/*
- * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
- *
- * @APPLE_LICENSE_HEADER_START@
- *
- * The contents of this file constitute Original Code as defined in and
- * are subject to the Apple Public Source License Version 1.1 (the
- * "License"). You may not use this file except in compliance with the
- * License. Please obtain a copy of the License at
- * http://www.apple.com/publicsource and read it before using this file.
- *
- * This Original Code and all software distributed under the License are
- * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * Copyright (c) 2000-2009 Apple Inc. All rights reserved.
+ *
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
+ *
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
+ *
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
- * License for the specific language governing rights and limitations
- * under the License.
- *
- * @APPLE_LICENSE_HEADER_END@
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
+ *
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_COPYRIGHT@
*/
-/*
+/*
* Mach Operating System
* Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
* All Rights Reserved.
- *
+ *
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
- *
+ *
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
- *
+ *
* Carnegie Mellon requests users of this software to return to
- *
+ *
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
- *
+ *
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
* Resident memory management module.
*/
+#include <debug.h>
+#include <libkern/OSAtomic.h>
+#include <libkern/OSDebug.h>
+
#include <mach/clock_types.h>
#include <mach/vm_prot.h>
#include <mach/vm_statistics.h>
+#include <mach/sdt.h>
#include <kern/counters.h>
#include <kern/sched_prim.h>
+#include <kern/policy_internal.h>
#include <kern/task.h>
#include <kern/thread.h>
+#include <kern/kalloc.h>
#include <kern/zalloc.h>
#include <kern/xpr.h>
+#include <kern/ledger.h>
#include <vm/pmap.h>
#include <vm/vm_init.h>
#include <vm/vm_map.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
-#include <vm/vm_kern.h> /* kernel_memory_allocate() */
+#include <vm/vm_kern.h> /* kernel_memory_allocate() */
#include <kern/misc_protos.h>
#include <zone_debug.h>
+#include <mach_debug/zone_info.h>
#include <vm/cpm.h>
+#include <pexpert/pexpert.h>
+#include <san/kasan.h>
-/* Variables used to indicate the relative age of pages in the
- * inactive list
- */
+#include <vm/vm_protos.h>
+#include <vm/memory_object.h>
+#include <vm/vm_purgeable_internal.h>
+#include <vm/vm_compressor.h>
+
+#if CONFIG_PHANTOM_CACHE
+#include <vm/vm_phantom_cache.h>
+#endif
+
+#include <IOKit/IOHibernatePrivate.h>
+
+#include <sys/kdebug.h>
+
+
+#if MACH_ASSERT
+
+#define ASSERT_PMAP_FREE(mem) pmap_assert_free(VM_PAGE_GET_PHYS_PAGE(mem))
+
+#else /* MACH_ASSERT */
+
+#define ASSERT_PMAP_FREE(mem) /* nothing */
+
+#endif /* MACH_ASSERT */
+
+char vm_page_inactive_states[VM_PAGE_Q_STATE_ARRAY_SIZE];
+char vm_page_pageable_states[VM_PAGE_Q_STATE_ARRAY_SIZE];
+char vm_page_non_speculative_pageable_states[VM_PAGE_Q_STATE_ARRAY_SIZE];
+char vm_page_active_or_inactive_states[VM_PAGE_Q_STATE_ARRAY_SIZE];
+
+#if CONFIG_SECLUDED_MEMORY
+struct vm_page_secluded_data vm_page_secluded;
+void secluded_suppression_init(void);
+#endif /* CONFIG_SECLUDED_MEMORY */
+
+boolean_t hibernate_cleaning_in_progress = FALSE;
+boolean_t vm_page_free_verify = TRUE;
+
+uint32_t vm_lopage_free_count = 0;
+uint32_t vm_lopage_free_limit = 0;
+uint32_t vm_lopage_lowater = 0;
+boolean_t vm_lopage_refill = FALSE;
+boolean_t vm_lopage_needed = FALSE;
+
+lck_mtx_ext_t vm_page_queue_lock_ext;
+lck_mtx_ext_t vm_page_queue_free_lock_ext;
+lck_mtx_ext_t vm_purgeable_queue_lock_ext;
+
+int speculative_age_index = 0;
+int speculative_steal_index = 0;
+struct vm_speculative_age_q vm_page_queue_speculative[VM_PAGE_MAX_SPECULATIVE_AGE_Q + 1];
+
+boolean_t hibernation_vmqueues_inspection = FALSE; /* Tracks if the hibernation code is looking at the VM queues.
+ * Updated and checked behind the vm_page_queues_lock. */
+
+__private_extern__ void vm_page_init_lck_grp(void);
+
+static void vm_page_free_prepare(vm_page_t page);
+static vm_page_t vm_page_grab_fictitious_common(ppnum_t phys_addr);
+
+static void vm_tag_init(void);
+
+uint64_t vm_min_kernel_and_kext_address = VM_MIN_KERNEL_AND_KEXT_ADDRESS;
+uint32_t vm_packed_from_vm_pages_array_mask = VM_PACKED_FROM_VM_PAGES_ARRAY;
+uint32_t vm_packed_pointer_shift = VM_PACKED_POINTER_SHIFT;
-int vm_page_ticket_roll = 0;
-int vm_page_ticket = 0;
/*
* Associated with page of user-allocatable memory is a
* page structure.
vm_offset_t virtual_space_start;
vm_offset_t virtual_space_end;
-int vm_page_pages;
+uint32_t vm_page_pages;
/*
* The vm_page_lookup() routine, which provides for fast
* or VP, table.]
*/
typedef struct {
- vm_page_t pages;
-#if MACH_PAGE_HASH_STATS
- int cur_count; /* current count */
- int hi_count; /* high water mark */
+ vm_page_packed_t page_list;
+#if MACH_PAGE_HASH_STATS
+ int cur_count; /* current count */
+ int hi_count; /* high water mark */
#endif /* MACH_PAGE_HASH_STATS */
} vm_page_bucket_t;
-vm_page_bucket_t *vm_page_buckets; /* Array of buckets */
-unsigned int vm_page_bucket_count = 0; /* How big is array? */
-unsigned int vm_page_hash_mask; /* Mask for hash function */
-unsigned int vm_page_hash_shift; /* Shift for hash function */
-decl_simple_lock_data(,vm_page_bucket_lock)
-#if MACH_PAGE_HASH_STATS
+#define BUCKETS_PER_LOCK 16
+
+vm_page_bucket_t *vm_page_buckets; /* Array of buckets */
+unsigned int vm_page_bucket_count = 0; /* How big is array? */
+unsigned int vm_page_hash_mask; /* Mask for hash function */
+unsigned int vm_page_hash_shift; /* Shift for hash function */
+uint32_t vm_page_bucket_hash; /* Basic bucket hash */
+unsigned int vm_page_bucket_lock_count = 0; /* How big is array of locks? */
+
+#ifndef VM_TAG_ACTIVE_UPDATE
+#error VM_TAG_ACTIVE_UPDATE
+#endif
+#ifndef VM_MAX_TAG_ZONES
+#error VM_MAX_TAG_ZONES
+#endif
+
+boolean_t vm_tag_active_update = VM_TAG_ACTIVE_UPDATE;
+lck_spin_t *vm_page_bucket_locks;
+lck_spin_t vm_objects_wired_lock;
+lck_spin_t vm_allocation_sites_lock;
+
+vm_allocation_site_t vm_allocation_sites_static[VM_KERN_MEMORY_FIRST_DYNAMIC + 1];
+vm_allocation_site_t * vm_allocation_sites[VM_MAX_TAG_VALUE];
+#if VM_MAX_TAG_ZONES
+vm_allocation_zone_total_t ** vm_allocation_zone_totals;
+#endif /* VM_MAX_TAG_ZONES */
+
+vm_tag_t vm_allocation_tag_highest;
+
+#if VM_PAGE_BUCKETS_CHECK
+boolean_t vm_page_buckets_check_ready = FALSE;
+#if VM_PAGE_FAKE_BUCKETS
+vm_page_bucket_t *vm_page_fake_buckets; /* decoy buckets */
+vm_map_offset_t vm_page_fake_buckets_start, vm_page_fake_buckets_end;
+#endif /* VM_PAGE_FAKE_BUCKETS */
+#endif /* VM_PAGE_BUCKETS_CHECK */
+
+
+
+#if MACH_PAGE_HASH_STATS
/* This routine is only for debug. It is intended to be called by
* hand by a developer using a kernel debugger. This routine prints
* out vm_page_hash table statistics to the kernel debug console.
void
hash_debug(void)
{
- int i;
- int numbuckets = 0;
- int highsum = 0;
- int maxdepth = 0;
+ int i;
+ int numbuckets = 0;
+ int highsum = 0;
+ int maxdepth = 0;
for (i = 0; i < vm_page_bucket_count; i++) {
if (vm_page_buckets[i].hi_count) {
numbuckets++;
highsum += vm_page_buckets[i].hi_count;
- if (vm_page_buckets[i].hi_count > maxdepth)
+ if (vm_page_buckets[i].hi_count > maxdepth) {
maxdepth = vm_page_buckets[i].hi_count;
+ }
}
}
printf("Total number of buckets: %d\n", vm_page_bucket_count);
printf("Number used buckets: %d = %d%%\n",
- numbuckets, 100*numbuckets/vm_page_bucket_count);
+ numbuckets, 100 * numbuckets / vm_page_bucket_count);
printf("Number unused buckets: %d = %d%%\n",
- vm_page_bucket_count - numbuckets,
- 100*(vm_page_bucket_count-numbuckets)/vm_page_bucket_count);
+ vm_page_bucket_count - numbuckets,
+ 100 * (vm_page_bucket_count - numbuckets) / vm_page_bucket_count);
printf("Sum of bucket max depth: %d\n", highsum);
printf("Average bucket depth: %d.%2d\n",
- highsum/vm_page_bucket_count,
- highsum%vm_page_bucket_count);
+ highsum / vm_page_bucket_count,
+ highsum % vm_page_bucket_count);
printf("Maximum bucket depth: %d\n", maxdepth);
}
#endif /* MACH_PAGE_HASH_STATS */
* module must use the PAGE_SIZE, PAGE_MASK and PAGE_SHIFT
* constants.
*/
-#ifndef PAGE_SIZE_FIXED
-vm_size_t page_size = 4096;
-vm_size_t page_mask = 4095;
-int page_shift = 12;
-#endif /* PAGE_SIZE_FIXED */
+#if defined(__arm__) || defined(__arm64__)
+vm_size_t page_size;
+vm_size_t page_mask;
+int page_shift;
+#else
+vm_size_t page_size = PAGE_SIZE;
+vm_size_t page_mask = PAGE_MASK;
+int page_shift = PAGE_SHIFT;
+#endif
-/*
- * Resident page structures are initialized from
- * a template (see vm_page_alloc).
- *
- * When adding a new field to the virtual memory
- * object structure, be sure to add initialization
- * (see vm_page_bootstrap).
- */
-struct vm_page vm_page_template;
+vm_page_t vm_pages = VM_PAGE_NULL;
+vm_page_t vm_page_array_beginning_addr;
+vm_page_t vm_page_array_ending_addr;
+
+unsigned int vm_pages_count = 0;
/*
* Resident pages that represent real memory
- * are allocated from a free list.
+ * are allocated from a set of free lists,
+ * one per color.
*/
-vm_page_t vm_page_queue_free;
-vm_page_t vm_page_queue_fictitious;
-decl_mutex_data(,vm_page_queue_free_lock)
-unsigned int vm_page_free_wanted;
-int vm_page_free_count;
-int vm_page_fictitious_count;
+unsigned int vm_colors;
+unsigned int vm_color_mask; /* mask is == (vm_colors-1) */
+unsigned int vm_cache_geometry_colors = 0; /* set by hw dependent code during startup */
+unsigned int vm_free_magazine_refill_limit = 0;
+
+
+struct vm_page_queue_free_head {
+ vm_page_queue_head_t qhead;
+} __attribute__((aligned(VM_PACKED_POINTER_ALIGNMENT)));
-unsigned int vm_page_free_count_minimum; /* debugging */
+struct vm_page_queue_free_head vm_page_queue_free[MAX_COLORS];
+
+
+unsigned int vm_page_free_wanted;
+unsigned int vm_page_free_wanted_privileged;
+#if CONFIG_SECLUDED_MEMORY
+unsigned int vm_page_free_wanted_secluded;
+#endif /* CONFIG_SECLUDED_MEMORY */
+unsigned int vm_page_free_count;
/*
* Occasionally, the virtual memory system uses
* These page structures are allocated the way
* most other kernel structures are.
*/
-zone_t vm_page_zone;
-decl_mutex_data(,vm_page_alloc_lock)
-unsigned int io_throttle_zero_fill;
-decl_mutex_data(,vm_page_zero_fill_lock)
-
+zone_t vm_page_array_zone;
+zone_t vm_page_zone;
+vm_locks_array_t vm_page_locks;
+decl_lck_mtx_data(, vm_page_alloc_lock)
+lck_mtx_ext_t vm_page_alloc_lock_ext;
+
+unsigned int vm_page_local_q_count = 0;
+unsigned int vm_page_local_q_soft_limit = 250;
+unsigned int vm_page_local_q_hard_limit = 500;
+struct vplq *vm_page_local_q = NULL;
+
+/* N.B. Guard and fictitious pages must not
+ * be assigned a zero phys_page value.
+ */
/*
* Fictitious pages don't have a physical address,
- * but we must initialize phys_addr to something.
+ * but we must initialize phys_page to something.
* For debugging, this should be a strange value
* that the pmap module can recognize in assertions.
*/
-vm_offset_t vm_page_fictitious_addr = (vm_offset_t) -1;
+const ppnum_t vm_page_fictitious_addr = (ppnum_t) -1;
+
+/*
+ * Guard pages are not accessible so they don't
+ * need a physical address, but we need to enter
+ * one in the pmap.
+ * Let's make it recognizable and make sure that
+ * we don't use a real physical page with that
+ * physical address.
+ */
+const ppnum_t vm_page_guard_addr = (ppnum_t) -2;
/*
* Resident page structures are also chained on
* queues that are used by the page replacement
* system (pageout daemon). These queues are
* defined here, but are shared by the pageout
- * module. The inactive queue is broken into
- * inactive and zf for convenience as the
- * pageout daemon often assignes a higher
- * affinity to zf pages
- */
-queue_head_t vm_page_queue_active;
-queue_head_t vm_page_queue_inactive;
-queue_head_t vm_page_queue_zf;
-decl_mutex_data(,vm_page_queue_lock)
-int vm_page_active_count;
-int vm_page_inactive_count;
-int vm_page_wire_count;
-int vm_page_gobble_count = 0;
-int vm_page_wire_count_warning = 0;
-int vm_page_gobble_count_warning = 0;
-
-/* the following fields are protected by the vm_page_queue_lock */
-queue_head_t vm_page_queue_limbo;
-int vm_page_limbo_count = 0; /* total pages in limbo */
-int vm_page_limbo_real_count = 0; /* real pages in limbo */
-int vm_page_pin_count = 0; /* number of pinned pages */
-
-decl_simple_lock_data(,vm_page_preppin_lock)
+ * module. The inactive queue is broken into
+ * file backed and anonymous for convenience as the
+ * pageout daemon often assignes a higher
+ * importance to anonymous pages (less likely to pick)
+ */
+vm_page_queue_head_t vm_page_queue_active __attribute__((aligned(VM_PACKED_POINTER_ALIGNMENT)));
+vm_page_queue_head_t vm_page_queue_inactive __attribute__((aligned(VM_PACKED_POINTER_ALIGNMENT)));
+#if CONFIG_SECLUDED_MEMORY
+vm_page_queue_head_t vm_page_queue_secluded __attribute__((aligned(VM_PACKED_POINTER_ALIGNMENT)));
+#endif /* CONFIG_SECLUDED_MEMORY */
+vm_page_queue_head_t vm_page_queue_anonymous __attribute__((aligned(VM_PACKED_POINTER_ALIGNMENT))); /* inactive memory queue for anonymous pages */
+vm_page_queue_head_t vm_page_queue_throttled __attribute__((aligned(VM_PACKED_POINTER_ALIGNMENT)));
+
+queue_head_t vm_objects_wired;
+
+void vm_update_darkwake_mode(boolean_t);
+
+#if CONFIG_BACKGROUND_QUEUE
+vm_page_queue_head_t vm_page_queue_background __attribute__((aligned(VM_PACKED_POINTER_ALIGNMENT)));
+uint32_t vm_page_background_target;
+uint32_t vm_page_background_target_snapshot;
+uint32_t vm_page_background_count;
+uint64_t vm_page_background_promoted_count;
+
+uint32_t vm_page_background_internal_count;
+uint32_t vm_page_background_external_count;
+
+uint32_t vm_page_background_mode;
+uint32_t vm_page_background_exclude_external;
+#endif
+
+unsigned int vm_page_active_count;
+unsigned int vm_page_inactive_count;
+#if CONFIG_SECLUDED_MEMORY
+unsigned int vm_page_secluded_count;
+unsigned int vm_page_secluded_count_free;
+unsigned int vm_page_secluded_count_inuse;
+#endif /* CONFIG_SECLUDED_MEMORY */
+unsigned int vm_page_anonymous_count;
+unsigned int vm_page_throttled_count;
+unsigned int vm_page_speculative_count;
+
+unsigned int vm_page_wire_count;
+unsigned int vm_page_wire_count_on_boot = 0;
+unsigned int vm_page_stolen_count = 0;
+unsigned int vm_page_wire_count_initial;
+unsigned int vm_page_gobble_count = 0;
+
+#define VM_PAGE_WIRE_COUNT_WARNING 0
+#define VM_PAGE_GOBBLE_COUNT_WARNING 0
+
+unsigned int vm_page_purgeable_count = 0; /* # of pages purgeable now */
+unsigned int vm_page_purgeable_wired_count = 0; /* # of purgeable pages that are wired now */
+uint64_t vm_page_purged_count = 0; /* total count of purged pages */
+
+unsigned int vm_page_xpmapped_external_count = 0;
+unsigned int vm_page_external_count = 0;
+unsigned int vm_page_internal_count = 0;
+unsigned int vm_page_pageable_external_count = 0;
+unsigned int vm_page_pageable_internal_count = 0;
+
+#if DEVELOPMENT || DEBUG
+unsigned int vm_page_speculative_recreated = 0;
+unsigned int vm_page_speculative_created = 0;
+unsigned int vm_page_speculative_used = 0;
+#endif
+
+vm_page_queue_head_t vm_page_queue_cleaned __attribute__((aligned(VM_PACKED_POINTER_ALIGNMENT)));
+
+unsigned int vm_page_cleaned_count = 0;
+
+uint64_t max_valid_dma_address = 0xffffffffffffffffULL;
+ppnum_t max_valid_low_ppnum = PPNUM_MAX;
+
/*
* Several page replacement parameters are also
* (done here in vm_page_alloc) can trigger the
* pageout daemon.
*/
-int vm_page_free_target = 0;
-int vm_page_free_min = 0;
-int vm_page_inactive_target = 0;
-int vm_page_free_reserved = 0;
-int vm_page_laundry_count = 0;
+unsigned int vm_page_free_target = 0;
+unsigned int vm_page_free_min = 0;
+unsigned int vm_page_throttle_limit = 0;
+unsigned int vm_page_inactive_target = 0;
+#if CONFIG_SECLUDED_MEMORY
+unsigned int vm_page_secluded_target = 0;
+#endif /* CONFIG_SECLUDED_MEMORY */
+unsigned int vm_page_anonymous_min = 0;
+unsigned int vm_page_free_reserved = 0;
+
/*
* The VM system has a couple of heuristics for deciding
boolean_t vm_page_deactivate_hint = TRUE;
+struct vm_page_stats_reusable vm_page_stats_reusable;
+
/*
* vm_set_page_size:
*
void
vm_set_page_size(void)
{
-#ifndef PAGE_SIZE_FIXED
- page_mask = page_size - 1;
+ page_size = PAGE_SIZE;
+ page_mask = PAGE_MASK;
+ page_shift = PAGE_SHIFT;
- if ((page_mask & page_size) != 0)
+ if ((page_mask & page_size) != 0) {
panic("vm_set_page_size: page size not a power of two");
+ }
- for (page_shift = 0; ; page_shift++)
- if ((1 << page_shift) == page_size)
+ for (page_shift = 0;; page_shift++) {
+ if ((1U << page_shift) == page_size) {
break;
-#endif /* PAGE_SIZE_FIXED */
+ }
+ }
}
-/*
- * vm_page_bootstrap:
- *
- * Initializes the resident memory module.
- *
- * Allocates memory for the page cells, and
- * for the object/offset-to-page hash table headers.
- * Each page cell is initialized and placed on the free list.
- * Returns the range of available kernel virtual memory.
- */
-
-void
-vm_page_bootstrap(
- vm_offset_t *startp,
- vm_offset_t *endp)
-{
- register vm_page_t m;
- int i;
- unsigned int log1;
- unsigned int log2;
- unsigned int size;
-
- /*
- * Initialize the vm_page template.
- */
-
- m = &vm_page_template;
- m->object = VM_OBJECT_NULL; /* reset later */
- m->offset = 0; /* reset later */
- m->wire_count = 0;
-
- m->inactive = FALSE;
- m->active = FALSE;
- m->laundry = FALSE;
- m->free = FALSE;
- m->no_isync = TRUE;
- m->reference = FALSE;
- m->pageout = FALSE;
- m->dump_cleaning = FALSE;
- m->list_req_pending = FALSE;
-
- m->busy = TRUE;
- m->wanted = FALSE;
- m->tabled = FALSE;
- m->fictitious = FALSE;
- m->private = FALSE;
- m->absent = FALSE;
- m->error = FALSE;
- m->dirty = FALSE;
- m->cleaning = FALSE;
- m->precious = FALSE;
- m->clustered = FALSE;
- m->lock_supplied = FALSE;
- m->unusual = FALSE;
- m->restart = FALSE;
- m->zero_fill = FALSE;
-
- m->phys_addr = 0; /* reset later */
-
- m->page_lock = VM_PROT_NONE;
- m->unlock_request = VM_PROT_NONE;
- m->page_error = KERN_SUCCESS;
-
- /*
- * Initialize the page queues.
- */
-
- mutex_init(&vm_page_queue_free_lock, ETAP_VM_PAGEQ_FREE);
- mutex_init(&vm_page_queue_lock, ETAP_VM_PAGEQ);
- simple_lock_init(&vm_page_preppin_lock, ETAP_VM_PREPPIN);
+#if defined (__x86_64__)
- vm_page_queue_free = VM_PAGE_NULL;
- vm_page_queue_fictitious = VM_PAGE_NULL;
- queue_init(&vm_page_queue_active);
- queue_init(&vm_page_queue_inactive);
- queue_init(&vm_page_queue_zf);
- queue_init(&vm_page_queue_limbo);
+#define MAX_CLUMP_SIZE 16
+#define DEFAULT_CLUMP_SIZE 4
- vm_page_free_wanted = 0;
+unsigned int vm_clump_size, vm_clump_mask, vm_clump_shift, vm_clump_promote_threshold;
- /*
- * Steal memory for the map and zone subsystems.
- */
+#if DEVELOPMENT || DEBUG
+unsigned long vm_clump_stats[MAX_CLUMP_SIZE + 1];
+unsigned long vm_clump_allocs, vm_clump_inserts, vm_clump_inrange, vm_clump_promotes;
- vm_map_steal_memory();
- zone_steal_memory();
+static inline void
+vm_clump_update_stats(unsigned int c)
+{
+ assert(c <= vm_clump_size);
+ if (c > 0 && c <= vm_clump_size) {
+ vm_clump_stats[c] += c;
+ }
+ vm_clump_allocs += c;
+}
+#endif /* if DEVELOPMENT || DEBUG */
- /*
- * Allocate (and initialize) the virtual-to-physical
- * table hash buckets.
- *
- * The number of buckets should be a power of two to
- * get a good hash function. The following computation
- * chooses the first power of two that is greater
- * than the number of physical pages in the system.
- */
+/* Called once to setup the VM clump knobs */
+static void
+vm_page_setup_clump( void )
+{
+ unsigned int override, n;
- simple_lock_init(&vm_page_bucket_lock, ETAP_VM_BUCKET);
-
- if (vm_page_bucket_count == 0) {
- unsigned int npages = pmap_free_pages();
+ vm_clump_size = DEFAULT_CLUMP_SIZE;
+ if (PE_parse_boot_argn("clump_size", &override, sizeof(override))) {
+ vm_clump_size = override;
+ }
- vm_page_bucket_count = 1;
- while (vm_page_bucket_count < npages)
- vm_page_bucket_count <<= 1;
+ if (vm_clump_size > MAX_CLUMP_SIZE) {
+ panic("vm_page_setup_clump:: clump_size is too large!");
+ }
+ if (vm_clump_size < 1) {
+ panic("vm_page_setup_clump:: clump_size must be >= 1");
+ }
+ if ((vm_clump_size & (vm_clump_size - 1)) != 0) {
+ panic("vm_page_setup_clump:: clump_size must be a power of 2");
}
- vm_page_hash_mask = vm_page_bucket_count - 1;
+ vm_clump_promote_threshold = vm_clump_size;
+ vm_clump_mask = vm_clump_size - 1;
+ for (vm_clump_shift = 0, n = vm_clump_size; n > 1; n >>= 1, vm_clump_shift++) {
+ ;
+ }
- /*
- * Calculate object shift value for hashing algorithm:
- * O = log2(sizeof(struct vm_object))
- * B = log2(vm_page_bucket_count)
- * hash shifts the object left by
- * B/2 - O
- */
- size = vm_page_bucket_count;
- for (log1 = 0; size > 1; log1++)
- size /= 2;
- size = sizeof(struct vm_object);
- for (log2 = 0; size > 1; log2++)
- size /= 2;
- vm_page_hash_shift = log1/2 - log2 + 1;
+#if DEVELOPMENT || DEBUG
+ bzero(vm_clump_stats, sizeof(vm_clump_stats));
+ vm_clump_allocs = vm_clump_inserts = vm_clump_inrange = vm_clump_promotes = 0;
+#endif /* if DEVELOPMENT || DEBUG */
+}
- if (vm_page_hash_mask & vm_page_bucket_count)
- printf("vm_page_bootstrap: WARNING -- strange page hash\n");
+#endif /* #if defined (__x86_64__) */
- vm_page_buckets = (vm_page_bucket_t *)
- pmap_steal_memory(vm_page_bucket_count *
- sizeof(vm_page_bucket_t));
+#define COLOR_GROUPS_TO_STEAL 4
- for (i = 0; i < vm_page_bucket_count; i++) {
- register vm_page_bucket_t *bucket = &vm_page_buckets[i];
+/* Called once during statup, once the cache geometry is known.
+ */
+static void
+vm_page_set_colors( void )
+{
+ unsigned int n, override;
- bucket->pages = VM_PAGE_NULL;
-#if MACH_PAGE_HASH_STATS
- bucket->cur_count = 0;
- bucket->hi_count = 0;
-#endif /* MACH_PAGE_HASH_STATS */
+#if defined (__x86_64__)
+ /* adjust #colors because we need to color outside the clump boundary */
+ vm_cache_geometry_colors >>= vm_clump_shift;
+#endif
+ if (PE_parse_boot_argn("colors", &override, sizeof(override))) { /* colors specified as a boot-arg? */
+ n = override;
+ } else if (vm_cache_geometry_colors) { /* do we know what the cache geometry is? */
+ n = vm_cache_geometry_colors;
+ } else {
+ n = DEFAULT_COLORS; /* use default if all else fails */
+ }
+ if (n == 0) {
+ n = 1;
+ }
+ if (n > MAX_COLORS) {
+ n = MAX_COLORS;
}
- /*
- * Machine-dependent code allocates the resident page table.
- * It uses vm_page_init to initialize the page frames.
- * The code also returns to us the virtual space available
- * to the kernel. We don't trust the pmap module
- * to get the alignment right.
- */
+ /* the count must be a power of 2 */
+ if ((n & (n - 1)) != 0) {
+ n = DEFAULT_COLORS; /* use default if all else fails */
+ }
+ vm_colors = n;
+ vm_color_mask = n - 1;
- pmap_startup(&virtual_space_start, &virtual_space_end);
- virtual_space_start = round_page(virtual_space_start);
- virtual_space_end = trunc_page(virtual_space_end);
+ vm_free_magazine_refill_limit = vm_colors * COLOR_GROUPS_TO_STEAL;
- *startp = virtual_space_start;
- *endp = virtual_space_end;
+#if defined (__x86_64__)
+ /* adjust for reduction in colors due to clumping and multiple cores */
+ if (real_ncpus) {
+ vm_free_magazine_refill_limit *= (vm_clump_size * real_ncpus);
+ }
+#endif
+}
- /*
- * Compute the initial "wire" count.
- * Up until now, the pages which have been set aside are not under
- * the VM system's control, so although they aren't explicitly
- * wired, they nonetheless can't be moved. At this moment,
- * all VM managed pages are "free", courtesy of pmap_startup.
- */
- vm_page_wire_count = atop(mem_size) - vm_page_free_count; /* initial value */
+/*
+ * During single threaded early boot we don't initialize all pages.
+ * This avoids some delay during boot. They'll be initialized and
+ * added to the free list as needed or after we are multithreaded by
+ * what becomes the pageout thread.
+ */
+static boolean_t fill = FALSE;
+static unsigned int fillval;
+uint_t vm_delayed_count = 0; /* when non-zero, indicates we may have more pages to init */
+ppnum_t delay_above_pnum = PPNUM_MAX;
- printf("vm_page_bootstrap: %d free pages\n", vm_page_free_count);
- vm_page_free_count_minimum = vm_page_free_count;
-}
+/*
+ * For x86 first 8 Gig initializes quickly and gives us lots of lowmem + mem above to start off with.
+ * If ARM ever uses delayed page initialization, this value may need to be quite different.
+ */
+#define DEFAULT_DELAY_ABOVE_PHYS_GB (8)
-#ifndef MACHINE_PAGES
/*
- * We implement pmap_steal_memory and pmap_startup with the help
- * of two simpler functions, pmap_virtual_space and pmap_next_page.
+ * When we have to dip into more delayed pages due to low memory, free up
+ * a large chunk to get things back to normal. This avoids contention on the
+ * delayed code allocating page by page.
*/
+#define VM_DELAY_PAGE_CHUNK ((1024 * 1024 * 1024) / PAGE_SIZE)
-vm_offset_t
-pmap_steal_memory(
- vm_size_t size)
+/*
+ * Get and initialize the next delayed page.
+ */
+static vm_page_t
+vm_get_delayed_page(int grab_options)
{
- vm_offset_t addr, vaddr, paddr;
+ vm_page_t p;
+ ppnum_t pnum;
/*
- * We round the size to a round multiple.
+ * Get a new page if we have one.
*/
+ lck_mtx_lock(&vm_page_queue_free_lock);
+ if (vm_delayed_count == 0) {
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+ return NULL;
+ }
+ if (!pmap_next_page(&pnum)) {
+ vm_delayed_count = 0;
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+ return NULL;
+ }
+
+ assert(vm_delayed_count > 0);
+ --vm_delayed_count;
- size = (size + sizeof (void *) - 1) &~ (sizeof (void *) - 1);
+ p = &vm_pages[vm_pages_count];
+ assert(p < vm_page_array_ending_addr);
+ vm_page_init(p, pnum, FALSE);
+ ++vm_pages_count;
+ ++vm_page_pages;
+ lck_mtx_unlock(&vm_page_queue_free_lock);
/*
- * If this is the first call to pmap_steal_memory,
- * we have to initialize ourself.
+ * These pages were initially counted as wired, undo that now.
*/
+ if (grab_options & VM_PAGE_GRAB_Q_LOCK_HELD) {
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+ } else {
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED);
+ vm_page_lockspin_queues();
+ }
+ --vm_page_wire_count;
+ --vm_page_wire_count_initial;
+ if (vm_page_wire_count_on_boot != 0) {
+ --vm_page_wire_count_on_boot;
+ }
+ if (!(grab_options & VM_PAGE_GRAB_Q_LOCK_HELD)) {
+ vm_page_unlock_queues();
+ }
- if (virtual_space_start == virtual_space_end) {
- pmap_virtual_space(&virtual_space_start, &virtual_space_end);
- /*
- * The initial values must be aligned properly, and
- * we don't trust the pmap module to do it right.
- */
+ if (fill) {
+ fillPage(pnum, fillval);
+ }
+ return p;
+}
- virtual_space_start = round_page(virtual_space_start);
- virtual_space_end = trunc_page(virtual_space_end);
+static void vm_page_module_init_delayed(void);
+
+/*
+ * Free all remaining delayed pages to the free lists.
+ */
+void
+vm_free_delayed_pages(void)
+{
+ vm_page_t p;
+ vm_page_t list = NULL;
+ uint_t cnt = 0;
+ vm_offset_t start_free_page;
+ vm_size_t free_size;
+
+ while ((p = vm_get_delayed_page(VM_PAGE_GRAB_OPTIONS_NONE)) != NULL) {
+ if (vm_himemory_mode) {
+ vm_page_release(p, FALSE);
+ } else {
+ p->vmp_snext = list;
+ list = p;
+ }
+ ++cnt;
}
/*
- * Allocate virtual memory for this request.
+ * Free the pages in reverse order if not himemory mode.
+ * Hence the low memory pages will be first on free lists. (LIFO)
*/
-
- addr = virtual_space_start;
- virtual_space_start += size;
-
- kprintf("pmap_steal_memory: %08X - %08X; size=%08X\n", addr, virtual_space_start, size); /* (TEST/DEBUG) */
+ while (list != NULL) {
+ p = list;
+ list = p->vmp_snext;
+ p->vmp_snext = NULL;
+ vm_page_release(p, FALSE);
+ }
+#if DEVELOPMENT || DEBUG
+ kprintf("vm_free_delayed_pages: freed %d pages\n", cnt);
+#endif
/*
- * Allocate and map physical pages to back new virtual pages.
+ * Free up any unused full pages at the end of the vm_pages[] array
*/
+ start_free_page = round_page((vm_offset_t)&vm_pages[vm_pages_count]);
+ if (start_free_page < (vm_offset_t)vm_page_array_ending_addr) {
+ free_size = trunc_page((vm_offset_t)vm_page_array_ending_addr - start_free_page);
+ if (free_size > 0) {
+#if DEVELOPMENT || DEBUG
+ kprintf("Freeing final unused %ld bytes from vm_pages[] at 0x%lx\n",
+ (long)free_size, (long)start_free_page);
+#endif
+ pmap_pv_fixup(start_free_page, free_size);
+ ml_static_mfree(start_free_page, free_size);
+ vm_page_array_ending_addr = (void *)start_free_page;
- for (vaddr = round_page(addr);
- vaddr < addr + size;
- vaddr += PAGE_SIZE) {
- if (!pmap_next_page(&paddr))
- panic("pmap_steal_memory");
-
- /*
- * XXX Logically, these mappings should be wired,
- * but some pmap modules barf if they are.
- */
-
- pmap_enter(kernel_pmap, vaddr, paddr,
- VM_PROT_READ|VM_PROT_WRITE,
- VM_WIMG_USE_DEFAULT, FALSE);
- /*
- * Account for newly stolen memory
- */
- vm_page_wire_count++;
-
+ /*
+ * Note there's no locking here, as only this thread will ever change this value.
+ * The reader, vm_page_diagnose, doesn't grab any locks for the counts it looks at.
+ */
+ --vm_page_stolen_count;
+ }
}
- return addr;
+
+ /*
+ * now we can create the VM page array zone
+ */
+ vm_page_module_init_delayed();
}
-void
-pmap_startup(
- vm_offset_t *startp,
- vm_offset_t *endp)
+/*
+ * Try and free up enough delayed pages to match a contig memory allocation.
+ */
+static void
+vm_free_delayed_pages_contig(
+ uint_t npages,
+ ppnum_t max_pnum,
+ ppnum_t pnum_mask)
{
- unsigned int i, npages, pages_initialized;
- vm_page_t pages;
- vm_offset_t paddr;
+ vm_page_t p;
+ ppnum_t pnum;
+ uint_t cnt = 0;
/*
- * We calculate how many page frames we will have
- * and then allocate the page structures in one chunk.
+ * Treat 0 as the absolute max page number.
*/
-
- npages = ((PAGE_SIZE * pmap_free_pages() +
- (round_page(virtual_space_start) - virtual_space_start)) /
- (PAGE_SIZE + sizeof *pages));
-
- pages = (vm_page_t) pmap_steal_memory(npages * sizeof *pages);
+ if (max_pnum == 0) {
+ max_pnum = PPNUM_MAX;
+ }
/*
- * Initialize the page frames.
+ * Free till we get a properly aligned start page
*/
-
- for (i = 0, pages_initialized = 0; i < npages; i++) {
- if (!pmap_next_page(&paddr))
+ for (;;) {
+ p = vm_get_delayed_page(VM_PAGE_GRAB_OPTIONS_NONE);
+ if (p == NULL) {
+ return;
+ }
+ pnum = VM_PAGE_GET_PHYS_PAGE(p);
+ vm_page_release(p, FALSE);
+ if (pnum >= max_pnum) {
+ return;
+ }
+ if ((pnum & pnum_mask) == 0) {
break;
-
- vm_page_init(&pages[i], paddr);
- vm_page_pages++;
- pages_initialized++;
+ }
}
/*
- * Release pages in reverse order so that physical pages
- * initially get allocated in ascending addresses. This keeps
- * the devices (which must address physical memory) happy if
- * they require several consecutive pages.
+ * Having a healthy pool of free pages will help performance. We don't
+ * want to fall back to the delayed code for every page allocation.
*/
-
- for (i = pages_initialized; i > 0; i--) {
- vm_page_release(&pages[i - 1]);
+ if (vm_page_free_count < VM_DELAY_PAGE_CHUNK) {
+ npages += VM_DELAY_PAGE_CHUNK;
}
/*
- * We have to re-align virtual_space_start,
- * because pmap_steal_memory has been using it.
+ * Now free up the pages
*/
+ for (cnt = 1; cnt < npages; ++cnt) {
+ p = vm_get_delayed_page(VM_PAGE_GRAB_OPTIONS_NONE);
+ if (p == NULL) {
+ return;
+ }
+ vm_page_release(p, FALSE);
+ }
+}
- virtual_space_start = round_page(virtual_space_start);
- *startp = virtual_space_start;
- *endp = virtual_space_end;
+lck_grp_t vm_page_lck_grp_free;
+lck_grp_t vm_page_lck_grp_queue;
+lck_grp_t vm_page_lck_grp_local;
+lck_grp_t vm_page_lck_grp_purge;
+lck_grp_t vm_page_lck_grp_alloc;
+lck_grp_t vm_page_lck_grp_bucket;
+lck_grp_attr_t vm_page_lck_grp_attr;
+lck_attr_t vm_page_lck_attr;
+
+
+__private_extern__ void
+vm_page_init_lck_grp(void)
+{
+ /*
+ * initialze the vm_page lock world
+ */
+ lck_grp_attr_setdefault(&vm_page_lck_grp_attr);
+ lck_grp_init(&vm_page_lck_grp_free, "vm_page_free", &vm_page_lck_grp_attr);
+ lck_grp_init(&vm_page_lck_grp_queue, "vm_page_queue", &vm_page_lck_grp_attr);
+ lck_grp_init(&vm_page_lck_grp_local, "vm_page_queue_local", &vm_page_lck_grp_attr);
+ lck_grp_init(&vm_page_lck_grp_purge, "vm_page_purge", &vm_page_lck_grp_attr);
+ lck_grp_init(&vm_page_lck_grp_alloc, "vm_page_alloc", &vm_page_lck_grp_attr);
+ lck_grp_init(&vm_page_lck_grp_bucket, "vm_page_bucket", &vm_page_lck_grp_attr);
+ lck_attr_setdefault(&vm_page_lck_attr);
+ lck_mtx_init_ext(&vm_page_alloc_lock, &vm_page_alloc_lock_ext, &vm_page_lck_grp_alloc, &vm_page_lck_attr);
+
+ vm_compressor_init_locks();
}
-#endif /* MACHINE_PAGES */
-/*
- * Routine: vm_page_module_init
- * Purpose:
- * Second initialization pass, to be done after
- * the basic VM system is ready.
- */
+#define ROUNDUP_NEXTP2(X) (1U << (32 - __builtin_clz((X) - 1)))
+
void
-vm_page_module_init(void)
+vm_page_init_local_q()
{
- vm_page_zone = zinit((vm_size_t) sizeof(struct vm_page),
- 0, PAGE_SIZE, "vm pages");
+ unsigned int num_cpus;
+ unsigned int i;
+ struct vplq *t_local_q;
-#if ZONE_DEBUG
- zone_debug_disable(vm_page_zone);
-#endif /* ZONE_DEBUG */
+ num_cpus = ml_get_max_cpus();
- zone_change(vm_page_zone, Z_EXPAND, FALSE);
- zone_change(vm_page_zone, Z_EXHAUST, TRUE);
- zone_change(vm_page_zone, Z_FOREIGN, TRUE);
+ /*
+ * no point in this for a uni-processor system
+ */
+ if (num_cpus >= 2) {
+#if KASAN
+ /* KASAN breaks the expectation of a size-aligned object by adding a
+ * redzone, so explicitly align. */
+ t_local_q = (struct vplq *)kalloc(num_cpus * sizeof(struct vplq) + VM_PACKED_POINTER_ALIGNMENT);
+ t_local_q = (void *)(((uintptr_t)t_local_q + (VM_PACKED_POINTER_ALIGNMENT - 1)) & ~(VM_PACKED_POINTER_ALIGNMENT - 1));
+#else
+ /* round the size up to the nearest power of two */
+ t_local_q = (struct vplq *)kalloc(ROUNDUP_NEXTP2(num_cpus * sizeof(struct vplq)));
+#endif
+
+ for (i = 0; i < num_cpus; i++) {
+ struct vpl *lq;
- /*
- * Adjust zone statistics to account for the real pages allocated
- * in vm_page_create(). [Q: is this really what we want?]
