+boolean_t panic_include_zprint = FALSE;
+boolean_t zone_gc_allowed_by_time_throttle = TRUE;
+
+/*
+ * Zone leak debugging code
+ *
+ * When enabled, this code keeps a log to track allocations to a particular zone that have not
+ * yet been freed. Examining this log will reveal the source of a zone leak. The log is allocated
+ * only when logging is enabled, so there is no effect on the system when it's turned off. Logging is
+ * off by default.
+ *
+ * Enable the logging via the boot-args. Add the parameter "zlog=<zone>" to boot-args where <zone>
+ * is the name of the zone you wish to log.
+ *
+ * This code only tracks one zone, so you need to identify which one is leaking first.
+ * Generally, you'll know you have a leak when you get a "zalloc retry failed 3" panic from the zone
+ * garbage collector. Note that the zone name printed in the panic message is not necessarily the one
+ * containing the leak. So do a zprint from gdb and locate the zone with the bloated size. This
+ * is most likely the problem zone, so set zlog in boot-args to this zone name, reboot and re-run the test. The
+ * next time it panics with this message, examine the log using the kgmacros zstack, findoldest and countpcs.
+ * See the help in the kgmacros for usage info.
+ *
+ *
+ * Zone corruption logging
+ *
+ * Logging can also be used to help identify the source of a zone corruption. First, identify the zone
+ * that is being corrupted, then add "-zc zlog=<zone name>" to the boot-args. When -zc is used in conjunction
+ * with zlog, it changes the logging style to track both allocations and frees to the zone. So when the
+ * corruption is detected, examining the log will show you the stack traces of the callers who last allocated
+ * and freed any particular element in the zone. Use the findelem kgmacro with the address of the element that's been
+ * corrupted to examine its history. This should lead to the source of the corruption.
+ */
+
+static int log_records; /* size of the log, expressed in number of records */
+
+#define MAX_ZONE_NAME 32 /* max length of a zone name we can take from the boot-args */
+
+static char zone_name_to_log[MAX_ZONE_NAME] = ""; /* the zone name we're logging, if any */
+
+/*
+ * The number of records in the log is configurable via the zrecs parameter in boot-args. Set this to
+ * the number of records you want in the log. For example, "zrecs=1000" sets it to 1000 records. Note
+ * that the larger the size of the log, the slower the system will run due to linear searching in the log,
+ * but one doesn't generally care about performance when tracking down a leak. The log is capped at 8000
+ * records since going much larger than this tends to make the system unresponsive and unbootable on small
+ * memory configurations. The default value is 4000 records.
+ */
+#if defined(__LP64__)
+#define ZRECORDS_MAX 16000 /* Max records allowed in the log */
+#else
+#define ZRECORDS_MAX 8000 /* Max records allowed in the log */
+#endif
+#define ZRECORDS_DEFAULT 4000 /* default records in log if zrecs is not specificed in boot-args */
+
+/*
+ * Each record in the log contains a pointer to the zone element it refers to, a "time" number that allows
+ * the records to be ordered chronologically, and a small array to hold the pc's from the stack trace. A
+ * record is added to the log each time a zalloc() is done in the zone_of_interest. For leak debugging,
+ * the record is cleared when a zfree() is done. For corruption debugging, the log tracks both allocs and frees.
+ * If the log fills, old records are replaced as if it were a circular buffer.
+ */
+
+struct zrecord {
+ void *z_element; /* the element that was zalloc'ed of zfree'ed */
+ uint32_t z_opcode:1, /* whether it was a zalloc or zfree */
+ z_time:31; /* time index when operation was done */
+ void *z_pc[MAX_ZTRACE_DEPTH]; /* stack trace of caller */
+};
+
+/*
+ * Opcodes for the z_opcode field:
+ */
+
+#define ZOP_ALLOC 1
+#define ZOP_FREE 0
+
+/*
+ * The allocation log and all the related variables are protected by the zone lock for the zone_of_interest
+ */
+
+static struct zrecord *zrecords; /* the log itself, dynamically allocated when logging is enabled */
+static int zcurrent = 0; /* index of the next slot in the log to use */
+static int zrecorded = 0; /* number of allocations recorded in the log */
+static unsigned int ztime = 0; /* a timestamp of sorts */
+static zone_t zone_of_interest = NULL; /* the zone being watched; corresponds to zone_name_to_log */
+
+/*
+ * Decide if we want to log this zone by doing a string compare between a zone name and the name
+ * of the zone to log. Return true if the strings are equal, false otherwise. Because it's not
+ * possible to include spaces in strings passed in via the boot-args, a period in the logname will
+ * match a space in the zone name.
