/*
- * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
+ * Copyright (c) 2000-2020 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
- *
+ *
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
- *
+ *
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
- *
+ *
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
- *
+ *
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_COPYRIGHT@
*/
-/*
+/*
* Mach Operating System
* Copyright (c) 1992-1990 Carnegie Mellon University
* All Rights Reserved.
- *
+ *
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
- *
+ *
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
- *
+ *
* Carnegie Mellon requests users of this software to return to
- *
+ *
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
- *
+ *
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
-/*
- */
-
#include <mach/exception_types.h>
#include <mach/i386/thread_status.h>
#include <mach/i386/fp_reg.h>
-#include <mach/branch_predicates.h>
#include <kern/mach_param.h>
#include <kern/processor.h>
#include <i386/thread.h>
#include <i386/trap.h>
-int fp_kind = FP_NO; /* not inited */
-zone_t ifps_zone; /* zone for FPU save area */
+xstate_t fpu_capability = UNDEFINED; /* extended state capability */
+xstate_t fpu_default = UNDEFINED; /* default extended state */
-#define ALIGNED(addr,size) (((uintptr_t)(addr)&((size)-1))==0)
+#define ALIGNED(addr, size) (((uintptr_t)(addr)&((size)-1))==0)
+#define VERIFY_SAVEAREA_ALIGNED(p, a) \
+ assertf(!(((uintptr_t)(p)) & ((a) - 1)), \
+ "FP save area component @ 0x%lx not 8-byte aligned", ((uintptr_t)(p)))
/* Forward */
-extern void fpinit(void);
-extern void fp_save(
- thread_t thr_act);
-extern void fp_load(
- thread_t thr_act);
-
-static void configure_mxcsr_capability_mask(struct x86_avx_thread_state *fps);
+extern void fpinit(void);
+extern void fp_save(
+ thread_t thr_act);
+extern void fp_load(
+ thread_t thr_act);
-struct x86_avx_thread_state initial_fp_state __attribute((aligned(64)));
+static void configure_mxcsr_capability_mask(x86_ext_thread_state_t *fps);
+static xstate_t thread_xstate(thread_t);
+x86_ext_thread_state_t initial_fp_state __attribute((aligned(64)));
+x86_ext_thread_state_t default_avx512_state __attribute((aligned(64)));
+x86_ext_thread_state_t default_avx_state __attribute((aligned(64)));
+x86_ext_thread_state_t default_fx_state __attribute((aligned(64)));
/* Global MXCSR capability bitmask */
static unsigned int mxcsr_capability_mask;
-#define fninit() \
+#define fninit() \
__asm__ volatile("fninit")
-#define fnstcw(control) \
+#define fnstcw(control) \
__asm__("fnstcw %0" : "=m" (*(unsigned short *)(control)))
-#define fldcw(control) \
+#define fldcw(control) \
__asm__ volatile("fldcw %0" : : "m" (*(unsigned short *) &(control)) )
-#define fnclex() \
+#define fnclex() \
__asm__ volatile("fnclex")
-#define fnsave(state) \
+#define fnsave(state) \
__asm__ volatile("fnsave %0" : "=m" (*state))
-#define frstor(state) \
+#define frstor(state) \
__asm__ volatile("frstor %0" : : "m" (state))
#define fwait() \
- __asm__("fwait");
+ __asm__("fwait");
+
+static inline void
+fxrstor(struct x86_fx_thread_state *a)
+{
+ __asm__ __volatile__ ("fxrstor %0" :: "m" (*a));
+}
+
+static inline void
+fxsave(struct x86_fx_thread_state *a)
+{
+ __asm__ __volatile__ ("fxsave %0" : "=m" (*a));
+}
-#define fxrstor(addr) __asm__ __volatile__("fxrstor %0" : : "m" (*(addr)))
-#define fxsave(addr) __asm__ __volatile__("fxsave %0" : "=m" (*(addr)))
+static inline void
+fxrstor64(struct x86_fx_thread_state *a)
+{
+ __asm__ __volatile__ ("fxrstor64 %0" :: "m" (*a));
+}
-static uint32_t fp_register_state_size = 0;
-static uint32_t fpu_YMM_present = FALSE;
-static uint32_t cpuid_reevaluated = 0;
+static inline void
+fxsave64(struct x86_fx_thread_state *a)
+{
+ __asm__ __volatile__ ("fxsave64 %0" : "=m" (*a));
+}
+
+#define IS_VALID_XSTATE(x) ((x) == FP || (x) == AVX || (x) == AVX512)
+
+SECURITY_READ_ONLY_LATE(zone_t) ifps_zone[] = {
+ [FP] = NULL,
+ [AVX] = NULL,
+ [AVX512] = NULL
+};
+static const uint32_t fp_state_size[] = {
+ [FP] = sizeof(struct x86_fx_thread_state),
+ [AVX] = sizeof(struct x86_avx_thread_state),
+ [AVX512] = sizeof(struct x86_avx512_thread_state)
+};
+
+static const char *const xstate_name[] = {
+ [UNDEFINED] = "UNDEFINED",
+ [FP] = "FP",
+ [AVX] = "AVX",
+ [AVX512] = "AVX512"
+};
+
+#define fpu_ZMM_capable (fpu_capability == AVX512)
+#define fpu_YMM_capable (fpu_capability == AVX || fpu_capability == AVX512)
+/*
+ * On-demand AVX512 support
+ * ------------------------
+ * On machines with AVX512 support, by default, threads are created with
+ * AVX512 masked off in XCR0 and an AVX-sized savearea is used. However, AVX512
+ * capabilities are advertised in the commpage and via sysctl. If a thread
+ * opts to use AVX512 instructions, the first will result in a #UD exception.
+ * Faulting AVX512 intructions are recognizable by their unique prefix.
+ * This exception results in the thread being promoted to use an AVX512-sized
+ * savearea and for the AVX512 bit masks being set in its XCR0. The faulting
+ * instruction is re-driven and the thread can proceed to perform AVX512
+ * operations.
+ *
+ * In addition to AVX512 instructions causing promotion, the thread_set_state()
+ * primitive with an AVX512 state flavor result in promotion.
+ *
+ * AVX512 promotion of the first thread in a task causes the default xstate
+ * of the task to be promoted so that any subsequently created or subsequently
+ * DNA-faulted thread will have AVX512 xstate and it will not need to fault-in
+ * a promoted xstate.
+ *
+ * Two savearea zones are used: the default pool of AVX-sized (832 byte) areas
+ * and a second pool of larger AVX512-sized (2688 byte) areas.
+ *
+ * Note the initial state value is an AVX512 object but that the AVX initial
+ * value is a subset of it.
+ */
+static uint32_t cpuid_reevaluated = 0;
static void fpu_store_registers(void *, boolean_t);
static void fpu_load_registers(void *);
-extern void xsave64o(void);
-extern void xrstor64o(void);
+static const uint32_t xstate_xmask[] = {
+ [FP] = FP_XMASK,
+ [AVX] = AVX_XMASK,
+ [AVX512] = AVX512_XMASK
+};
+
+static inline void
+xsave(struct x86_fx_thread_state *a, uint32_t rfbm)
+{
+ __asm__ __volatile__ ("xsave %0" :"=m" (*a) : "a"(rfbm), "d"(0));
+}
-#define XMASK ((uint32_t) (XFEM_X87 | XFEM_SSE | XFEM_YMM))
+static inline void
+xsave64(struct x86_fx_thread_state *a, uint32_t rfbm)
+{
+ __asm__ __volatile__ ("xsave64 %0" :"=m" (*a) : "a"(rfbm), "d"(0));
+}
+
+static inline void
+xrstor(struct x86_fx_thread_state *a, uint32_t rfbm)
+{
+ __asm__ __volatile__ ("xrstor %0" :: "m" (*a), "a"(rfbm), "d"(0));
+}
-static inline void xsetbv(uint32_t mask_hi, uint32_t mask_lo) {
- __asm__ __volatile__("xsetbv" :: "a"(mask_lo), "d"(mask_hi), "c" (XCR0));
+static inline void
+xrstor64(struct x86_fx_thread_state *a, uint32_t rfbm)
+{
+ __asm__ __volatile__ ("xrstor64 %0" :: "m" (*a), "a"(rfbm), "d"(0));
}
-static inline void xsave(struct x86_fx_thread_state *a) {
- __asm__ __volatile__("xsave %0" :"=m" (*a) : "a"(XMASK), "d"(0));
+__unused static inline void
+vzeroupper(void)
+{
+ __asm__ __volatile__ ("vzeroupper" ::);
}
-static inline void xrstor(struct x86_fx_thread_state *a) {
- __asm__ __volatile__("xrstor %0" :: "m" (*a), "a"(XMASK), "d"(0));
+static boolean_t fpu_thread_promote_avx512(thread_t); /* Forward */
+
+
+/*
+ * Furthermore, make compile-time asserts that no padding creeps into structures
+ * for which we're doing this.
