/*
- * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2016 Apple Inc. All rights reserved.
*
- * @APPLE_LICENSE_HEADER_START@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
- * The contents of this file constitute Original Code as defined in and
- * are subject to the Apple Public Source License Version 1.1 (the
- * "License"). You may not use this file except in compliance with the
- * License. Please obtain a copy of the License at
- * http://www.apple.com/publicsource and read it before using this file.
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
*
- * This Original Code and all software distributed under the License are
- * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
- * License for the specific language governing rights and limitations
- * under the License.
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
*
- * @APPLE_LICENSE_HEADER_END@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_FREE_COPYRIGHT@
* improvements that they make and grant CSL redistribution rights.
*
*/
+/*
+ * NOTICE: This file was modified by McAfee Research in 2004 to introduce
+ * support for mandatory and extensible security protections. This notice
+ * is included in support of clause 2.2 (b) of the Apple Public License,
+ * Version 2.0.
+ * Copyright (c) 2005 SPARTA, Inc.
+ */
-#include <mach_kdb.h>
-#include <mach_host.h>
-#include <mach_prof.h>
-#include <fast_tas.h>
-#include <task_swapper.h>
-#include <platforms.h>
-
+#include <mach/mach_types.h>
#include <mach/boolean.h>
+#include <mach/host_priv.h>
#include <mach/machine/vm_types.h>
#include <mach/vm_param.h>
+#include <mach/mach_vm.h>
#include <mach/semaphore.h>
#include <mach/task_info.h>
#include <mach/task_special_ports.h>
-#include <mach/mach_types.h>
+#include <mach/sdt.h>
+
+#include <ipc/ipc_importance.h>
+#include <ipc/ipc_types.h>
#include <ipc/ipc_space.h>
#include <ipc/ipc_entry.h>
+#include <ipc/ipc_hash.h>
+
+#include <kern/kern_types.h>
#include <kern/mach_param.h>
#include <kern/misc_protos.h>
#include <kern/task.h>
#include <kern/thread.h>
+#include <kern/coalition.h>
#include <kern/zalloc.h>
#include <kern/kalloc.h>
+#include <kern/kern_cdata.h>
#include <kern/processor.h>
#include <kern/sched_prim.h> /* for thread_wakeup */
#include <kern/ipc_tt.h>
-#include <kern/ledger.h>
#include <kern/host.h>
-#include <vm/vm_kern.h> /* for kernel_map, ipc_kernel_map */
-#include <kern/profile.h>
+#include <kern/clock.h>
+#include <kern/timer.h>
#include <kern/assert.h>
#include <kern/sync_lock.h>
-#if MACH_KDB
-#include <ddb/db_sym.h>
-#endif /* MACH_KDB */
+#include <kern/affinity.h>
+#include <kern/exc_resource.h>
+#include <kern/machine.h>
+#include <kern/policy_internal.h>
+
+#include <corpses/task_corpse.h>
+#if CONFIG_TELEMETRY
+#include <kern/telemetry.h>
+#endif
+
+#include <vm/pmap.h>
+#include <vm/vm_map.h>
+#include <vm/vm_kern.h> /* for kernel_map, ipc_kernel_map */
+#include <vm/vm_pageout.h>
+#include <vm/vm_protos.h>
+#include <vm/vm_purgeable_internal.h>
-#if TASK_SWAPPER
-#include <kern/task_swap.h>
-#endif /* TASK_SWAPPER */
+#include <sys/resource.h>
+#include <sys/signalvar.h> /* for coredump */
/*
* Exported interfaces
#include <mach/task_server.h>
#include <mach/mach_host_server.h>
#include <mach/host_security_server.h>
-#include <vm/task_working_set.h>
+#include <mach/mach_port_server.h>
-task_t kernel_task;
-zone_t task_zone;
+#include <vm/vm_shared_region.h>
-/* Forwards */
+#include <libkern/OSDebug.h>
+#include <libkern/OSAtomic.h>
-void task_hold_locked(
- task_t task);
-void task_wait_locked(
- task_t task);
-void task_release_locked(
- task_t task);
-void task_collect_scan(void);
-void task_free(
- task_t task );
-void task_synchronizer_destroy_all(
- task_t task);
-
-kern_return_t task_set_ledger(
- task_t task,
- ledger_t wired,
- ledger_t paged);
+#if CONFIG_ATM
+#include <atm/atm_internal.h>
+#endif
-void
-task_init(void)
-{
- task_zone = zinit(
- sizeof(struct task),
- TASK_MAX * sizeof(struct task),
- TASK_CHUNK * sizeof(struct task),
- "tasks");
+#include <kern/sfi.h> /* picks up ledger.h */
- eml_init();
+#if CONFIG_MACF
+#include <security/mac_mach_internal.h>
+#endif
- /*
- * Create the kernel task as the first task.
- * Task_create_local must assign to kernel_task as a side effect,
- * for other initialization. (:-()
- */
- if (task_create_local(
- TASK_NULL, FALSE, FALSE, &kernel_task) != KERN_SUCCESS)
- panic("task_init\n");
- vm_map_deallocate(kernel_task->map);
- kernel_task->map = kernel_map;
+#if KPERF
+extern int kpc_force_all_ctrs(task_t, int);
+#endif
-#if MACH_ASSERT
- if (watchacts & WA_TASK)
- printf("task_init: kernel_task = %x map=%x\n",
- kernel_task, kernel_map);
-#endif /* MACH_ASSERT */
-}
+task_t kernel_task;
+zone_t task_zone;
+lck_attr_t task_lck_attr;
+lck_grp_t task_lck_grp;
+lck_grp_attr_t task_lck_grp_attr;
-#if MACH_HOST
+extern int exc_via_corpse_forking;
+extern int unify_corpse_blob_alloc;
+extern int corpse_for_fatal_memkill;
-#if 0
-static void
-task_freeze(
- task_t task)
-{
- task_lock(task);
- /*
- * If may_assign is false, task is already being assigned,
- * wait for that to finish.
- */
- while (task->may_assign == FALSE) {
- wait_result_t res;
+/* Flag set by core audio when audio is playing. Used to stifle EXC_RESOURCE generation when active. */
+int audio_active = 0;
- task->assign_active = TRUE;
- res = thread_sleep_mutex((event_t) &task->assign_active,
- &task->lock, THREAD_UNINT);
- assert(res == THREAD_AWAKENED);
- }
- task->may_assign = FALSE;
- task_unlock(task);
- return;
-}
-#else
-#define thread_freeze(thread) assert(task->processor_set == &default_pset)
-#endif
+zinfo_usage_store_t tasks_tkm_private;
+zinfo_usage_store_t tasks_tkm_shared;
-#if 0
-static void
-task_unfreeze(
- task_t task)
-{
- task_lock(task);
- assert(task->may_assign == FALSE);
- task->may_assign = TRUE;
- if (task->assign_active == TRUE) {
- task->assign_active = FALSE;
- thread_wakeup((event_t)&task->assign_active);
- }
- task_unlock(task);
- return;
-}
-#else
-#define thread_unfreeze(thread) assert(task->processor_set == &default_pset)
+/* A container to accumulate statistics for expired tasks */
+expired_task_statistics_t dead_task_statistics;
+lck_spin_t dead_task_statistics_lock;
+
+ledger_template_t task_ledger_template = NULL;
+
+struct _task_ledger_indices task_ledgers __attribute__((used)) =
+ {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ { 0 /* initialized at runtime */},
+#ifdef CONFIG_BANK
+ -1, -1,
#endif
+ -1, -1,
+ };
-#endif /* MACH_HOST */
+/* System sleep state */
+boolean_t tasks_suspend_state;
-/*
- * Create a task running in the kernel address space. It may
- * have its own map of size mem_size and may have ipc privileges.
- */
-kern_return_t
-kernel_task_create(
- task_t parent_task,
- vm_offset_t map_base,
- vm_size_t map_size,
- task_t *child_task)
-{
- kern_return_t result;
- task_t new_task;
- vm_map_t old_map;
- /*
- * Create the task.
- */
- result = task_create_local(parent_task, FALSE, TRUE, &new_task);
- if (result != KERN_SUCCESS)
- return (result);
+void init_task_ledgers(void);
+void task_footprint_exceeded(int warning, __unused const void *param0, __unused const void *param1);
+void task_wakeups_rate_exceeded(int warning, __unused const void *param0, __unused const void *param1);
+void task_io_rate_exceeded(int warning, const void *param0, __unused const void *param1);
+void __attribute__((noinline)) SENDING_NOTIFICATION__THIS_PROCESS_IS_CAUSING_TOO_MANY_WAKEUPS(void);
+void __attribute__((noinline)) PROC_CROSSED_HIGH_WATERMARK__SEND_EXC_RESOURCE_AND_SUSPEND(int max_footprint_mb, boolean_t is_fatal);
+void __attribute__((noinline)) SENDING_NOTIFICATION__THIS_PROCESS_IS_CAUSING_TOO_MUCH_IO(int flavor);
- /*
- * Task_create_local creates the task with a user-space map.
- * We attempt to replace the map and free it afterwards; else
- * task_deallocate will free it (can NOT set map to null before
- * task_deallocate, this impersonates a norma placeholder task).
- * _Mark the memory as pageable_ -- this is what we
- * want for images (like servers) loaded into the kernel.
- */
- if (map_size == 0) {
- vm_map_deallocate(new_task->map);
- new_task->map = kernel_map;
- *child_task = new_task;
- } else {
- old_map = new_task->map;
- if ((result = kmem_suballoc(kernel_map, &map_base,
- map_size, TRUE, FALSE,
- &new_task->map)) != KERN_SUCCESS) {
- /*
- * New task created with ref count of 2 -- decrement by
- * one to force task deletion.
- */
- printf("kmem_suballoc(%x,%x,%x,1,0,&new) Fails\n",
- kernel_map, map_base, map_size);
- --new_task->ref_count;
- task_deallocate(new_task);
- return (result);
- }
- vm_map_deallocate(old_map);
- *child_task = new_task;
- }
- return (KERN_SUCCESS);
-}
+kern_return_t task_suspend_internal(task_t);
+kern_return_t task_resume_internal(task_t);
+static kern_return_t task_start_halt_locked(task_t task, boolean_t should_mark_corpse);
+int proc_list_uptrs(void *p, uint64_t *udata_buffer, int size);
-kern_return_t
-task_create(
- task_t parent_task,
- ledger_port_array_t ledger_ports,
- mach_msg_type_number_t num_ledger_ports,
- boolean_t inherit_memory,
- task_t *child_task) /* OUT */
-{
- if (parent_task == TASK_NULL)
- return(KERN_INVALID_ARGUMENT);
+extern kern_return_t iokit_task_terminate(task_t task);
- return task_create_local(
- parent_task, inherit_memory, FALSE, child_task);
-}
+extern kern_return_t exception_deliver(thread_t, exception_type_t, mach_exception_data_t, mach_msg_type_number_t, struct exception_action *, lck_mtx_t *);
+extern void bsd_copythreadname(void *dst_uth, void *src_uth);
+extern kern_return_t thread_resume(thread_t thread);
-kern_return_t
-host_security_create_task_token(
- host_security_t host_security,
- task_t parent_task,
- security_token_t sec_token,
- host_priv_t host_priv,
- ledger_port_array_t ledger_ports,
- mach_msg_type_number_t num_ledger_ports,
- boolean_t inherit_memory,
- task_t *child_task) /* OUT */
-{
- kern_return_t result;
-
- if (parent_task == TASK_NULL)
- return(KERN_INVALID_ARGUMENT);
+// Warn tasks when they hit 80% of their memory limit.
+#define PHYS_FOOTPRINT_WARNING_LEVEL 80
- if (host_security == HOST_NULL)
- return(KERN_INVALID_SECURITY);
+#define TASK_WAKEUPS_MONITOR_DEFAULT_LIMIT 150 /* wakeups per second */
+#define TASK_WAKEUPS_MONITOR_DEFAULT_INTERVAL 300 /* in seconds. */
- result = task_create_local(
- parent_task, inherit_memory, FALSE, child_task);
+/*
+ * Level (in terms of percentage of the limit) at which the wakeups monitor triggers telemetry.
+ *
+ * (ie when the task's wakeups rate exceeds 70% of the limit, start taking user
+ * stacktraces, aka micro-stackshots)
+ */
+#define TASK_WAKEUPS_MONITOR_DEFAULT_USTACKSHOTS_TRIGGER 70
- if (result != KERN_SUCCESS)
- return(result);
+int task_wakeups_monitor_interval; /* In seconds. Time period over which wakeups rate is observed */
+int task_wakeups_monitor_rate; /* In hz. Maximum allowable wakeups per task before EXC_RESOURCE is sent */
- result = host_security_set_task_token(host_security,
- *child_task,
- sec_token,
- host_priv);
+int task_wakeups_monitor_ustackshots_trigger_pct; /* Percentage. Level at which we start gathering telemetry. */
- if (result != KERN_SUCCESS)
- return(result);
+int disable_exc_resource; /* Global override to supress EXC_RESOURCE for resource monitor violations. */
- return(result);
-}
+ledger_amount_t max_task_footprint = 0; /* Per-task limit on physical memory consumption in bytes */
+int max_task_footprint_warning_level = 0; /* Per-task limit warning percentage */
+int max_task_footprint_mb = 0; /* Per-task limit on physical memory consumption in megabytes */
-kern_return_t
-task_create_local(
- task_t parent_task,
- boolean_t inherit_memory,
- boolean_t kernel_loaded,
- task_t *child_task) /* OUT */
-{
- task_t new_task;
- processor_set_t pset;
+/* I/O Monitor Limits */
+#define IOMON_DEFAULT_LIMIT (20480ull) /* MB of logical/physical I/O */
+#define IOMON_DEFAULT_INTERVAL (86400ull) /* in seconds */
- new_task = (task_t) zalloc(task_zone);
+uint64_t task_iomon_limit_mb; /* Per-task I/O monitor limit in MBs */
+uint64_t task_iomon_interval_secs; /* Per-task I/O monitor interval in secs */
- if (new_task == TASK_NULL)
- return(KERN_RESOURCE_SHORTAGE);
+#define IO_TELEMETRY_DEFAULT_LIMIT (10ll * 1024ll * 1024ll)
+int64_t io_telemetry_limit; /* Threshold to take a microstackshot (0 indicated I/O telemetry is turned off) */
+int64_t global_logical_writes_count = 0; /* Global count for logical writes */
+static boolean_t global_update_logical_writes(int64_t);
- /* one ref for just being alive; one for our caller */
- new_task->ref_count = 2;
+#if MACH_ASSERT
+int pmap_ledgers_panic = 1;
+#endif /* MACH_ASSERT */
- if (inherit_memory)
- new_task->map = vm_map_fork(parent_task->map);
- else
- new_task->map = vm_map_create(pmap_create(0),
- round_page(VM_MIN_ADDRESS),
- trunc_page(VM_MAX_ADDRESS), TRUE);
+int task_max = CONFIG_TASK_MAX; /* Max number of tasks */
- mutex_init(&new_task->lock, ETAP_THREAD_TASK_NEW);
- queue_init(&new_task->thr_acts);
- new_task->suspend_count = 0;
- new_task->thr_act_count = 0;
- new_task->res_act_count = 0;
- new_task->active_act_count = 0;
- new_task->user_stop_count = 0;
- new_task->role = TASK_UNSPECIFIED;
- new_task->active = TRUE;
- new_task->kernel_loaded = kernel_loaded;
- new_task->user_data = 0;
- new_task->faults = 0;
- new_task->cow_faults = 0;
- new_task->pageins = 0;
- new_task->messages_sent = 0;
- new_task->messages_received = 0;
- new_task->syscalls_mach = 0;
- new_task->syscalls_unix=0;
- new_task->csw=0;
- new_task->dynamic_working_set = 0;
-
- task_working_set_create(new_task, TWS_SMALL_HASH_LINE_COUNT,
- 0, TWS_HASH_STYLE_DEFAULT);
+#if CONFIG_COREDUMP
+int hwm_user_cores = 0; /* high watermark violations generate user core files */
+#endif
#ifdef MACH_BSD
- new_task->bsd_info = 0;
+extern void proc_getexecutableuuid(void *, unsigned char *, unsigned long);
+extern int proc_pid(struct proc *p);
+extern int proc_selfpid(void);
+extern char *proc_name_address(struct proc *p);
+extern uint64_t get_dispatchqueue_offset_from_proc(void *);
+
+#if CONFIG_MEMORYSTATUS
+extern void proc_memstat_terminated(struct proc* p, boolean_t set);
+extern boolean_t memorystatus_turnoff_exception_and_get_fatalness(boolean_t warning, const int max_footprint_mb);
+extern void memorystatus_on_ledger_footprint_exceeded(int warning, boolean_t is_fatal);
+#endif /* CONFIG_MEMORYSTATUS */
+
#endif /* MACH_BSD */
-#if TASK_SWAPPER
- new_task->swap_state = TASK_SW_IN;
- new_task->swap_flags = 0;
- new_task->swap_ast_waiting = 0;
- new_task->swap_stamp = sched_tick;
- new_task->swap_rss = 0;
- new_task->swap_nswap = 0;
-#endif /* TASK_SWAPPER */
+/* Forwards */
- queue_init(&new_task->semaphore_list);
- queue_init(&new_task->lock_set_list);
- new_task->semaphores_owned = 0;
- new_task->lock_sets_owned = 0;
+static void task_hold_locked(task_t task);
+static void task_wait_locked(task_t task, boolean_t until_not_runnable);
+static void task_release_locked(task_t task);
-#if MACH_HOST
- new_task->may_assign = TRUE;
- new_task->assign_active = FALSE;
-#endif /* MACH_HOST */
- eml_task_reference(new_task, parent_task);
+static void task_synchronizer_destroy_all(task_t task);
- ipc_task_init(new_task, parent_task);
+void
+task_backing_store_privileged(
+ task_t task)
+{
+ task_lock(task);
+ task->priv_flags |= VM_BACKING_STORE_PRIV;
+ task_unlock(task);
+ return;
+}
- new_task->total_user_time.seconds = 0;
- new_task->total_user_time.microseconds = 0;
- new_task->total_system_time.seconds = 0;
- new_task->total_system_time.microseconds = 0;
- task_prof_init(new_task);
+void
+task_set_64bit(
+ task_t task,
+ boolean_t is64bit)
+{
+#if defined(__i386__) || defined(__x86_64__) || defined(__arm64__)
+ thread_t thread;
+#endif /* defined(__i386__) || defined(__x86_64__) || defined(__arm64__) */
- if (parent_task != TASK_NULL) {
-#if MACH_HOST
- /*
- * Freeze the parent, so that parent_task->processor_set
- * cannot change.
- */
- task_freeze(parent_task);
-#endif /* MACH_HOST */
- pset = parent_task->processor_set;
- if (!pset->active)
- pset = &default_pset;
+ task_lock(task);
- new_task->sec_token = parent_task->sec_token;
+ if (is64bit) {
+ if (task_has_64BitAddr(task))
+ goto out;
+ task_set_64BitAddr(task);
+ } else {
+ if ( !task_has_64BitAddr(task))
+ goto out;
+ task_clear_64BitAddr(task);
+ }
+ /* FIXME: On x86, the thread save state flavor can diverge from the
+ * task's 64-bit feature flag due to the 32-bit/64-bit register save
+ * state dichotomy. Since we can be pre-empted in this interval,
+ * certain routines may observe the thread as being in an inconsistent
+ * state with respect to its task's 64-bitness.
+ */
- shared_region_mapping_ref(parent_task->system_shared_region);
- new_task->system_shared_region = parent_task->system_shared_region;
+#if defined(__i386__) || defined(__x86_64__) || defined(__arm64__)
+ queue_iterate(&task->threads, thread, thread_t, task_threads) {
+ thread_mtx_lock(thread);
+ machine_thread_switch_addrmode(thread);
+ thread_mtx_unlock(thread);
- new_task->wired_ledger_port = ledger_copy(
- convert_port_to_ledger(parent_task->wired_ledger_port));
- new_task->paged_ledger_port = ledger_copy(
- convert_port_to_ledger(parent_task->paged_ledger_port));
+ if (thread == current_thread()) {
+ uint64_t arg1, arg2;
+ int urgency;
+ spl_t spl = splsched();
+ /*
+ * This call tell that the current thread changed it's 32bitness.
+ * Other thread were no more on core when 32bitness was changed,
+ * but current_thread() is on core and the previous call to
+ * machine_thread_going_on_core() gave 32bitness which is now wrong.
+ *
+ * This is needed for bring-up, a different callback should be used
+ * in the future.
+ */
+ thread_lock(thread);
+ urgency = thread_get_urgency(thread, &arg1, &arg2);
+ machine_thread_going_on_core(thread, urgency, 0);
+ thread_unlock(thread);
+ splx(spl);
+ }
}
- else {
- pset = &default_pset;
+#endif /* defined(__i386__) || defined(__x86_64__) || defined(__arm64__) */
- new_task->sec_token = KERNEL_SECURITY_TOKEN;
- new_task->wired_ledger_port = ledger_copy(root_wired_ledger);
- new_task->paged_ledger_port = ledger_copy(root_paged_ledger);
- }
+out:
+ task_unlock(task);
+}
+
+
+void
+task_set_dyld_info(task_t task, mach_vm_address_t addr, mach_vm_size_t size)
+{
+ task_lock(task);
+ task->all_image_info_addr = addr;
+ task->all_image_info_size = size;
+ task_unlock(task);
+}
+
+void
+task_atm_reset(__unused task_t task) {
- if (kernel_task == TASK_NULL) {
- new_task->priority = MINPRI_KERNEL;
- new_task->max_priority = MAXPRI_KERNEL;
+#if CONFIG_ATM
+ if (task->atm_context != NULL) {
+ atm_task_descriptor_destroy(task->atm_context);
+ task->atm_context = NULL;
}
- else {
- new_task->priority = BASEPRI_DEFAULT;
- new_task->max_priority = MAXPRI_USER;
+#endif
+
+}
+
+void
+task_bank_reset(__unused task_t task) {
+
+#if CONFIG_BANK
+ if (task->bank_context != NULL) {
+ bank_task_destroy(task);
}
+#endif
- pset_lock(pset);
- pset_add_task(pset, new_task);
- pset_unlock(pset);
-#if MACH_HOST
- if (parent_task != TASK_NULL)
- task_unfreeze(parent_task);
-#endif /* MACH_HOST */
-
-#if FAST_TAS
- if (inherit_memory) {
- new_task->fast_tas_base = parent_task->fast_tas_base;
- new_task->fast_tas_end = parent_task->fast_tas_end;
- } else {
- new_task->fast_tas_base = (vm_offset_t)0;
- new_task->fast_tas_end = (vm_offset_t)0;
- }
-#endif /* FAST_TAS */
+}
- ipc_task_enable(new_task);
+/*
+ * NOTE: This should only be called when the P_LINTRANSIT
+ * flag is set (the proc_trans lock is held) on the
+ * proc associated with the task.
+ */
+void
+task_bank_init(__unused task_t task) {
-#if TASK_SWAPPER
- task_swapout_eligible(new_task);
-#endif /* TASK_SWAPPER */
+#if CONFIG_BANK
+ if (task->bank_context != NULL) {
+ panic("Task bank init called with non null bank context for task: %p and bank_context: %p", task, task->bank_context);
+ }
+ bank_task_initialize(task);
+#endif
-#if MACH_ASSERT
- if (watchacts & WA_TASK)
- printf("*** task_create_local(par=%x inh=%x) == 0x%x\n",
- parent_task, inherit_memory, new_task);
-#endif /* MACH_ASSERT */
+}
- *child_task = new_task;
- return(KERN_SUCCESS);
+void
+task_set_did_exec_flag(task_t task)
+{
+ task->t_procflags |= TPF_DID_EXEC;
+}
+
+void
+task_clear_exec_copy_flag(task_t task)
+{
+ task->t_procflags &= ~TPF_EXEC_COPY;
}
/*
- * task_deallocate
+ * This wait event is t_procflags instead of t_flags because t_flags is volatile
*
- * Drop a reference on a task
- * Task is locked.
+ * TODO: store the flags in the same place as the event
+ * rdar://problem/28501994
*/
+event_t
+task_get_return_wait_event(task_t task)
+{
+ return (event_t)&task->t_procflags;
+}
+
void
-task_deallocate(
- task_t task)
+task_clear_return_wait(task_t task)
{
- processor_set_t pset;
- int refs;
+ task_lock(task);
- if (task == TASK_NULL)
- return;
+ task->t_flags &= ~TF_LRETURNWAIT;
- task_lock(task);
- refs = --task->ref_count;
- task_unlock(task);
+ if (task->t_flags & TF_LRETURNWAITER) {
+ thread_wakeup(task_get_return_wait_event(task));
+ task->t_flags &= ~TF_LRETURNWAITER;
+ }
- if (refs > 0)
- return;
+ task_unlock(task);
+}
-#if TASK_SWAPPER
- /* task_terminate guarantees that this task is off the list */
- assert((task->swap_state & TASK_SW_ELIGIBLE) == 0);
-#endif /* TASK_SWAPPER */
+void
+task_wait_to_return(void)
+{
+ task_t task;
- eml_task_deallocate(task);
+ task = current_task();
+ task_lock(task);
- ipc_task_terminate(task);
+ if (task->t_flags & TF_LRETURNWAIT) {
+ do {
+ task->t_flags |= TF_LRETURNWAITER;
+ assert_wait(task_get_return_wait_event(task), THREAD_UNINT);
+ task_unlock(task);
-#if MACH_HOST
- task_freeze(task);
-#endif
+ thread_block(THREAD_CONTINUE_NULL);
- pset = task->processor_set;
- pset_lock(pset);
- pset_remove_task(pset,task);
- pset_unlock(pset);
- pset_deallocate(pset);
+ task_lock(task);
+ } while (task->t_flags & TF_LRETURNWAIT);
+ }
-#if MACH_HOST
- task_unfreeze(task);
-#endif
+ task_unlock(task);
- if (task->kernel_loaded)
- vm_map_remove(kernel_map, task->map->min_offset,
- task->map->max_offset, VM_MAP_NO_FLAGS);
- vm_map_deallocate(task->map);
- is_release(task->itk_space);
- task_prof_deallocate(task);
- zfree(task_zone, (vm_offset_t) task);
+ thread_bootstrap_return();
}
+boolean_t
+task_is_exec_copy(task_t task)
+{
+ return task_is_exec_copy_internal(task);
+}
-void
-task_reference(
- task_t task)
+boolean_t
+task_did_exec(task_t task)
{
- if (task != TASK_NULL) {
- task_lock(task);
- task->ref_count++;
- task_unlock(task);
- }
+ return task_did_exec_internal(task);
}
boolean_t
-task_reference_try(
- task_t task)
+task_is_active(task_t task)
{
- if (task != TASK_NULL) {
- if (task_lock_try(task)) {
- task->ref_count++;
- task_unlock(task);
- return TRUE;
- }
- }
- return FALSE;
+ return task->active;
}
-/*
- * task_terminate:
- *
- * Terminate the specified task. See comments on thread_terminate
- * (kern/thread.c) about problems with terminating the "current task."