- */
- vm_page_zone->count += vm_page_pages;
- vm_page_zone->cur_size += vm_page_pages * vm_page_zone->elem_size;
+ lq = &t_local_q[i].vpl_un.vpl;
+ VPL_LOCK_INIT(lq, &vm_page_lck_grp_local, &vm_page_lck_attr);
+ vm_page_queue_init(&lq->vpl_queue);
+ lq->vpl_count = 0;
+ lq->vpl_internal_count = 0;
+ lq->vpl_external_count = 0;
+ }
+ vm_page_local_q_count = num_cpus;
- mutex_init(&vm_page_alloc_lock, ETAP_VM_PAGE_ALLOC);
- mutex_init(&vm_page_zero_fill_lock, ETAP_VM_PAGE_ALLOC);
+ vm_page_local_q = (struct vplq *)t_local_q;
+ }
}
/*
- * Routine: vm_page_create
- * Purpose:
- * After the VM system is up, machine-dependent code
- * may stumble across more physical memory. For example,
- * memory that it was reserving for a frame buffer.
- * vm_page_create turns this memory into available pages.
+ * vm_init_before_launchd
+ *
+ * This should be called right before launchd is loaded.
*/
-
void
-vm_page_create(
- vm_offset_t start,
- vm_offset_t end)
+vm_init_before_launchd()
{
- vm_offset_t paddr;
- vm_page_t m;
-
- for (paddr = round_page(start);
- paddr < trunc_page(end);
- paddr += PAGE_SIZE) {
- while ((m = (vm_page_t) vm_page_grab_fictitious())
- == VM_PAGE_NULL)
- vm_page_more_fictitious();
-
- vm_page_init(m, paddr);
- vm_page_pages++;
- vm_page_release(m);
- }
+ vm_page_lockspin_queues();
+ vm_page_wire_count_on_boot = vm_page_wire_count;
+ vm_page_unlock_queues();
}
-/*
- * vm_page_hash:
- *
- * Distributes the object/offset key pair among hash buckets.
- *
- * NOTE: To get a good hash function, the bucket count should
- * be a power of two.
- */
-#define vm_page_hash(object, offset) (\
- ( ((natural_t)(vm_offset_t)object<<vm_page_hash_shift) + (natural_t)atop(offset))\
- & vm_page_hash_mask)
/*
- * vm_page_insert: [ internal use only ]
+ * vm_page_bootstrap:
*
- * Inserts the given mem entry into the object/object-page
- * table and object list.
+ * Initializes the resident memory module.
*
- * The object must be locked.
+ * Allocates memory for the page cells, and
+ * for the object/offset-to-page hash table headers.
+ * Each page cell is initialized and placed on the free list.
+ * Returns the range of available kernel virtual memory.
*/
void
-vm_page_insert(
- register vm_page_t mem,
- register vm_object_t object,
- register vm_object_offset_t offset)
+vm_page_bootstrap(
+ vm_offset_t *startp,
+ vm_offset_t *endp)
{
- register vm_page_bucket_t *bucket;
+ unsigned int i;
+ unsigned int log1;
+ unsigned int log2;
+ unsigned int size;
+
+ /*
+ * Initialize the page queues.
+ */
+ vm_page_init_lck_grp();
- XPR(XPR_VM_PAGE,
- "vm_page_insert, object 0x%X offset 0x%X page 0x%X\n",
- (integer_t)object, (integer_t)offset, (integer_t)mem, 0,0);
+ lck_mtx_init_ext(&vm_page_queue_free_lock, &vm_page_queue_free_lock_ext, &vm_page_lck_grp_free, &vm_page_lck_attr);
+ lck_mtx_init_ext(&vm_page_queue_lock, &vm_page_queue_lock_ext, &vm_page_lck_grp_queue, &vm_page_lck_attr);
+ lck_mtx_init_ext(&vm_purgeable_queue_lock, &vm_purgeable_queue_lock_ext, &vm_page_lck_grp_purge, &vm_page_lck_attr);
- VM_PAGE_CHECK(mem);
+ for (i = 0; i < PURGEABLE_Q_TYPE_MAX; i++) {
+ int group;
+
+ purgeable_queues[i].token_q_head = 0;
+ purgeable_queues[i].token_q_tail = 0;
+ for (group = 0; group < NUM_VOLATILE_GROUPS; group++) {
+ queue_init(&purgeable_queues[i].objq[group]);
+ }
- if (mem->tabled)
- panic("vm_page_insert");
+ purgeable_queues[i].type = i;
+ purgeable_queues[i].new_pages = 0;
+#if MACH_ASSERT
+ purgeable_queues[i].debug_count_tokens = 0;
+ purgeable_queues[i].debug_count_objects = 0;
+#endif
+ }
+ ;
+ purgeable_nonvolatile_count = 0;
+ queue_init(&purgeable_nonvolatile_queue);
- assert(!object->internal || offset < object->size);
+ for (i = 0; i < MAX_COLORS; i++) {
+ vm_page_queue_init(&vm_page_queue_free[i].qhead);
+ }
- /* only insert "pageout" pages into "pageout" objects,
- * and normal pages into normal objects */
- assert(object->pageout == mem->pageout);
+ vm_page_queue_init(&vm_lopage_queue_free);
+ vm_page_queue_init(&vm_page_queue_active);
+ vm_page_queue_init(&vm_page_queue_inactive);
+#if CONFIG_SECLUDED_MEMORY
+ vm_page_queue_init(&vm_page_queue_secluded);
+#endif /* CONFIG_SECLUDED_MEMORY */
+ vm_page_queue_init(&vm_page_queue_cleaned);
+ vm_page_queue_init(&vm_page_queue_throttled);
+ vm_page_queue_init(&vm_page_queue_anonymous);
+ queue_init(&vm_objects_wired);
+
+ for (i = 0; i <= VM_PAGE_MAX_SPECULATIVE_AGE_Q; i++) {
+ vm_page_queue_init(&vm_page_queue_speculative[i].age_q);
+
+ vm_page_queue_speculative[i].age_ts.tv_sec = 0;
+ vm_page_queue_speculative[i].age_ts.tv_nsec = 0;
+ }
+#if CONFIG_BACKGROUND_QUEUE
+ vm_page_queue_init(&vm_page_queue_background);
- /*
- * Record the object/offset pair in this page
- */
+ vm_page_background_count = 0;
+ vm_page_background_internal_count = 0;
+ vm_page_background_external_count = 0;
+ vm_page_background_promoted_count = 0;
- mem->object = object;
- mem->offset = offset;
+ vm_page_background_target = (unsigned int)(atop_64(max_mem) / 25);
- /*
- * Insert it into the object_object/offset hash table
- */
+ if (vm_page_background_target > VM_PAGE_BACKGROUND_TARGET_MAX) {
+ vm_page_background_target = VM_PAGE_BACKGROUND_TARGET_MAX;
+ }
- bucket = &vm_page_buckets[vm_page_hash(object, offset)];
- simple_lock(&vm_page_bucket_lock);
- mem->next = bucket->pages;
- bucket->pages = mem;
-#if MACH_PAGE_HASH_STATS
- if (++bucket->cur_count > bucket->hi_count)
- bucket->hi_count = bucket->cur_count;
-#endif /* MACH_PAGE_HASH_STATS */
- simple_unlock(&vm_page_bucket_lock);
+ vm_page_background_mode = VM_PAGE_BG_LEVEL_1;
+ vm_page_background_exclude_external = 0;
- /*
- * Now link into the object's list of backed pages.
- */
+ PE_parse_boot_argn("vm_page_bg_mode", &vm_page_background_mode, sizeof(vm_page_background_mode));
+ PE_parse_boot_argn("vm_page_bg_exclude_external", &vm_page_background_exclude_external, sizeof(vm_page_background_exclude_external));
+ PE_parse_boot_argn("vm_page_bg_target", &vm_page_background_target, sizeof(vm_page_background_target));
+
+ if (vm_page_background_mode > VM_PAGE_BG_LEVEL_1) {
+ vm_page_background_mode = VM_PAGE_BG_LEVEL_1;
+ }
+#endif
+ vm_page_free_wanted = 0;
+ vm_page_free_wanted_privileged = 0;
+#if CONFIG_SECLUDED_MEMORY
+ vm_page_free_wanted_secluded = 0;
+#endif /* CONFIG_SECLUDED_MEMORY */
+
+#if defined (__x86_64__)
+ /* this must be called before vm_page_set_colors() */
+ vm_page_setup_clump();
+#endif
- queue_enter(&object->memq, mem, vm_page_t, listq);
- mem->tabled = TRUE;
+ vm_page_set_colors();
+
+ bzero(vm_page_inactive_states, sizeof(vm_page_inactive_states));
+ vm_page_inactive_states[VM_PAGE_ON_INACTIVE_INTERNAL_Q] = 1;
+ vm_page_inactive_states[VM_PAGE_ON_INACTIVE_EXTERNAL_Q] = 1;
+ vm_page_inactive_states[VM_PAGE_ON_INACTIVE_CLEANED_Q] = 1;
+
+ bzero(vm_page_pageable_states, sizeof(vm_page_pageable_states));
+ vm_page_pageable_states[VM_PAGE_ON_INACTIVE_INTERNAL_Q] = 1;
+ vm_page_pageable_states[VM_PAGE_ON_INACTIVE_EXTERNAL_Q] = 1;
+ vm_page_pageable_states[VM_PAGE_ON_INACTIVE_CLEANED_Q] = 1;
+ vm_page_pageable_states[VM_PAGE_ON_ACTIVE_Q] = 1;
+ vm_page_pageable_states[VM_PAGE_ON_SPECULATIVE_Q] = 1;
+ vm_page_pageable_states[VM_PAGE_ON_THROTTLED_Q] = 1;
+#if CONFIG_SECLUDED_MEMORY
+ vm_page_pageable_states[VM_PAGE_ON_SECLUDED_Q] = 1;
+#endif /* CONFIG_SECLUDED_MEMORY */
+
+ bzero(vm_page_non_speculative_pageable_states, sizeof(vm_page_non_speculative_pageable_states));
+ vm_page_non_speculative_pageable_states[VM_PAGE_ON_INACTIVE_INTERNAL_Q] = 1;
+ vm_page_non_speculative_pageable_states[VM_PAGE_ON_INACTIVE_EXTERNAL_Q] = 1;
+ vm_page_non_speculative_pageable_states[VM_PAGE_ON_INACTIVE_CLEANED_Q] = 1;
+ vm_page_non_speculative_pageable_states[VM_PAGE_ON_ACTIVE_Q] = 1;
+ vm_page_non_speculative_pageable_states[VM_PAGE_ON_THROTTLED_Q] = 1;
+#if CONFIG_SECLUDED_MEMORY
+ vm_page_non_speculative_pageable_states[VM_PAGE_ON_SECLUDED_Q] = 1;
+#endif /* CONFIG_SECLUDED_MEMORY */
+
+ bzero(vm_page_active_or_inactive_states, sizeof(vm_page_active_or_inactive_states));
+ vm_page_active_or_inactive_states[VM_PAGE_ON_INACTIVE_INTERNAL_Q] = 1;
+ vm_page_active_or_inactive_states[VM_PAGE_ON_INACTIVE_EXTERNAL_Q] = 1;
+ vm_page_active_or_inactive_states[VM_PAGE_ON_INACTIVE_CLEANED_Q] = 1;
+ vm_page_active_or_inactive_states[VM_PAGE_ON_ACTIVE_Q] = 1;
+#if CONFIG_SECLUDED_MEMORY
+ vm_page_active_or_inactive_states[VM_PAGE_ON_SECLUDED_Q] = 1;
+#endif /* CONFIG_SECLUDED_MEMORY */
+
+ for (i = 0; i < VM_KERN_MEMORY_FIRST_DYNAMIC; i++) {
+ vm_allocation_sites_static[i].refcount = 2;
+ vm_allocation_sites_static[i].tag = i;
+ vm_allocation_sites[i] = &vm_allocation_sites_static[i];
+ }
+ vm_allocation_sites_static[VM_KERN_MEMORY_FIRST_DYNAMIC].refcount = 2;
+ vm_allocation_sites_static[VM_KERN_MEMORY_FIRST_DYNAMIC].tag = VM_KERN_MEMORY_ANY;
+ vm_allocation_sites[VM_KERN_MEMORY_ANY] = &vm_allocation_sites_static[VM_KERN_MEMORY_FIRST_DYNAMIC];
/*
- * Show that the object has one more resident page.
+ * Steal memory for the map and zone subsystems.
*/
+#if CONFIG_GZALLOC
+ gzalloc_configure();
+#endif
+ kernel_debug_string_early("vm_map_steal_memory");
+ vm_map_steal_memory();
- object->resident_page_count++;
-}
-
-/*
- * vm_page_replace:
- *
- * Exactly like vm_page_insert, except that we first
- * remove any existing page at the given offset in object.
- *
- * The object and page queues must be locked.
- */
+ /*
+ * Allocate (and initialize) the virtual-to-physical
+ * table hash buckets.
+ *
+ * The number of buckets should be a power of two to
+ * get a good hash function. The following computation
+ * chooses the first power of two that is greater
+ * than the number of physical pages in the system.
+ */
-void
-vm_page_replace(
- register vm_page_t mem,
- register vm_object_t object,
- register vm_object_offset_t offset)
-{
- register vm_page_bucket_t *bucket;
+ if (vm_page_bucket_count == 0) {
+ unsigned int npages = pmap_free_pages();
- VM_PAGE_CHECK(mem);
+ vm_page_bucket_count = 1;
+ while (vm_page_bucket_count < npages) {
+ vm_page_bucket_count <<= 1;
+ }
+ }
+ vm_page_bucket_lock_count = (vm_page_bucket_count + BUCKETS_PER_LOCK - 1) / BUCKETS_PER_LOCK;
- if (mem->tabled)
- panic("vm_page_replace");
+ vm_page_hash_mask = vm_page_bucket_count - 1;
/*
- * Record the object/offset pair in this page
+ * Calculate object shift value for hashing algorithm:
+ * O = log2(sizeof(struct vm_object))
+ * B = log2(vm_page_bucket_count)
+ * hash shifts the object left by
+ * B/2 - O
*/
+ size = vm_page_bucket_count;
+ for (log1 = 0; size > 1; log1++) {
+ size /= 2;
+ }
+ size = sizeof(struct vm_object);
+ for (log2 = 0; size > 1; log2++) {
+ size /= 2;
+ }
+ vm_page_hash_shift = log1 / 2 - log2 + 1;
+
+ vm_page_bucket_hash = 1 << ((log1 + 1) >> 1); /* Get (ceiling of sqrt of table size) */
+ vm_page_bucket_hash |= 1 << ((log1 + 1) >> 2); /* Get (ceiling of quadroot of table size) */
+ vm_page_bucket_hash |= 1; /* Set bit and add 1 - always must be 1 to insure unique series */
- mem->object = object;
- mem->offset = offset;
+ if (vm_page_hash_mask & vm_page_bucket_count) {
+ printf("vm_page_bootstrap: WARNING -- strange page hash\n");
+ }
+#if VM_PAGE_BUCKETS_CHECK
+#if VM_PAGE_FAKE_BUCKETS
/*
- * Insert it into the object_object/offset hash table,
- * replacing any page that might have been there.
+ * Allocate a decoy set of page buckets, to detect
+ * any stomping there.
*/
+ vm_page_fake_buckets = (vm_page_bucket_t *)
+ pmap_steal_memory(vm_page_bucket_count *
+ sizeof(vm_page_bucket_t));
+ vm_page_fake_buckets_start = (vm_map_offset_t) vm_page_fake_buckets;
+ vm_page_fake_buckets_end =
+ vm_map_round_page((vm_page_fake_buckets_start +
+ (vm_page_bucket_count *
+ sizeof(vm_page_bucket_t))),
+ PAGE_MASK);
+ char *cp;
+ for (cp = (char *)vm_page_fake_buckets_start;
+ cp < (char *)vm_page_fake_buckets_end;
+ cp++) {
+ *cp = 0x5a;
+ }
+#endif /* VM_PAGE_FAKE_BUCKETS */
+#endif /* VM_PAGE_BUCKETS_CHECK */
- bucket = &vm_page_buckets[vm_page_hash(object, offset)];
- simple_lock(&vm_page_bucket_lock);
- if (bucket->pages) {
- vm_page_t *mp = &bucket->pages;
- register vm_page_t m = *mp;
- do {
- if (m->object == object && m->offset == offset) {
- /*
- * Remove page from bucket and from object,
- * and return it to the free list.
- */
- *mp = m->next;
- queue_remove(&object->memq, m, vm_page_t,
- listq);
- m->tabled = FALSE;
- object->resident_page_count--;
+ kernel_debug_string_early("vm_page_buckets");
+ vm_page_buckets = (vm_page_bucket_t *)
+ pmap_steal_memory(vm_page_bucket_count *
+ sizeof(vm_page_bucket_t));
- /*
- * Return page to the free list.
- * Note the page is not tabled now, so this
- * won't self-deadlock on the bucket lock.
- */
+ kernel_debug_string_early("vm_page_bucket_locks");
+ vm_page_bucket_locks = (lck_spin_t *)
+ pmap_steal_memory(vm_page_bucket_lock_count *
+ sizeof(lck_spin_t));
- vm_page_free(m);
- break;
- }
- mp = &m->next;
- } while (m = *mp);
- mem->next = bucket->pages;
- } else {
- mem->next = VM_PAGE_NULL;
+ for (i = 0; i < vm_page_bucket_count; i++) {
+ vm_page_bucket_t *bucket = &vm_page_buckets[i];
+
+ bucket->page_list = VM_PAGE_PACK_PTR(VM_PAGE_NULL);
+#if MACH_PAGE_HASH_STATS
+ bucket->cur_count = 0;
+ bucket->hi_count = 0;
+#endif /* MACH_PAGE_HASH_STATS */
+ }
+
+ for (i = 0; i < vm_page_bucket_lock_count; i++) {
+ lck_spin_init(&vm_page_bucket_locks[i], &vm_page_lck_grp_bucket, &vm_page_lck_attr);
}
- bucket->pages = mem;
- simple_unlock(&vm_page_bucket_lock);
+
+ lck_spin_init(&vm_objects_wired_lock, &vm_page_lck_grp_bucket, &vm_page_lck_attr);
+ lck_spin_init(&vm_allocation_sites_lock, &vm_page_lck_grp_bucket, &vm_page_lck_attr);
+ vm_tag_init();
+
+#if VM_PAGE_BUCKETS_CHECK
+ vm_page_buckets_check_ready = TRUE;
+#endif /* VM_PAGE_BUCKETS_CHECK */
/*
- * Now link into the object's list of backed pages.
+ * Machine-dependent code allocates the resident page table.
+ * It uses vm_page_init to initialize the page frames.
+ * The code also returns to us the virtual space available
+ * to the kernel. We don't trust the pmap module
+ * to get the alignment right.
*/
- queue_enter(&object->memq, mem, vm_page_t, listq);
- mem->tabled = TRUE;
+ kernel_debug_string_early("pmap_startup");
+ pmap_startup(&virtual_space_start, &virtual_space_end);
+ virtual_space_start = round_page(virtual_space_start);
+ virtual_space_end = trunc_page(virtual_space_end);
+
+ *startp = virtual_space_start;
+ *endp = virtual_space_end;
/*
- * And show that the object has one more resident
- * page.
+ * Compute the initial "wire" count.
+ * Up until now, the pages which have been set aside are not under
+ * the VM system's control, so although they aren't explicitly
+ * wired, they nonetheless can't be moved. At this moment,
+ * all VM managed pages are "free", courtesy of pmap_startup.
*/
+ assert((unsigned int) atop_64(max_mem) == atop_64(max_mem));
+ vm_page_wire_count = ((unsigned int) atop_64(max_mem)) -
+ vm_page_free_count - vm_lopage_free_count;
+#if CONFIG_SECLUDED_MEMORY
+ vm_page_wire_count -= vm_page_secluded_count;
+#endif
+ vm_page_wire_count_initial = vm_page_wire_count;
- object->resident_page_count++;
+ printf("vm_page_bootstrap: %d free pages, %d wired pages, (up to %d of which are delayed free)\n",
+ vm_page_free_count, vm_page_wire_count, vm_delayed_count);
+
+ kernel_debug_string_early("vm_page_bootstrap complete");
+ simple_lock_init(&vm_paging_lock, 0);
}
+#ifndef MACHINE_PAGES
/*
- * vm_page_remove: [ internal use only ]
- *
- * Removes the given mem entry from the object/offset-page
- * table and the object page list.
- *
- * The object and page must be locked.
+ * We implement pmap_steal_memory and pmap_startup with the help
+ * of two simpler functions, pmap_virtual_space and pmap_next_page.
*/
-void
-vm_page_remove(
- register vm_page_t mem)
+void *
+pmap_steal_memory(
+ vm_size_t size)
{
- register vm_page_bucket_t *bucket;
- register vm_page_t this;
+ kern_return_t kr;
+ vm_offset_t addr, vaddr;
+ ppnum_t phys_page;
- XPR(XPR_VM_PAGE,
- "vm_page_remove, object 0x%X offset 0x%X page 0x%X\n",
- (integer_t)mem->object, (integer_t)mem->offset,
- (integer_t)mem, 0,0);
+ /*
+ * We round the size to a round multiple.
+ */
- assert(mem->tabled);
- assert(!mem->cleaning);
- VM_PAGE_CHECK(mem);
+ size = (size + sizeof(void *) - 1) & ~(sizeof(void *) - 1);
/*
- * Remove from the object_object/offset hash table
+ * If this is the first call to pmap_steal_memory,
+ * we have to initialize ourself.
*/
- bucket = &vm_page_buckets[vm_page_hash(mem->object, mem->offset)];
- simple_lock(&vm_page_bucket_lock);
- if ((this = bucket->pages) == mem) {
- /* optimize for common case */
+ if (virtual_space_start == virtual_space_end) {
+ pmap_virtual_space(&virtual_space_start, &virtual_space_end);
- bucket->pages = mem->next;
- } else {
- register vm_page_t *prev;
+ /*
+ * The initial values must be aligned properly, and
+ * we don't trust the pmap module to do it right.
+ */
- for (prev = &this->next;
- (this = *prev) != mem;
- prev = &this->next)
- continue;
- *prev = this->next;
+ virtual_space_start = round_page(virtual_space_start);
+ virtual_space_end = trunc_page(virtual_space_end);
}
-#if MACH_PAGE_HASH_STATS
- bucket->cur_count--;
-#endif /* MACH_PAGE_HASH_STATS */
- simple_unlock(&vm_page_bucket_lock);
/*
- * Now remove from the object's list of backed pages.
+ * Allocate virtual memory for this request.
*/
- queue_remove(&mem->object->memq, mem, vm_page_t, listq);
+ addr = virtual_space_start;
+ virtual_space_start += size;
+
+ //kprintf("pmap_steal_memory: %08lX - %08lX; size=%08lX\n", (long)addr, (long)virtual_space_start, (long)size); /* (TEST/DEBUG) */
/*
- * And show that the object has one fewer resident
- * page.
+ * Allocate and map physical pages to back new virtual pages.
*/
- mem->object->resident_page_count--;
+ for (vaddr = round_page(addr);
+ vaddr < addr + size;
+ vaddr += PAGE_SIZE) {
+ if (!pmap_next_page_hi(&phys_page)) {
+ panic("pmap_steal_memory() size: 0x%llx\n", (uint64_t)size);
+ }
+
+ /*
+ * XXX Logically, these mappings should be wired,
+ * but some pmap modules barf if they are.
+ */
+#if defined(__LP64__)
+#ifdef __arm64__
+ /* ARM64_TODO: verify that we really don't need this */
+#else
+ pmap_pre_expand(kernel_pmap, vaddr);
+#endif
+#endif
+
+ kr = pmap_enter(kernel_pmap, vaddr, phys_page,
+ VM_PROT_READ | VM_PROT_WRITE, VM_PROT_NONE,
+ VM_WIMG_USE_DEFAULT, FALSE);
+
+ if (kr != KERN_SUCCESS) {
+ panic("pmap_steal_memory() pmap_enter failed, vaddr=%#lx, phys_page=%u",
+ (unsigned long)vaddr, phys_page);
+ }
+
+ /*
+ * Account for newly stolen memory
+ */
+ vm_page_wire_count++;
+ vm_page_stolen_count++;
+ }
- mem->tabled = FALSE;
- mem->object = VM_OBJECT_NULL;
- mem->offset = 0;
+#if KASAN
+ kasan_notify_address(round_page(addr), size);
+#endif
+ return (void *) addr;
}
-/*
- * vm_page_lookup:
- *
- * Returns the page associated with the object/offset
- * pair specified; if none is found, VM_PAGE_NULL is returned.
- *
- * The object must be locked. No side effects.
- */
+#if CONFIG_SECLUDED_MEMORY
+/* boot-args to control secluded memory */
+unsigned int secluded_mem_mb = 0; /* # of MBs of RAM to seclude */
+int secluded_for_iokit = 1; /* IOKit can use secluded memory */
+int secluded_for_apps = 1; /* apps can use secluded memory */
+int secluded_for_filecache = 2; /* filecache can use seclude memory */
+#if 11
+int secluded_for_fbdp = 0;
+#endif
+uint64_t secluded_shutoff_trigger = 0;
+#endif /* CONFIG_SECLUDED_MEMORY */
-vm_page_t
-vm_page_lookup(
- register vm_object_t object,
- register vm_object_offset_t offset)
-{
- register vm_page_t mem;
- register vm_page_bucket_t *bucket;
+#if defined(__arm__) || defined(__arm64__)
+extern void patch_low_glo_vm_page_info(void *, void *, uint32_t);
+unsigned int vm_first_phys_ppnum = 0;
+#endif
+
+void vm_page_release_startup(vm_page_t mem);
+void
+pmap_startup(
+ vm_offset_t *startp,
+ vm_offset_t *endp)
+{
+ unsigned int i, npages;
+ ppnum_t phys_page;
+ uint64_t mem_sz;
+ uint64_t start_ns;
+ uint64_t now_ns;
+ uint_t low_page_count = 0;
+
+#if defined(__LP64__)
/*
- * Search the hash table for this object/offset pair
+ * make sure we are aligned on a 64 byte boundary
+ * for VM_PAGE_PACK_PTR (it clips off the low-order
+ * 6 bits of the pointer)
*/
+ if (virtual_space_start != virtual_space_end) {
+ virtual_space_start = round_page(virtual_space_start);
+ }
+#endif
- bucket = &vm_page_buckets[vm_page_hash(object, offset)];
+ /*
+ * We calculate how many page frames we will have
+ * and then allocate the page structures in one chunk.
+ *
+ * Note that the calculation here doesn't take into account
+ * the memory needed to map what's being allocated, i.e. the page
+ * table entries. So the actual number of pages we get will be
+ * less than this. To do someday: include that in the computation.
+ */
+ mem_sz = pmap_free_pages() * (uint64_t)PAGE_SIZE;
+ mem_sz += round_page(virtual_space_start) - virtual_space_start; /* Account for any slop */
+ npages = (uint_t)(mem_sz / (PAGE_SIZE + sizeof(*vm_pages))); /* scaled to include the vm_page_ts */
+
+ vm_pages = (vm_page_t) pmap_steal_memory(npages * sizeof *vm_pages);
+
+ /*
+ * Check if we want to initialize pages to a known value
+ */
+ if (PE_parse_boot_argn("fill", &fillval, sizeof(fillval))) {
+ fill = TRUE;
+ }
+#if DEBUG
+ /* This slows down booting the DEBUG kernel, particularly on
+ * large memory systems, but is worthwhile in deterministically
+ * trapping uninitialized memory usage.
+ */
+ if (!fill) {
+ fill = TRUE;
+ fillval = 0xDEB8F177;
+ }
+#endif
+ if (fill) {
+ kprintf("Filling vm_pages with pattern: 0x%x\n", fillval);
+ }
+
+#if CONFIG_SECLUDED_MEMORY
+ /*
+ * Figure out how much secluded memory to have before we start
+ * release pages to free lists.
+ * The default, if specified nowhere else, is no secluded mem.
+ */
+ secluded_mem_mb = 0;
+ if (max_mem > 1 * 1024 * 1024 * 1024) {
+ /* default to 90MB for devices with > 1GB of RAM */
+ secluded_mem_mb = 90;
+ }
+ /* override with value from device tree, if provided */
+ PE_get_default("kern.secluded_mem_mb",
+ &secluded_mem_mb, sizeof(secluded_mem_mb));
+ /* override with value from boot-args, if provided */
+ PE_parse_boot_argn("secluded_mem_mb",
+ &secluded_mem_mb,
+ sizeof(secluded_mem_mb));
+
+ vm_page_secluded_target = (unsigned int)
+ ((secluded_mem_mb * 1024ULL * 1024ULL) / PAGE_SIZE);
+ PE_parse_boot_argn("secluded_for_iokit",
+ &secluded_for_iokit,
+ sizeof(secluded_for_iokit));
+ PE_parse_boot_argn("secluded_for_apps",
+ &secluded_for_apps,
+ sizeof(secluded_for_apps));
+ PE_parse_boot_argn("secluded_for_filecache",
+ &secluded_for_filecache,
+ sizeof(secluded_for_filecache));
+#if 11
+ PE_parse_boot_argn("secluded_for_fbdp",
+ &secluded_for_fbdp,
+ sizeof(secluded_for_fbdp));
+#endif
+
+ /*
+ * On small devices, allow a large app to effectively suppress
+ * secluded memory until it exits.
+ */
+ if (max_mem <= 1 * 1024 * 1024 * 1024 && vm_page_secluded_target != 0) {
+ /*
+ * Get an amount from boot-args, else use 500MB.
+ * 500MB was chosen from a Peace daemon tentpole test which used munch
+ * to induce jetsam thrashing of false idle daemons.
+ */
+ int secluded_shutoff_mb;
+ if (PE_parse_boot_argn("secluded_shutoff_mb", &secluded_shutoff_mb,
+ sizeof(secluded_shutoff_mb))) {
+ secluded_shutoff_trigger = (uint64_t)secluded_shutoff_mb * 1024 * 1024;
+ } else {
+ secluded_shutoff_trigger = 500 * 1024 * 1024;
+ }
+
+ if (secluded_shutoff_trigger != 0) {
+ secluded_suppression_init();
+ }
+ }
+
+#endif /* CONFIG_SECLUDED_MEMORY */
+
+#if defined(__x86_64__)
+
+ /*
+ * Decide how much memory we delay freeing at boot time.
+ */
+ uint32_t delay_above_gb;
+ if (!PE_parse_boot_argn("delay_above_gb", &delay_above_gb, sizeof(delay_above_gb))) {
+ delay_above_gb = DEFAULT_DELAY_ABOVE_PHYS_GB;
+ }
+
+ if (delay_above_gb == 0) {
+ delay_above_pnum = PPNUM_MAX;
+ } else {
+ delay_above_pnum = delay_above_gb * (1024 * 1024 * 1024 / PAGE_SIZE);
+ }
+
+ /* make sure we have sane breathing room: 1G above low memory */
+ if (delay_above_pnum <= max_valid_low_ppnum) {
+ delay_above_pnum = max_valid_low_ppnum + ((1024 * 1024 * 1024) >> PAGE_SHIFT);
+ }
+
+ if (delay_above_pnum < PPNUM_MAX) {
+ printf("pmap_startup() delaying init/free of page nums > 0x%x\n", delay_above_pnum);
+ }
+
+#endif /* defined(__x86_64__) */
+
+ /*
+ * Initialize and release the page frames.
+ */
+ kernel_debug_string_early("Initialize and free the page frames");
+
+ vm_page_array_beginning_addr = &vm_pages[0];
+ vm_page_array_ending_addr = &vm_pages[npages]; /* used by ptr packing/unpacking code */
+
+ vm_delayed_count = 0;
+
+ absolutetime_to_nanoseconds(mach_absolute_time(), &start_ns);
+ vm_pages_count = 0;
+ for (i = 0; i < npages; i++) {
+ /* Did we run out of pages? */
+ if (!pmap_next_page(&phys_page)) {
+ break;
+ }
+
+ if (phys_page < max_valid_low_ppnum) {
+ ++low_page_count;
+ }
- simple_lock(&vm_page_bucket_lock);
- for (mem = bucket->pages; mem != VM_PAGE_NULL; mem = mem->next) {
- VM_PAGE_CHECK(mem);
- if ((mem->object == object) && (mem->offset == offset))
+ /* Are we at high enough pages to delay the rest? */
+ if (low_page_count > vm_lopage_free_limit && phys_page > delay_above_pnum) {
+ vm_delayed_count = pmap_free_pages();
break;
+ }
+
+#if defined(__arm__) || defined(__arm64__)
+ if (i == 0) {
+ vm_first_phys_ppnum = phys_page;
+ patch_low_glo_vm_page_info((void *)vm_page_array_beginning_addr,
+ (void *)vm_page_array_ending_addr, vm_first_phys_ppnum);
+ }
+ assert((i + vm_first_phys_ppnum) == phys_page);
+#endif
+
+ ++vm_pages_count;
+ vm_page_init(&vm_pages[i], phys_page, FALSE);
+ if (fill) {
+ fillPage(phys_page, fillval);
+ }
+ if (vm_himemory_mode) {
+ vm_page_release_startup(&vm_pages[i]);
+ }
+ }
+ vm_page_pages = vm_pages_count; /* used to report to user space */
+
+ if (!vm_himemory_mode) {
+ do {
+ vm_page_release_startup(&vm_pages[--i]);
+ } while (i != 0);
+ }
+
+ absolutetime_to_nanoseconds(mach_absolute_time(), &now_ns);
+ printf("pmap_startup() init/release time: %lld microsec\n", (now_ns - start_ns) / NSEC_PER_USEC);
+ printf("pmap_startup() delayed init/release of %d pages\n", vm_delayed_count);
+
+#if defined(__LP64__)
+
+ if ((vm_page_t)(VM_PAGE_UNPACK_PTR(VM_PAGE_PACK_PTR(&vm_pages[0]))) != &vm_pages[0]) {
+ panic("VM_PAGE_PACK_PTR failed on &vm_pages[0] - %p", (void *)&vm_pages[0]);
+ }
+
+ if ((vm_page_t)(VM_PAGE_UNPACK_PTR(VM_PAGE_PACK_PTR(&vm_pages[vm_pages_count - 1]))) != &vm_pages[vm_pages_count - 1]) {
+ panic("VM_PAGE_PACK_PTR failed on &vm_pages[vm_pages_count-1] - %p", (void *)&vm_pages[vm_pages_count - 1]);
}
- simple_unlock(&vm_page_bucket_lock);
- return(mem);
+#endif
+
+ VM_CHECK_MEMORYSTATUS;
+
+ /*
+ * We have to re-align virtual_space_start,
+ * because pmap_steal_memory has been using it.
+ */
+ virtual_space_start = round_page(virtual_space_start);
+ *startp = virtual_space_start;
+ *endp = virtual_space_end;
}
+#endif /* MACHINE_PAGES */
/*
- * vm_page_rename:
- *
- * Move the given memory entry from its
- * current object to the specified target object/offset.
- *
- * The object must be locked.
+ * Create the zone that represents the vm_pages[] array. Nothing ever allocates
+ * or frees to this zone. It's just here for reporting purposes via zprint command.
+ * This needs to be done after all initially delayed pages are put on the free lists.
+ */
+static void
+vm_page_module_init_delayed(void)
+{
+ uint64_t vm_page_zone_pages, vm_page_array_zone_data_size;
+
+ vm_page_array_zone = zinit((vm_size_t) sizeof(struct vm_page),
+ 0, PAGE_SIZE, "vm pages array");
+
+ zone_change(vm_page_array_zone, Z_CALLERACCT, FALSE);
+ zone_change(vm_page_array_zone, Z_EXPAND, FALSE);
+ zone_change(vm_page_array_zone, Z_EXHAUST, TRUE);
+ zone_change(vm_page_array_zone, Z_FOREIGN, TRUE);
+ zone_change(vm_page_array_zone, Z_GZALLOC_EXEMPT, TRUE);
+
+ /*
+ * Reflect size and usage information for vm_pages[].
+ */
+ vm_page_array_zone->count = vm_pages_count;
+ vm_page_array_zone->countfree = (int)(vm_page_array_ending_addr - &vm_pages[vm_pages_count]);
+ vm_page_array_zone->sum_count = vm_pages_count;
+ vm_page_array_zone_data_size = (uintptr_t)((void *)vm_page_array_ending_addr - (void *)vm_pages);
+ vm_page_array_zone->cur_size = vm_page_array_zone_data_size;
+ vm_page_zone_pages = ((round_page(vm_page_array_zone_data_size)) / PAGE_SIZE);
+ OSAddAtomic64(vm_page_zone_pages, &(vm_page_array_zone->page_count));
+ /* since zone accounts for these, take them out of stolen */
+ VM_PAGE_MOVE_STOLEN(vm_page_zone_pages);
+}
+
+/*
+ * Create the vm_pages zone. This is used for the vm_page structures for the pages
+ * that are scavanged from other boot time usages by ml_static_mfree(). As such,
+ * this needs to happen in early VM bootstrap.
*/
void
-vm_page_rename(
- register vm_page_t mem,
- register vm_object_t new_object,
- vm_object_offset_t new_offset)
+vm_page_module_init(void)
{
- assert(mem->object != new_object);
+ vm_size_t vm_page_with_ppnum_size;
+
/*
- * Changes to mem->object require the page lock because
- * the pageout daemon uses that lock to get the object.
+ * Since the pointers to elements in this zone will be packed, they
+ * must have appropriate size. Not strictly what sizeof() reports.
*/
+ vm_page_with_ppnum_size =
+ (sizeof(struct vm_page_with_ppnum) + (VM_PACKED_POINTER_ALIGNMENT - 1)) &
+ ~(VM_PACKED_POINTER_ALIGNMENT - 1);
- XPR(XPR_VM_PAGE,
- "vm_page_rename, new object 0x%X, offset 0x%X page 0x%X\n",
- (integer_t)new_object, (integer_t)new_offset,
- (integer_t)mem, 0,0);
+ vm_page_zone = zinit(vm_page_with_ppnum_size, 0, PAGE_SIZE, "vm pages");
- vm_page_lock_queues();
- vm_page_remove(mem);
- vm_page_insert(mem, new_object, new_offset);
- vm_page_unlock_queues();
+ zone_change(vm_page_zone, Z_CALLERACCT, FALSE);
+ zone_change(vm_page_zone, Z_EXPAND, FALSE);
+ zone_change(vm_page_zone, Z_EXHAUST, TRUE);
+ zone_change(vm_page_zone, Z_FOREIGN, TRUE);
+ zone_change(vm_page_zone, Z_GZALLOC_EXEMPT, TRUE);
+ zone_change(vm_page_zone, Z_ALIGNMENT_REQUIRED, TRUE);
}
/*
- * vm_page_init:
+ * Routine: vm_page_create
+ * Purpose:
+ * After the VM system is up, machine-dependent code
+ * may stumble across more physical memory. For example,
+ * memory that it was reserving for a frame buffer.
+ * vm_page_create turns this memory into available pages.
+ */
+
+void
+vm_page_create(
+ ppnum_t start,
+ ppnum_t end)
+{
+ ppnum_t phys_page;
+ vm_page_t m;
+
+ for (phys_page = start;
+ phys_page < end;
+ phys_page++) {
+ while ((m = (vm_page_t) vm_page_grab_fictitious_common(phys_page))
+ == VM_PAGE_NULL) {
+ vm_page_more_fictitious();
+ }
+
+ m->vmp_fictitious = FALSE;
+ pmap_clear_noencrypt(phys_page);
+
+ lck_mtx_lock(&vm_page_queue_free_lock);
+ vm_page_pages++;
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+ vm_page_release(m, FALSE);
+ }
+}
+
+/*
+ * vm_page_hash:
*
- * Initialize the fields in a new page.
- * This takes a structure with random values and initializes it
- * so that it can be given to vm_page_release or vm_page_insert.
+ * Distributes the object/offset key pair among hash buckets.
+ *
+ * NOTE: The bucket count must be a power of 2
+ */
+#define vm_page_hash(object, offset) (\
+ ( (natural_t)((uintptr_t)object * vm_page_bucket_hash) + ((uint32_t)atop_64(offset) ^ vm_page_bucket_hash))\
+ & vm_page_hash_mask)
+
+
+/*
+ * vm_page_insert: [ internal use only ]
+ *
+ * Inserts the given mem entry into the object/object-page
+ * table and object list.
+ *
+ * The object must be locked.