+ */
+#define ASSERT_PACKED(t, m1, m2, n, mt) \
+extern char assert_packed_ ## t ## _ ## m1 ## _ ## m2 \
+ [(offsetof(t,m2) - offsetof(t,m1) == (n - 1)*sizeof(mt)) ? 1 : -1]
+
+ASSERT_PACKED(x86_avx_state32_t, fpu_ymmh0, fpu_ymmh7, 8, _STRUCT_XMM_REG);
+
+ASSERT_PACKED(x86_avx_state64_t, fpu_ymmh0, fpu_ymmh15, 16, _STRUCT_XMM_REG);
+
+ASSERT_PACKED(x86_avx512_state32_t, fpu_k0, fpu_k7, 8, _STRUCT_OPMASK_REG);
+ASSERT_PACKED(x86_avx512_state32_t, fpu_ymmh0, fpu_ymmh7, 8, _STRUCT_XMM_REG);
+ASSERT_PACKED(x86_avx512_state32_t, fpu_zmmh0, fpu_zmmh7, 8, _STRUCT_YMM_REG);
+
+ASSERT_PACKED(x86_avx512_state64_t, fpu_k0, fpu_k7, 8, _STRUCT_OPMASK_REG);
+ASSERT_PACKED(x86_avx512_state64_t, fpu_ymmh0, fpu_ymmh15, 16, _STRUCT_XMM_REG);
+ASSERT_PACKED(x86_avx512_state64_t, fpu_zmmh0, fpu_zmmh15, 16, _STRUCT_YMM_REG);
+ASSERT_PACKED(x86_avx512_state64_t, fpu_zmm16, fpu_zmm31, 16, _STRUCT_ZMM_REG);
+
+#if defined(DEBUG_AVX512)
+
+#define DBG(x...) kprintf("DBG: " x)
+
+typedef struct { uint8_t byte[8]; } opmask_t;
+typedef struct { uint8_t byte[16]; } xmm_t;
+typedef struct { uint8_t byte[32]; } ymm_t;
+typedef struct { uint8_t byte[64]; } zmm_t;
+
+static void
+DBG_AVX512_STATE(struct x86_avx512_thread_state *sp)
+{
+ int i, j;
+ xmm_t *xmm = (xmm_t *) &sp->fp.fx_XMM_reg;
+ xmm_t *ymmh = (xmm_t *) &sp->x_YMM_Hi128;
+ ymm_t *zmmh = (ymm_t *) &sp->x_ZMM_Hi256;
+ zmm_t *zmm = (zmm_t *) &sp->x_Hi16_ZMM;
+ opmask_t *k = (opmask_t *) &sp->x_Opmask;
+
+ kprintf("x_YMM_Hi128: %lu\n", offsetof(struct x86_avx512_thread_state, x_YMM_Hi128));
+ kprintf("x_Opmask: %lu\n", offsetof(struct x86_avx512_thread_state, x_Opmask));
+ kprintf("x_ZMM_Hi256: %lu\n", offsetof(struct x86_avx512_thread_state, x_ZMM_Hi256));
+ kprintf("x_Hi16_ZMM: %lu\n", offsetof(struct x86_avx512_thread_state, x_Hi16_ZMM));
+
+ kprintf("XCR0: 0x%016llx\n", xgetbv(XCR0));
+ kprintf("XINUSE: 0x%016llx\n", xgetbv(1));
+
+ /* Print all ZMM registers */
+ for (i = 0; i < 16; i++) {
+ kprintf("zmm%d:\t0x", i);
+ for (j = 0; j < 16; j++) {
+ kprintf("%02x", xmm[i].byte[j]);
+ }
+ for (j = 0; j < 16; j++) {
+ kprintf("%02x", ymmh[i].byte[j]);
+ }
+ for (j = 0; j < 32; j++) {
+ kprintf("%02x", zmmh[i].byte[j]);
+ }
+ kprintf("\n");
+ }
+ for (i = 0; i < 16; i++) {
+ kprintf("zmm%d:\t0x", 16 + i);
+ for (j = 0; j < 64; j++) {
+ kprintf("%02x", zmm[i].byte[j]);
+ }
+ kprintf("\n");
+ }
+ for (i = 0; i < 8; i++) {
+ kprintf("k%d:\t0x", i);
+ for (j = 0; j < 8; j++) {
+ kprintf("%02x", k[i].byte[j]);
+ }
+ kprintf("\n");
+ }
+
+ kprintf("xstate_bv: 0x%016llx\n", sp->_xh.xstate_bv);
+ kprintf("xcomp_bv: 0x%016llx\n", sp->_xh.xcomp_bv);
}
+#else
+#define DBG(x...)
+static void
+DBG_AVX512_STATE(__unused struct x86_avx512_thread_state *sp)
+{
+ return;
+}
+#endif /* DEBUG_AVX512 */
-#if DEBUG
+#if DEBUG
static inline unsigned short
fnstsw(void)
{
unsigned short status;
- __asm__ volatile("fnstsw %0" : "=ma" (status));
- return(status);
+ __asm__ volatile ("fnstsw %0" : "=ma" (status));
+ return status;
}
#endif
*/
static void
-configure_mxcsr_capability_mask(struct x86_avx_thread_state *fps)
+configure_mxcsr_capability_mask(x86_ext_thread_state_t *fps)
{
/* XSAVE requires a 64 byte aligned store */
assert(ALIGNED(fps, 64));
fpinit();
fpu_store_registers(fps, FALSE);
- mxcsr_capability_mask = fps->fx_MXCSR_MASK;
+ mxcsr_capability_mask = fps->fx.fx_MXCSR_MASK;
/* Set default mask value if necessary */
- if (mxcsr_capability_mask == 0)
+ if (mxcsr_capability_mask == 0) {
mxcsr_capability_mask = 0xffbf;
-
+ }
+
/* Clear vector register store */
- bzero(&fps->fx_XMM_reg[0][0], sizeof(fps->fx_XMM_reg));
- bzero(&fps->x_YMMH_reg[0][0], sizeof(fps->x_YMMH_reg));
+ bzero(&fps->fx.fx_XMM_reg[0][0], sizeof(fps->fx.fx_XMM_reg));
+ bzero(fps->avx.x_YMM_Hi128, sizeof(fps->avx.x_YMM_Hi128));
+ if (fpu_ZMM_capable) {
+ bzero(fps->avx512.x_ZMM_Hi256, sizeof(fps->avx512.x_ZMM_Hi256));
+ bzero(fps->avx512.x_Hi16_ZMM, sizeof(fps->avx512.x_Hi16_ZMM));
+ bzero(fps->avx512.x_Opmask, sizeof(fps->avx512.x_Opmask));
+ }
- fps->fp_valid = TRUE;
- fps->fp_save_layout = fpu_YMM_present ? XSAVE32: FXSAVE32;
+ fps->fx.fp_valid = TRUE;
+ fps->fx.fp_save_layout = fpu_YMM_capable ? XSAVE32: FXSAVE32;
fpu_load_registers(fps);
+ if (fpu_ZMM_capable) {
+ xsave64((struct x86_fx_thread_state *)&default_avx512_state, xstate_xmask[AVX512]);
+ }
+ if (fpu_YMM_capable) {
+ xsave64((struct x86_fx_thread_state *)&default_avx_state, xstate_xmask[AVX]);
+ } else {
+ fxsave64((struct x86_fx_thread_state *)&default_fx_state);
+ }
+
/* Poison values to trap unsafe usage */
- fps->fp_valid = 0xFFFFFFFF;
- fps->fp_save_layout = FP_UNUSED;
+ fps->fx.fp_valid = 0xFFFFFFFF;
+ fps->fx.fp_save_layout = FP_UNUSED;
/* Re-enable FPU/SSE DNA exceptions */
set_ts();
}
-
+int fpsimd_fault_popc = 0;
/*
* Look for FPU and initialize it.
* Called on each CPU.
void
init_fpu(void)
{
-#if DEBUG
- unsigned short status;
- unsigned short control;
+#if DEBUG
+ unsigned short status;
+ unsigned short control;
#endif
/*
* Check for FPU by initializing it,
* then trying to read the correct bit patterns from
* the control and status registers.