- */
+#if TASK_REFERENCE_LEAK_DEBUG
+#include <kern/btlog.h>
-kern_return_t
-task_terminate(
- task_t task)
+static btlog_t *task_ref_btlog;
+#define TASK_REF_OP_INCR 0x1
+#define TASK_REF_OP_DECR 0x2
+
+#define TASK_REF_NUM_RECORDS 100000
+#define TASK_REF_BTDEPTH 7
+
+void
+task_reference_internal(task_t task)
{
- if (task == TASK_NULL)
- return(KERN_INVALID_ARGUMENT);
- if (task->bsd_info)
- return(KERN_FAILURE);
- return (task_terminate_internal(task));
+ void * bt[TASK_REF_BTDEPTH];
+ int numsaved = 0;
+
+ numsaved = OSBacktrace(bt, TASK_REF_BTDEPTH);
+
+ (void)hw_atomic_add(&(task)->ref_count, 1);
+ btlog_add_entry(task_ref_btlog, task, TASK_REF_OP_INCR,
+ bt, numsaved);
}
-kern_return_t
-task_terminate_internal(
- task_t task)
+uint32_t
+task_deallocate_internal(task_t task)
{
- thread_act_t thr_act, cur_thr_act;
- task_t cur_task;
- boolean_t interrupt_save;
+ void * bt[TASK_REF_BTDEPTH];
+ int numsaved = 0;
- assert(task != kernel_task);
+ numsaved = OSBacktrace(bt, TASK_REF_BTDEPTH);
- cur_thr_act = current_act();
- cur_task = cur_thr_act->task;
+ btlog_add_entry(task_ref_btlog, task, TASK_REF_OP_DECR,
+ bt, numsaved);
+ return hw_atomic_sub(&(task)->ref_count, 1);
+}
+
+#endif /* TASK_REFERENCE_LEAK_DEBUG */
+
+void
+task_init(void)
+{
+
+ lck_grp_attr_setdefault(&task_lck_grp_attr);
+ lck_grp_init(&task_lck_grp, "task", &task_lck_grp_attr);
+ lck_attr_setdefault(&task_lck_attr);
+ lck_mtx_init(&tasks_threads_lock, &task_lck_grp, &task_lck_attr);
+ lck_mtx_init(&tasks_corpse_lock, &task_lck_grp, &task_lck_attr);
+
+ task_zone = zinit(
+ sizeof(struct task),
+ task_max * sizeof(struct task),
+ TASK_CHUNK * sizeof(struct task),
+ "tasks");
+
+ zone_change(task_zone, Z_NOENCRYPT, TRUE);
-#if TASK_SWAPPER
- /*
- * If task is not resident (swapped out, or being swapped
- * out), we want to bring it back in (this can block).
- * NOTE: The only way that this can happen in the current
- * system is if the task is swapped while it has a thread
- * in exit(), and the thread does not hit a clean point
- * to swap itself before getting here.
- * Terminating other tasks is another way to this code, but
- * it is not yet fully supported.
- * The task_swapin is unconditional. It used to be done
- * only if the task is not resident. Swapping in a
- * resident task will prevent it from being swapped out
- * while it terminates.
- */
- task_swapin(task, TRUE); /* TRUE means make it unswappable */
-#endif /* TASK_SWAPPER */
/*
- * Get the task locked and make sure that we are not racing
- * with someone else trying to terminate us.
+ * Configure per-task memory limit.
+ * The boot-arg is interpreted as Megabytes,
+ * and takes precedence over the device tree.
+ * Setting the boot-arg to 0 disables task limits.
*/
- if (task == cur_task) {
- task_lock(task);
- } else if (task < cur_task) {
- task_lock(task);
- task_lock(cur_task);
- } else {
- task_lock(cur_task);
- task_lock(task);
- }
-
- if (!task->active || !cur_thr_act->active) {
+ if (!PE_parse_boot_argn("max_task_pmem", &max_task_footprint_mb,
+ sizeof (max_task_footprint_mb))) {
/*
- * Task or current act is already being terminated.
- * Just return an error. If we are dying, this will
- * just get us to our AST special handler and that
- * will get us to finalize the termination of ourselves.
+ * No limit was found in boot-args, so go look in the device tree.
*/
- task_unlock(task);
- if (cur_task != task)
- task_unlock(cur_task);
- return(KERN_FAILURE);
+ if (!PE_get_default("kern.max_task_pmem", &max_task_footprint_mb,
+ sizeof(max_task_footprint_mb))) {
+ /*
+ * No limit was found in device tree.
+ */
+ max_task_footprint_mb = 0;
+ }
}
- if (cur_task != task)
- task_unlock(cur_task);
- /*
- * Make sure the current thread does not get aborted out of
- * the waits inside these operations.
- */
- interrupt_save = thread_interrupt_level(THREAD_UNINT);
+ if (max_task_footprint_mb != 0) {
+#if CONFIG_MEMORYSTATUS
+ if (max_task_footprint_mb < 50) {
+ printf("Warning: max_task_pmem %d below minimum.\n",
+ max_task_footprint_mb);
+ max_task_footprint_mb = 50;
+ }
+ printf("Limiting task physical memory footprint to %d MB\n",
+ max_task_footprint_mb);
- /*
- * Indicate that we want all the threads to stop executing
- * at user space by holding the task (we would have held
- * each thread independently in thread_terminate_internal -
- * but this way we may be more likely to already find it
- * held there). Mark the task inactive, and prevent
- * further task operations via the task port.
- */
- task_hold_locked(task);
- task->active = FALSE;
- ipc_task_disable(task);
+ max_task_footprint = (ledger_amount_t)max_task_footprint_mb * 1024 * 1024; // Convert MB to bytes
- /*
- * Terminate each activation in the task.
- *
- * Each terminated activation will run it's special handler
- * when its current kernel context is unwound. That will
- * clean up most of the thread resources. Then it will be
- * handed over to the reaper, who will finally remove the
- * thread from the task list and free the structures.
- */
- queue_iterate(&task->thr_acts, thr_act, thread_act_t, thr_acts) {
- thread_terminate_internal(thr_act);
+ /*
+ * Configure the per-task memory limit warning level.
+ * This is computed as a percentage.
+ */
+ max_task_footprint_warning_level = 0;
+
+ if (max_mem < 0x40000000) {
+ /*
+ * On devices with < 1GB of memory:
+ * -- set warnings to 50MB below the per-task limit.
+ */
+ if (max_task_footprint_mb > 50) {
+ max_task_footprint_warning_level = ((max_task_footprint_mb - 50) * 100) / max_task_footprint_mb;
+ }
+ } else {
+ /*
+ * On devices with >= 1GB of memory:
+ * -- set warnings to 100MB below the per-task limit.
+ */
+ if (max_task_footprint_mb > 100) {
+ max_task_footprint_warning_level = ((max_task_footprint_mb - 100) * 100) / max_task_footprint_mb;
+ }
+ }
+
+ /*
+ * Never allow warning level to land below the default.
+ */
+ if (max_task_footprint_warning_level < PHYS_FOOTPRINT_WARNING_LEVEL) {
+ max_task_footprint_warning_level = PHYS_FOOTPRINT_WARNING_LEVEL;
+ }
+
+ printf("Limiting task physical memory warning to %d%%\n", max_task_footprint_warning_level);
+
+#else
+ printf("Warning: max_task_pmem specified, but jetsam not configured; ignoring.\n");
+#endif /* CONFIG_MEMORYSTATUS */
}
- /*
- * Clean up any virtual machine state/resources associated
- * with the current activation because it may hold wiring
- * and other references on resources we will be trying to
- * release below.
- */
- if (cur_thr_act->task == task)
- act_virtual_machine_destroy(cur_thr_act);
+#if MACH_ASSERT
+ PE_parse_boot_argn("pmap_ledgers_panic", &pmap_ledgers_panic,
+ sizeof (pmap_ledgers_panic));
+#endif /* MACH_ASSERT */
- task_unlock(task);
+#if CONFIG_COREDUMP
+ if (!PE_parse_boot_argn("hwm_user_cores", &hwm_user_cores,
+ sizeof (hwm_user_cores))) {
+ hwm_user_cores = 0;
+ }
+#endif
- /*
- * Destroy all synchronizers owned by the task.
- */
- task_synchronizer_destroy_all(task);
+ proc_init_cpumon_params();
- /*
- * Destroy the IPC space, leaving just a reference for it.
- */
- if (!task->kernel_loaded)
- ipc_space_destroy(task->itk_space);
+ if (!PE_parse_boot_argn("task_wakeups_monitor_rate", &task_wakeups_monitor_rate, sizeof (task_wakeups_monitor_rate))) {
+ task_wakeups_monitor_rate = TASK_WAKEUPS_MONITOR_DEFAULT_LIMIT;
+ }
+
+ if (!PE_parse_boot_argn("task_wakeups_monitor_interval", &task_wakeups_monitor_interval, sizeof (task_wakeups_monitor_interval))) {
+ task_wakeups_monitor_interval = TASK_WAKEUPS_MONITOR_DEFAULT_INTERVAL;
+ }
+
+ if (!PE_parse_boot_argn("task_wakeups_monitor_ustackshots_trigger_pct", &task_wakeups_monitor_ustackshots_trigger_pct,
+ sizeof (task_wakeups_monitor_ustackshots_trigger_pct))) {
+ task_wakeups_monitor_ustackshots_trigger_pct = TASK_WAKEUPS_MONITOR_DEFAULT_USTACKSHOTS_TRIGGER;
+ }
+
+ if (!PE_parse_boot_argn("disable_exc_resource", &disable_exc_resource,
+ sizeof (disable_exc_resource))) {
+ disable_exc_resource = 0;
+ }
+
+ if (!PE_parse_boot_argn("task_iomon_limit_mb", &task_iomon_limit_mb, sizeof (task_iomon_limit_mb))) {
+ task_iomon_limit_mb = IOMON_DEFAULT_LIMIT;
+ }
+
+ if (!PE_parse_boot_argn("task_iomon_interval_secs", &task_iomon_interval_secs, sizeof (task_iomon_interval_secs))) {
+ task_iomon_interval_secs = IOMON_DEFAULT_INTERVAL;
+ }
+
+ if (!PE_parse_boot_argn("io_telemetry_limit", &io_telemetry_limit, sizeof (io_telemetry_limit))) {
+ io_telemetry_limit = IO_TELEMETRY_DEFAULT_LIMIT;
+ }
+
+/*
+ * If we have coalitions, coalition_init() will call init_task_ledgers() as it
+ * sets up the ledgers for the default coalition. If we don't have coalitions,
+ * then we have to call it now.
+ */
+#if CONFIG_COALITIONS
+ assert(task_ledger_template);
+#else /* CONFIG_COALITIONS */
+ init_task_ledgers();
+#endif /* CONFIG_COALITIONS */
+
+#if TASK_REFERENCE_LEAK_DEBUG
+ task_ref_btlog = btlog_create(TASK_REF_NUM_RECORDS, TASK_REF_BTDEPTH, TRUE /* caller_will_remove_entries_for_element? */);
+ assert(task_ref_btlog);
+#endif
/*
- * If the current thread is a member of the task
- * being terminated, then the last reference to
- * the task will not be dropped until the thread
- * is finally reaped. To avoid incurring the
- * expense of removing the address space regions
- * at reap time, we do it explictly here.
+ * Create the kernel task as the first task.
*/
- (void) vm_map_remove(task->map,
- task->map->min_offset,
- task->map->max_offset, VM_MAP_NO_FLAGS);
+#ifdef __LP64__
+ if (task_create_internal(TASK_NULL, NULL, FALSE, TRUE, TF_NONE, TPF_NONE, &kernel_task) != KERN_SUCCESS)
+#else
+ if (task_create_internal(TASK_NULL, NULL, FALSE, FALSE, TF_NONE, TPF_NONE, &kernel_task) != KERN_SUCCESS)
+#endif
+ panic("task_init\n");
- shared_region_mapping_dealloc(task->system_shared_region);
+ vm_map_deallocate(kernel_task->map);
+ kernel_task->map = kernel_map;
+ lck_spin_init(&dead_task_statistics_lock, &task_lck_grp, &task_lck_attr);
+}
+
+/*
+ * Create a task running in the kernel address space. It may
+ * have its own map of size mem_size and may have ipc privileges.
+ */
+kern_return_t
+kernel_task_create(
+ __unused task_t parent_task,
+ __unused vm_offset_t map_base,
+ __unused vm_size_t map_size,
+ __unused task_t *child_task)
+{
+ return (KERN_INVALID_ARGUMENT);
+}
- if(task->dynamic_working_set)
- tws_hash_destroy((tws_hash_t)task->dynamic_working_set);
+kern_return_t
+task_create(
+ task_t parent_task,
+ __unused ledger_port_array_t ledger_ports,
+ __unused mach_msg_type_number_t num_ledger_ports,
+ __unused boolean_t inherit_memory,
+ __unused task_t *child_task) /* OUT */
+{
+ if (parent_task == TASK_NULL)
+ return(KERN_INVALID_ARGUMENT);
/*
- * We no longer need to guard against being aborted, so restore
- * the previous interruptible state.
+ * No longer supported: too many calls assume that a task has a valid
+ * process attached.
*/
- thread_interrupt_level(interrupt_save);
+ return(KERN_FAILURE);
+}
+
+kern_return_t
+host_security_create_task_token(
+ host_security_t host_security,
+ task_t parent_task,
+ __unused security_token_t sec_token,
+ __unused audit_token_t audit_token,
+ __unused host_priv_t host_priv,
+ __unused ledger_port_array_t ledger_ports,
+ __unused mach_msg_type_number_t num_ledger_ports,
+ __unused boolean_t inherit_memory,
+ __unused task_t *child_task) /* OUT */
+{
+ if (parent_task == TASK_NULL)
+ return(KERN_INVALID_ARGUMENT);
+
+ if (host_security == HOST_NULL)
+ return(KERN_INVALID_SECURITY);
/*
- * Get rid of the task active reference on itself.
+ * No longer supported.
*/
- task_deallocate(task);
-
- return(KERN_SUCCESS);
+ return(KERN_FAILURE);
}
/*
- * task_halt - Shut the current task down (except for the current thread) in
- * preparation for dramatic changes to the task (probably exec).
- * We hold the task, terminate all other threads in the task and
- * wait for them to terminate, clean up the portspace, and when
- * all done, let the current thread go.
+ * Task ledgers
+ * ------------
+ *
+ * phys_footprint
+ * Physical footprint: This is the sum of:
+ * + (internal - alternate_accounting)
+ * + (internal_compressed - alternate_accounting_compressed)
+ * + iokit_mapped
+ * + purgeable_nonvolatile
+ * + purgeable_nonvolatile_compressed
+ * + page_table
+ *
+ * internal
+ * The task's anonymous memory, which on iOS is always resident.
+ *
+ * internal_compressed
+ * Amount of this task's internal memory which is held by the compressor.
+ * Such memory is no longer actually resident for the task [i.e., resident in its pmap],
+ * and could be either decompressed back into memory, or paged out to storage, depending
+ * on our implementation.
+ *
+ * iokit_mapped
+ * IOKit mappings: The total size of all IOKit mappings in this task, regardless of
+ clean/dirty or internal/external state].
+ *
+ * alternate_accounting
+ * The number of internal dirty pages which are part of IOKit mappings. By definition, these pages
+ * are counted in both internal *and* iokit_mapped, so we must subtract them from the total to avoid
+ * double counting.
*/
+void
+init_task_ledgers(void)
+{
+ ledger_template_t t;
+
+ assert(task_ledger_template == NULL);
+ assert(kernel_task == TASK_NULL);
+
+#if MACH_ASSERT
+ PE_parse_boot_argn("pmap_ledgers_panic", &pmap_ledgers_panic,
+ sizeof (pmap_ledgers_panic));
+#endif /* MACH_ASSERT */
+
+ if ((t = ledger_template_create("Per-task ledger")) == NULL)
+ panic("couldn't create task ledger template");
+
+ task_ledgers.cpu_time = ledger_entry_add(t, "cpu_time", "sched", "ns");
+ task_ledgers.tkm_private = ledger_entry_add(t, "tkm_private",
+ "physmem", "bytes");
+ task_ledgers.tkm_shared = ledger_entry_add(t, "tkm_shared", "physmem",
+ "bytes");
+ task_ledgers.phys_mem = ledger_entry_add(t, "phys_mem", "physmem",
+ "bytes");
+ task_ledgers.wired_mem = ledger_entry_add(t, "wired_mem", "physmem",
+ "bytes");
+ task_ledgers.internal = ledger_entry_add(t, "internal", "physmem",
+ "bytes");
+ task_ledgers.iokit_mapped = ledger_entry_add(t, "iokit_mapped", "mappings",
+ "bytes");
+ task_ledgers.alternate_accounting = ledger_entry_add(t, "alternate_accounting", "physmem",
+ "bytes");
+ task_ledgers.alternate_accounting_compressed = ledger_entry_add(t, "alternate_accounting_compressed", "physmem",
+ "bytes");
+ task_ledgers.page_table = ledger_entry_add(t, "page_table", "physmem",
+ "bytes");
+ task_ledgers.phys_footprint = ledger_entry_add(t, "phys_footprint", "physmem",
+ "bytes");
+ task_ledgers.internal_compressed = ledger_entry_add(t, "internal_compressed", "physmem",
+ "bytes");
+ task_ledgers.purgeable_volatile = ledger_entry_add(t, "purgeable_volatile", "physmem", "bytes");
+ task_ledgers.purgeable_nonvolatile = ledger_entry_add(t, "purgeable_nonvolatile", "physmem", "bytes");
+ task_ledgers.purgeable_volatile_compressed = ledger_entry_add(t, "purgeable_volatile_compress", "physmem", "bytes");
+ task_ledgers.purgeable_nonvolatile_compressed = ledger_entry_add(t, "purgeable_nonvolatile_compress", "physmem", "bytes");
+ task_ledgers.platform_idle_wakeups = ledger_entry_add(t, "platform_idle_wakeups", "power",
+ "count");
+ task_ledgers.interrupt_wakeups = ledger_entry_add(t, "interrupt_wakeups", "power",
+ "count");
+
+#if CONFIG_SCHED_SFI
+ sfi_class_id_t class_id, ledger_alias;
+ for (class_id = SFI_CLASS_UNSPECIFIED; class_id < MAX_SFI_CLASS_ID; class_id++) {
+ task_ledgers.sfi_wait_times[class_id] = -1;
+ }
+
+ /* don't account for UNSPECIFIED */
+ for (class_id = SFI_CLASS_UNSPECIFIED + 1; class_id < MAX_SFI_CLASS_ID; class_id++) {
+ ledger_alias = sfi_get_ledger_alias_for_class(class_id);
+ if (ledger_alias != SFI_CLASS_UNSPECIFIED) {
+ /* Check to see if alias has been registered yet */
+ if (task_ledgers.sfi_wait_times[ledger_alias] != -1) {
+ task_ledgers.sfi_wait_times[class_id] = task_ledgers.sfi_wait_times[ledger_alias];
+ } else {
+ /* Otherwise, initialize it first */
+ task_ledgers.sfi_wait_times[class_id] = task_ledgers.sfi_wait_times[ledger_alias] = sfi_ledger_entry_add(t, ledger_alias);
+ }
+ } else {
+ task_ledgers.sfi_wait_times[class_id] = sfi_ledger_entry_add(t, class_id);
+ }
+
+ if (task_ledgers.sfi_wait_times[class_id] < 0) {
+ panic("couldn't create entries for task ledger template for SFI class 0x%x", class_id);
+ }
+ }
+
+ assert(task_ledgers.sfi_wait_times[MAX_SFI_CLASS_ID -1] != -1);
+#endif /* CONFIG_SCHED_SFI */
+
+#ifdef CONFIG_BANK
+ task_ledgers.cpu_time_billed_to_me = ledger_entry_add(t, "cpu_time_billed_to_me", "sched", "ns");
+ task_ledgers.cpu_time_billed_to_others = ledger_entry_add(t, "cpu_time_billed_to_others", "sched", "ns");
+#endif
+ task_ledgers.physical_writes = ledger_entry_add(t, "physical_writes", "res", "bytes");
+ task_ledgers.logical_writes = ledger_entry_add(t, "logical_writes", "res", "bytes");
+
+ if ((task_ledgers.cpu_time < 0) ||
+ (task_ledgers.tkm_private < 0) ||
+ (task_ledgers.tkm_shared < 0) ||
+ (task_ledgers.phys_mem < 0) ||
+ (task_ledgers.wired_mem < 0) ||
+ (task_ledgers.internal < 0) ||
+ (task_ledgers.iokit_mapped < 0) ||
+ (task_ledgers.alternate_accounting < 0) ||
+ (task_ledgers.alternate_accounting_compressed < 0) ||
+ (task_ledgers.page_table < 0) ||
+ (task_ledgers.phys_footprint < 0) ||
+ (task_ledgers.internal_compressed < 0) ||
+ (task_ledgers.purgeable_volatile < 0) ||
+ (task_ledgers.purgeable_nonvolatile < 0) ||
+ (task_ledgers.purgeable_volatile_compressed < 0) ||
+ (task_ledgers.purgeable_nonvolatile_compressed < 0) ||
+ (task_ledgers.platform_idle_wakeups < 0) ||
+ (task_ledgers.interrupt_wakeups < 0) ||
+#ifdef CONFIG_BANK
+ (task_ledgers.cpu_time_billed_to_me < 0) || (task_ledgers.cpu_time_billed_to_others < 0) ||
+#endif
+ (task_ledgers.physical_writes < 0) ||
+ (task_ledgers.logical_writes < 0)
+ ) {
+ panic("couldn't create entries for task ledger template");
+ }
+
+ ledger_track_credit_only(t, task_ledgers.phys_footprint);
+ ledger_track_credit_only(t, task_ledgers.internal);
+ ledger_track_credit_only(t, task_ledgers.internal_compressed);
+ ledger_track_credit_only(t, task_ledgers.iokit_mapped);
+ ledger_track_credit_only(t, task_ledgers.alternate_accounting);
+ ledger_track_credit_only(t, task_ledgers.alternate_accounting_compressed);
+ ledger_track_credit_only(t, task_ledgers.purgeable_volatile);
+ ledger_track_credit_only(t, task_ledgers.purgeable_nonvolatile);
+ ledger_track_credit_only(t, task_ledgers.purgeable_volatile_compressed);
+ ledger_track_credit_only(t, task_ledgers.purgeable_nonvolatile_compressed);
+
+ ledger_track_maximum(t, task_ledgers.phys_footprint, 60);
+#if MACH_ASSERT
+ if (pmap_ledgers_panic) {
+ ledger_panic_on_negative(t, task_ledgers.phys_footprint);
+ ledger_panic_on_negative(t, task_ledgers.page_table);
+ ledger_panic_on_negative(t, task_ledgers.internal);
+ ledger_panic_on_negative(t, task_ledgers.internal_compressed);
+ ledger_panic_on_negative(t, task_ledgers.iokit_mapped);
+ ledger_panic_on_negative(t, task_ledgers.alternate_accounting);
+ ledger_panic_on_negative(t, task_ledgers.alternate_accounting_compressed);
+ ledger_panic_on_negative(t, task_ledgers.purgeable_volatile);
+ ledger_panic_on_negative(t, task_ledgers.purgeable_nonvolatile);
+ ledger_panic_on_negative(t, task_ledgers.purgeable_volatile_compressed);
+ ledger_panic_on_negative(t, task_ledgers.purgeable_nonvolatile_compressed);
+ }
+#endif /* MACH_ASSERT */
+
+#if CONFIG_MEMORYSTATUS
+ ledger_set_callback(t, task_ledgers.phys_footprint, task_footprint_exceeded, NULL, NULL);
+#endif /* CONFIG_MEMORYSTATUS */
+
+ ledger_set_callback(t, task_ledgers.interrupt_wakeups,
+ task_wakeups_rate_exceeded, NULL, NULL);
+ ledger_set_callback(t, task_ledgers.physical_writes, task_io_rate_exceeded, (void *)FLAVOR_IO_PHYSICAL_WRITES, NULL);
+ ledger_set_callback(t, task_ledgers.logical_writes, task_io_rate_exceeded, (void *)FLAVOR_IO_LOGICAL_WRITES, NULL);
+ task_ledger_template = t;
+}
+
kern_return_t
-task_halt(
- task_t task)
+task_create_internal(
+ task_t parent_task,
+ coalition_t *parent_coalitions __unused,
+ boolean_t inherit_memory,
+ boolean_t is_64bit,
+ uint32_t t_flags,
+ uint32_t t_procflags,
+ task_t *child_task) /* OUT */
{
- thread_act_t thr_act, cur_thr_act;
- task_t cur_task;
+ task_t new_task;
+ vm_shared_region_t shared_region;
+ ledger_t ledger = NULL;
- assert(task != kernel_task);
+ new_task = (task_t) zalloc(task_zone);
+
+ if (new_task == TASK_NULL)
+ return(KERN_RESOURCE_SHORTAGE);
+
+ /* one ref for just being alive; one for our caller */
+ new_task->ref_count = 2;
+
+ /* allocate with active entries */
+ assert(task_ledger_template != NULL);
+ if ((ledger = ledger_instantiate(task_ledger_template,
+ LEDGER_CREATE_ACTIVE_ENTRIES)) == NULL) {
+ zfree(task_zone, new_task);
+ return(KERN_RESOURCE_SHORTAGE);
+ }
+
+ new_task->ledger = ledger;
+
+#if defined(CONFIG_SCHED_MULTIQ)
+ new_task->sched_group = sched_group_create();
+#endif
+
+ /* if inherit_memory is true, parent_task MUST not be NULL */
+ if (!(t_flags & TF_CORPSE_FORK) && inherit_memory)
+ new_task->map = vm_map_fork(ledger, parent_task->map, 0);
+ else
+ new_task->map = vm_map_create(pmap_create(ledger, 0, is_64bit),
+ (vm_map_offset_t)(VM_MIN_ADDRESS),
+ (vm_map_offset_t)(VM_MAX_ADDRESS), TRUE);
+
+ /* Inherit memlock limit from parent */
+ if (parent_task)
+ vm_map_set_user_wire_limit(new_task->map, (vm_size_t)parent_task->map->user_wire_limit);
+
+ lck_mtx_init(&new_task->lock, &task_lck_grp, &task_lck_attr);
+ queue_init(&new_task->threads);
+ new_task->suspend_count = 0;
+ new_task->thread_count = 0;
+ new_task->active_thread_count = 0;
+ new_task->user_stop_count = 0;
+ new_task->legacy_stop_count = 0;
+ new_task->active = TRUE;
+ new_task->halting = FALSE;
+ new_task->user_data = NULL;
+ new_task->priv_flags = 0;
+ new_task->t_flags = t_flags;
+ new_task->t_procflags = t_procflags;
+ new_task->importance = 0;
+ new_task->corpse_info_kernel = NULL;
+ new_task->exec_token = 0;
+
+#if CONFIG_ATM
+ new_task->atm_context = NULL;
+#endif
+#if CONFIG_BANK
+ new_task->bank_context = NULL;
+#endif
+
+#ifdef MACH_BSD
+ new_task->bsd_info = NULL;
+ new_task->corpse_info = NULL;
+#endif /* MACH_BSD */
+
+#if CONFIG_MACF
+ new_task->crash_label = NULL;
+#endif
+
+#if CONFIG_MEMORYSTATUS
+ if (max_task_footprint != 0) {
+ ledger_set_limit(ledger, task_ledgers.phys_footprint, max_task_footprint, PHYS_FOOTPRINT_WARNING_LEVEL);
+ }
+#endif /* CONFIG_MEMORYSTATUS */
+
+ if (task_wakeups_monitor_rate != 0) {
+ uint32_t flags = WAKEMON_ENABLE | WAKEMON_SET_DEFAULTS;
+ int32_t rate; // Ignored because of WAKEMON_SET_DEFAULTS
+ task_wakeups_monitor_ctl(new_task, &flags, &rate);
+ }
+
+#if CONFIG_IO_ACCOUNTING
+ uint32_t flags = IOMON_ENABLE;
+ task_io_monitor_ctl(new_task, &flags);
+#endif /* CONFIG_IO_ACCOUNTING */
+
+#if defined(__i386__) || defined(__x86_64__)
+ new_task->i386_ldt = 0;
+#endif
+
+ new_task->task_debug = NULL;
+
+#if DEVELOPMENT || DEBUG
+ new_task->task_unnested = FALSE;
+ new_task->task_disconnected_count = 0;
+#endif
+ queue_init(&new_task->semaphore_list);
+ new_task->semaphores_owned = 0;
+
+ ipc_task_init(new_task, parent_task);
+
+ new_task->vtimers = 0;
+
+ new_task->shared_region = NULL;
+
+ new_task->affinity_space = NULL;
+
+ new_task->pidsuspended = FALSE;
+ new_task->frozen = FALSE;
+ new_task->changing_freeze_state = FALSE;
+ new_task->rusage_cpu_flags = 0;
+ new_task->rusage_cpu_percentage = 0;
+ new_task->rusage_cpu_interval = 0;
+ new_task->rusage_cpu_deadline = 0;
+ new_task->rusage_cpu_callt = NULL;
+#if MACH_ASSERT
+ new_task->suspends_outstanding = 0;
+#endif
+
+#if HYPERVISOR
+ new_task->hv_task_target = NULL;
+#endif /* HYPERVISOR */
+
+
+ new_task->mem_notify_reserved = 0;
+#if IMPORTANCE_INHERITANCE
+ new_task->task_imp_base = NULL;
+#endif /* IMPORTANCE_INHERITANCE */
+
+#if defined(__x86_64__)
+ new_task->uexc_range_start = new_task->uexc_range_size = new_task->uexc_handler = 0;
+#endif
+
+ new_task->requested_policy = default_task_requested_policy;
+ new_task->effective_policy = default_task_effective_policy;
+
+ if (parent_task != TASK_NULL) {
+ new_task->sec_token = parent_task->sec_token;
+ new_task->audit_token = parent_task->audit_token;
+
+ /* inherit the parent's shared region */
+ shared_region = vm_shared_region_get(parent_task);
+ vm_shared_region_set(new_task, shared_region);
+
+ if(task_has_64BitAddr(parent_task))
+ task_set_64BitAddr(new_task);
+ new_task->all_image_info_addr = parent_task->all_image_info_addr;
+ new_task->all_image_info_size = parent_task->all_image_info_size;
+
+#if defined(__i386__) || defined(__x86_64__)
+ if (inherit_memory && parent_task->i386_ldt)
+ new_task->i386_ldt = user_ldt_copy(parent_task->i386_ldt);
+#endif
+ if (inherit_memory && parent_task->affinity_space)
+ task_affinity_create(parent_task, new_task);
+
+ new_task->pset_hint = parent_task->pset_hint = task_choose_pset(parent_task);
+
+#if IMPORTANCE_INHERITANCE
+ ipc_importance_task_t new_task_imp = IIT_NULL;
+ boolean_t inherit_receive = TRUE;
+
+ if (task_is_marked_importance_donor(parent_task)) {
+ new_task_imp = ipc_importance_for_task(new_task, FALSE);
+ assert(IIT_NULL != new_task_imp);
+ ipc_importance_task_mark_donor(new_task_imp, TRUE);
+ }
+
+ if (inherit_receive) {
+ if (task_is_marked_importance_receiver(parent_task)) {
+ if (IIT_NULL == new_task_imp)
+ new_task_imp = ipc_importance_for_task(new_task, FALSE);
+ assert(IIT_NULL != new_task_imp);
+ ipc_importance_task_mark_receiver(new_task_imp, TRUE);
+ }
+ if (task_is_marked_importance_denap_receiver(parent_task)) {
+ if (IIT_NULL == new_task_imp)
+ new_task_imp = ipc_importance_for_task(new_task, FALSE);
+ assert(IIT_NULL != new_task_imp);
+ ipc_importance_task_mark_denap_receiver(new_task_imp, TRUE);
+ }
+ }
+
+ if (IIT_NULL != new_task_imp) {
+ assert(new_task->task_imp_base == new_task_imp);
+ ipc_importance_task_release(new_task_imp);
+ }
+#endif /* IMPORTANCE_INHERITANCE */
+
+ new_task->priority = BASEPRI_DEFAULT;
+ new_task->max_priority = MAXPRI_USER;
+
+ task_policy_create(new_task, parent_task);
+ } else {
+ new_task->sec_token = KERNEL_SECURITY_TOKEN;
+ new_task->audit_token = KERNEL_AUDIT_TOKEN;
+#ifdef __LP64__
+ if(is_64bit)
+ task_set_64BitAddr(new_task);
+#endif
+ new_task->all_image_info_addr = (mach_vm_address_t)0;
+ new_task->all_image_info_size = (mach_vm_size_t)0;
+
+ new_task->pset_hint = PROCESSOR_SET_NULL;
+
+ if (kernel_task == TASK_NULL) {
+ new_task->priority = BASEPRI_KERNEL;
+ new_task->max_priority = MAXPRI_KERNEL;
+ } else {
+ new_task->priority = BASEPRI_DEFAULT;
+ new_task->max_priority = MAXPRI_USER;
+ }
+ }
+
+ bzero(new_task->coalition, sizeof(new_task->coalition));
+ for (int i = 0; i < COALITION_NUM_TYPES; i++)
+ queue_chain_init(new_task->task_coalition[i]);
+
+ /* Allocate I/O Statistics */
+ new_task->task_io_stats = (io_stat_info_t)kalloc(sizeof(struct io_stat_info));
+ assert(new_task->task_io_stats != NULL);
+ bzero(new_task->task_io_stats, sizeof(struct io_stat_info));
+
+ bzero(&(new_task->cpu_time_qos_stats), sizeof(struct _cpu_time_qos_stats));
+
+ bzero(&new_task->extmod_statistics, sizeof(new_task->extmod_statistics));
+
+ /* Copy resource acc. info from Parent for Corpe Forked task. */
+ if (parent_task != NULL && (t_flags & TF_CORPSE_FORK)) {
+ task_rollup_accounting_info(new_task, parent_task);
+ } else {
+ /* Initialize to zero for standard fork/spawn case */
+ new_task->total_user_time = 0;
+ new_task->total_system_time = 0;
+ new_task->faults = 0;
+ new_task->pageins = 0;
+ new_task->cow_faults = 0;
+ new_task->messages_sent = 0;
+ new_task->messages_received = 0;
+ new_task->syscalls_mach = 0;
+ new_task->syscalls_unix = 0;
+ new_task->c_switch = 0;
+ new_task->p_switch = 0;
+ new_task->ps_switch = 0;
+ new_task->low_mem_notified_warn = 0;
+ new_task->low_mem_notified_critical = 0;
+ new_task->purged_memory_warn = 0;
+ new_task->purged_memory_critical = 0;
+ new_task->low_mem_privileged_listener = 0;
+ new_task->task_timer_wakeups_bin_1 = 0;
+ new_task->task_timer_wakeups_bin_2 = 0;
+ new_task->task_gpu_ns = 0;
+ new_task->task_immediate_writes = 0;
+ new_task->task_deferred_writes = 0;
+ new_task->task_invalidated_writes = 0;
+ new_task->task_metadata_writes = 0;
+ new_task->task_energy = 0;
+ }
+
+
+#if CONFIG_COALITIONS
+ if (!(t_flags & TF_CORPSE_FORK)) {
+ /* TODO: there is no graceful failure path here... */
+ if (parent_coalitions && parent_coalitions[COALITION_TYPE_RESOURCE]) {
+ coalitions_adopt_task(parent_coalitions, new_task);
+ } else if (parent_task && parent_task->coalition[COALITION_TYPE_RESOURCE]) {
+ /*
+ * all tasks at least have a resource coalition, so
+ * if the parent has one then inherit all coalitions
+ * the parent is a part of
+ */
+ coalitions_adopt_task(parent_task->coalition, new_task);
+ } else {
+ /* TODO: assert that new_task will be PID 1 (launchd) */
+ coalitions_adopt_init_task(new_task);
+ }
+ } else {
+ coalitions_adopt_corpse_task(new_task);
+ }
+
+ if (new_task->coalition[COALITION_TYPE_RESOURCE] == COALITION_NULL) {
+ panic("created task is not a member of a resource coalition");
+ }
+#endif /* CONFIG_COALITIONS */
+
+ new_task->dispatchqueue_offset = 0;
+ if (parent_task != NULL) {
+ new_task->dispatchqueue_offset = parent_task->dispatchqueue_offset;
+ }
+
+ if (vm_backing_store_low && parent_task != NULL)
+ new_task->priv_flags |= (parent_task->priv_flags&VM_BACKING_STORE_PRIV);
+
+ new_task->task_volatile_objects = 0;
+ new_task->task_nonvolatile_objects = 0;
+ new_task->task_purgeable_disowning = FALSE;
+ new_task->task_purgeable_disowned = FALSE;
+
+#if CONFIG_SECLUDED_MEMORY
+ new_task->task_can_use_secluded_mem = FALSE;
+ new_task->task_could_use_secluded_mem = FALSE;
+ new_task->task_could_also_use_secluded_mem = FALSE;
+#endif /* CONFIG_SECLUDED_MEMORY */
+
+ queue_init(&new_task->io_user_clients);
+
+ ipc_task_enable(new_task);
+
+ lck_mtx_lock(&tasks_threads_lock);
+ queue_enter(&tasks, new_task, task_t, tasks);
+ tasks_count++;
+ if (tasks_suspend_state) {
+ task_suspend_internal(new_task);
+ }
+ lck_mtx_unlock(&tasks_threads_lock);
- cur_thr_act = current_act();
- cur_task = cur_thr_act->task;
+ *child_task = new_task;
+ return(KERN_SUCCESS);
+}
+
+/*
+ * task_rollup_accounting_info
+ *
+ * Roll up accounting stats. Used to rollup stats
+ * for exec copy task and corpse fork.