*/
void
-vm_page_init(
- vm_page_t mem,
- vm_offset_t phys_addr)
+vm_page_insert(
+ vm_page_t mem,
+ vm_object_t object,
+ vm_object_offset_t offset)
+{
+ vm_page_insert_internal(mem, object, offset, VM_KERN_MEMORY_NONE, FALSE, TRUE, FALSE, FALSE, NULL);
+}
+
+void
+vm_page_insert_wired(
+ vm_page_t mem,
+ vm_object_t object,
+ vm_object_offset_t offset,
+ vm_tag_t tag)
+{
+ vm_page_insert_internal(mem, object, offset, tag, FALSE, TRUE, FALSE, FALSE, NULL);
+}
+
+void
+vm_page_insert_internal(
+ vm_page_t mem,
+ vm_object_t object,
+ vm_object_offset_t offset,
+ vm_tag_t tag,
+ boolean_t queues_lock_held,
+ boolean_t insert_in_hash,
+ boolean_t batch_pmap_op,
+ boolean_t batch_accounting,
+ uint64_t *delayed_ledger_update)
{
- *mem = vm_page_template;
- mem->phys_addr = phys_addr;
+ vm_page_bucket_t *bucket;
+ lck_spin_t *bucket_lock;
+ int hash_id;
+ task_t owner;
+ int ledger_idx_volatile;
+ int ledger_idx_nonvolatile;
+ int ledger_idx_volatile_compressed;
+ int ledger_idx_nonvolatile_compressed;
+ boolean_t do_footprint;
+
+ XPR(XPR_VM_PAGE,
+ "vm_page_insert, object 0x%X offset 0x%X page 0x%X\n",
+ object, offset, mem, 0, 0);
+#if 0
+ /*
+ * we may not hold the page queue lock
+ * so this check isn't safe to make
+ */
+ VM_PAGE_CHECK(mem);
+#endif
+
+ assert(page_aligned(offset));
+
+ assert(!VM_PAGE_WIRED(mem) || mem->vmp_private || mem->vmp_fictitious || (tag != VM_KERN_MEMORY_NONE));
+
+ /* the vm_submap_object is only a placeholder for submaps */
+ assert(object != vm_submap_object);
+
+ vm_object_lock_assert_exclusive(object);
+ LCK_MTX_ASSERT(&vm_page_queue_lock,
+ queues_lock_held ? LCK_MTX_ASSERT_OWNED
+ : LCK_MTX_ASSERT_NOTOWNED);
+
+ if (queues_lock_held == FALSE) {
+ assert(!VM_PAGE_PAGEABLE(mem));
+ }
+
+ if (insert_in_hash == TRUE) {
+#if DEBUG || VM_PAGE_CHECK_BUCKETS
+ if (mem->vmp_tabled || mem->vmp_object) {
+ panic("vm_page_insert: page %p for (obj=%p,off=0x%llx) "
+ "already in (obj=%p,off=0x%llx)",
+ mem, object, offset, VM_PAGE_OBJECT(mem), mem->vmp_offset);
+ }
+#endif
+ if (object->internal && (offset >= object->vo_size)) {
+ panic("vm_page_insert_internal: (page=%p,obj=%p,off=0x%llx,size=0x%llx) inserted at offset past object bounds",
+ mem, object, offset, object->vo_size);
+ }
+
+ assert(vm_page_lookup(object, offset) == VM_PAGE_NULL);
+
+ /*
+ * Record the object/offset pair in this page
+ */
+
+ mem->vmp_object = VM_PAGE_PACK_OBJECT(object);
+ mem->vmp_offset = offset;
+
+#if CONFIG_SECLUDED_MEMORY
+ if (object->eligible_for_secluded) {
+ vm_page_secluded.eligible_for_secluded++;
+ }
+#endif /* CONFIG_SECLUDED_MEMORY */
+
+ /*
+ * Insert it into the object_object/offset hash table
+ */
+ hash_id = vm_page_hash(object, offset);
+ bucket = &vm_page_buckets[hash_id];
+ bucket_lock = &vm_page_bucket_locks[hash_id / BUCKETS_PER_LOCK];
+
+ lck_spin_lock_grp(bucket_lock, &vm_page_lck_grp_bucket);
+
+ mem->vmp_next_m = bucket->page_list;
+ bucket->page_list = VM_PAGE_PACK_PTR(mem);
+ assert(mem == (vm_page_t)(VM_PAGE_UNPACK_PTR(bucket->page_list)));
+
+#if MACH_PAGE_HASH_STATS
+ if (++bucket->cur_count > bucket->hi_count) {
+ bucket->hi_count = bucket->cur_count;
+ }
+#endif /* MACH_PAGE_HASH_STATS */
+ mem->vmp_hashed = TRUE;
+ lck_spin_unlock(bucket_lock);
+ }
+
+ {
+ unsigned int cache_attr;
+
+ cache_attr = object->wimg_bits & VM_WIMG_MASK;
+
+ if (cache_attr != VM_WIMG_USE_DEFAULT) {
+ PMAP_SET_CACHE_ATTR(mem, object, cache_attr, batch_pmap_op);
+ }
+ }
+ /*
+ * Now link into the object's list of backed pages.
+ */
+ vm_page_queue_enter(&object->memq, mem, vmp_listq);
+ object->memq_hint = mem;
+ mem->vmp_tabled = TRUE;
+
+ /*
+ * Show that the object has one more resident page.
+ */
+
+ object->resident_page_count++;
+ if (VM_PAGE_WIRED(mem)) {
+ assert(mem->vmp_wire_count > 0);
+ VM_OBJECT_WIRED_PAGE_UPDATE_START(object);
+ VM_OBJECT_WIRED_PAGE_ADD(object, mem);
+ VM_OBJECT_WIRED_PAGE_UPDATE_END(object, tag);
+ }
+ assert(object->resident_page_count >= object->wired_page_count);
+
+ if (batch_accounting == FALSE) {
+ if (object->internal) {
+ OSAddAtomic(1, &vm_page_internal_count);
+ } else {
+ OSAddAtomic(1, &vm_page_external_count);
+ }
+ }
+
+ /*
+ * It wouldn't make sense to insert a "reusable" page in
+ * an object (the page would have been marked "reusable" only
+ * at the time of a madvise(MADV_FREE_REUSABLE) if it was already
+ * in the object at that time).
+ * But a page could be inserted in a "all_reusable" object, if
+ * something faults it in (a vm_read() from another task or a
+ * "use-after-free" issue in user space, for example). It can
+ * also happen if we're relocating a page from that object to
+ * a different physical page during a physically-contiguous
+ * allocation.
+ */
+ assert(!mem->vmp_reusable);
+ if (object->all_reusable) {
+ OSAddAtomic(+1, &vm_page_stats_reusable.reusable_count);
+ }
+
+ if (object->purgable == VM_PURGABLE_DENY &&
+ !object->vo_ledger_tag) {
+ owner = TASK_NULL;
+ } else {
+ owner = VM_OBJECT_OWNER(object);
+ vm_object_ledger_tag_ledgers(object,
+ &ledger_idx_volatile,
+ &ledger_idx_nonvolatile,
+ &ledger_idx_volatile_compressed,
+ &ledger_idx_nonvolatile_compressed,
+ &do_footprint);
+ }
+ if (owner &&
+ (object->purgable == VM_PURGABLE_NONVOLATILE ||
+ object->purgable == VM_PURGABLE_DENY ||
+ VM_PAGE_WIRED(mem))) {
+ if (delayed_ledger_update) {
+ *delayed_ledger_update += PAGE_SIZE;
+ } else {
+ /* more non-volatile bytes */
+ ledger_credit(owner->ledger,
+ ledger_idx_nonvolatile,
+ PAGE_SIZE);
+ if (do_footprint) {
+ /* more footprint */
+ ledger_credit(owner->ledger,
+ task_ledgers.phys_footprint,
+ PAGE_SIZE);
+ }
+ }
+ } else if (owner &&
+ (object->purgable == VM_PURGABLE_VOLATILE ||
+ object->purgable == VM_PURGABLE_EMPTY)) {
+ assert(!VM_PAGE_WIRED(mem));
+ /* more volatile bytes */
+ ledger_credit(owner->ledger,
+ ledger_idx_volatile,
+ PAGE_SIZE);
+ }
+
+ if (object->purgable == VM_PURGABLE_VOLATILE) {
+ if (VM_PAGE_WIRED(mem)) {
+ OSAddAtomic(+1, &vm_page_purgeable_wired_count);
+ } else {
+ OSAddAtomic(+1, &vm_page_purgeable_count);
+ }
+ } else if (object->purgable == VM_PURGABLE_EMPTY &&
+ mem->vmp_q_state == VM_PAGE_ON_THROTTLED_Q) {
+ /*
+ * This page belongs to a purged VM object but hasn't
+ * been purged (because it was "busy").
+ * It's in the "throttled" queue and hence not
+ * visible to vm_pageout_scan(). Move it to a pageable
+ * queue, so that it can eventually be reclaimed, instead
+ * of lingering in the "empty" object.
+ */
+ if (queues_lock_held == FALSE) {
+ vm_page_lockspin_queues();
+ }
+ vm_page_deactivate(mem);
+ if (queues_lock_held == FALSE) {
+ vm_page_unlock_queues();
+ }
+ }
+
+#if VM_OBJECT_TRACKING_OP_MODIFIED
+ if (vm_object_tracking_inited &&
+ object->internal &&
+ object->resident_page_count == 0 &&
+ object->pager == NULL &&
+ object->shadow != NULL &&
+ object->shadow->copy == object) {
+ void *bt[VM_OBJECT_TRACKING_BTDEPTH];
+ int numsaved = 0;
+
+ numsaved = OSBacktrace(bt, VM_OBJECT_TRACKING_BTDEPTH);
+ btlog_add_entry(vm_object_tracking_btlog,
+ object,
+ VM_OBJECT_TRACKING_OP_MODIFIED,
+ bt,
+ numsaved);
+ }
+#endif /* VM_OBJECT_TRACKING_OP_MODIFIED */
}
/*
- * vm_page_grab_fictitious:
+ * vm_page_replace:
*
- * Remove a fictitious page from the free list.
- * Returns VM_PAGE_NULL if there are no free pages.
+ * Exactly like vm_page_insert, except that we first
+ * remove any existing page at the given offset in object.
+ *
+ * The object must be locked.
*/
-int c_vm_page_grab_fictitious = 0;
-int c_vm_page_release_fictitious = 0;
-int c_vm_page_more_fictitious = 0;
+void
+vm_page_replace(
+ vm_page_t mem,
+ vm_object_t object,
+ vm_object_offset_t offset)
+{
+ vm_page_bucket_t *bucket;
+ vm_page_t found_m = VM_PAGE_NULL;
+ lck_spin_t *bucket_lock;
+ int hash_id;
+
+#if 0
+ /*
+ * we don't hold the page queue lock
+ * so this check isn't safe to make
+ */
+ VM_PAGE_CHECK(mem);
+#endif
+ vm_object_lock_assert_exclusive(object);
+#if DEBUG || VM_PAGE_CHECK_BUCKETS
+ if (mem->vmp_tabled || mem->vmp_object) {
+ panic("vm_page_replace: page %p for (obj=%p,off=0x%llx) "
+ "already in (obj=%p,off=0x%llx)",
+ mem, object, offset, VM_PAGE_OBJECT(mem), mem->vmp_offset);
+ }
+#endif
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED);
+
+ assert(!VM_PAGE_PAGEABLE(mem));
+
+ /*
+ * Record the object/offset pair in this page
+ */
+ mem->vmp_object = VM_PAGE_PACK_OBJECT(object);
+ mem->vmp_offset = offset;
+
+ /*
+ * Insert it into the object_object/offset hash table,
+ * replacing any page that might have been there.
+ */
+
+ hash_id = vm_page_hash(object, offset);
+ bucket = &vm_page_buckets[hash_id];
+ bucket_lock = &vm_page_bucket_locks[hash_id / BUCKETS_PER_LOCK];
+
+ lck_spin_lock_grp(bucket_lock, &vm_page_lck_grp_bucket);
+
+ if (bucket->page_list) {
+ vm_page_packed_t *mp = &bucket->page_list;
+ vm_page_t m = (vm_page_t)(VM_PAGE_UNPACK_PTR(*mp));
+
+ do {
+ /*
+ * compare packed object pointers
+ */
+ if (m->vmp_object == mem->vmp_object && m->vmp_offset == offset) {
+ /*
+ * Remove old page from hash list
+ */
+ *mp = m->vmp_next_m;
+ m->vmp_hashed = FALSE;
+ m->vmp_next_m = VM_PAGE_PACK_PTR(NULL);
+
+ found_m = m;
+ break;
+ }
+ mp = &m->vmp_next_m;
+ } while ((m = (vm_page_t)(VM_PAGE_UNPACK_PTR(*mp))));
+
+ mem->vmp_next_m = bucket->page_list;
+ } else {
+ mem->vmp_next_m = VM_PAGE_PACK_PTR(NULL);
+ }
+ /*
+ * insert new page at head of hash list
+ */
+ bucket->page_list = VM_PAGE_PACK_PTR(mem);
+ mem->vmp_hashed = TRUE;
+
+ lck_spin_unlock(bucket_lock);
+
+ if (found_m) {
+ /*
+ * there was already a page at the specified
+ * offset for this object... remove it from
+ * the object and free it back to the free list
+ */
+ vm_page_free_unlocked(found_m, FALSE);
+ }
+ vm_page_insert_internal(mem, object, offset, VM_KERN_MEMORY_NONE, FALSE, FALSE, FALSE, FALSE, NULL);
+}
+
+/*
+ * vm_page_remove: [ internal use only ]
+ *
+ * Removes the given mem entry from the object/offset-page
+ * table and the object page list.
+ *
+ * The object must be locked.
+ */
+
+void
+vm_page_remove(
+ vm_page_t mem,
+ boolean_t remove_from_hash)
+{
+ vm_page_bucket_t *bucket;
+ vm_page_t this;
+ lck_spin_t *bucket_lock;
+ int hash_id;
+ task_t owner;
+ vm_object_t m_object;
+ int ledger_idx_volatile;
+ int ledger_idx_nonvolatile;
+ int ledger_idx_volatile_compressed;
+ int ledger_idx_nonvolatile_compressed;
+ int do_footprint;
+
+ m_object = VM_PAGE_OBJECT(mem);
+
+ XPR(XPR_VM_PAGE,
+ "vm_page_remove, object 0x%X offset 0x%X page 0x%X\n",
+ m_object, mem->vmp_offset,
+ mem, 0, 0);
+
+ vm_object_lock_assert_exclusive(m_object);
+ assert(mem->vmp_tabled);
+ assert(!mem->vmp_cleaning);
+ assert(!mem->vmp_laundry);
+
+ if (VM_PAGE_PAGEABLE(mem)) {
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+ }
+#if 0
+ /*
+ * we don't hold the page queue lock
+ * so this check isn't safe to make
+ */
+ VM_PAGE_CHECK(mem);
+#endif
+ if (remove_from_hash == TRUE) {
+ /*
+ * Remove from the object_object/offset hash table
+ */
+ hash_id = vm_page_hash(m_object, mem->vmp_offset);
+ bucket = &vm_page_buckets[hash_id];
+ bucket_lock = &vm_page_bucket_locks[hash_id / BUCKETS_PER_LOCK];
+
+ lck_spin_lock_grp(bucket_lock, &vm_page_lck_grp_bucket);
+
+ if ((this = (vm_page_t)(VM_PAGE_UNPACK_PTR(bucket->page_list))) == mem) {
+ /* optimize for common case */
+
+ bucket->page_list = mem->vmp_next_m;
+ } else {
+ vm_page_packed_t *prev;
+
+ for (prev = &this->vmp_next_m;
+ (this = (vm_page_t)(VM_PAGE_UNPACK_PTR(*prev))) != mem;
+ prev = &this->vmp_next_m) {
+ continue;
+ }
+ *prev = this->vmp_next_m;
+ }
+#if MACH_PAGE_HASH_STATS
+ bucket->cur_count--;
+#endif /* MACH_PAGE_HASH_STATS */
+ mem->vmp_hashed = FALSE;
+ this->vmp_next_m = VM_PAGE_PACK_PTR(NULL);
+ lck_spin_unlock(bucket_lock);
+ }
+ /*
+ * Now remove from the object's list of backed pages.
+ */
+
+ vm_page_remove_internal(mem);
+
+ /*
+ * And show that the object has one fewer resident
+ * page.
+ */
+
+ assert(m_object->resident_page_count > 0);
+ m_object->resident_page_count--;
+
+ if (m_object->internal) {
+#if DEBUG
+ assert(vm_page_internal_count);
+#endif /* DEBUG */
+
+ OSAddAtomic(-1, &vm_page_internal_count);
+ } else {
+ assert(vm_page_external_count);
+ OSAddAtomic(-1, &vm_page_external_count);
+
+ if (mem->vmp_xpmapped) {
+ assert(vm_page_xpmapped_external_count);
+ OSAddAtomic(-1, &vm_page_xpmapped_external_count);
+ }
+ }
+ if (!m_object->internal &&
+ m_object->cached_list.next &&
+ m_object->cached_list.prev) {
+ if (m_object->resident_page_count == 0) {
+ vm_object_cache_remove(m_object);
+ }
+ }
+
+ if (VM_PAGE_WIRED(mem)) {
+ assert(mem->vmp_wire_count > 0);
+ VM_OBJECT_WIRED_PAGE_UPDATE_START(m_object);
+ VM_OBJECT_WIRED_PAGE_REMOVE(m_object, mem);
+ VM_OBJECT_WIRED_PAGE_UPDATE_END(m_object, m_object->wire_tag);
+ }
+ assert(m_object->resident_page_count >=
+ m_object->wired_page_count);
+ if (mem->vmp_reusable) {
+ assert(m_object->reusable_page_count > 0);
+ m_object->reusable_page_count--;
+ assert(m_object->reusable_page_count <=
+ m_object->resident_page_count);
+ mem->vmp_reusable = FALSE;
+ OSAddAtomic(-1, &vm_page_stats_reusable.reusable_count);
+ vm_page_stats_reusable.reused_remove++;
+ } else if (m_object->all_reusable) {
+ OSAddAtomic(-1, &vm_page_stats_reusable.reusable_count);
+ vm_page_stats_reusable.reused_remove++;
+ }
+
+ if (m_object->purgable == VM_PURGABLE_DENY &&
+ !m_object->vo_ledger_tag) {
+ owner = TASK_NULL;
+ } else {
+ owner = VM_OBJECT_OWNER(m_object);
+ vm_object_ledger_tag_ledgers(m_object,
+ &ledger_idx_volatile,
+ &ledger_idx_nonvolatile,
+ &ledger_idx_volatile_compressed,
+ &ledger_idx_nonvolatile_compressed,
+ &do_footprint);
+ }
+ if (owner &&
+ (m_object->purgable == VM_PURGABLE_NONVOLATILE ||
+ m_object->purgable == VM_PURGABLE_DENY ||
+ VM_PAGE_WIRED(mem))) {
+ /* less non-volatile bytes */
+ ledger_debit(owner->ledger,
+ ledger_idx_nonvolatile,
+ PAGE_SIZE);
+ if (do_footprint) {
+ /* less footprint */
+ ledger_debit(owner->ledger,
+ task_ledgers.phys_footprint,
+ PAGE_SIZE);
+ }
+ } else if (owner &&
+ (m_object->purgable == VM_PURGABLE_VOLATILE ||
+ m_object->purgable == VM_PURGABLE_EMPTY)) {
+ assert(!VM_PAGE_WIRED(mem));
+ /* less volatile bytes */
+ ledger_debit(owner->ledger,
+ ledger_idx_volatile,
+ PAGE_SIZE);
+ }
+ if (m_object->purgable == VM_PURGABLE_VOLATILE) {
+ if (VM_PAGE_WIRED(mem)) {
+ assert(vm_page_purgeable_wired_count > 0);
+ OSAddAtomic(-1, &vm_page_purgeable_wired_count);
+ } else {
+ assert(vm_page_purgeable_count > 0);
+ OSAddAtomic(-1, &vm_page_purgeable_count);
+ }
+ }
+
+ if (m_object->set_cache_attr == TRUE) {
+ pmap_set_cache_attributes(VM_PAGE_GET_PHYS_PAGE(mem), 0);
+ }
+
+ mem->vmp_tabled = FALSE;
+ mem->vmp_object = 0;
+ mem->vmp_offset = (vm_object_offset_t) -1;
+}
+
+
+/*
+ * vm_page_lookup:
+ *
+ * Returns the page associated with the object/offset
+ * pair specified; if none is found, VM_PAGE_NULL is returned.
+ *
+ * The object must be locked. No side effects.
+ */
+
+#define VM_PAGE_HASH_LOOKUP_THRESHOLD 10
+
+#if DEBUG_VM_PAGE_LOOKUP
+
+struct {
+ uint64_t vpl_total;
+ uint64_t vpl_empty_obj;
+ uint64_t vpl_bucket_NULL;
+ uint64_t vpl_hit_hint;
+ uint64_t vpl_hit_hint_next;
+ uint64_t vpl_hit_hint_prev;
+ uint64_t vpl_fast;
+ uint64_t vpl_slow;
+ uint64_t vpl_hit;
+ uint64_t vpl_miss;
+
+ uint64_t vpl_fast_elapsed;
+ uint64_t vpl_slow_elapsed;
+} vm_page_lookup_stats __attribute__((aligned(8)));
+
+#endif
+
+#define KDP_VM_PAGE_WALK_MAX 1000
+
+vm_page_t
+kdp_vm_page_lookup(
+ vm_object_t object,
+ vm_object_offset_t offset)
+{
+ vm_page_t cur_page;
+ int num_traversed = 0;
+
+ if (not_in_kdp) {
+ panic("panic: kdp_vm_page_lookup done outside of kernel debugger");
+ }
+
+ vm_page_queue_iterate(&object->memq, cur_page, vmp_listq) {
+ if (cur_page->vmp_offset == offset) {
+ return cur_page;
+ }
+ num_traversed++;
+
+ if (num_traversed >= KDP_VM_PAGE_WALK_MAX) {
+ return VM_PAGE_NULL;
+ }
+ }
+
+ return VM_PAGE_NULL;
+}
+
+vm_page_t
+vm_page_lookup(
+ vm_object_t object,
+ vm_object_offset_t offset)
+{
+ vm_page_t mem;
+ vm_page_bucket_t *bucket;
+ vm_page_queue_entry_t qe;
+ lck_spin_t *bucket_lock = NULL;
+ int hash_id;
+#if DEBUG_VM_PAGE_LOOKUP
+ uint64_t start, elapsed;
+
+ OSAddAtomic64(1, &vm_page_lookup_stats.vpl_total);
+#endif
+ vm_object_lock_assert_held(object);
+
+ if (object->resident_page_count == 0) {
+#if DEBUG_VM_PAGE_LOOKUP
+ OSAddAtomic64(1, &vm_page_lookup_stats.vpl_empty_obj);
+#endif
+ return VM_PAGE_NULL;
+ }
+
+ mem = object->memq_hint;
+
+ if (mem != VM_PAGE_NULL) {
+ assert(VM_PAGE_OBJECT(mem) == object);
+
+ if (mem->vmp_offset == offset) {
+#if DEBUG_VM_PAGE_LOOKUP
+ OSAddAtomic64(1, &vm_page_lookup_stats.vpl_hit_hint);
+#endif
+ return mem;
+ }
+ qe = (vm_page_queue_entry_t)vm_page_queue_next(&mem->vmp_listq);
+
+ if (!vm_page_queue_end(&object->memq, qe)) {
+ vm_page_t next_page;
+
+ next_page = (vm_page_t)((uintptr_t)qe);
+ assert(VM_PAGE_OBJECT(next_page) == object);
+
+ if (next_page->vmp_offset == offset) {
+ object->memq_hint = next_page; /* new hint */
+#if DEBUG_VM_PAGE_LOOKUP
+ OSAddAtomic64(1, &vm_page_lookup_stats.vpl_hit_hint_next);
+#endif
+ return next_page;
+ }
+ }
+ qe = (vm_page_queue_entry_t)vm_page_queue_prev(&mem->vmp_listq);
+
+ if (!vm_page_queue_end(&object->memq, qe)) {
+ vm_page_t prev_page;
+
+ prev_page = (vm_page_t)((uintptr_t)qe);
+ assert(VM_PAGE_OBJECT(prev_page) == object);
+
+ if (prev_page->vmp_offset == offset) {
+ object->memq_hint = prev_page; /* new hint */
+#if DEBUG_VM_PAGE_LOOKUP
+ OSAddAtomic64(1, &vm_page_lookup_stats.vpl_hit_hint_prev);
+#endif
+ return prev_page;
+ }
+ }
+ }
+ /*
+ * Search the hash table for this object/offset pair
+ */
+ hash_id = vm_page_hash(object, offset);
+ bucket = &vm_page_buckets[hash_id];
+
+ /*
+ * since we hold the object lock, we are guaranteed that no
+ * new pages can be inserted into this object... this in turn
+ * guarantess that the page we're looking for can't exist
+ * if the bucket it hashes to is currently NULL even when looked
+ * at outside the scope of the hash bucket lock... this is a
+ * really cheap optimiztion to avoid taking the lock
+ */
+ if (!bucket->page_list) {
+#if DEBUG_VM_PAGE_LOOKUP
+ OSAddAtomic64(1, &vm_page_lookup_stats.vpl_bucket_NULL);
+#endif
+ return VM_PAGE_NULL;
+ }
+
+#if DEBUG_VM_PAGE_LOOKUP
+ start = mach_absolute_time();
+#endif
+ if (object->resident_page_count <= VM_PAGE_HASH_LOOKUP_THRESHOLD) {
+ /*
+ * on average, it's roughly 3 times faster to run a short memq list
+ * than to take the spin lock and go through the hash list
+ */
+ mem = (vm_page_t)vm_page_queue_first(&object->memq);
+
+ while (!vm_page_queue_end(&object->memq, (vm_page_queue_entry_t)mem)) {
+ if (mem->vmp_offset == offset) {
+ break;
+ }
+
+ mem = (vm_page_t)vm_page_queue_next(&mem->vmp_listq);
+ }
+ if (vm_page_queue_end(&object->memq, (vm_page_queue_entry_t)mem)) {
+ mem = NULL;
+ }
+ } else {
+ vm_page_object_t packed_object;
+
+ packed_object = VM_PAGE_PACK_OBJECT(object);
+
+ bucket_lock = &vm_page_bucket_locks[hash_id / BUCKETS_PER_LOCK];
+
+ lck_spin_lock_grp(bucket_lock, &vm_page_lck_grp_bucket);
+
+ for (mem = (vm_page_t)(VM_PAGE_UNPACK_PTR(bucket->page_list));
+ mem != VM_PAGE_NULL;
+ mem = (vm_page_t)(VM_PAGE_UNPACK_PTR(mem->vmp_next_m))) {
+#if 0
+ /*
+ * we don't hold the page queue lock
+ * so this check isn't safe to make
+ */
+ VM_PAGE_CHECK(mem);
+#endif
+ if ((mem->vmp_object == packed_object) && (mem->vmp_offset == offset)) {
+ break;
+ }
+ }
+ lck_spin_unlock(bucket_lock);
+ }
+
+#if DEBUG_VM_PAGE_LOOKUP
+ elapsed = mach_absolute_time() - start;
+
+ if (bucket_lock) {
+ OSAddAtomic64(1, &vm_page_lookup_stats.vpl_slow);
+ OSAddAtomic64(elapsed, &vm_page_lookup_stats.vpl_slow_elapsed);
+ } else {
+ OSAddAtomic64(1, &vm_page_lookup_stats.vpl_fast);
+ OSAddAtomic64(elapsed, &vm_page_lookup_stats.vpl_fast_elapsed);
+ }
+ if (mem != VM_PAGE_NULL) {
+ OSAddAtomic64(1, &vm_page_lookup_stats.vpl_hit);
+ } else {
+ OSAddAtomic64(1, &vm_page_lookup_stats.vpl_miss);
+ }
+#endif
+ if (mem != VM_PAGE_NULL) {
+ assert(VM_PAGE_OBJECT(mem) == object);
+
+ object->memq_hint = mem;
+ }
+ return mem;
+}
+
+
+/*
+ * vm_page_rename:
+ *
+ * Move the given memory entry from its
+ * current object to the specified target object/offset.
+ *
+ * The object must be locked.
+ */
+void
+vm_page_rename(
+ vm_page_t mem,
+ vm_object_t new_object,
+ vm_object_offset_t new_offset)
+{
+ boolean_t internal_to_external, external_to_internal;
+ vm_tag_t tag;
+ vm_object_t m_object;
+
+ m_object = VM_PAGE_OBJECT(mem);
+
+ assert(m_object != new_object);
+ assert(m_object);
+
+ XPR(XPR_VM_PAGE,
+ "vm_page_rename, new object 0x%X, offset 0x%X page 0x%X\n",
+ new_object, new_offset,
+ mem, 0, 0);
+
+ /*
+ * Changes to mem->vmp_object require the page lock because
+ * the pageout daemon uses that lock to get the object.
+ */
+ vm_page_lockspin_queues();
+
+ internal_to_external = FALSE;
+ external_to_internal = FALSE;
+
+ if (mem->vmp_q_state == VM_PAGE_ON_ACTIVE_LOCAL_Q) {
+ /*
+ * it's much easier to get the vm_page_pageable_xxx accounting correct
+ * if we first move the page to the active queue... it's going to end
+ * up there anyway, and we don't do vm_page_rename's frequently enough
+ * for this to matter.
+ */
+ vm_page_queues_remove(mem, FALSE);
+ vm_page_activate(mem);
+ }
+ if (VM_PAGE_PAGEABLE(mem)) {
+ if (m_object->internal && !new_object->internal) {
+ internal_to_external = TRUE;
+ }
+ if (!m_object->internal && new_object->internal) {
+ external_to_internal = TRUE;
+ }
+ }
+
+ tag = m_object->wire_tag;
+ vm_page_remove(mem, TRUE);
+ vm_page_insert_internal(mem, new_object, new_offset, tag, TRUE, TRUE, FALSE, FALSE, NULL);
+
+ if (internal_to_external) {
+ vm_page_pageable_internal_count--;
+ vm_page_pageable_external_count++;
+ } else if (external_to_internal) {
+ vm_page_pageable_external_count--;
+ vm_page_pageable_internal_count++;
+ }
+
+ vm_page_unlock_queues();
+}
+
+/*
+ * vm_page_init:
+ *
+ * Initialize the fields in a new page.
+ * This takes a structure with random values and initializes it
+ * so that it can be given to vm_page_release or vm_page_insert.
+ */
+void
+vm_page_init(
+ vm_page_t mem,
+ ppnum_t phys_page,
+ boolean_t lopage)
+{
+ uint_t i;
+ uintptr_t *p;
+
+ assert(phys_page);
+
+#if DEBUG
+ if ((phys_page != vm_page_fictitious_addr) && (phys_page != vm_page_guard_addr)) {
+ if (!(pmap_valid_page(phys_page))) {
+ panic("vm_page_init: non-DRAM phys_page 0x%x\n", phys_page);
+ }
+ }
+#endif /* DEBUG */
+
+ /*
+ * Initialize the fields of the vm_page. If adding any new fields to vm_page,
+ * try to use initial values which match 0. This minimizes the number of writes
+ * needed for boot-time initialization.
+ *
+ * Kernel bzero() isn't an inline yet, so do it by hand for performance.
+ */
+ assert(VM_PAGE_NOT_ON_Q == 0);
+ assert(sizeof(*mem) % sizeof(uintptr_t) == 0);
+ for (p = (uintptr_t *)(void *)mem, i = sizeof(*mem) / sizeof(uintptr_t); i != 0; --i) {
+ *p++ = 0;
+ }
+ mem->vmp_offset = (vm_object_offset_t)-1;
+ mem->vmp_busy = TRUE;
+ mem->vmp_lopage = lopage;
+
+ VM_PAGE_SET_PHYS_PAGE(mem, phys_page);
+#if 0
+ /*
+ * we're leaving this turned off for now... currently pages
+ * come off the free list and are either immediately dirtied/referenced
+ * due to zero-fill or COW faults, or are used to read or write files...
+ * in the file I/O case, the UPL mechanism takes care of clearing
+ * the state of the HW ref/mod bits in a somewhat fragile way.
+ * Since we may change the way this works in the future (to toughen it up),
+ * I'm leaving this as a reminder of where these bits could get cleared
+ */
+
+ /*
+ * make sure both the h/w referenced and modified bits are
+ * clear at this point... we are especially dependent on
+ * not finding a 'stale' h/w modified in a number of spots
+ * once this page goes back into use
+ */
+ pmap_clear_refmod(phys_page, VM_MEM_MODIFIED | VM_MEM_REFERENCED);
+#endif
+}
+
+/*
+ * vm_page_grab_fictitious:
+ *
+ * Remove a fictitious page from the free list.
+ * Returns VM_PAGE_NULL if there are no free pages.
+ */
+int c_vm_page_grab_fictitious = 0;
+int c_vm_page_grab_fictitious_failed = 0;
+int c_vm_page_release_fictitious = 0;
+int c_vm_page_more_fictitious = 0;
+
+vm_page_t
+vm_page_grab_fictitious_common(
+ ppnum_t phys_addr)
+{
+ vm_page_t m;
+
+ if ((m = (vm_page_t)zget(vm_page_zone))) {
+ vm_page_init(m, phys_addr, FALSE);
+ m->vmp_fictitious = TRUE;
+
+ c_vm_page_grab_fictitious++;
+ } else {
+ c_vm_page_grab_fictitious_failed++;
+ }
+
+ return m;
+}
+
+vm_page_t
+vm_page_grab_fictitious(void)
+{
+ return vm_page_grab_fictitious_common(vm_page_fictitious_addr);
+}
+
+int vm_guard_count;
+
+
+vm_page_t
+vm_page_grab_guard(void)
+{
+ vm_page_t page;
+ page = vm_page_grab_fictitious_common(vm_page_guard_addr);
+ if (page) {
+ OSAddAtomic(1, &vm_guard_count);
+ }
+ return page;
+}
+
+
+/*
+ * vm_page_release_fictitious:
+ *
+ * Release a fictitious page to the zone pool
+ */
+void
+vm_page_release_fictitious(
+ vm_page_t m)
+{
+ assert((m->vmp_q_state == VM_PAGE_NOT_ON_Q) || (m->vmp_q_state == VM_PAGE_IS_WIRED));
+ assert(m->vmp_fictitious);
+ assert(VM_PAGE_GET_PHYS_PAGE(m) == vm_page_fictitious_addr ||
+ VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr);
+
+
+ if (VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr) {
+ OSAddAtomic(-1, &vm_guard_count);
+ }
+
+ c_vm_page_release_fictitious++;
+
+ zfree(vm_page_zone, m);
+}
+
+/*
+ * vm_page_more_fictitious:
+ *
+ * Add more fictitious pages to the zone.
+ * Allowed to block. This routine is way intimate
+ * with the zones code, for several reasons:
+ * 1. we need to carve some page structures out of physical
+ * memory before zones work, so they _cannot_ come from
+ * the zone_map.
+ * 2. the zone needs to be collectable in order to prevent
+ * growth without bound. These structures are used by
+ * the device pager (by the hundreds and thousands), as
+ * private pages for pageout, and as blocking pages for
+ * pagein. Temporary bursts in demand should not result in
+ * permanent allocation of a resource.
+ * 3. To smooth allocation humps, we allocate single pages
+ * with kernel_memory_allocate(), and cram them into the
+ * zone.
+ */
+
+void
+vm_page_more_fictitious(void)
+{
+ vm_offset_t addr;
+ kern_return_t retval;
+
+ c_vm_page_more_fictitious++;
+
+ /*
+ * Allocate a single page from the zone_map. Do not wait if no physical
+ * pages are immediately available, and do not zero the space. We need
+ * our own blocking lock here to prevent having multiple,
+ * simultaneous requests from piling up on the zone_map lock. Exactly
+ * one (of our) threads should be potentially waiting on the map lock.
+ * If winner is not vm-privileged, then the page allocation will fail,
+ * and it will temporarily block here in the vm_page_wait().
+ */
+ lck_mtx_lock(&vm_page_alloc_lock);
+ /*
+ * If another thread allocated space, just bail out now.
+ */
+ if (zone_free_count(vm_page_zone) > 5) {
+ /*
+ * The number "5" is a small number that is larger than the
+ * number of fictitious pages that any single caller will
+ * attempt to allocate. Otherwise, a thread will attempt to
+ * acquire a fictitious page (vm_page_grab_fictitious), fail,
+ * release all of the resources and locks already acquired,
+ * and then call this routine. This routine finds the pages
+ * that the caller released, so fails to allocate new space.
+ * The process repeats infinitely. The largest known number
+ * of fictitious pages required in this manner is 2. 5 is
+ * simply a somewhat larger number.
+ */
+ lck_mtx_unlock(&vm_page_alloc_lock);
+ return;
+ }
+
+ retval = kernel_memory_allocate(zone_map,
+ &addr, PAGE_SIZE, 0,
+ KMA_KOBJECT | KMA_NOPAGEWAIT, VM_KERN_MEMORY_ZONE);
+ if (retval != KERN_SUCCESS) {
+ /*
+ * No page was available. Drop the
+ * lock to give another thread a chance at it, and
+ * wait for the pageout daemon to make progress.
+ */
+ lck_mtx_unlock(&vm_page_alloc_lock);
+ vm_page_wait(THREAD_UNINT);
+ return;
+ }
+
+ zcram(vm_page_zone, addr, PAGE_SIZE);
+
+ lck_mtx_unlock(&vm_page_alloc_lock);
+}
+
+
+/*
+ * vm_pool_low():
+ *
+ * Return true if it is not likely that a non-vm_privileged thread
+ * can get memory without blocking. Advisory only, since the
+ * situation may change under us.
+ */
+int
+vm_pool_low(void)
+{
+ /* No locking, at worst we will fib. */
+ return vm_page_free_count <= vm_page_free_reserved;
+}
+
+boolean_t vm_darkwake_mode = FALSE;
+
+/*
+ * vm_update_darkwake_mode():
+ *
+ * Tells the VM that the system is in / out of darkwake.
+ *
+ * Today, the VM only lowers/raises the background queue target
+ * so as to favor consuming more/less background pages when
+ * darwake is ON/OFF.
+ *
+ * We might need to do more things in the future.
+ */
+
+void
+vm_update_darkwake_mode(boolean_t darkwake_mode)
+{
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED);
+
+ vm_page_lockspin_queues();
+
+ if (vm_darkwake_mode == darkwake_mode) {
+ /*
+ * No change.
+ */
+ vm_page_unlock_queues();
+ return;
+ }
+
+ vm_darkwake_mode = darkwake_mode;
+
+ if (vm_darkwake_mode == TRUE) {
+#if CONFIG_BACKGROUND_QUEUE
+
+ /* save background target to restore later */
+ vm_page_background_target_snapshot = vm_page_background_target;
+
+ /* target is set to 0...no protection for background pages */
+ vm_page_background_target = 0;
+
+#endif /* CONFIG_BACKGROUND_QUEUE */
+ } else if (vm_darkwake_mode == FALSE) {
+#if CONFIG_BACKGROUND_QUEUE
+
+ if (vm_page_background_target_snapshot) {
+ vm_page_background_target = vm_page_background_target_snapshot;
+ }
+#endif /* CONFIG_BACKGROUND_QUEUE */
+ }
+ vm_page_unlock_queues();
+}
+
+#if CONFIG_BACKGROUND_QUEUE
+
+void
+vm_page_update_background_state(vm_page_t mem)
+{
+ if (vm_page_background_mode == VM_PAGE_BG_DISABLED) {
+ return;
+ }
+
+ if (mem->vmp_in_background == FALSE) {
+ return;
+ }
+
+ task_t my_task = current_task();
+
+ if (my_task) {
+ if (task_get_darkwake_mode(my_task)) {
+ return;
+ }
+ }
+
+#if BACKGROUNDQ_BASED_ON_QOS
+ if (proc_get_effective_thread_policy(current_thread(), TASK_POLICY_QOS) <= THREAD_QOS_LEGACY) {
+ return;
+ }
+#else
+ if (my_task) {
+ if (proc_get_effective_task_policy(my_task, TASK_POLICY_DARWIN_BG)) {
+ return;
+ }
+ }
+#endif
+ vm_page_lockspin_queues();
+
+ mem->vmp_in_background = FALSE;
+ vm_page_background_promoted_count++;
+
+ vm_page_remove_from_backgroundq(mem);
+
+ vm_page_unlock_queues();
+}
+
+
+void
+vm_page_assign_background_state(vm_page_t mem)
+{
+ if (vm_page_background_mode == VM_PAGE_BG_DISABLED) {
+ return;
+ }
+
+ task_t my_task = current_task();
+
+ if (my_task) {
+ if (task_get_darkwake_mode(my_task)) {
+ mem->vmp_in_background = TRUE;
+ return;
+ }
+ }
+
+#if BACKGROUNDQ_BASED_ON_QOS
+ if (proc_get_effective_thread_policy(current_thread(), TASK_POLICY_QOS) <= THREAD_QOS_LEGACY) {
+ mem->vmp_in_background = TRUE;
+ } else {
+ mem->vmp_in_background = FALSE;
+ }
+#else
+ if (my_task) {
+ mem->vmp_in_background = proc_get_effective_task_policy(my_task, TASK_POLICY_DARWIN_BG);
+ }
+#endif
+}
+
+
+void
+vm_page_remove_from_backgroundq(
+ vm_page_t mem)
+{
+ vm_object_t m_object;
+
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+
+ if (mem->vmp_on_backgroundq) {
+ vm_page_queue_remove(&vm_page_queue_background, mem, vmp_backgroundq);
+
+ mem->vmp_backgroundq.next = 0;
+ mem->vmp_backgroundq.prev = 0;
+ mem->vmp_on_backgroundq = FALSE;
+
+ vm_page_background_count--;
+
+ m_object = VM_PAGE_OBJECT(mem);
+
+ if (m_object->internal) {
+ vm_page_background_internal_count--;
+ } else {
+ vm_page_background_external_count--;
+ }
+ } else {
+ assert(VM_PAGE_UNPACK_PTR(mem->vmp_backgroundq.next) == (uintptr_t)NULL &&
+ VM_PAGE_UNPACK_PTR(mem->vmp_backgroundq.prev) == (uintptr_t)NULL);
+ }
+}
+
+
+void
+vm_page_add_to_backgroundq(
+ vm_page_t mem,
+ boolean_t first)
+{
+ vm_object_t m_object;
+
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+
+ if (vm_page_background_mode == VM_PAGE_BG_DISABLED) {
+ return;
+ }
+
+ if (mem->vmp_on_backgroundq == FALSE) {
+ m_object = VM_PAGE_OBJECT(mem);
+
+ if (vm_page_background_exclude_external && !m_object->internal) {
+ return;
+ }
+
+ if (first == TRUE) {
+ vm_page_queue_enter_first(&vm_page_queue_background, mem, vmp_backgroundq);
+ } else {
+ vm_page_queue_enter(&vm_page_queue_background, mem, vmp_backgroundq);
+ }
+ mem->vmp_on_backgroundq = TRUE;
+
+ vm_page_background_count++;
+
+ if (m_object->internal) {
+ vm_page_background_internal_count++;
+ } else {
+ vm_page_background_external_count++;
+ }
+ }
+}
+
+#endif /* CONFIG_BACKGROUND_QUEUE */
+
+/*
+ * This can be switched to FALSE to help debug drivers
+ * that are having problems with memory > 4G.