+ */
+
+static int
+log_this_zone(const char *zonename, const char *logname)
+{
+ int len;
+ const char *zc = zonename;
+ const char *lc = logname;
+
+ /*
+ * Compare the strings. We bound the compare by MAX_ZONE_NAME.
+ */
+
+ for (len = 1; len <= MAX_ZONE_NAME; zc++, lc++, len++) {
+
+ /*
+ * If the current characters don't match, check for a space in
+ * in the zone name and a corresponding period in the log name.
+ * If that's not there, then the strings don't match.
+ */
+
+ if (*zc != *lc && !(*zc == ' ' && *lc == '.'))
+ break;
+
+ /*
+ * The strings are equal so far. If we're at the end, then it's a match.
+ */
+
+ if (*zc == '\0')
+ return TRUE;
+ }
+
+ return FALSE;
+}
+
+
+/*
+ * Test if we want to log this zalloc/zfree event. We log if this is the zone we're interested in and
+ * the buffer for the records has been allocated.
+ */
+
+#define DO_LOGGING(z) (zrecords && (z) == zone_of_interest)
+
+extern boolean_t zlog_ready;
+
+#if CONFIG_ZLEAKS
+#pragma mark -
+#pragma mark Zone Leak Detection
+
+/*
+ * The zone leak detector, abbreviated 'zleak', keeps track of a subset of the currently outstanding
+ * allocations made by the zone allocator. Every z_sample_factor allocations in each zone, we capture a
+ * backtrace. Every free, we examine the table and determine if the allocation was being tracked,
+ * and stop tracking it if it was being tracked.
+ *
+ * We track the allocations in the zallocations hash table, which stores the address that was returned from
+ * the zone allocator. Each stored entry in the zallocations table points to an entry in the ztraces table, which
+ * stores the backtrace associated with that allocation. This provides uniquing for the relatively large
+ * backtraces - we don't store them more than once.
+ *
+ * Data collection begins when the zone map is 50% full, and only occurs for zones that are taking up
+ * a large amount of virtual space.
+ */
+#define ZLEAK_STATE_ENABLED 0x01 /* Zone leak monitoring should be turned on if zone_map fills up. */
+#define ZLEAK_STATE_ACTIVE 0x02 /* We are actively collecting traces. */
+#define ZLEAK_STATE_ACTIVATING 0x04 /* Some thread is doing setup; others should move along. */
+#define ZLEAK_STATE_FAILED 0x08 /* Attempt to allocate tables failed. We will not try again. */
+uint32_t zleak_state = 0; /* State of collection, as above */
+
+boolean_t panic_include_ztrace = FALSE; /* Enable zleak logging on panic */
+vm_size_t zleak_global_tracking_threshold; /* Size of zone map at which to start collecting data */
+vm_size_t zleak_per_zone_tracking_threshold; /* Size a zone will have before we will collect data on it */
+unsigned int z_sample_factor = 1000; /* Allocations per sample attempt */
+
+/*
+ * Counters for allocation statistics.