+ */
+void
+task_rollup_accounting_info(task_t to_task, task_t from_task)
+{
+ assert(from_task != to_task);
+
+ to_task->total_user_time = from_task->total_user_time;
+ to_task->total_system_time = from_task->total_system_time;
+ to_task->faults = from_task->faults;
+ to_task->pageins = from_task->pageins;
+ to_task->cow_faults = from_task->cow_faults;
+ to_task->messages_sent = from_task->messages_sent;
+ to_task->messages_received = from_task->messages_received;
+ to_task->syscalls_mach = from_task->syscalls_mach;
+ to_task->syscalls_unix = from_task->syscalls_unix;
+ to_task->c_switch = from_task->c_switch;
+ to_task->p_switch = from_task->p_switch;
+ to_task->ps_switch = from_task->ps_switch;
+ to_task->extmod_statistics = from_task->extmod_statistics;
+ to_task->low_mem_notified_warn = from_task->low_mem_notified_warn;
+ to_task->low_mem_notified_critical = from_task->low_mem_notified_critical;
+ to_task->purged_memory_warn = from_task->purged_memory_warn;
+ to_task->purged_memory_critical = from_task->purged_memory_critical;
+ to_task->low_mem_privileged_listener = from_task->low_mem_privileged_listener;
+ *to_task->task_io_stats = *from_task->task_io_stats;
+ to_task->cpu_time_qos_stats = from_task->cpu_time_qos_stats;
+ to_task->task_timer_wakeups_bin_1 = from_task->task_timer_wakeups_bin_1;
+ to_task->task_timer_wakeups_bin_2 = from_task->task_timer_wakeups_bin_2;
+ to_task->task_gpu_ns = from_task->task_gpu_ns;
+ to_task->task_immediate_writes = from_task->task_immediate_writes;
+ to_task->task_deferred_writes = from_task->task_deferred_writes;
+ to_task->task_invalidated_writes = from_task->task_invalidated_writes;
+ to_task->task_metadata_writes = from_task->task_metadata_writes;
+ to_task->task_energy = from_task->task_energy;
+
+ /* Skip ledger roll up for memory accounting entries */
+ ledger_rollup_entry(to_task->ledger, from_task->ledger, task_ledgers.cpu_time);
+ ledger_rollup_entry(to_task->ledger, from_task->ledger, task_ledgers.platform_idle_wakeups);
+ ledger_rollup_entry(to_task->ledger, from_task->ledger, task_ledgers.interrupt_wakeups);
+#if CONFIG_SCHED_SFI
+ for (sfi_class_id_t class_id = SFI_CLASS_UNSPECIFIED; class_id < MAX_SFI_CLASS_ID; class_id++) {
+ ledger_rollup_entry(to_task->ledger, from_task->ledger, task_ledgers.sfi_wait_times[class_id]);
+ }
+#endif
+#if CONFIG_BANK
+ ledger_rollup_entry(to_task->ledger, from_task->ledger, task_ledgers.cpu_time_billed_to_me);
+ ledger_rollup_entry(to_task->ledger, from_task->ledger, task_ledgers.cpu_time_billed_to_others);
+#endif
+ ledger_rollup_entry(to_task->ledger, from_task->ledger, task_ledgers.physical_writes);
+ ledger_rollup_entry(to_task->ledger, from_task->ledger, task_ledgers.logical_writes);
+}
+
+int task_dropped_imp_count = 0;
+
+/*
+ * task_deallocate:
+ *
+ * Drop a reference on a task.
+ */
+void
+task_deallocate(
+ task_t task)
+{
+ ledger_amount_t credit, debit, interrupt_wakeups, platform_idle_wakeups;
+ uint32_t refs;
+
+ if (task == TASK_NULL)
+ return;
+
+ refs = task_deallocate_internal(task);
+
+#if IMPORTANCE_INHERITANCE
+ if (refs > 1)
+ return;
+
+ if (refs == 1) {
+ /*
+ * If last ref potentially comes from the task's importance,
+ * disconnect it. But more task refs may be added before
+ * that completes, so wait for the reference to go to zero
+ * naturually (it may happen on a recursive task_deallocate()
+ * from the ipc_importance_disconnect_task() call).
+ */
+ if (IIT_NULL != task->task_imp_base)
+ ipc_importance_disconnect_task(task);
+ return;
+ }
+#else
+ if (refs > 0)
+ return;
+#endif /* IMPORTANCE_INHERITANCE */
+
+ lck_mtx_lock(&tasks_threads_lock);
+ queue_remove(&terminated_tasks, task, task_t, tasks);
+ terminated_tasks_count--;
+ lck_mtx_unlock(&tasks_threads_lock);
+
+ /*
+ * remove the reference on atm descriptor
+ */
+ task_atm_reset(task);
+
+ /*
+ * remove the reference on bank context
+ */
+ task_bank_reset(task);
+
+ if (task->task_io_stats)
+ kfree(task->task_io_stats, sizeof(struct io_stat_info));
+
+ /*
+ * Give the machine dependent code a chance
+ * to perform cleanup before ripping apart
+ * the task.
+ */
+ machine_task_terminate(task);
+
+ ipc_task_terminate(task);
+
+ /* let iokit know */
+ iokit_task_terminate(task);
+
+ if (task->affinity_space)
+ task_affinity_deallocate(task);
+
+#if MACH_ASSERT
+ if (task->ledger != NULL &&
+ task->map != NULL &&
+ task->map->pmap != NULL &&
+ task->map->pmap->ledger != NULL) {
+ assert(task->ledger == task->map->pmap->ledger);
+ }
+#endif /* MACH_ASSERT */
+
+ vm_purgeable_disown(task);
+ assert(task->task_purgeable_disowned);
+ if (task->task_volatile_objects != 0 ||
+ task->task_nonvolatile_objects != 0) {
+ panic("task_deallocate(%p): "
+ "volatile_objects=%d nonvolatile_objects=%d\n",
+ task,
+ task->task_volatile_objects,
+ task->task_nonvolatile_objects);
+ }
+
+ vm_map_deallocate(task->map);
+ is_release(task->itk_space);
+
+ ledger_get_entries(task->ledger, task_ledgers.interrupt_wakeups,
+ &interrupt_wakeups, &debit);
+ ledger_get_entries(task->ledger, task_ledgers.platform_idle_wakeups,
+ &platform_idle_wakeups, &debit);
+
+#if defined(CONFIG_SCHED_MULTIQ)
+ sched_group_destroy(task->sched_group);
+#endif
+
+ /* Accumulate statistics for dead tasks */
+ lck_spin_lock(&dead_task_statistics_lock);
+ dead_task_statistics.total_user_time += task->total_user_time;
+ dead_task_statistics.total_system_time += task->total_system_time;
+
+ dead_task_statistics.task_interrupt_wakeups += interrupt_wakeups;
+ dead_task_statistics.task_platform_idle_wakeups += platform_idle_wakeups;
+
+ dead_task_statistics.task_timer_wakeups_bin_1 += task->task_timer_wakeups_bin_1;
+ dead_task_statistics.task_timer_wakeups_bin_2 += task->task_timer_wakeups_bin_2;
+
+ lck_spin_unlock(&dead_task_statistics_lock);
+ lck_mtx_destroy(&task->lock, &task_lck_grp);
+
+ if (!ledger_get_entries(task->ledger, task_ledgers.tkm_private, &credit,
+ &debit)) {
+ OSAddAtomic64(credit, (int64_t *)&tasks_tkm_private.alloc);
+ OSAddAtomic64(debit, (int64_t *)&tasks_tkm_private.free);
+ }
+ if (!ledger_get_entries(task->ledger, task_ledgers.tkm_shared, &credit,
+ &debit)) {
+ OSAddAtomic64(credit, (int64_t *)&tasks_tkm_shared.alloc);
+ OSAddAtomic64(debit, (int64_t *)&tasks_tkm_shared.free);
+ }
+ ledger_dereference(task->ledger);
+
+#if TASK_REFERENCE_LEAK_DEBUG
+ btlog_remove_entries_for_element(task_ref_btlog, task);
+#endif
+
+#if CONFIG_COALITIONS
+ task_release_coalitions(task);
+#endif /* CONFIG_COALITIONS */
+
+ bzero(task->coalition, sizeof(task->coalition));
+
+#if MACH_BSD
+ /* clean up collected information since last reference to task is gone */
+ if (task->corpse_info) {
+ task_crashinfo_destroy(task->corpse_info, RELEASE_CORPSE_REF);
+ task->corpse_info = NULL;
+ }
+#endif
+ if (task->corpse_info_kernel) {
+ kfree(task->corpse_info_kernel, CORPSEINFO_ALLOCATION_SIZE);
+ }
+
+#if CONFIG_MACF
+ if (task->crash_label) {
+ mac_exc_action_label_task_destroy(task);
+ }
+#endif
+
+ zfree(task_zone, task);
+}
+
+/*
+ * task_name_deallocate:
+ *
+ * Drop a reference on a task name.
+ */
+void
+task_name_deallocate(
+ task_name_t task_name)
+{
+ return(task_deallocate((task_t)task_name));
+}
+
+/*
+ * task_suspension_token_deallocate:
+ *
+ * Drop a reference on a task suspension token.
+ */
+void
+task_suspension_token_deallocate(
+ task_suspension_token_t token)
+{
+ return(task_deallocate((task_t)token));
+}
+
+
+/*
+ * task_collect_crash_info:
+ *
+ * collect crash info from bsd and mach based data
+ */
+kern_return_t
+task_collect_crash_info(task_t task, struct proc *proc, int is_corpse_fork)
+{
+ kern_return_t kr = KERN_SUCCESS;
+
+ kcdata_descriptor_t crash_data = NULL;
+ kcdata_descriptor_t crash_data_release = NULL;
+ mach_msg_type_number_t size = CORPSEINFO_ALLOCATION_SIZE;
+ mach_vm_offset_t crash_data_ptr = 0;
+ void *crash_data_kernel = NULL;
+ void *crash_data_kernel_release = NULL;
+ int corpse_blob_kernel_alloc = (is_corpse_fork || unify_corpse_blob_alloc);
+
+ if (!corpses_enabled()) {
+ return KERN_NOT_SUPPORTED;
+ }
+
+ task_lock(task);
+
+ assert(is_corpse_fork || task->bsd_info != NULL);
+ if (task->corpse_info == NULL && (is_corpse_fork || task->bsd_info != NULL)) {
+#if CONFIG_MACF
+ /* Update the corpse label, used by the exception delivery mac hook */
+ mac_exc_action_label_task_update(task, proc);
+#endif
+ task_unlock(task);
+
+ if (!corpse_blob_kernel_alloc) {
+ /* map crash data memory in task's vm map */
+ kr = mach_vm_allocate(task->map, &crash_data_ptr, size, (VM_MAKE_TAG(VM_MEMORY_CORPSEINFO) | VM_FLAGS_ANYWHERE));
+ } else {
+ crash_data_kernel = (void *) kalloc(CORPSEINFO_ALLOCATION_SIZE);
+ if (crash_data_kernel == 0)
+ kr = KERN_RESOURCE_SHORTAGE;
+ bzero(crash_data_kernel, CORPSEINFO_ALLOCATION_SIZE);
+ crash_data_ptr = (mach_vm_offset_t) crash_data_kernel;
+ }
+ if (kr != KERN_SUCCESS)
+ goto out_no_lock;
+
+ /* Do not get a corpse ref for corpse fork */
+ crash_data = task_crashinfo_alloc_init((mach_vm_address_t)crash_data_ptr, size, is_corpse_fork ? !GET_CORPSE_REF : GET_CORPSE_REF, corpse_blob_kernel_alloc ? KCFLAG_USE_MEMCOPY: KCFLAG_USE_COPYOUT);
+ if (crash_data) {
+ task_lock(task);
+ crash_data_release = task->corpse_info;
+ crash_data_kernel_release = task->corpse_info_kernel;
+ task->corpse_info = crash_data;
+ task->corpse_info_kernel = crash_data_kernel;
+
+ task_unlock(task);
+ kr = KERN_SUCCESS;
+ } else {
+ /* if failed to create corpse info, free the mapping */
+ if (!corpse_blob_kernel_alloc) {
+ if (KERN_SUCCESS != mach_vm_deallocate(task->map, crash_data_ptr, size)) {
+ printf("mach_vm_deallocate failed to clear corpse_data for pid %d.\n", task_pid(task));
+ }
+ } else {
+ kfree(crash_data_kernel, CORPSEINFO_ALLOCATION_SIZE);
+ }
+ kr = KERN_FAILURE;
+ }
+
+ if (crash_data_release != NULL) {
+ task_crashinfo_destroy(crash_data_release, is_corpse_fork ? !RELEASE_CORPSE_REF : RELEASE_CORPSE_REF);
+ }
+ if (crash_data_kernel_release != NULL) {
+ kfree(crash_data_kernel_release, CORPSEINFO_ALLOCATION_SIZE);
+ }
+ } else {
+ task_unlock(task);
+ }
+
+out_no_lock:
+ return kr;
+}
+
+/*
+ * task_deliver_crash_notification:
+ *
+ * Makes outcall to registered host port for a corpse.
+ */
+kern_return_t
+task_deliver_crash_notification(task_t task, thread_t thread, mach_exception_data_type_t subcode)
+{
+ kcdata_descriptor_t crash_info = task->corpse_info;
+ thread_t th_iter = NULL;
+ kern_return_t kr = KERN_SUCCESS;
+ wait_interrupt_t wsave;
+ mach_exception_data_type_t code[EXCEPTION_CODE_MAX];
+ ipc_port_t task_port, old_notify;
+
+ if (crash_info == NULL)
+ return KERN_FAILURE;
+
+ task_lock(task);
+ if (task_is_a_corpse_fork(task)) {
+ /* Populate code with EXC_RESOURCE for corpse fork */
+ code[0] = EXC_RESOURCE;
+ code[1] = subcode;
+ } else if (unify_corpse_blob_alloc) {
+ /* Populate code with EXC_CRASH for corpses */
+ code[0] = EXC_CRASH;
+ code[1] = 0;
+ /* Update the code[1] if the boot-arg corpse_for_fatal_memkill is set */
+ if (corpse_for_fatal_memkill) {
+ code[1] = subcode;
+ }
+ } else {
+ /* Populate code with address and length for EXC_CRASH */
+ code[0] = crash_info->kcd_addr_begin;
+ code[1] = crash_info->kcd_length;
+ }
+ queue_iterate(&task->threads, th_iter, thread_t, task_threads)
+ {
+ if (th_iter->corpse_dup == FALSE) {
+ ipc_thread_reset(th_iter);
+ }
+ }
+ task_unlock(task);
+
+ /* Arm the no-sender notification for taskport */
+ task_reference(task);
+ task_port = convert_task_to_port(task);
+ ip_lock(task_port);
+ assert(ip_active(task_port));
+ ipc_port_nsrequest(task_port, task_port->ip_mscount, ipc_port_make_sonce_locked(task_port), &old_notify);
+ /* port unlocked */
+ assert(IP_NULL == old_notify);
+
+ wsave = thread_interrupt_level(THREAD_UNINT);
+ kr = exception_triage_thread(EXC_CORPSE_NOTIFY, code, EXCEPTION_CODE_MAX, thread);
+ if (kr != KERN_SUCCESS) {
+ printf("Failed to send exception EXC_CORPSE_NOTIFY. error code: %d for pid %d\n", kr, task_pid(task));
+ }
+
+ (void)thread_interrupt_level(wsave);
+
+ /*
+ * Drop the send right on task port, will fire the
+ * no-sender notification if exception deliver failed.
+ */
+ ipc_port_release_send(task_port);
+ return kr;
+}
+
+/*
+ * task_terminate:
+ *
+ * Terminate the specified task. See comments on thread_terminate
+ * (kern/thread.c) about problems with terminating the "current task."
+ */
+
+kern_return_t
+task_terminate(
+ task_t task)
+{
+ if (task == TASK_NULL)
+ return (KERN_INVALID_ARGUMENT);
+
+ if (task->bsd_info)
+ return (KERN_FAILURE);
+
+ return (task_terminate_internal(task));
+}
+
+#if MACH_ASSERT
+extern int proc_pid(struct proc *);
+extern void proc_name_kdp(task_t t, char *buf, int size);
+#endif /* MACH_ASSERT */
+
+#define VM_MAP_PARTIAL_REAP 0x54 /* 0x150 */
+static void
+__unused task_partial_reap(task_t task, __unused int pid)
+{
+ unsigned int reclaimed_resident = 0;
+ unsigned int reclaimed_compressed = 0;
+ uint64_t task_page_count;
+
+ task_page_count = (get_task_phys_footprint(task) / PAGE_SIZE_64);
+
+ KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_MAP_PARTIAL_REAP) | DBG_FUNC_START),
+ pid, task_page_count, 0, 0, 0);
+
+ vm_map_partial_reap(task->map, &reclaimed_resident, &reclaimed_compressed);
+
+ KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_MAP_PARTIAL_REAP) | DBG_FUNC_END),
+ pid, reclaimed_resident, reclaimed_compressed, 0, 0);
+}
+
+kern_return_t
+task_mark_corpse(task_t task)
+{
+ kern_return_t kr = KERN_SUCCESS;
+ thread_t self_thread;
+ (void) self_thread;
+ wait_interrupt_t wsave;
+
+ assert(task != kernel_task);
+ assert(task == current_task());
+ assert(!task_is_a_corpse(task));
+
+ kr = task_collect_crash_info(task, (struct proc*)task->bsd_info, FALSE);
+ if (kr != KERN_SUCCESS) {
+ return kr;
+ }
+
+ self_thread = current_thread();
+
+ wsave = thread_interrupt_level(THREAD_UNINT);
+ task_lock(task);
+
+ task_set_corpse_pending_report(task);
+ task_set_corpse(task);
+
+ kr = task_start_halt_locked(task, TRUE);
+ assert(kr == KERN_SUCCESS);
+
+ ipc_task_reset(task);
+ /* Remove the naked send right for task port, needed to arm no sender notification */
+ task_set_special_port(task, TASK_KERNEL_PORT, IPC_PORT_NULL);
+ ipc_task_enable(task);
+
+ task_unlock(task);
+ /* terminate the ipc space */
+ ipc_space_terminate(task->itk_space);
+
+ /* Add it to global corpse task list */
+ task_add_to_corpse_task_list(task);
+
+ task_start_halt(task);
+ thread_terminate_internal(self_thread);
+
+ (void) thread_interrupt_level(wsave);
+ assert(task->halting == TRUE);
+ return kr;
+}
+
+/*
+ * task_clear_corpse
+ *
+ * Clears the corpse pending bit on task.
+ * Removes inspection bit on the threads.
+ */
+void
+task_clear_corpse(task_t task)
+{
+ thread_t th_iter = NULL;
+
+ task_lock(task);
+ queue_iterate(&task->threads, th_iter, thread_t, task_threads)
+ {
+ thread_mtx_lock(th_iter);
+ th_iter->inspection = FALSE;
+ thread_mtx_unlock(th_iter);
+ }
+
+ thread_terminate_crashed_threads();
+ /* remove the pending corpse report flag */
+ task_clear_corpse_pending_report(task);
+
+ task_unlock(task);
+}
+
+/*
+ * task_port_notify
+ *
+ * Called whenever the Mach port system detects no-senders on
+ * the task port of a corpse.
+ * Each notification that comes in should terminate the task (corpse).
+ */
+void
+task_port_notify(mach_msg_header_t *msg)
+{
+ mach_no_senders_notification_t *notification = (void *)msg;
+ ipc_port_t port = notification->not_header.msgh_remote_port;
+ task_t task;
+
+ assert(ip_active(port));
+ assert(IKOT_TASK == ip_kotype(port));
+ task = (task_t) port->ip_kobject;
+
+ assert(task_is_a_corpse(task));
+
+ /* Remove the task from global corpse task list */
+ task_remove_from_corpse_task_list(task);
+
+ task_clear_corpse(task);
+ task_terminate_internal(task);
+}
+
+/*
+ * task_wait_till_threads_terminate_locked
+ *
+ * Wait till all the threads in the task are terminated.
+ * Might release the task lock and re-acquire it.