+ */
+boolean_t vm_himemory_mode = TRUE;
+
+/*
+ * this interface exists to support hardware controllers
+ * incapable of generating DMAs with more than 32 bits
+ * of address on platforms with physical memory > 4G...
+ */
+unsigned int vm_lopages_allocated_q = 0;
+unsigned int vm_lopages_allocated_cpm_success = 0;
+unsigned int vm_lopages_allocated_cpm_failed = 0;
+vm_page_queue_head_t vm_lopage_queue_free __attribute__((aligned(VM_PACKED_POINTER_ALIGNMENT)));
+
+vm_page_t
+vm_page_grablo(void)
+{
+ vm_page_t mem;
+
+ if (vm_lopage_needed == FALSE) {
+ return vm_page_grab();
+ }
+
+ lck_mtx_lock_spin(&vm_page_queue_free_lock);
+
+ if (!vm_page_queue_empty(&vm_lopage_queue_free)) {
+ vm_page_queue_remove_first(&vm_lopage_queue_free, mem, vmp_pageq);
+ assert(vm_lopage_free_count);
+ assert(mem->vmp_q_state == VM_PAGE_ON_FREE_LOPAGE_Q);
+ mem->vmp_q_state = VM_PAGE_NOT_ON_Q;
+
+ vm_lopage_free_count--;
+ vm_lopages_allocated_q++;
+
+ if (vm_lopage_free_count < vm_lopage_lowater) {
+ vm_lopage_refill = TRUE;
+ }
+
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+
+#if CONFIG_BACKGROUND_QUEUE
+ vm_page_assign_background_state(mem);
+#endif
+ } else {
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+
+ if (cpm_allocate(PAGE_SIZE, &mem, atop(PPNUM_MAX), 0, FALSE, KMA_LOMEM) != KERN_SUCCESS) {
+ lck_mtx_lock_spin(&vm_page_queue_free_lock);
+ vm_lopages_allocated_cpm_failed++;
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+
+ return VM_PAGE_NULL;
+ }
+ assert(mem->vmp_q_state == VM_PAGE_NOT_ON_Q);
+
+ mem->vmp_busy = TRUE;
+
+ vm_page_lockspin_queues();
+
+ mem->vmp_gobbled = FALSE;
+ vm_page_gobble_count--;
+ vm_page_wire_count--;
+
+ vm_lopages_allocated_cpm_success++;
+ vm_page_unlock_queues();
+ }
+ assert(mem->vmp_busy);
+ assert(!mem->vmp_pmapped);
+ assert(!mem->vmp_wpmapped);
+ assert(!pmap_is_noencrypt(VM_PAGE_GET_PHYS_PAGE(mem)));
+
+ VM_PAGE_ZERO_PAGEQ_ENTRY(mem);
+
+ disable_preemption();
+ PROCESSOR_DATA(current_processor(), page_grab_count) += 1;
+ VM_DEBUG_EVENT(vm_page_grab, VM_PAGE_GRAB, DBG_FUNC_NONE, 0, 1, 0, 0);
+ enable_preemption();
+
+ return mem;
+}
+
+
+/*
+ * vm_page_grab:
+ *
+ * first try to grab a page from the per-cpu free list...
+ * this must be done while pre-emption is disabled... if
+ * a page is available, we're done...
+ * if no page is available, grab the vm_page_queue_free_lock
+ * and see if current number of free pages would allow us
+ * to grab at least 1... if not, return VM_PAGE_NULL as before...
+ * if there are pages available, disable preemption and
+ * recheck the state of the per-cpu free list... we could
+ * have been preempted and moved to a different cpu, or
+ * some other thread could have re-filled it... if still
+ * empty, figure out how many pages we can steal from the
+ * global free queue and move to the per-cpu queue...
+ * return 1 of these pages when done... only wakeup the
+ * pageout_scan thread if we moved pages from the global
+ * list... no need for the wakeup if we've satisfied the
+ * request from the per-cpu queue.
+ */
+
+#if CONFIG_SECLUDED_MEMORY
+vm_page_t vm_page_grab_secluded(void);
+#endif /* CONFIG_SECLUDED_MEMORY */
+
+static inline void
+vm_page_grab_diags(void);
+
+vm_page_t
+vm_page_grab(void)
+{
+ return vm_page_grab_options(VM_PAGE_GRAB_OPTIONS_NONE);
+}
+
+#if HIBERNATION
+boolean_t hibernate_rebuild_needed = FALSE;
+#endif /* HIBERNATION */
+
+vm_page_t
+vm_page_grab_options(
+ int grab_options)
+{
+ vm_page_t mem;
+
+ disable_preemption();
+
+ if ((mem = PROCESSOR_DATA(current_processor(), free_pages))) {
+return_page_from_cpu_list:
+ assert(mem->vmp_q_state == VM_PAGE_ON_FREE_LOCAL_Q);
+
+#if HIBERNATION
+ if (hibernate_rebuild_needed) {
+ panic("%s:%d should not modify cpu->free_pages while hibernating", __FUNCTION__, __LINE__);
+ }
+#endif /* HIBERNATION */
+
+ vm_page_grab_diags();
+ PROCESSOR_DATA(current_processor(), page_grab_count) += 1;
+ PROCESSOR_DATA(current_processor(), free_pages) = mem->vmp_snext;
+ VM_DEBUG_EVENT(vm_page_grab, VM_PAGE_GRAB, DBG_FUNC_NONE, grab_options, 0, 0, 0);
+
+ enable_preemption();
+ VM_PAGE_ZERO_PAGEQ_ENTRY(mem);
+ mem->vmp_q_state = VM_PAGE_NOT_ON_Q;
+
+ assert(mem->vmp_listq.next == 0 && mem->vmp_listq.prev == 0);
+ assert(mem->vmp_tabled == FALSE);
+ assert(mem->vmp_object == 0);
+ assert(!mem->vmp_laundry);
+ ASSERT_PMAP_FREE(mem);
+ assert(mem->vmp_busy);
+ assert(!mem->vmp_pmapped);
+ assert(!mem->vmp_wpmapped);
+ assert(!pmap_is_noencrypt(VM_PAGE_GET_PHYS_PAGE(mem)));
+
+#if CONFIG_BACKGROUND_QUEUE
+ vm_page_assign_background_state(mem);
+#endif
+ return mem;
+ }
+ enable_preemption();
+
+
+ /*
+ * Optionally produce warnings if the wire or gobble
+ * counts exceed some threshold.
+ */
+#if VM_PAGE_WIRE_COUNT_WARNING
+ if (vm_page_wire_count >= VM_PAGE_WIRE_COUNT_WARNING) {
+ printf("mk: vm_page_grab(): high wired page count of %d\n",
+ vm_page_wire_count);
+ }
+#endif
+#if VM_PAGE_GOBBLE_COUNT_WARNING
+ if (vm_page_gobble_count >= VM_PAGE_GOBBLE_COUNT_WARNING) {
+ printf("mk: vm_page_grab(): high gobbled page count of %d\n",
+ vm_page_gobble_count);
+ }
+#endif
+
+ /*
+ * If free count is low and we have delayed pages from early boot,
+ * get one of those instead.
+ */
+ if (__improbable(vm_delayed_count > 0 &&
+ vm_page_free_count <= vm_page_free_target &&
+ (mem = vm_get_delayed_page(grab_options)) != NULL)) {
+ return mem;
+ }
+
+ lck_mtx_lock_spin(&vm_page_queue_free_lock);
+
+ /*
+ * Only let privileged threads (involved in pageout)
+ * dip into the reserved pool.
+ */
+ if ((vm_page_free_count < vm_page_free_reserved) &&
+ !(current_thread()->options & TH_OPT_VMPRIV)) {
+ /* no page for us in the free queue... */
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+ mem = VM_PAGE_NULL;
+
+#if CONFIG_SECLUDED_MEMORY
+ /* ... but can we try and grab from the secluded queue? */
+ if (vm_page_secluded_count > 0 &&
+ ((grab_options & VM_PAGE_GRAB_SECLUDED) ||
+ task_can_use_secluded_mem(current_task(), TRUE))) {
+ mem = vm_page_grab_secluded();
+ if (grab_options & VM_PAGE_GRAB_SECLUDED) {
+ vm_page_secluded.grab_for_iokit++;
+ if (mem) {
+ vm_page_secluded.grab_for_iokit_success++;
+ }
+ }
+ if (mem) {
+ VM_CHECK_MEMORYSTATUS;
+
+ disable_preemption();
+ vm_page_grab_diags();
+ PROCESSOR_DATA(current_processor(), page_grab_count) += 1;
+ VM_DEBUG_EVENT(vm_page_grab, VM_PAGE_GRAB, DBG_FUNC_NONE, grab_options, 0, 0, 0);
+ enable_preemption();
+
+ return mem;
+ }
+ }
+#else /* CONFIG_SECLUDED_MEMORY */
+ (void) grab_options;
+#endif /* CONFIG_SECLUDED_MEMORY */
+ } else {
+ vm_page_t head;
+ vm_page_t tail;
+ unsigned int pages_to_steal;
+ unsigned int color;
+ unsigned int clump_end, sub_count;
+
+ while (vm_page_free_count == 0) {
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+ /*
+ * must be a privileged thread to be
+ * in this state since a non-privileged
+ * thread would have bailed if we were
+ * under the vm_page_free_reserved mark
+ */
+ VM_PAGE_WAIT();
+ lck_mtx_lock_spin(&vm_page_queue_free_lock);
+ }
+
+ disable_preemption();
+
+ if ((mem = PROCESSOR_DATA(current_processor(), free_pages))) {
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+
+ /*
+ * we got preempted and moved to another processor
+ * or we got preempted and someone else ran and filled the cache
+ */
+ goto return_page_from_cpu_list;
+ }
+ if (vm_page_free_count <= vm_page_free_reserved) {
+ pages_to_steal = 1;
+ } else {
+ if (vm_free_magazine_refill_limit <= (vm_page_free_count - vm_page_free_reserved)) {
+ pages_to_steal = vm_free_magazine_refill_limit;
+ } else {
+ pages_to_steal = (vm_page_free_count - vm_page_free_reserved);
+ }
+ }
+ color = PROCESSOR_DATA(current_processor(), start_color);
+ head = tail = NULL;
+
+ vm_page_free_count -= pages_to_steal;
+ clump_end = sub_count = 0;
+
+ while (pages_to_steal--) {
+ while (vm_page_queue_empty(&vm_page_queue_free[color].qhead)) {
+ color = (color + 1) & vm_color_mask;
+ }
+#if defined(__x86_64__)
+ vm_page_queue_remove_first_with_clump(&vm_page_queue_free[color].qhead,
+ mem, clump_end);
+#else
+ vm_page_queue_remove_first(&vm_page_queue_free[color].qhead,
+ mem, vmp_pageq);
+#endif
+
+ assert(mem->vmp_q_state == VM_PAGE_ON_FREE_Q);
+
+ VM_PAGE_ZERO_PAGEQ_ENTRY(mem);
+
+#if defined(__arm__) || defined(__arm64__)
+ color = (color + 1) & vm_color_mask;
+#else
+
+#if DEVELOPMENT || DEBUG
+
+ sub_count++;
+ if (clump_end) {
+ vm_clump_update_stats(sub_count);
+ sub_count = 0;
+ color = (color + 1) & vm_color_mask;
+ }
+#else
+ if (clump_end) {
+ color = (color + 1) & vm_color_mask;
+ }
+
+#endif /* if DEVELOPMENT || DEBUG */
+
+#endif /* if defined(__arm__) || defined(__arm64__) */
+
+ if (head == NULL) {
+ head = mem;
+ } else {
+ tail->vmp_snext = mem;
+ }
+ tail = mem;
+
+ assert(mem->vmp_listq.next == 0 && mem->vmp_listq.prev == 0);
+ assert(mem->vmp_tabled == FALSE);
+ assert(mem->vmp_object == 0);
+ assert(!mem->vmp_laundry);
+
+ mem->vmp_q_state = VM_PAGE_ON_FREE_LOCAL_Q;
+
+ ASSERT_PMAP_FREE(mem);
+ assert(mem->vmp_busy);
+ assert(!mem->vmp_pmapped);
+ assert(!mem->vmp_wpmapped);
+ assert(!pmap_is_noencrypt(VM_PAGE_GET_PHYS_PAGE(mem)));
+ }
+#if defined (__x86_64__) && (DEVELOPMENT || DEBUG)
+ vm_clump_update_stats(sub_count);
+#endif
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+
+#if HIBERNATION
+ if (hibernate_rebuild_needed) {
+ panic("%s:%d should not modify cpu->free_pages while hibernating", __FUNCTION__, __LINE__);
+ }
+#endif /* HIBERNATION */
+ PROCESSOR_DATA(current_processor(), free_pages) = head->vmp_snext;
+ PROCESSOR_DATA(current_processor(), start_color) = color;
+
+ /*
+ * satisfy this request
+ */
+ vm_page_grab_diags();
+ PROCESSOR_DATA(current_processor(), page_grab_count) += 1;
+ VM_DEBUG_EVENT(vm_page_grab, VM_PAGE_GRAB, DBG_FUNC_NONE, grab_options, 0, 0, 0);
+ mem = head;
+ assert(mem->vmp_q_state == VM_PAGE_ON_FREE_LOCAL_Q);
+
+ VM_PAGE_ZERO_PAGEQ_ENTRY(mem);
+ mem->vmp_q_state = VM_PAGE_NOT_ON_Q;
+
+ enable_preemption();
+ }
+ /*
+ * Decide if we should poke the pageout daemon.
+ * We do this if the free count is less than the low
+ * water mark, or if the free count is less than the high
+ * water mark (but above the low water mark) and the inactive
+ * count is less than its target.
+ *
+ * We don't have the counts locked ... if they change a little,
+ * it doesn't really matter.
+ */
+ if (vm_page_free_count < vm_page_free_min) {
+ thread_wakeup((event_t) &vm_page_free_wanted);
+ }
+
+ VM_CHECK_MEMORYSTATUS;
+
+ if (mem) {
+// dbgLog(VM_PAGE_GET_PHYS_PAGE(mem), vm_page_free_count, vm_page_wire_count, 4); /* (TEST/DEBUG) */
+
+#if CONFIG_BACKGROUND_QUEUE
+ vm_page_assign_background_state(mem);
+#endif
+ }
+ return mem;
+}
+
+#if CONFIG_SECLUDED_MEMORY
+vm_page_t
+vm_page_grab_secluded(void)
+{
+ vm_page_t mem;
+ vm_object_t object;
+ int refmod_state;
+
+ if (vm_page_secluded_count == 0) {
+ /* no secluded pages to grab... */
+ return VM_PAGE_NULL;
+ }
+
+ /* secluded queue is protected by the VM page queue lock */
+ vm_page_lock_queues();
+
+ if (vm_page_secluded_count == 0) {
+ /* no secluded pages to grab... */
+ vm_page_unlock_queues();
+ return VM_PAGE_NULL;
+ }
+
+#if 00
+ /* can we grab from the secluded queue? */
+ if (vm_page_secluded_count > vm_page_secluded_target ||
+ (vm_page_secluded_count > 0 &&
+ task_can_use_secluded_mem(current_task(), TRUE))) {
+ /* OK */
+ } else {
+ /* can't grab from secluded queue... */
+ vm_page_unlock_queues();
+ return VM_PAGE_NULL;
+ }
+#endif
+
+ /* we can grab a page from secluded queue! */
+ assert((vm_page_secluded_count_free +
+ vm_page_secluded_count_inuse) ==
+ vm_page_secluded_count);
+ if (current_task()->task_can_use_secluded_mem) {
+ assert(num_tasks_can_use_secluded_mem > 0);
+ }
+ assert(!vm_page_queue_empty(&vm_page_queue_secluded));
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+ mem = (vm_page_t)vm_page_queue_first(&vm_page_queue_secluded);
+ assert(mem->vmp_q_state == VM_PAGE_ON_SECLUDED_Q);
+ vm_page_queues_remove(mem, TRUE);
+
+ object = VM_PAGE_OBJECT(mem);
+
+ assert(!mem->vmp_fictitious);
+ assert(!VM_PAGE_WIRED(mem));
+ if (object == VM_OBJECT_NULL) {
+ /* free for grab! */
+ vm_page_unlock_queues();
+ vm_page_secluded.grab_success_free++;
+
+ assert(mem->vmp_busy);
+ assert(mem->vmp_q_state == VM_PAGE_NOT_ON_Q);
+ assert(VM_PAGE_OBJECT(mem) == VM_OBJECT_NULL);
+ assert(mem->vmp_pageq.next == 0);
+ assert(mem->vmp_pageq.prev == 0);
+ assert(mem->vmp_listq.next == 0);
+ assert(mem->vmp_listq.prev == 0);
+#if CONFIG_BACKGROUND_QUEUE
+ assert(mem->vmp_on_backgroundq == 0);
+ assert(mem->vmp_backgroundq.next == 0);
+ assert(mem->vmp_backgroundq.prev == 0);
+#endif /* CONFIG_BACKGROUND_QUEUE */
+ return mem;
+ }
+
+ assert(!object->internal);
+// vm_page_pageable_external_count--;
+
+ if (!vm_object_lock_try(object)) {
+// printf("SECLUDED: page %p: object %p locked\n", mem, object);
+ vm_page_secluded.grab_failure_locked++;
+reactivate_secluded_page:
+ vm_page_activate(mem);
+ vm_page_unlock_queues();
+ return VM_PAGE_NULL;
+ }
+ if (mem->vmp_busy ||
+ mem->vmp_cleaning ||
+ mem->vmp_laundry) {
+ /* can't steal page in this state... */
+ vm_object_unlock(object);
+ vm_page_secluded.grab_failure_state++;
+ goto reactivate_secluded_page;
+ }
+
+ mem->vmp_busy = TRUE;
+ refmod_state = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(mem));
+ if (refmod_state & VM_MEM_REFERENCED) {
+ mem->vmp_reference = TRUE;
+ }
+ if (refmod_state & VM_MEM_MODIFIED) {
+ SET_PAGE_DIRTY(mem, FALSE);
+ }
+ if (mem->vmp_dirty || mem->vmp_precious) {
+ /* can't grab a dirty page; re-activate */
+// printf("SECLUDED: dirty page %p\n", mem);
+ PAGE_WAKEUP_DONE(mem);
+ vm_page_secluded.grab_failure_dirty++;
+ vm_object_unlock(object);
+ goto reactivate_secluded_page;
+ }
+ if (mem->vmp_reference) {
+ /* it's been used but we do need to grab a page... */
+ }
+
+ vm_page_unlock_queues();
+
+ /* finish what vm_page_free() would have done... */
+ vm_page_free_prepare_object(mem, TRUE);
+ vm_object_unlock(object);
+ object = VM_OBJECT_NULL;
+ if (vm_page_free_verify) {
+ ASSERT_PMAP_FREE(mem);
+ }
+ pmap_clear_noencrypt(VM_PAGE_GET_PHYS_PAGE(mem));
+ vm_page_secluded.grab_success_other++;
+
+ assert(mem->vmp_busy);
+ assert(mem->vmp_q_state == VM_PAGE_NOT_ON_Q);
+ assert(VM_PAGE_OBJECT(mem) == VM_OBJECT_NULL);
+ assert(mem->vmp_pageq.next == 0);
+ assert(mem->vmp_pageq.prev == 0);
+ assert(mem->vmp_listq.next == 0);
+ assert(mem->vmp_listq.prev == 0);
+#if CONFIG_BACKGROUND_QUEUE
+ assert(mem->vmp_on_backgroundq == 0);
+ assert(mem->vmp_backgroundq.next == 0);
+ assert(mem->vmp_backgroundq.prev == 0);
+#endif /* CONFIG_BACKGROUND_QUEUE */
+
+ return mem;
+}
+#endif /* CONFIG_SECLUDED_MEMORY */
+
+
+static inline void
+vm_page_grab_diags()
+{
+#if DEVELOPMENT || DEBUG
+ task_t task = current_task();
+ if (task == NULL) {
+ return;
+ }
+
+ ledger_credit(task->ledger, task_ledgers.pages_grabbed, 1);
+#endif /* DEVELOPMENT || DEBUG */
+}
+
+/*
+ * vm_page_release:
+ *
+ * Return a page to the free list.
+ */
+
+void
+vm_page_release(
+ vm_page_t mem,
+ boolean_t page_queues_locked)
+{
+ unsigned int color;
+ int need_wakeup = 0;
+ int need_priv_wakeup = 0;
+#if CONFIG_SECLUDED_MEMORY
+ int need_secluded_wakeup = 0;
+#endif /* CONFIG_SECLUDED_MEMORY */
+
+ if (page_queues_locked) {
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+ } else {
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED);
+ }
+
+ assert(!mem->vmp_private && !mem->vmp_fictitious);
+ if (vm_page_free_verify) {
+ ASSERT_PMAP_FREE(mem);
+ }
+// dbgLog(VM_PAGE_GET_PHYS_PAGE(mem), vm_page_free_count, vm_page_wire_count, 5); /* (TEST/DEBUG) */
+
+ pmap_clear_noencrypt(VM_PAGE_GET_PHYS_PAGE(mem));
+
+ lck_mtx_lock_spin(&vm_page_queue_free_lock);
+
+ assert(mem->vmp_q_state == VM_PAGE_NOT_ON_Q);
+ assert(mem->vmp_busy);
+ assert(!mem->vmp_laundry);
+ assert(mem->vmp_object == 0);
+ assert(mem->vmp_pageq.next == 0 && mem->vmp_pageq.prev == 0);
+ assert(mem->vmp_listq.next == 0 && mem->vmp_listq.prev == 0);
+#if CONFIG_BACKGROUND_QUEUE
+ assert(mem->vmp_backgroundq.next == 0 &&
+ mem->vmp_backgroundq.prev == 0 &&
+ mem->vmp_on_backgroundq == FALSE);
+#endif
+ if ((mem->vmp_lopage == TRUE || vm_lopage_refill == TRUE) &&
+ vm_lopage_free_count < vm_lopage_free_limit &&
+ VM_PAGE_GET_PHYS_PAGE(mem) < max_valid_low_ppnum) {
+ /*
+ * this exists to support hardware controllers
+ * incapable of generating DMAs with more than 32 bits
+ * of address on platforms with physical memory > 4G...
+ */
+ vm_page_queue_enter_first(&vm_lopage_queue_free, mem, vmp_pageq);
+ vm_lopage_free_count++;
+
+ if (vm_lopage_free_count >= vm_lopage_free_limit) {
+ vm_lopage_refill = FALSE;
+ }
+
+ mem->vmp_q_state = VM_PAGE_ON_FREE_LOPAGE_Q;
+ mem->vmp_lopage = TRUE;
+#if CONFIG_SECLUDED_MEMORY
+ } else if (vm_page_free_count > vm_page_free_reserved &&
+ vm_page_secluded_count < vm_page_secluded_target &&
+ num_tasks_can_use_secluded_mem == 0) {
+ /*
+ * XXX FBDP TODO: also avoid refilling secluded queue
+ * when some IOKit objects are already grabbing from it...
+ */
+ if (!page_queues_locked) {
+ if (!vm_page_trylock_queues()) {
+ /* take locks in right order */
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+ vm_page_lock_queues();
+ lck_mtx_lock_spin(&vm_page_queue_free_lock);
+ }
+ }
+ mem->vmp_lopage = FALSE;
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+ vm_page_queue_enter_first(&vm_page_queue_secluded, mem, vmp_pageq);
+ mem->vmp_q_state = VM_PAGE_ON_SECLUDED_Q;
+ vm_page_secluded_count++;
+ vm_page_secluded_count_free++;
+ if (!page_queues_locked) {
+ vm_page_unlock_queues();
+ }
+ LCK_MTX_ASSERT(&vm_page_queue_free_lock, LCK_MTX_ASSERT_OWNED);
+ if (vm_page_free_wanted_secluded > 0) {
+ vm_page_free_wanted_secluded--;
+ need_secluded_wakeup = 1;
+ }
+#endif /* CONFIG_SECLUDED_MEMORY */
+ } else {
+ mem->vmp_lopage = FALSE;
+ mem->vmp_q_state = VM_PAGE_ON_FREE_Q;
+
+ color = VM_PAGE_GET_COLOR(mem);
+#if defined(__x86_64__)
+ vm_page_queue_enter_clump(&vm_page_queue_free[color].qhead, mem);
+#else
+ vm_page_queue_enter(&vm_page_queue_free[color].qhead, mem, vmp_pageq);
+#endif
+ vm_page_free_count++;
+ /*
+ * Check if we should wake up someone waiting for page.
+ * But don't bother waking them unless they can allocate.
+ *
+ * We wakeup only one thread, to prevent starvation.
+ * Because the scheduling system handles wait queues FIFO,
+ * if we wakeup all waiting threads, one greedy thread
+ * can starve multiple niceguy threads. When the threads
+ * all wakeup, the greedy threads runs first, grabs the page,
+ * and waits for another page. It will be the first to run
+ * when the next page is freed.
+ *
+ * However, there is a slight danger here.
+ * The thread we wake might not use the free page.
+ * Then the other threads could wait indefinitely
+ * while the page goes unused. To forestall this,
+ * the pageout daemon will keep making free pages
+ * as long as vm_page_free_wanted is non-zero.
+ */
+
+ assert(vm_page_free_count > 0);
+ if (vm_page_free_wanted_privileged > 0) {
+ vm_page_free_wanted_privileged--;
+ need_priv_wakeup = 1;
+#if CONFIG_SECLUDED_MEMORY
+ } else if (vm_page_free_wanted_secluded > 0 &&
+ vm_page_free_count > vm_page_free_reserved) {
+ vm_page_free_wanted_secluded--;
+ need_secluded_wakeup = 1;
+#endif /* CONFIG_SECLUDED_MEMORY */
+ } else if (vm_page_free_wanted > 0 &&
+ vm_page_free_count > vm_page_free_reserved) {
+ vm_page_free_wanted--;
+ need_wakeup = 1;
+ }
+ }
+ vm_pageout_vminfo.vm_page_pages_freed++;
+
+ VM_DEBUG_CONSTANT_EVENT(vm_page_release, VM_PAGE_RELEASE, DBG_FUNC_NONE, 1, 0, 0, 0);
+
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+
+ if (need_priv_wakeup) {
+ thread_wakeup_one((event_t) &vm_page_free_wanted_privileged);
+ }
+#if CONFIG_SECLUDED_MEMORY
+ else if (need_secluded_wakeup) {
+ thread_wakeup_one((event_t) &vm_page_free_wanted_secluded);
+ }
+#endif /* CONFIG_SECLUDED_MEMORY */
+ else if (need_wakeup) {
+ thread_wakeup_one((event_t) &vm_page_free_count);
+ }
+
+ VM_CHECK_MEMORYSTATUS;
+}
+
+/*
+ * This version of vm_page_release() is used only at startup
+ * when we are single-threaded and pages are being released
+ * for the first time. Hence, no locking or unnecessary checks are made.
+ * Note: VM_CHECK_MEMORYSTATUS invoked by the caller.
+ */
+void
+vm_page_release_startup(
+ vm_page_t mem)
+{
+ vm_page_queue_t queue_free;
+
+ if (vm_lopage_free_count < vm_lopage_free_limit &&
+ VM_PAGE_GET_PHYS_PAGE(mem) < max_valid_low_ppnum) {
+ mem->vmp_lopage = TRUE;
+ mem->vmp_q_state = VM_PAGE_ON_FREE_LOPAGE_Q;
+ vm_lopage_free_count++;
+ queue_free = &vm_lopage_queue_free;
+#if CONFIG_SECLUDED_MEMORY
+ } else if (vm_page_secluded_count < vm_page_secluded_target) {
+ mem->vmp_lopage = FALSE;
+ mem->vmp_q_state = VM_PAGE_ON_SECLUDED_Q;
+ vm_page_secluded_count++;
+ vm_page_secluded_count_free++;
+ queue_free = &vm_page_queue_secluded;
+#endif /* CONFIG_SECLUDED_MEMORY */
+ } else {
+ mem->vmp_lopage = FALSE;
+ mem->vmp_q_state = VM_PAGE_ON_FREE_Q;
+ vm_page_free_count++;
+ queue_free = &vm_page_queue_free[VM_PAGE_GET_COLOR(mem)].qhead;
+ }
+ if (mem->vmp_q_state == VM_PAGE_ON_FREE_Q) {
+#if defined(__x86_64__)
+ vm_page_queue_enter_clump(queue_free, mem);
+#else
+ vm_page_queue_enter(queue_free, mem, vmp_pageq);
+#endif
+ } else {
+ vm_page_queue_enter_first(queue_free, mem, vmp_pageq);
+ }
+}
+
+/*
+ * vm_page_wait:
+ *
+ * Wait for a page to become available.
+ * If there are plenty of free pages, then we don't sleep.
+ *
+ * Returns:
+ * TRUE: There may be another page, try again
+ * FALSE: We were interrupted out of our wait, don't try again
+ */
+
+boolean_t
+vm_page_wait(
+ int interruptible )
+{
+ /*
+ * We can't use vm_page_free_reserved to make this
+ * determination. Consider: some thread might
+ * need to allocate two pages. The first allocation
+ * succeeds, the second fails. After the first page is freed,
+ * a call to vm_page_wait must really block.
+ */
+ kern_return_t wait_result;
+ int need_wakeup = 0;
+ int is_privileged = current_thread()->options & TH_OPT_VMPRIV;
+
+ lck_mtx_lock_spin(&vm_page_queue_free_lock);
+
+ if (is_privileged && vm_page_free_count) {
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+ return TRUE;
+ }
+
+ if (vm_page_free_count >= vm_page_free_target) {
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+ return TRUE;
+ }
+
+ if (is_privileged) {
+ if (vm_page_free_wanted_privileged++ == 0) {
+ need_wakeup = 1;
+ }
+ wait_result = assert_wait((event_t)&vm_page_free_wanted_privileged, interruptible);
+#if CONFIG_SECLUDED_MEMORY
+ } else if (secluded_for_apps &&
+ task_can_use_secluded_mem(current_task(), FALSE)) {
+#if 00
+ /* XXX FBDP: need pageq lock for this... */
+ /* XXX FBDP: might wait even if pages available, */
+ /* XXX FBDP: hopefully not for too long... */
+ if (vm_page_secluded_count > 0) {
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+ return TRUE;
+ }
+#endif
+ if (vm_page_free_wanted_secluded++ == 0) {
+ need_wakeup = 1;
+ }
+ wait_result = assert_wait(
+ (event_t)&vm_page_free_wanted_secluded,
+ interruptible);
+#endif /* CONFIG_SECLUDED_MEMORY */
+ } else {
+ if (vm_page_free_wanted++ == 0) {
+ need_wakeup = 1;
+ }
+ wait_result = assert_wait((event_t)&vm_page_free_count,
+ interruptible);
+ }
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+ counter(c_vm_page_wait_block++);
+
+ if (need_wakeup) {
+ thread_wakeup((event_t)&vm_page_free_wanted);
+ }
+
+ if (wait_result == THREAD_WAITING) {
+ VM_DEBUG_CONSTANT_EVENT(vm_page_wait_block, VM_PAGE_WAIT_BLOCK, DBG_FUNC_START,
+ vm_page_free_wanted_privileged,
+ vm_page_free_wanted,
+#if CONFIG_SECLUDED_MEMORY
+ vm_page_free_wanted_secluded,
+#else /* CONFIG_SECLUDED_MEMORY */
+ 0,
+#endif /* CONFIG_SECLUDED_MEMORY */
+ 0);
+ wait_result = thread_block(THREAD_CONTINUE_NULL);
+ VM_DEBUG_CONSTANT_EVENT(vm_page_wait_block,
+ VM_PAGE_WAIT_BLOCK, DBG_FUNC_END, 0, 0, 0, 0);
+ }
+
+ return wait_result == THREAD_AWAKENED;
+}
+
+/*
+ * vm_page_alloc:
+ *
+ * Allocate and return a memory cell associated
+ * with this VM object/offset pair.
+ *
+ * Object must be locked.
+ */
+
+vm_page_t
+vm_page_alloc(
+ vm_object_t object,
+ vm_object_offset_t offset)
+{
+ vm_page_t mem;
+ int grab_options;
+
+ vm_object_lock_assert_exclusive(object);
+ grab_options = 0;
+#if CONFIG_SECLUDED_MEMORY
+ if (object->can_grab_secluded) {
+ grab_options |= VM_PAGE_GRAB_SECLUDED;
+ }
+#endif /* CONFIG_SECLUDED_MEMORY */
+ mem = vm_page_grab_options(grab_options);
+ if (mem == VM_PAGE_NULL) {
+ return VM_PAGE_NULL;
+ }
+
+ vm_page_insert(mem, object, offset);
+
+ return mem;
+}
+
+/*
+ * vm_page_alloc_guard:
+ *
+ * Allocate a fictitious page which will be used
+ * as a guard page. The page will be inserted into
+ * the object and returned to the caller.
+ */
+
+vm_page_t
+vm_page_alloc_guard(
+ vm_object_t object,
+ vm_object_offset_t offset)
+{
+ vm_page_t mem;
+
+ vm_object_lock_assert_exclusive(object);
+ mem = vm_page_grab_guard();
+ if (mem == VM_PAGE_NULL) {
+ return VM_PAGE_NULL;
+ }
+
+ vm_page_insert(mem, object, offset);
+
+ return mem;
+}
+
+
+counter(unsigned int c_laundry_pages_freed = 0; )
+
+/*
+ * vm_page_free_prepare:
+ *
+ * Removes page from any queue it may be on
+ * and disassociates it from its VM object.
+ *
+ * Object and page queues must be locked prior to entry.
+ */
+static void
+vm_page_free_prepare(
+ vm_page_t mem)
+{
+ vm_page_free_prepare_queues(mem);
+ vm_page_free_prepare_object(mem, TRUE);
+}
+
+
+void
+vm_page_free_prepare_queues(
+ vm_page_t mem)
+{
+ vm_object_t m_object;
+
+ VM_PAGE_CHECK(mem);
+
+ assert(mem->vmp_q_state != VM_PAGE_ON_FREE_Q);
+ assert(!mem->vmp_cleaning);
+ m_object = VM_PAGE_OBJECT(mem);
+
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+ if (m_object) {
+ vm_object_lock_assert_exclusive(m_object);
+ }
+ if (mem->vmp_laundry) {
+ /*
+ * We may have to free a page while it's being laundered
+ * if we lost its pager (due to a forced unmount, for example).
+ * We need to call vm_pageout_steal_laundry() before removing
+ * the page from its VM object, so that we can remove it
+ * from its pageout queue and adjust the laundry accounting
+ */
+ vm_pageout_steal_laundry(mem, TRUE);
+ counter(++c_laundry_pages_freed);
+ }
+
+ vm_page_queues_remove(mem, TRUE);
+
+ if (VM_PAGE_WIRED(mem)) {
+ assert(mem->vmp_wire_count > 0);
+
+ if (m_object) {
+ VM_OBJECT_WIRED_PAGE_UPDATE_START(m_object);
+ VM_OBJECT_WIRED_PAGE_REMOVE(m_object, mem);
+ VM_OBJECT_WIRED_PAGE_UPDATE_END(m_object, m_object->wire_tag);
+
+ assert(m_object->resident_page_count >=
+ m_object->wired_page_count);
+
+ if (m_object->purgable == VM_PURGABLE_VOLATILE) {
+ OSAddAtomic(+1, &vm_page_purgeable_count);
+ assert(vm_page_purgeable_wired_count > 0);
+ OSAddAtomic(-1, &vm_page_purgeable_wired_count);
+ }
+ if ((m_object->purgable == VM_PURGABLE_VOLATILE ||
+ m_object->purgable == VM_PURGABLE_EMPTY) &&
+ m_object->vo_owner != TASK_NULL) {
+ task_t owner;
+ int ledger_idx_volatile;
+ int ledger_idx_nonvolatile;
+ int ledger_idx_volatile_compressed;
+ int ledger_idx_nonvolatile_compressed;
+ boolean_t do_footprint;
+
+ owner = VM_OBJECT_OWNER(m_object);
+ vm_object_ledger_tag_ledgers(
+ m_object,
+ &ledger_idx_volatile,
+ &ledger_idx_nonvolatile,
+ &ledger_idx_volatile_compressed,
+ &ledger_idx_nonvolatile_compressed,
+ &do_footprint);
+ /*
+ * While wired, this page was accounted
+ * as "non-volatile" but it should now
+ * be accounted as "volatile".
+ */
+ /* one less "non-volatile"... */
+ ledger_debit(owner->ledger,
+ ledger_idx_nonvolatile,
+ PAGE_SIZE);
+ if (do_footprint) {
+ /* ... and "phys_footprint" */
+ ledger_debit(owner->ledger,
+ task_ledgers.phys_footprint,
+ PAGE_SIZE);
+ }
+ /* one more "volatile" */
+ ledger_credit(owner->ledger,
+ ledger_idx_volatile,
+ PAGE_SIZE);
+ }
+ }
+ if (!mem->vmp_private && !mem->vmp_fictitious) {
+ vm_page_wire_count--;
+ }
+
+ mem->vmp_q_state = VM_PAGE_NOT_ON_Q;
+ mem->vmp_wire_count = 0;
+ assert(!mem->vmp_gobbled);
+ } else if (mem->vmp_gobbled) {
+ if (!mem->vmp_private && !mem->vmp_fictitious) {
+ vm_page_wire_count--;
+ }
+ vm_page_gobble_count--;
+ }
+}
+
+
+void
+vm_page_free_prepare_object(
+ vm_page_t mem,
+ boolean_t remove_from_hash)
+{
+ if (mem->vmp_tabled) {
+ vm_page_remove(mem, remove_from_hash); /* clears tabled, object, offset */
+ }
+ PAGE_WAKEUP(mem); /* clears wanted */
+
+ if (mem->vmp_private) {
+ mem->vmp_private = FALSE;
+ mem->vmp_fictitious = TRUE;
+ VM_PAGE_SET_PHYS_PAGE(mem, vm_page_fictitious_addr);
+ }
+ if (!mem->vmp_fictitious) {
+ assert(mem->vmp_pageq.next == 0);
+ assert(mem->vmp_pageq.prev == 0);
+ assert(mem->vmp_listq.next == 0);
+ assert(mem->vmp_listq.prev == 0);
+#if CONFIG_BACKGROUND_QUEUE
+ assert(mem->vmp_backgroundq.next == 0);
+ assert(mem->vmp_backgroundq.prev == 0);
+#endif /* CONFIG_BACKGROUND_QUEUE */
+ assert(mem->vmp_next_m == 0);
+ ASSERT_PMAP_FREE(mem);
+ vm_page_init(mem, VM_PAGE_GET_PHYS_PAGE(mem), mem->vmp_lopage);
+ }
+}
+
+
+/*
+ * vm_page_free:
+ *
+ * Returns the given page to the free list,
+ * disassociating it with any VM object.
+ *
+ * Object and page queues must be locked prior to entry.
+ */
+void
+vm_page_free(
+ vm_page_t mem)
+{
+ vm_page_free_prepare(mem);
+
+ if (mem->vmp_fictitious) {
+ vm_page_release_fictitious(mem);
+ } else {
+ vm_page_release(mem,
+ TRUE); /* page queues are locked */
+ }
+}
+
+
+void
+vm_page_free_unlocked(
+ vm_page_t mem,
+ boolean_t remove_from_hash)
+{
+ vm_page_lockspin_queues();
+ vm_page_free_prepare_queues(mem);
+ vm_page_unlock_queues();
+
+ vm_page_free_prepare_object(mem, remove_from_hash);
+
+ if (mem->vmp_fictitious) {
+ vm_page_release_fictitious(mem);
+ } else {
+ vm_page_release(mem, FALSE); /* page queues are not locked */
+ }
+}
+
+
+/*
+ * Free a list of pages. The list can be up to several hundred pages,
+ * as blocked up by vm_pageout_scan().
+ * The big win is not having to take the free list lock once
+ * per page.
+ *
+ * The VM page queues lock (vm_page_queue_lock) should NOT be held.
+ * The VM page free queues lock (vm_page_queue_free_lock) should NOT be held.