+ */
+
+/* Times two active records want to occupy the same spot */
+unsigned int z_alloc_collisions = 0;
+unsigned int z_trace_collisions = 0;
+
+/* Times a new record lands on a spot previously occupied by a freed allocation */
+unsigned int z_alloc_overwrites = 0;
+unsigned int z_trace_overwrites = 0;
+
+/* Times a new alloc or trace is put into the hash table */
+unsigned int z_alloc_recorded = 0;
+unsigned int z_trace_recorded = 0;
+
+/* Times zleak_log returned false due to not being able to acquire the lock */
+unsigned int z_total_conflicts = 0;
+
+
+#pragma mark struct zallocation
+/*
+ * Structure for keeping track of an allocation
+ * An allocation bucket is in use if its element is not NULL
+ */
+struct zallocation {
+ uintptr_t za_element; /* the element that was zalloc'ed or zfree'ed, NULL if bucket unused */
+ vm_size_t za_size; /* how much memory did this allocation take up? */
+ uint32_t za_trace_index; /* index into ztraces for backtrace associated with allocation */
+ /* TODO: #if this out */
+ uint32_t za_hit_count; /* for determining effectiveness of hash function */
+};
+
+/* Size must be a power of two for the zhash to be able to just mask off bits instead of mod */
+#define ZLEAK_ALLOCATION_MAP_NUM 16384
+#define ZLEAK_TRACE_MAP_NUM 8192
+
+uint32_t zleak_alloc_buckets = ZLEAK_ALLOCATION_MAP_NUM;
+uint32_t zleak_trace_buckets = ZLEAK_TRACE_MAP_NUM;
+
+vm_size_t zleak_max_zonemap_size;
+
+/* Hashmaps of allocations and their corresponding traces */
+static struct zallocation* zallocations;
+static struct ztrace* ztraces;
+
+/* not static so that panic can see this, see kern/debug.c */
+struct ztrace* top_ztrace;
+
+/* Lock to protect zallocations, ztraces, and top_ztrace from concurrent modification. */
+static lck_mtx_t zleak_lock;
+static lck_attr_t zleak_lock_attr;
+static lck_grp_t zleak_lock_grp;
+static lck_grp_attr_t zleak_lock_grp_attr;
+
+/*
+ * Initializes the zone leak monitor. Called from zone_init()
+ */
+static void
+zleak_init(vm_size_t max_zonemap_size)
+{
+ char scratch_buf[16];
+ boolean_t zleak_enable_flag = FALSE;
+
+ zleak_max_zonemap_size = max_zonemap_size;
+ zleak_global_tracking_threshold = max_zonemap_size / 2;
+ zleak_per_zone_tracking_threshold = zleak_global_tracking_threshold / 8;
+
+ /* -zleakoff (flag to disable zone leak monitor) */
+ if (PE_parse_boot_argn("-zleakoff", scratch_buf, sizeof(scratch_buf))) {
+ zleak_enable_flag = FALSE;
+ printf("zone leak detection disabled\n");
+ } else {
+ zleak_enable_flag = TRUE;
+ printf("zone leak detection enabled\n");
+ }
+
+ /* zfactor=XXXX (override how often to sample the zone allocator) */
+ if (PE_parse_boot_argn("zfactor", &z_sample_factor, sizeof(z_sample_factor))) {
+ printf("Zone leak factor override:%u\n", z_sample_factor);
+ }
+
+ /* zleak-allocs=XXXX (override number of buckets in zallocations) */
+ if (PE_parse_boot_argn("zleak-allocs", &zleak_alloc_buckets, sizeof(zleak_alloc_buckets))) {
+ printf("Zone leak alloc buckets override:%u\n", zleak_alloc_buckets);
+ /* uses 'is power of 2' trick: (0x01000 & 0x00FFF == 0) */
+ if (zleak_alloc_buckets == 0 || (zleak_alloc_buckets & (zleak_alloc_buckets-1))) {
+ printf("Override isn't a power of two, bad things might happen!");
+ }
+ }
+
+ /* zleak-traces=XXXX (override number of buckets in ztraces) */
+ if (PE_parse_boot_argn("zleak-traces", &zleak_trace_buckets, sizeof(zleak_trace_buckets))) {
+ printf("Zone leak trace buckets override:%u\n", zleak_trace_buckets);
+ /* uses 'is power of 2' trick: (0x01000 & 0x00FFF == 0) */
+ if (zleak_trace_buckets == 0 || (zleak_trace_buckets & (zleak_trace_buckets-1))) {
+ printf("Override isn't a power of two, bad things might happen!");
+ }
+ }
+
+ /* allocate the zleak_lock */
+ lck_grp_attr_setdefault(&zleak_lock_grp_attr);
+ lck_grp_init(&zleak_lock_grp, "zleak_lock", &zleak_lock_grp_attr);
+ lck_attr_setdefault(&zleak_lock_attr);
+ lck_mtx_init(&zleak_lock, &zleak_lock_grp, &zleak_lock_attr);
+
+ if (zleak_enable_flag) {
+ zleak_state = ZLEAK_STATE_ENABLED;
+ }
+}
+
+#if CONFIG_ZLEAKS
+
+/*
+ * Support for kern.zleak.active sysctl - a simplified
+ * simplified version of the zleak_state variable.