+ */
+void
+task_wait_till_threads_terminate_locked(task_t task)
+{
+ /* wait for all the threads in the task to terminate */
+ while (task->active_thread_count != 0) {
+ assert_wait((event_t)&task->active_thread_count, THREAD_UNINT);
+ task_unlock(task);
+ thread_block(THREAD_CONTINUE_NULL);
+
+ task_lock(task);
+ }
+}
+
+/*
+ * task_duplicate_map_and_threads
+ *
+ * Copy vmmap of source task.
+ * Copy active threads from source task to destination task.
+ * Source task would be suspended during the copy.
+ */
+kern_return_t
+task_duplicate_map_and_threads(
+ task_t task,
+ void *p,
+ task_t new_task,
+ thread_t *thread_ret,
+ int is64bit,
+ uint64_t **udata_buffer,
+ int *size,
+ int *num_udata)
+{
+ kern_return_t kr = KERN_SUCCESS;
+ int active;
+ thread_t thread, self, thread_return = THREAD_NULL;
+ thread_t new_thread = THREAD_NULL;
+ thread_t *thread_array;
+ uint32_t active_thread_count = 0, array_count = 0, i;
+ vm_map_t oldmap;
+ uint64_t *buffer = NULL;
+ int buf_size = 0;
+ int est_knotes = 0, num_knotes = 0;
+
+ self = current_thread();
+
+ /*
+ * Suspend the task to copy thread state, use the internal
+ * variant so that no user-space process can resume
+ * the task from under us
+ */
+ kr = task_suspend_internal(task);
+ if (kr != KERN_SUCCESS) {
+ return kr;
+ }
+
+ if (task->map->disable_vmentry_reuse == TRUE) {
+ /*
+ * Quite likely GuardMalloc (or some debugging tool)
+ * is being used on this task. And it has gone through
+ * its limit. Making a corpse will likely encounter
+ * a lot of VM entries that will need COW.
+ *
+ * Skip it.
+ */
+ task_resume_internal(task);
+ return KERN_FAILURE;
+ }
+
+ /* Setup new task's vmmap, switch from parent task's map to it COW map */
+ oldmap = new_task->map;
+ new_task->map = vm_map_fork(new_task->ledger,
+ task->map,
+ (VM_MAP_FORK_SHARE_IF_INHERIT_NONE |
+ VM_MAP_FORK_PRESERVE_PURGEABLE));
+ vm_map_deallocate(oldmap);
+
+ if (is64bit) {
+ vm_map_set_64bit(get_task_map(new_task));
+ } else {
+ vm_map_set_32bit(get_task_map(new_task));
+ }
+
+ /* Get all the udata pointers from kqueue */
+ est_knotes = proc_list_uptrs(p, NULL, 0);
+ if (est_knotes > 0) {
+ buf_size = (est_knotes + 32) * sizeof(uint64_t);
+ buffer = (uint64_t *) kalloc(buf_size);
+ num_knotes = proc_list_uptrs(p, buffer, buf_size);
+ if (num_knotes > est_knotes + 32) {
+ num_knotes = est_knotes + 32;
+ }
+ }
+
+ active_thread_count = task->active_thread_count;
+ if (active_thread_count == 0) {
+ if (buffer != NULL) {
+ kfree(buffer, buf_size);
+ }
+ task_resume_internal(task);
+ return KERN_FAILURE;
+ }
+
+ thread_array = (thread_t *) kalloc(sizeof(thread_t) * active_thread_count);
+
+ /* Iterate all the threads and drop the task lock before calling thread_create_with_continuation */
+ task_lock(task);
+ queue_iterate(&task->threads, thread, thread_t, task_threads) {
+ /* Skip inactive threads */
+ active = thread->active;
+ if (!active) {
+ continue;
+ }
+
+ if (array_count >= active_thread_count) {
+ break;
+ }
+
+ thread_array[array_count++] = thread;
+ thread_reference(thread);
+ }
+ task_unlock(task);
+
+ for (i = 0; i < array_count; i++) {
+
+ kr = thread_create_with_continuation(new_task, &new_thread, (thread_continue_t)thread_corpse_continue);
+ if (kr != KERN_SUCCESS) {
+ break;
+ }
+
+ /* Equivalent of current thread in corpse */
+ if (thread_array[i] == self) {
+ thread_return = new_thread;
+ } else {
+ /* drop the extra ref returned by thread_create_with_continuation */
+ thread_deallocate(new_thread);
+ }
+
+ kr = thread_dup2(thread_array[i], new_thread);
+ if (kr != KERN_SUCCESS) {
+ thread_mtx_lock(new_thread);
+ new_thread->corpse_dup = TRUE;
+ thread_mtx_unlock(new_thread);
+ continue;
+ }
+
+ /* Copy thread name */
+ bsd_copythreadname(new_thread->uthread, thread_array[i]->uthread);
+ thread_copy_resource_info(new_thread, thread_array[i]);
+ }
+
+ task_resume_internal(task);
+
+ for (i = 0; i < array_count; i++) {
+ thread_deallocate(thread_array[i]);
+ }
+ kfree(thread_array, sizeof(thread_t) * active_thread_count);
+
+ if (kr == KERN_SUCCESS) {
+ *thread_ret = thread_return;
+ *udata_buffer = buffer;
+ *size = buf_size;
+ *num_udata = num_knotes;
+ } else {
+ if (thread_return != THREAD_NULL) {
+ thread_deallocate(thread_return);
+ }
+ if (buffer != NULL) {
+ kfree(buffer, buf_size);
+ }
+ }
+
+ return kr;
+}
+
+#if CONFIG_SECLUDED_MEMORY
+extern void task_set_can_use_secluded_mem_locked(
+ task_t task,
+ boolean_t can_use_secluded_mem);
+#endif /* CONFIG_SECLUDED_MEMORY */
+
+kern_return_t
+task_terminate_internal(
+ task_t task)
+{
+ thread_t thread, self;
+ task_t self_task;
+ boolean_t interrupt_save;
+ int pid = 0;
+
+ assert(task != kernel_task);
+
+ self = current_thread();
+ self_task = self->task;
+
+ /*
+ * Get the task locked and make sure that we are not racing
+ * with someone else trying to terminate us.
+ */
+ if (task == self_task)
+ task_lock(task);
+ else
+ if (task < self_task) {
+ task_lock(task);
+ task_lock(self_task);
+ }
+ else {
+ task_lock(self_task);
+ task_lock(task);
+ }
+
+#if CONFIG_SECLUDED_MEMORY
+ if (task->task_can_use_secluded_mem) {
+ task_set_can_use_secluded_mem_locked(task, FALSE);
+ }
+ task->task_could_use_secluded_mem = FALSE;
+ task->task_could_also_use_secluded_mem = FALSE;
+#endif /* CONFIG_SECLUDED_MEMORY */
+
+ if (!task->active) {
+ /*
+ * Task is already being terminated.
+ * Just return an error. If we are dying, this will
+ * just get us to our AST special handler and that
+ * will get us to finalize the termination of ourselves.
+ */
+ task_unlock(task);
+ if (self_task != task)
+ task_unlock(self_task);
+
+ return (KERN_FAILURE);
+ }
+
+ if (task_corpse_pending_report(task)) {
+ /*
+ * Task is marked for reporting as corpse.
+ * Just return an error. This will
+ * just get us to our AST special handler and that
+ * will get us to finish the path to death
+ */
+ task_unlock(task);
+ if (self_task != task)
+ task_unlock(self_task);
+
+ return (KERN_FAILURE);
+ }
+
+ if (self_task != task)
+ task_unlock(self_task);
+
+ /*
+ * Make sure the current thread does not get aborted out of
+ * the waits inside these operations.
+ */
+ interrupt_save = thread_interrupt_level(THREAD_UNINT);
+
+ /*
+ * Indicate that we want all the threads to stop executing
+ * at user space by holding the task (we would have held
+ * each thread independently in thread_terminate_internal -
+ * but this way we may be more likely to already find it
+ * held there). Mark the task inactive, and prevent
+ * further task operations via the task port.
+ */
+ task_hold_locked(task);
+ task->active = FALSE;
+ ipc_task_disable(task);
+
+#if CONFIG_TELEMETRY
+ /*
+ * Notify telemetry that this task is going away.
+ */
+ telemetry_task_ctl_locked(task, TF_TELEMETRY, 0);
+#endif
+
+ /*
+ * Terminate each thread in the task.
+ */
+ queue_iterate(&task->threads, thread, thread_t, task_threads) {
+ thread_terminate_internal(thread);
+ }
+
+#ifdef MACH_BSD
+ if (task->bsd_info != NULL && !task_is_exec_copy(task)) {
+ pid = proc_pid(task->bsd_info);
+ }
+#endif /* MACH_BSD */
+
+ task_unlock(task);
+
+ proc_set_task_policy(task, TASK_POLICY_ATTRIBUTE,
+ TASK_POLICY_TERMINATED, TASK_POLICY_ENABLE);
+
+ /* Early object reap phase */
+
+// PR-17045188: Revisit implementation
+// task_partial_reap(task, pid);
+
+
+ /*
+ * Destroy all synchronizers owned by the task.
+ */
+ task_synchronizer_destroy_all(task);
+
+ /*
+ * Destroy the IPC space, leaving just a reference for it.
+ */
+ ipc_space_terminate(task->itk_space);
+
+#if 00
+ /* if some ledgers go negative on tear-down again... */
+ ledger_disable_panic_on_negative(task->map->pmap->ledger,
+ task_ledgers.phys_footprint);
+ ledger_disable_panic_on_negative(task->map->pmap->ledger,
+ task_ledgers.internal);
+ ledger_disable_panic_on_negative(task->map->pmap->ledger,
+ task_ledgers.internal_compressed);
+ ledger_disable_panic_on_negative(task->map->pmap->ledger,
+ task_ledgers.iokit_mapped);
+ ledger_disable_panic_on_negative(task->map->pmap->ledger,
+ task_ledgers.alternate_accounting);
+ ledger_disable_panic_on_negative(task->map->pmap->ledger,
+ task_ledgers.alternate_accounting_compressed);
+#endif
+
+ /*
+ * If the current thread is a member of the task
+ * being terminated, then the last reference to
+ * the task will not be dropped until the thread
+ * is finally reaped. To avoid incurring the
+ * expense of removing the address space regions
+ * at reap time, we do it explictly here.
+ */
+
+ vm_map_lock(task->map);
+ vm_map_disable_hole_optimization(task->map);
+ vm_map_unlock(task->map);
+
+ vm_map_remove(task->map,
+ task->map->min_offset,
+ task->map->max_offset,
+ /* no unnesting on final cleanup: */
+ VM_MAP_REMOVE_NO_UNNESTING);
+
+ /* release our shared region */
+ vm_shared_region_set(task, NULL);
+
+
+#if MACH_ASSERT
+ /*
+ * Identify the pmap's process, in case the pmap ledgers drift
+ * and we have to report it.
+ */
+ char procname[17];
+ if (task->bsd_info && !task_is_exec_copy(task)) {
+ pid = proc_pid(task->bsd_info);
+ proc_name_kdp(task, procname, sizeof (procname));
+ } else {
+ pid = 0;
+ strlcpy(procname, "<unknown>", sizeof (procname));
+ }
+ pmap_set_process(task->map->pmap, pid, procname);
+#endif /* MACH_ASSERT */
+
+ lck_mtx_lock(&tasks_threads_lock);
+ queue_remove(&tasks, task, task_t, tasks);
+ queue_enter(&terminated_tasks, task, task_t, tasks);
+ tasks_count--;
+ terminated_tasks_count++;
+ lck_mtx_unlock(&tasks_threads_lock);
+
+ /*
+ * We no longer need to guard against being aborted, so restore
+ * the previous interruptible state.
+ */
+ thread_interrupt_level(interrupt_save);
+
+#if KPERF
+ /* force the task to release all ctrs */
+ if (task->t_chud & TASK_KPC_FORCED_ALL_CTRS)
+ kpc_force_all_ctrs(task, 0);
+#endif
+
+#if CONFIG_COALITIONS
+ /*
+ * Leave our coalitions. (drop activation but not reference)
+ */
+ coalitions_remove_task(task);
+#endif
+
+ /*
+ * Get rid of the task active reference on itself.
+ */
+ task_deallocate(task);
+
+ return (KERN_SUCCESS);
+}
+
+void
+tasks_system_suspend(boolean_t suspend)
+{
+ task_t task;
+
+ lck_mtx_lock(&tasks_threads_lock);
+ assert(tasks_suspend_state != suspend);
+ tasks_suspend_state = suspend;
+ queue_iterate(&tasks, task, task_t, tasks) {
+ if (task == kernel_task) {
+ continue;
+ }
+ suspend ? task_suspend_internal(task) : task_resume_internal(task);
+ }
+ lck_mtx_unlock(&tasks_threads_lock);
+}
+
+/*
+ * task_start_halt:
+ *
+ * Shut the current task down (except for the current thread) in
+ * preparation for dramatic changes to the task (probably exec).
+ * We hold the task and mark all other threads in the task for
+ * termination.
+ */
+kern_return_t
+task_start_halt(task_t task)
+{
+ kern_return_t kr = KERN_SUCCESS;
+ task_lock(task);
+ kr = task_start_halt_locked(task, FALSE);
+ task_unlock(task);
+ return kr;
+}
+
+static kern_return_t
+task_start_halt_locked(task_t task, boolean_t should_mark_corpse)
+{
+ thread_t thread, self;
+ uint64_t dispatchqueue_offset;
+
+ assert(task != kernel_task);
+
+ self = current_thread();
+
+ if (task != self->task && !task_is_a_corpse_fork(task))
+ return (KERN_INVALID_ARGUMENT);
+
+ if (task->halting || !task->active || !self->active) {
+ /*
+ * Task or current thread is already being terminated.
+ * Hurry up and return out of the current kernel context
+ * so that we run our AST special handler to terminate
+ * ourselves.
+ */
+ return (KERN_FAILURE);
+ }
+
+ task->halting = TRUE;
+
+ /*
+ * Mark all the threads to keep them from starting any more
+ * user-level execution. The thread_terminate_internal code
+ * would do this on a thread by thread basis anyway, but this
+ * gives us a better chance of not having to wait there.
+ */
+ task_hold_locked(task);
+ dispatchqueue_offset = get_dispatchqueue_offset_from_proc(task->bsd_info);
+
+ /*
+ * Terminate all the other threads in the task.
+ */
+ queue_iterate(&task->threads, thread, thread_t, task_threads)
+ {
+ if (should_mark_corpse) {
+ thread_mtx_lock(thread);
+ thread->inspection = TRUE;
+ thread_mtx_unlock(thread);
+ }
+ if (thread != self)
+ thread_terminate_internal(thread);
+ }
+ task->dispatchqueue_offset = dispatchqueue_offset;
+
+ task_release_locked(task);
+
+ return KERN_SUCCESS;
+}
+
+
+/*
+ * task_complete_halt:
+ *
+ * Complete task halt by waiting for threads to terminate, then clean
+ * up task resources (VM, port namespace, etc...) and then let the
+ * current thread go in the (practically empty) task context.
+ *
+ * Note: task->halting flag is not cleared in order to avoid creation
+ * of new thread in old exec'ed task.
+ */
+void
+task_complete_halt(task_t task)
+{
+ task_lock(task);
+ assert(task->halting);
+ assert(task == current_task());
+
+ /*
+ * Wait for the other threads to get shut down.
+ * When the last other thread is reaped, we'll be
+ * woken up.
+ */
+ if (task->thread_count > 1) {
+ assert_wait((event_t)&task->halting, THREAD_UNINT);
+ task_unlock(task);
+ thread_block(THREAD_CONTINUE_NULL);
+ } else {
+ task_unlock(task);
+ }
+
+ /*
+ * Give the machine dependent code a chance
+ * to perform cleanup of task-level resources
+ * associated with the current thread before
+ * ripping apart the task.
+ */
+ machine_task_terminate(task);
+
+ /*
+ * Destroy all synchronizers owned by the task.
+ */
+ task_synchronizer_destroy_all(task);
+
+ /*
+ * Destroy the contents of the IPC space, leaving just
+ * a reference for it.
+ */
+ ipc_space_clean(task->itk_space);
+
+ /*
+ * Clean out the address space, as we are going to be
+ * getting a new one.
+ */
+ vm_map_remove(task->map, task->map->min_offset,
+ task->map->max_offset,
+ /* no unnesting on final cleanup: */
+ VM_MAP_REMOVE_NO_UNNESTING);
+
+ /*
+ * Kick out any IOKitUser handles to the task. At best they're stale,
+ * at worst someone is racing a SUID exec.
+ */
+ iokit_task_terminate(task);
+}
+
+/*
+ * task_hold_locked:
+ *
+ * Suspend execution of the specified task.
+ * This is a recursive-style suspension of the task, a count of
+ * suspends is maintained.
+ *
+ * CONDITIONS: the task is locked and active.
+ */
+void
+task_hold_locked(
+ task_t task)
+{
+ thread_t thread;
+
+ assert(task->active);
+
+ if (task->suspend_count++ > 0)
+ return;
+
+ /*
+ * Iterate through all the threads and hold them.
+ */
+ queue_iterate(&task->threads, thread, thread_t, task_threads) {
+ thread_mtx_lock(thread);
+ thread_hold(thread);
+ thread_mtx_unlock(thread);
+ }
+}
+
+/*
+ * task_hold:
+ *
+ * Same as the internal routine above, except that is must lock
+ * and verify that the task is active. This differs from task_suspend
+ * in that it places a kernel hold on the task rather than just a
+ * user-level hold. This keeps users from over resuming and setting
+ * it running out from under the kernel.
+ *
+ * CONDITIONS: the caller holds a reference on the task
+ */
+kern_return_t
+task_hold(
+ task_t task)
+{
+ if (task == TASK_NULL)
+ return (KERN_INVALID_ARGUMENT);
+
+ task_lock(task);
+
+ if (!task->active) {
+ task_unlock(task);
+
+ return (KERN_FAILURE);
+ }
+
+ task_hold_locked(task);
+ task_unlock(task);
+
+ return (KERN_SUCCESS);
+}
+
+kern_return_t
+task_wait(
+ task_t task,
+ boolean_t until_not_runnable)
+{
+ if (task == TASK_NULL)
+ return (KERN_INVALID_ARGUMENT);
+
+ task_lock(task);
+
+ if (!task->active) {
+ task_unlock(task);
+
+ return (KERN_FAILURE);
+ }
+
+ task_wait_locked(task, until_not_runnable);
+ task_unlock(task);
+
+ return (KERN_SUCCESS);
+}
+
+/*
+ * task_wait_locked:
+ *
+ * Wait for all threads in task to stop.
+ *
+ * Conditions:
+ * Called with task locked, active, and held.
+ */
+void
+task_wait_locked(
+ task_t task,
+ boolean_t until_not_runnable)
+{
+ thread_t thread, self;
+
+ assert(task->active);
+ assert(task->suspend_count > 0);
+
+ self = current_thread();
+
+ /*
+ * Iterate through all the threads and wait for them to
+ * stop. Do not wait for the current thread if it is within
+ * the task.
+ */
+ queue_iterate(&task->threads, thread, thread_t, task_threads) {
+ if (thread != self)
+ thread_wait(thread, until_not_runnable);
+ }
+}
+
+/*
+ * task_release_locked:
+ *
+ * Release a kernel hold on a task.
+ *
+ * CONDITIONS: the task is locked and active
+ */
+void
+task_release_locked(
+ task_t task)
+{
+ thread_t thread;
+
+ assert(task->active);
+ assert(task->suspend_count > 0);
+
+ if (--task->suspend_count > 0)
+ return;
+
+ queue_iterate(&task->threads, thread, thread_t, task_threads) {
+ thread_mtx_lock(thread);
+ thread_release(thread);
+ thread_mtx_unlock(thread);
+ }
+}
+
+/*
+ * task_release:
+ *
+ * Same as the internal routine above, except that it must lock
+ * and verify that the task is active.
+ *
+ * CONDITIONS: The caller holds a reference to the task
+ */
+kern_return_t
+task_release(
+ task_t task)
+{
+ if (task == TASK_NULL)
+ return (KERN_INVALID_ARGUMENT);
+
+ task_lock(task);
+
+ if (!task->active) {
+ task_unlock(task);
+
+ return (KERN_FAILURE);
+ }
+
+ task_release_locked(task);
+ task_unlock(task);
+
+ return (KERN_SUCCESS);
+}
+
+kern_return_t
+task_threads(
+ task_t task,
+ thread_act_array_t *threads_out,
+ mach_msg_type_number_t *count)
+{
+ mach_msg_type_number_t actual;
+ thread_t *thread_list;
+ thread_t thread;
+ vm_size_t size, size_needed;
+ void *addr;
+ unsigned int i, j;
+
+ if (task == TASK_NULL)
+ return (KERN_INVALID_ARGUMENT);
+
+ size = 0; addr = NULL;
+
+ for (;;) {
+ task_lock(task);
+ if (!task->active) {
+ task_unlock(task);
+
+ if (size != 0)
+ kfree(addr, size);
+
+ return (KERN_FAILURE);
+ }
+
+ actual = task->thread_count;
+
+ /* do we have the memory we need? */
+ size_needed = actual * sizeof (mach_port_t);
+ if (size_needed <= size)
+ break;
+
+ /* unlock the task and allocate more memory */
+ task_unlock(task);
+
+ if (size != 0)
+ kfree(addr, size);
+
+ assert(size_needed > 0);
+ size = size_needed;
+
+ addr = kalloc(size);
+ if (addr == 0)
+ return (KERN_RESOURCE_SHORTAGE);
+ }
+
+ /* OK, have memory and the task is locked & active */
+ thread_list = (thread_t *)addr;
+
+ i = j = 0;
+
+ for (thread = (thread_t)queue_first(&task->threads); i < actual;
+ ++i, thread = (thread_t)queue_next(&thread->task_threads)) {
+ thread_reference_internal(thread);
+ thread_list[j++] = thread;
+ }
+
+ assert(queue_end(&task->threads, (queue_entry_t)thread));
+
+ actual = j;
+ size_needed = actual * sizeof (mach_port_t);
+
+ /* can unlock task now that we've got the thread refs */
+ task_unlock(task);
+
+ if (actual == 0) {
+ /* no threads, so return null pointer and deallocate memory */
+
+ *threads_out = NULL;
+ *count = 0;
+
+ if (size != 0)
+ kfree(addr, size);
+ }
+ else {
+ /* if we allocated too much, must copy */
+
+ if (size_needed < size) {
+ void *newaddr;
+
+ newaddr = kalloc(size_needed);
+ if (newaddr == 0) {
+ for (i = 0; i < actual; ++i)
+ thread_deallocate(thread_list[i]);
+ kfree(addr, size);
+ return (KERN_RESOURCE_SHORTAGE);
+ }
+
+ bcopy(addr, newaddr, size_needed);
+ kfree(addr, size);
+ thread_list = (thread_t *)newaddr;
+ }
+
+ *threads_out = thread_list;
+ *count = actual;
+
+ /* do the conversion that Mig should handle */
+
+ for (i = 0; i < actual; ++i)
+ ((ipc_port_t *) thread_list)[i] = convert_thread_to_port(thread_list[i]);
+ }
+
+ return (KERN_SUCCESS);
+}
+
+#define TASK_HOLD_NORMAL 0
+#define TASK_HOLD_PIDSUSPEND 1
+#define TASK_HOLD_LEGACY 2
+#define TASK_HOLD_LEGACY_ALL 3
+
+static kern_return_t
+place_task_hold (
+ task_t task,
+ int mode)
+{
+ if (!task->active && !task_is_a_corpse(task)) {
+ return (KERN_FAILURE);
+ }
+
+ /* Return success for corpse task */
+ if (task_is_a_corpse(task)) {
+ return KERN_SUCCESS;
+ }
+
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_IPC,MACH_TASK_SUSPEND) | DBG_FUNC_NONE,
+ task_pid(task), ((thread_t)queue_first(&task->threads))->thread_id,
+ task->user_stop_count, task->user_stop_count + 1, 0);
+
+#if MACH_ASSERT
+ current_task()->suspends_outstanding++;
+#endif
+
+ if (mode == TASK_HOLD_LEGACY)
+ task->legacy_stop_count++;
+
+ if (task->user_stop_count++ > 0) {
+ /*
+ * If the stop count was positive, the task is
+ * already stopped and we can exit.
+ */
+ return (KERN_SUCCESS);
+ }
+
+ /*
+ * Put a kernel-level hold on the threads in the task (all
+ * user-level task suspensions added together represent a
+ * single kernel-level hold). We then wait for the threads
+ * to stop executing user code.
+ */
+ task_hold_locked(task);
+ task_wait_locked(task, FALSE);
+
+ return (KERN_SUCCESS);
+}
+
+static kern_return_t
+release_task_hold (
+ task_t task,
+ int mode)
+{
+ boolean_t release = FALSE;
+
+ if (!task->active && !task_is_a_corpse(task)) {
+ return (KERN_FAILURE);
+ }
+
+ /* Return success for corpse task */
+ if (task_is_a_corpse(task)) {
+ return KERN_SUCCESS;
+ }
+
+ if (mode == TASK_HOLD_PIDSUSPEND) {
+ if (task->pidsuspended == FALSE) {
+ return (KERN_FAILURE);
+ }
+ task->pidsuspended = FALSE;
+ }
+
+ if (task->user_stop_count > (task->pidsuspended ? 1 : 0)) {
+
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_IPC,MACH_TASK_RESUME) | DBG_FUNC_NONE,
+ task_pid(task), ((thread_t)queue_first(&task->threads))->thread_id,
+ task->user_stop_count, mode, task->legacy_stop_count);
+
+#if MACH_ASSERT
+ /*
+ * This is obviously not robust; if we suspend one task and then resume a different one,
+ * we'll fly under the radar. This is only meant to catch the common case of a crashed
+ * or buggy suspender.
+ */
+ current_task()->suspends_outstanding--;
+#endif
+
+ if (mode == TASK_HOLD_LEGACY_ALL) {
+ if (task->legacy_stop_count >= task->user_stop_count) {
+ task->user_stop_count = 0;
+ release = TRUE;
+ } else {
+ task->user_stop_count -= task->legacy_stop_count;
+ }
+ task->legacy_stop_count = 0;
+ } else {
+ if (mode == TASK_HOLD_LEGACY && task->legacy_stop_count > 0)
+ task->legacy_stop_count--;
+ if (--task->user_stop_count == 0)
+ release = TRUE;
+ }
+ }
+ else {
+ return (KERN_FAILURE);
+ }
+
+ /*
+ * Release the task if necessary.
+ */
+ if (release)
+ task_release_locked(task);
+
+ return (KERN_SUCCESS);
+}
+
+
+/*
+ * task_suspend:
+ *
+ * Implement an (old-fashioned) user-level suspension on a task.
+ *
+ * Because the user isn't expecting to have to manage a suspension
+ * token, we'll track it for him in the kernel in the form of a naked
+ * send right to the task's resume port. All such send rights
+ * account for a single suspension against the task (unlike task_suspend2()
+ * where each caller gets a unique suspension count represented by a
+ * unique send-once right).
+ *
+ * Conditions:
+ * The caller holds a reference to the task
+ */
+kern_return_t
+task_suspend(
+ task_t task)
+{
+ kern_return_t kr;
+ mach_port_t port, send, old_notify;
+ mach_port_name_t name;
+
+ if (task == TASK_NULL || task == kernel_task)
+ return (KERN_INVALID_ARGUMENT);
+
+ task_lock(task);
+
+ /*
+ * Claim a send right on the task resume port, and request a no-senders
+ * notification on that port (if none outstanding).
+ */
+ if (task->itk_resume == IP_NULL) {
+ task->itk_resume = ipc_port_alloc_kernel();
+ if (!IP_VALID(task->itk_resume))
+ panic("failed to create resume port");
+ ipc_kobject_set(task->itk_resume, (ipc_kobject_t)task, IKOT_TASK_RESUME);
+ }
+
+ port = task->itk_resume;
+ ip_lock(port);
+ assert(ip_active(port));
+
+ send = ipc_port_make_send_locked(port);
+ assert(IP_VALID(send));
+
+ if (port->ip_nsrequest == IP_NULL) {
+ ipc_port_nsrequest(port, port->ip_mscount, ipc_port_make_sonce_locked(port), &old_notify);
+ assert(old_notify == IP_NULL);
+ /* port unlocked */
+ } else {
+ ip_unlock(port);
+ }
+
+ /*
+ * place a legacy hold on the task.