*/
- set_cr0((get_cr0() & ~(CR0_EM|CR0_TS)) | CR0_NE); /* allow use of FPU */
+ set_cr0((get_cr0() & ~(CR0_EM | CR0_TS)) | CR0_NE); /* allow use of FPU */
fninit();
-#if DEBUG
+#if DEBUG
status = fnstsw();
fnstcw(&control);
-
+
assert(((status & 0xff) == 0) && ((control & 0x103f) == 0x3f));
#endif
/* Advertise SSE support */
if (cpuid_features() & CPUID_FEATURE_FXSR) {
- fp_kind = FP_FXSR;
set_cr4(get_cr4() | CR4_OSFXS);
/* And allow SIMD exceptions if present */
if (cpuid_features() & CPUID_FEATURE_SSE) {
set_cr4(get_cr4() | CR4_OSXMM);
}
- fp_register_state_size = sizeof(struct x86_fx_thread_state);
-
- } else
+ } else {
panic("fpu is not FP_FXSR");
+ }
+
+ fpu_capability = fpu_default = FP;
+
+ PE_parse_boot_argn("fpsimd_fault_popc", &fpsimd_fault_popc, sizeof(fpsimd_fault_popc));
+
+ static boolean_t is_avx512_enabled = TRUE;
+ if (cpu_number() == master_cpu) {
+ if (cpuid_leaf7_features() & CPUID_LEAF7_FEATURE_AVX512F) {
+ PE_parse_boot_argn("avx512", &is_avx512_enabled, sizeof(boolean_t));
+ kprintf("AVX512 supported %s\n",
+ is_avx512_enabled ? "and enabled" : "but disabled");
+ }
+ }
/* Configure the XSAVE context mechanism if the processor supports
* AVX/YMM registers
*/
if (cpuid_features() & CPUID_FEATURE_XSAVE) {
- cpuid_xsave_leaf_t *xsp = &cpuid_info()->cpuid_xsave_leaf;
- if (xsp->extended_state[0] & (uint32_t)XFEM_YMM) {
- assert(xsp->extended_state[0] & (uint32_t) XFEM_SSE);
+ cpuid_xsave_leaf_t *xs0p = &cpuid_info()->cpuid_xsave_leaf[0];
+ if (is_avx512_enabled &&
+ (xs0p->extended_state[eax] & XFEM_ZMM) == XFEM_ZMM) {
+ assert(xs0p->extended_state[eax] & XFEM_SSE);
+ assert(xs0p->extended_state[eax] & XFEM_YMM);
+ fpu_capability = AVX512;
+ /* XSAVE container size for all features */
+ set_cr4(get_cr4() | CR4_OSXSAVE);
+ xsetbv(0, AVX512_XMASK);
+ /* Re-evaluate CPUID, once, to reflect OSXSAVE */
+ if (OSCompareAndSwap(0, 1, &cpuid_reevaluated)) {
+ cpuid_set_info();
+ }
+ /* Verify that now selected state can be accommodated */
+ assert(xs0p->extended_state[ebx] == fp_state_size[AVX512]);
+ /*
+ * AVX set until AVX512 is used.
+ * See comment above about on-demand AVX512 support.
+ */
+ xsetbv(0, AVX_XMASK);
+ fpu_default = AVX;
+ } else if (xs0p->extended_state[eax] & XFEM_YMM) {
+ assert(xs0p->extended_state[eax] & XFEM_SSE);
+ fpu_capability = AVX;
+ fpu_default = AVX;
/* XSAVE container size for all features */
- if (xsp->extended_state[2] != sizeof(struct x86_avx_thread_state))
- kprintf("sizeof(struct x86_avx_thread_state)=%lu != xsp->extended_state[2]=%u\n",
- sizeof(struct x86_avx_thread_state), xsp->extended_state[2]);
- fp_register_state_size = sizeof(struct x86_avx_thread_state);
- fpu_YMM_present = TRUE;
set_cr4(get_cr4() | CR4_OSXSAVE);
- xsetbv(0, XMASK);
+ xsetbv(0, AVX_XMASK);
/* Re-evaluate CPUID, once, to reflect OSXSAVE */
- if (OSCompareAndSwap(0, 1, &cpuid_reevaluated))
+ if (OSCompareAndSwap(0, 1, &cpuid_reevaluated)) {
cpuid_set_info();
- /* DRK: consider verifying AVX offset with cpuid(d, ECX:2) */
+ }
+ /* Verify that now selected state can be accommodated */
+ assert(xs0p->extended_state[ebx] == fp_state_size[AVX]);
}
}
- else
- fpu_YMM_present = FALSE;
+
+ if (cpu_number() == master_cpu) {
+ kprintf("fpu_state: %s, state_size: %d\n",
+ xstate_name[fpu_capability],
+ fp_state_size[fpu_capability]);
+ }
fpinit();
+ current_cpu_datap()->cpu_xstate = fpu_default;
/*
* Trap wait instructions. Turn off FPU for now.
}
/*
- * Allocate and initialize FP state for current thread.
+ * Allocate and initialize FP state for specified xstate.
* Don't load state.
*/
static void *
-fp_state_alloc(void)
+fp_state_alloc(xstate_t xs)
{
- struct x86_fx_thread_state *ifps = zalloc(ifps_zone);
-
-#if DEBUG
- if (!(ALIGNED(ifps,64))) {
- panic("fp_state_alloc: %p, %u, %p, %u", ifps, (unsigned) ifps_zone->elem_size, (void *) ifps_zone->free_elements, (unsigned) ifps_zone->alloc_size);
- }
-#endif
- bzero(ifps, sizeof(*ifps));
- return ifps;
+ assert(ifps_zone[xs] != NULL);
+ return zalloc_flags(ifps_zone[xs], Z_WAITOK | Z_ZERO);
}
static inline void
-fp_state_free(void *ifps)
+fp_state_free(void *ifps, xstate_t xs)
{
- zfree(ifps_zone, ifps);
+ assert(ifps_zone[xs] != NULL);
+ zfree(ifps_zone[xs], ifps);
}
-void clear_fpu(void)
+void
+clear_fpu(void)
{
set_ts();
}
+static boolean_t
+fpu_allzeroes(uint64_t * __attribute((aligned(8)))ptr, uint32_t size)
+{
+ VERIFY_SAVEAREA_ALIGNED(ptr, sizeof(uint64_t));
+ assertf((size & (sizeof(uint64_t) - 1)) == 0, "FP save area component not a multiple of 8 bytes");
+
+ for (uint32_t count = 0; count < (size / sizeof(uint64_t)); count++) {
+ if (ptr[count] != 0) {
+ return FALSE;
+ }
+ }
+ return TRUE;
+}
-static void fpu_load_registers(void *fstate) {
+static void
+fpu_load_registers(void *fstate)
+{
struct x86_fx_thread_state *ifps = fstate;
fp_save_layout_t layout = ifps->fp_save_layout;
- assert(layout == FXSAVE32 || layout == FXSAVE64 || layout == XSAVE32 || layout == XSAVE64);
+ assert(current_task() == NULL || \
+ (thread_is_64bit_addr(current_thread()) ? \
+ (layout == FXSAVE64 || layout == XSAVE64) : \
+ (layout == FXSAVE32 || layout == XSAVE32)));
assert(ALIGNED(ifps, 64));
assert(ml_get_interrupts_enabled() == FALSE);
-#if DEBUG
+#if DEBUG
if (layout == XSAVE32 || layout == XSAVE64) {
struct x86_avx_thread_state *iavx = fstate;
unsigned i;
/* Verify reserved bits in the XSAVE header*/
- if (iavx->_xh.xsbv & ~7)
- panic("iavx->_xh.xsbv: 0x%llx", iavx->_xh.xsbv);
- for (i = 0; i < sizeof(iavx->_xh.xhrsvd); i++)
- if (iavx->_xh.xhrsvd[i])
+ if (iavx->_xh.xstate_bv & ~xstate_xmask[current_xstate()]) {
+ panic("iavx->_xh.xstate_bv: 0x%llx", iavx->_xh.xstate_bv);
+ }
+ for (i = 0; i < sizeof(iavx->_xh.xhrsvd); i++) {
+ if (iavx->_xh.xhrsvd[i]) {
panic("Reserved bit set");
+ }
+ }
}
- if (fpu_YMM_present) {
- if (layout != XSAVE32 && layout != XSAVE64)
+ if (fpu_YMM_capable) {
+ if (layout != XSAVE32 && layout != XSAVE64) {
panic("Inappropriate layout: %u\n", layout);
+ }
}
-#endif /* DEBUG */
+#endif /* DEBUG */
- if ((layout == XSAVE64) || (layout == XSAVE32))
- xrstor(ifps);
- else
+ switch (layout) {
+ case FXSAVE64:
+ fxrstor64(ifps);
+ break;
+ case FXSAVE32:
fxrstor(ifps);
+ break;
+ case XSAVE64:
+ xrstor64(ifps, xstate_xmask[current_xstate()]);
+ break;
+ case XSAVE32:
+ xrstor(ifps, xstate_xmask[current_xstate()]);
+ break;
+ default:
+ panic("fpu_load_registers() bad layout: %d\n", layout);
+ }
}
-static void fpu_store_registers(void *fstate, boolean_t is64) {
+static void
+fpu_store_registers(void *fstate, boolean_t is64)
+{
struct x86_fx_thread_state *ifps = fstate;
assert(ALIGNED(ifps, 64));
- if (fpu_YMM_present) {
- xsave(ifps);
- ifps->fp_save_layout = is64 ? XSAVE64 : XSAVE32;
- }
- else {
- fxsave(ifps);
- ifps->fp_save_layout = is64 ? FXSAVE64 : FXSAVE32;
+ xstate_t xs = current_xstate();
+ switch (xs) {
+ case FP:
+ if (is64) {
+ fxsave64(fstate);
+ ifps->fp_save_layout = FXSAVE64;
+ } else {
+ fxsave(fstate);
+ ifps->fp_save_layout = FXSAVE32;
+ }
+ break;
+ case AVX:
+ case AVX512:
+ if (is64) {
+ xsave64(ifps, xstate_xmask[xs]);
+ ifps->fp_save_layout = XSAVE64;
+ } else {
+ xsave(ifps, xstate_xmask[xs]);
+ ifps->fp_save_layout = XSAVE32;
+ }
+ break;
+ default:
+ panic("fpu_store_registers() bad xstate: %d\n", xs);
}
}
void
fpu_module_init(void)
{
- if ((fp_register_state_size != sizeof(struct x86_fx_thread_state)) &&
- (fp_register_state_size != sizeof(struct x86_avx_thread_state)))
- panic("fpu_module_init: incorrect savearea size %u\n", fp_register_state_size);
-
- assert(fpu_YMM_present != 0xFFFFFFFF);
-
- /* We explicitly choose an allocation size of 64
- * to eliminate waste for the 832 byte sized
- * AVX XSAVE register save area.