+ */
+int
+get_zleak_state(void)
+{
+ if (zleak_state & ZLEAK_STATE_FAILED)
+ return (-1);
+ if (zleak_state & ZLEAK_STATE_ACTIVE)
+ return (1);
+ return (0);
+}
+
+#endif
+
+
+kern_return_t
+zleak_activate(void)
+{
+ kern_return_t retval;
+ vm_size_t z_alloc_size = zleak_alloc_buckets * sizeof(struct zallocation);
+ vm_size_t z_trace_size = zleak_trace_buckets * sizeof(struct ztrace);
+ void *allocations_ptr = NULL;
+ void *traces_ptr = NULL;
+
+ /* Only one thread attempts to activate at a time */
+ if (zleak_state & (ZLEAK_STATE_ACTIVE | ZLEAK_STATE_ACTIVATING | ZLEAK_STATE_FAILED)) {
+ return KERN_SUCCESS;
+ }
+
+ /* Indicate that we're doing the setup */
+ lck_mtx_lock_spin(&zleak_lock);
+ if (zleak_state & (ZLEAK_STATE_ACTIVE | ZLEAK_STATE_ACTIVATING | ZLEAK_STATE_FAILED)) {
+ lck_mtx_unlock(&zleak_lock);
+ return KERN_SUCCESS;
+ }
+
+ zleak_state |= ZLEAK_STATE_ACTIVATING;
+ lck_mtx_unlock(&zleak_lock);
+
+ /* Allocate and zero tables */
+ retval = kmem_alloc_kobject(kernel_map, (vm_offset_t*)&allocations_ptr, z_alloc_size);
+ if (retval != KERN_SUCCESS) {
+ goto fail;
+ }
+
+ retval = kmem_alloc_kobject(kernel_map, (vm_offset_t*)&traces_ptr, z_trace_size);
+ if (retval != KERN_SUCCESS) {
+ goto fail;
+ }
+
+ bzero(allocations_ptr, z_alloc_size);
+ bzero(traces_ptr, z_trace_size);
+
+ /* Everything's set. Install tables, mark active. */
+ zallocations = allocations_ptr;
+ ztraces = traces_ptr;
+
+ /*
+ * Initialize the top_ztrace to the first entry in ztraces,
+ * so we don't have to check for null in zleak_log
+ */
+ top_ztrace = &ztraces[0];
+
+ /*
+ * Note that we do need a barrier between installing
+ * the tables and setting the active flag, because the zfree()
+ * path accesses the table without a lock if we're active.
+ */
+ lck_mtx_lock_spin(&zleak_lock);
+ zleak_state |= ZLEAK_STATE_ACTIVE;
+ zleak_state &= ~ZLEAK_STATE_ACTIVATING;
+ lck_mtx_unlock(&zleak_lock);
+
+ return 0;
+
+fail:
+ /*
+ * If we fail to allocate memory, don't further tax
+ * the system by trying again.
+ */
+ lck_mtx_lock_spin(&zleak_lock);
+ zleak_state |= ZLEAK_STATE_FAILED;
+ zleak_state &= ~ZLEAK_STATE_ACTIVATING;
+ lck_mtx_unlock(&zleak_lock);
+
+ if (allocations_ptr != NULL) {
+ kmem_free(kernel_map, (vm_offset_t)allocations_ptr, z_alloc_size);
+ }
+
+ if (traces_ptr != NULL) {
+ kmem_free(kernel_map, (vm_offset_t)traces_ptr, z_trace_size);
+ }
+
+ return retval;
+}
+
+/*
+ * TODO: What about allocations that never get deallocated,
+ * especially ones with unique backtraces? Should we wait to record
+ * until after boot has completed?
+ * (How many persistent zallocs are there?)
+ */
+
+/*
+ * This function records the allocation in the allocations table,
+ * and stores the associated backtrace in the traces table
+ * (or just increments the refcount if the trace is already recorded)
+ * If the allocation slot is in use, the old allocation is replaced with the new allocation, and
+ * the associated trace's refcount is decremented.
+ * If the trace slot is in use, it returns.
+ * The refcount is incremented by the amount of memory the allocation consumes.
+ * The return value indicates whether to try again next time.