+ */
+ kr = place_task_hold(task, TASK_HOLD_LEGACY);
+ if (kr != KERN_SUCCESS) {
+ task_unlock(task);
+ ipc_port_release_send(send);
+ return kr;
+ }
+
+ task_unlock(task);
+
+ /*
+ * Copyout the send right into the calling task's IPC space. It won't know it is there,
+ * but we'll look it up when calling a traditional resume. Any IPC operations that
+ * deallocate the send right will auto-release the suspension.
+ */
+ if ((kr = ipc_kmsg_copyout_object(current_task()->itk_space, (ipc_object_t)send,
+ MACH_MSG_TYPE_MOVE_SEND, &name)) != KERN_SUCCESS) {
+ printf("warning: %s(%d) failed to copyout suspension token for pid %d with error: %d\n",
+ proc_name_address(current_task()->bsd_info), proc_pid(current_task()->bsd_info),
+ task_pid(task), kr);
+ return (kr);
+ }
+
+ return (kr);
+}
+
+/*
+ * task_resume:
+ * Release a user hold on a task.
+ *
+ * Conditions:
+ * The caller holds a reference to the task
+ */
+kern_return_t
+task_resume(
+ task_t task)
+{
+ kern_return_t kr;
+ mach_port_name_t resume_port_name;
+ ipc_entry_t resume_port_entry;
+ ipc_space_t space = current_task()->itk_space;
+
+ if (task == TASK_NULL || task == kernel_task )
+ return (KERN_INVALID_ARGUMENT);
+
+ /* release a legacy task hold */
+ task_lock(task);
+ kr = release_task_hold(task, TASK_HOLD_LEGACY);
+ task_unlock(task);
+
+ is_write_lock(space);
+ if (is_active(space) && IP_VALID(task->itk_resume) &&
+ ipc_hash_lookup(space, (ipc_object_t)task->itk_resume, &resume_port_name, &resume_port_entry) == TRUE) {
+ /*
+ * We found a suspension token in the caller's IPC space. Release a send right to indicate that
+ * we are holding one less legacy hold on the task from this caller. If the release failed,
+ * go ahead and drop all the rights, as someone either already released our holds or the task
+ * is gone.
+ */
+ if (kr == KERN_SUCCESS)
+ ipc_right_dealloc(space, resume_port_name, resume_port_entry);
+ else
+ ipc_right_destroy(space, resume_port_name, resume_port_entry, FALSE, 0);
+ /* space unlocked */
+ } else {
+ is_write_unlock(space);
+ if (kr == KERN_SUCCESS)
+ printf("warning: %s(%d) performed out-of-band resume on pid %d\n",
+ proc_name_address(current_task()->bsd_info), proc_pid(current_task()->bsd_info),
+ task_pid(task));
+ }
+
+ return kr;
+}
+
+/*
+ * Suspend the target task.
+ * Making/holding a token/reference/port is the callers responsibility.
+ */
+kern_return_t
+task_suspend_internal(task_t task)
+{
+ kern_return_t kr;
+
+ if (task == TASK_NULL || task == kernel_task)
+ return (KERN_INVALID_ARGUMENT);
+
+ task_lock(task);
+ kr = place_task_hold(task, TASK_HOLD_NORMAL);
+ task_unlock(task);
+ return (kr);
+}
+
+/*
+ * Suspend the target task, and return a suspension token. The token
+ * represents a reference on the suspended task.
+ */
+kern_return_t
+task_suspend2(
+ task_t task,
+ task_suspension_token_t *suspend_token)
+{
+ kern_return_t kr;
+
+ kr = task_suspend_internal(task);
+ if (kr != KERN_SUCCESS) {
+ *suspend_token = TASK_NULL;
+ return (kr);
+ }
+
+ /*
+ * Take a reference on the target task and return that to the caller
+ * as a "suspension token," which can be converted into an SO right to
+ * the now-suspended task's resume port.
+ */
+ task_reference_internal(task);
+ *suspend_token = task;
+
+ return (KERN_SUCCESS);
+}
+
+/*
+ * Resume the task
+ * (reference/token/port management is caller's responsibility).
+ */
+kern_return_t
+task_resume_internal(
+ task_suspension_token_t task)
+{
+ kern_return_t kr;
+
+ if (task == TASK_NULL || task == kernel_task)
+ return (KERN_INVALID_ARGUMENT);
+
+ task_lock(task);
+ kr = release_task_hold(task, TASK_HOLD_NORMAL);
+ task_unlock(task);
+ return (kr);
+}
+
+/*
+ * Resume the task using a suspension token. Consumes the token's ref.
+ */
+kern_return_t
+task_resume2(
+ task_suspension_token_t task)
+{
+ kern_return_t kr;
+
+ kr = task_resume_internal(task);
+ task_suspension_token_deallocate(task);
+
+ return (kr);
+}
+
+boolean_t
+task_suspension_notify(mach_msg_header_t *request_header)
+{
+ ipc_port_t port = (ipc_port_t) request_header->msgh_remote_port;
+ task_t task = convert_port_to_task_suspension_token(port);
+ mach_msg_type_number_t not_count;
+
+ if (task == TASK_NULL || task == kernel_task)
+ return TRUE; /* nothing to do */
+
+ switch (request_header->msgh_id) {
+
+ case MACH_NOTIFY_SEND_ONCE:
+ /* release the hold held by this specific send-once right */
+ task_lock(task);
+ release_task_hold(task, TASK_HOLD_NORMAL);
+ task_unlock(task);
+ break;
+
+ case MACH_NOTIFY_NO_SENDERS:
+ not_count = ((mach_no_senders_notification_t *)request_header)->not_count;
+
+ task_lock(task);
+ ip_lock(port);
+ if (port->ip_mscount == not_count) {
+
+ /* release all the [remaining] outstanding legacy holds */
+ assert(port->ip_nsrequest == IP_NULL);
+ ip_unlock(port);
+ release_task_hold(task, TASK_HOLD_LEGACY_ALL);
+ task_unlock(task);
+
+ } else if (port->ip_nsrequest == IP_NULL) {
+ ipc_port_t old_notify;
+
+ task_unlock(task);
+ /* new send rights, re-arm notification at current make-send count */
+ ipc_port_nsrequest(port, port->ip_mscount, ipc_port_make_sonce_locked(port), &old_notify);
+ assert(old_notify == IP_NULL);
+ /* port unlocked */
+ } else {
+ ip_unlock(port);
+ task_unlock(task);
+ }
+ break;
+
+ default:
+ break;
+ }
+
+ task_suspension_token_deallocate(task); /* drop token reference */
+ return TRUE;
+}
+
+kern_return_t
+task_pidsuspend_locked(task_t task)
+{
+ kern_return_t kr;
+
+ if (task->pidsuspended) {
+ kr = KERN_FAILURE;
+ goto out;
+ }
+
+ task->pidsuspended = TRUE;
+
+ kr = place_task_hold(task, TASK_HOLD_PIDSUSPEND);
+ if (kr != KERN_SUCCESS) {
+ task->pidsuspended = FALSE;
+ }
+out:
+ return(kr);
+}
+
+
+/*
+ * task_pidsuspend:
+ *
+ * Suspends a task by placing a hold on its threads.
+ *
+ * Conditions:
+ * The caller holds a reference to the task
+ */
+kern_return_t
+task_pidsuspend(
+ task_t task)
+{
+ kern_return_t kr;
+
+ if (task == TASK_NULL || task == kernel_task)
+ return (KERN_INVALID_ARGUMENT);
+
+ task_lock(task);
+
+ kr = task_pidsuspend_locked(task);
+
+ task_unlock(task);
+
+ return (kr);
+}
+
+/*
+ * task_pidresume:
+ * Resumes a previously suspended task.
+ *
+ * Conditions:
+ * The caller holds a reference to the task
+ */
+kern_return_t
+task_pidresume(
+ task_t task)
+{
+ kern_return_t kr;
+
+ if (task == TASK_NULL || task == kernel_task)
+ return (KERN_INVALID_ARGUMENT);
+
+ task_lock(task);
+
+#if CONFIG_FREEZE
+
+ while (task->changing_freeze_state) {
+
+ assert_wait((event_t)&task->changing_freeze_state, THREAD_UNINT);
+ task_unlock(task);
+ thread_block(THREAD_CONTINUE_NULL);
+
+ task_lock(task);
+ }
+ task->changing_freeze_state = TRUE;
+#endif
+
+ kr = release_task_hold(task, TASK_HOLD_PIDSUSPEND);
+
+ task_unlock(task);
+
+#if CONFIG_FREEZE
+
+ task_lock(task);
+
+ if (kr == KERN_SUCCESS)
+ task->frozen = FALSE;
+ task->changing_freeze_state = FALSE;
+ thread_wakeup(&task->changing_freeze_state);
+
+ task_unlock(task);
+#endif
+
+ return (kr);
+}
+
+
+#if DEVELOPMENT || DEBUG
+
+extern void IOSleep(int);
+
+kern_return_t
+task_disconnect_page_mappings(task_t task)
+{
+ int n;
+
+ if (task == TASK_NULL || task == kernel_task)
+ return (KERN_INVALID_ARGUMENT);
+
+ /*
+ * this function is used to strip all of the mappings from
+ * the pmap for the specified task to force the task to
+ * re-fault all of the pages it is actively using... this
+ * allows us to approximate the true working set of the
+ * specified task. We only engage if at least 1 of the
+ * threads in the task is runnable, but we want to continuously
+ * sweep (at least for a while - I've arbitrarily set the limit at
+ * 100 sweeps to be re-looked at as we gain experience) to get a better
+ * view into what areas within a page are being visited (as opposed to only
+ * seeing the first fault of a page after the task becomes
+ * runnable)... in the future I may
+ * try to block until awakened by a thread in this task
+ * being made runnable, but for now we'll periodically poll from the
+ * user level debug tool driving the sysctl
+ */
+ for (n = 0; n < 100; n++) {
+ thread_t thread;
+ boolean_t runnable;
+ boolean_t do_unnest;
+ int page_count;
+
+ runnable = FALSE;
+ do_unnest = FALSE;
+
+ task_lock(task);
+
+ queue_iterate(&task->threads, thread, thread_t, task_threads) {
+
+ if (thread->state & TH_RUN) {
+ runnable = TRUE;
+ break;
+ }
+ }
+ if (n == 0)
+ task->task_disconnected_count++;
+
+ if (task->task_unnested == FALSE) {
+ if (runnable == TRUE) {
+ task->task_unnested = TRUE;
+ do_unnest = TRUE;
+ }
+ }
+ task_unlock(task);
+
+ if (runnable == FALSE)
+ break;
+
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_DISCONNECT_TASK_PAGE_MAPPINGS)) | DBG_FUNC_START,
+ task, do_unnest, task->task_disconnected_count, 0, 0);
+
+ page_count = vm_map_disconnect_page_mappings(task->map, do_unnest);
+
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_DISCONNECT_TASK_PAGE_MAPPINGS)) | DBG_FUNC_END,
+ task, page_count, 0, 0, 0);
+
+ if ((n % 5) == 4)
+ IOSleep(1);
+ }
+ return (KERN_SUCCESS);
+}
+
+#endif
+
+
+#if CONFIG_FREEZE
+
+/*
+ * task_freeze:
+ *
+ * Freeze a task.
+ *
+ * Conditions:
+ * The caller holds a reference to the task
+ */
+extern void vm_wake_compactor_swapper();
+extern queue_head_t c_swapout_list_head;
+
+kern_return_t
+task_freeze(
+ task_t task,
+ uint32_t *purgeable_count,
+ uint32_t *wired_count,
+ uint32_t *clean_count,
+ uint32_t *dirty_count,
+ uint32_t dirty_budget,
+ boolean_t *shared,
+ boolean_t walk_only)
+{
+ kern_return_t kr = KERN_SUCCESS;
+
+ if (task == TASK_NULL || task == kernel_task)
+ return (KERN_INVALID_ARGUMENT);
+
+ task_lock(task);
+
+ while (task->changing_freeze_state) {
+
+ assert_wait((event_t)&task->changing_freeze_state, THREAD_UNINT);
+ task_unlock(task);
+ thread_block(THREAD_CONTINUE_NULL);
+
+ task_lock(task);
+ }
+ if (task->frozen) {
+ task_unlock(task);
+ return (KERN_FAILURE);
+ }
+ task->changing_freeze_state = TRUE;
+
+ task_unlock(task);
+
+ if (walk_only) {
+ panic("task_freeze - walk_only == TRUE");
+ } else {
+ kr = vm_map_freeze(task->map, purgeable_count, wired_count, clean_count, dirty_count, dirty_budget, shared);
+ }
+
+ task_lock(task);
+
+ if (walk_only == FALSE && kr == KERN_SUCCESS)
+ task->frozen = TRUE;
+ task->changing_freeze_state = FALSE;
+ thread_wakeup(&task->changing_freeze_state);
+
+ task_unlock(task);
+
+ if (VM_CONFIG_COMPRESSOR_IS_PRESENT) {
+ vm_wake_compactor_swapper();
+ /*
+ * We do an explicit wakeup of the swapout thread here
+ * because the compact_and_swap routines don't have
+ * knowledge about these kind of "per-task packed c_segs"
+ * and so will not be evaluating whether we need to do
+ * a wakeup there.
+ */
+ thread_wakeup((event_t)&c_swapout_list_head);
+ }
+
+ return (kr);
+}
+
+/*
+ * task_thaw:
+ *
+ * Thaw a currently frozen task.
+ *
+ * Conditions:
+ * The caller holds a reference to the task
+ */
+kern_return_t
+task_thaw(
+ task_t task)
+{
+ if (task == TASK_NULL || task == kernel_task)
+ return (KERN_INVALID_ARGUMENT);
+
+ task_lock(task);
+
+ while (task->changing_freeze_state) {
+
+ assert_wait((event_t)&task->changing_freeze_state, THREAD_UNINT);
+ task_unlock(task);
+ thread_block(THREAD_CONTINUE_NULL);
+
+ task_lock(task);
+ }
+ if (!task->frozen) {
+ task_unlock(task);
+ return (KERN_FAILURE);
+ }
+ task->frozen = FALSE;
+
+ task_unlock(task);
+
+ return (KERN_SUCCESS);
+}
+
+#endif /* CONFIG_FREEZE */
+
+kern_return_t
+host_security_set_task_token(
+ host_security_t host_security,
+ task_t task,
+ security_token_t sec_token,
+ audit_token_t audit_token,
+ host_priv_t host_priv)
+{
+ ipc_port_t host_port;
+ kern_return_t kr;
+
+ if (task == TASK_NULL)
+ return(KERN_INVALID_ARGUMENT);
+
+ if (host_security == HOST_NULL)
+ return(KERN_INVALID_SECURITY);
+
+ task_lock(task);
+ task->sec_token = sec_token;
+ task->audit_token = audit_token;
+
+ task_unlock(task);
+
+ if (host_priv != HOST_PRIV_NULL) {
+ kr = host_get_host_priv_port(host_priv, &host_port);
+ } else {
+ kr = host_get_host_port(host_priv_self(), &host_port);
+ }
+ assert(kr == KERN_SUCCESS);
+ kr = task_set_special_port(task, TASK_HOST_PORT, host_port);
+ return(kr);
+}
+
+kern_return_t
+task_send_trace_memory(
+ task_t target_task,
+ __unused uint32_t pid,
+ __unused uint64_t uniqueid)
+{
+ kern_return_t kr = KERN_INVALID_ARGUMENT;
+ if (target_task == TASK_NULL)
+ return (KERN_INVALID_ARGUMENT);
+
+#if CONFIG_ATM
+ kr = atm_send_proc_inspect_notification(target_task,
+ pid,
+ uniqueid);
+
+#endif
+ return (kr);
+}
+/*
+ * This routine was added, pretty much exclusively, for registering the
+ * RPC glue vector for in-kernel short circuited tasks. Rather than
+ * removing it completely, I have only disabled that feature (which was
+ * the only feature at the time). It just appears that we are going to
+ * want to add some user data to tasks in the future (i.e. bsd info,
+ * task names, etc...), so I left it in the formal task interface.
+ */
+kern_return_t
+task_set_info(
+ task_t task,
+ task_flavor_t flavor,
+ __unused task_info_t task_info_in, /* pointer to IN array */
+ __unused mach_msg_type_number_t task_info_count)
+{
+ if (task == TASK_NULL)
+ return(KERN_INVALID_ARGUMENT);
+
+ switch (flavor) {
+
+#if CONFIG_ATM
+ case TASK_TRACE_MEMORY_INFO:
+ {
+ if (task_info_count != TASK_TRACE_MEMORY_INFO_COUNT)
+ return (KERN_INVALID_ARGUMENT);
+
+ assert(task_info_in != NULL);
+ task_trace_memory_info_t mem_info;
+ mem_info = (task_trace_memory_info_t) task_info_in;
+ kern_return_t kr = atm_register_trace_memory(task,
+ mem_info->user_memory_address,
+ mem_info->buffer_size);
+ return kr;
+ }
+
+#endif
+ default:
+ return (KERN_INVALID_ARGUMENT);
+ }
+ return (KERN_SUCCESS);
+}
+
+int radar_20146450 = 1;
+kern_return_t
+task_info(
+ task_t task,
+ task_flavor_t flavor,
+ task_info_t task_info_out,
+ mach_msg_type_number_t *task_info_count)
+{
+ kern_return_t error = KERN_SUCCESS;
+ mach_msg_type_number_t original_task_info_count;
+
+ if (task == TASK_NULL)
+ return (KERN_INVALID_ARGUMENT);
+
+ original_task_info_count = *task_info_count;
+ task_lock(task);
+
+ if ((task != current_task()) && (!task->active)) {
+ task_unlock(task);
+ return (KERN_INVALID_ARGUMENT);
+ }
+
+ switch (flavor) {
+
+ case TASK_BASIC_INFO_32:
+ case TASK_BASIC2_INFO_32:
+ {
+ task_basic_info_32_t basic_info;
+ vm_map_t map;
+ clock_sec_t secs;
+ clock_usec_t usecs;
+
+ if (*task_info_count < TASK_BASIC_INFO_32_COUNT) {
+ error = KERN_INVALID_ARGUMENT;
+ break;
+ }
+
+ basic_info = (task_basic_info_32_t)task_info_out;
+
+ map = (task == kernel_task)? kernel_map: task->map;
+ basic_info->virtual_size = (typeof(basic_info->virtual_size))map->size;
+ if (flavor == TASK_BASIC2_INFO_32) {
+ /*
+ * The "BASIC2" flavor gets the maximum resident
+ * size instead of the current resident size...
+ */
+ basic_info->resident_size = pmap_resident_max(map->pmap);
+ } else {
+ basic_info->resident_size = pmap_resident_count(map->pmap);
+ }
+ basic_info->resident_size *= PAGE_SIZE;
+
+ basic_info->policy = ((task != kernel_task)?
+ POLICY_TIMESHARE: POLICY_RR);
+ basic_info->suspend_count = task->user_stop_count;
+
+ absolutetime_to_microtime(task->total_user_time, &secs, &usecs);
+ basic_info->user_time.seconds =
+ (typeof(basic_info->user_time.seconds))secs;
+ basic_info->user_time.microseconds = usecs;
+
+ absolutetime_to_microtime(task->total_system_time, &secs, &usecs);
+ basic_info->system_time.seconds =
+ (typeof(basic_info->system_time.seconds))secs;
+ basic_info->system_time.microseconds = usecs;
+
+ *task_info_count = TASK_BASIC_INFO_32_COUNT;
+ break;
+ }
+
+ case TASK_BASIC_INFO_64:
+ {
+ task_basic_info_64_t basic_info;
+ vm_map_t map;
+ clock_sec_t secs;
+ clock_usec_t usecs;
+
+ if (*task_info_count < TASK_BASIC_INFO_64_COUNT) {
+ error = KERN_INVALID_ARGUMENT;
+ break;
+ }
+
+ basic_info = (task_basic_info_64_t)task_info_out;
+
+ map = (task == kernel_task)? kernel_map: task->map;
+ basic_info->virtual_size = map->size;
+ basic_info->resident_size =
+ (mach_vm_size_t)(pmap_resident_count(map->pmap))
+ * PAGE_SIZE_64;
+
+ basic_info->policy = ((task != kernel_task)?
+ POLICY_TIMESHARE: POLICY_RR);
+ basic_info->suspend_count = task->user_stop_count;
+
+ absolutetime_to_microtime(task->total_user_time, &secs, &usecs);
+ basic_info->user_time.seconds =
+ (typeof(basic_info->user_time.seconds))secs;
+ basic_info->user_time.microseconds = usecs;
+
+ absolutetime_to_microtime(task->total_system_time, &secs, &usecs);
+ basic_info->system_time.seconds =
+ (typeof(basic_info->system_time.seconds))secs;
+ basic_info->system_time.microseconds = usecs;
+
+ *task_info_count = TASK_BASIC_INFO_64_COUNT;
+ break;
+ }
+
+ case MACH_TASK_BASIC_INFO:
+ {
+ mach_task_basic_info_t basic_info;
+ vm_map_t map;
+ clock_sec_t secs;
+ clock_usec_t usecs;
+
+ if (*task_info_count < MACH_TASK_BASIC_INFO_COUNT) {
+ error = KERN_INVALID_ARGUMENT;
+ break;
+ }
+
+ basic_info = (mach_task_basic_info_t)task_info_out;
+
+ map = (task == kernel_task) ? kernel_map : task->map;
+
+ basic_info->virtual_size = map->size;
+
+ basic_info->resident_size =
+ (mach_vm_size_t)(pmap_resident_count(map->pmap));
+ basic_info->resident_size *= PAGE_SIZE_64;
+
+ basic_info->resident_size_max =
+ (mach_vm_size_t)(pmap_resident_max(map->pmap));
+ basic_info->resident_size_max *= PAGE_SIZE_64;
+
+ basic_info->policy = ((task != kernel_task) ?
+ POLICY_TIMESHARE : POLICY_RR);
+
+ basic_info->suspend_count = task->user_stop_count;
+
+ absolutetime_to_microtime(task->total_user_time, &secs, &usecs);
+ basic_info->user_time.seconds =
+ (typeof(basic_info->user_time.seconds))secs;
+ basic_info->user_time.microseconds = usecs;
+
+ absolutetime_to_microtime(task->total_system_time, &secs, &usecs);
+ basic_info->system_time.seconds =
+ (typeof(basic_info->system_time.seconds))secs;
+ basic_info->system_time.microseconds = usecs;
+
+ *task_info_count = MACH_TASK_BASIC_INFO_COUNT;
+ break;
+ }
+
+ case TASK_THREAD_TIMES_INFO:
+ {
+ task_thread_times_info_t times_info;
+ thread_t thread;
+
+ if (*task_info_count < TASK_THREAD_TIMES_INFO_COUNT) {
+ error = KERN_INVALID_ARGUMENT;
+ break;
+ }
+
+ times_info = (task_thread_times_info_t) task_info_out;
+ times_info->user_time.seconds = 0;
+ times_info->user_time.microseconds = 0;
+ times_info->system_time.seconds = 0;
+ times_info->system_time.microseconds = 0;
+
+
+ queue_iterate(&task->threads, thread, thread_t, task_threads) {
+ time_value_t user_time, system_time;
+
+ if (thread->options & TH_OPT_IDLE_THREAD)
+ continue;
+
+ thread_read_times(thread, &user_time, &system_time);
+
+ time_value_add(×_info->user_time, &user_time);
+ time_value_add(×_info->system_time, &system_time);
+ }
+
+ *task_info_count = TASK_THREAD_TIMES_INFO_COUNT;
+ break;
+ }
+
+ case TASK_ABSOLUTETIME_INFO:
+ {
+ task_absolutetime_info_t info;
+ thread_t thread;
+
+ if (*task_info_count < TASK_ABSOLUTETIME_INFO_COUNT) {
+ error = KERN_INVALID_ARGUMENT;
+ break;
+ }
+
+ info = (task_absolutetime_info_t)task_info_out;
+ info->threads_user = info->threads_system = 0;
+
+
+ info->total_user = task->total_user_time;
+ info->total_system = task->total_system_time;
+
+ queue_iterate(&task->threads, thread, thread_t, task_threads) {
+ uint64_t tval;
+ spl_t x;
+
+ if (thread->options & TH_OPT_IDLE_THREAD)
+ continue;
+
+ x = splsched();
+ thread_lock(thread);
+
+ tval = timer_grab(&thread->user_timer);
+ info->threads_user += tval;
+ info->total_user += tval;
+
+ tval = timer_grab(&thread->system_timer);
+ if (thread->precise_user_kernel_time) {
+ info->threads_system += tval;
+ info->total_system += tval;
+ } else {
+ /* system_timer may represent either sys or user */
+ info->threads_user += tval;
+ info->total_user += tval;
+ }
+
+ thread_unlock(thread);
+ splx(x);
+ }
+
+
+ *task_info_count = TASK_ABSOLUTETIME_INFO_COUNT;
+ break;
+ }
+
+ case TASK_DYLD_INFO:
+ {
+ task_dyld_info_t info;
+
+ /*
+ * We added the format field to TASK_DYLD_INFO output. For
+ * temporary backward compatibility, accept the fact that
+ * clients may ask for the old version - distinquished by the
+ * size of the expected result structure.
+ */
+#define TASK_LEGACY_DYLD_INFO_COUNT \
+ offsetof(struct task_dyld_info, all_image_info_format)/sizeof(natural_t)
+
+ if (*task_info_count < TASK_LEGACY_DYLD_INFO_COUNT) {
+ error = KERN_INVALID_ARGUMENT;
+ break;
+ }
+
+ info = (task_dyld_info_t)task_info_out;
+ info->all_image_info_addr = task->all_image_info_addr;
+ info->all_image_info_size = task->all_image_info_size;
+
+ /* only set format on output for those expecting it */
+ if (*task_info_count >= TASK_DYLD_INFO_COUNT) {
+ info->all_image_info_format = task_has_64BitAddr(task) ?
+ TASK_DYLD_ALL_IMAGE_INFO_64 :
+ TASK_DYLD_ALL_IMAGE_INFO_32 ;
+ *task_info_count = TASK_DYLD_INFO_COUNT;
+ } else {
+ *task_info_count = TASK_LEGACY_DYLD_INFO_COUNT;
+ }
+ break;
+ }
+
+ case TASK_EXTMOD_INFO:
+ {
+ task_extmod_info_t info;
+ void *p;
+
+ if (*task_info_count < TASK_EXTMOD_INFO_COUNT) {
+ error = KERN_INVALID_ARGUMENT;
+ break;
+ }
+
+ info = (task_extmod_info_t)task_info_out;
+
+ p = get_bsdtask_info(task);
+ if (p) {
+ proc_getexecutableuuid(p, info->task_uuid, sizeof(info->task_uuid));
+ } else {
+ bzero(info->task_uuid, sizeof(info->task_uuid));
+ }
+ info->extmod_statistics = task->extmod_statistics;
+ *task_info_count = TASK_EXTMOD_INFO_COUNT;
+
+ break;
+ }
+
+ case TASK_KERNELMEMORY_INFO:
+ {
+ task_kernelmemory_info_t tkm_info;
+ ledger_amount_t credit, debit;
+
+ if (*task_info_count < TASK_KERNELMEMORY_INFO_COUNT) {
+ error = KERN_INVALID_ARGUMENT;
+ break;
+ }
+
+ tkm_info = (task_kernelmemory_info_t) task_info_out;
+ tkm_info->total_palloc = 0;
+ tkm_info->total_pfree = 0;
+ tkm_info->total_salloc = 0;
+ tkm_info->total_sfree = 0;
+
+ if (task == kernel_task) {
+ /*
+ * All shared allocs/frees from other tasks count against
+ * the kernel private memory usage. If we are looking up
+ * info for the kernel task, gather from everywhere.
