void *newaddr;
+
+ newaddr = kalloc(size_needed);
+ if (newaddr == 0) {
+ switch (type) {
+
+ case THING_TASK:
+ {
+ task_t *tasks = (task_t *)addr;
+
+ for (i = 0; i < actual; i++)
+ task_deallocate(tasks[i]);
+ break;
+ }
+
+ case THING_THREAD:
+ {
+ thread_t *threads = (thread_t *)addr;
+
+ for (i = 0; i < actual; i++)
+ thread_deallocate(threads[i]);
+ break;
+ }
+ }
+
+ kfree(addr, size);
+ return (KERN_RESOURCE_SHORTAGE);
+ }
+
+ bcopy((void *) addr, (void *) newaddr, size_needed);
+ kfree(addr, size);
+ addr = newaddr;
+ }
+
+ *thing_list = (mach_port_t *)addr;
+ *count = actual;
+ }
+
+ return (KERN_SUCCESS);
+}
+
+// an exact copy of task_threads() except no mig conversion at the end!
+static kern_return_t chudxnu_private_task_threads(task_t task,
+ thread_act_array_t *threads_out,
+ mach_msg_type_number_t *count)
+{
+ mach_msg_type_number_t actual;
+ thread_t *threads;
+ thread_t thread;
+ vm_size_t size, size_needed;
+ void *addr;
+ unsigned int i, j;
+
+ if (task == TASK_NULL)
+ return (KERN_INVALID_ARGUMENT);
+
+ size = 0; addr = 0;
+
+ for (;;) {
+ task_lock(task);
+ if (!task->active) {
+ task_unlock(task);
+
+ if (size != 0)
+ kfree(addr, size);
+
+ return (KERN_FAILURE);
+ }
+
+ actual = task->thread_count;
+
+ /* do we have the memory we need? */
+ size_needed = actual * sizeof (mach_port_t);
+ if (size_needed <= size)
+ break;
+
+ /* unlock the task and allocate more memory */
+ task_unlock(task);
+
+ if (size != 0)
+ kfree(addr, size);
+
+ assert(size_needed > 0);
+ size = size_needed;
+
+ addr = kalloc(size);
+ if (addr == 0)
+ return (KERN_RESOURCE_SHORTAGE);
+ }
+
+ /* OK, have memory and the task is locked & active */
+ threads = (thread_t *)addr;
+
+ i = j = 0;
+
+ for (thread = (thread_t)queue_first(&task->threads); i < actual;
+ ++i, thread = (thread_t)queue_next(&thread->task_threads)) {
+ thread_reference_internal(thread);
+ threads[j++] = thread;
+ }
+
+ assert(queue_end(&task->threads, (queue_entry_t)thread));
+
+ actual = j;
+ size_needed = actual * sizeof (mach_port_t);
+
+ /* can unlock task now that we've got the thread refs */
+ task_unlock(task);
+
+ if (actual == 0) {
+ /* no threads, so return null pointer and deallocate memory */
+
+ *threads_out = 0;
+ *count = 0;
+
+ if (size != 0)
+ kfree(addr, size);
+ }
+ else {
+ /* if we allocated too much, must copy */
+
+ if (size_needed < size) {
+ void *newaddr;
+
+ newaddr = kalloc(size_needed);
+ if (newaddr == 0) {
+ for (i = 0; i < actual; ++i)
+ thread_deallocate(threads[i]);
+ kfree(addr, size);
+ return (KERN_RESOURCE_SHORTAGE);
+ }
+
+ bcopy(addr, newaddr, size_needed);
+ kfree(addr, size);
+ threads = (thread_t *)newaddr;
+ }
+
+ *threads_out = threads;
+ *count = actual;
+ }
+
+ return (KERN_SUCCESS);
+}
+
+
+__private_extern__
+kern_return_t chudxnu_all_tasks(task_array_t *task_list,
+ mach_msg_type_number_t *count)
+{
+ return chudxnu_private_processor_set_things(&default_pset, (mach_port_t **)task_list, count, THING_TASK);
+}
+
+__private_extern__
+kern_return_t chudxnu_free_task_list(task_array_t *task_list,
+ mach_msg_type_number_t *count)
+{
+ vm_size_t size = (*count)*sizeof(mach_port_t);
+ void *addr = *task_list;
+
+ if(addr) {
+ int i, maxCount = *count;
+ for(i=0; i<maxCount; i++) {
+ task_deallocate((*task_list)[i]);
+ }
+ kfree(addr, size);
+ *task_list = NULL;
+ *count = 0;
+ return KERN_SUCCESS;
+ } else {
+ return KERN_FAILURE;
+ }