+ */
+static boolean_t
+zleak_log(uintptr_t* bt,
+ uintptr_t addr,
+ uint32_t depth,
+ vm_size_t allocation_size)
+{
+ /* Quit if there's someone else modifying the hash tables */
+ if (!lck_mtx_try_lock_spin(&zleak_lock)) {
+ z_total_conflicts++;
+ return FALSE;
+ }
+
+ struct zallocation* allocation = &zallocations[hashaddr(addr, zleak_alloc_buckets)];
+
+ uint32_t trace_index = hashbacktrace(bt, depth, zleak_trace_buckets);
+ struct ztrace* trace = &ztraces[trace_index];
+
+ allocation->za_hit_count++;
+ trace->zt_hit_count++;
+
+ /*
+ * If the allocation bucket we want to be in is occupied, and if the occupier
+ * has the same trace as us, just bail.
+ */
+ if (allocation->za_element != (uintptr_t) 0 && trace_index == allocation->za_trace_index) {
+ z_alloc_collisions++;
+
+ lck_mtx_unlock(&zleak_lock);
+ return TRUE;
+ }
+
+ /* STEP 1: Store the backtrace in the traces array. */
+ /* A size of zero indicates that the trace bucket is free. */
+
+ if (trace->zt_size > 0 && bcmp(trace->zt_stack, bt, (depth * sizeof(uintptr_t))) != 0 ) {
+ /*
+ * Different unique trace with same hash!
+ * Just bail - if we're trying to record the leaker, hopefully the other trace will be deallocated
+ * and get out of the way for later chances
+ */
+ trace->zt_collisions++;
+ z_trace_collisions++;
+
+ lck_mtx_unlock(&zleak_lock);
+ return TRUE;
+ } else if (trace->zt_size > 0) {
+ /* Same trace, already added, so increment refcount */
+ trace->zt_size += allocation_size;
+ } else {
+ /* Found an unused trace bucket, record the trace here! */
+ if (trace->zt_depth != 0) /* if this slot was previously used but not currently in use */
+ z_trace_overwrites++;
+
+ z_trace_recorded++;
+ trace->zt_size = allocation_size;
+ memcpy(trace->zt_stack, bt, (depth * sizeof(uintptr_t)) );
+
+ trace->zt_depth = depth;
+ trace->zt_collisions = 0;
+ }
+
+ /* STEP 2: Store the allocation record in the allocations array. */
+
+ if (allocation->za_element != (uintptr_t) 0) {
+ /*
+ * Straight up replace any allocation record that was there. We don't want to do the work
+ * to preserve the allocation entries that were there, because we only record a subset of the
+ * allocations anyways.
+ */
+
+ z_alloc_collisions++;
+
+ struct ztrace* associated_trace = &ztraces[allocation->za_trace_index];
+ /* Knock off old allocation's size, not the new allocation */
+ associated_trace->zt_size -= allocation->za_size;
+ } else if (allocation->za_trace_index != 0) {
+ /* Slot previously used but not currently in use */
+ z_alloc_overwrites++;
+ }
+
+ allocation->za_element = addr;
+ allocation->za_trace_index = trace_index;
+ allocation->za_size = allocation_size;
+
+ z_alloc_recorded++;
+
+ if (top_ztrace->zt_size < trace->zt_size)
+ top_ztrace = trace;
+
+ lck_mtx_unlock(&zleak_lock);
+ return TRUE;
+}
+
+/*
+ * Free the allocation record and release the stacktrace.
+ * This should be as fast as possible because it will be called for every free.
+ */
+static void
+zleak_free(uintptr_t addr,
+ vm_size_t allocation_size)
+{
+ if (addr == (uintptr_t) 0)
+ return;
+
+ struct zallocation* allocation = &zallocations[hashaddr(addr, zleak_alloc_buckets)];
+
+ /* Double-checked locking: check to find out if we're interested, lock, check to make
+ * sure it hasn't changed, then modify it, and release the lock.