+ */
+ task_unlock(task);
+
+ /* start by accounting for all the terminated tasks against the kernel */
+ tkm_info->total_palloc = tasks_tkm_private.alloc + tasks_tkm_shared.alloc;
+ tkm_info->total_pfree = tasks_tkm_private.free + tasks_tkm_shared.free;
+
+ /* count all other task/thread shared alloc/free against the kernel */
+ lck_mtx_lock(&tasks_threads_lock);
+
+ /* XXX this really shouldn't be using the function parameter 'task' as a local var! */
+ queue_iterate(&tasks, task, task_t, tasks) {
+ if (task == kernel_task) {
+ if (ledger_get_entries(task->ledger,
+ task_ledgers.tkm_private, &credit,
+ &debit) == KERN_SUCCESS) {
+ tkm_info->total_palloc += credit;
+ tkm_info->total_pfree += debit;
+ }
+ }
+ if (!ledger_get_entries(task->ledger,
+ task_ledgers.tkm_shared, &credit, &debit)) {
+ tkm_info->total_palloc += credit;
+ tkm_info->total_pfree += debit;
+ }
+ }
+ lck_mtx_unlock(&tasks_threads_lock);
+ } else {
+ if (!ledger_get_entries(task->ledger,
+ task_ledgers.tkm_private, &credit, &debit)) {
+ tkm_info->total_palloc = credit;
+ tkm_info->total_pfree = debit;
+ }
+ if (!ledger_get_entries(task->ledger,
+ task_ledgers.tkm_shared, &credit, &debit)) {
+ tkm_info->total_salloc = credit;
+ tkm_info->total_sfree = debit;
+ }
+ task_unlock(task);
+ }
+
+ *task_info_count = TASK_KERNELMEMORY_INFO_COUNT;
+ return KERN_SUCCESS;
+ }
+
+ /* OBSOLETE */
+ case TASK_SCHED_FIFO_INFO:
+ {
+
+ if (*task_info_count < POLICY_FIFO_BASE_COUNT) {
+ error = KERN_INVALID_ARGUMENT;
+ break;
+ }
+
+ error = KERN_INVALID_POLICY;
+ break;
+ }
+
+ /* OBSOLETE */
+ case TASK_SCHED_RR_INFO:
+ {
+ policy_rr_base_t rr_base;
+ uint32_t quantum_time;
+ uint64_t quantum_ns;
+
+ if (*task_info_count < POLICY_RR_BASE_COUNT) {
+ error = KERN_INVALID_ARGUMENT;
+ break;
+ }
+
+ rr_base = (policy_rr_base_t) task_info_out;
+
+ if (task != kernel_task) {
+ error = KERN_INVALID_POLICY;
+ break;
+ }
+
+ rr_base->base_priority = task->priority;
+
+ quantum_time = SCHED(initial_quantum_size)(THREAD_NULL);
+ absolutetime_to_nanoseconds(quantum_time, &quantum_ns);
+
+ rr_base->quantum = (uint32_t)(quantum_ns / 1000 / 1000);
+
+ *task_info_count = POLICY_RR_BASE_COUNT;
+ break;
+ }
+
+ /* OBSOLETE */
+ case TASK_SCHED_TIMESHARE_INFO:
+ {
+ policy_timeshare_base_t ts_base;
+
+ if (*task_info_count < POLICY_TIMESHARE_BASE_COUNT) {
+ error = KERN_INVALID_ARGUMENT;
+ break;
+ }
+
+ ts_base = (policy_timeshare_base_t) task_info_out;
+
+ if (task == kernel_task) {
+ error = KERN_INVALID_POLICY;
+ break;
+ }
+
+ ts_base->base_priority = task->priority;
+
+ *task_info_count = POLICY_TIMESHARE_BASE_COUNT;
+ break;
+ }
+
+ case TASK_SECURITY_TOKEN:
+ {
+ security_token_t *sec_token_p;
+
+ if (*task_info_count < TASK_SECURITY_TOKEN_COUNT) {
+ error = KERN_INVALID_ARGUMENT;
+ break;
+ }
+
+ sec_token_p = (security_token_t *) task_info_out;
+
+ *sec_token_p = task->sec_token;
+
+ *task_info_count = TASK_SECURITY_TOKEN_COUNT;
+ break;
+ }
+
+ case TASK_AUDIT_TOKEN:
+ {
+ audit_token_t *audit_token_p;
+
+ if (*task_info_count < TASK_AUDIT_TOKEN_COUNT) {
+ error = KERN_INVALID_ARGUMENT;
+ break;
+ }
+
+ audit_token_p = (audit_token_t *) task_info_out;
+
+ *audit_token_p = task->audit_token;
+
+ *task_info_count = TASK_AUDIT_TOKEN_COUNT;
+ break;
+ }
+
+ case TASK_SCHED_INFO:
+ error = KERN_INVALID_ARGUMENT;
+ break;
+
+ case TASK_EVENTS_INFO:
+ {
+ task_events_info_t events_info;
+ thread_t thread;
+
+ if (*task_info_count < TASK_EVENTS_INFO_COUNT) {
+ error = KERN_INVALID_ARGUMENT;
+ break;
+ }
+
+ events_info = (task_events_info_t) task_info_out;
+
+
+ events_info->faults = task->faults;
+ events_info->pageins = task->pageins;
+ events_info->cow_faults = task->cow_faults;
+ events_info->messages_sent = task->messages_sent;
+ events_info->messages_received = task->messages_received;
+ events_info->syscalls_mach = task->syscalls_mach;
+ events_info->syscalls_unix = task->syscalls_unix;
+
+ events_info->csw = task->c_switch;
+
+ queue_iterate(&task->threads, thread, thread_t, task_threads) {
+ events_info->csw += thread->c_switch;
+ events_info->syscalls_mach += thread->syscalls_mach;
+ events_info->syscalls_unix += thread->syscalls_unix;
+ }
+
+
+ *task_info_count = TASK_EVENTS_INFO_COUNT;
+ break;
+ }
+ case TASK_AFFINITY_TAG_INFO:
+ {
+ if (*task_info_count < TASK_AFFINITY_TAG_INFO_COUNT) {
+ error = KERN_INVALID_ARGUMENT;
+ break;
+ }
+
+ error = task_affinity_info(task, task_info_out, task_info_count);
+ break;
+ }
+ case TASK_POWER_INFO:
+ {
+ if (*task_info_count < TASK_POWER_INFO_COUNT) {
+ error = KERN_INVALID_ARGUMENT;
+ break;
+ }
+
+ task_power_info_locked(task, (task_power_info_t)task_info_out, NULL, NULL);
+ break;
+ }
+
+ case TASK_POWER_INFO_V2:
+ {
+ if (*task_info_count < TASK_POWER_INFO_V2_COUNT) {
+ error = KERN_INVALID_ARGUMENT;
+ break;
+ }
+ task_power_info_v2_t tpiv2 = (task_power_info_v2_t) task_info_out;
+
+ uint64_t *task_energy = NULL;
+ task_power_info_locked(task, &tpiv2->cpu_energy, &tpiv2->gpu_energy, task_energy);
+ break;
+ }
+
+ case TASK_VM_INFO:
+ case TASK_VM_INFO_PURGEABLE:
+ {
+ task_vm_info_t vm_info;
+ vm_map_t map;
+
+ if (*task_info_count < TASK_VM_INFO_REV0_COUNT) {
+ error = KERN_INVALID_ARGUMENT;
+ break;
+ }
+
+ vm_info = (task_vm_info_t)task_info_out;
+
+ if (task == kernel_task) {
+ map = kernel_map;
+ /* no lock */
+ } else {
+ map = task->map;
+ vm_map_lock_read(map);
+ }
+
+ vm_info->virtual_size = (typeof(vm_info->virtual_size))map->size;
+ vm_info->region_count = map->hdr.nentries;
+ vm_info->page_size = vm_map_page_size(map);
+
+ vm_info->resident_size = pmap_resident_count(map->pmap);
+ vm_info->resident_size *= PAGE_SIZE;
+ vm_info->resident_size_peak = pmap_resident_max(map->pmap);
+ vm_info->resident_size_peak *= PAGE_SIZE;
+
+#define _VM_INFO(_name) \
+ vm_info->_name = ((mach_vm_size_t) map->pmap->stats._name) * PAGE_SIZE
+
+ _VM_INFO(device);
+ _VM_INFO(device_peak);
+ _VM_INFO(external);
+ _VM_INFO(external_peak);
+ _VM_INFO(internal);
+ _VM_INFO(internal_peak);
+ _VM_INFO(reusable);
+ _VM_INFO(reusable_peak);
+ _VM_INFO(compressed);
+ _VM_INFO(compressed_peak);
+ _VM_INFO(compressed_lifetime);
+
+ vm_info->purgeable_volatile_pmap = 0;
+ vm_info->purgeable_volatile_resident = 0;
+ vm_info->purgeable_volatile_virtual = 0;
+ if (task == kernel_task) {
+ /*
+ * We do not maintain the detailed stats for the
+ * kernel_pmap, so just count everything as
+ * "internal"...
+ */
+ vm_info->internal = vm_info->resident_size;
+ /*
+ * ... but since the memory held by the VM compressor
+ * in the kernel address space ought to be attributed
+ * to user-space tasks, we subtract it from "internal"
+ * to give memory reporting tools a more accurate idea
+ * of what the kernel itself is actually using, instead
+ * of making it look like the kernel is leaking memory
+ * when the system is under memory pressure.
+ */
+ vm_info->internal -= (VM_PAGE_COMPRESSOR_COUNT *
+ PAGE_SIZE);
+ } else {
+ mach_vm_size_t volatile_virtual_size;
+ mach_vm_size_t volatile_resident_size;
+ mach_vm_size_t volatile_compressed_size;
+ mach_vm_size_t volatile_pmap_size;
+ mach_vm_size_t volatile_compressed_pmap_size;
+ kern_return_t kr;
+
+ if (flavor == TASK_VM_INFO_PURGEABLE) {
+ kr = vm_map_query_volatile(
+ map,
+ &volatile_virtual_size,
+ &volatile_resident_size,
+ &volatile_compressed_size,
+ &volatile_pmap_size,
+ &volatile_compressed_pmap_size);
+ if (kr == KERN_SUCCESS) {
+ vm_info->purgeable_volatile_pmap =
+ volatile_pmap_size;
+ if (radar_20146450) {
+ vm_info->compressed -=
+ volatile_compressed_pmap_size;
+ }
+ vm_info->purgeable_volatile_resident =
+ volatile_resident_size;
+ vm_info->purgeable_volatile_virtual =
+ volatile_virtual_size;
+ }
+ }
+ }
+ *task_info_count = TASK_VM_INFO_REV0_COUNT;
+
+ if (original_task_info_count >= TASK_VM_INFO_REV1_COUNT) {
+ vm_info->phys_footprint =
+ (mach_vm_size_t) get_task_phys_footprint(task);
+ *task_info_count = TASK_VM_INFO_REV1_COUNT;
+ }
+ if (original_task_info_count >= TASK_VM_INFO_REV2_COUNT) {
+ vm_info->min_address = map->min_offset;
+ vm_info->max_address = map->max_offset;
+ *task_info_count = TASK_VM_INFO_REV2_COUNT;
+ }
+
+ if (task != kernel_task) {
+ vm_map_unlock_read(map);
+ }
+
+ break;
+ }
+
+ case TASK_WAIT_STATE_INFO:
+ {
+ /*
+ * Deprecated flavor. Currently allowing some results until all users
+ * stop calling it. The results may not be accurate.
+ */
+ task_wait_state_info_t wait_state_info;
+ uint64_t total_sfi_ledger_val = 0;
+
+ if (*task_info_count < TASK_WAIT_STATE_INFO_COUNT) {
+ error = KERN_INVALID_ARGUMENT;
+ break;
+ }
+
+ wait_state_info = (task_wait_state_info_t) task_info_out;
+
+ wait_state_info->total_wait_state_time = 0;
+ bzero(wait_state_info->_reserved, sizeof(wait_state_info->_reserved));
+
+#if CONFIG_SCHED_SFI
+ int i, prev_lentry = -1;
+ int64_t val_credit, val_debit;
+
+ for (i = 0; i < MAX_SFI_CLASS_ID; i++){
+ val_credit =0;
+ /*
+ * checking with prev_lentry != entry ensures adjacent classes
+ * which share the same ledger do not add wait times twice.
+ * Note: Use ledger() call to get data for each individual sfi class.
+ */
+ if (prev_lentry != task_ledgers.sfi_wait_times[i] &&
+ KERN_SUCCESS == ledger_get_entries(task->ledger,
+ task_ledgers.sfi_wait_times[i], &val_credit, &val_debit)) {
+ total_sfi_ledger_val += val_credit;
+ }
+ prev_lentry = task_ledgers.sfi_wait_times[i];
+ }
+
+#endif /* CONFIG_SCHED_SFI */
+ wait_state_info->total_wait_sfi_state_time = total_sfi_ledger_val;
+ *task_info_count = TASK_WAIT_STATE_INFO_COUNT;
+
+ break;
+ }
+ case TASK_VM_INFO_PURGEABLE_ACCOUNT:
+ {
+#if DEVELOPMENT || DEBUG
+ pvm_account_info_t acnt_info;
+
+ if (*task_info_count < PVM_ACCOUNT_INFO_COUNT) {
+ error = KERN_INVALID_ARGUMENT;
+ break;
+ }
+
+ if (task_info_out == NULL) {
+ error = KERN_INVALID_ARGUMENT;
+ break;
+ }
+
+ acnt_info = (pvm_account_info_t) task_info_out;
+
+ error = vm_purgeable_account(task, acnt_info);
+
+ *task_info_count = PVM_ACCOUNT_INFO_COUNT;
+
+ break;
+#else /* DEVELOPMENT || DEBUG */
+ error = KERN_NOT_SUPPORTED;
+ break;
+#endif /* DEVELOPMENT || DEBUG */
+ }
+ case TASK_FLAGS_INFO:
+ {
+ task_flags_info_t flags_info;
+
+ if (*task_info_count < TASK_FLAGS_INFO_COUNT) {
+ error = KERN_INVALID_ARGUMENT;
+ break;
+ }
+
+ flags_info = (task_flags_info_t)task_info_out;
+
+ /* only publish the 64-bit flag of the task */
+ flags_info->flags = task->t_flags & TF_64B_ADDR;
+
+ *task_info_count = TASK_FLAGS_INFO_COUNT;
+ break;
+ }
+
+ case TASK_DEBUG_INFO_INTERNAL:
+ {
+#if DEVELOPMENT || DEBUG
+ task_debug_info_internal_t dbg_info;
+ if (*task_info_count < TASK_DEBUG_INFO_INTERNAL_COUNT) {
+ error = KERN_NOT_SUPPORTED;
+ break;
+ }
+
+ if (task_info_out == NULL) {
+ error = KERN_INVALID_ARGUMENT;
+ break;
+ }
+ dbg_info = (task_debug_info_internal_t) task_info_out;
+ dbg_info->ipc_space_size = 0;
+ if (task->itk_space){
+ dbg_info->ipc_space_size = task->itk_space->is_table_size;
+ }
+
+ error = KERN_SUCCESS;
+ *task_info_count = TASK_DEBUG_INFO_INTERNAL_COUNT;
+ break;
+#else /* DEVELOPMENT || DEBUG */
+ error = KERN_NOT_SUPPORTED;
+ break;
+#endif /* DEVELOPMENT || DEBUG */
+ }
+ default:
+ error = KERN_INVALID_ARGUMENT;
+ }
+
+ task_unlock(task);
+ return (error);
+}
+
+/*
+ * task_power_info
+ *
+ * Returns power stats for the task.
+ * Note: Called with task locked.
+ */
+void
+task_power_info_locked(
+ task_t task,
+ task_power_info_t info,
+ gpu_energy_data_t ginfo,
+ uint64_t *task_energy)
+{
+ thread_t thread;
+ ledger_amount_t tmp;
+
+ task_lock_assert_owned(task);
+
+ ledger_get_entries(task->ledger, task_ledgers.interrupt_wakeups,
+ (ledger_amount_t *)&info->task_interrupt_wakeups, &tmp);
+ ledger_get_entries(task->ledger, task_ledgers.platform_idle_wakeups,
+ (ledger_amount_t *)&info->task_platform_idle_wakeups, &tmp);
+
+ info->task_timer_wakeups_bin_1 = task->task_timer_wakeups_bin_1;
+ info->task_timer_wakeups_bin_2 = task->task_timer_wakeups_bin_2;
+
+ info->total_user = task->total_user_time;
+ info->total_system = task->total_system_time;
+
+ if (task_energy) {
+ *task_energy = task->task_energy;
+ }
+
+ if (ginfo) {
+ ginfo->task_gpu_utilisation = task->task_gpu_ns;
+ }
+
+ queue_iterate(&task->threads, thread, thread_t, task_threads) {
+ uint64_t tval;
+ spl_t x;
+
+ if (thread->options & TH_OPT_IDLE_THREAD)
+ continue;
+
+ x = splsched();
+ thread_lock(thread);
+
+ info->task_timer_wakeups_bin_1 += thread->thread_timer_wakeups_bin_1;
+ info->task_timer_wakeups_bin_2 += thread->thread_timer_wakeups_bin_2;
+
+ if (task_energy) {
+ *task_energy += ml_energy_stat(thread);
+ }
+
+ tval = timer_grab(&thread->user_timer);
+ info->total_user += tval;
+
+ tval = timer_grab(&thread->system_timer);
+ if (thread->precise_user_kernel_time) {
+ info->total_system += tval;
+ } else {
+ /* system_timer may represent either sys or user */
+ info->total_user += tval;
+ }
+
+ if (ginfo) {
+ ginfo->task_gpu_utilisation += ml_gpu_stat(thread);
+ }
+ thread_unlock(thread);
+ splx(x);
+ }
+}
+
+/*
+ * task_gpu_utilisation
+ *
+ * Returns the total gpu time used by the all the threads of the task
+ * (both dead and alive)
+ */
+uint64_t
+task_gpu_utilisation(
+ task_t task)
+{
+ uint64_t gpu_time = 0;
+ thread_t thread;
+
+ task_lock(task);
+ gpu_time += task->task_gpu_ns;
+
+ queue_iterate(&task->threads, thread, thread_t, task_threads) {
+ spl_t x;
+ x = splsched();
+ thread_lock(thread);
+ gpu_time += ml_gpu_stat(thread);
+ thread_unlock(thread);
+ splx(x);
+ }
+
+ task_unlock(task);
+ return gpu_time;
+}
+
+/*
+ * task_energy
+ *
+ * Returns the total energy used by the all the threads of the task
+ * (both dead and alive)
+ */
+uint64_t
+task_energy(
+ task_t task)
+{
+ uint64_t energy = 0;
+ thread_t thread;
+
+ task_lock(task);
+ energy += task->task_energy;
+
+ queue_iterate(&task->threads, thread, thread_t, task_threads) {
+ spl_t x;
+ x = splsched();
+ thread_lock(thread);
+ energy += ml_energy_stat(thread);
+ thread_unlock(thread);
+ splx(x);
+ }
+
+ task_unlock(task);
+ return energy;
+}
+
+kern_return_t
+task_purgable_info(
+ task_t task,
+ task_purgable_info_t *stats)
+{
+ if (task == TASK_NULL || stats == NULL)
+ return KERN_INVALID_ARGUMENT;
+ /* Take task reference */
+ task_reference(task);
+ vm_purgeable_stats((vm_purgeable_info_t)stats, task);
+ /* Drop task reference */
+ task_deallocate(task);
+ return KERN_SUCCESS;
+}
+
+void
+task_vtimer_set(
+ task_t task,
+ integer_t which)
+{
+ thread_t thread;
+ spl_t x;
- if (task != cur_task) {
- return(KERN_INVALID_ARGUMENT);
- }
+ task_lock(task);
-#if TASK_SWAPPER
- /*
- * If task is not resident (swapped out, or being swapped
- * out), we want to bring it back in and make it unswappable.
- * This can block, so do it early.
- */
- task_swapin(task, TRUE); /* TRUE means make it unswappable */
-#endif /* TASK_SWAPPER */
+ task->vtimers |= which;
- task_lock(task);
+ switch (which) {
- if (!task->active || !cur_thr_act->active) {
- /*
- * Task or current thread is already being terminated.
- * Hurry up and return out of the current kernel context
- * so that we run our AST special handler to terminate
- * ourselves.
- */
- task_unlock(task);
- return(KERN_FAILURE);
- }
+ case TASK_VTIMER_USER:
+ queue_iterate(&task->threads, thread, thread_t, task_threads) {
+ x = splsched();
+ thread_lock(thread);
+ if (thread->precise_user_kernel_time)
+ thread->vtimer_user_save = timer_grab(&thread->user_timer);
+ else
+ thread->vtimer_user_save = timer_grab(&thread->system_timer);
+ thread_unlock(thread);
+ splx(x);
+ }
+ break;
- if (task->thr_act_count > 1) {
- /*
- * Mark all the threads to keep them from starting any more
- * user-level execution. The thread_terminate_internal code
- * would do this on a thread by thread basis anyway, but this
- * gives us a better chance of not having to wait there.
- */
- task_hold_locked(task);
+ case TASK_VTIMER_PROF:
+ queue_iterate(&task->threads, thread, thread_t, task_threads) {
+ x = splsched();
+ thread_lock(thread);
+ thread->vtimer_prof_save = timer_grab(&thread->user_timer);
+ thread->vtimer_prof_save += timer_grab(&thread->system_timer);
+ thread_unlock(thread);
+ splx(x);
+ }
+ break;
- /*
- * Terminate all the other activations in the task.
- *
- * Each terminated activation will run it's special handler
- * when its current kernel context is unwound. That will
- * clean up most of the thread resources. Then it will be
- * handed over to the reaper, who will finally remove the
- * thread from the task list and free the structures.
- */
- queue_iterate(&task->thr_acts, thr_act, thread_act_t,thr_acts) {
- if (thr_act != cur_thr_act)
- thread_terminate_internal(thr_act);
+ case TASK_VTIMER_RLIM:
+ queue_iterate(&task->threads, thread, thread_t, task_threads) {
+ x = splsched();
+ thread_lock(thread);
+ thread->vtimer_rlim_save = timer_grab(&thread->user_timer);
+ thread->vtimer_rlim_save += timer_grab(&thread->system_timer);
+ thread_unlock(thread);
+ splx(x);
}
- task_release_locked(task);
+ break;
}
- /*
- * If the current thread has any virtual machine state
- * associated with it, we need to explicitly clean that
- * up now (because we did not terminate the current act)
- * before we try to clean up the task VM and port spaces.
- */
- act_virtual_machine_destroy(cur_thr_act);
-
task_unlock(task);
+}
- /*
- * Destroy all synchronizers owned by the task.
- */
- task_synchronizer_destroy_all(task);
+void
+task_vtimer_clear(
+ task_t task,
+ integer_t which)
+{
+ assert(task == current_task());
- /*
- * Destroy the contents of the IPC space, leaving just
- * a reference for it.
- */
- if (!task->kernel_loaded)
- ipc_space_clean(task->itk_space);
+ task_lock(task);
- /*
- * Clean out the address space, as we are going to be
- * getting a new one.
- */
- (void) vm_map_remove(task->map,
- task->map->min_offset,
- task->map->max_offset, VM_MAP_NO_FLAGS);
+ task->vtimers &= ~which;
- return KERN_SUCCESS;
+ task_unlock(task);
}
-/*
- * task_hold_locked:
- *
- * Suspend execution of the specified task.
- * This is a recursive-style suspension of the task, a count of
- * suspends is maintained.
- *
- * CONDITIONS: the task is locked and active.
- */
void
-task_hold_locked(
- register task_t task)
+task_vtimer_update(
+__unused
+ task_t task,
+ integer_t which,
+ uint32_t *microsecs)
{
- register thread_act_t thr_act;
+ thread_t thread = current_thread();
+ uint32_t tdelt = 0;
+ clock_sec_t secs = 0;
+ uint64_t tsum;
- assert(task->active);
+ assert(task == current_task());
- if (task->suspend_count++ > 0)
+ spl_t s = splsched();
+ thread_lock(thread);
+
+ if ((task->vtimers & which) != (uint32_t)which) {
+ thread_unlock(thread);
+ splx(s);
return;
+ }
- /*
- * Iterate through all the thread_act's and hold them.
- */
- queue_iterate(&task->thr_acts, thr_act, thread_act_t, thr_acts) {
- act_lock_thread(thr_act);
- thread_hold(thr_act);
- act_unlock_thread(thr_act);
+ switch (which) {
+
+ case TASK_VTIMER_USER:
+ if (thread->precise_user_kernel_time) {
+ tdelt = (uint32_t)timer_delta(&thread->user_timer,
+ &thread->vtimer_user_save);
+ } else {
+ tdelt = (uint32_t)timer_delta(&thread->system_timer,
+ &thread->vtimer_user_save);
+ }
+ absolutetime_to_microtime(tdelt, &secs, microsecs);
+ break;
+
+ case TASK_VTIMER_PROF:
+ tsum = timer_grab(&thread->user_timer);
+ tsum += timer_grab(&thread->system_timer);
+ tdelt = (uint32_t)(tsum - thread->vtimer_prof_save);
+ absolutetime_to_microtime(tdelt, &secs, microsecs);
+ /* if the time delta is smaller than a usec, ignore */
+ if (*microsecs != 0)
+ thread->vtimer_prof_save = tsum;
+ break;
+
+ case TASK_VTIMER_RLIM:
+ tsum = timer_grab(&thread->user_timer);
+ tsum += timer_grab(&thread->system_timer);
+ tdelt = (uint32_t)(tsum - thread->vtimer_rlim_save);
+ thread->vtimer_rlim_save = tsum;
+ absolutetime_to_microtime(tdelt, &secs, microsecs);
+ break;
}
+
+ thread_unlock(thread);
+ splx(s);
}
/*
- * task_hold:
- *
- * Same as the internal routine above, except that is must lock
- * and verify that the task is active. This differs from task_suspend
- * in that it places a kernel hold on the task rather than just a
- * user-level hold. This keeps users from over resuming and setting
- * it running out from under the kernel.
+ * task_assign:
*
- * CONDITIONS: the caller holds a reference on the task
+ * Change the assigned processor set for the task
*/
kern_return_t
-task_hold(task_t task)
+task_assign(
+ __unused task_t task,
+ __unused processor_set_t new_pset,
+ __unused boolean_t assign_threads)
{
- kern_return_t kret;
-
- if (task == TASK_NULL)
- return (KERN_INVALID_ARGUMENT);
- task_lock(task);
- if (!task->active) {
- task_unlock(task);
- return (KERN_FAILURE);
- }
- task_hold_locked(task);
- task_unlock(task);
+ return(KERN_FAILURE);
+}
- return(KERN_SUCCESS);
+/*
+ * task_assign_default:
+ *
+ * Version of task_assign to assign to default processor set.
+ */
+kern_return_t
+task_assign_default(
+ task_t task,
+ boolean_t assign_threads)
+{
+ return (task_assign(task, &pset0, assign_threads));
}
/*
- * Routine: task_wait_locked
- * Wait for all threads in task to stop.
+ * task_get_assignment
*
- * Conditions:
- * Called with task locked, active, and held.
+ * Return name of processor set that task is assigned to.
*/
-void
-task_wait_locked(
- register task_t task)
+kern_return_t
+task_get_assignment(
+ task_t task,
+ processor_set_t *pset)
{
- register thread_act_t thr_act, cur_thr_act;
+ if (!task || !task->active)
+ return KERN_FAILURE;
- assert(task->active);
- assert(task->suspend_count > 0);
+ *pset = &pset0;
- cur_thr_act = current_act();
- /*
- * Iterate through all the thread's and wait for them to
- * stop. Do not wait for the current thread if it is within
- * the task.
- */
- queue_iterate(&task->thr_acts, thr_act, thread_act_t, thr_acts) {
- if (thr_act != cur_thr_act) {
- thread_shuttle_t thr_shuttle;
+ return KERN_SUCCESS;
+}
- thr_shuttle = act_lock_thread(thr_act);
- thread_wait(thr_shuttle);
- act_unlock_thread(thr_act);
- }
- }
+uint64_t
+get_task_dispatchqueue_offset(
+ task_t task)
+{
+ return task->dispatchqueue_offset;
}
/*
- * task_release_locked:
- *
- * Release a kernel hold on a task.
+ * task_policy
*
- * CONDITIONS: the task is locked and active
+ * Set scheduling policy and parameters, both base and limit, for
+ * the given task. Policy must be a policy which is enabled for the
+ * processor set. Change contained threads if requested.
*/
-void
-task_release_locked(
- register task_t task)
+kern_return_t
+task_policy(
+ __unused task_t task,
+ __unused policy_t policy_id,
+ __unused policy_base_t base,
+ __unused mach_msg_type_number_t count,
+ __unused boolean_t set_limit,
+ __unused boolean_t change)
{
- register thread_act_t thr_act;
+ return(KERN_FAILURE);
+}
- assert(task->active);
- assert(task->suspend_count > 0);
+/*
+ * task_set_policy
+ *
+ * Set scheduling policy and parameters, both base and limit, for
+ * the given task. Policy can be any policy implemented by the
+ * processor set, whether enabled or not. Change contained threads
+ * if requested.