+ */
+void
+vm_page_free_list(
+ vm_page_t freeq,
+ boolean_t prepare_object)
+{
+ vm_page_t mem;
+ vm_page_t nxt;
+ vm_page_t local_freeq;
+ int pg_count;
+
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED);
+ LCK_MTX_ASSERT(&vm_page_queue_free_lock, LCK_MTX_ASSERT_NOTOWNED);
+
+ while (freeq) {
+ pg_count = 0;
+ local_freeq = VM_PAGE_NULL;
+ mem = freeq;
+
+ /*
+ * break up the processing into smaller chunks so
+ * that we can 'pipeline' the pages onto the
+ * free list w/o introducing too much
+ * contention on the global free queue lock
+ */
+ while (mem && pg_count < 64) {
+ assert((mem->vmp_q_state == VM_PAGE_NOT_ON_Q) ||
+ (mem->vmp_q_state == VM_PAGE_IS_WIRED));
+#if CONFIG_BACKGROUND_QUEUE
+ assert(mem->vmp_backgroundq.next == 0 &&
+ mem->vmp_backgroundq.prev == 0 &&
+ mem->vmp_on_backgroundq == FALSE);
+#endif
+ nxt = mem->vmp_snext;
+ mem->vmp_snext = NULL;
+ assert(mem->vmp_pageq.prev == 0);
+
+ if (vm_page_free_verify && !mem->vmp_fictitious && !mem->vmp_private) {
+ ASSERT_PMAP_FREE(mem);
+ }
+ if (prepare_object == TRUE) {
+ vm_page_free_prepare_object(mem, TRUE);
+ }
+
+ if (!mem->vmp_fictitious) {
+ assert(mem->vmp_busy);
+
+ if ((mem->vmp_lopage == TRUE || vm_lopage_refill == TRUE) &&
+ vm_lopage_free_count < vm_lopage_free_limit &&
+ VM_PAGE_GET_PHYS_PAGE(mem) < max_valid_low_ppnum) {
+ vm_page_release(mem, FALSE); /* page queues are not locked */
+#if CONFIG_SECLUDED_MEMORY
+ } else if (vm_page_secluded_count < vm_page_secluded_target &&
+ num_tasks_can_use_secluded_mem == 0) {
+ vm_page_release(mem,
+ FALSE); /* page queues are not locked */
+#endif /* CONFIG_SECLUDED_MEMORY */
+ } else {
+ /*
+ * IMPORTANT: we can't set the page "free" here
+ * because that would make the page eligible for
+ * a physically-contiguous allocation (see
+ * vm_page_find_contiguous()) right away (we don't
+ * hold the vm_page_queue_free lock). That would
+ * cause trouble because the page is not actually
+ * in the free queue yet...
+ */
+ mem->vmp_snext = local_freeq;
+ local_freeq = mem;
+ pg_count++;
+
+ pmap_clear_noencrypt(VM_PAGE_GET_PHYS_PAGE(mem));
+ }
+ } else {
+ assert(VM_PAGE_GET_PHYS_PAGE(mem) == vm_page_fictitious_addr ||
+ VM_PAGE_GET_PHYS_PAGE(mem) == vm_page_guard_addr);
+ vm_page_release_fictitious(mem);
+ }
+ mem = nxt;
+ }
+ freeq = mem;
+
+ if ((mem = local_freeq)) {
+ unsigned int avail_free_count;
+ unsigned int need_wakeup = 0;
+ unsigned int need_priv_wakeup = 0;
+#if CONFIG_SECLUDED_MEMORY
+ unsigned int need_wakeup_secluded = 0;
+#endif /* CONFIG_SECLUDED_MEMORY */
+
+ lck_mtx_lock_spin(&vm_page_queue_free_lock);
+
+ while (mem) {
+ int color;
+
+ nxt = mem->vmp_snext;
+
+ assert(mem->vmp_q_state == VM_PAGE_NOT_ON_Q);
+ assert(mem->vmp_busy);
+ mem->vmp_lopage = FALSE;
+ mem->vmp_q_state = VM_PAGE_ON_FREE_Q;
+
+ color = VM_PAGE_GET_COLOR(mem);
+#if defined(__x86_64__)
+ vm_page_queue_enter_clump(&vm_page_queue_free[color].qhead, mem);
+#else
+ vm_page_queue_enter(&vm_page_queue_free[color].qhead,
+ mem, vmp_pageq);
+#endif
+ mem = nxt;
+ }
+ vm_pageout_vminfo.vm_page_pages_freed += pg_count;
+ vm_page_free_count += pg_count;
+ avail_free_count = vm_page_free_count;
+
+ VM_DEBUG_CONSTANT_EVENT(vm_page_release, VM_PAGE_RELEASE, DBG_FUNC_NONE, pg_count, 0, 0, 0);
+
+ if (vm_page_free_wanted_privileged > 0 && avail_free_count > 0) {
+ if (avail_free_count < vm_page_free_wanted_privileged) {
+ need_priv_wakeup = avail_free_count;
+ vm_page_free_wanted_privileged -= avail_free_count;
+ avail_free_count = 0;
+ } else {
+ need_priv_wakeup = vm_page_free_wanted_privileged;
+ avail_free_count -= vm_page_free_wanted_privileged;
+ vm_page_free_wanted_privileged = 0;
+ }
+ }
+#if CONFIG_SECLUDED_MEMORY
+ if (vm_page_free_wanted_secluded > 0 &&
+ avail_free_count > vm_page_free_reserved) {
+ unsigned int available_pages;
+ available_pages = (avail_free_count -
+ vm_page_free_reserved);
+ if (available_pages <
+ vm_page_free_wanted_secluded) {
+ need_wakeup_secluded = available_pages;
+ vm_page_free_wanted_secluded -=
+ available_pages;
+ avail_free_count -= available_pages;
+ } else {
+ need_wakeup_secluded =
+ vm_page_free_wanted_secluded;
+ avail_free_count -=
+ vm_page_free_wanted_secluded;
+ vm_page_free_wanted_secluded = 0;
+ }
+ }
+#endif /* CONFIG_SECLUDED_MEMORY */
+ if (vm_page_free_wanted > 0 && avail_free_count > vm_page_free_reserved) {
+ unsigned int available_pages;
+
+ available_pages = avail_free_count - vm_page_free_reserved;
+
+ if (available_pages >= vm_page_free_wanted) {
+ need_wakeup = vm_page_free_wanted;
+ vm_page_free_wanted = 0;
+ } else {
+ need_wakeup = available_pages;
+ vm_page_free_wanted -= available_pages;
+ }
+ }
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+
+ if (need_priv_wakeup != 0) {
+ /*
+ * There shouldn't be that many VM-privileged threads,
+ * so let's wake them all up, even if we don't quite
+ * have enough pages to satisfy them all.
+ */
+ thread_wakeup((event_t)&vm_page_free_wanted_privileged);
+ }
+#if CONFIG_SECLUDED_MEMORY
+ if (need_wakeup_secluded != 0 &&
+ vm_page_free_wanted_secluded == 0) {
+ thread_wakeup((event_t)
+ &vm_page_free_wanted_secluded);
+ } else {
+ for (;
+ need_wakeup_secluded != 0;
+ need_wakeup_secluded--) {
+ thread_wakeup_one(
+ (event_t)
+ &vm_page_free_wanted_secluded);
+ }
+ }
+#endif /* CONFIG_SECLUDED_MEMORY */
+ if (need_wakeup != 0 && vm_page_free_wanted == 0) {
+ /*
+ * We don't expect to have any more waiters
+ * after this, so let's wake them all up at
+ * once.
+ */
+ thread_wakeup((event_t) &vm_page_free_count);
+ } else {
+ for (; need_wakeup != 0; need_wakeup--) {
+ /*
+ * Wake up one waiter per page we just released.
+ */
+ thread_wakeup_one((event_t) &vm_page_free_count);
+ }
+ }
+
+ VM_CHECK_MEMORYSTATUS;
+ }
+ }
+}
+
+
+/*
+ * vm_page_wire:
+ *
+ * Mark this page as wired down by yet
+ * another map, removing it from paging queues
+ * as necessary.
+ *
+ * The page's object and the page queues must be locked.
+ */
+
+
+void
+vm_page_wire(
+ vm_page_t mem,
+ vm_tag_t tag,
+ boolean_t check_memorystatus)
+{
+ vm_object_t m_object;
+
+ m_object = VM_PAGE_OBJECT(mem);
+
+// dbgLog(current_thread(), mem->vmp_offset, m_object, 1); /* (TEST/DEBUG) */
+
+ VM_PAGE_CHECK(mem);
+ if (m_object) {
+ vm_object_lock_assert_exclusive(m_object);
+ } else {
+ /*
+ * In theory, the page should be in an object before it
+ * gets wired, since we need to hold the object lock
+ * to update some fields in the page structure.
+ * However, some code (i386 pmap, for example) might want
+ * to wire a page before it gets inserted into an object.
+ * That's somewhat OK, as long as nobody else can get to
+ * that page and update it at the same time.
+ */
+ }
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+ if (!VM_PAGE_WIRED(mem)) {
+ if (mem->vmp_laundry) {
+ vm_pageout_steal_laundry(mem, TRUE);
+ }
+
+ vm_page_queues_remove(mem, TRUE);
+
+ assert(mem->vmp_wire_count == 0);
+ mem->vmp_q_state = VM_PAGE_IS_WIRED;
+
+ if (m_object) {
+ VM_OBJECT_WIRED_PAGE_UPDATE_START(m_object);
+ VM_OBJECT_WIRED_PAGE_ADD(m_object, mem);
+ VM_OBJECT_WIRED_PAGE_UPDATE_END(m_object, tag);
+
+ assert(m_object->resident_page_count >=
+ m_object->wired_page_count);
+ if (m_object->purgable == VM_PURGABLE_VOLATILE) {
+ assert(vm_page_purgeable_count > 0);
+ OSAddAtomic(-1, &vm_page_purgeable_count);
+ OSAddAtomic(1, &vm_page_purgeable_wired_count);
+ }
+ if ((m_object->purgable == VM_PURGABLE_VOLATILE ||
+ m_object->purgable == VM_PURGABLE_EMPTY) &&
+ m_object->vo_owner != TASK_NULL) {
+ task_t owner;
+ int ledger_idx_volatile;
+ int ledger_idx_nonvolatile;
+ int ledger_idx_volatile_compressed;
+ int ledger_idx_nonvolatile_compressed;
+ boolean_t do_footprint;
+
+ owner = VM_OBJECT_OWNER(m_object);
+ vm_object_ledger_tag_ledgers(
+ m_object,
+ &ledger_idx_volatile,
+ &ledger_idx_nonvolatile,
+ &ledger_idx_volatile_compressed,
+ &ledger_idx_nonvolatile_compressed,
+ &do_footprint);
+ /* less volatile bytes */
+ ledger_debit(owner->ledger,
+ ledger_idx_volatile,
+ PAGE_SIZE);
+ /* more not-quite-volatile bytes */
+ ledger_credit(owner->ledger,
+ ledger_idx_nonvolatile,
+ PAGE_SIZE);
+ if (do_footprint) {
+ /* more footprint */
+ ledger_credit(owner->ledger,
+ task_ledgers.phys_footprint,
+ PAGE_SIZE);
+ }
+ }
+ if (m_object->all_reusable) {
+ /*
+ * Wired pages are not counted as "re-usable"
+ * in "all_reusable" VM objects, so nothing
+ * to do here.
+ */
+ } else if (mem->vmp_reusable) {
+ /*
+ * This page is not "re-usable" when it's
+ * wired, so adjust its state and the
+ * accounting.
+ */
+ vm_object_reuse_pages(m_object,
+ mem->vmp_offset,
+ mem->vmp_offset + PAGE_SIZE_64,
+ FALSE);
+ }
+ }
+ assert(!mem->vmp_reusable);
+
+ if (!mem->vmp_private && !mem->vmp_fictitious && !mem->vmp_gobbled) {
+ vm_page_wire_count++;
+ }
+ if (mem->vmp_gobbled) {
+ vm_page_gobble_count--;
+ }
+ mem->vmp_gobbled = FALSE;
+
+ if (check_memorystatus == TRUE) {
+ VM_CHECK_MEMORYSTATUS;
+ }
+ }
+ assert(!mem->vmp_gobbled);
+ assert(mem->vmp_q_state == VM_PAGE_IS_WIRED);
+ mem->vmp_wire_count++;
+ if (__improbable(mem->vmp_wire_count == 0)) {
+ panic("vm_page_wire(%p): wire_count overflow", mem);
+ }
+ VM_PAGE_CHECK(mem);
+}
+
+/*
+ * vm_page_unwire:
+ *
+ * Release one wiring of this page, potentially
+ * enabling it to be paged again.
+ *
+ * The page's object and the page queues must be locked.
+ */
+void
+vm_page_unwire(
+ vm_page_t mem,
+ boolean_t queueit)
+{
+ vm_object_t m_object;
+
+ m_object = VM_PAGE_OBJECT(mem);
+
+// dbgLog(current_thread(), mem->vmp_offset, m_object, 0); /* (TEST/DEBUG) */
+
+ VM_PAGE_CHECK(mem);
+ assert(VM_PAGE_WIRED(mem));
+ assert(mem->vmp_wire_count > 0);
+ assert(!mem->vmp_gobbled);
+ assert(m_object != VM_OBJECT_NULL);
+ vm_object_lock_assert_exclusive(m_object);
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+ if (--mem->vmp_wire_count == 0) {
+ mem->vmp_q_state = VM_PAGE_NOT_ON_Q;
+
+ VM_OBJECT_WIRED_PAGE_UPDATE_START(m_object);
+ VM_OBJECT_WIRED_PAGE_REMOVE(m_object, mem);
+ VM_OBJECT_WIRED_PAGE_UPDATE_END(m_object, m_object->wire_tag);
+ if (!mem->vmp_private && !mem->vmp_fictitious) {
+ vm_page_wire_count--;
+ }
+
+ assert(m_object->resident_page_count >=
+ m_object->wired_page_count);
+ if (m_object->purgable == VM_PURGABLE_VOLATILE) {
+ OSAddAtomic(+1, &vm_page_purgeable_count);
+ assert(vm_page_purgeable_wired_count > 0);
+ OSAddAtomic(-1, &vm_page_purgeable_wired_count);
+ }
+ if ((m_object->purgable == VM_PURGABLE_VOLATILE ||
+ m_object->purgable == VM_PURGABLE_EMPTY) &&
+ m_object->vo_owner != TASK_NULL) {
+ task_t owner;
+ int ledger_idx_volatile;
+ int ledger_idx_nonvolatile;
+ int ledger_idx_volatile_compressed;
+ int ledger_idx_nonvolatile_compressed;
+ boolean_t do_footprint;
+
+ owner = VM_OBJECT_OWNER(m_object);
+ vm_object_ledger_tag_ledgers(
+ m_object,
+ &ledger_idx_volatile,
+ &ledger_idx_nonvolatile,
+ &ledger_idx_volatile_compressed,
+ &ledger_idx_nonvolatile_compressed,
+ &do_footprint);
+ /* more volatile bytes */
+ ledger_credit(owner->ledger,
+ ledger_idx_volatile,
+ PAGE_SIZE);
+ /* less not-quite-volatile bytes */
+ ledger_debit(owner->ledger,
+ ledger_idx_nonvolatile,
+ PAGE_SIZE);
+ if (do_footprint) {
+ /* less footprint */
+ ledger_debit(owner->ledger,
+ task_ledgers.phys_footprint,
+ PAGE_SIZE);
+ }
+ }
+ assert(m_object != kernel_object);
+ assert(mem->vmp_pageq.next == 0 && mem->vmp_pageq.prev == 0);
+
+ if (queueit == TRUE) {
+ if (m_object->purgable == VM_PURGABLE_EMPTY) {
+ vm_page_deactivate(mem);
+ } else {
+ vm_page_activate(mem);
+ }
+ }
+
+ VM_CHECK_MEMORYSTATUS;
+ }
+ VM_PAGE_CHECK(mem);
+}
+
+/*
+ * vm_page_deactivate:
+ *
+ * Returns the given page to the inactive list,
+ * indicating that no physical maps have access
+ * to this page. [Used by the physical mapping system.]
+ *
+ * The page queues must be locked.
+ */
+void
+vm_page_deactivate(
+ vm_page_t m)
+{
+ vm_page_deactivate_internal(m, TRUE);
+}
+
+
+void
+vm_page_deactivate_internal(
+ vm_page_t m,
+ boolean_t clear_hw_reference)
+{
+ vm_object_t m_object;
+
+ m_object = VM_PAGE_OBJECT(m);
+
+ VM_PAGE_CHECK(m);
+ assert(m_object != kernel_object);
+ assert(VM_PAGE_GET_PHYS_PAGE(m) != vm_page_guard_addr);
+
+// dbgLog(VM_PAGE_GET_PHYS_PAGE(m), vm_page_free_count, vm_page_wire_count, 6); /* (TEST/DEBUG) */
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+ /*
+ * This page is no longer very interesting. If it was
+ * interesting (active or inactive/referenced), then we
+ * clear the reference bit and (re)enter it in the
+ * inactive queue. Note wired pages should not have
+ * their reference bit cleared.
+ */
+ assert( !(m->vmp_absent && !m->vmp_unusual));
+
+ if (m->vmp_gobbled) { /* can this happen? */
+ assert( !VM_PAGE_WIRED(m));
+
+ if (!m->vmp_private && !m->vmp_fictitious) {
+ vm_page_wire_count--;
+ }
+ vm_page_gobble_count--;
+ m->vmp_gobbled = FALSE;
+ }
+ /*
+ * if this page is currently on the pageout queue, we can't do the
+ * vm_page_queues_remove (which doesn't handle the pageout queue case)
+ * and we can't remove it manually since we would need the object lock
+ * (which is not required here) to decrement the activity_in_progress
+ * reference which is held on the object while the page is in the pageout queue...
+ * just let the normal laundry processing proceed
+ */
+ if (m->vmp_laundry || m->vmp_private || m->vmp_fictitious ||
+ (m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) ||
+ (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q) ||
+ VM_PAGE_WIRED(m)) {
+ return;
+ }
+ if (!m->vmp_absent && clear_hw_reference == TRUE) {
+ pmap_clear_reference(VM_PAGE_GET_PHYS_PAGE(m));
+ }
+
+ m->vmp_reference = FALSE;
+ m->vmp_no_cache = FALSE;
+
+ if (!VM_PAGE_INACTIVE(m)) {
+ vm_page_queues_remove(m, FALSE);
+
+ if (!VM_DYNAMIC_PAGING_ENABLED() &&
+ m->vmp_dirty && m_object->internal &&
+ (m_object->purgable == VM_PURGABLE_DENY ||
+ m_object->purgable == VM_PURGABLE_NONVOLATILE ||
+ m_object->purgable == VM_PURGABLE_VOLATILE)) {
+ vm_page_check_pageable_safe(m);
+ vm_page_queue_enter(&vm_page_queue_throttled, m, vmp_pageq);
+ m->vmp_q_state = VM_PAGE_ON_THROTTLED_Q;
+ vm_page_throttled_count++;
+ } else {
+ if (m_object->named && m_object->ref_count == 1) {
+ vm_page_speculate(m, FALSE);
+#if DEVELOPMENT || DEBUG
+ vm_page_speculative_recreated++;
+#endif
+ } else {
+ vm_page_enqueue_inactive(m, FALSE);
+ }
+ }
+ }
+}
+
+/*
+ * vm_page_enqueue_cleaned
+ *
+ * Put the page on the cleaned queue, mark it cleaned, etc.
+ * Being on the cleaned queue (and having m->clean_queue set)
+ * does ** NOT ** guarantee that the page is clean!
+ *
+ * Call with the queues lock held.
+ */
+
+void
+vm_page_enqueue_cleaned(vm_page_t m)
+{
+ vm_object_t m_object;
+
+ m_object = VM_PAGE_OBJECT(m);
+
+ assert(VM_PAGE_GET_PHYS_PAGE(m) != vm_page_guard_addr);
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+ assert( !(m->vmp_absent && !m->vmp_unusual));
+
+ if (VM_PAGE_WIRED(m)) {
+ return;
+ }
+
+ if (m->vmp_gobbled) {
+ if (!m->vmp_private && !m->vmp_fictitious) {
+ vm_page_wire_count--;
+ }
+ vm_page_gobble_count--;
+ m->vmp_gobbled = FALSE;
+ }
+ /*
+ * if this page is currently on the pageout queue, we can't do the
+ * vm_page_queues_remove (which doesn't handle the pageout queue case)
+ * and we can't remove it manually since we would need the object lock
+ * (which is not required here) to decrement the activity_in_progress
+ * reference which is held on the object while the page is in the pageout queue...
+ * just let the normal laundry processing proceed
+ */
+ if (m->vmp_laundry || m->vmp_private || m->vmp_fictitious ||
+ (m->vmp_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) ||
+ (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q)) {
+ return;
+ }
+ vm_page_queues_remove(m, FALSE);
+
+ vm_page_check_pageable_safe(m);
+ vm_page_queue_enter(&vm_page_queue_cleaned, m, vmp_pageq);
+ m->vmp_q_state = VM_PAGE_ON_INACTIVE_CLEANED_Q;
+ vm_page_cleaned_count++;
+
+ vm_page_inactive_count++;
+ if (m_object->internal) {
+ vm_page_pageable_internal_count++;
+ } else {
+ vm_page_pageable_external_count++;
+ }
+#if CONFIG_BACKGROUND_QUEUE
+ if (m->vmp_in_background) {
+ vm_page_add_to_backgroundq(m, TRUE);
+ }
+#endif
+ VM_PAGEOUT_DEBUG(vm_pageout_enqueued_cleaned, 1);
+}
+
+/*
+ * vm_page_activate:
+ *
+ * Put the specified page on the active list (if appropriate).
+ *
+ * The page queues must be locked.
+ */
+
+void
+vm_page_activate(
+ vm_page_t m)
+{
+ vm_object_t m_object;
+
+ m_object = VM_PAGE_OBJECT(m);
+
+ VM_PAGE_CHECK(m);
+#ifdef FIXME_4778297
+ assert(m_object != kernel_object);
+#endif
+ assert(VM_PAGE_GET_PHYS_PAGE(m) != vm_page_guard_addr);
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+ assert( !(m->vmp_absent && !m->vmp_unusual));
+
+ if (m->vmp_gobbled) {
+ assert( !VM_PAGE_WIRED(m));
+ if (!m->vmp_private && !m->vmp_fictitious) {
+ vm_page_wire_count--;
+ }
+ vm_page_gobble_count--;
+ m->vmp_gobbled = FALSE;
+ }
+ /*
+ * if this page is currently on the pageout queue, we can't do the
+ * vm_page_queues_remove (which doesn't handle the pageout queue case)
+ * and we can't remove it manually since we would need the object lock
+ * (which is not required here) to decrement the activity_in_progress
+ * reference which is held on the object while the page is in the pageout queue...
+ * just let the normal laundry processing proceed
+ */
+ if (m->vmp_laundry || m->vmp_private || m->vmp_fictitious ||
+ (m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) ||
+ (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q)) {
+ return;
+ }
+
+#if DEBUG
+ if (m->vmp_q_state == VM_PAGE_ON_ACTIVE_Q) {
+ panic("vm_page_activate: already active");
+ }
+#endif
+
+ if (m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q) {
+ DTRACE_VM2(pgrec, int, 1, (uint64_t *), NULL);
+ DTRACE_VM2(pgfrec, int, 1, (uint64_t *), NULL);
+ }
+
+ vm_page_queues_remove(m, FALSE);
+
+ if (!VM_PAGE_WIRED(m)) {
+ vm_page_check_pageable_safe(m);
+ if (!VM_DYNAMIC_PAGING_ENABLED() &&
+ m->vmp_dirty && m_object->internal &&
+ (m_object->purgable == VM_PURGABLE_DENY ||
+ m_object->purgable == VM_PURGABLE_NONVOLATILE ||
+ m_object->purgable == VM_PURGABLE_VOLATILE)) {
+ vm_page_queue_enter(&vm_page_queue_throttled, m, vmp_pageq);
+ m->vmp_q_state = VM_PAGE_ON_THROTTLED_Q;
+ vm_page_throttled_count++;
+ } else {
+#if CONFIG_SECLUDED_MEMORY
+ if (secluded_for_filecache &&
+ vm_page_secluded_target != 0 &&
+ num_tasks_can_use_secluded_mem == 0 &&
+ m_object->eligible_for_secluded) {
+ vm_page_queue_enter(&vm_page_queue_secluded, m, vmp_pageq);
+ m->vmp_q_state = VM_PAGE_ON_SECLUDED_Q;
+ vm_page_secluded_count++;
+ vm_page_secluded_count_inuse++;
+ assert(!m_object->internal);
+// vm_page_pageable_external_count++;
+ } else
+#endif /* CONFIG_SECLUDED_MEMORY */
+ vm_page_enqueue_active(m, FALSE);
+ }
+ m->vmp_reference = TRUE;
+ m->vmp_no_cache = FALSE;
+ }
+ VM_PAGE_CHECK(m);
+}
+
+
+/*
+ * vm_page_speculate:
+ *
+ * Put the specified page on the speculative list (if appropriate).
+ *
+ * The page queues must be locked.
+ */
+void
+vm_page_speculate(
+ vm_page_t m,
+ boolean_t new)
+{
+ struct vm_speculative_age_q *aq;
+ vm_object_t m_object;
+
+ m_object = VM_PAGE_OBJECT(m);
+
+ VM_PAGE_CHECK(m);
+ vm_page_check_pageable_safe(m);
+
+ assert(VM_PAGE_GET_PHYS_PAGE(m) != vm_page_guard_addr);
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+ assert( !(m->vmp_absent && !m->vmp_unusual));
+ assert(m_object->internal == FALSE);
+
+ /*
+ * if this page is currently on the pageout queue, we can't do the
+ * vm_page_queues_remove (which doesn't handle the pageout queue case)
+ * and we can't remove it manually since we would need the object lock
+ * (which is not required here) to decrement the activity_in_progress
+ * reference which is held on the object while the page is in the pageout queue...
+ * just let the normal laundry processing proceed
+ */
+ if (m->vmp_laundry || m->vmp_private || m->vmp_fictitious ||
+ (m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) ||
+ (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q)) {
+ return;
+ }
+
+ vm_page_queues_remove(m, FALSE);
+
+ if (!VM_PAGE_WIRED(m)) {
+ mach_timespec_t ts;
+ clock_sec_t sec;
+ clock_nsec_t nsec;
+
+ clock_get_system_nanotime(&sec, &nsec);
+ ts.tv_sec = (unsigned int) sec;
+ ts.tv_nsec = nsec;
+
+ if (vm_page_speculative_count == 0) {
+ speculative_age_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q;
+ speculative_steal_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q;
+
+ aq = &vm_page_queue_speculative[speculative_age_index];
+
+ /*
+ * set the timer to begin a new group
+ */
+ aq->age_ts.tv_sec = vm_pageout_state.vm_page_speculative_q_age_ms / 1000;
+ aq->age_ts.tv_nsec = (vm_pageout_state.vm_page_speculative_q_age_ms % 1000) * 1000 * NSEC_PER_USEC;
+ ADD_MACH_TIMESPEC(&aq->age_ts, &ts);
+ } else {
+ aq = &vm_page_queue_speculative[speculative_age_index];
+
+ if (CMP_MACH_TIMESPEC(&ts, &aq->age_ts) >= 0) {
+ speculative_age_index++;
+
+ if (speculative_age_index > VM_PAGE_MAX_SPECULATIVE_AGE_Q) {
+ speculative_age_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q;
+ }
+ if (speculative_age_index == speculative_steal_index) {
+ speculative_steal_index = speculative_age_index + 1;
+
+ if (speculative_steal_index > VM_PAGE_MAX_SPECULATIVE_AGE_Q) {
+ speculative_steal_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q;
+ }
+ }
+ aq = &vm_page_queue_speculative[speculative_age_index];
+
+ if (!vm_page_queue_empty(&aq->age_q)) {
+ vm_page_speculate_ageit(aq);
+ }
+
+ aq->age_ts.tv_sec = vm_pageout_state.vm_page_speculative_q_age_ms / 1000;
+ aq->age_ts.tv_nsec = (vm_pageout_state.vm_page_speculative_q_age_ms % 1000) * 1000 * NSEC_PER_USEC;
+ ADD_MACH_TIMESPEC(&aq->age_ts, &ts);
+ }
+ }
+ vm_page_enqueue_tail(&aq->age_q, &m->vmp_pageq);
+ m->vmp_q_state = VM_PAGE_ON_SPECULATIVE_Q;
+ vm_page_speculative_count++;
+ vm_page_pageable_external_count++;
+
+ if (new == TRUE) {
+ vm_object_lock_assert_exclusive(m_object);
+
+ m_object->pages_created++;
+#if DEVELOPMENT || DEBUG
+ vm_page_speculative_created++;
+#endif
+ }
+ }
+ VM_PAGE_CHECK(m);
+}
+
+
+/*
+ * move pages from the specified aging bin to
+ * the speculative bin that pageout_scan claims from
+ *
+ * The page queues must be locked.
+ */
+void
+vm_page_speculate_ageit(struct vm_speculative_age_q *aq)
+{
+ struct vm_speculative_age_q *sq;
+ vm_page_t t;
+
+ sq = &vm_page_queue_speculative[VM_PAGE_SPECULATIVE_AGED_Q];
+
+ if (vm_page_queue_empty(&sq->age_q)) {
+ sq->age_q.next = aq->age_q.next;
+ sq->age_q.prev = aq->age_q.prev;
+
+ t = (vm_page_t)VM_PAGE_UNPACK_PTR(sq->age_q.next);
+ t->vmp_pageq.prev = VM_PAGE_PACK_PTR(&sq->age_q);
+
+ t = (vm_page_t)VM_PAGE_UNPACK_PTR(sq->age_q.prev);
+ t->vmp_pageq.next = VM_PAGE_PACK_PTR(&sq->age_q);
+ } else {
+ t = (vm_page_t)VM_PAGE_UNPACK_PTR(sq->age_q.prev);
+ t->vmp_pageq.next = aq->age_q.next;
+
+ t = (vm_page_t)VM_PAGE_UNPACK_PTR(aq->age_q.next);
+ t->vmp_pageq.prev = sq->age_q.prev;
+
+ t = (vm_page_t)VM_PAGE_UNPACK_PTR(aq->age_q.prev);
+ t->vmp_pageq.next = VM_PAGE_PACK_PTR(&sq->age_q);
+
+ sq->age_q.prev = aq->age_q.prev;
+ }
+ vm_page_queue_init(&aq->age_q);
+}
+
+
+void
+vm_page_lru(
+ vm_page_t m)
+{
+ VM_PAGE_CHECK(m);
+ assert(VM_PAGE_OBJECT(m) != kernel_object);
+ assert(VM_PAGE_GET_PHYS_PAGE(m) != vm_page_guard_addr);
+
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+
+ if (m->vmp_q_state == VM_PAGE_ON_INACTIVE_EXTERNAL_Q) {
+ /*
+ * we don't need to do all the other work that
+ * vm_page_queues_remove and vm_page_enqueue_inactive
+ * bring along for the ride
+ */
+ assert(!m->vmp_laundry);
+ assert(!m->vmp_private);
+
+ m->vmp_no_cache = FALSE;
+
+ vm_page_queue_remove(&vm_page_queue_inactive, m, vmp_pageq);
+ vm_page_queue_enter(&vm_page_queue_inactive, m, vmp_pageq);
+
+ return;
+ }
+ /*
+ * if this page is currently on the pageout queue, we can't do the
+ * vm_page_queues_remove (which doesn't handle the pageout queue case)
+ * and we can't remove it manually since we would need the object lock
+ * (which is not required here) to decrement the activity_in_progress
+ * reference which is held on the object while the page is in the pageout queue...
+ * just let the normal laundry processing proceed
+ */
+ if (m->vmp_laundry || m->vmp_private ||
+ (m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) ||
+ (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q) ||
+ VM_PAGE_WIRED(m)) {
+ return;
+ }
+
+ m->vmp_no_cache = FALSE;
+
+ vm_page_queues_remove(m, FALSE);
+
+ vm_page_enqueue_inactive(m, FALSE);
+}
+
+
+void
+vm_page_reactivate_all_throttled(void)
+{
+ vm_page_t first_throttled, last_throttled;
+ vm_page_t first_active;
+ vm_page_t m;
+ int extra_active_count;
+ int extra_internal_count, extra_external_count;
+ vm_object_t m_object;
+
+ if (!VM_DYNAMIC_PAGING_ENABLED()) {
+ return;
+ }
+
+ extra_active_count = 0;
+ extra_internal_count = 0;
+ extra_external_count = 0;
+ vm_page_lock_queues();
+ if (!vm_page_queue_empty(&vm_page_queue_throttled)) {
+ /*
+ * Switch "throttled" pages to "active".
+ */
+ vm_page_queue_iterate(&vm_page_queue_throttled, m, vmp_pageq) {
+ VM_PAGE_CHECK(m);
+ assert(m->vmp_q_state == VM_PAGE_ON_THROTTLED_Q);
+
+ m_object = VM_PAGE_OBJECT(m);
+
+ extra_active_count++;
+ if (m_object->internal) {
+ extra_internal_count++;
+ } else {
+ extra_external_count++;
+ }
+
+ m->vmp_q_state = VM_PAGE_ON_ACTIVE_Q;
+ VM_PAGE_CHECK(m);
+#if CONFIG_BACKGROUND_QUEUE
+ if (m->vmp_in_background) {
+ vm_page_add_to_backgroundq(m, FALSE);
+ }
+#endif
+ }
+
+ /*
+ * Transfer the entire throttled queue to a regular LRU page queues.
+ * We insert it at the head of the active queue, so that these pages
+ * get re-evaluated by the LRU algorithm first, since they've been
+ * completely out of it until now.
+ */
+ first_throttled = (vm_page_t) vm_page_queue_first(&vm_page_queue_throttled);
+ last_throttled = (vm_page_t) vm_page_queue_last(&vm_page_queue_throttled);
+ first_active = (vm_page_t) vm_page_queue_first(&vm_page_queue_active);
+ if (vm_page_queue_empty(&vm_page_queue_active)) {
+ vm_page_queue_active.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(last_throttled);
+ } else {
+ first_active->vmp_pageq.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(last_throttled);
+ }
+ vm_page_queue_active.next = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(first_throttled);
+ first_throttled->vmp_pageq.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(&vm_page_queue_active);
+ last_throttled->vmp_pageq.next = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(first_active);
+
+#if DEBUG
+ printf("reactivated %d throttled pages\n", vm_page_throttled_count);
+#endif
+ vm_page_queue_init(&vm_page_queue_throttled);
+ /*
+ * Adjust the global page counts.
+ */
+ vm_page_active_count += extra_active_count;
+ vm_page_pageable_internal_count += extra_internal_count;
+ vm_page_pageable_external_count += extra_external_count;
+ vm_page_throttled_count = 0;
+ }
+ assert(vm_page_throttled_count == 0);
+ assert(vm_page_queue_empty(&vm_page_queue_throttled));
+ vm_page_unlock_queues();
+}
+
+
+/*
+ * move pages from the indicated local queue to the global active queue
+ * its ok to fail if we're below the hard limit and force == FALSE
+ * the nolocks == TRUE case is to allow this function to be run on
+ * the hibernate path
+ */
+
+void
+vm_page_reactivate_local(uint32_t lid, boolean_t force, boolean_t nolocks)
+{
+ struct vpl *lq;
+ vm_page_t first_local, last_local;
+ vm_page_t first_active;
+ vm_page_t m;
+ uint32_t count = 0;
+
+ if (vm_page_local_q == NULL) {
+ return;
+ }
+
+ lq = &vm_page_local_q[lid].vpl_un.vpl;
+
+ if (nolocks == FALSE) {
+ if (lq->vpl_count < vm_page_local_q_hard_limit && force == FALSE) {
+ if (!vm_page_trylockspin_queues()) {
+ return;
+ }
+ } else {
+ vm_page_lockspin_queues();
+ }
+
+ VPL_LOCK(&lq->vpl_lock);
+ }
+ if (lq->vpl_count) {
+ /*
+ * Switch "local" pages to "active".
+ */
+ assert(!vm_page_queue_empty(&lq->vpl_queue));
+
+ vm_page_queue_iterate(&lq->vpl_queue, m, vmp_pageq) {
+ VM_PAGE_CHECK(m);
+ vm_page_check_pageable_safe(m);
+ assert(m->vmp_q_state == VM_PAGE_ON_ACTIVE_LOCAL_Q);
+ assert(!m->vmp_fictitious);
+
+ if (m->vmp_local_id != lid) {
+ panic("vm_page_reactivate_local: found vm_page_t(%p) with wrong cpuid", m);
+ }
+
+ m->vmp_local_id = 0;
+ m->vmp_q_state = VM_PAGE_ON_ACTIVE_Q;
+ VM_PAGE_CHECK(m);
+#if CONFIG_BACKGROUND_QUEUE
+ if (m->vmp_in_background) {
+ vm_page_add_to_backgroundq(m, FALSE);
+ }
+#endif
+ count++;
+ }
+ if (count != lq->vpl_count) {
+ panic("vm_page_reactivate_local: count = %d, vm_page_local_count = %d\n", count, lq->vpl_count);
+ }
+
+ /*
+ * Transfer the entire local queue to a regular LRU page queues.
+ */
+ first_local = (vm_page_t) vm_page_queue_first(&lq->vpl_queue);
+ last_local = (vm_page_t) vm_page_queue_last(&lq->vpl_queue);
+ first_active = (vm_page_t) vm_page_queue_first(&vm_page_queue_active);
+
+ if (vm_page_queue_empty(&vm_page_queue_active)) {
+ vm_page_queue_active.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(last_local);
+ } else {
+ first_active->vmp_pageq.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(last_local);
+ }
+ vm_page_queue_active.next = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(first_local);
+ first_local->vmp_pageq.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(&vm_page_queue_active);
+ last_local->vmp_pageq.next = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(first_active);
+
+ vm_page_queue_init(&lq->vpl_queue);
+ /*
+ * Adjust the global page counts.
+ */
+ vm_page_active_count += lq->vpl_count;
+ vm_page_pageable_internal_count += lq->vpl_internal_count;
+ vm_page_pageable_external_count += lq->vpl_external_count;
+ lq->vpl_count = 0;
+ lq->vpl_internal_count = 0;
+ lq->vpl_external_count = 0;
+ }
+ assert(vm_page_queue_empty(&lq->vpl_queue));
+
+ if (nolocks == FALSE) {
+ VPL_UNLOCK(&lq->vpl_lock);
+
+ vm_page_balance_inactive(count / 4);
+ vm_page_unlock_queues();
+ }
+}
+
+/*
+ * vm_page_part_zero_fill:
+ *
+ * Zero-fill a part of the page.
+ */
+#define PMAP_ZERO_PART_PAGE_IMPLEMENTED
+void
+vm_page_part_zero_fill(
+ vm_page_t m,
+ vm_offset_t m_pa,
+ vm_size_t len)
+{
+#if 0
+ /*
+ * we don't hold the page queue lock
+ * so this check isn't safe to make
+ */
+ VM_PAGE_CHECK(m);
+#endif
+
+#ifdef PMAP_ZERO_PART_PAGE_IMPLEMENTED
+ pmap_zero_part_page(VM_PAGE_GET_PHYS_PAGE(m), m_pa, len);
+#else
+ vm_page_t tmp;
+ while (1) {
+ tmp = vm_page_grab();
+ if (tmp == VM_PAGE_NULL) {
+ vm_page_wait(THREAD_UNINT);
+ continue;
+ }
+ break;
+ }
+ vm_page_zero_fill(tmp);
+ if (m_pa != 0) {
+ vm_page_part_copy(m, 0, tmp, 0, m_pa);
+ }
+ if ((m_pa + len) < PAGE_SIZE) {
+ vm_page_part_copy(m, m_pa + len, tmp,
+ m_pa + len, PAGE_SIZE - (m_pa + len));
+ }
+ vm_page_copy(tmp, m);
+ VM_PAGE_FREE(tmp);
+#endif
+}
+
+/*
+ * vm_page_zero_fill:
+ *
+ * Zero-fill the specified page.
+ */
+void
+vm_page_zero_fill(
+ vm_page_t m)
+{
+ XPR(XPR_VM_PAGE,
+ "vm_page_zero_fill, object 0x%X offset 0x%X page 0x%X\n",
+ VM_PAGE_OBJECT(m), m->vmp_offset, m, 0, 0);
+#if 0
+ /*
+ * we don't hold the page queue lock
+ * so this check isn't safe to make
+ */
+ VM_PAGE_CHECK(m);
+#endif
+
+// dbgTrace(0xAEAEAEAE, VM_PAGE_GET_PHYS_PAGE(m), 0); /* (BRINGUP) */
+ pmap_zero_page(VM_PAGE_GET_PHYS_PAGE(m));
+}
+
+/*
+ * vm_page_part_copy:
+ *
+ * copy part of one page to another
+ */
+
+void
+vm_page_part_copy(
+ vm_page_t src_m,
+ vm_offset_t src_pa,
+ vm_page_t dst_m,
+ vm_offset_t dst_pa,
+ vm_size_t len)
+{
+#if 0
+ /*
+ * we don't hold the page queue lock
+ * so this check isn't safe to make
+ */
+ VM_PAGE_CHECK(src_m);
+ VM_PAGE_CHECK(dst_m);
+#endif
+ pmap_copy_part_page(VM_PAGE_GET_PHYS_PAGE(src_m), src_pa,
+ VM_PAGE_GET_PHYS_PAGE(dst_m), dst_pa, len);
+}
+
+/*
+ * vm_page_copy:
+ *
+ * Copy one page to another
+ */
+
+int vm_page_copy_cs_validations = 0;
+int vm_page_copy_cs_tainted = 0;
+
+void
+vm_page_copy(
+ vm_page_t src_m,
+ vm_page_t dest_m)
+{
+ vm_object_t src_m_object;
+
+ src_m_object = VM_PAGE_OBJECT(src_m);
+
+ XPR(XPR_VM_PAGE,
+ "vm_page_copy, object 0x%X offset 0x%X to object 0x%X offset 0x%X\n",
+ src_m_object, src_m->vmp_offset,
+ VM_PAGE_OBJECT(dest_m), dest_m->vmp_offset,
+ 0);
+#if 0
+ /*
+ * we don't hold the page queue lock
+ * so this check isn't safe to make
+ */
+ VM_PAGE_CHECK(src_m);
+ VM_PAGE_CHECK(dest_m);
+#endif
+ vm_object_lock_assert_held(src_m_object);
+
+ if (src_m_object != VM_OBJECT_NULL &&
+ src_m_object->code_signed) {
+ /*
+ * We're copying a page from a code-signed object.