- */
- ifps_zone = zinit(fp_register_state_size,
- thread_max * fp_register_state_size,
- 64 * fp_register_state_size,
- "x86 fpsave state");
+ if (!IS_VALID_XSTATE(fpu_default)) {
+ panic("fpu_module_init: invalid extended state %u\n",
+ fpu_default);
+ }
/* To maintain the required alignment, disable
* zone debugging for this zone as that appends
* 16 bytes to each element.
*/
- zone_change(ifps_zone, Z_ALIGNMENT_REQUIRED, TRUE);
+ ifps_zone[fpu_default] = zone_create("x86 fpsave state",
+ fp_state_size[fpu_default], ZC_ALIGNMENT_REQUIRED | ZC_ZFREE_CLEARMEM);
+
+ /*
+ * If AVX512 is supported, create a separate savearea zone.
+ */
+ if (fpu_capability == AVX512) {
+ ifps_zone[AVX512] = zone_create("x86 avx512 save state",
+ fp_state_size[AVX512], ZC_ALIGNMENT_REQUIRED | ZC_ZFREE_CLEARMEM);
+ }
+
/* Determine MXCSR reserved bits and configure initial FPU state*/
configure_mxcsr_capability_mask(&initial_fp_state);
}
/*
- * Save thread`s FPU context.
+ * Context switch fpu state.
+ * Always save old thread`s FPU context but don't load new .. allow that to fault-in.
+ * Switch to the new task's xstate.
*/
+
void
-fpu_save_context(thread_t thread)
+fpu_switch_context(thread_t old, thread_t new)
{
- struct x86_fx_thread_state *ifps;
+ struct x86_fx_thread_state *ifps;
+ cpu_data_t *cdp = current_cpu_datap();
+ xstate_t new_xstate = new ? thread_xstate(new) : fpu_default;
assert(ml_get_interrupts_enabled() == FALSE);
- ifps = (thread)->machine.ifps;
-#if DEBUG
+ ifps = (old)->machine.ifps;
+#if DEBUG
if (ifps && ((ifps->fp_valid != FALSE) && (ifps->fp_valid != TRUE))) {
panic("ifps->fp_valid: %u\n", ifps->fp_valid);
}
*/
clear_ts();
/* registers are in FPU - save to memory */
- fpu_store_registers(ifps, (thread_is_64bit(thread) && is_saved_state64(thread->machine.iss)));
+ boolean_t is64 = (thread_is_64bit_addr(old) &&
+ is_saved_state64(old->machine.iss));
+
+ fpu_store_registers(ifps, is64);
ifps->fp_valid = TRUE;
+
+ if (fpu_ZMM_capable && (cdp->cpu_xstate == AVX512)) {
+ xrstor64((struct x86_fx_thread_state *)&default_avx512_state, xstate_xmask[AVX512]);
+ } else if (fpu_YMM_capable) {
+ xrstor64((struct x86_fx_thread_state *) &default_avx_state, xstate_xmask[AVX]);
+ } else {
+ fxrstor64((struct x86_fx_thread_state *)&default_fx_state);
+ }
+ }
+
+ assertf(fpu_YMM_capable ? (xgetbv(XCR0) == xstate_xmask[cdp->cpu_xstate]) : TRUE, "XCR0 mismatch: 0x%llx 0x%x 0x%x", xgetbv(XCR0), cdp->cpu_xstate, xstate_xmask[cdp->cpu_xstate]);
+ if (new_xstate != (xstate_t) cdp->cpu_xstate) {
+ DBG("fpu_switch_context(%p,%p) new xstate: %s\n",
+ old, new, xstate_name[new_xstate]);
+ xsetbv(0, xstate_xmask[new_xstate]);
+ cdp->cpu_xstate = new_xstate;
}
set_ts();
}
* Called only when thread terminating - no locking necessary.
*/
void
-fpu_free(void *fps)
+fpu_free(thread_t thread, void *fps)
{
- fp_state_free(fps);
+ pcb_t pcb = THREAD_TO_PCB(thread);
+
+ fp_state_free(fps, pcb->xstate);
+ pcb->xstate = UNDEFINED;
}
/*
- * Set the floating-point state for a thread based
- * on the FXSave formatted data. This is basically
- * the same as fpu_set_state except it uses the
- * expanded data structure.
- * If the thread is not the current thread, it is
- * not running (held). Locking needed against
- * concurrent fpu_set_state or fpu_get_state.
+ * Set the floating-point state for a thread based on the FXSave formatted data.
+ * This is basically the same as fpu_set_state except it uses the expanded data
+ * structure.
+ * If the thread is not the current thread, it is not running (held). Locking
+ * needed against concurrent fpu_set_state or fpu_get_state.
+ *
+ * While translating between XNU FP state structures and the CPU-native XSAVE area,
+ * if we detect state components that are all zeroes, we clear the corresponding
+ * xstate_bv bit in the XSAVE area, because that allows the corresponding state to
+ * be initialized to a "clean" state. That's most important when clearing the YMM
+ * bit, since an initialized "upper clean" state results in a massive performance
+ * improvement due to elimination of false dependencies between the XMMs and the
+ * upper bits of the YMMs.
*/
kern_return_t
fpu_set_fxstate(
- thread_t thr_act,
- thread_state_t tstate,
+ thread_t thr_act,
+ thread_state_t tstate,
thread_flavor_t f)
{
- struct x86_fx_thread_state *ifps;
- struct x86_fx_thread_state *new_ifps;
- x86_float_state64_t *state;
- pcb_t pcb;
- size_t state_size = sizeof(struct x86_fx_thread_state);
- boolean_t old_valid, fresh_state = FALSE;
-
- if (fp_kind == FP_NO)
+ struct x86_fx_thread_state *ifps;
+ struct x86_fx_thread_state *new_ifps;
+ x86_float_state64_t *state;
+ pcb_t pcb;
+ boolean_t old_valid, fresh_state = FALSE;
+ xstate_t thr_xstate;
+
+ if (fpu_capability == UNDEFINED) {
return KERN_FAILURE;
+ }
if ((f == x86_AVX_STATE32 || f == x86_AVX_STATE64) &&
- !ml_fpu_avx_enabled())
+ fpu_capability < AVX) {
return KERN_FAILURE;
+ }
+
+ assert(thr_act != THREAD_NULL);
+
+ thr_xstate = thread_xstate(thr_act);
+
+ if ((f == x86_AVX512_STATE32 || f == x86_AVX512_STATE64) &&
+ thr_xstate == AVX) {
+ if (!fpu_thread_promote_avx512(thr_act)) {
+ return KERN_FAILURE;
+ } else {
+ /* Reload thr_xstate after successful promotion */
+ thr_xstate = thread_xstate(thr_act);
+ }
+ }
state = (x86_float_state64_t *)tstate;
- assert(thr_act != THREAD_NULL);
pcb = THREAD_TO_PCB(thr_act);
if (state == NULL) {
* new FPU state is 'invalid'.
* Deallocate the fp state if it exists.
*/
- simple_lock(&pcb->lock);
+ simple_lock(&pcb->lock, LCK_GRP_NULL);
ifps = pcb->ifps;
pcb->ifps = 0;
simple_unlock(&pcb->lock);
if (ifps != 0) {
- fp_state_free(ifps);
+ fp_state_free(ifps, thr_xstate);
}
} else {
/*
* Valid incoming state. Allocate the fp state if there is none.
*/
new_ifps = 0;
- Retry:
- simple_lock(&pcb->lock);
+Retry:
+ simple_lock(&pcb->lock, LCK_GRP_NULL);
ifps = pcb->ifps;
if (ifps == 0) {
if (new_ifps == 0) {
simple_unlock(&pcb->lock);
- new_ifps = fp_state_alloc();
+ new_ifps = fp_state_alloc(thr_xstate);
goto Retry;
}
ifps = new_ifps;
new_ifps = 0;
pcb->ifps = ifps;
+ pcb->xstate = thr_xstate;
fresh_state = TRUE;
}
old_valid = ifps->fp_valid;
-#if DEBUG || DEVELOPMENT
+#if DEBUG || DEVELOPMENT
if ((fresh_state == FALSE) && (old_valid == FALSE) && (thr_act != current_thread())) {
panic("fpu_set_fxstate inconsistency, thread: %p not stopped", thr_act);
}
state->fpu_mxcsr &= mxcsr_capability_mask;
- bcopy((char *)&state->fpu_fcw, (char *)ifps, state_size);
-
- if (fpu_YMM_present) {
+ __nochk_bcopy((char *)&state->fpu_fcw, (char *)ifps, fp_state_size[FP]);
+
+ switch (thr_xstate) {
+ case UNDEFINED_FULL:
+ case FP_FULL:
+ case AVX_FULL:
+ case AVX512_FULL:
+ panic("fpu_set_fxstate() INVALID xstate: 0x%x", thr_xstate);
+ break;
+
+ case UNDEFINED:
+ panic("fpu_set_fxstate() UNDEFINED xstate");
+ break;
+ case FP:
+ ifps->fp_save_layout = thread_is_64bit_addr(thr_act) ? FXSAVE64 : FXSAVE32;
+ break;
+ case AVX: {
struct x86_avx_thread_state *iavx = (void *) ifps;
- uint32_t fpu_nyreg = 0;
+ x86_avx_state64_t *xs = (x86_avx_state64_t *) state;
- if (f == x86_AVX_STATE32)
- fpu_nyreg = 8;
- else if (f == x86_AVX_STATE64)
- fpu_nyreg = 16;
+ iavx->fp.fp_save_layout = thread_is_64bit_addr(thr_act) ? XSAVE64 : XSAVE32;
- if (fpu_nyreg) {
- x86_avx_state64_t *ystate = (x86_avx_state64_t *) state;
- bcopy(&ystate->__fpu_ymmh0, &iavx->x_YMMH_reg[0][0], fpu_nyreg * sizeof(_STRUCT_XMM_REG));
+ /* Sanitize XSAVE header */
+ bzero(&iavx->_xh.xhrsvd[0], sizeof(iavx->_xh.xhrsvd));
+ iavx->_xh.xstate_bv = AVX_XMASK;
+ iavx->_xh.xcomp_bv = 0;
+
+ /*
+ * See the block comment at the top of the function for a description of why we're clearing
+ * xstate_bv bits.