+ */
+kern_return_t
+task_set_policy(
+ __unused task_t task,
+ __unused processor_set_t pset,
+ __unused policy_t policy_id,
+ __unused policy_base_t base,
+ __unused mach_msg_type_number_t base_count,
+ __unused policy_limit_t limit,
+ __unused mach_msg_type_number_t limit_count,
+ __unused boolean_t change)
+{
+ return(KERN_FAILURE);
+}
- if (--task->suspend_count > 0)
- return;
+kern_return_t
+task_set_ras_pc(
+ __unused task_t task,
+ __unused vm_offset_t pc,
+ __unused vm_offset_t endpc)
+{
+ return KERN_FAILURE;
+}
+void
+task_synchronizer_destroy_all(task_t task)
+{
/*
- * Iterate through all the thread_act's and hold them.
- * Do not hold the current thread_act if it is within the
- * task.
+ * Destroy owned semaphores
*/
- queue_iterate(&task->thr_acts, thr_act, thread_act_t, thr_acts) {
- act_lock_thread(thr_act);
- thread_release(thr_act);
- act_unlock_thread(thr_act);
- }
+ semaphore_destroy_all(task);
}
/*
- * task_release:
- *
- * Same as the internal routine above, except that it must lock
- * and verify that the task is active.
- *
- * CONDITIONS: The caller holds a reference to the task
+ * Install default (machine-dependent) initial thread state
+ * on the task. Subsequent thread creation will have this initial
+ * state set on the thread by machine_thread_inherit_taskwide().
+ * Flavors and structures are exactly the same as those to thread_set_state()
*/
-kern_return_t
-task_release(task_t task)
+kern_return_t
+task_set_state(
+ task_t task,
+ int flavor,
+ thread_state_t state,
+ mach_msg_type_number_t state_count)
{
- kern_return_t kret;
-
- if (task == TASK_NULL)
+ kern_return_t ret;
+
+ if (task == TASK_NULL) {
return (KERN_INVALID_ARGUMENT);
+ }
+
task_lock(task);
+
if (!task->active) {
task_unlock(task);
return (KERN_FAILURE);
}
- task_release_locked(task);
- task_unlock(task);
- return(KERN_SUCCESS);
+ ret = machine_task_set_state(task, flavor, state, state_count);
+
+ task_unlock(task);
+ return ret;
}
-kern_return_t
-task_threads(
- task_t task,
- thread_act_array_t *thr_act_list,
- mach_msg_type_number_t *count)
+/*
+ * Examine the default (machine-dependent) initial thread state
+ * on the task, as set by task_set_state(). Flavors and structures
+ * are exactly the same as those passed to thread_get_state().
+ */
+kern_return_t
+task_get_state(
+ task_t task,
+ int flavor,
+ thread_state_t state,
+ mach_msg_type_number_t *state_count)
{
- unsigned int actual; /* this many thr_acts */
- thread_act_t thr_act;
- thread_act_t *thr_acts;
- thread_t thread;
- int i, j;
+ kern_return_t ret;
- vm_size_t size, size_needed;
- vm_offset_t addr;
+ if (task == TASK_NULL) {
+ return (KERN_INVALID_ARGUMENT);
+ }
- if (task == TASK_NULL)
- return KERN_INVALID_ARGUMENT;
+ task_lock(task);
+
+ if (!task->active) {
+ task_unlock(task);
+ return (KERN_FAILURE);
+ }
- size = 0; addr = 0;
+ ret = machine_task_get_state(task, flavor, state, state_count);
- for (;;) {
- task_lock(task);
- if (!task->active) {
- task_unlock(task);
- if (size != 0)
- kfree(addr, size);
- return KERN_FAILURE;
- }
+ task_unlock(task);
+ return ret;
+}
- actual = task->thr_act_count;
+#if CONFIG_MEMORYSTATUS
+#define HWM_USERCORE_MINSPACE 250 // free space (in MB) required *after* core file creation
- /* do we have the memory we need? */
- size_needed = actual * sizeof(mach_port_t);
- if (size_needed <= size)
- break;
+void __attribute__((noinline))
+PROC_CROSSED_HIGH_WATERMARK__SEND_EXC_RESOURCE_AND_SUSPEND(int max_footprint_mb, boolean_t is_fatal)
+{
+ task_t task = current_task();
+ int pid = 0;
+ const char *procname = "unknown";
+ mach_exception_data_type_t code[EXCEPTION_CODE_MAX];
- /* unlock the task and allocate more memory */
- task_unlock(task);
+#ifdef MACH_BSD
+ pid = proc_selfpid();
- if (size != 0)
- kfree(addr, size);
+ if (pid == 1) {
+ /*
+ * Cannot have ReportCrash analyzing
+ * a suspended initproc.
+ */
+ return;
+ }
- assert(size_needed > 0);
- size = size_needed;
+ if (task->bsd_info != NULL)
+ procname = proc_name_address(current_task()->bsd_info);
+#endif
+#if CONFIG_COREDUMP
+ if (hwm_user_cores) {
+ int error;
+ uint64_t starttime, end;
+ clock_sec_t secs = 0;
+ uint32_t microsecs = 0;
+
+ starttime = mach_absolute_time();
+ /*
+ * Trigger a coredump of this process. Don't proceed unless we know we won't
+ * be filling up the disk; and ignore the core size resource limit for this
+ * core file.
+ */
+ if ((error = coredump(current_task()->bsd_info, HWM_USERCORE_MINSPACE, COREDUMP_IGNORE_ULIMIT)) != 0) {
+ printf("couldn't take coredump of %s[%d]: %d\n", procname, pid, error);
+ }
+ /*
+ * coredump() leaves the task suspended.
+ */
+ task_resume_internal(current_task());
+
+ end = mach_absolute_time();
+ absolutetime_to_microtime(end - starttime, &secs, µsecs);
+ printf("coredump of %s[%d] taken in %d secs %d microsecs\n",
+ proc_name_address(current_task()->bsd_info), pid, (int)secs, microsecs);
+ }
+#endif /* CONFIG_COREDUMP */
- addr = kalloc(size);
- if (addr == 0)
- return KERN_RESOURCE_SHORTAGE;
+ if (disable_exc_resource) {
+ printf("process %s[%d] crossed memory high watermark (%d MB); EXC_RESOURCE "
+ "supressed by a boot-arg.\n", procname, pid, max_footprint_mb);
+ return;
}
- /* OK, have memory and the task is locked & active */
- thr_acts = (thread_act_t *) addr;
+ /*
+ * A task that has triggered an EXC_RESOURCE, should not be
+ * jetsammed when the device is under memory pressure. Here
+ * we set the P_MEMSTAT_TERMINATED flag so that the process
+ * will be skipped if the memorystatus_thread wakes up.
+ */
+ proc_memstat_terminated(current_task()->bsd_info, TRUE);
+
+ printf("process %s[%d] crossed memory high watermark (%d MB); sending "
+ "EXC_RESOURCE.\n", procname, pid, max_footprint_mb);
- for (i = j = 0, thr_act = (thread_act_t) queue_first(&task->thr_acts);
- i < actual;
- i++, thr_act = (thread_act_t) queue_next(&thr_act->thr_acts)) {
- act_lock(thr_act);
- if (thr_act->ref_count > 0) {
- act_locked_act_reference(thr_act);
- thr_acts[j++] = thr_act;
+ code[0] = code[1] = 0;
+ EXC_RESOURCE_ENCODE_TYPE(code[0], RESOURCE_TYPE_MEMORY);
+ EXC_RESOURCE_ENCODE_FLAVOR(code[0], FLAVOR_HIGH_WATERMARK);
+ EXC_RESOURCE_HWM_ENCODE_LIMIT(code[0], max_footprint_mb);
+
+ /* Do not generate a corpse fork if the violation is a fatal one */
+ if (is_fatal || exc_via_corpse_forking == 0) {
+ /* Do not send a EXC_RESOURCE is corpse_for_fatal_memkill is set */
+ if (corpse_for_fatal_memkill == 0) {
+ /*
+ * Use the _internal_ variant so that no user-space
+ * process can resume our task from under us.
+ */
+ task_suspend_internal(task);
+ exception_triage(EXC_RESOURCE, code, EXCEPTION_CODE_MAX);
+ task_resume_internal(task);
}
- act_unlock(thr_act);
+ } else {
+ task_enqueue_exception_with_corpse(task, code, EXCEPTION_CODE_MAX);
}
- assert(queue_end(&task->thr_acts, (queue_entry_t) thr_act));
- actual = j;
- size_needed = actual * sizeof(mach_port_t);
+ /*
+ * After the EXC_RESOURCE has been handled, we must clear the
+ * P_MEMSTAT_TERMINATED flag so that the process can again be
+ * considered for jetsam if the memorystatus_thread wakes up.
+ */
+ proc_memstat_terminated(current_task()->bsd_info, FALSE); /* clear the flag */
+}
- /* can unlock task now that we've got the thr_act refs */
- task_unlock(task);
+/*
+ * Callback invoked when a task exceeds its physical footprint limit.
+ */
+void
+task_footprint_exceeded(int warning, __unused const void *param0, __unused const void *param1)
+{
+ ledger_amount_t max_footprint, max_footprint_mb;
+ task_t task;
+ boolean_t is_fatal;
+ boolean_t trigger_exception;
- if (actual == 0) {
- /* no thr_acts, so return null pointer and deallocate memory */
+ if (warning == LEDGER_WARNING_DIPPED_BELOW) {
+ /*
+ * Task memory limits only provide a warning on the way up.
+ */
+ return;
+ }
- *thr_act_list = 0;
- *count = 0;
+ task = current_task();
- if (size != 0)
- kfree(addr, size);
- } else {
- /* if we allocated too much, must copy */
+ ledger_get_limit(task->ledger, task_ledgers.phys_footprint, &max_footprint);
+ max_footprint_mb = max_footprint >> 20;
+
+ /*
+ * Capture the trigger exception flag before turning off the exception.
+ */
+ trigger_exception = task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PHYS_FOOTPRINT_EXCEPTION ? TRUE : FALSE;
- if (size_needed < size) {
- vm_offset_t newaddr;
+ is_fatal = memorystatus_turnoff_exception_and_get_fatalness((warning == LEDGER_WARNING_ROSE_ABOVE) ? TRUE : FALSE, (int)max_footprint_mb);
- newaddr = kalloc(size_needed);
- if (newaddr == 0) {
- for (i = 0; i < actual; i++)
- act_deallocate(thr_acts[i]);
- kfree(addr, size);
- return KERN_RESOURCE_SHORTAGE;
- }
+ /*
+ * If this an actual violation (not a warning),
+ * generate a non-fatal high watermark EXC_RESOURCE.
+ */
+ if ((warning == 0) && trigger_exception) {
+ PROC_CROSSED_HIGH_WATERMARK__SEND_EXC_RESOURCE_AND_SUSPEND((int)max_footprint_mb, is_fatal);
+ }
- bcopy((char *) addr, (char *) newaddr, size_needed);
- kfree(addr, size);
- thr_acts = (thread_act_t *) newaddr;
- }
+ memorystatus_on_ledger_footprint_exceeded((warning == LEDGER_WARNING_ROSE_ABOVE) ? TRUE : FALSE,
+ is_fatal);
+}
- *thr_act_list = thr_acts;
- *count = actual;
+extern int proc_check_footprint_priv(void);
- /* do the conversion that Mig should handle */
+kern_return_t
+task_set_phys_footprint_limit(
+ task_t task,
+ int new_limit_mb,
+ int *old_limit_mb)
+{
+ kern_return_t error;
- for (i = 0; i < actual; i++)
- ((ipc_port_t *) thr_acts)[i] =
- convert_act_to_port(thr_acts[i]);
+ if ((error = proc_check_footprint_priv())) {
+ return (KERN_NO_ACCESS);
}
- return KERN_SUCCESS;
+ return task_set_phys_footprint_limit_internal(task, new_limit_mb, old_limit_mb, FALSE);
}
-/*
- * Routine: task_suspend
- * Implement a user-level suspension on a task.
- *
- * Conditions:
- * The caller holds a reference to the task
- */
kern_return_t
-task_suspend(
- register task_t task)
+task_convert_phys_footprint_limit(
+ int limit_mb,
+ int *converted_limit_mb)
{
- if (task == TASK_NULL)
- return (KERN_INVALID_ARGUMENT);
+ if (limit_mb == -1) {
+ /*
+ * No limit
+ */
+ if (max_task_footprint != 0) {
+ *converted_limit_mb = (int)(max_task_footprint / 1024 / 1024); /* bytes to MB */
+ } else {
+ *converted_limit_mb = (int)(LEDGER_LIMIT_INFINITY >> 20);
+ }
+ } else {
+ /* nothing to convert */
+ *converted_limit_mb = limit_mb;
+ }
+ return (KERN_SUCCESS);
+}
- task_lock(task);
- if (!task->active) {
- task_unlock(task);
- return (KERN_FAILURE);
+
+kern_return_t
+task_set_phys_footprint_limit_internal(
+ task_t task,
+ int new_limit_mb,
+ int *old_limit_mb,
+ boolean_t trigger_exception)
+{
+ ledger_amount_t old;
+
+ ledger_get_limit(task->ledger, task_ledgers.phys_footprint, &old);
+
+ if (old_limit_mb) {
+ /*
+ * Check that limit >> 20 will not give an "unexpected" 32-bit
+ * result. There are, however, implicit assumptions that -1 mb limit
+ * equates to LEDGER_LIMIT_INFINITY.
+ */
+ assert(((old & 0xFFF0000000000000LL) == 0) || (old == LEDGER_LIMIT_INFINITY));
+ *old_limit_mb = (int)(old >> 20);
}
- if ((task->user_stop_count)++ > 0) {
+
+ if (new_limit_mb == -1) {
/*
- * If the stop count was positive, the task is
- * already stopped and we can exit.
+ * Caller wishes to remove the limit.
*/
- task_unlock(task);
+ ledger_set_limit(task->ledger, task_ledgers.phys_footprint,
+ max_task_footprint ? max_task_footprint : LEDGER_LIMIT_INFINITY,
+ max_task_footprint ? max_task_footprint_warning_level : 0);
return (KERN_SUCCESS);
}
- /*
- * Put a kernel-level hold on the threads in the task (all
- * user-level task suspensions added together represent a
- * single kernel-level hold). We then wait for the threads
- * to stop executing user code.
- */
- task_hold_locked(task);
- task_wait_locked(task);
+#ifdef CONFIG_NOMONITORS
+ return (KERN_SUCCESS);
+#endif /* CONFIG_NOMONITORS */
+
+ task_lock(task);
+
+ if (trigger_exception) {
+ task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_PHYS_FOOTPRINT_EXCEPTION;
+ } else {
+ task->rusage_cpu_flags &= ~TASK_RUSECPU_FLAGS_PHYS_FOOTPRINT_EXCEPTION;
+ }
+
+ ledger_set_limit(task->ledger, task_ledgers.phys_footprint,
+ (ledger_amount_t)new_limit_mb << 20, PHYS_FOOTPRINT_WARNING_LEVEL);
+
+ if (task == current_task()) {
+ ledger_check_new_balance(task->ledger, task_ledgers.phys_footprint);
+ }
+
task_unlock(task);
+
+ return (KERN_SUCCESS);
+}
+
+kern_return_t
+task_get_phys_footprint_limit(
+ task_t task,
+ int *limit_mb)
+{
+ ledger_amount_t limit;
+
+ ledger_get_limit(task->ledger, task_ledgers.phys_footprint, &limit);
+ /*
+ * Check that limit >> 20 will not give an "unexpected" signed, 32-bit
+ * result. There are, however, implicit assumptions that -1 mb limit
+ * equates to LEDGER_LIMIT_INFINITY.
+ */
+ assert(((limit & 0xFFF0000000000000LL) == 0) || (limit == LEDGER_LIMIT_INFINITY));
+ *limit_mb = (int)(limit >> 20);
+
return (KERN_SUCCESS);
}
+#else /* CONFIG_MEMORYSTATUS */
+kern_return_t
+task_set_phys_footprint_limit(
+ __unused task_t task,
+ __unused int new_limit_mb,
+ __unused int *old_limit_mb)
+{
+ return (KERN_FAILURE);
+}
+
+kern_return_t
+task_get_phys_footprint_limit(
+ __unused task_t task,
+ __unused int *limit_mb)
+{
+ return (KERN_FAILURE);
+}
+#endif /* CONFIG_MEMORYSTATUS */
/*
- * Routine: task_resume
- * Release a kernel hold on a task.
- *
- * Conditions:
- * The caller holds a reference to the task
+ * We need to export some functions to other components that
+ * are currently implemented in macros within the osfmk
+ * component. Just export them as functions of the same name.
*/
-kern_return_t
-task_resume(register task_t task)
+boolean_t is_kerneltask(task_t t)
{
- register boolean_t release;
+ if (t == kernel_task)
+ return (TRUE);
- if (task == TASK_NULL)
- return(KERN_INVALID_ARGUMENT);
+ return (FALSE);
+}
- release = FALSE;
- task_lock(task);
- if (!task->active) {
- task_unlock(task);
- return(KERN_FAILURE);
- }
- if (task->user_stop_count > 0) {
- if (--(task->user_stop_count) == 0)
- release = TRUE;
- }
- else {
- task_unlock(task);
- return(KERN_FAILURE);
- }
+boolean_t is_corpsetask(task_t t)
+{
+ return (task_is_a_corpse(t));
+}
- /*
- * Release the task if necessary.
- */
- if (release)
- task_release_locked(task);
+#undef current_task
+task_t current_task(void);
+task_t current_task(void)
+{
+ return (current_task_fast());
+}
- task_unlock(task);
- return(KERN_SUCCESS);
+#undef task_reference
+void task_reference(task_t task);
+void
+task_reference(
+ task_t task)
+{
+ if (task != TASK_NULL)
+ task_reference_internal(task);
}
-kern_return_t
-host_security_set_task_token(
- host_security_t host_security,
- task_t task,
- security_token_t sec_token,
- host_priv_t host_priv)
+/* defined in bsd/kern/kern_prot.c */
+extern int get_audit_token_pid(audit_token_t *audit_token);
+
+int task_pid(task_t task)
{
- kern_return_t kr;
+ if (task)
+ return get_audit_token_pid(&task->audit_token);
+ return -1;
+}
- if (task == TASK_NULL)
- return(KERN_INVALID_ARGUMENT);
- if (host_security == HOST_NULL)
- return(KERN_INVALID_SECURITY);
+/*
+ * This routine finds a thread in a task by its unique id
+ * Returns a referenced thread or THREAD_NULL if the thread was not found
+ *
+ * TODO: This is super inefficient - it's an O(threads in task) list walk!
+ * We should make a tid hash, or transition all tid clients to thread ports
+ *
+ * Precondition: No locks held (will take task lock)
+ */
+thread_t
+task_findtid(task_t task, uint64_t tid)
+{
+ thread_t self = current_thread();
+ thread_t found_thread = THREAD_NULL;
+ thread_t iter_thread = THREAD_NULL;
- task_lock(task);
- task->sec_token = sec_token;
- task_unlock(task);
+ /* Short-circuit the lookup if we're looking up ourselves */
+ if (tid == self->thread_id || tid == TID_NULL) {
+ assert(self->task == task);
- if (host_priv != HOST_PRIV_NULL) {
- kr = task_set_special_port(task,
- TASK_HOST_PORT,
- ipc_port_make_send(realhost.host_priv_self));
- } else {
- kr = task_set_special_port(task,
- TASK_HOST_PORT,
- ipc_port_make_send(realhost.host_self));
+ thread_reference(self);
+
+ return self;
}
- return(kr);
+
+ task_lock(task);
+
+ queue_iterate(&task->threads, iter_thread, thread_t, task_threads) {
+ if (iter_thread->thread_id == tid) {
+ found_thread = iter_thread;
+ thread_reference(found_thread);
+ break;
+ }
+ }
+
+ task_unlock(task);
+
+ return (found_thread);
}
+
/*
- * Utility routine to set a ledger
+ * Control the CPU usage monitor for a task.
*/
kern_return_t
-task_set_ledger(
- task_t task,
- ledger_t wired,
- ledger_t paged)
+task_cpu_usage_monitor_ctl(task_t task, uint32_t *flags)
{
- if (task == TASK_NULL)
- return(KERN_INVALID_ARGUMENT);
+ int error = KERN_SUCCESS;
- task_lock(task);
- if (wired) {
- ipc_port_release_send(task->wired_ledger_port);
- task->wired_ledger_port = ledger_copy(wired);
- }
- if (paged) {
- ipc_port_release_send(task->paged_ledger_port);
- task->paged_ledger_port = ledger_copy(paged);
- }
- task_unlock(task);
+ if (*flags & CPUMON_MAKE_FATAL) {
+ task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_FATAL_CPUMON;
+ } else {
+ error = KERN_INVALID_ARGUMENT;
+ }
- return(KERN_SUCCESS);
+ return error;
}
/*
- * This routine was added, pretty much exclusively, for registering the
- * RPC glue vector for in-kernel short circuited tasks. Rather than
- * removing it completely, I have only disabled that feature (which was
- * the only feature at the time). It just appears that we are going to
- * want to add some user data to tasks in the future (i.e. bsd info,
- * task names, etc...), so I left it in the formal task interface.
+ * Control the wakeups monitor for a task.
*/
kern_return_t
-task_set_info(
- task_t task,
- task_flavor_t flavor,
- task_info_t task_info_in, /* pointer to IN array */
- mach_msg_type_number_t task_info_count)
+task_wakeups_monitor_ctl(task_t task, uint32_t *flags, int32_t *rate_hz)
{
- vm_map_t map;
+ ledger_t ledger = task->ledger;
- if (task == TASK_NULL)
- return(KERN_INVALID_ARGUMENT);
+ task_lock(task);
+ if (*flags & WAKEMON_GET_PARAMS) {
+ ledger_amount_t limit;
+ uint64_t period;
- switch (flavor) {
- default:
- return (KERN_INVALID_ARGUMENT);
- }
- return (KERN_SUCCESS);
-}
+ ledger_get_limit(ledger, task_ledgers.interrupt_wakeups, &limit);
+ ledger_get_period(ledger, task_ledgers.interrupt_wakeups, &period);
-kern_return_t
-task_info(
- task_t task,
- task_flavor_t flavor,
- task_info_t task_info_out,
- mach_msg_type_number_t *task_info_count)
-{
- thread_t thread;
- vm_map_t map;
+ if (limit != LEDGER_LIMIT_INFINITY) {
+ /*
+ * An active limit means the wakeups monitor is enabled.
+ */
+ *rate_hz = (int32_t)(limit / (int64_t)(period / NSEC_PER_SEC));
+ *flags = WAKEMON_ENABLE;
+ if (task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_FATAL_WAKEUPSMON) {
+ *flags |= WAKEMON_MAKE_FATAL;
+ }
+ } else {
+ *flags = WAKEMON_DISABLE;
+ *rate_hz = -1;
+ }
- if (task == TASK_NULL)
- return(KERN_INVALID_ARGUMENT);
+ /*
+ * If WAKEMON_GET_PARAMS is present in flags, all other flags are ignored.
+ */
+ task_unlock(task);
+ return KERN_SUCCESS;
+ }
- switch (flavor) {
+ if (*flags & WAKEMON_ENABLE) {
+ if (*flags & WAKEMON_SET_DEFAULTS) {
+ *rate_hz = task_wakeups_monitor_rate;
+ }
- case TASK_BASIC_INFO:
- {
- register task_basic_info_t basic_info;
+#ifndef CONFIG_NOMONITORS
+ if (*flags & WAKEMON_MAKE_FATAL) {
+ task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_FATAL_WAKEUPSMON;
+ }
+#endif /* CONFIG_NOMONITORS */
- if (*task_info_count < TASK_BASIC_INFO_COUNT) {
- return(KERN_INVALID_ARGUMENT);
+ if (*rate_hz <= 0) {
+ task_unlock(task);
+ return KERN_INVALID_ARGUMENT;
}
- basic_info = (task_basic_info_t) task_info_out;
+#ifndef CONFIG_NOMONITORS
+ ledger_set_limit(ledger, task_ledgers.interrupt_wakeups, *rate_hz * task_wakeups_monitor_interval,
+ task_wakeups_monitor_ustackshots_trigger_pct);
+ ledger_set_period(ledger, task_ledgers.interrupt_wakeups, task_wakeups_monitor_interval * NSEC_PER_SEC);
+ ledger_enable_callback(ledger, task_ledgers.interrupt_wakeups);
+#endif /* CONFIG_NOMONITORS */
+ } else if (*flags & WAKEMON_DISABLE) {
+ /*
+ * Caller wishes to disable wakeups monitor on the task.
+ *
+ * Disable telemetry if it was triggered by the wakeups monitor, and
+ * remove the limit & callback on the wakeups ledger entry.
+ */
+#if CONFIG_TELEMETRY
+ telemetry_task_ctl_locked(task, TF_WAKEMON_WARNING, 0);
+#endif
+ ledger_disable_refill(ledger, task_ledgers.interrupt_wakeups);
+ ledger_disable_callback(ledger, task_ledgers.interrupt_wakeups);
+ }
- map = (task == kernel_task) ? kernel_map : task->map;
+ task_unlock(task);
+ return KERN_SUCCESS;
+}
- basic_info->virtual_size = map->size;
- basic_info->resident_size = pmap_resident_count(map->pmap)
- * PAGE_SIZE;
+void
+task_wakeups_rate_exceeded(int warning, __unused const void *param0, __unused const void *param1)
+{
+ if (warning == LEDGER_WARNING_ROSE_ABOVE) {
+#if CONFIG_TELEMETRY
+ /*
+ * This task is in danger of violating the wakeups monitor. Enable telemetry on this task
+ * so there are micro-stackshots available if and when EXC_RESOURCE is triggered.
+ */
+ telemetry_task_ctl(current_task(), TF_WAKEMON_WARNING, 1);
+#endif
+ return;
+ }
- task_lock(task);
- basic_info->policy = ((task != kernel_task)?
- POLICY_TIMESHARE: POLICY_RR);
- basic_info->suspend_count = task->user_stop_count;
- basic_info->user_time.seconds
- = task->total_user_time.seconds;
- basic_info->user_time.microseconds
- = task->total_user_time.microseconds;
- basic_info->system_time.seconds
- = task->total_system_time.seconds;
- basic_info->system_time.microseconds
- = task->total_system_time.microseconds;
- task_unlock(task);
+#if CONFIG_TELEMETRY
+ /*
+ * If the balance has dipped below the warning level (LEDGER_WARNING_DIPPED_BELOW) or
+ * exceeded the limit, turn telemetry off for the task.
+ */
+ telemetry_task_ctl(current_task(), TF_WAKEMON_WARNING, 0);
+#endif
- *task_info_count = TASK_BASIC_INFO_COUNT;
- break;
- }
+ if (warning == 0) {
+ SENDING_NOTIFICATION__THIS_PROCESS_IS_CAUSING_TOO_MANY_WAKEUPS();
+ }
+}
- case TASK_THREAD_TIMES_INFO:
- {
- register task_thread_times_info_t times_info;
- register thread_t thread;
- register thread_act_t thr_act;
+void __attribute__((noinline))
+SENDING_NOTIFICATION__THIS_PROCESS_IS_CAUSING_TOO_MANY_WAKEUPS(void)
+{
+ task_t task = current_task();
+ int pid = 0;
+ const char *procname = "unknown";
+ boolean_t fatal;
+ kern_return_t kr;
+#ifdef EXC_RESOURCE_MONITORS
+ mach_exception_data_type_t code[EXCEPTION_CODE_MAX];
+#endif /* EXC_RESOURCE_MONITORS */
+ struct ledger_entry_info lei;
- if (*task_info_count < TASK_THREAD_TIMES_INFO_COUNT) {
- return (KERN_INVALID_ARGUMENT);
- }
+#ifdef MACH_BSD
+ pid = proc_selfpid();
+ if (task->bsd_info != NULL)
+ procname = proc_name_address(current_task()->bsd_info);
+#endif
- times_info = (task_thread_times_info_t) task_info_out;
- times_info->user_time.seconds = 0;
- times_info->user_time.microseconds = 0;
- times_info->system_time.seconds = 0;
- times_info->system_time.microseconds = 0;
+ ledger_get_entry_info(task->ledger, task_ledgers.interrupt_wakeups, &lei);
- task_lock(task);
- queue_iterate(&task->thr_acts, thr_act,
- thread_act_t, thr_acts)
- {
- time_value_t user_time, system_time;
- spl_t s;
+ /*
+ * Disable the exception notification so we don't overwhelm
+ * the listener with an endless stream of redundant exceptions.