+ * Whoever ends up mapping the copy page might care about
+ * the original page's integrity, so let's validate the
+ * source page now.
+ */
+ vm_page_copy_cs_validations++;
+ vm_page_validate_cs(src_m);
+#if DEVELOPMENT || DEBUG
+ DTRACE_VM4(codesigned_copy,
+ vm_object_t, src_m_object,
+ vm_object_offset_t, src_m->vmp_offset,
+ int, src_m->vmp_cs_validated,
+ int, src_m->vmp_cs_tainted);
+#endif /* DEVELOPMENT || DEBUG */
+ }
+
+ /*
+ * Propagate the cs_tainted bit to the copy page. Do not propagate
+ * the cs_validated bit.
+ */
+ dest_m->vmp_cs_tainted = src_m->vmp_cs_tainted;
+ if (dest_m->vmp_cs_tainted) {
+ vm_page_copy_cs_tainted++;
+ }
+ dest_m->vmp_error = src_m->vmp_error; /* sliding src_m might have failed... */
+ pmap_copy_page(VM_PAGE_GET_PHYS_PAGE(src_m), VM_PAGE_GET_PHYS_PAGE(dest_m));
+}
+
+#if MACH_ASSERT
+static void
+_vm_page_print(
+ vm_page_t p)
+{
+ printf("vm_page %p: \n", p);
+ printf(" pageq: next=%p prev=%p\n",
+ (vm_page_t)VM_PAGE_UNPACK_PTR(p->vmp_pageq.next),
+ (vm_page_t)VM_PAGE_UNPACK_PTR(p->vmp_pageq.prev));
+ printf(" listq: next=%p prev=%p\n",
+ (vm_page_t)(VM_PAGE_UNPACK_PTR(p->vmp_listq.next)),
+ (vm_page_t)(VM_PAGE_UNPACK_PTR(p->vmp_listq.prev)));
+ printf(" next=%p\n", (vm_page_t)(VM_PAGE_UNPACK_PTR(p->vmp_next_m)));
+ printf(" object=%p offset=0x%llx\n", VM_PAGE_OBJECT(p), p->vmp_offset);
+ printf(" wire_count=%u\n", p->vmp_wire_count);
+ printf(" q_state=%u\n", p->vmp_q_state);
+
+ printf(" %slaundry, %sref, %sgobbled, %sprivate\n",
+ (p->vmp_laundry ? "" : "!"),
+ (p->vmp_reference ? "" : "!"),
+ (p->vmp_gobbled ? "" : "!"),
+ (p->vmp_private ? "" : "!"));
+ printf(" %sbusy, %swanted, %stabled, %sfictitious, %spmapped, %swpmapped\n",
+ (p->vmp_busy ? "" : "!"),
+ (p->vmp_wanted ? "" : "!"),
+ (p->vmp_tabled ? "" : "!"),
+ (p->vmp_fictitious ? "" : "!"),
+ (p->vmp_pmapped ? "" : "!"),
+ (p->vmp_wpmapped ? "" : "!"));
+ printf(" %sfree_when_done, %sabsent, %serror, %sdirty, %scleaning, %sprecious, %sclustered\n",
+ (p->vmp_free_when_done ? "" : "!"),
+ (p->vmp_absent ? "" : "!"),
+ (p->vmp_error ? "" : "!"),
+ (p->vmp_dirty ? "" : "!"),
+ (p->vmp_cleaning ? "" : "!"),
+ (p->vmp_precious ? "" : "!"),
+ (p->vmp_clustered ? "" : "!"));
+ printf(" %soverwriting, %srestart, %sunusual\n",
+ (p->vmp_overwriting ? "" : "!"),
+ (p->vmp_restart ? "" : "!"),
+ (p->vmp_unusual ? "" : "!"));
+ printf(" %scs_validated, %scs_tainted, %scs_nx, %sno_cache\n",
+ (p->vmp_cs_validated ? "" : "!"),
+ (p->vmp_cs_tainted ? "" : "!"),
+ (p->vmp_cs_nx ? "" : "!"),
+ (p->vmp_no_cache ? "" : "!"));
+
+ printf("phys_page=0x%x\n", VM_PAGE_GET_PHYS_PAGE(p));
+}
+
+/*
+ * Check that the list of pages is ordered by
+ * ascending physical address and has no holes.
+ */
+static int
+vm_page_verify_contiguous(
+ vm_page_t pages,
+ unsigned int npages)
+{
+ vm_page_t m;
+ unsigned int page_count;
+ vm_offset_t prev_addr;
+
+ prev_addr = VM_PAGE_GET_PHYS_PAGE(pages);
+ page_count = 1;
+ for (m = NEXT_PAGE(pages); m != VM_PAGE_NULL; m = NEXT_PAGE(m)) {
+ if (VM_PAGE_GET_PHYS_PAGE(m) != prev_addr + 1) {
+ printf("m %p prev_addr 0x%lx, current addr 0x%x\n",
+ m, (long)prev_addr, VM_PAGE_GET_PHYS_PAGE(m));
+ printf("pages %p page_count %d npages %d\n", pages, page_count, npages);
+ panic("vm_page_verify_contiguous: not contiguous!");
+ }
+ prev_addr = VM_PAGE_GET_PHYS_PAGE(m);
+ ++page_count;
+ }
+ if (page_count != npages) {
+ printf("pages %p actual count 0x%x but requested 0x%x\n",
+ pages, page_count, npages);
+ panic("vm_page_verify_contiguous: count error");
+ }
+ return 1;
+}
+
+
+/*
+ * Check the free lists for proper length etc.
+ */
+static boolean_t vm_page_verify_this_free_list_enabled = FALSE;
+static unsigned int
+vm_page_verify_free_list(
+ vm_page_queue_head_t *vm_page_queue,
+ unsigned int color,
+ vm_page_t look_for_page,
+ boolean_t expect_page)
+{
+ unsigned int npages;
+ vm_page_t m;
+ vm_page_t prev_m;
+ boolean_t found_page;
+
+ if (!vm_page_verify_this_free_list_enabled) {
+ return 0;
+ }
+
+ found_page = FALSE;
+ npages = 0;
+ prev_m = (vm_page_t)((uintptr_t)vm_page_queue);
+
+ vm_page_queue_iterate(vm_page_queue, m, vmp_pageq) {
+ if (m == look_for_page) {
+ found_page = TRUE;
+ }
+ if ((vm_page_t)VM_PAGE_UNPACK_PTR(m->vmp_pageq.prev) != prev_m) {
+ panic("vm_page_verify_free_list(color=%u, npages=%u): page %p corrupted prev ptr %p instead of %p\n",
+ color, npages, m, (vm_page_t)VM_PAGE_UNPACK_PTR(m->vmp_pageq.prev), prev_m);
+ }
+ if (!m->vmp_busy) {
+ panic("vm_page_verify_free_list(color=%u, npages=%u): page %p not busy\n",
+ color, npages, m);
+ }
+ if (color != (unsigned int) -1) {
+ if (VM_PAGE_GET_COLOR(m) != color) {
+ panic("vm_page_verify_free_list(color=%u, npages=%u): page %p wrong color %u instead of %u\n",
+ color, npages, m, VM_PAGE_GET_COLOR(m), color);
+ }
+ if (m->vmp_q_state != VM_PAGE_ON_FREE_Q) {
+ panic("vm_page_verify_free_list(color=%u, npages=%u): page %p - expecting q_state == VM_PAGE_ON_FREE_Q, found %d\n",
+ color, npages, m, m->vmp_q_state);
+ }
+ } else {
+ if (m->vmp_q_state != VM_PAGE_ON_FREE_LOCAL_Q) {
+ panic("vm_page_verify_free_list(npages=%u): local page %p - expecting q_state == VM_PAGE_ON_FREE_LOCAL_Q, found %d\n",
+ npages, m, m->vmp_q_state);
+ }
+ }
+ ++npages;
+ prev_m = m;
+ }
+ if (look_for_page != VM_PAGE_NULL) {
+ unsigned int other_color;
+
+ if (expect_page && !found_page) {
+ printf("vm_page_verify_free_list(color=%u, npages=%u): page %p not found phys=%u\n",
+ color, npages, look_for_page, VM_PAGE_GET_PHYS_PAGE(look_for_page));
+ _vm_page_print(look_for_page);
+ for (other_color = 0;
+ other_color < vm_colors;
+ other_color++) {
+ if (other_color == color) {
+ continue;
+ }
+ vm_page_verify_free_list(&vm_page_queue_free[other_color].qhead,
+ other_color, look_for_page, FALSE);
+ }
+ if (color == (unsigned int) -1) {
+ vm_page_verify_free_list(&vm_lopage_queue_free,
+ (unsigned int) -1, look_for_page, FALSE);
+ }
+ panic("vm_page_verify_free_list(color=%u)\n", color);
+ }
+ if (!expect_page && found_page) {
+ printf("vm_page_verify_free_list(color=%u, npages=%u): page %p found phys=%u\n",
+ color, npages, look_for_page, VM_PAGE_GET_PHYS_PAGE(look_for_page));
+ }
+ }
+ return npages;
+}
+
+static boolean_t vm_page_verify_all_free_lists_enabled = FALSE;
+static void
+vm_page_verify_free_lists( void )
+{
+ unsigned int color, npages, nlopages;
+ boolean_t toggle = TRUE;
+
+ if (!vm_page_verify_all_free_lists_enabled) {
+ return;
+ }
+
+ npages = 0;
+
+ lck_mtx_lock(&vm_page_queue_free_lock);
+
+ if (vm_page_verify_this_free_list_enabled == TRUE) {
+ /*
+ * This variable has been set globally for extra checking of
+ * each free list Q. Since we didn't set it, we don't own it
+ * and we shouldn't toggle it.
+ */
+ toggle = FALSE;
+ }
+
+ if (toggle == TRUE) {
+ vm_page_verify_this_free_list_enabled = TRUE;
+ }
+
+ for (color = 0; color < vm_colors; color++) {
+ npages += vm_page_verify_free_list(&vm_page_queue_free[color].qhead,
+ color, VM_PAGE_NULL, FALSE);
+ }
+ nlopages = vm_page_verify_free_list(&vm_lopage_queue_free,
+ (unsigned int) -1,
+ VM_PAGE_NULL, FALSE);
+ if (npages != vm_page_free_count || nlopages != vm_lopage_free_count) {
+ panic("vm_page_verify_free_lists: "
+ "npages %u free_count %d nlopages %u lo_free_count %u",
+ npages, vm_page_free_count, nlopages, vm_lopage_free_count);
+ }
+
+ if (toggle == TRUE) {
+ vm_page_verify_this_free_list_enabled = FALSE;
+ }
+
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+}
+
+#endif /* MACH_ASSERT */
+
+
+extern boolean_t(*volatile consider_buffer_cache_collect)(int);
+
+/*
+ * CONTIGUOUS PAGE ALLOCATION
+ *
+ * Find a region large enough to contain at least n pages
+ * of contiguous physical memory.
+ *
+ * This is done by traversing the vm_page_t array in a linear fashion
+ * we assume that the vm_page_t array has the avaiable physical pages in an
+ * ordered, ascending list... this is currently true of all our implementations
+ * and must remain so... there can be 'holes' in the array... we also can
+ * no longer tolerate the vm_page_t's in the list being 'freed' and reclaimed
+ * which use to happen via 'vm_page_convert'... that function was no longer
+ * being called and was removed...
+ *
+ * The basic flow consists of stabilizing some of the interesting state of
+ * a vm_page_t behind the vm_page_queue and vm_page_free locks... we start our
+ * sweep at the beginning of the array looking for pages that meet our criterea
+ * for a 'stealable' page... currently we are pretty conservative... if the page
+ * meets this criterea and is physically contiguous to the previous page in the 'run'
+ * we keep developing it. If we hit a page that doesn't fit, we reset our state
+ * and start to develop a new run... if at this point we've already considered
+ * at least MAX_CONSIDERED_BEFORE_YIELD pages, we'll drop the 2 locks we hold,
+ * and mutex_pause (which will yield the processor), to keep the latency low w/r
+ * to other threads trying to acquire free pages (or move pages from q to q),
+ * and then continue from the spot we left off... we only make 1 pass through the
+ * array. Once we have a 'run' that is long enough, we'll go into the loop which
+ * which steals the pages from the queues they're currently on... pages on the free
+ * queue can be stolen directly... pages that are on any of the other queues
+ * must be removed from the object they are tabled on... this requires taking the
+ * object lock... we do this as a 'try' to prevent deadlocks... if the 'try' fails
+ * or if the state of the page behind the vm_object lock is no longer viable, we'll
+ * dump the pages we've currently stolen back to the free list, and pick up our
+ * scan from the point where we aborted the 'current' run.
+ *
+ *
+ * Requirements:
+ * - neither vm_page_queue nor vm_free_list lock can be held on entry
+ *
+ * Returns a pointer to a list of gobbled/wired pages or VM_PAGE_NULL.
+ *
+ * Algorithm:
+ */
+
+#define MAX_CONSIDERED_BEFORE_YIELD 1000
+
+
+#define RESET_STATE_OF_RUN() \
+ MACRO_BEGIN \
+ prevcontaddr = -2; \
+ start_pnum = -1; \
+ free_considered = 0; \
+ substitute_needed = 0; \
+ npages = 0; \
+ MACRO_END
+
+/*
+ * Can we steal in-use (i.e. not free) pages when searching for
+ * physically-contiguous pages ?
+ */
+#define VM_PAGE_FIND_CONTIGUOUS_CAN_STEAL 1
+
+static unsigned int vm_page_find_contiguous_last_idx = 0, vm_page_lomem_find_contiguous_last_idx = 0;
+#if DEBUG
+int vm_page_find_contig_debug = 0;
+#endif
+
+static vm_page_t
+vm_page_find_contiguous(
+ unsigned int contig_pages,
+ ppnum_t max_pnum,
+ ppnum_t pnum_mask,
+ boolean_t wire,
+ int flags)
+{
+ vm_page_t m = NULL;
+ ppnum_t prevcontaddr = 0;
+ ppnum_t start_pnum = 0;
+ unsigned int npages = 0, considered = 0, scanned = 0;
+ unsigned int page_idx = 0, start_idx = 0, last_idx = 0, orig_last_idx = 0;
+ unsigned int idx_last_contig_page_found = 0;
+ int free_considered = 0, free_available = 0;
+ int substitute_needed = 0;
+ boolean_t wrapped, zone_gc_called = FALSE;
+ kern_return_t kr;
+#if DEBUG
+ clock_sec_t tv_start_sec = 0, tv_end_sec = 0;
+ clock_usec_t tv_start_usec = 0, tv_end_usec = 0;
+#endif
+
+ int yielded = 0;
+ int dumped_run = 0;
+ int stolen_pages = 0;
+ int compressed_pages = 0;
+
+
+ if (contig_pages == 0) {
+ return VM_PAGE_NULL;
+ }
+
+full_scan_again:
+
+#if MACH_ASSERT
+ vm_page_verify_free_lists();
+#endif
+#if DEBUG
+ clock_get_system_microtime(&tv_start_sec, &tv_start_usec);
+#endif
+ PAGE_REPLACEMENT_ALLOWED(TRUE);
+
+ /*
+ * If there are still delayed pages, try to free up some that match.
+ */
+ if (__improbable(vm_delayed_count != 0 && contig_pages != 0)) {
+ vm_free_delayed_pages_contig(contig_pages, max_pnum, pnum_mask);
+ }
+
+ vm_page_lock_queues();
+ lck_mtx_lock(&vm_page_queue_free_lock);
+
+ RESET_STATE_OF_RUN();
+
+ scanned = 0;
+ considered = 0;
+ free_available = vm_page_free_count - vm_page_free_reserved;
+
+ wrapped = FALSE;
+
+ if (flags & KMA_LOMEM) {
+ idx_last_contig_page_found = vm_page_lomem_find_contiguous_last_idx;
+ } else {
+ idx_last_contig_page_found = vm_page_find_contiguous_last_idx;
+ }
+
+ orig_last_idx = idx_last_contig_page_found;
+ last_idx = orig_last_idx;
+
+ for (page_idx = last_idx, start_idx = last_idx;
+ npages < contig_pages && page_idx < vm_pages_count;
+ page_idx++) {
+retry:
+ if (wrapped &&
+ npages == 0 &&
+ page_idx >= orig_last_idx) {
+ /*
+ * We're back where we started and we haven't
+ * found any suitable contiguous range. Let's
+ * give up.
+ */
+ break;
+ }
+ scanned++;
+ m = &vm_pages[page_idx];
+
+ assert(!m->vmp_fictitious);
+ assert(!m->vmp_private);
+
+ if (max_pnum && VM_PAGE_GET_PHYS_PAGE(m) > max_pnum) {
+ /* no more low pages... */
+ break;
+ }
+ if (!npages & ((VM_PAGE_GET_PHYS_PAGE(m) & pnum_mask) != 0)) {
+ /*
+ * not aligned
+ */
+ RESET_STATE_OF_RUN();
+ } else if (VM_PAGE_WIRED(m) || m->vmp_gobbled ||
+ m->vmp_laundry || m->vmp_wanted ||
+ m->vmp_cleaning || m->vmp_overwriting || m->vmp_free_when_done) {
+ /*
+ * page is in a transient state
+ * or a state we don't want to deal
+ * with, so don't consider it which
+ * means starting a new run
+ */
+ RESET_STATE_OF_RUN();
+ } else if ((m->vmp_q_state == VM_PAGE_NOT_ON_Q) ||
+ (m->vmp_q_state == VM_PAGE_ON_FREE_LOCAL_Q) ||
+ (m->vmp_q_state == VM_PAGE_ON_FREE_LOPAGE_Q) ||
+ (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q)) {
+ /*
+ * page needs to be on one of our queues (other then the pageout or special free queues)
+ * or it needs to belong to the compressor pool (which is now indicated
+ * by vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR and falls out
+ * from the check for VM_PAGE_NOT_ON_Q)
+ * in order for it to be stable behind the
+ * locks we hold at this point...
+ * if not, don't consider it which
+ * means starting a new run
+ */
+ RESET_STATE_OF_RUN();
+ } else if ((m->vmp_q_state != VM_PAGE_ON_FREE_Q) && (!m->vmp_tabled || m->vmp_busy)) {
+ /*
+ * pages on the free list are always 'busy'
+ * so we couldn't test for 'busy' in the check
+ * for the transient states... pages that are
+ * 'free' are never 'tabled', so we also couldn't
+ * test for 'tabled'. So we check here to make
+ * sure that a non-free page is not busy and is
+ * tabled on an object...
+ * if not, don't consider it which
+ * means starting a new run
+ */
+ RESET_STATE_OF_RUN();
+ } else {
+ if (VM_PAGE_GET_PHYS_PAGE(m) != prevcontaddr + 1) {
+ if ((VM_PAGE_GET_PHYS_PAGE(m) & pnum_mask) != 0) {
+ RESET_STATE_OF_RUN();
+ goto did_consider;
+ } else {
+ npages = 1;
+ start_idx = page_idx;
+ start_pnum = VM_PAGE_GET_PHYS_PAGE(m);
+ }
+ } else {
+ npages++;
+ }
+ prevcontaddr = VM_PAGE_GET_PHYS_PAGE(m);
+
+ VM_PAGE_CHECK(m);
+ if (m->vmp_q_state == VM_PAGE_ON_FREE_Q) {
+ free_considered++;
+ } else {
+ /*
+ * This page is not free.
+ * If we can't steal used pages,
+ * we have to give up this run
+ * and keep looking.
+ * Otherwise, we might need to
+ * move the contents of this page
+ * into a substitute page.
+ */
+#if VM_PAGE_FIND_CONTIGUOUS_CAN_STEAL
+ if (m->vmp_pmapped || m->vmp_dirty || m->vmp_precious) {
+ substitute_needed++;
+ }
+#else
+ RESET_STATE_OF_RUN();
+#endif
+ }
+
+ if ((free_considered + substitute_needed) > free_available) {
+ /*
+ * if we let this run continue
+ * we will end up dropping the vm_page_free_count
+ * below the reserve limit... we need to abort
+ * this run, but we can at least re-consider this
+ * page... thus the jump back to 'retry'
+ */
+ RESET_STATE_OF_RUN();
+
+ if (free_available && considered <= MAX_CONSIDERED_BEFORE_YIELD) {
+ considered++;
+ goto retry;
+ }
+ /*
+ * free_available == 0
+ * so can't consider any free pages... if
+ * we went to retry in this case, we'd
+ * get stuck looking at the same page
+ * w/o making any forward progress
+ * we also want to take this path if we've already
+ * reached our limit that controls the lock latency
+ */
+ }
+ }
+did_consider:
+ if (considered > MAX_CONSIDERED_BEFORE_YIELD && npages <= 1) {
+ PAGE_REPLACEMENT_ALLOWED(FALSE);
+
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+ vm_page_unlock_queues();
+
+ mutex_pause(0);
+
+ PAGE_REPLACEMENT_ALLOWED(TRUE);
+
+ vm_page_lock_queues();
+ lck_mtx_lock(&vm_page_queue_free_lock);
+
+ RESET_STATE_OF_RUN();
+ /*
+ * reset our free page limit since we
+ * dropped the lock protecting the vm_page_free_queue
+ */
+ free_available = vm_page_free_count - vm_page_free_reserved;
+ considered = 0;
+
+ yielded++;
+
+ goto retry;
+ }
+ considered++;
+ }
+ m = VM_PAGE_NULL;
+
+ if (npages != contig_pages) {
+ if (!wrapped) {
+ /*
+ * We didn't find a contiguous range but we didn't
+ * start from the very first page.
+ * Start again from the very first page.
+ */
+ RESET_STATE_OF_RUN();
+ if (flags & KMA_LOMEM) {
+ idx_last_contig_page_found = vm_page_lomem_find_contiguous_last_idx = 0;
+ } else {
+ idx_last_contig_page_found = vm_page_find_contiguous_last_idx = 0;
+ }
+ last_idx = 0;
+ page_idx = last_idx;
+ wrapped = TRUE;
+ goto retry;
+ }
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+ } else {
+ vm_page_t m1;
+ vm_page_t m2;
+ unsigned int cur_idx;
+ unsigned int tmp_start_idx;
+ vm_object_t locked_object = VM_OBJECT_NULL;
+ boolean_t abort_run = FALSE;
+
+ assert(page_idx - start_idx == contig_pages);
+
+ tmp_start_idx = start_idx;
+
+ /*
+ * first pass through to pull the free pages
+ * off of the free queue so that in case we
+ * need substitute pages, we won't grab any
+ * of the free pages in the run... we'll clear
+ * the 'free' bit in the 2nd pass, and even in
+ * an abort_run case, we'll collect all of the
+ * free pages in this run and return them to the free list
+ */
+ while (start_idx < page_idx) {
+ m1 = &vm_pages[start_idx++];
+
+#if !VM_PAGE_FIND_CONTIGUOUS_CAN_STEAL
+ assert(m1->vmp_q_state == VM_PAGE_ON_FREE_Q);
+#endif
+
+ if (m1->vmp_q_state == VM_PAGE_ON_FREE_Q) {
+ unsigned int color;
+
+ color = VM_PAGE_GET_COLOR(m1);
+#if MACH_ASSERT
+ vm_page_verify_free_list(&vm_page_queue_free[color].qhead, color, m1, TRUE);
+#endif
+ vm_page_queue_remove(&vm_page_queue_free[color].qhead, m1, vmp_pageq);
+
+ VM_PAGE_ZERO_PAGEQ_ENTRY(m1);
+#if MACH_ASSERT
+ vm_page_verify_free_list(&vm_page_queue_free[color].qhead, color, VM_PAGE_NULL, FALSE);
+#endif
+ /*
+ * Clear the "free" bit so that this page
+ * does not get considered for another
+ * concurrent physically-contiguous allocation.
+ */
+ m1->vmp_q_state = VM_PAGE_NOT_ON_Q;
+ assert(m1->vmp_busy);
+
+ vm_page_free_count--;
+ }
+ }
+ if (flags & KMA_LOMEM) {
+ vm_page_lomem_find_contiguous_last_idx = page_idx;
+ } else {
+ vm_page_find_contiguous_last_idx = page_idx;
+ }
+
+ /*
+ * we can drop the free queue lock at this point since
+ * we've pulled any 'free' candidates off of the list
+ * we need it dropped so that we can do a vm_page_grab
+ * when substituing for pmapped/dirty pages
+ */
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+
+ start_idx = tmp_start_idx;
+ cur_idx = page_idx - 1;
+
+ while (start_idx++ < page_idx) {
+ /*
+ * must go through the list from back to front
+ * so that the page list is created in the
+ * correct order - low -> high phys addresses
+ */
+ m1 = &vm_pages[cur_idx--];
+
+ if (m1->vmp_object == 0) {
+ /*
+ * page has already been removed from
+ * the free list in the 1st pass
+ */
+ assert(m1->vmp_q_state == VM_PAGE_NOT_ON_Q);
+ assert(m1->vmp_offset == (vm_object_offset_t) -1);
+ assert(m1->vmp_busy);
+ assert(!m1->vmp_wanted);
+ assert(!m1->vmp_laundry);
+ } else {
+ vm_object_t object;
+ int refmod;
+ boolean_t disconnected, reusable;
+
+ if (abort_run == TRUE) {
+ continue;
+ }
+
+ assert(m1->vmp_q_state != VM_PAGE_NOT_ON_Q);
+
+ object = VM_PAGE_OBJECT(m1);
+
+ if (object != locked_object) {
+ if (locked_object) {
+ vm_object_unlock(locked_object);
+ locked_object = VM_OBJECT_NULL;
+ }
+ if (vm_object_lock_try(object)) {
+ locked_object = object;
+ }
+ }
+ if (locked_object == VM_OBJECT_NULL ||
+ (VM_PAGE_WIRED(m1) || m1->vmp_gobbled ||
+ m1->vmp_laundry || m1->vmp_wanted ||
+ m1->vmp_cleaning || m1->vmp_overwriting || m1->vmp_free_when_done || m1->vmp_busy) ||
+ (m1->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q)) {
+ if (locked_object) {
+ vm_object_unlock(locked_object);
+ locked_object = VM_OBJECT_NULL;
+ }
+ tmp_start_idx = cur_idx;
+ abort_run = TRUE;
+ continue;
+ }
+
+ disconnected = FALSE;
+ reusable = FALSE;
+
+ if ((m1->vmp_reusable ||
+ object->all_reusable) &&
+ (m1->vmp_q_state == VM_PAGE_ON_INACTIVE_INTERNAL_Q) &&
+ !m1->vmp_dirty &&
+ !m1->vmp_reference) {
+ /* reusable page... */
+ refmod = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m1));
+ disconnected = TRUE;
+ if (refmod == 0) {
+ /*
+ * ... not reused: can steal
+ * without relocating contents.
+ */
+ reusable = TRUE;
+ }
+ }
+
+ if ((m1->vmp_pmapped &&
+ !reusable) ||
+ m1->vmp_dirty ||
+ m1->vmp_precious) {
+ vm_object_offset_t offset;
+
+ m2 = vm_page_grab_options(VM_PAGE_GRAB_Q_LOCK_HELD);
+
+ if (m2 == VM_PAGE_NULL) {
+ if (locked_object) {
+ vm_object_unlock(locked_object);
+ locked_object = VM_OBJECT_NULL;
+ }
+ tmp_start_idx = cur_idx;
+ abort_run = TRUE;
+ continue;
+ }
+ if (!disconnected) {
+ if (m1->vmp_pmapped) {
+ refmod = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m1));
+ } else {
+ refmod = 0;
+ }
+ }
+
+ /* copy the page's contents */
+ pmap_copy_page(VM_PAGE_GET_PHYS_PAGE(m1), VM_PAGE_GET_PHYS_PAGE(m2));
+ /* copy the page's state */
+ assert(!VM_PAGE_WIRED(m1));
+ assert(m1->vmp_q_state != VM_PAGE_ON_FREE_Q);
+ assert(m1->vmp_q_state != VM_PAGE_ON_PAGEOUT_Q);
+ assert(!m1->vmp_laundry);
+ m2->vmp_reference = m1->vmp_reference;
+ assert(!m1->vmp_gobbled);
+ assert(!m1->vmp_private);
+ m2->vmp_no_cache = m1->vmp_no_cache;
+ m2->vmp_xpmapped = 0;
+ assert(!m1->vmp_busy);
+ assert(!m1->vmp_wanted);
+ assert(!m1->vmp_fictitious);
+ m2->vmp_pmapped = m1->vmp_pmapped; /* should flush cache ? */
+ m2->vmp_wpmapped = m1->vmp_wpmapped;
+ assert(!m1->vmp_free_when_done);
+ m2->vmp_absent = m1->vmp_absent;
+ m2->vmp_error = m1->vmp_error;
+ m2->vmp_dirty = m1->vmp_dirty;
+ assert(!m1->vmp_cleaning);
+ m2->vmp_precious = m1->vmp_precious;
+ m2->vmp_clustered = m1->vmp_clustered;
+ assert(!m1->vmp_overwriting);
+ m2->vmp_restart = m1->vmp_restart;
+ m2->vmp_unusual = m1->vmp_unusual;
+ m2->vmp_cs_validated = m1->vmp_cs_validated;
+ m2->vmp_cs_tainted = m1->vmp_cs_tainted;
+ m2->vmp_cs_nx = m1->vmp_cs_nx;
+
+ /*
+ * If m1 had really been reusable,
+ * we would have just stolen it, so
+ * let's not propagate it's "reusable"
+ * bit and assert that m2 is not
+ * marked as "reusable".
+ */
+ // m2->vmp_reusable = m1->vmp_reusable;
+ assert(!m2->vmp_reusable);
+
+ // assert(!m1->vmp_lopage);
+
+ if (m1->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) {
+ m2->vmp_q_state = VM_PAGE_USED_BY_COMPRESSOR;
+ }
+
+ /*
+ * page may need to be flushed if
+ * it is marshalled into a UPL
+ * that is going to be used by a device
+ * that doesn't support coherency
+ */
+ m2->vmp_written_by_kernel = TRUE;
+
+ /*
+ * make sure we clear the ref/mod state
+ * from the pmap layer... else we risk
+ * inheriting state from the last time
+ * this page was used...
+ */
+ pmap_clear_refmod(VM_PAGE_GET_PHYS_PAGE(m2), VM_MEM_MODIFIED | VM_MEM_REFERENCED);
+
+ if (refmod & VM_MEM_REFERENCED) {
+ m2->vmp_reference = TRUE;
+ }
+ if (refmod & VM_MEM_MODIFIED) {
+ SET_PAGE_DIRTY(m2, TRUE);
+ }
+ offset = m1->vmp_offset;
+
+ /*
+ * completely cleans up the state
+ * of the page so that it is ready
+ * to be put onto the free list, or
+ * for this purpose it looks like it
+ * just came off of the free list
+ */
+ vm_page_free_prepare(m1);
+
+ /*
+ * now put the substitute page
+ * on the object
+ */
+ vm_page_insert_internal(m2, locked_object, offset, VM_KERN_MEMORY_NONE, TRUE, TRUE, FALSE, FALSE, NULL);
+
+ if (m2->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) {
+ m2->vmp_pmapped = TRUE;
+ m2->vmp_wpmapped = TRUE;
+
+ PMAP_ENTER(kernel_pmap, m2->vmp_offset, m2,
+ VM_PROT_READ | VM_PROT_WRITE, VM_PROT_NONE, 0, TRUE, kr);
+
+ assert(kr == KERN_SUCCESS);
+
+ compressed_pages++;
+ } else {
+ if (m2->vmp_reference) {
+ vm_page_activate(m2);
+ } else {
+ vm_page_deactivate(m2);
+ }
+ }
+ PAGE_WAKEUP_DONE(m2);
+ } else {
+ assert(m1->vmp_q_state != VM_PAGE_USED_BY_COMPRESSOR);
+
+ /*
+ * completely cleans up the state
+ * of the page so that it is ready
+ * to be put onto the free list, or
+ * for this purpose it looks like it
+ * just came off of the free list
+ */
+ vm_page_free_prepare(m1);
+ }
+
+ stolen_pages++;
+ }
+#if CONFIG_BACKGROUND_QUEUE
+ vm_page_assign_background_state(m1);
+#endif
+ VM_PAGE_ZERO_PAGEQ_ENTRY(m1);
+ m1->vmp_snext = m;
+ m = m1;
+ }
+ if (locked_object) {
+ vm_object_unlock(locked_object);
+ locked_object = VM_OBJECT_NULL;
+ }
+
+ if (abort_run == TRUE) {
+ /*
+ * want the index of the last
+ * page in this run that was
+ * successfully 'stolen', so back
+ * it up 1 for the auto-decrement on use
+ * and 1 more to bump back over this page
+ */
+ page_idx = tmp_start_idx + 2;
+ if (page_idx >= vm_pages_count) {
+ if (wrapped) {
+ if (m != VM_PAGE_NULL) {
+ vm_page_unlock_queues();
+ vm_page_free_list(m, FALSE);
+ vm_page_lock_queues();
+ m = VM_PAGE_NULL;
+ }
+ dumped_run++;
+ goto done_scanning;
+ }
+ page_idx = last_idx = 0;
+ wrapped = TRUE;
+ }
+ abort_run = FALSE;
+
+ /*
+ * We didn't find a contiguous range but we didn't
+ * start from the very first page.
+ * Start again from the very first page.
+ */
+ RESET_STATE_OF_RUN();
+
+ if (flags & KMA_LOMEM) {
+ idx_last_contig_page_found = vm_page_lomem_find_contiguous_last_idx = page_idx;
+ } else {
+ idx_last_contig_page_found = vm_page_find_contiguous_last_idx = page_idx;
+ }
+
+ last_idx = page_idx;
+
+ if (m != VM_PAGE_NULL) {
+ vm_page_unlock_queues();
+ vm_page_free_list(m, FALSE);
+ vm_page_lock_queues();
+ m = VM_PAGE_NULL;
+ }
+ dumped_run++;
+
+ lck_mtx_lock(&vm_page_queue_free_lock);
+ /*
+ * reset our free page limit since we
+ * dropped the lock protecting the vm_page_free_queue
+ */
+ free_available = vm_page_free_count - vm_page_free_reserved;
+ goto retry;
+ }
+
+ for (m1 = m; m1 != VM_PAGE_NULL; m1 = NEXT_PAGE(m1)) {
+ assert(m1->vmp_q_state == VM_PAGE_NOT_ON_Q);
+ assert(m1->vmp_wire_count == 0);
+
+ if (wire == TRUE) {
+ m1->vmp_wire_count++;
+ m1->vmp_q_state = VM_PAGE_IS_WIRED;
+ } else {
+ m1->vmp_gobbled = TRUE;
+ }
+ }
+ if (wire == FALSE) {
+ vm_page_gobble_count += npages;
+ }
+
+ /*
+ * gobbled pages are also counted as wired pages
+ */
+ vm_page_wire_count += npages;
+
+ assert(vm_page_verify_contiguous(m, npages));
+ }
+done_scanning:
+ PAGE_REPLACEMENT_ALLOWED(FALSE);
+
+ vm_page_unlock_queues();
+
+#if DEBUG
+ clock_get_system_microtime(&tv_end_sec, &tv_end_usec);
+
+ tv_end_sec -= tv_start_sec;
+ if (tv_end_usec < tv_start_usec) {
+ tv_end_sec--;
+ tv_end_usec += 1000000;
+ }
+ tv_end_usec -= tv_start_usec;
+ if (tv_end_usec >= 1000000) {
+ tv_end_sec++;
+ tv_end_sec -= 1000000;
+ }
+ if (vm_page_find_contig_debug) {
+ printf("%s(num=%d,low=%d): found %d pages at 0x%llx in %ld.%06ds... started at %d... scanned %d pages... yielded %d times... dumped run %d times... stole %d pages... stole %d compressed pages\n",
+ __func__, contig_pages, max_pnum, npages, (vm_object_offset_t)start_pnum << PAGE_SHIFT,
+ (long)tv_end_sec, tv_end_usec, orig_last_idx,
+ scanned, yielded, dumped_run, stolen_pages, compressed_pages);
+ }
+
+#endif
+#if MACH_ASSERT
+ vm_page_verify_free_lists();
+#endif
+ if (m == NULL && zone_gc_called == FALSE) {
+ printf("%s(num=%d,low=%d): found %d pages at 0x%llx...scanned %d pages... yielded %d times... dumped run %d times... stole %d pages... stole %d compressed pages... wired count is %d\n",
+ __func__, contig_pages, max_pnum, npages, (vm_object_offset_t)start_pnum << PAGE_SHIFT,
+ scanned, yielded, dumped_run, stolen_pages, compressed_pages, vm_page_wire_count);
+
+ if (consider_buffer_cache_collect != NULL) {
+ (void)(*consider_buffer_cache_collect)(1);
+ }
+
+ consider_zone_gc(FALSE);
+
+ zone_gc_called = TRUE;
+
+ printf("vm_page_find_contiguous: zone_gc called... wired count is %d\n", vm_page_wire_count);
+ goto full_scan_again;
+ }
+
+ return m;
+}
+
+/*
+ * Allocate a list of contiguous, wired pages.
+ */
+kern_return_t
+cpm_allocate(
+ vm_size_t size,
+ vm_page_t *list,
+ ppnum_t max_pnum,
+ ppnum_t pnum_mask,
+ boolean_t wire,
+ int flags)
+{
+ vm_page_t pages;
+ unsigned int npages;
+
+ if (size % PAGE_SIZE != 0) {
+ return KERN_INVALID_ARGUMENT;
+ }
+
+ npages = (unsigned int) (size / PAGE_SIZE);
+ if (npages != size / PAGE_SIZE) {
+ /* 32-bit overflow */
+ return KERN_INVALID_ARGUMENT;
+ }
+
+ /*
+ * Obtain a pointer to a subset of the free
+ * list large enough to satisfy the request;
+ * the region will be physically contiguous.
+ */
+ pages = vm_page_find_contiguous(npages, max_pnum, pnum_mask, wire, flags);
+
+ if (pages == VM_PAGE_NULL) {
+ return KERN_NO_SPACE;
+ }
+ /*
+ * determine need for wakeups
+ */
+ if (vm_page_free_count < vm_page_free_min) {
+ thread_wakeup((event_t) &vm_page_free_wanted);
+ }
+
+ VM_CHECK_MEMORYSTATUS;
+
+ /*
+ * The CPM pages should now be available and
+ * ordered by ascending physical address.
+ */
+ assert(vm_page_verify_contiguous(pages, npages));
+
+ *list = pages;
+ return KERN_SUCCESS;
+}
+
+
+unsigned int vm_max_delayed_work_limit = DEFAULT_DELAYED_WORK_LIMIT;
+
+/*
+ * when working on a 'run' of pages, it is necessary to hold
+ * the vm_page_queue_lock (a hot global lock) for certain operations
+ * on the page... however, the majority of the work can be done
+ * while merely holding the object lock... in fact there are certain
+ * collections of pages that don't require any work brokered by the
+ * vm_page_queue_lock... to mitigate the time spent behind the global
+ * lock, go to a 2 pass algorithm... collect pages up to DELAYED_WORK_LIMIT
+ * while doing all of the work that doesn't require the vm_page_queue_lock...
+ * then call vm_page_do_delayed_work to acquire the vm_page_queue_lock and do the
+ * necessary work for each page... we will grab the busy bit on the page
+ * if it's not already held so that vm_page_do_delayed_work can drop the object lock
+ * if it can't immediately take the vm_page_queue_lock in order to compete
+ * for the locks in the same order that vm_pageout_scan takes them.
+ * the operation names are modeled after the names of the routines that
+ * need to be called in order to make the changes very obvious in the
+ * original loop
+ */
+
+void
+vm_page_do_delayed_work(
+ vm_object_t object,
+ vm_tag_t tag,
+ struct vm_page_delayed_work *dwp,
+ int dw_count)
+{
+ int j;
+ vm_page_t m;
+ vm_page_t local_free_q = VM_PAGE_NULL;
+
+ /*
+ * pageout_scan takes the vm_page_lock_queues first
+ * then tries for the object lock... to avoid what
+ * is effectively a lock inversion, we'll go to the
+ * trouble of taking them in that same order... otherwise
+ * if this object contains the majority of the pages resident
+ * in the UBC (or a small set of large objects actively being
+ * worked on contain the majority of the pages), we could
+ * cause the pageout_scan thread to 'starve' in its attempt
+ * to find pages to move to the free queue, since it has to
+ * successfully acquire the object lock of any candidate page
+ * before it can steal/clean it.