+ */
+ if (f == x86_AVX_STATE32) {
+ __nochk_bcopy(&xs->fpu_ymmh0, iavx->x_YMM_Hi128, 8 * sizeof(_STRUCT_XMM_REG));
+ if (fpu_allzeroes((uint64_t *)(void *)iavx->x_YMM_Hi128, 8 * sizeof(_STRUCT_XMM_REG)) == TRUE) {
+ iavx->_xh.xstate_bv &= ~XFEM_YMM;
+ }
+ } else if (f == x86_AVX_STATE64) {
+ __nochk_bcopy(&xs->fpu_ymmh0, iavx->x_YMM_Hi128, 16 * sizeof(_STRUCT_XMM_REG));
+ if (fpu_allzeroes((uint64_t *)(void *)iavx->x_YMM_Hi128, 16 * sizeof(_STRUCT_XMM_REG)) == TRUE) {
+ iavx->_xh.xstate_bv &= ~XFEM_YMM;
+ }
+ } else {
+ iavx->_xh.xstate_bv = (XFEM_SSE | XFEM_X87);
}
+ break;
+ }
+ case AVX512: {
+ struct x86_avx512_thread_state *iavx = (void *) ifps;
+ union {
+ thread_state_t ts;
+ x86_avx512_state32_t *s32;
+ x86_avx512_state64_t *s64;
+ } xs = { .ts = tstate };
+
+ iavx->fp.fp_save_layout = thread_is_64bit_addr(thr_act) ? XSAVE64 : XSAVE32;
- iavx->fp_save_layout = thread_is_64bit(thr_act) ? XSAVE64 : XSAVE32;
/* Sanitize XSAVE header */
bzero(&iavx->_xh.xhrsvd[0], sizeof(iavx->_xh.xhrsvd));
- if (fpu_nyreg)
- iavx->_xh.xsbv = (XFEM_YMM | XFEM_SSE | XFEM_X87);
- else
- iavx->_xh.xsbv = (XFEM_SSE | XFEM_X87);
- } else {
- ifps->fp_save_layout = thread_is_64bit(thr_act) ? FXSAVE64 : FXSAVE32;
+ iavx->_xh.xstate_bv = AVX512_XMASK;
+ iavx->_xh.xcomp_bv = 0;
+
+ /*
+ * See the block comment at the top of the function for a description of why we're clearing
+ * xstate_bv bits.
+ */
+ switch (f) {
+ case x86_AVX512_STATE32:
+ __nochk_bcopy(&xs.s32->fpu_k0, iavx->x_Opmask, 8 * sizeof(_STRUCT_OPMASK_REG));
+ __nochk_bcopy(&xs.s32->fpu_zmmh0, iavx->x_ZMM_Hi256, 8 * sizeof(_STRUCT_YMM_REG));
+ if (fpu_allzeroes((uint64_t *)(void *)iavx->x_ZMM_Hi256, 8 * sizeof(_STRUCT_YMM_REG)) == TRUE) {
+ iavx->_xh.xstate_bv &= ~XFEM_ZMM;
+ }
+ __nochk_bcopy(&xs.s32->fpu_ymmh0, iavx->x_YMM_Hi128, 8 * sizeof(_STRUCT_XMM_REG));
+ if (fpu_allzeroes((uint64_t *)(void *)iavx->x_YMM_Hi128, 8 * sizeof(_STRUCT_XMM_REG)) == TRUE) {
+ iavx->_xh.xstate_bv &= ~XFEM_YMM;
+ }
+
+ DBG_AVX512_STATE(iavx);
+ break;
+ case x86_AVX_STATE32:
+ __nochk_bcopy(&xs.s32->fpu_ymmh0, iavx->x_YMM_Hi128, 8 * sizeof(_STRUCT_XMM_REG));
+ if (fpu_allzeroes((uint64_t *)(void *)iavx->x_YMM_Hi128, 8 * sizeof(_STRUCT_XMM_REG)) == TRUE) {
+ iavx->_xh.xstate_bv &= ~XFEM_YMM;
+ }
+ break;
+ case x86_AVX512_STATE64:
+ __nochk_bcopy(&xs.s64->fpu_k0, iavx->x_Opmask, 8 * sizeof(_STRUCT_OPMASK_REG));
+ __nochk_bcopy(&xs.s64->fpu_zmm16, iavx->x_Hi16_ZMM, 16 * sizeof(_STRUCT_ZMM_REG));
+ __nochk_bcopy(&xs.s64->fpu_zmmh0, iavx->x_ZMM_Hi256, 16 * sizeof(_STRUCT_YMM_REG));
+ /*
+ * Note that it is valid to have XFEM_ZMM set but XFEM_YMM cleared. In that case,
+ * the upper bits of the YMMs would be cleared and would result in a clean-upper
+ * state, allowing SSE instruction to avoid false dependencies.
+ */
+ if (fpu_allzeroes((uint64_t *)(void *)iavx->x_Hi16_ZMM, 16 * sizeof(_STRUCT_ZMM_REG)) == TRUE &&
+ fpu_allzeroes((uint64_t *)(void *)iavx->x_ZMM_Hi256, 16 * sizeof(_STRUCT_YMM_REG)) == TRUE) {
+ iavx->_xh.xstate_bv &= ~XFEM_ZMM;
+ }
+
+ __nochk_bcopy(&xs.s64->fpu_ymmh0, iavx->x_YMM_Hi128, 16 * sizeof(_STRUCT_XMM_REG));
+ if (fpu_allzeroes((uint64_t *)(void *)iavx->x_YMM_Hi128, 16 * sizeof(_STRUCT_XMM_REG)) == TRUE) {
+ iavx->_xh.xstate_bv &= ~XFEM_YMM;
+ }
+ DBG_AVX512_STATE(iavx);
+ break;
+ case x86_AVX_STATE64:
+ __nochk_bcopy(&xs.s64->fpu_ymmh0, iavx->x_YMM_Hi128, 16 * sizeof(_STRUCT_XMM_REG));
+ if (fpu_allzeroes((uint64_t *)(void *)iavx->x_YMM_Hi128, 16 * sizeof(_STRUCT_XMM_REG)) == TRUE) {
+ iavx->_xh.xstate_bv &= ~XFEM_YMM;
+ }
+ break;
+ }
+ break;
+ }
}
+
ifps->fp_valid = old_valid;
if (old_valid == FALSE) {
boolean_t istate = ml_set_interrupts_enabled(FALSE);
ifps->fp_valid = TRUE;
/* If altering the current thread's state, disable FPU */
- if (thr_act == current_thread())
+ if (thr_act == current_thread()) {
set_ts();
+ }
ml_set_interrupts_enabled(istate);
}
simple_unlock(&pcb->lock);
- if (new_ifps != 0)
- fp_state_free(new_ifps);
+ if (new_ifps != 0) {
+ fp_state_free(new_ifps, thr_xstate);
+ }
}
return KERN_SUCCESS;
}
*/
kern_return_t
fpu_get_fxstate(
- thread_t thr_act,
- thread_state_t tstate,
+ thread_t thr_act,
+ thread_state_t tstate,
thread_flavor_t f)
{
- struct x86_fx_thread_state *ifps;
- x86_float_state64_t *state;
- kern_return_t ret = KERN_FAILURE;
- pcb_t pcb;
- size_t state_size = sizeof(struct x86_fx_thread_state);
+ struct x86_fx_thread_state *ifps;
+ x86_float_state64_t *state;
+ kern_return_t ret = KERN_FAILURE;
+ pcb_t pcb;
+ xstate_t thr_xstate = thread_xstate(thr_act);
- if (fp_kind == FP_NO)
+ if (fpu_capability == UNDEFINED) {
return KERN_FAILURE;
+ }
if ((f == x86_AVX_STATE32 || f == x86_AVX_STATE64) &&
- !ml_fpu_avx_enabled())
+ fpu_capability < AVX) {
+ return KERN_FAILURE;
+ }
+
+ if ((f == x86_AVX512_STATE32 || f == x86_AVX512_STATE64) &&
+ thr_xstate != AVX512) {
return KERN_FAILURE;
+ }
state = (x86_float_state64_t *)tstate;
assert(thr_act != THREAD_NULL);
pcb = THREAD_TO_PCB(thr_act);
- simple_lock(&pcb->lock);
+ simple_lock(&pcb->lock, LCK_GRP_NULL);
ifps = pcb->ifps;
if (ifps == 0) {
* No valid floating-point state.