+ */
+
+ if (allocation->za_element == addr && allocation->za_trace_index < zleak_trace_buckets) {
+ /* if the allocation was the one, grab the lock, check again, then delete it */
+ lck_mtx_lock_spin(&zleak_lock);
+
+ if (allocation->za_element == addr && allocation->za_trace_index < zleak_trace_buckets) {
+ struct ztrace *trace;
+
+ /* allocation_size had better match what was passed into zleak_log - otherwise someone is freeing into the wrong zone! */
+ if (allocation->za_size != allocation_size) {
+ panic("Freeing as size %lu memory that was allocated with size %lu\n",
+ (uintptr_t)allocation_size, (uintptr_t)allocation->za_size);
+ }
+
+ trace = &ztraces[allocation->za_trace_index];
+
+ /* size of 0 indicates trace bucket is unused */
+ if (trace->zt_size > 0) {
+ trace->zt_size -= allocation_size;
+ }
+
+ /* A NULL element means the allocation bucket is unused */
+ allocation->za_element = 0;
+ }
+ lck_mtx_unlock(&zleak_lock);
+ }
+}
+
+#endif /* CONFIG_ZLEAKS */
+
+/* These functions outside of CONFIG_ZLEAKS because they are also used in
+ * mbuf.c for mbuf leak-detection. This is why they lack the z_ prefix.
+ */
+
+/*
+ * This function captures a backtrace from the current stack and
+ * returns the number of frames captured, limited by max_frames.
+ * It's fast because it does no checking to make sure there isn't bad data.
+ * Since it's only called from threads that we're going to keep executing,
+ * if there's bad data we were going to die eventually.
+ * This seems to work for x86 and X86_64.
+ * ARMTODO: Test it on ARM, I think it will work but I can't test it. If it works, remove the ifdef.
+ * If this function is inlined, it doesn't record the frame of the function it's inside.
+ * (because there's no stack frame!)
+ */
+uint32_t
+fastbacktrace(uintptr_t* bt, uint32_t max_frames)
+{
+#if defined(__x86_64__) || defined(__i386__)
+ uintptr_t* frameptr = NULL, *frameptr_next = NULL;
+ uintptr_t retaddr = 0;
+ uint32_t frame_index = 0, frames = 0;
+ uintptr_t kstackb, kstackt;
+
+ kstackb = current_thread()->kernel_stack;
+ kstackt = kstackb + kernel_stack_size;
+ /* Load stack frame pointer (EBP on x86) into frameptr */
+ frameptr = __builtin_frame_address(0);
+
+ while (frameptr != NULL && frame_index < max_frames ) {
+ /* Next frame pointer is pointed to by the previous one */
+ frameptr_next = (uintptr_t*) *frameptr;
+
+ /* Bail if we see a zero in the stack frame, that means we've reached the top of the stack */
+ /* That also means the return address is worthless, so don't record it */
+ if (frameptr_next == NULL)
+ break;
+ /* Verify thread stack bounds */
+ if (((uintptr_t)frameptr_next > kstackt) || ((uintptr_t)frameptr_next < kstackb))
+ break;
+ /* Pull return address from one spot above the frame pointer */
+ retaddr = *(frameptr + 1);
+
+ /* Store it in the backtrace array */
+ bt[frame_index++] = retaddr;
+
+ frameptr = frameptr_next;
+ }
+
+ /* Save the number of frames captured for return value */
+ frames = frame_index;
+
+ /* Fill in the rest of the backtrace with zeros */
+ while (frame_index < max_frames)
+ bt[frame_index++] = 0;
+
+ return frames;
+#else
+ return OSBacktrace((void*)bt, max_frames);
+#endif
+}
+
+/* "Thomas Wang's 32/64 bit mix functions." http://www.concentric.net/~Ttwang/tech/inthash.htm */
+uintptr_t
+hash_mix(uintptr_t x)
+{
+#ifndef __LP64__
+ x += ~(x << 15);
+ x ^= (x >> 10);
+ x += (x << 3 );
+ x ^= (x >> 6 );
+ x += ~(x << 11);
+ x ^= (x >> 16);
+#else
+ x += ~(x << 32);
+ x ^= (x >> 22);
+ x += ~(x << 13);
+ x ^= (x >> 8 );
+ x += (x << 3 );
+ x ^= (x >> 15);
+ x += ~(x << 27);
+ x ^= (x >> 31);
+#endif
+ return x;
+}
+
+uint32_t
+hashbacktrace(uintptr_t* bt, uint32_t depth, uint32_t max_size)
+{
+
+ uintptr_t hash = 0;
+ uintptr_t mask = max_size - 1;
+
+ while (--depth) {
+ hash += bt[depth];
+ }
+
+ hash = hash_mix(hash) & mask;
+
+ assert(hash < max_size);