+ */
+ if (!vm_page_trylockspin_queues()) {
+ vm_object_unlock(object);
+
+ vm_page_lockspin_queues();
+
+ for (j = 0;; j++) {
+ if (!vm_object_lock_avoid(object) &&
+ _vm_object_lock_try(object)) {
+ break;
+ }
+ vm_page_unlock_queues();
+ mutex_pause(j);
+ vm_page_lockspin_queues();
+ }
+ }
+ for (j = 0; j < dw_count; j++, dwp++) {
+ m = dwp->dw_m;
+
+ if (dwp->dw_mask & DW_vm_pageout_throttle_up) {
+ vm_pageout_throttle_up(m);
+ }
+#if CONFIG_PHANTOM_CACHE
+ if (dwp->dw_mask & DW_vm_phantom_cache_update) {
+ vm_phantom_cache_update(m);
+ }
+#endif
+ if (dwp->dw_mask & DW_vm_page_wire) {
+ vm_page_wire(m, tag, FALSE);
+ } else if (dwp->dw_mask & DW_vm_page_unwire) {
+ boolean_t queueit;
+
+ queueit = (dwp->dw_mask & (DW_vm_page_free | DW_vm_page_deactivate_internal)) ? FALSE : TRUE;
+
+ vm_page_unwire(m, queueit);
+ }
+ if (dwp->dw_mask & DW_vm_page_free) {
+ vm_page_free_prepare_queues(m);
+
+ assert(m->vmp_pageq.next == 0 && m->vmp_pageq.prev == 0);
+ /*
+ * Add this page to our list of reclaimed pages,
+ * to be freed later.
+ */
+ m->vmp_snext = local_free_q;
+ local_free_q = m;
+ } else {
+ if (dwp->dw_mask & DW_vm_page_deactivate_internal) {
+ vm_page_deactivate_internal(m, FALSE);
+ } else if (dwp->dw_mask & DW_vm_page_activate) {
+ if (m->vmp_q_state != VM_PAGE_ON_ACTIVE_Q) {
+ vm_page_activate(m);
+ }
+ } else if (dwp->dw_mask & DW_vm_page_speculate) {
+ vm_page_speculate(m, TRUE);
+ } else if (dwp->dw_mask & DW_enqueue_cleaned) {
+ /*
+ * if we didn't hold the object lock and did this,
+ * we might disconnect the page, then someone might
+ * soft fault it back in, then we would put it on the
+ * cleaned queue, and so we would have a referenced (maybe even dirty)
+ * page on that queue, which we don't want
+ */
+ int refmod_state = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m));
+
+ if ((refmod_state & VM_MEM_REFERENCED)) {
+ /*
+ * this page has been touched since it got cleaned; let's activate it
+ * if it hasn't already been
+ */
+ VM_PAGEOUT_DEBUG(vm_pageout_enqueued_cleaned, 1);
+ VM_PAGEOUT_DEBUG(vm_pageout_cleaned_reactivated, 1);
+
+ if (m->vmp_q_state != VM_PAGE_ON_ACTIVE_Q) {
+ vm_page_activate(m);
+ }
+ } else {
+ m->vmp_reference = FALSE;
+ vm_page_enqueue_cleaned(m);
+ }
+ } else if (dwp->dw_mask & DW_vm_page_lru) {
+ vm_page_lru(m);
+ } else if (dwp->dw_mask & DW_VM_PAGE_QUEUES_REMOVE) {
+ if (m->vmp_q_state != VM_PAGE_ON_PAGEOUT_Q) {
+ vm_page_queues_remove(m, TRUE);
+ }
+ }
+ if (dwp->dw_mask & DW_set_reference) {
+ m->vmp_reference = TRUE;
+ } else if (dwp->dw_mask & DW_clear_reference) {
+ m->vmp_reference = FALSE;
+ }
+
+ if (dwp->dw_mask & DW_move_page) {
+ if (m->vmp_q_state != VM_PAGE_ON_PAGEOUT_Q) {
+ vm_page_queues_remove(m, FALSE);
+
+ assert(VM_PAGE_OBJECT(m) != kernel_object);
+
+ vm_page_enqueue_inactive(m, FALSE);
+ }
+ }
+ if (dwp->dw_mask & DW_clear_busy) {
+ m->vmp_busy = FALSE;
+ }
+
+ if (dwp->dw_mask & DW_PAGE_WAKEUP) {
+ PAGE_WAKEUP(m);
+ }
+ }
+ }
+ vm_page_unlock_queues();
+
+ if (local_free_q) {
+ vm_page_free_list(local_free_q, TRUE);
+ }
+
+ VM_CHECK_MEMORYSTATUS;
+}
+
+kern_return_t
+vm_page_alloc_list(
+ int page_count,
+ int flags,
+ vm_page_t *list)
+{
+ vm_page_t lo_page_list = VM_PAGE_NULL;
+ vm_page_t mem;
+ int i;
+
+ if (!(flags & KMA_LOMEM)) {
+ panic("vm_page_alloc_list: called w/o KMA_LOMEM");
+ }
+
+ for (i = 0; i < page_count; i++) {
+ mem = vm_page_grablo();
+
+ if (mem == VM_PAGE_NULL) {
+ if (lo_page_list) {
+ vm_page_free_list(lo_page_list, FALSE);
+ }
+
+ *list = VM_PAGE_NULL;
+
+ return KERN_RESOURCE_SHORTAGE;
+ }
+ mem->vmp_snext = lo_page_list;
+ lo_page_list = mem;
+ }
+ *list = lo_page_list;
+
+ return KERN_SUCCESS;
+}
+
+void
+vm_page_set_offset(vm_page_t page, vm_object_offset_t offset)
+{
+ page->vmp_offset = offset;
+}
+
+vm_page_t
+vm_page_get_next(vm_page_t page)
+{
+ return page->vmp_snext;
+}
+
+vm_object_offset_t
+vm_page_get_offset(vm_page_t page)
+{
+ return page->vmp_offset;
+}
+
+ppnum_t
+vm_page_get_phys_page(vm_page_t page)
+{
+ return VM_PAGE_GET_PHYS_PAGE(page);
+}
+
+
+/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
+
+#if HIBERNATION
+
+static vm_page_t hibernate_gobble_queue;
+
+static int hibernate_drain_pageout_queue(struct vm_pageout_queue *);
+static int hibernate_flush_dirty_pages(int);
+static int hibernate_flush_queue(vm_page_queue_head_t *, int);
+
+void hibernate_flush_wait(void);
+void hibernate_mark_in_progress(void);
+void hibernate_clear_in_progress(void);
+
+void hibernate_free_range(int, int);
+void hibernate_hash_insert_page(vm_page_t);
+uint32_t hibernate_mark_as_unneeded(addr64_t, addr64_t, hibernate_page_list_t *, hibernate_page_list_t *);
+void hibernate_rebuild_vm_structs(void);
+uint32_t hibernate_teardown_vm_structs(hibernate_page_list_t *, hibernate_page_list_t *);
+ppnum_t hibernate_lookup_paddr(unsigned int);
+
+struct hibernate_statistics {
+ int hibernate_considered;
+ int hibernate_reentered_on_q;
+ int hibernate_found_dirty;
+ int hibernate_skipped_cleaning;
+ int hibernate_skipped_transient;
+ int hibernate_skipped_precious;
+ int hibernate_skipped_external;
+ int hibernate_queue_nolock;
+ int hibernate_queue_paused;
+ int hibernate_throttled;
+ int hibernate_throttle_timeout;
+ int hibernate_drained;
+ int hibernate_drain_timeout;
+ int cd_lock_failed;
+ int cd_found_precious;
+ int cd_found_wired;
+ int cd_found_busy;
+ int cd_found_unusual;
+ int cd_found_cleaning;
+ int cd_found_laundry;
+ int cd_found_dirty;
+ int cd_found_xpmapped;
+ int cd_skipped_xpmapped;
+ int cd_local_free;
+ int cd_total_free;
+ int cd_vm_page_wire_count;
+ int cd_vm_struct_pages_unneeded;
+ int cd_pages;
+ int cd_discarded;
+ int cd_count_wire;
+} hibernate_stats;
+
+
+/*
+ * clamp the number of 'xpmapped' pages we'll sweep into the hibernation image
+ * so that we don't overrun the estimated image size, which would
+ * result in a hibernation failure.
+ */
+#define HIBERNATE_XPMAPPED_LIMIT 40000
+
+
+static int
+hibernate_drain_pageout_queue(struct vm_pageout_queue *q)
+{
+ wait_result_t wait_result;
+
+ vm_page_lock_queues();
+
+ while (!vm_page_queue_empty(&q->pgo_pending)) {
+ q->pgo_draining = TRUE;
+
+ assert_wait_timeout((event_t) (&q->pgo_laundry + 1), THREAD_INTERRUPTIBLE, 5000, 1000 * NSEC_PER_USEC);
+
+ vm_page_unlock_queues();
+
+ wait_result = thread_block(THREAD_CONTINUE_NULL);
+
+ if (wait_result == THREAD_TIMED_OUT && !vm_page_queue_empty(&q->pgo_pending)) {
+ hibernate_stats.hibernate_drain_timeout++;
+
+ if (q == &vm_pageout_queue_external) {
+ return 0;
+ }
+
+ return 1;
+ }
+ vm_page_lock_queues();
+
+ hibernate_stats.hibernate_drained++;
+ }
+ vm_page_unlock_queues();
+
+ return 0;
+}
+
+
+boolean_t hibernate_skip_external = FALSE;
+
+static int
+hibernate_flush_queue(vm_page_queue_head_t *q, int qcount)
+{
+ vm_page_t m;
+ vm_object_t l_object = NULL;
+ vm_object_t m_object = NULL;
+ int refmod_state = 0;
+ int try_failed_count = 0;
+ int retval = 0;
+ int current_run = 0;
+ struct vm_pageout_queue *iq;
+ struct vm_pageout_queue *eq;
+ struct vm_pageout_queue *tq;
+
+ KDBG(IOKDBG_CODE(DBG_HIBERNATE, 4) | DBG_FUNC_START,
+ VM_KERNEL_UNSLIDE_OR_PERM(q), qcount);
+
+ iq = &vm_pageout_queue_internal;
+ eq = &vm_pageout_queue_external;
+
+ vm_page_lock_queues();
+
+ while (qcount && !vm_page_queue_empty(q)) {
+ if (current_run++ == 1000) {
+ if (hibernate_should_abort()) {
+ retval = 1;
+ break;
+ }
+ current_run = 0;
+ }
+
+ m = (vm_page_t) vm_page_queue_first(q);
+ m_object = VM_PAGE_OBJECT(m);
+
+ /*
+ * check to see if we currently are working
+ * with the same object... if so, we've
+ * already got the lock
+ */
+ if (m_object != l_object) {
+ /*
+ * the object associated with candidate page is
+ * different from the one we were just working
+ * with... dump the lock if we still own it
+ */
+ if (l_object != NULL) {
+ vm_object_unlock(l_object);
+ l_object = NULL;
+ }
+ /*
+ * Try to lock object; since we've alread got the
+ * page queues lock, we can only 'try' for this one.
+ * if the 'try' fails, we need to do a mutex_pause
+ * to allow the owner of the object lock a chance to
+ * run...
+ */
+ if (!vm_object_lock_try_scan(m_object)) {
+ if (try_failed_count > 20) {
+ hibernate_stats.hibernate_queue_nolock++;
+
+ goto reenter_pg_on_q;
+ }
+
+ vm_page_unlock_queues();
+ mutex_pause(try_failed_count++);
+ vm_page_lock_queues();
+
+ hibernate_stats.hibernate_queue_paused++;
+ continue;
+ } else {
+ l_object = m_object;
+ }
+ }
+ if (!m_object->alive || m->vmp_cleaning || m->vmp_laundry || m->vmp_busy || m->vmp_absent || m->vmp_error) {
+ /*
+ * page is not to be cleaned
+ * put it back on the head of its queue
+ */
+ if (m->vmp_cleaning) {
+ hibernate_stats.hibernate_skipped_cleaning++;
+ } else {
+ hibernate_stats.hibernate_skipped_transient++;
+ }
+
+ goto reenter_pg_on_q;
+ }
+ if (m_object->copy == VM_OBJECT_NULL) {
+ if (m_object->purgable == VM_PURGABLE_VOLATILE || m_object->purgable == VM_PURGABLE_EMPTY) {
+ /*
+ * let the normal hibernate image path
+ * deal with these
+ */
+ goto reenter_pg_on_q;
+ }
+ }
+ if (!m->vmp_dirty && m->vmp_pmapped) {
+ refmod_state = pmap_get_refmod(VM_PAGE_GET_PHYS_PAGE(m));
+
+ if ((refmod_state & VM_MEM_MODIFIED)) {
+ SET_PAGE_DIRTY(m, FALSE);
+ }
+ } else {
+ refmod_state = 0;
+ }
+
+ if (!m->vmp_dirty) {
+ /*
+ * page is not to be cleaned
+ * put it back on the head of its queue
+ */
+ if (m->vmp_precious) {
+ hibernate_stats.hibernate_skipped_precious++;
+ }
+
+ goto reenter_pg_on_q;
+ }
+
+ if (hibernate_skip_external == TRUE && !m_object->internal) {
+ hibernate_stats.hibernate_skipped_external++;
+
+ goto reenter_pg_on_q;
+ }
+ tq = NULL;
+
+ if (m_object->internal) {
+ if (VM_PAGE_Q_THROTTLED(iq)) {
+ tq = iq;
+ }
+ } else if (VM_PAGE_Q_THROTTLED(eq)) {
+ tq = eq;
+ }
+
+ if (tq != NULL) {
+ wait_result_t wait_result;
+ int wait_count = 5;
+
+ if (l_object != NULL) {
+ vm_object_unlock(l_object);
+ l_object = NULL;
+ }
+
+ while (retval == 0) {
+ tq->pgo_throttled = TRUE;
+
+ assert_wait_timeout((event_t) &tq->pgo_laundry, THREAD_INTERRUPTIBLE, 1000, 1000 * NSEC_PER_USEC);
+
+ vm_page_unlock_queues();
+
+ wait_result = thread_block(THREAD_CONTINUE_NULL);
+
+ vm_page_lock_queues();
+
+ if (wait_result != THREAD_TIMED_OUT) {
+ break;
+ }
+ if (!VM_PAGE_Q_THROTTLED(tq)) {
+ break;
+ }
+
+ if (hibernate_should_abort()) {
+ retval = 1;
+ }
+
+ if (--wait_count == 0) {
+ hibernate_stats.hibernate_throttle_timeout++;
+
+ if (tq == eq) {
+ hibernate_skip_external = TRUE;
+ break;
+ }
+ retval = 1;
+ }
+ }
+ if (retval) {
+ break;
+ }
+
+ hibernate_stats.hibernate_throttled++;
+
+ continue;
+ }
+ /*
+ * we've already factored out pages in the laundry which
+ * means this page can't be on the pageout queue so it's
+ * safe to do the vm_page_queues_remove
+ */
+ vm_page_queues_remove(m, TRUE);
+
+ if (m_object->internal == TRUE) {
+ pmap_disconnect_options(VM_PAGE_GET_PHYS_PAGE(m), PMAP_OPTIONS_COMPRESSOR, NULL);
+ }
+
+ vm_pageout_cluster(m);
+
+ hibernate_stats.hibernate_found_dirty++;
+
+ goto next_pg;
+
+reenter_pg_on_q:
+ vm_page_queue_remove(q, m, vmp_pageq);
+ vm_page_queue_enter(q, m, vmp_pageq);
+
+ hibernate_stats.hibernate_reentered_on_q++;
+next_pg:
+ hibernate_stats.hibernate_considered++;
+
+ qcount--;
+ try_failed_count = 0;
+ }
+ if (l_object != NULL) {
+ vm_object_unlock(l_object);
+ l_object = NULL;
+ }
+
+ vm_page_unlock_queues();
+
+ KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 4) | DBG_FUNC_END, hibernate_stats.hibernate_found_dirty, retval, 0, 0, 0);
+
+ return retval;
+}
+
+
+static int
+hibernate_flush_dirty_pages(int pass)
+{
+ struct vm_speculative_age_q *aq;
+ uint32_t i;
+
+ if (vm_page_local_q) {
+ for (i = 0; i < vm_page_local_q_count; i++) {
+ vm_page_reactivate_local(i, TRUE, FALSE);
+ }
+ }
+
+ for (i = 0; i <= VM_PAGE_MAX_SPECULATIVE_AGE_Q; i++) {
+ int qcount;
+ vm_page_t m;
+
+ aq = &vm_page_queue_speculative[i];
+
+ if (vm_page_queue_empty(&aq->age_q)) {
+ continue;
+ }
+ qcount = 0;
+
+ vm_page_lockspin_queues();
+
+ vm_page_queue_iterate(&aq->age_q, m, vmp_pageq) {
+ qcount++;
+ }
+ vm_page_unlock_queues();
+
+ if (qcount) {
+ if (hibernate_flush_queue(&aq->age_q, qcount)) {
+ return 1;
+ }
+ }
+ }
+ if (hibernate_flush_queue(&vm_page_queue_inactive, vm_page_inactive_count - vm_page_anonymous_count - vm_page_cleaned_count)) {
+ return 1;
+ }
+ /* XXX FBDP TODO: flush secluded queue */
+ if (hibernate_flush_queue(&vm_page_queue_anonymous, vm_page_anonymous_count)) {
+ return 1;
+ }
+ if (hibernate_flush_queue(&vm_page_queue_cleaned, vm_page_cleaned_count)) {
+ return 1;
+ }
+ if (hibernate_drain_pageout_queue(&vm_pageout_queue_internal)) {
+ return 1;
+ }
+
+ if (pass == 1) {
+ vm_compressor_record_warmup_start();
+ }
+
+ if (hibernate_flush_queue(&vm_page_queue_active, vm_page_active_count)) {
+ if (pass == 1) {
+ vm_compressor_record_warmup_end();
+ }
+ return 1;
+ }
+ if (hibernate_drain_pageout_queue(&vm_pageout_queue_internal)) {
+ if (pass == 1) {
+ vm_compressor_record_warmup_end();
+ }
+ return 1;
+ }
+ if (pass == 1) {
+ vm_compressor_record_warmup_end();
+ }
+
+ if (hibernate_skip_external == FALSE && hibernate_drain_pageout_queue(&vm_pageout_queue_external)) {
+ return 1;
+ }
+
+ return 0;
+}
+
+
+void
+hibernate_reset_stats()
+{
+ bzero(&hibernate_stats, sizeof(struct hibernate_statistics));
+}
+
+
+int
+hibernate_flush_memory()
+{
+ int retval;
+
+ assert(VM_CONFIG_COMPRESSOR_IS_PRESENT);
+
+ KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 3) | DBG_FUNC_START, vm_page_free_count, 0, 0, 0, 0);
+
+ hibernate_cleaning_in_progress = TRUE;
+ hibernate_skip_external = FALSE;
+
+ if ((retval = hibernate_flush_dirty_pages(1)) == 0) {
+ KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 10) | DBG_FUNC_START, VM_PAGE_COMPRESSOR_COUNT, 0, 0, 0, 0);
+
+ vm_compressor_flush();
+
+ KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 10) | DBG_FUNC_END, VM_PAGE_COMPRESSOR_COUNT, 0, 0, 0, 0);
+
+ if (consider_buffer_cache_collect != NULL) {
+ unsigned int orig_wire_count;
+
+ KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 7) | DBG_FUNC_START, 0, 0, 0, 0, 0);
+ orig_wire_count = vm_page_wire_count;
+
+ (void)(*consider_buffer_cache_collect)(1);
+ consider_zone_gc(FALSE);
+
+ HIBLOG("hibernate_flush_memory: buffer_cache_gc freed up %d wired pages\n", orig_wire_count - vm_page_wire_count);
+
+ KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 7) | DBG_FUNC_END, orig_wire_count - vm_page_wire_count, 0, 0, 0, 0);
+ }
+ }
+ hibernate_cleaning_in_progress = FALSE;
+
+ KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 3) | DBG_FUNC_END, vm_page_free_count, hibernate_stats.hibernate_found_dirty, retval, 0, 0);
+
+ if (retval) {
+ HIBLOG("hibernate_flush_memory() failed to finish - vm_page_compressor_count(%d)\n", VM_PAGE_COMPRESSOR_COUNT);
+ }
+
+
+ HIBPRINT("hibernate_flush_memory() considered(%d) reentered_on_q(%d) found_dirty(%d)\n",
+ hibernate_stats.hibernate_considered,
+ hibernate_stats.hibernate_reentered_on_q,
+ hibernate_stats.hibernate_found_dirty);
+ HIBPRINT(" skipped_cleaning(%d) skipped_transient(%d) skipped_precious(%d) skipped_external(%d) queue_nolock(%d)\n",
+ hibernate_stats.hibernate_skipped_cleaning,
+ hibernate_stats.hibernate_skipped_transient,
+ hibernate_stats.hibernate_skipped_precious,
+ hibernate_stats.hibernate_skipped_external,
+ hibernate_stats.hibernate_queue_nolock);
+ HIBPRINT(" queue_paused(%d) throttled(%d) throttle_timeout(%d) drained(%d) drain_timeout(%d)\n",
+ hibernate_stats.hibernate_queue_paused,
+ hibernate_stats.hibernate_throttled,
+ hibernate_stats.hibernate_throttle_timeout,
+ hibernate_stats.hibernate_drained,
+ hibernate_stats.hibernate_drain_timeout);
+
+ return retval;
+}
+
+
+static void
+hibernate_page_list_zero(hibernate_page_list_t *list)
+{
+ uint32_t bank;
+ hibernate_bitmap_t * bitmap;
+
+ bitmap = &list->bank_bitmap[0];
+ for (bank = 0; bank < list->bank_count; bank++) {
+ uint32_t last_bit;
+
+ bzero((void *) &bitmap->bitmap[0], bitmap->bitmapwords << 2);
+ // set out-of-bound bits at end of bitmap.
+ last_bit = ((bitmap->last_page - bitmap->first_page + 1) & 31);
+ if (last_bit) {
+ bitmap->bitmap[bitmap->bitmapwords - 1] = (0xFFFFFFFF >> last_bit);
+ }
+
+ bitmap = (hibernate_bitmap_t *) &bitmap->bitmap[bitmap->bitmapwords];
+ }
+}
+
+void
+hibernate_free_gobble_pages(void)
+{
+ vm_page_t m, next;
+ uint32_t count = 0;
+
+ m = (vm_page_t) hibernate_gobble_queue;
+ while (m) {
+ next = m->vmp_snext;
+ vm_page_free(m);
+ count++;
+ m = next;
+ }
+ hibernate_gobble_queue = VM_PAGE_NULL;
+
+ if (count) {
+ HIBLOG("Freed %d pages\n", count);
+ }
+}
+
+static boolean_t
+hibernate_consider_discard(vm_page_t m, boolean_t preflight)
+{
+ vm_object_t object = NULL;
+ int refmod_state;
+ boolean_t discard = FALSE;
+
+ do{
+ if (m->vmp_private) {
+ panic("hibernate_consider_discard: private");
+ }
+
+ object = VM_PAGE_OBJECT(m);
+
+ if (!vm_object_lock_try(object)) {
+ object = NULL;
+ if (!preflight) {
+ hibernate_stats.cd_lock_failed++;
+ }
+ break;
+ }
+ if (VM_PAGE_WIRED(m)) {
+ if (!preflight) {
+ hibernate_stats.cd_found_wired++;
+ }
+ break;
+ }
+ if (m->vmp_precious) {
+ if (!preflight) {
+ hibernate_stats.cd_found_precious++;
+ }
+ break;
+ }
+ if (m->vmp_busy || !object->alive) {
+ /*
+ * Somebody is playing with this page.
+ */
+ if (!preflight) {
+ hibernate_stats.cd_found_busy++;
+ }
+ break;
+ }
+ if (m->vmp_absent || m->vmp_unusual || m->vmp_error) {
+ /*
+ * If it's unusual in anyway, ignore it
+ */
+ if (!preflight) {
+ hibernate_stats.cd_found_unusual++;
+ }
+ break;
+ }
+ if (m->vmp_cleaning) {
+ if (!preflight) {
+ hibernate_stats.cd_found_cleaning++;
+ }
+ break;
+ }
+ if (m->vmp_laundry) {
+ if (!preflight) {
+ hibernate_stats.cd_found_laundry++;
+ }
+ break;
+ }
+ if (!m->vmp_dirty) {
+ refmod_state = pmap_get_refmod(VM_PAGE_GET_PHYS_PAGE(m));
+
+ if (refmod_state & VM_MEM_REFERENCED) {
+ m->vmp_reference = TRUE;
+ }
+ if (refmod_state & VM_MEM_MODIFIED) {
+ SET_PAGE_DIRTY(m, FALSE);
+ }
+ }
+
+ /*
+ * If it's clean or purgeable we can discard the page on wakeup.
+ */
+ discard = (!m->vmp_dirty)
+ || (VM_PURGABLE_VOLATILE == object->purgable)
+ || (VM_PURGABLE_EMPTY == object->purgable);
+
+
+ if (discard == FALSE) {
+ if (!preflight) {
+ hibernate_stats.cd_found_dirty++;
+ }
+ } else if (m->vmp_xpmapped && m->vmp_reference && !object->internal) {
+ if (hibernate_stats.cd_found_xpmapped < HIBERNATE_XPMAPPED_LIMIT) {
+ if (!preflight) {
+ hibernate_stats.cd_found_xpmapped++;
+ }
+ discard = FALSE;
+ } else {
+ if (!preflight) {
+ hibernate_stats.cd_skipped_xpmapped++;
+ }
+ }
+ }
+ }while (FALSE);
+
+ if (object) {
+ vm_object_unlock(object);
+ }
+
+ return discard;
+}
+
+
+static void
+hibernate_discard_page(vm_page_t m)
+{
+ vm_object_t m_object;
+
+ if (m->vmp_absent || m->vmp_unusual || m->vmp_error) {
+ /*
+ * If it's unusual in anyway, ignore
+ */
+ return;
+ }
+
+ m_object = VM_PAGE_OBJECT(m);
+
+#if MACH_ASSERT || DEBUG
+ if (!vm_object_lock_try(m_object)) {
+ panic("hibernate_discard_page(%p) !vm_object_lock_try", m);
+ }
+#else
+ /* No need to lock page queue for token delete, hibernate_vm_unlock()
+ * makes sure these locks are uncontended before sleep */
+#endif /* MACH_ASSERT || DEBUG */
+
+ if (m->vmp_pmapped == TRUE) {
+ __unused int refmod_state = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m));
+ }
+
+ if (m->vmp_laundry) {
+ panic("hibernate_discard_page(%p) laundry", m);
+ }
+ if (m->vmp_private) {
+ panic("hibernate_discard_page(%p) private", m);
+ }
+ if (m->vmp_fictitious) {
+ panic("hibernate_discard_page(%p) fictitious", m);
+ }
+
+ if (VM_PURGABLE_VOLATILE == m_object->purgable) {
+ /* object should be on a queue */
+ assert((m_object->objq.next != NULL) && (m_object->objq.prev != NULL));
+ purgeable_q_t old_queue = vm_purgeable_object_remove(m_object);
+ assert(old_queue);
+ if (m_object->purgeable_when_ripe) {
+ vm_purgeable_token_delete_first(old_queue);
+ }
+ vm_object_lock_assert_exclusive(m_object);
+ m_object->purgable = VM_PURGABLE_EMPTY;
+
+ /*
+ * Purgeable ledgers: pages of VOLATILE and EMPTY objects are
+ * accounted in the "volatile" ledger, so no change here.
+ * We have to update vm_page_purgeable_count, though, since we're
+ * effectively purging this object.
+ */
+ unsigned int delta;
+ assert(m_object->resident_page_count >= m_object->wired_page_count);
+ delta = (m_object->resident_page_count - m_object->wired_page_count);
+ assert(vm_page_purgeable_count >= delta);
+ assert(delta > 0);
+ OSAddAtomic(-delta, (SInt32 *)&vm_page_purgeable_count);
+ }
+
+ vm_page_free(m);
+
+#if MACH_ASSERT || DEBUG
+ vm_object_unlock(m_object);
+#endif /* MACH_ASSERT || DEBUG */
+}
+
+/*
+ * Grab locks for hibernate_page_list_setall()
+ */
+void
+hibernate_vm_lock_queues(void)
+{
+ vm_object_lock(compressor_object);
+ vm_page_lock_queues();
+ lck_mtx_lock(&vm_page_queue_free_lock);
+ lck_mtx_lock(&vm_purgeable_queue_lock);
+
+ if (vm_page_local_q) {
+ uint32_t i;
+ for (i = 0; i < vm_page_local_q_count; i++) {
+ struct vpl *lq;
+ lq = &vm_page_local_q[i].vpl_un.vpl;
+ VPL_LOCK(&lq->vpl_lock);
+ }
+ }
+}
+
+void
+hibernate_vm_unlock_queues(void)
+{
+ if (vm_page_local_q) {
+ uint32_t i;
+ for (i = 0; i < vm_page_local_q_count; i++) {
+ struct vpl *lq;
+ lq = &vm_page_local_q[i].vpl_un.vpl;
+ VPL_UNLOCK(&lq->vpl_lock);
+ }
+ }
+ lck_mtx_unlock(&vm_purgeable_queue_lock);
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+ vm_page_unlock_queues();
+ vm_object_unlock(compressor_object);
+}
+
+/*
+ * Bits zero in the bitmaps => page needs to be saved. All pages default to be saved,
+ * pages known to VM to not need saving are subtracted.
+ * Wired pages to be saved are present in page_list_wired, pageable in page_list.