*/
- bcopy((char *)&initial_fp_state, (char *)&state->fpu_fcw,
- state_size);
+ __nochk_bcopy((char *)&initial_fp_state, (char *)&state->fpu_fcw,
+ fp_state_size[FP]);
simple_unlock(&pcb->lock);
* If the live fpu state belongs to our target
*/
if (thr_act == current_thread()) {
- boolean_t intr;
+ boolean_t intr;
intr = ml_set_interrupts_enabled(FALSE);
(void)ml_set_interrupts_enabled(intr);
}
if (ifps->fp_valid) {
- bcopy((char *)ifps, (char *)&state->fpu_fcw, state_size);
- if (fpu_YMM_present) {
+ __nochk_bcopy((char *)ifps, (char *)&state->fpu_fcw, fp_state_size[FP]);
+ switch (thr_xstate) {
+ case UNDEFINED_FULL:
+ case FP_FULL:
+ case AVX_FULL:
+ case AVX512_FULL:
+ panic("fpu_get_fxstate() INVALID xstate: 0x%x", thr_xstate);
+ break;
+
+ case UNDEFINED:
+ panic("fpu_get_fxstate() UNDEFINED xstate");
+ break;
+ case FP:
+ break; /* already done */
+ case AVX: {
struct x86_avx_thread_state *iavx = (void *) ifps;
- uint32_t fpu_nyreg = 0;
-
- if (f == x86_AVX_STATE32)
- fpu_nyreg = 8;
- else if (f == x86_AVX_STATE64)
- fpu_nyreg = 16;
-
- if (fpu_nyreg) {
- x86_avx_state64_t *ystate = (x86_avx_state64_t *) state;
- bcopy(&iavx->x_YMMH_reg[0][0], &ystate->__fpu_ymmh0, fpu_nyreg * sizeof(_STRUCT_XMM_REG));
+ x86_avx_state64_t *xs = (x86_avx_state64_t *) state;
+ if (f == x86_AVX_STATE32) {
+ __nochk_bcopy(iavx->x_YMM_Hi128, &xs->fpu_ymmh0, 8 * sizeof(_STRUCT_XMM_REG));
+ } else if (f == x86_AVX_STATE64) {
+ __nochk_bcopy(iavx->x_YMM_Hi128, &xs->fpu_ymmh0, 16 * sizeof(_STRUCT_XMM_REG));
+ }
+ break;
+ }
+ case AVX512: {
+ struct x86_avx512_thread_state *iavx = (void *) ifps;
+ union {
+ thread_state_t ts;
+ x86_avx512_state32_t *s32;
+ x86_avx512_state64_t *s64;
+ } xs = { .ts = tstate };
+ switch (f) {
+ case x86_AVX512_STATE32:
+ __nochk_bcopy(iavx->x_Opmask, &xs.s32->fpu_k0, 8 * sizeof(_STRUCT_OPMASK_REG));
+ __nochk_bcopy(iavx->x_ZMM_Hi256, &xs.s32->fpu_zmmh0, 8 * sizeof(_STRUCT_YMM_REG));
+ __nochk_bcopy(iavx->x_YMM_Hi128, &xs.s32->fpu_ymmh0, 8 * sizeof(_STRUCT_XMM_REG));
+ DBG_AVX512_STATE(iavx);
+ break;
+ case x86_AVX_STATE32:
+ __nochk_bcopy(iavx->x_YMM_Hi128, &xs.s32->fpu_ymmh0, 8 * sizeof(_STRUCT_XMM_REG));
+ break;
+ case x86_AVX512_STATE64:
+ __nochk_bcopy(iavx->x_Opmask, &xs.s64->fpu_k0, 8 * sizeof(_STRUCT_OPMASK_REG));
+ __nochk_bcopy(iavx->x_Hi16_ZMM, &xs.s64->fpu_zmm16, 16 * sizeof(_STRUCT_ZMM_REG));
+ __nochk_bcopy(iavx->x_ZMM_Hi256, &xs.s64->fpu_zmmh0, 16 * sizeof(_STRUCT_YMM_REG));
+ __nochk_bcopy(iavx->x_YMM_Hi128, &xs.s64->fpu_ymmh0, 16 * sizeof(_STRUCT_XMM_REG));
+ DBG_AVX512_STATE(iavx);
+ break;
+ case x86_AVX_STATE64:
+ __nochk_bcopy(iavx->x_YMM_Hi128, &xs.s64->fpu_ymmh0, 16 * sizeof(_STRUCT_XMM_REG));
+ break;
}
+ break;
+ }
}
ret = KERN_SUCCESS;
void
fpu_dup_fxstate(
- thread_t parent,
- thread_t child)
+ thread_t parent,
+ thread_t child)
{
struct x86_fx_thread_state *new_ifps = NULL;
- boolean_t intr;
- pcb_t ppcb;
+ boolean_t intr;
+ pcb_t ppcb;
+ xstate_t xstate = thread_xstate(parent);
ppcb = THREAD_TO_PCB(parent);
- if (ppcb->ifps == NULL)
- return;
+ if (ppcb->ifps == NULL) {
+ return;
+ }
- if (child->machine.ifps)
- panic("fpu_dup_fxstate: child's ifps non-null");
+ if (child->machine.ifps) {
+ panic("fpu_dup_fxstate: child's ifps non-null");
+ }
- new_ifps = fp_state_alloc();
+ new_ifps = fp_state_alloc(xstate);
- simple_lock(&ppcb->lock);
+ simple_lock(&ppcb->lock, LCK_GRP_NULL);
if (ppcb->ifps != NULL) {
struct x86_fx_thread_state *ifps = ppcb->ifps;
- /*
+ /*
* Make sure we`ve got the latest fp state info
*/
- intr = ml_set_interrupts_enabled(FALSE);
- assert(current_thread() == parent);
- clear_ts();
- fp_save(parent);
- clear_fpu();
-
- (void)ml_set_interrupts_enabled(intr);
+ if (current_thread() == parent) {
+ intr = ml_set_interrupts_enabled(FALSE);
+ assert(current_thread() == parent);
+ clear_ts();
+ fp_save(parent);
+ clear_fpu();
+
+ (void)ml_set_interrupts_enabled(intr);
+ }
if (ifps->fp_valid) {
child->machine.ifps = new_ifps;
- assert((fp_register_state_size == sizeof(struct x86_fx_thread_state)) ||
- (fp_register_state_size == sizeof(struct x86_avx_thread_state)));
- bcopy((char *)(ppcb->ifps),
- (char *)(child->machine.ifps), fp_register_state_size);
+ child->machine.xstate = xstate;
+ __nochk_bcopy((char *)(ppcb->ifps),
+ (char *)(child->machine.ifps),
+ fp_state_size[xstate]);
/* Mark the new fp saved state as non-live. */
/* Temporarily disabled: radar 4647827
}
simple_unlock(&ppcb->lock);
- if (new_ifps != NULL)
- fp_state_free(new_ifps);
+ if (new_ifps != NULL) {
+ fp_state_free(new_ifps, xstate);
+ }
}
-
/*
* Initialize FPU.
- *
+ * FNINIT programs the x87 control word to 0x37f, which matches
+ * the desired default for macOS.
*/
void
fpinit(void)
{
- unsigned short control;
-
+ boolean_t istate = ml_set_interrupts_enabled(FALSE);
clear_ts();
fninit();
+#if DEBUG
+ /* We skip this power-on-default verification sequence on
+ * non-DEBUG, as dirtying the x87 control word may slow down
+ * xsave/xrstor and affect energy use.
+ */
+ unsigned short control, control2;
fnstcw(&control);
- control &= ~(FPC_PC|FPC_RC); /* Clear precision & rounding control */
- control |= (FPC_PC_64 | /* Set precision */
- FPC_RC_RN | /* round-to-nearest */
- FPC_ZE | /* Suppress zero-divide */
- FPC_OE | /* and overflow */
- FPC_UE | /* underflow */
- FPC_IE | /* Allow NaNQs and +-INF */
- FPC_DE | /* Allow denorms as operands */
- FPC_PE); /* No trap for precision loss */
+ control2 = control;
+ control &= ~(FPC_PC | FPC_RC); /* Clear precision & rounding control */
+ control |= (FPC_PC_64 | /* Set precision */
+ FPC_RC_RN | /* round-to-nearest */
+ FPC_ZE | /* Suppress zero-divide */
+ FPC_OE | /* and overflow */
+ FPC_UE | /* underflow */
+ FPC_IE | /* Allow NaNQs and +-INF */
+ FPC_DE | /* Allow denorms as operands */
+ FPC_PE); /* No trap for precision loss */
+ assert(control == control2);
fldcw(control);
-
+#endif
/* Initialize SSE/SSE2 */
__builtin_ia32_ldmxcsr(0x1f80);
+ if (fpu_YMM_capable) {
+ vzeroall();
+ } else {
+ xmmzeroall();
+ }
+ ml_set_interrupts_enabled(istate);
}
/*
* Coprocessor not present.