+ * TODO: detect whether another thread is already reporting the violation.
+ */
+ uint32_t flags = WAKEMON_DISABLE;
+ task_wakeups_monitor_ctl(task, &flags, NULL);
+
+ fatal = task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_FATAL_WAKEUPSMON;
+ trace_resource_violation(RMON_CPUWAKES_VIOLATED, &lei);
+ printf("process %s[%d] caught waking the CPU %llu times "
+ "over ~%llu seconds, averaging %llu wakes / second and "
+ "violating a %slimit of %llu wakes over %llu seconds.\n",
+ procname, pid,
+ lei.lei_balance, lei.lei_last_refill / NSEC_PER_SEC,
+ lei.lei_last_refill == 0 ? 0 :
+ (NSEC_PER_SEC * lei.lei_balance / lei.lei_last_refill),
+ fatal ? "FATAL " : "",
+ lei.lei_limit, lei.lei_refill_period / NSEC_PER_SEC);
+
+ kr = send_resource_violation(send_cpu_wakes_violation, task, &lei,
+ fatal ? kRNFatalLimitFlag : 0);
+ if (kr) {
+ printf("send_resource_violation(CPU wakes, ...): error %#x\n", kr);
+ }
- thread = act_lock_thread(thr_act);
+#ifdef EXC_RESOURCE_MONITORS
+ if (disable_exc_resource) {
+ printf("process %s[%d] caught causing excessive wakeups. EXC_RESOURCE "
+ "supressed by a boot-arg\n", procname, pid);
+ return;
+ }
+ if (audio_active) {
+ printf("process %s[%d] caught causing excessive wakeups. EXC_RESOURCE "
+ "supressed due to audio playback\n", procname, pid);
+ return;
+ }
+ if (lei.lei_last_refill == 0) {
+ printf("process %s[%d] caught causing excessive wakeups. EXC_RESOURCE "
+ "supressed due to lei.lei_last_refill = 0 \n", procname, pid);
+ }
- /* JMM - add logic to skip threads that have migrated
- * into this task?
- */
+ code[0] = code[1] = 0;
+ EXC_RESOURCE_ENCODE_TYPE(code[0], RESOURCE_TYPE_WAKEUPS);
+ EXC_RESOURCE_ENCODE_FLAVOR(code[0], FLAVOR_WAKEUPS_MONITOR);
+ EXC_RESOURCE_CPUMONITOR_ENCODE_WAKEUPS_PERMITTED(code[0],
+ NSEC_PER_SEC * lei.lei_limit / lei.lei_refill_period);
+ EXC_RESOURCE_CPUMONITOR_ENCODE_OBSERVATION_INTERVAL(code[0],
+ lei.lei_last_refill);
+ EXC_RESOURCE_CPUMONITOR_ENCODE_WAKEUPS_OBSERVED(code[1],
+ NSEC_PER_SEC * lei.lei_balance / lei.lei_last_refill);
+ exception_triage(EXC_RESOURCE, code, EXCEPTION_CODE_MAX);
+#endif /* EXC_RESOURCE_MONITORS */
+
+ if (fatal) {
+ task_terminate_internal(task);
+ }
+}
- assert(thread); /* Must have thread */
- s = splsched();
- thread_lock(thread);
+static boolean_t
+global_update_logical_writes(int64_t io_delta)
+{
+ int64_t old_count, new_count;
+ boolean_t needs_telemetry;
+
+ do {
+ new_count = old_count = global_logical_writes_count;
+ new_count += io_delta;
+ if (new_count >= io_telemetry_limit) {
+ new_count = 0;
+ needs_telemetry = TRUE;
+ } else {
+ needs_telemetry = FALSE;
+ }
+ } while(!OSCompareAndSwap64(old_count, new_count, &global_logical_writes_count));
+ return needs_telemetry;
+}
- thread_read_times(thread, &user_time, &system_time);
+void task_update_logical_writes(task_t task, uint32_t io_size, int flags, void *vp)
+{
+ int64_t io_delta = 0;
+ boolean_t needs_telemetry = FALSE;
- thread_unlock(thread);
- splx(s);
- act_unlock_thread(thr_act);
+ if ((!task) || (!io_size) || (!vp))
+ return;
+
+ KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_DATA_WRITE)) | DBG_FUNC_NONE,
+ task_pid(task), io_size, flags, (uintptr_t)VM_KERNEL_ADDRPERM(vp), 0);
+ DTRACE_IO4(logical_writes, struct task *, task, uint32_t, io_size, int, flags, vnode *, vp);
+ switch(flags) {
+ case TASK_WRITE_IMMEDIATE:
+ OSAddAtomic64(io_size, (SInt64 *)&(task->task_immediate_writes));
+ ledger_credit(task->ledger, task_ledgers.logical_writes, io_size);
+ break;
+ case TASK_WRITE_DEFERRED:
+ OSAddAtomic64(io_size, (SInt64 *)&(task->task_deferred_writes));
+ ledger_credit(task->ledger, task_ledgers.logical_writes, io_size);
+ break;
+ case TASK_WRITE_INVALIDATED:
+ OSAddAtomic64(io_size, (SInt64 *)&(task->task_invalidated_writes));
+ ledger_debit(task->ledger, task_ledgers.logical_writes, io_size);
+ break;
+ case TASK_WRITE_METADATA:
+ OSAddAtomic64(io_size, (SInt64 *)&(task->task_metadata_writes));
+ ledger_credit(task->ledger, task_ledgers.logical_writes, io_size);
+ break;
+ }
- time_value_add(×_info->user_time, &user_time);
- time_value_add(×_info->system_time, &system_time);
+ io_delta = (flags == TASK_WRITE_INVALIDATED) ? ((int64_t)io_size * -1ll) : ((int64_t)io_size);
+ if (io_telemetry_limit != 0) {
+ /* If io_telemetry_limit is 0, disable global updates and I/O telemetry */
+ needs_telemetry = global_update_logical_writes(io_delta);
+ if (needs_telemetry) {
+ act_set_io_telemetry_ast(current_thread());
}
- task_unlock(task);
+ }
+}
- *task_info_count = TASK_THREAD_TIMES_INFO_COUNT;
- break;
- }
+/*
+ * Control the I/O monitor for a task.
+ */
+kern_return_t
+task_io_monitor_ctl(task_t task, uint32_t *flags)
+{
+ ledger_t ledger = task->ledger;
- case TASK_SCHED_FIFO_INFO:
- {
+ task_lock(task);
+ if (*flags & IOMON_ENABLE) {
+ /* Configure the physical I/O ledger */
+ ledger_set_limit(ledger, task_ledgers.physical_writes, (task_iomon_limit_mb * 1024 * 1024), 0);
+ ledger_set_period(ledger, task_ledgers.physical_writes, (task_iomon_interval_secs * NSEC_PER_SEC));
+
+ /* Configure the logical I/O ledger */
+ ledger_set_limit(ledger, task_ledgers.logical_writes, (task_iomon_limit_mb * 1024 * 1024), 0);
+ ledger_set_period(ledger, task_ledgers.logical_writes, (task_iomon_interval_secs * NSEC_PER_SEC));
+
+ } else if (*flags & IOMON_DISABLE) {
+ /*
+ * Caller wishes to disable I/O monitor on the task.
+ */
+ ledger_disable_refill(ledger, task_ledgers.physical_writes);
+ ledger_disable_callback(ledger, task_ledgers.physical_writes);
+ ledger_disable_refill(ledger, task_ledgers.logical_writes);
+ ledger_disable_callback(ledger, task_ledgers.logical_writes);
+ }
- if (*task_info_count < POLICY_FIFO_BASE_COUNT)
- return(KERN_INVALID_ARGUMENT);
+ task_unlock(task);
+ return KERN_SUCCESS;
+}
- return(KERN_INVALID_POLICY);
- }
+void
+task_io_rate_exceeded(int warning, const void *param0, __unused const void *param1)
+{
+ if (warning == 0) {
+ SENDING_NOTIFICATION__THIS_PROCESS_IS_CAUSING_TOO_MUCH_IO((int)param0);
+ }
+}
- case TASK_SCHED_RR_INFO:
- {
- register policy_rr_base_t rr_base;
+void __attribute__((noinline)) SENDING_NOTIFICATION__THIS_PROCESS_IS_CAUSING_TOO_MUCH_IO(int flavor)
+{
+ int pid = 0;
+ task_t task = current_task();
+#ifdef EXC_RESOURCE_MONITORS
+ mach_exception_data_type_t code[EXCEPTION_CODE_MAX];
+#endif /* EXC_RESOURCE_MONITORS */
+ struct ledger_entry_info lei;
+ kern_return_t kr;
- if (*task_info_count < POLICY_RR_BASE_COUNT)
- return(KERN_INVALID_ARGUMENT);
+#ifdef MACH_BSD
+ pid = proc_selfpid();
+#endif
+ /*
+ * Get the ledger entry info. We need to do this before disabling the exception
+ * to get correct values for all fields.
+ */
+ switch(flavor) {
+ case FLAVOR_IO_PHYSICAL_WRITES:
+ ledger_get_entry_info(task->ledger, task_ledgers.physical_writes, &lei);
+ break;
+ case FLAVOR_IO_LOGICAL_WRITES:
+ ledger_get_entry_info(task->ledger, task_ledgers.logical_writes, &lei);
+ break;
+ }
- rr_base = (policy_rr_base_t) task_info_out;
+
+ /*
+ * Disable the exception notification so we don't overwhelm
+ * the listener with an endless stream of redundant exceptions.
+ * TODO: detect whether another thread is already reporting the violation.
+ */
+ uint32_t flags = IOMON_DISABLE;
+ task_io_monitor_ctl(task, &flags);
- task_lock(task);
- if (task != kernel_task) {
- task_unlock(task);
- return(KERN_INVALID_POLICY);
- }
+ if (flavor == FLAVOR_IO_LOGICAL_WRITES) {
+ trace_resource_violation(RMON_LOGWRITES_VIOLATED, &lei);
+ }
+ printf("process [%d] caught causing excessive I/O (flavor: %d). Task I/O: %lld MB. [Limit : %lld MB per %lld secs]\n",
+ pid, flavor, (lei.lei_balance / (1024 * 1024)), (lei.lei_limit / (1024 * 1024)), (lei.lei_refill_period / NSEC_PER_SEC));
- rr_base->base_priority = task->priority;
- task_unlock(task);
+ kr = send_resource_violation(send_disk_writes_violation, task, &lei, kRNFlagsNone);
+ if (kr) {
+ printf("send_resource_violation(disk_writes, ...): error %#x\n", kr);
+ }
- rr_base->quantum = tick / 1000;
+#ifdef EXC_RESOURCE_MONITORS
+ code[0] = code[1] = 0;
+ EXC_RESOURCE_ENCODE_TYPE(code[0], RESOURCE_TYPE_IO);
+ EXC_RESOURCE_ENCODE_FLAVOR(code[0], flavor);
+ EXC_RESOURCE_IO_ENCODE_INTERVAL(code[0], (lei.lei_refill_period / NSEC_PER_SEC));
+ EXC_RESOURCE_IO_ENCODE_LIMIT(code[0], (lei.lei_limit / (1024 * 1024)));
+ EXC_RESOURCE_IO_ENCODE_OBSERVED(code[1], (lei.lei_balance / (1024 * 1024)));
+ exception_triage(EXC_RESOURCE, code, EXCEPTION_CODE_MAX);
+#endif /* EXC_RESOURCE_MONITORS */
+}
+
+/* Placeholders for the task set/get voucher interfaces */
+kern_return_t
+task_get_mach_voucher(
+ task_t task,
+ mach_voucher_selector_t __unused which,
+ ipc_voucher_t *voucher)
+{
+ if (TASK_NULL == task)
+ return KERN_INVALID_TASK;
- *task_info_count = POLICY_RR_BASE_COUNT;
- break;
- }
+ *voucher = NULL;
+ return KERN_SUCCESS;
+}
- case TASK_SCHED_TIMESHARE_INFO:
- {
- register policy_timeshare_base_t ts_base;
+kern_return_t
+task_set_mach_voucher(
+ task_t task,
+ ipc_voucher_t __unused voucher)
+{
+ if (TASK_NULL == task)
+ return KERN_INVALID_TASK;
- if (*task_info_count < POLICY_TIMESHARE_BASE_COUNT)
- return(KERN_INVALID_ARGUMENT);
+ return KERN_SUCCESS;
+}
- ts_base = (policy_timeshare_base_t) task_info_out;
+kern_return_t
+task_swap_mach_voucher(
+ task_t task,
+ ipc_voucher_t new_voucher,
+ ipc_voucher_t *in_out_old_voucher)
+{
+ if (TASK_NULL == task)
+ return KERN_INVALID_TASK;
- task_lock(task);
- if (task == kernel_task) {
- task_unlock(task);
- return(KERN_INVALID_POLICY);
- }
+ *in_out_old_voucher = new_voucher;
+ return KERN_SUCCESS;
+}
- ts_base->base_priority = task->priority;
- task_unlock(task);
+void task_set_gpu_denied(task_t task, boolean_t denied)
+{
+ task_lock(task);
- *task_info_count = POLICY_TIMESHARE_BASE_COUNT;
- break;
- }
+ if (denied) {
+ task->t_flags |= TF_GPU_DENIED;
+ } else {
+ task->t_flags &= ~TF_GPU_DENIED;
+ }
- case TASK_SECURITY_TOKEN:
- {
- register security_token_t *sec_token_p;
+ task_unlock(task);
+}
- if (*task_info_count < TASK_SECURITY_TOKEN_COUNT) {
- return(KERN_INVALID_ARGUMENT);
- }
+boolean_t task_is_gpu_denied(task_t task)
+{
+ /* We don't need the lock to read this flag */
+ return (task->t_flags & TF_GPU_DENIED) ? TRUE : FALSE;
+}
- sec_token_p = (security_token_t *) task_info_out;
- task_lock(task);
- *sec_token_p = task->sec_token;
- task_unlock(task);
+uint64_t get_task_memory_region_count(task_t task)
+{
+ vm_map_t map;
+ map = (task == kernel_task) ? kernel_map: task->map;
+ return((uint64_t)get_map_nentries(map));
+}
- *task_info_count = TASK_SECURITY_TOKEN_COUNT;
- break;
- }
-
- case TASK_SCHED_INFO:
- return(KERN_INVALID_ARGUMENT);
+static void
+kdebug_trace_dyld_internal(uint32_t base_code,
+ struct dyld_kernel_image_info *info)
+{
+ static_assert(sizeof(info->uuid) >= 16);
+
+#if defined(__LP64__)
+ uint64_t *uuid = (uint64_t *)&(info->uuid);
+
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ KDBG_EVENTID(DBG_DYLD, DBG_DYLD_UUID, base_code), uuid[0],
+ uuid[1], info->load_addr,
+ (uint64_t)info->fsid.val[0] | ((uint64_t)info->fsid.val[1] << 32),
+ 0);
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ KDBG_EVENTID(DBG_DYLD, DBG_DYLD_UUID, base_code + 1),
+ (uint64_t)info->fsobjid.fid_objno |
+ ((uint64_t)info->fsobjid.fid_generation << 32),
+ 0, 0, 0, 0);
+#else /* defined(__LP64__) */
+ uint32_t *uuid = (uint32_t *)&(info->uuid);
+
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ KDBG_EVENTID(DBG_DYLD, DBG_DYLD_UUID, base_code + 2), uuid[0],
+ uuid[1], uuid[2], uuid[3], 0);
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ KDBG_EVENTID(DBG_DYLD, DBG_DYLD_UUID, base_code + 3),
+ (uint32_t)info->load_addr, info->fsid.val[0], info->fsid.val[1],
+ info->fsobjid.fid_objno, 0);
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ KDBG_EVENTID(DBG_DYLD, DBG_DYLD_UUID, base_code + 4),
+ info->fsobjid.fid_generation, 0, 0, 0, 0);
+#endif /* !defined(__LP64__) */
+}
- case TASK_EVENTS_INFO:
- {
- register task_events_info_t events_info;
+static kern_return_t
+kdebug_trace_dyld(task_t task, uint32_t base_code,
+ vm_map_copy_t infos_copy, mach_msg_type_number_t infos_len)
+{
+ kern_return_t kr;
+ dyld_kernel_image_info_array_t infos;
+ vm_map_offset_t map_data;
+ vm_offset_t data;
- if (*task_info_count < TASK_EVENTS_INFO_COUNT) {
- return(KERN_INVALID_ARGUMENT);
- }
+ assert(infos_copy != NULL);
- events_info = (task_events_info_t) task_info_out;
+ if (task == NULL || task != current_task()) {
+ return KERN_INVALID_TASK;
+ }
- task_lock(task);
- events_info->faults = task->faults;
- events_info->pageins = task->pageins;
- events_info->cow_faults = task->cow_faults;
- events_info->messages_sent = task->messages_sent;
- events_info->messages_received = task->messages_received;
- events_info->syscalls_mach = task->syscalls_mach;
- events_info->syscalls_unix = task->syscalls_unix;
- events_info->csw = task->csw;
- task_unlock(task);
+ kr = vm_map_copyout(ipc_kernel_map, &map_data, (vm_map_copy_t)infos_copy);
+ if (kr != KERN_SUCCESS) {
+ return kr;
+ }
- *task_info_count = TASK_EVENTS_INFO_COUNT;
- break;
- }
+ infos = CAST_DOWN(dyld_kernel_image_info_array_t, map_data);
- default:
- return (KERN_INVALID_ARGUMENT);
+ for (mach_msg_type_number_t i = 0; i < infos_len; i++) {
+ kdebug_trace_dyld_internal(base_code, &(infos[i]));
}
- return(KERN_SUCCESS);
+ data = CAST_DOWN(vm_offset_t, map_data);
+ mach_vm_deallocate(ipc_kernel_map, data, infos_len * sizeof(infos[0]));
+ return KERN_SUCCESS;
}
-/*
- * task_assign:
- *
- * Change the assigned processor set for the task
- */
kern_return_t
-task_assign(
- task_t task,
- processor_set_t new_pset,
- boolean_t assign_threads)
+task_register_dyld_image_infos(task_t task,
+ dyld_kernel_image_info_array_t infos_copy,
+ mach_msg_type_number_t infos_len)
{
-#ifdef lint
- task++; new_pset++; assign_threads++;
-#endif /* lint */
- return(KERN_FAILURE);
+ return kdebug_trace_dyld(task, DBG_DYLD_UUID_MAP_A,
+ (vm_map_copy_t)infos_copy, infos_len);
}
-/*
- * task_assign_default:
- *
- * Version of task_assign to assign to default processor set.
- */
kern_return_t
-task_assign_default(
- task_t task,
- boolean_t assign_threads)
+task_unregister_dyld_image_infos(task_t task,
+ dyld_kernel_image_info_array_t infos_copy,
+ mach_msg_type_number_t infos_len)
{
- return (task_assign(task, &default_pset, assign_threads));
+ return kdebug_trace_dyld(task, DBG_DYLD_UUID_UNMAP_A,
+ (vm_map_copy_t)infos_copy, infos_len);
}
-/*
- * task_get_assignment
- *
- * Return name of processor set that task is assigned to.
- */
kern_return_t
-task_get_assignment(
- task_t task,
- processor_set_t *pset)
+task_get_dyld_image_infos(__unused task_t task,
+ __unused dyld_kernel_image_info_array_t * dyld_images,
+ __unused mach_msg_type_number_t * dyld_imagesCnt)
{
- if (!task->active)
- return(KERN_FAILURE);
-
- *pset = task->processor_set;
- pset_reference(*pset);
- return(KERN_SUCCESS);
+ return KERN_NOT_SUPPORTED;
}
+kern_return_t
+task_register_dyld_shared_cache_image_info(task_t task,
+ dyld_kernel_image_info_t cache_img,
+ __unused boolean_t no_cache,
+ __unused boolean_t private_cache)
+{
+ if (task == NULL || task != current_task()) {
+ return KERN_INVALID_TASK;
+ }
+
+ kdebug_trace_dyld_internal(DBG_DYLD_UUID_SHARED_CACHE_A, &cache_img);
+ return KERN_SUCCESS;
+}
-/*
- * task_policy
- *
- * Set scheduling policy and parameters, both base and limit, for
- * the given task. Policy must be a policy which is enabled for the
- * processor set. Change contained threads if requested.
- */
kern_return_t
-task_policy(
- task_t task,
- policy_t policy_id,
- policy_base_t base,
- mach_msg_type_number_t count,
- boolean_t set_limit,
- boolean_t change)
+task_register_dyld_set_dyld_state(__unused task_t task,
+ __unused uint8_t dyld_state)
{
- return(KERN_FAILURE);
+ return KERN_NOT_SUPPORTED;
}
-/*
- * task_set_policy
- *
- * Set scheduling policy and parameters, both base and limit, for
- * the given task. Policy can be any policy implemented by the
- * processor set, whether enabled or not. Change contained threads
- * if requested.
- */
kern_return_t
-task_set_policy(
- task_t task,
- processor_set_t pset,
- policy_t policy_id,
- policy_base_t base,
- mach_msg_type_number_t base_count,
- policy_limit_t limit,
- mach_msg_type_number_t limit_count,
- boolean_t change)
+task_register_dyld_get_process_state(__unused task_t task,
+ __unused dyld_kernel_process_info_t * dyld_process_state)
{
- return(KERN_FAILURE);
+ return KERN_NOT_SUPPORTED;
}
-/*
- * task_collect_scan:
- *
- * Attempt to free resources owned by tasks.
- */
+#if CONFIG_SECLUDED_MEMORY
+int num_tasks_can_use_secluded_mem = 0;
void
-task_collect_scan(void)
+task_set_can_use_secluded_mem(
+ task_t task,
+ boolean_t can_use_secluded_mem)
{
- register task_t task, prev_task;
- processor_set_t pset = &default_pset;
-
- pset_lock(pset);
- pset->ref_count++;
- task = (task_t) queue_first(&pset->tasks);
- while (!queue_end(&pset->tasks, (queue_entry_t) task)) {
- task_lock(task);
- if (task->ref_count > 0) {
-
- task_reference_locked(task);
- task_unlock(task);
-
-#if MACH_HOST
- /*
- * While we still have the pset locked, freeze the task in
- * this pset. That way, when we get back from collecting
- * it, we can dereference the pset_tasks chain for the task
- * and be assured that we are still in this chain.
- */
- task_freeze(task);
-#endif
-
- pset_unlock(pset);
-
- pmap_collect(task->map->pmap);
-
- pset_lock(pset);
- prev_task = task;
- task = (task_t) queue_next(&task->pset_tasks);
-
-#if MACH_HOST
- task_unfreeze(prev_task);
-#endif
-
- task_deallocate(prev_task);
- } else {
- task_unlock(task);
- task = (task_t) queue_next(&task->pset_tasks);
- }
+ if (!task->task_could_use_secluded_mem) {
+ return;
}
-
- pset_unlock(pset);
-
- pset_deallocate(pset);
+ task_lock(task);
+ task_set_can_use_secluded_mem_locked(task, can_use_secluded_mem);
+ task_unlock(task);
}
-/* Also disabled in vm/vm_pageout.c */
-boolean_t task_collect_allowed = FALSE;
-unsigned task_collect_last_tick = 0;
-unsigned task_collect_max_rate = 0; /* in ticks */
-
-/*
- * consider_task_collect:
- *
- * Called by the pageout daemon when the system needs more free pages.
- */
-
void
-consider_task_collect(void)
+task_set_can_use_secluded_mem_locked(
+ task_t task,
+ boolean_t can_use_secluded_mem)
{
- /*
- * By default, don't attempt task collection more frequently
- * than once per second.
- */
-
- if (task_collect_max_rate == 0)
- task_collect_max_rate = (1 << SCHED_TICK_SHIFT) + 1;
-
- if (task_collect_allowed &&
- (sched_tick > (task_collect_last_tick + task_collect_max_rate))) {
- task_collect_last_tick = sched_tick;
- task_collect_scan();
+ assert(task->task_could_use_secluded_mem);
+ if (can_use_secluded_mem &&
+ secluded_for_apps && /* global boot-arg */
+ !task->task_can_use_secluded_mem) {
+ assert(num_tasks_can_use_secluded_mem >= 0);
+ OSAddAtomic(+1,
+ (volatile SInt32 *)&num_tasks_can_use_secluded_mem);
+ task->task_can_use_secluded_mem = TRUE;
+ } else if (!can_use_secluded_mem &&
+ task->task_can_use_secluded_mem) {
+ assert(num_tasks_can_use_secluded_mem > 0);
+ OSAddAtomic(-1,
+ (volatile SInt32 *)&num_tasks_can_use_secluded_mem);
+ task->task_can_use_secluded_mem = FALSE;
}
}
-kern_return_t
-task_set_ras_pc(
- task_t task,
- vm_offset_t pc,
- vm_offset_t endpc)
+void
+task_set_could_use_secluded_mem(
+ task_t task,
+ boolean_t could_use_secluded_mem)
{
-#if FAST_TAS
- extern int fast_tas_debug;
-
- if (fast_tas_debug) {
- printf("task 0x%x: setting fast_tas to [0x%x, 0x%x]\n",
- task, pc, endpc);
- }
- task_lock(task);
- task->fast_tas_base = pc;
- task->fast_tas_end = endpc;
- task_unlock(task);
- return KERN_SUCCESS;
-
-#else /* FAST_TAS */
-#ifdef lint
- task++;
- pc++;
- endpc++;
-#endif /* lint */
-
- return KERN_FAILURE;
-
-#endif /* FAST_TAS */
+ task->task_could_use_secluded_mem = could_use_secluded_mem;
}
void
-task_synchronizer_destroy_all(task_t task)
+task_set_could_also_use_secluded_mem(
+ task_t task,
+ boolean_t could_also_use_secluded_mem)
{
- semaphore_t semaphore;
- lock_set_t lock_set;
-
- /*
- * Destroy owned semaphores
- */
-
- while (!queue_empty(&task->semaphore_list)) {
- semaphore = (semaphore_t) queue_first(&task->semaphore_list);
- (void) semaphore_destroy(task, semaphore);
- }
-
- /*
- * Destroy owned lock sets
- */
-
- while (!queue_empty(&task->lock_set_list)) {
- lock_set = (lock_set_t) queue_first(&task->lock_set_list);
- (void) lock_set_destroy(task, lock_set);
- }
+ task->task_could_also_use_secluded_mem = could_also_use_secluded_mem;
}
-/*
- * task_set_port_space:
- *
- * Set port name space of task to specified size.
- */
-
-kern_return_t
-task_set_port_space(
- task_t task,
- int table_entries)
+boolean_t
+task_can_use_secluded_mem(
+ task_t task)
{
- kern_return_t kr;
-
- is_write_lock(task->itk_space);
- kr = ipc_entry_grow_table(task->itk_space, table_entries);
- if (kr == KERN_SUCCESS)
- is_write_unlock(task->itk_space);
- return kr;
+ if (task->task_can_use_secluded_mem) {
+ assert(task->task_could_use_secluded_mem);
+ assert(num_tasks_can_use_secluded_mem > 0);
+ return TRUE;
+ }
+ if (task->task_could_also_use_secluded_mem &&
+ num_tasks_can_use_secluded_mem > 0) {
+ assert(num_tasks_can_use_secluded_mem > 0);
+ return TRUE;
+ }
+ return FALSE;
}
-/*
- * We need to export some functions to other components that
- * are currently implemented in macros within the osfmk
- * component. Just export them as functions of the same name.
- */
-boolean_t is_kerneltask(task_t t)
+boolean_t
+task_could_use_secluded_mem(
+ task_t task)
{
- if (t == kernel_task)
- return(TRUE);
- else
- return((t->kernel_loaded));
+ return task->task_could_use_secluded_mem;
}
+#endif /* CONFIG_SECLUDED_MEMORY */
-#undef current_task
-task_t current_task()
+queue_head_t *
+task_io_user_clients(task_t task)
{
- return (current_task_fast());
+ return (&task->io_user_clients);
}