*/
+uint64_t x86_isr_fp_simd_use;
+
void
fpnoextflt(void)
{
- boolean_t intr;
- thread_t thr_act;
- pcb_t pcb;
+ boolean_t intr;
+ thread_t thr_act;
+ pcb_t pcb;
struct x86_fx_thread_state *ifps = 0;
+ xstate_t xstate = current_xstate();
thr_act = current_thread();
pcb = THREAD_TO_PCB(thr_act);
- assert(fp_register_state_size != 0);
-
if (pcb->ifps == 0 && !get_interrupt_level()) {
- ifps = fp_state_alloc();
- bcopy((char *)&initial_fp_state, (char *)ifps,
- fp_register_state_size);
- if (!thread_is_64bit(thr_act)) {
- ifps->fp_save_layout = fpu_YMM_present ? XSAVE32 : FXSAVE32;
- }
- else
- ifps->fp_save_layout = fpu_YMM_present ? XSAVE64 : FXSAVE64;
+ ifps = fp_state_alloc(xstate);
+ __nochk_bcopy((char *)&initial_fp_state, (char *)ifps,
+ fp_state_size[xstate]);
+ if (!thread_is_64bit_addr(thr_act)) {
+ ifps->fp_save_layout = fpu_YMM_capable ? XSAVE32 : FXSAVE32;
+ } else {
+ ifps->fp_save_layout = fpu_YMM_capable ? XSAVE64 : FXSAVE64;
+ }
ifps->fp_valid = TRUE;
}
intr = ml_set_interrupts_enabled(FALSE);
- clear_ts(); /* Enable FPU use */
+ clear_ts(); /* Enable FPU use */
if (__improbable(get_interrupt_level())) {
+ /* Track number of #DNA traps at interrupt context,
+ * which is likely suboptimal. Racy, but good enough.
+ */
+ x86_isr_fp_simd_use++;
/*
- * Save current coprocessor context if valid
- * Initialize coprocessor live context
+ * Save current FP/SIMD context if valid
+ * Initialize live FP/SIMD registers
*/
- fp_save(thr_act);
+ if (pcb->ifps) {
+ fp_save(thr_act);
+ }
fpinit();
} else {
- if (pcb->ifps == 0) {
- pcb->ifps = ifps;
+ if (pcb->ifps == 0) {
+ pcb->ifps = ifps;
+ pcb->xstate = xstate;
ifps = 0;
}
/*
}
(void)ml_set_interrupts_enabled(intr);
- if (ifps)
- fp_state_free(ifps);
+ if (ifps) {
+ fp_state_free(ifps, xstate);
+ }
}
/*
void
fpextovrflt(void)
{
- thread_t thr_act = current_thread();
- pcb_t pcb;
+ thread_t thr_act = current_thread();
+ pcb_t pcb;
struct x86_fx_thread_state *ifps;
- boolean_t intr;
+ boolean_t intr;
+ xstate_t xstate = current_xstate();
intr = ml_set_interrupts_enabled(FALSE);
- if (get_interrupt_level())
- panic("FPU segment overrun exception at interrupt context\n");
- if (current_task() == kernel_task)
+ if (get_interrupt_level()) {
+ panic("FPU segment overrun exception at interrupt context\n");
+ }
+ if (current_task() == kernel_task) {
panic("FPU segment overrun exception in kernel thread context\n");
+ }
/*
* This is a non-recoverable error.
* Invalidate the thread`s FPU state.
*/
pcb = THREAD_TO_PCB(thr_act);
- simple_lock(&pcb->lock);
+ simple_lock(&pcb->lock, LCK_GRP_NULL);
ifps = pcb->ifps;
pcb->ifps = 0;
simple_unlock(&pcb->lock);
(void)ml_set_interrupts_enabled(intr);
- if (ifps)
- zfree(ifps_zone, ifps);
-
- /*
- * Raise exception.
- */
- i386_exception(EXC_BAD_ACCESS, VM_PROT_READ|VM_PROT_EXECUTE, 0);
- /*NOTREACHED*/
+ if (ifps) {
+ fp_state_free(ifps, xstate);
+ }
}
+extern void fpxlog(int, uint32_t, uint32_t, uint32_t);
+
/*
* FPU error. Called by AST.
*/
void
fpexterrflt(void)
{
- thread_t thr_act = current_thread();
+ thread_t thr_act = current_thread();
struct x86_fx_thread_state *ifps = thr_act->machine.ifps;
- boolean_t intr;
+ boolean_t intr;
intr = ml_set_interrupts_enabled(FALSE);
- if (get_interrupt_level())
+ if (get_interrupt_level()) {
panic("FPU error exception at interrupt context\n");
- if (current_task() == kernel_task)
+ }
+ if (current_task() == kernel_task) {
panic("FPU error exception in kernel thread context\n");
+ }
/*
* Save the FPU state and turn off the FPU.
(void)ml_set_interrupts_enabled(intr);
- /*
- * Raise FPU exception.
- * Locking not needed on pcb->ifps,
- * since thread is running.
- */
- i386_exception(EXC_ARITHMETIC,
- EXC_I386_EXTERR,
- ifps->fx_status);
-
- /*NOTREACHED*/
+ const uint32_t mask = ifps->fx_control &
+ (FPC_IM | FPC_DM | FPC_ZM | FPC_OM | FPC_UE | FPC_PE);
+ const uint32_t xcpt = ~mask & (ifps->fx_status &
+ (FPS_IE | FPS_DE | FPS_ZE | FPS_OE | FPS_UE | FPS_PE));
+ fpxlog(EXC_I386_EXTERR, ifps->fx_status, ifps->fx_control, xcpt);
}
/*
void
fp_save(
- thread_t thr_act)
+ thread_t thr_act)
{
pcb_t pcb = THREAD_TO_PCB(thr_act);
struct x86_fx_thread_state *ifps = pcb->ifps;
assert((get_cr0() & CR0_TS) == 0);
/* registers are in FPU */
ifps->fp_valid = TRUE;
- fpu_store_registers(ifps, thread_is_64bit(thr_act));
+ fpu_store_registers(ifps, thread_is_64bit_addr(thr_act));
}
}
void
fp_load(
- thread_t thr_act)
+ thread_t thr_act)
{
pcb_t pcb = THREAD_TO_PCB(thr_act);
struct x86_fx_thread_state *ifps = pcb->ifps;
assert(ifps);
-#if DEBUG
+#if DEBUG
if (ifps->fp_valid != FALSE && ifps->fp_valid != TRUE) {
panic("fp_load() invalid fp_valid: %u, fp_save_layout: %u\n",
- ifps->fp_valid, ifps->fp_save_layout);
+ ifps->fp_valid, ifps->fp_save_layout);
}
#endif
} else {
fpu_load_registers(ifps);
}
- ifps->fp_valid = FALSE; /* in FPU */
+ ifps->fp_valid = FALSE; /* in FPU */
}
/*
void
fpSSEexterrflt(void)
{
- thread_t thr_act = current_thread();
+ thread_t thr_act = current_thread();
struct x86_fx_thread_state *ifps = thr_act->machine.ifps;
- boolean_t intr;
+ boolean_t intr;
intr = ml_set_interrupts_enabled(FALSE);
- if (get_interrupt_level())
+ if (get_interrupt_level()) {
panic("SSE exception at interrupt context\n");
- if (current_task() == kernel_task)
+ }
+ if (current_task() == kernel_task) {
panic("SSE exception in kernel thread context\n");
+ }
/*
* Save the FPU state and turn off the FPU.
* Locking not needed on pcb->ifps,
* since thread is running.
*/
+ const uint32_t mask = (ifps->fx_MXCSR >> 7) &
+ (FPC_IM | FPC_DM | FPC_ZM | FPC_OM | FPC_UE | FPC_PE);
+ const uint32_t xcpt = ~mask & (ifps->fx_MXCSR &
+ (FPS_IE | FPS_DE | FPS_ZE | FPS_OE | FPS_UE | FPS_PE));
+ fpxlog(EXC_I386_SSEEXTERR, ifps->fx_MXCSR, ifps->fx_MXCSR, xcpt);
+}
+
+
+/*
+ * If a thread is using an AVX-sized savearea:
+ * - allocate a new AVX512-sized area,
+ * - copy the 256-bit state into the 512-bit area,
+ * - deallocate the smaller area
+ * ASSUMES: thread is the current thread.
+ */
+static void
+fpu_savearea_promote_avx512(thread_t thread)
+{
+ struct x86_avx_thread_state *ifps = NULL;
+ struct x86_avx512_thread_state *ifps512 = NULL;
+ pcb_t pcb = THREAD_TO_PCB(thread);
+ boolean_t do_avx512_alloc = FALSE;
+ boolean_t intr;
+
+ assert(thread == current_thread());
+
+ DBG("fpu_savearea_promote_avx512(%p)\n", thread);
+
+ simple_lock(&pcb->lock, LCK_GRP_NULL);
+
+ ifps = pcb->ifps;
+ if (ifps == NULL) {
+ pcb->xstate = AVX512;
+ simple_unlock(&pcb->lock);
+ /*
+ * Now that the PCB xstate has been promoted, set XCR0 so
+ * that we don't re-trip #UD on the next AVX-512 instruction.
+ *
+ * Since this branch is taken when the first FP instruction
+ * attempted by this thread is an AVX-512 instruction, we
+ * call fpnoextflt() to allocate an appropriately-sized
+ * AVX-512 save-area, thereby avoiding the overhead of another
+ * fault that would be triggered immediately on return.
+ */
+ intr = ml_set_interrupts_enabled(FALSE);
+ xsetbv(0, AVX512_XMASK);
+ current_cpu_datap()->cpu_xstate = AVX512;
+ (void)ml_set_interrupts_enabled(intr);
+
+ fpnoextflt();
+ return;
+ }
+
+ if (pcb->xstate != AVX512) {
+ do_avx512_alloc = TRUE;
+ }
+
+ simple_unlock(&pcb->lock);
+
+ if (do_avx512_alloc == TRUE) {
+ ifps512 = fp_state_alloc(AVX512);
+ }
+
+ simple_lock(&pcb->lock, LCK_GRP_NULL);
+
+ intr = ml_set_interrupts_enabled(FALSE);
+
+ clear_ts();
+ fp_save(thread);
+ clear_fpu();
+
+ xsetbv(0, AVX512_XMASK);
+ current_cpu_datap()->cpu_xstate = AVX512;
+ (void)ml_set_interrupts_enabled(intr);
+
+ assert(ifps->fp.fp_valid);
+
+ /* Allocate an AVX512 savearea and copy AVX state into it */
+ if (pcb->xstate != AVX512) {
+ __nochk_bcopy(ifps, ifps512, fp_state_size[AVX]);
+ pcb->ifps = ifps512;
+ pcb->xstate = AVX512;
+ ifps512 = NULL;
+ } else {
+ ifps = NULL;
+ }
+ /* The PCB lock is redundant in some scenarios given the higher level
+ * thread mutex, but its pre-emption disablement is relied upon here
+ */
+ simple_unlock(&pcb->lock);
+
+ if (ifps) {
+ fp_state_free(ifps, AVX);
+ }
+ if (ifps512) {
+ fp_state_free(ifps, AVX512);
+ }
+}
+
+/*
+ * Upgrade the calling thread to AVX512.
+ */
+boolean_t
+fpu_thread_promote_avx512(thread_t thread)
+{
+ task_t task = current_task();
+
+ if (thread != current_thread()) {
+ return FALSE;
+ }
+ if (!ml_fpu_avx512_enabled()) {
+ return FALSE;
+ }
+
+ fpu_savearea_promote_avx512(thread);
+
+ /* Racy but the task's xstate is only a hint */
+ task->xstate = AVX512;
+
+ return TRUE;
+}
+
+
+/*
+ * Called from user_trap() when an invalid opcode fault is taken.
+ * If the user is attempting an AVX512 instruction on a machine
+ * that supports this, we switch the calling thread to use
+ * a larger savearea, set its XCR0 bit mask to enable AVX512 and
+ * return to user_trap() with a 0 return value.
+ * Otherwise, simply return a nonzero value.
+ */
+
+#define MAX_X86_INSN_LENGTH (15)
+int
+fpUDflt(user_addr_t rip)
+{
+ uint8_t instruction_prefix;
+ boolean_t is_AVX512_instruction = FALSE;
+ user_addr_t original_rip = rip;
+ do {
+ /* TODO: as an optimisation, copy up to the lesser of the
+ * next page boundary or maximal prefix length in one pass
+ * rather than issue multiple copyins
+ */
+ if (copyin(rip, (char *) &instruction_prefix, 1)) {
+ return 1;
+ }
+ DBG("fpUDflt(0x%016llx) prefix: 0x%x\n",
+ rip, instruction_prefix);
+ /* TODO: determine more specifically which prefixes
+ * are sane possibilities for AVX512 insns
+ */
+ switch (instruction_prefix) {
+ case 0x2E: /* CS segment override */
+ case 0x36: /* SS segment override */
+ case 0x3E: /* DS segment override */
+ case 0x26: /* ES segment override */
+ case 0x64: /* FS segment override */
+ case 0x65: /* GS segment override */
+ case 0x66: /* Operand-size override */
+ case 0x67: /* address-size override */
+ /* Skip optional prefixes */
+ rip++;
+ if ((rip - original_rip) > MAX_X86_INSN_LENGTH) {
+ return 1;
+ }
+ break;
+ case 0x62: /* EVEX */
+ case 0xC5: /* VEX 2-byte */
+ case 0xC4: /* VEX 3-byte */
+ is_AVX512_instruction = TRUE;
+ break;
+ default:
+ return 1;
+ }
+ } while (!is_AVX512_instruction);
+
+ /* Here if we detect attempted execution of an AVX512 instruction */
+
+ /*
+ * Fail if this machine doesn't support AVX512
+ */
+ if (fpu_capability != AVX512) {
+ return 1;
+ }
- i386_exception(EXC_ARITHMETIC,
- EXC_I386_SSEEXTERR,
- ifps->fx_MXCSR);
- /*NOTREACHED*/
+ assert(xgetbv(XCR0) == AVX_XMASK);
+
+ DBG("fpUDflt() switching xstate to AVX512\n");
+ (void) fpu_thread_promote_avx512(current_thread());
+
+ return 0;
}
void
-fp_setvalid(boolean_t value) {
- thread_t thr_act = current_thread();
+fp_setvalid(boolean_t value)
+{
+ thread_t thr_act = current_thread();
struct x86_fx_thread_state *ifps = thr_act->machine.ifps;
if (ifps) {
- ifps->fp_valid = value;
+ ifps->fp_valid = value;
if (value == TRUE) {
boolean_t istate = ml_set_interrupts_enabled(FALSE);
- clear_fpu();
+ clear_fpu();
ml_set_interrupts_enabled(istate);
}
}
}
boolean_t
-ml_fpu_avx_enabled(void) {
- return (fpu_YMM_present == TRUE);
+ml_fpu_avx_enabled(void)
+{
+ return fpu_capability >= AVX;
+}
+
+boolean_t
+ml_fpu_avx512_enabled(void)
+{
+ return fpu_capability == AVX512;
+}
+
+static xstate_t
+task_xstate(task_t task)
+{
+ if (task == TASK_NULL) {
+ return fpu_default;
+ } else {
+ return task->xstate;
+ }
+}
+
+static xstate_t
+thread_xstate(thread_t thread)
+{
+ xstate_t xs = THREAD_TO_PCB(thread)->xstate;
+ if (xs == UNDEFINED) {
+ return task_xstate(thread->task);
+ } else {
+ return xs;
+ }
+}
+
+xstate_t
+current_xstate(void)
+{
+ return thread_xstate(current_thread());
+}
+
+/*
+ * Called when exec'ing between bitnesses.
+ * If valid FPU state exists, adjust the layout.
+ */
+void
+fpu_switch_addrmode(thread_t thread, boolean_t is_64bit)
+{
+ struct x86_fx_thread_state *ifps = thread->machine.ifps;
+ mp_disable_preemption();
+
+ if (ifps && ifps->fp_valid) {
+ if (thread_xstate(thread) == FP) {
+ ifps->fp_save_layout = is_64bit ? FXSAVE64 : FXSAVE32;
+ } else {
+ ifps->fp_save_layout = is_64bit ? XSAVE64 : XSAVE32;
+ }
+ }
+ mp_enable_preemption();
+}
+
+static inline uint32_t
+fpsimd_pop(uintptr_t ins, int sz)
+{
+ uint32_t rv = 0;
+
+
+ while (sz >= 16) {
+ uint32_t rv1, rv2;
+ uint64_t *ins64 = (uint64_t *) ins;
+ uint64_t *ins642 = (uint64_t *) (ins + 8);
+ rv1 = __builtin_popcountll(*ins64);
+ rv2 = __builtin_popcountll(*ins642);
+ rv += rv1 + rv2;
+ sz -= 16;
+ ins += 16;
+ }
+
+ while (sz >= 4) {
+ uint32_t *ins32 = (uint32_t *) ins;
+ rv += __builtin_popcount(*ins32);
+ sz -= 4;
+ ins += 4;
+ }
+
+ while (sz > 0) {
+ char *ins8 = (char *)ins;
+ rv += __builtin_popcount(*ins8);
+ sz--;
+ ins++;
+ }
+ return rv;
+}
+
+uint32_t
+thread_fpsimd_hash(thread_t ft)
+{
+ if (fpsimd_fault_popc == 0) {
+ return 0;
+ }
+
+ uint32_t prv = 0;
+ boolean_t istate = ml_set_interrupts_enabled(FALSE);
+ struct x86_fx_thread_state *pifps = THREAD_TO_PCB(ft)->ifps;
+
+ if (pifps) {
+ if (pifps->fp_valid) {
+ prv = fpsimd_pop((uintptr_t) &pifps->fx_XMM_reg[0][0],
+ sizeof(pifps->fx_XMM_reg));
+ } else {
+ uintptr_t cr0 = get_cr0();
+ clear_ts();
+ fp_save(ft);
+ prv = fpsimd_pop((uintptr_t) &pifps->fx_XMM_reg[0][0],
+ sizeof(pifps->fx_XMM_reg));
+ pifps->fp_valid = FALSE;
+ if (cr0 & CR0_TS) {
+ set_cr0(cr0);
+ }
+ }
+ }
+ ml_set_interrupts_enabled(istate);
+ return prv;
}