+ */
+
+void
+hibernate_page_list_setall(hibernate_page_list_t * page_list,
+ hibernate_page_list_t * page_list_wired,
+ hibernate_page_list_t * page_list_pal,
+ boolean_t preflight,
+ boolean_t will_discard,
+ uint32_t * pagesOut)
+{
+ uint64_t start, end, nsec;
+ vm_page_t m;
+ vm_page_t next;
+ uint32_t pages = page_list->page_count;
+ uint32_t count_anonymous = 0, count_throttled = 0, count_compressor = 0;
+ uint32_t count_inactive = 0, count_active = 0, count_speculative = 0, count_cleaned = 0;
+ uint32_t count_wire = pages;
+ uint32_t count_discard_active = 0;
+ uint32_t count_discard_inactive = 0;
+ uint32_t count_discard_cleaned = 0;
+ uint32_t count_discard_purgeable = 0;
+ uint32_t count_discard_speculative = 0;
+ uint32_t count_discard_vm_struct_pages = 0;
+ uint32_t i;
+ uint32_t bank;
+ hibernate_bitmap_t * bitmap;
+ hibernate_bitmap_t * bitmap_wired;
+ boolean_t discard_all;
+ boolean_t discard;
+
+ HIBLOG("hibernate_page_list_setall(preflight %d) start\n", preflight);
+
+ if (preflight) {
+ page_list = NULL;
+ page_list_wired = NULL;
+ page_list_pal = NULL;
+ discard_all = FALSE;
+ } else {
+ discard_all = will_discard;
+ }
+
+#if MACH_ASSERT || DEBUG
+ if (!preflight) {
+ assert(hibernate_vm_locks_are_safe());
+ vm_page_lock_queues();
+ if (vm_page_local_q) {
+ for (i = 0; i < vm_page_local_q_count; i++) {
+ struct vpl *lq;
+ lq = &vm_page_local_q[i].vpl_un.vpl;
+ VPL_LOCK(&lq->vpl_lock);
+ }
+ }
+ }
+#endif /* MACH_ASSERT || DEBUG */
+
+
+ KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 8) | DBG_FUNC_START, count_wire, 0, 0, 0, 0);
+
+ clock_get_uptime(&start);
+
+ if (!preflight) {
+ hibernate_page_list_zero(page_list);
+ hibernate_page_list_zero(page_list_wired);
+ hibernate_page_list_zero(page_list_pal);
+
+ hibernate_stats.cd_vm_page_wire_count = vm_page_wire_count;
+ hibernate_stats.cd_pages = pages;
+ }
+
+ if (vm_page_local_q) {
+ for (i = 0; i < vm_page_local_q_count; i++) {
+ vm_page_reactivate_local(i, TRUE, !preflight);
+ }
+ }
+
+ if (preflight) {
+ vm_object_lock(compressor_object);
+ vm_page_lock_queues();
+ lck_mtx_lock(&vm_page_queue_free_lock);
+ }
+
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+
+ hibernation_vmqueues_inspection = TRUE;
+
+ m = (vm_page_t) hibernate_gobble_queue;
+ while (m) {
+ pages--;
+ count_wire--;
+ if (!preflight) {
+ hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+ hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+ }
+ m = m->vmp_snext;
+ }
+
+ if (!preflight) {
+ for (i = 0; i < real_ncpus; i++) {
+ if (cpu_data_ptr[i] && cpu_data_ptr[i]->cpu_processor) {
+ for (m = PROCESSOR_DATA(cpu_data_ptr[i]->cpu_processor, free_pages); m; m = m->vmp_snext) {
+ assert(m->vmp_q_state == VM_PAGE_ON_FREE_LOCAL_Q);
+
+ pages--;
+ count_wire--;
+ hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+ hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+
+ hibernate_stats.cd_local_free++;
+ hibernate_stats.cd_total_free++;
+ }
+ }
+ }
+ }
+
+ for (i = 0; i < vm_colors; i++) {
+ vm_page_queue_iterate(&vm_page_queue_free[i].qhead, m, vmp_pageq) {
+ assert(m->vmp_q_state == VM_PAGE_ON_FREE_Q);
+
+ pages--;
+ count_wire--;
+ if (!preflight) {
+ hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+ hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+
+ hibernate_stats.cd_total_free++;
+ }
+ }
+ }
+
+ vm_page_queue_iterate(&vm_lopage_queue_free, m, vmp_pageq) {
+ assert(m->vmp_q_state == VM_PAGE_ON_FREE_LOPAGE_Q);
+
+ pages--;
+ count_wire--;
+ if (!preflight) {
+ hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+ hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+
+ hibernate_stats.cd_total_free++;
+ }
+ }
+
+ m = (vm_page_t) vm_page_queue_first(&vm_page_queue_throttled);
+ while (m && !vm_page_queue_end(&vm_page_queue_throttled, (vm_page_queue_entry_t)m)) {
+ assert(m->vmp_q_state == VM_PAGE_ON_THROTTLED_Q);
+
+ next = (vm_page_t)VM_PAGE_UNPACK_PTR(m->vmp_pageq.next);
+ discard = FALSE;
+ if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode)
+ && hibernate_consider_discard(m, preflight)) {
+ if (!preflight) {
+ hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+ }
+ count_discard_inactive++;
+ discard = discard_all;
+ } else {
+ count_throttled++;
+ }
+ count_wire--;
+ if (!preflight) {
+ hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+ }
+
+ if (discard) {
+ hibernate_discard_page(m);
+ }
+ m = next;
+ }
+
+ m = (vm_page_t)vm_page_queue_first(&vm_page_queue_anonymous);
+ while (m && !vm_page_queue_end(&vm_page_queue_anonymous, (vm_page_queue_entry_t)m)) {
+ assert(m->vmp_q_state == VM_PAGE_ON_INACTIVE_INTERNAL_Q);
+
+ next = (vm_page_t)VM_PAGE_UNPACK_PTR(m->vmp_pageq.next);
+ discard = FALSE;
+ if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) &&
+ hibernate_consider_discard(m, preflight)) {
+ if (!preflight) {
+ hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+ }
+ if (m->vmp_dirty) {
+ count_discard_purgeable++;
+ } else {
+ count_discard_inactive++;
+ }
+ discard = discard_all;
+ } else {
+ count_anonymous++;
+ }
+ count_wire--;
+ if (!preflight) {
+ hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+ }
+ if (discard) {
+ hibernate_discard_page(m);
+ }
+ m = next;
+ }
+
+ m = (vm_page_t) vm_page_queue_first(&vm_page_queue_cleaned);
+ while (m && !vm_page_queue_end(&vm_page_queue_cleaned, (vm_page_queue_entry_t)m)) {
+ assert(m->vmp_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q);
+
+ next = (vm_page_t)VM_PAGE_UNPACK_PTR(m->vmp_pageq.next);
+ discard = FALSE;
+ if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) &&
+ hibernate_consider_discard(m, preflight)) {
+ if (!preflight) {
+ hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+ }
+ if (m->vmp_dirty) {
+ count_discard_purgeable++;
+ } else {
+ count_discard_cleaned++;
+ }
+ discard = discard_all;
+ } else {
+ count_cleaned++;
+ }
+ count_wire--;
+ if (!preflight) {
+ hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+ }
+ if (discard) {
+ hibernate_discard_page(m);
+ }
+ m = next;
+ }
+
+ m = (vm_page_t) vm_page_queue_first(&vm_page_queue_active);
+ while (m && !vm_page_queue_end(&vm_page_queue_active, (vm_page_queue_entry_t)m)) {
+ assert(m->vmp_q_state == VM_PAGE_ON_ACTIVE_Q);
+
+ next = (vm_page_t)VM_PAGE_UNPACK_PTR(m->vmp_pageq.next);
+ discard = FALSE;
+ if ((kIOHibernateModeDiscardCleanActive & gIOHibernateMode) &&
+ hibernate_consider_discard(m, preflight)) {
+ if (!preflight) {
+ hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+ }
+ if (m->vmp_dirty) {
+ count_discard_purgeable++;
+ } else {
+ count_discard_active++;
+ }
+ discard = discard_all;
+ } else {
+ count_active++;
+ }
+ count_wire--;
+ if (!preflight) {
+ hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+ }
+ if (discard) {
+ hibernate_discard_page(m);
+ }
+ m = next;
+ }
+
+ m = (vm_page_t) vm_page_queue_first(&vm_page_queue_inactive);
+ while (m && !vm_page_queue_end(&vm_page_queue_inactive, (vm_page_queue_entry_t)m)) {
+ assert(m->vmp_q_state == VM_PAGE_ON_INACTIVE_EXTERNAL_Q);
+
+ next = (vm_page_t)VM_PAGE_UNPACK_PTR(m->vmp_pageq.next);
+ discard = FALSE;
+ if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) &&
+ hibernate_consider_discard(m, preflight)) {
+ if (!preflight) {
+ hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+ }
+ if (m->vmp_dirty) {
+ count_discard_purgeable++;
+ } else {
+ count_discard_inactive++;
+ }
+ discard = discard_all;
+ } else {
+ count_inactive++;
+ }
+ count_wire--;
+ if (!preflight) {
+ hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+ }
+ if (discard) {
+ hibernate_discard_page(m);
+ }
+ m = next;
+ }
+ /* XXX FBDP TODO: secluded queue */
+
+ for (i = 0; i <= VM_PAGE_MAX_SPECULATIVE_AGE_Q; i++) {
+ m = (vm_page_t) vm_page_queue_first(&vm_page_queue_speculative[i].age_q);
+ while (m && !vm_page_queue_end(&vm_page_queue_speculative[i].age_q, (vm_page_queue_entry_t)m)) {
+ assertf(m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q,
+ "Bad page: %p (0x%x:0x%x) on queue %d has state: %d (Discard: %d, Preflight: %d)",
+ m, m->vmp_pageq.next, m->vmp_pageq.prev, i, m->vmp_q_state, discard, preflight);
+
+ next = (vm_page_t)VM_PAGE_UNPACK_PTR(m->vmp_pageq.next);
+ discard = FALSE;
+ if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) &&
+ hibernate_consider_discard(m, preflight)) {
+ if (!preflight) {
+ hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+ }
+ count_discard_speculative++;
+ discard = discard_all;
+ } else {
+ count_speculative++;
+ }
+ count_wire--;
+ if (!preflight) {
+ hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+ }
+ if (discard) {
+ hibernate_discard_page(m);
+ }
+ m = next;
+ }
+ }
+
+ vm_page_queue_iterate(&compressor_object->memq, m, vmp_listq) {
+ assert(m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR);
+
+ count_compressor++;
+ count_wire--;
+ if (!preflight) {
+ hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+ }
+ }
+
+ if (preflight == FALSE && discard_all == TRUE) {
+ KDBG(IOKDBG_CODE(DBG_HIBERNATE, 12) | DBG_FUNC_START);
+
+ HIBLOG("hibernate_teardown started\n");
+ count_discard_vm_struct_pages = hibernate_teardown_vm_structs(page_list, page_list_wired);
+ HIBLOG("hibernate_teardown completed - discarded %d\n", count_discard_vm_struct_pages);
+
+ pages -= count_discard_vm_struct_pages;
+ count_wire -= count_discard_vm_struct_pages;
+
+ hibernate_stats.cd_vm_struct_pages_unneeded = count_discard_vm_struct_pages;
+
+ KDBG(IOKDBG_CODE(DBG_HIBERNATE, 12) | DBG_FUNC_END);
+ }
+
+ if (!preflight) {
+ // pull wired from hibernate_bitmap
+ bitmap = &page_list->bank_bitmap[0];
+ bitmap_wired = &page_list_wired->bank_bitmap[0];
+ for (bank = 0; bank < page_list->bank_count; bank++) {
+ for (i = 0; i < bitmap->bitmapwords; i++) {
+ bitmap->bitmap[i] = bitmap->bitmap[i] | ~bitmap_wired->bitmap[i];
+ }
+ bitmap = (hibernate_bitmap_t *)&bitmap->bitmap[bitmap->bitmapwords];
+ bitmap_wired = (hibernate_bitmap_t *) &bitmap_wired->bitmap[bitmap_wired->bitmapwords];
+ }
+ }
+
+ // machine dependent adjustments
+ hibernate_page_list_setall_machine(page_list, page_list_wired, preflight, &pages);
+
+ if (!preflight) {
+ hibernate_stats.cd_count_wire = count_wire;
+ hibernate_stats.cd_discarded = count_discard_active + count_discard_inactive + count_discard_purgeable +
+ count_discard_speculative + count_discard_cleaned + count_discard_vm_struct_pages;
+ }
+
+ clock_get_uptime(&end);
+ absolutetime_to_nanoseconds(end - start, &nsec);
+ HIBLOG("hibernate_page_list_setall time: %qd ms\n", nsec / 1000000ULL);
+
+ HIBLOG("pages %d, wire %d, act %d, inact %d, cleaned %d spec %d, zf %d, throt %d, compr %d, xpmapped %d\n %s discard act %d inact %d purgeable %d spec %d cleaned %d\n",
+ pages, count_wire, count_active, count_inactive, count_cleaned, count_speculative, count_anonymous, count_throttled, count_compressor, hibernate_stats.cd_found_xpmapped,
+ discard_all ? "did" : "could",
+ count_discard_active, count_discard_inactive, count_discard_purgeable, count_discard_speculative, count_discard_cleaned);
+
+ if (hibernate_stats.cd_skipped_xpmapped) {
+ HIBLOG("WARNING: hibernate_page_list_setall skipped %d xpmapped pages\n", hibernate_stats.cd_skipped_xpmapped);
+ }
+
+ *pagesOut = pages - count_discard_active - count_discard_inactive - count_discard_purgeable - count_discard_speculative - count_discard_cleaned;
+
+ if (preflight && will_discard) {
+ *pagesOut -= count_compressor + count_throttled + count_anonymous + count_inactive + count_cleaned + count_speculative + count_active;
+ }
+
+ hibernation_vmqueues_inspection = FALSE;
+
+#if MACH_ASSERT || DEBUG
+ if (!preflight) {
+ if (vm_page_local_q) {
+ for (i = 0; i < vm_page_local_q_count; i++) {
+ struct vpl *lq;
+ lq = &vm_page_local_q[i].vpl_un.vpl;
+ VPL_UNLOCK(&lq->vpl_lock);
+ }
+ }
+ vm_page_unlock_queues();
+ }
+#endif /* MACH_ASSERT || DEBUG */
+
+ if (preflight) {
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+ vm_page_unlock_queues();
+ vm_object_unlock(compressor_object);
+ }
+
+ KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 8) | DBG_FUNC_END, count_wire, *pagesOut, 0, 0, 0);
+}
+
+void
+hibernate_page_list_discard(hibernate_page_list_t * page_list)
+{
+ uint64_t start, end, nsec;
+ vm_page_t m;
+ vm_page_t next;
+ uint32_t i;
+ uint32_t count_discard_active = 0;
+ uint32_t count_discard_inactive = 0;
+ uint32_t count_discard_purgeable = 0;
+ uint32_t count_discard_cleaned = 0;
+ uint32_t count_discard_speculative = 0;
+
+
+#if MACH_ASSERT || DEBUG
+ vm_page_lock_queues();
+ if (vm_page_local_q) {
+ for (i = 0; i < vm_page_local_q_count; i++) {
+ struct vpl *lq;
+ lq = &vm_page_local_q[i].vpl_un.vpl;
+ VPL_LOCK(&lq->vpl_lock);
+ }
+ }
+#endif /* MACH_ASSERT || DEBUG */
+
+ clock_get_uptime(&start);
+
+ m = (vm_page_t) vm_page_queue_first(&vm_page_queue_anonymous);
+ while (m && !vm_page_queue_end(&vm_page_queue_anonymous, (vm_page_queue_entry_t)m)) {
+ assert(m->vmp_q_state == VM_PAGE_ON_INACTIVE_INTERNAL_Q);
+
+ next = (vm_page_t) VM_PAGE_UNPACK_PTR(m->vmp_pageq.next);
+ if (hibernate_page_bittst(page_list, VM_PAGE_GET_PHYS_PAGE(m))) {
+ if (m->vmp_dirty) {
+ count_discard_purgeable++;
+ } else {
+ count_discard_inactive++;
+ }
+ hibernate_discard_page(m);
+ }
+ m = next;
+ }
+
+ for (i = 0; i <= VM_PAGE_MAX_SPECULATIVE_AGE_Q; i++) {
+ m = (vm_page_t) vm_page_queue_first(&vm_page_queue_speculative[i].age_q);
+ while (m && !vm_page_queue_end(&vm_page_queue_speculative[i].age_q, (vm_page_queue_entry_t)m)) {
+ assert(m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q);
+
+ next = (vm_page_t) VM_PAGE_UNPACK_PTR(m->vmp_pageq.next);
+ if (hibernate_page_bittst(page_list, VM_PAGE_GET_PHYS_PAGE(m))) {
+ count_discard_speculative++;
+ hibernate_discard_page(m);
+ }
+ m = next;
+ }
+ }
+
+ m = (vm_page_t) vm_page_queue_first(&vm_page_queue_inactive);
+ while (m && !vm_page_queue_end(&vm_page_queue_inactive, (vm_page_queue_entry_t)m)) {
+ assert(m->vmp_q_state == VM_PAGE_ON_INACTIVE_EXTERNAL_Q);
+
+ next = (vm_page_t) VM_PAGE_UNPACK_PTR(m->vmp_pageq.next);
+ if (hibernate_page_bittst(page_list, VM_PAGE_GET_PHYS_PAGE(m))) {
+ if (m->vmp_dirty) {
+ count_discard_purgeable++;
+ } else {
+ count_discard_inactive++;
+ }
+ hibernate_discard_page(m);
+ }
+ m = next;
+ }
+ /* XXX FBDP TODO: secluded queue */
+
+ m = (vm_page_t) vm_page_queue_first(&vm_page_queue_active);
+ while (m && !vm_page_queue_end(&vm_page_queue_active, (vm_page_queue_entry_t)m)) {
+ assert(m->vmp_q_state == VM_PAGE_ON_ACTIVE_Q);
+
+ next = (vm_page_t) VM_PAGE_UNPACK_PTR(m->vmp_pageq.next);
+ if (hibernate_page_bittst(page_list, VM_PAGE_GET_PHYS_PAGE(m))) {
+ if (m->vmp_dirty) {
+ count_discard_purgeable++;
+ } else {
+ count_discard_active++;
+ }
+ hibernate_discard_page(m);
+ }
+ m = next;
+ }
+
+ m = (vm_page_t) vm_page_queue_first(&vm_page_queue_cleaned);
+ while (m && !vm_page_queue_end(&vm_page_queue_cleaned, (vm_page_queue_entry_t)m)) {
+ assert(m->vmp_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q);
+
+ next = (vm_page_t) VM_PAGE_UNPACK_PTR(m->vmp_pageq.next);
+ if (hibernate_page_bittst(page_list, VM_PAGE_GET_PHYS_PAGE(m))) {
+ if (m->vmp_dirty) {
+ count_discard_purgeable++;
+ } else {
+ count_discard_cleaned++;
+ }
+ hibernate_discard_page(m);
+ }
+ m = next;
+ }
+
+#if MACH_ASSERT || DEBUG
+ if (vm_page_local_q) {
+ for (i = 0; i < vm_page_local_q_count; i++) {
+ struct vpl *lq;
+ lq = &vm_page_local_q[i].vpl_un.vpl;
+ VPL_UNLOCK(&lq->vpl_lock);
+ }
+ }
+ vm_page_unlock_queues();
+#endif /* MACH_ASSERT || DEBUG */
+
+ clock_get_uptime(&end);
+ absolutetime_to_nanoseconds(end - start, &nsec);
+ HIBLOG("hibernate_page_list_discard time: %qd ms, discarded act %d inact %d purgeable %d spec %d cleaned %d\n",
+ nsec / 1000000ULL,
+ count_discard_active, count_discard_inactive, count_discard_purgeable, count_discard_speculative, count_discard_cleaned);
+}
+
+boolean_t hibernate_paddr_map_inited = FALSE;
+unsigned int hibernate_teardown_last_valid_compact_indx = -1;
+vm_page_t hibernate_rebuild_hash_list = NULL;
+
+unsigned int hibernate_teardown_found_tabled_pages = 0;
+unsigned int hibernate_teardown_found_created_pages = 0;
+unsigned int hibernate_teardown_found_free_pages = 0;
+unsigned int hibernate_teardown_vm_page_free_count;
+
+
+struct ppnum_mapping {
+ struct ppnum_mapping *ppnm_next;
+ ppnum_t ppnm_base_paddr;
+ unsigned int ppnm_sindx;
+ unsigned int ppnm_eindx;
+};
+
+struct ppnum_mapping *ppnm_head;
+struct ppnum_mapping *ppnm_last_found = NULL;
+
+
+void
+hibernate_create_paddr_map()
+{
+ unsigned int i;
+ ppnum_t next_ppnum_in_run = 0;
+ struct ppnum_mapping *ppnm = NULL;
+
+ if (hibernate_paddr_map_inited == FALSE) {
+ for (i = 0; i < vm_pages_count; i++) {
+ if (ppnm) {
+ ppnm->ppnm_eindx = i;
+ }
+
+ if (ppnm == NULL || VM_PAGE_GET_PHYS_PAGE(&vm_pages[i]) != next_ppnum_in_run) {
+ ppnm = kalloc(sizeof(struct ppnum_mapping));
+
+ ppnm->ppnm_next = ppnm_head;
+ ppnm_head = ppnm;
+
+ ppnm->ppnm_sindx = i;
+ ppnm->ppnm_base_paddr = VM_PAGE_GET_PHYS_PAGE(&vm_pages[i]);
+ }
+ next_ppnum_in_run = VM_PAGE_GET_PHYS_PAGE(&vm_pages[i]) + 1;
+ }
+ ppnm->ppnm_eindx++;
+
+ hibernate_paddr_map_inited = TRUE;
+ }
+}
+
+ppnum_t
+hibernate_lookup_paddr(unsigned int indx)
+{
+ struct ppnum_mapping *ppnm = NULL;
+
+ ppnm = ppnm_last_found;
+
+ if (ppnm) {
+ if (indx >= ppnm->ppnm_sindx && indx < ppnm->ppnm_eindx) {
+ goto done;
+ }
+ }
+ for (ppnm = ppnm_head; ppnm; ppnm = ppnm->ppnm_next) {
+ if (indx >= ppnm->ppnm_sindx && indx < ppnm->ppnm_eindx) {
+ ppnm_last_found = ppnm;
+ break;
+ }
+ }
+ if (ppnm == NULL) {
+ panic("hibernate_lookup_paddr of %d failed\n", indx);
+ }
+done:
+ return ppnm->ppnm_base_paddr + (indx - ppnm->ppnm_sindx);
+}
+
+
+uint32_t
+hibernate_mark_as_unneeded(addr64_t saddr, addr64_t eaddr, hibernate_page_list_t *page_list, hibernate_page_list_t *page_list_wired)
+{
+ addr64_t saddr_aligned;
+ addr64_t eaddr_aligned;
+ addr64_t addr;
+ ppnum_t paddr;
+ unsigned int mark_as_unneeded_pages = 0;
+
+ saddr_aligned = (saddr + PAGE_MASK_64) & ~PAGE_MASK_64;
+ eaddr_aligned = eaddr & ~PAGE_MASK_64;
+
+ for (addr = saddr_aligned; addr < eaddr_aligned; addr += PAGE_SIZE_64) {
+ paddr = pmap_find_phys(kernel_pmap, addr);
+
+ assert(paddr);
+
+ hibernate_page_bitset(page_list, TRUE, paddr);
+ hibernate_page_bitset(page_list_wired, TRUE, paddr);
+
+ mark_as_unneeded_pages++;
+ }
+ return mark_as_unneeded_pages;
+}
-vm_page_t
-vm_page_grab_fictitious(void)
+
+void
+hibernate_hash_insert_page(vm_page_t mem)
{
- register vm_page_t m;
+ vm_page_bucket_t *bucket;
+ int hash_id;
+ vm_object_t m_object;
- m = (vm_page_t)zget(vm_page_zone);
- if (m) {
- vm_page_init(m, vm_page_fictitious_addr);
- m->fictitious = TRUE;
- }
+ m_object = VM_PAGE_OBJECT(mem);
- c_vm_page_grab_fictitious++;
- return m;
+ assert(mem->vmp_hashed);
+ assert(m_object);
+ assert(mem->vmp_offset != (vm_object_offset_t) -1);
+
+ /*
+ * Insert it into the object_object/offset hash table
+ */
+ hash_id = vm_page_hash(m_object, mem->vmp_offset);
+ bucket = &vm_page_buckets[hash_id];
+
+ mem->vmp_next_m = bucket->page_list;
+ bucket->page_list = VM_PAGE_PACK_PTR(mem);
}
-/*
- * vm_page_release_fictitious:
- *
- * Release a fictitious page to the free list.
- */
void
-vm_page_release_fictitious(
- register vm_page_t m)
+hibernate_free_range(int sindx, int eindx)
{
- assert(!m->free);
- assert(m->busy);
- assert(m->fictitious);
- assert(m->phys_addr == vm_page_fictitious_addr);
+ vm_page_t mem;
+ unsigned int color;
- c_vm_page_release_fictitious++;
+ while (sindx < eindx) {
+ mem = &vm_pages[sindx];
+
+ vm_page_init(mem, hibernate_lookup_paddr(sindx), FALSE);
+
+ mem->vmp_lopage = FALSE;
+ mem->vmp_q_state = VM_PAGE_ON_FREE_Q;
- if (m->free)
- panic("vm_page_release_fictitious");
- m->free = TRUE;
- zfree(vm_page_zone, (vm_offset_t)m);
+ color = VM_PAGE_GET_COLOR(mem);
+#if defined(__x86_64__)
+ vm_page_queue_enter_clump(&vm_page_queue_free[color].qhead, mem);
+#else
+ vm_page_queue_enter(&vm_page_queue_free[color].qhead, mem, vmp_pageq);
+#endif
+ vm_page_free_count++;
+
+ sindx++;
+ }
}
-/*
- * vm_page_more_fictitious:
- *
- * Add more fictitious pages to the free list.
- * Allowed to block. This routine is way intimate
- * with the zones code, for several reasons:
- * 1. we need to carve some page structures out of physical
- * memory before zones work, so they _cannot_ come from
- * the zone_map.
- * 2. the zone needs to be collectable in order to prevent
- * growth without bound. These structures are used by
- * the device pager (by the hundreds and thousands), as
- * private pages for pageout, and as blocking pages for
- * pagein. Temporary bursts in demand should not result in
- * permanent allocation of a resource.
- * 3. To smooth allocation humps, we allocate single pages
- * with kernel_memory_allocate(), and cram them into the
- * zone. This also allows us to initialize the vm_page_t's
- * on the way into the zone, so that zget() always returns
- * an initialized structure. The zone free element pointer
- * and the free page pointer are both the first item in the
- * vm_page_t.
- * 4. By having the pages in the zone pre-initialized, we need
- * not keep 2 levels of lists. The garbage collector simply
- * scans our list, and reduces physical memory usage as it
- * sees fit.
- */
-void vm_page_more_fictitious(void)
+extern void hibernate_rebuild_pmap_structs(void);
+
+void
+hibernate_rebuild_vm_structs(void)
{
- extern vm_map_t zone_map;
- register vm_page_t m;
- vm_offset_t addr;
- kern_return_t retval;
- int i;
+ int i, cindx, sindx, eindx;
+ vm_page_t mem, tmem, mem_next;
+ AbsoluteTime startTime, endTime;
+ uint64_t nsec;
- c_vm_page_more_fictitious++;
+ if (hibernate_rebuild_needed == FALSE) {
+ return;
+ }
+
+ KDBG(IOKDBG_CODE(DBG_HIBERNATE, 13) | DBG_FUNC_START);
+ HIBLOG("hibernate_rebuild started\n");
+
+ clock_get_uptime(&startTime);
+
+ hibernate_rebuild_pmap_structs();
+
+ bzero(&vm_page_buckets[0], vm_page_bucket_count * sizeof(vm_page_bucket_t));
+ eindx = vm_pages_count;
/*
- * Allocate a single page from the zone_map. Do not wait if no physical
- * pages are immediately available, and do not zero the space. We need
- * our own blocking lock here to prevent having multiple,
- * simultaneous requests from piling up on the zone_map lock. Exactly
- * one (of our) threads should be potentially waiting on the map lock.
- * If winner is not vm-privileged, then the page allocation will fail,
- * and it will temporarily block here in the vm_page_wait().
- */
- mutex_lock(&vm_page_alloc_lock);
- /*
- * If another thread allocated space, just bail out now.
+ * Mark all the vm_pages[] that have not been initialized yet as being
+ * transient. This is needed to ensure that buddy page search is corrrect.
+ * Without this random data in these vm_pages[] can trip the buddy search
*/
- if (zone_free_count(vm_page_zone) > 5) {
+ for (i = hibernate_teardown_last_valid_compact_indx + 1; i < eindx; ++i) {
+ vm_pages[i].vmp_q_state = VM_PAGE_NOT_ON_Q;
+ }
+
+ for (cindx = hibernate_teardown_last_valid_compact_indx; cindx >= 0; cindx--) {
+ mem = &vm_pages[cindx];
+ assert(mem->vmp_q_state != VM_PAGE_ON_FREE_Q);
/*
- * The number "5" is a small number that is larger than the
- * number of fictitious pages that any single caller will
- * attempt to allocate. Otherwise, a thread will attempt to
- * acquire a fictitious page (vm_page_grab_fictitious), fail,
- * release all of the resources and locks already acquired,
- * and then call this routine. This routine finds the pages
- * that the caller released, so fails to allocate new space.
- * The process repeats infinitely. The largest known number
- * of fictitious pages required in this manner is 2. 5 is
- * simply a somewhat larger number.
+ * hibernate_teardown_vm_structs leaves the location where
+ * this vm_page_t must be located in "next".
*/
- mutex_unlock(&vm_page_alloc_lock);
- return;
- }
+ tmem = (vm_page_t)(VM_PAGE_UNPACK_PTR(mem->vmp_next_m));
+ mem->vmp_next_m = VM_PAGE_PACK_PTR(NULL);
+
+ sindx = (int)(tmem - &vm_pages[0]);
- if ((retval = kernel_memory_allocate(zone_map,
- &addr, PAGE_SIZE, VM_PROT_ALL,
- KMA_KOBJECT|KMA_NOPAGEWAIT)) != KERN_SUCCESS) {
+ if (mem != tmem) {
+ /*
+ * this vm_page_t was moved by hibernate_teardown_vm_structs,
+ * so move it back to its real location
+ */
+ *tmem = *mem;
+ mem = tmem;
+ }
+ if (mem->vmp_hashed) {
+ hibernate_hash_insert_page(mem);
+ }
/*
- * No page was available. Tell the pageout daemon, drop the
- * lock to give another thread a chance at it, and
- * wait for the pageout daemon to make progress.
+ * the 'hole' between this vm_page_t and the previous
+ * vm_page_t we moved needs to be initialized as
+ * a range of free vm_page_t's
*/
- mutex_unlock(&vm_page_alloc_lock);
- vm_page_wait(THREAD_UNINT);
- return;
+ hibernate_free_range(sindx + 1, eindx);
+
+ eindx = sindx;
+ }
+ if (sindx) {
+ hibernate_free_range(0, sindx);
}
+
+ assert(vm_page_free_count == hibernate_teardown_vm_page_free_count);
+
/*
- * Initialize as many vm_page_t's as will fit on this page. This
- * depends on the zone code disturbing ONLY the first item of
- * each zone element.
+ * process the list of vm_page_t's that were entered in the hash,
+ * but were not located in the vm_pages arrary... these are
+ * vm_page_t's that were created on the fly (i.e. fictitious)
*/
- m = (vm_page_t)addr;
- for (i = PAGE_SIZE/sizeof(struct vm_page); i > 0; i--) {
- vm_page_init(m, vm_page_fictitious_addr);
- m->fictitious = TRUE;
- m++;
+ for (mem = hibernate_rebuild_hash_list; mem; mem = mem_next) {
+ mem_next = (vm_page_t)(VM_PAGE_UNPACK_PTR(mem->vmp_next_m));
+
+ mem->vmp_next_m = 0;
+ hibernate_hash_insert_page(mem);
}
- zcram(vm_page_zone, addr, PAGE_SIZE);
- mutex_unlock(&vm_page_alloc_lock);
+ hibernate_rebuild_hash_list = NULL;
+
+ clock_get_uptime(&endTime);
+ SUB_ABSOLUTETIME(&endTime, &startTime);
+ absolutetime_to_nanoseconds(endTime, &nsec);
+
+ HIBLOG("hibernate_rebuild completed - took %qd msecs\n", nsec / 1000000ULL);
+
+ hibernate_rebuild_needed = FALSE;
+
+ KDBG(IOKDBG_CODE(DBG_HIBERNATE, 13) | DBG_FUNC_END);
}
-/*
- * vm_page_convert:
- *
- * Attempt to convert a fictitious page into a real page.
- */
-boolean_t
-vm_page_convert(
- register vm_page_t m)
+extern void hibernate_teardown_pmap_structs(addr64_t *, addr64_t *);
+
+uint32_t
+hibernate_teardown_vm_structs(hibernate_page_list_t *page_list, hibernate_page_list_t *page_list_wired)
{
- register vm_page_t real_m;
+ unsigned int i;
+ unsigned int compact_target_indx;
+ vm_page_t mem, mem_next;
+ vm_page_bucket_t *bucket;
+ unsigned int mark_as_unneeded_pages = 0;
+ unsigned int unneeded_vm_page_bucket_pages = 0;
+ unsigned int unneeded_vm_pages_pages = 0;
+ unsigned int unneeded_pmap_pages = 0;
+ addr64_t start_of_unneeded = 0;
+ addr64_t end_of_unneeded = 0;
+
+
+ if (hibernate_should_abort()) {
+ return 0;
+ }
- assert(m->busy);
- assert(m->fictitious);
- assert(!m->dirty);
+ hibernate_rebuild_needed = TRUE;
- real_m = vm_page_grab();
- if (real_m == VM_PAGE_NULL)
- return FALSE;
+ HIBLOG("hibernate_teardown: wired_pages %d, free_pages %d, active_pages %d, inactive_pages %d, speculative_pages %d, cleaned_pages %d, compressor_pages %d\n",
+ vm_page_wire_count, vm_page_free_count, vm_page_active_count, vm_page_inactive_count, vm_page_speculative_count,
+ vm_page_cleaned_count, compressor_object->resident_page_count);
- m->phys_addr = real_m->phys_addr;
- m->fictitious = FALSE;
- m->no_isync = TRUE;
+ for (i = 0; i < vm_page_bucket_count; i++) {
+ bucket = &vm_page_buckets[i];
- vm_page_lock_queues();
- if (m->active)
- vm_page_active_count++;
- else if (m->inactive)
- vm_page_inactive_count++;
- vm_page_unlock_queues();
+ for (mem = (vm_page_t)(VM_PAGE_UNPACK_PTR(bucket->page_list)); mem != VM_PAGE_NULL; mem = mem_next) {
+ assert(mem->vmp_hashed);
+
+ mem_next = (vm_page_t)(VM_PAGE_UNPACK_PTR(mem->vmp_next_m));
+
+ if (mem < &vm_pages[0] || mem >= &vm_pages[vm_pages_count]) {
+ mem->vmp_next_m = VM_PAGE_PACK_PTR(hibernate_rebuild_hash_list);
+ hibernate_rebuild_hash_list = mem;
+ }
+ }
+ }
+ unneeded_vm_page_bucket_pages = hibernate_mark_as_unneeded((addr64_t)&vm_page_buckets[0], (addr64_t)&vm_page_buckets[vm_page_bucket_count], page_list, page_list_wired);
+ mark_as_unneeded_pages += unneeded_vm_page_bucket_pages;
+
+ hibernate_teardown_vm_page_free_count = vm_page_free_count;
+
+ compact_target_indx = 0;
+
+ for (i = 0; i < vm_pages_count; i++) {
+ mem = &vm_pages[i];
+
+ if (mem->vmp_q_state == VM_PAGE_ON_FREE_Q) {
+ unsigned int color;
+
+ assert(mem->vmp_busy);
+ assert(!mem->vmp_lopage);
+
+ color = VM_PAGE_GET_COLOR(mem);
+
+ vm_page_queue_remove(&vm_page_queue_free[color].qhead, mem, vmp_pageq);
+
+ VM_PAGE_ZERO_PAGEQ_ENTRY(mem);
+
+ vm_page_free_count--;
+
+ hibernate_teardown_found_free_pages++;
+
+ if (vm_pages[compact_target_indx].vmp_q_state != VM_PAGE_ON_FREE_Q) {
+ compact_target_indx = i;
+ }
+ } else {
+ /*
+ * record this vm_page_t's original location
+ * we need this even if it doesn't get moved
+ * as an indicator to the rebuild function that
+ * we don't have to move it
+ */
+ mem->vmp_next_m = VM_PAGE_PACK_PTR(mem);
+
+ if (vm_pages[compact_target_indx].vmp_q_state == VM_PAGE_ON_FREE_Q) {
+ /*
+ * we've got a hole to fill, so
+ * move this vm_page_t to it's new home
+ */
+ vm_pages[compact_target_indx] = *mem;
+ mem->vmp_q_state = VM_PAGE_ON_FREE_Q;
+
+ hibernate_teardown_last_valid_compact_indx = compact_target_indx;
+ compact_target_indx++;
+ } else {
+ hibernate_teardown_last_valid_compact_indx = i;
+ }
+ }
+ }
+ unneeded_vm_pages_pages = hibernate_mark_as_unneeded((addr64_t)&vm_pages[hibernate_teardown_last_valid_compact_indx + 1],
+ (addr64_t)&vm_pages[vm_pages_count - 1], page_list, page_list_wired);
+ mark_as_unneeded_pages += unneeded_vm_pages_pages;
+
+ hibernate_teardown_pmap_structs(&start_of_unneeded, &end_of_unneeded);
- real_m->phys_addr = vm_page_fictitious_addr;
- real_m->fictitious = TRUE;
+ if (start_of_unneeded) {
+ unneeded_pmap_pages = hibernate_mark_as_unneeded(start_of_unneeded, end_of_unneeded, page_list, page_list_wired);
+ mark_as_unneeded_pages += unneeded_pmap_pages;
+ }
+ HIBLOG("hibernate_teardown: mark_as_unneeded_pages %d, %d, %d\n", unneeded_vm_page_bucket_pages, unneeded_vm_pages_pages, unneeded_pmap_pages);
- vm_page_release_fictitious(real_m);
- return TRUE;
+ return mark_as_unneeded_pages;
}
+
+#endif /* HIBERNATION */
+
+/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
+
+#include <mach_vm_debug.h>
+#if MACH_VM_DEBUG
+
+#include <mach_debug/hash_info.h>
+#include <vm/vm_debug.h>
+
/*
- * vm_pool_low():
- *
- * Return true if it is not likely that a non-vm_privileged thread
- * can get memory without blocking. Advisory only, since the
- * situation may change under us.
+ * Routine: vm_page_info
+ * Purpose:
+ * Return information about the global VP table.
+ * Fills the buffer with as much information as possible
+ * and returns the desired size of the buffer.
+ * Conditions:
+ * Nothing locked. The caller should provide
+ * possibly-pageable memory.
*/
-int
-vm_pool_low(void)
+
+unsigned int
+vm_page_info(
+ hash_info_bucket_t *info,
+ unsigned int count)
{
- /* No locking, at worst we will fib. */
- return( vm_page_free_count < vm_page_free_reserved );
+ unsigned int i;
+ lck_spin_t *bucket_lock;
+
+ if (vm_page_bucket_count < count) {
+ count = vm_page_bucket_count;
+ }
+
+ for (i = 0; i < count; i++) {
+ vm_page_bucket_t *bucket = &vm_page_buckets[i];
+ unsigned int bucket_count = 0;
+ vm_page_t m;
+
+ bucket_lock = &vm_page_bucket_locks[i / BUCKETS_PER_LOCK];
+ lck_spin_lock_grp(bucket_lock, &vm_page_lck_grp_bucket);
+
+ for (m = (vm_page_t)(VM_PAGE_UNPACK_PTR(bucket->page_list));
+ m != VM_PAGE_NULL;
+ m = (vm_page_t)(VM_PAGE_UNPACK_PTR(m->vmp_next_m))) {
+ bucket_count++;
+ }
+
+ lck_spin_unlock(bucket_lock);
+
+ /* don't touch pageable memory while holding locks */
+ info[i].hib_count = bucket_count;
+ }
+
+ return vm_page_bucket_count;
+}
+#endif /* MACH_VM_DEBUG */
+
+#if VM_PAGE_BUCKETS_CHECK
+void
+vm_page_buckets_check(void)
+{
+ unsigned int i;
+ vm_page_t p;
+ unsigned int p_hash;
+ vm_page_bucket_t *bucket;
+ lck_spin_t *bucket_lock;
+
+ if (!vm_page_buckets_check_ready) {
+ return;
+ }
+
+#if HIBERNATION
+ if (hibernate_rebuild_needed ||
+ hibernate_rebuild_hash_list) {
+ panic("BUCKET_CHECK: hibernation in progress: "
+ "rebuild_needed=%d rebuild_hash_list=%p\n",
+ hibernate_rebuild_needed,
+ hibernate_rebuild_hash_list);
+ }
+#endif /* HIBERNATION */
+
+#if VM_PAGE_FAKE_BUCKETS
+ char *cp;
+ for (cp = (char *) vm_page_fake_buckets_start;
+ cp < (char *) vm_page_fake_buckets_end;
+ cp++) {
+ if (*cp != 0x5a) {
+ panic("BUCKET_CHECK: corruption at %p in fake buckets "
+ "[0x%llx:0x%llx]\n",
+ cp,
+ (uint64_t) vm_page_fake_buckets_start,
+ (uint64_t) vm_page_fake_buckets_end);
+ }
+ }
+#endif /* VM_PAGE_FAKE_BUCKETS */
+
+ for (i = 0; i < vm_page_bucket_count; i++) {
+ vm_object_t p_object;
+
+ bucket = &vm_page_buckets[i];
+ if (!bucket->page_list) {
+ continue;
+ }
+
+ bucket_lock = &vm_page_bucket_locks[i / BUCKETS_PER_LOCK];
+ lck_spin_lock_grp(bucket_lock, &vm_page_lck_grp_bucket);
+ p = (vm_page_t)(VM_PAGE_UNPACK_PTR(bucket->page_list));
+
+ while (p != VM_PAGE_NULL) {
+ p_object = VM_PAGE_OBJECT(p);
+
+ if (!p->vmp_hashed) {
+ panic("BUCKET_CHECK: page %p (%p,0x%llx) "
+ "hash %d in bucket %d at %p "
+ "is not hashed\n",
+ p, p_object, p->vmp_offset,
+ p_hash, i, bucket);
+ }
+ p_hash = vm_page_hash(p_object, p->vmp_offset);
+ if (p_hash != i) {
+ panic("BUCKET_CHECK: corruption in bucket %d "
+ "at %p: page %p object %p offset 0x%llx "
+ "hash %d\n",
+ i, bucket, p, p_object, p->vmp_offset,
+ p_hash);
+ }
+ p = (vm_page_t)(VM_PAGE_UNPACK_PTR(p->vmp_next_m));
+ }
+ lck_spin_unlock(bucket_lock);
+ }
+
+// printf("BUCKET_CHECK: checked buckets\n");
}
+#endif /* VM_PAGE_BUCKETS_CHECK */
/*
- * vm_page_grab:
+ * 'vm_fault_enter' will place newly created pages (zero-fill and COW) onto the
+ * local queues if they exist... its the only spot in the system where we add pages
+ * to those queues... once on those queues, those pages can only move to one of the
+ * global page queues or the free queues... they NEVER move from local q to local q.
+ * the 'local' state is stable when vm_page_queues_remove is called since we're behind
+ * the global vm_page_queue_lock at this point... we still need to take the local lock
+ * in case this operation is being run on a different CPU then the local queue's identity,
+ * but we don't have to worry about the page moving to a global queue or becoming wired
+ * while we're grabbing the local lock since those operations would require the global
+ * vm_page_queue_lock to be held, and we already own it.
*
- * Remove a page from the free list.
- * Returns VM_PAGE_NULL if the free list is too small.
+ * this is why its safe to utilze the wire_count field in the vm_page_t as the local_id...
+ * 'wired' and local are ALWAYS mutually exclusive conditions.
*/
-unsigned long vm_page_grab_count = 0; /* measure demand */
-
-vm_page_t
-vm_page_grab(void)
+#if CONFIG_BACKGROUND_QUEUE
+void
+vm_page_queues_remove(vm_page_t mem, boolean_t remove_from_backgroundq)
+#else
+void
+vm_page_queues_remove(vm_page_t mem, boolean_t __unused remove_from_backgroundq)
+#endif
{
- register vm_page_t mem;
+ boolean_t was_pageable = TRUE;
+ vm_object_t m_object;
- mutex_lock(&vm_page_queue_free_lock);
- vm_page_grab_count++;
+ m_object = VM_PAGE_OBJECT(mem);
- /*
- * Optionally produce warnings if the wire or gobble
- * counts exceed some threshold.
- */
- if (vm_page_wire_count_warning > 0
- && vm_page_wire_count >= vm_page_wire_count_warning) {
- printf("mk: vm_page_grab(): high wired page count of %d\n",
- vm_page_wire_count);
- assert(vm_page_wire_count < vm_page_wire_count_warning);
- }
- if (vm_page_gobble_count_warning > 0
- && vm_page_gobble_count >= vm_page_gobble_count_warning) {
- printf("mk: vm_page_grab(): high gobbled page count of %d\n",
- vm_page_gobble_count);
- assert(vm_page_gobble_count < vm_page_gobble_count_warning);
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+
+ if (mem->vmp_q_state == VM_PAGE_NOT_ON_Q) {
+ assert(mem->vmp_pageq.next == 0 && mem->vmp_pageq.prev == 0);
+#if CONFIG_BACKGROUND_QUEUE
+ if (remove_from_backgroundq == TRUE) {
+ vm_page_remove_from_backgroundq(mem);
+ }
+ if (mem->vmp_on_backgroundq) {
+ assert(mem->vmp_backgroundq.next != 0);
+ assert(mem->vmp_backgroundq.prev != 0);
+ } else {
+ assert(mem->vmp_backgroundq.next == 0);
+ assert(mem->vmp_backgroundq.prev == 0);
+ }
+#endif /* CONFIG_BACKGROUND_QUEUE */
+ return;
}
- /*
- * Only let privileged threads (involved in pageout)
- * dip into the reserved pool.
- */
+ if (mem->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) {
+ assert(mem->vmp_pageq.next == 0 && mem->vmp_pageq.prev == 0);
+#if CONFIG_BACKGROUND_QUEUE
+ assert(mem->vmp_backgroundq.next == 0 &&
+ mem->vmp_backgroundq.prev == 0 &&
+ mem->vmp_on_backgroundq == FALSE);
+#endif
+ return;
+ }
+ if (mem->vmp_q_state == VM_PAGE_IS_WIRED) {
+ /*
+ * might put these guys on a list for debugging purposes
+ * if we do, we'll need to remove this assert
+ */
+ assert(mem->vmp_pageq.next == 0 && mem->vmp_pageq.prev == 0);
+#if CONFIG_BACKGROUND_QUEUE
+ assert(mem->vmp_backgroundq.next == 0 &&
+ mem->vmp_backgroundq.prev == 0 &&
+ mem->vmp_on_backgroundq == FALSE);
+#endif
+ return;
+ }
- if ((vm_page_free_count < vm_page_free_reserved) &&
- !current_thread()->vm_privilege) {
- mutex_unlock(&vm_page_queue_free_lock);
- mem = VM_PAGE_NULL;
- goto wakeup_pageout;
+ assert(m_object != compressor_object);
+ assert(m_object != kernel_object);
+ assert(m_object != vm_submap_object);
+ assert(!mem->vmp_fictitious);
+
+ switch (mem->vmp_q_state) {
+ case VM_PAGE_ON_ACTIVE_LOCAL_Q:
+ {
+ struct vpl *lq;
+
+ lq = &vm_page_local_q[mem->vmp_local_id].vpl_un.vpl;
+ VPL_LOCK(&lq->vpl_lock);
+ vm_page_queue_remove(&lq->vpl_queue, mem, vmp_pageq);
+ mem->vmp_local_id = 0;
+ lq->vpl_count--;
+ if (m_object->internal) {
+ lq->vpl_internal_count--;
+ } else {
+ lq->vpl_external_count--;
+ }
+ VPL_UNLOCK(&lq->vpl_lock);
+ was_pageable = FALSE;
+ break;
+ }
+ case VM_PAGE_ON_ACTIVE_Q:
+ {
+ vm_page_queue_remove(&vm_page_queue_active, mem, vmp_pageq);
+ vm_page_active_count--;
+ break;
}
- while (vm_page_queue_free == VM_PAGE_NULL) {
- printf("vm_page_grab: no free pages, trouble expected...\n");
- mutex_unlock(&vm_page_queue_free_lock);
- VM_PAGE_WAIT();
- mutex_lock(&vm_page_queue_free_lock);
+ case VM_PAGE_ON_INACTIVE_INTERNAL_Q:
+ {
+ assert(m_object->internal == TRUE);
+
+ vm_page_inactive_count--;
+ vm_page_queue_remove(&vm_page_queue_anonymous, mem, vmp_pageq);
+ vm_page_anonymous_count--;
+
+ vm_purgeable_q_advance_all();
+ vm_page_balance_inactive(3);
+ break;
}
- if (--vm_page_free_count < vm_page_free_count_minimum)
- vm_page_free_count_minimum = vm_page_free_count;
- mem = vm_page_queue_free;
- vm_page_queue_free = (vm_page_t) mem->pageq.next;
- mem->free = FALSE;
- mem->no_isync = TRUE;
- mutex_unlock(&vm_page_queue_free_lock);
+ case VM_PAGE_ON_INACTIVE_EXTERNAL_Q:
+ {
+ assert(m_object->internal == FALSE);
- /*
- * Decide if we should poke the pageout daemon.
- * We do this if the free count is less than the low
- * water mark, or if the free count is less than the high
- * water mark (but above the low water mark) and the inactive
- * count is less than its target.
- *
- * We don't have the counts locked ... if they change a little,
- * it doesn't really matter.
- */
+ vm_page_inactive_count--;
+ vm_page_queue_remove(&vm_page_queue_inactive, mem, vmp_pageq);
+ vm_purgeable_q_advance_all();
+ vm_page_balance_inactive(3);
+ break;
+ }
-wakeup_pageout:
- if ((vm_page_free_count < vm_page_free_min) ||
- ((vm_page_free_count < vm_page_free_target) &&
- (vm_page_inactive_count < vm_page_inactive_target)))
- thread_wakeup((event_t) &vm_page_free_wanted);
+ case VM_PAGE_ON_INACTIVE_CLEANED_Q:
+ {
+ assert(m_object->internal == FALSE);
-// dbgLog(mem->phys_addr, vm_page_free_count, vm_page_wire_count, 4); /* (TEST/DEBUG) */
+ vm_page_inactive_count--;
+ vm_page_queue_remove(&vm_page_queue_cleaned, mem, vmp_pageq);
+ vm_page_cleaned_count--;
+ vm_page_balance_inactive(3);
+ break;
+ }
- return mem;
-}
+ case VM_PAGE_ON_THROTTLED_Q:
+ {
+ assert(m_object->internal == TRUE);
-/*
- * vm_page_release:
- *
- * Return a page to the free list.
- */
+ vm_page_queue_remove(&vm_page_queue_throttled, mem, vmp_pageq);
+ vm_page_throttled_count--;
+ was_pageable = FALSE;
+ break;
+ }
-void
-vm_page_release(
- register vm_page_t mem)
-{
- assert(!mem->private && !mem->fictitious);
+ case VM_PAGE_ON_SPECULATIVE_Q:
+ {
+ assert(m_object->internal == FALSE);
-// dbgLog(mem->phys_addr, vm_page_free_count, vm_page_wire_count, 5); /* (TEST/DEBUG) */
+ vm_page_remque(&mem->vmp_pageq);
+ vm_page_speculative_count--;
+ vm_page_balance_inactive(3);
+ break;
+ }
- mutex_lock(&vm_page_queue_free_lock);
- if (mem->free)
- panic("vm_page_release");
- mem->free = TRUE;
- mem->pageq.next = (queue_entry_t) vm_page_queue_free;
- vm_page_queue_free = mem;
- vm_page_free_count++;
+#if CONFIG_SECLUDED_MEMORY
+ case VM_PAGE_ON_SECLUDED_Q:
+ {
+ vm_page_queue_remove(&vm_page_queue_secluded, mem, vmp_pageq);
+ vm_page_secluded_count--;
+ if (m_object == VM_OBJECT_NULL) {
+ vm_page_secluded_count_free--;
+ was_pageable = FALSE;
+ } else {
+ assert(!m_object->internal);
+ vm_page_secluded_count_inuse--;
+ was_pageable = FALSE;
+// was_pageable = TRUE;
+ }
+ break;
+ }
+#endif /* CONFIG_SECLUDED_MEMORY */
- /*
- * Check if we should wake up someone waiting for page.
- * But don't bother waking them unless they can allocate.
- *
- * We wakeup only one thread, to prevent starvation.
- * Because the scheduling system handles wait queues FIFO,
- * if we wakeup all waiting threads, one greedy thread
- * can starve multiple niceguy threads. When the threads
- * all wakeup, the greedy threads runs first, grabs the page,
- * and waits for another page. It will be the first to run
- * when the next page is freed.
- *
- * However, there is a slight danger here.
- * The thread we wake might not use the free page.
- * Then the other threads could wait indefinitely
- * while the page goes unused. To forestall this,
- * the pageout daemon will keep making free pages
- * as long as vm_page_free_wanted is non-zero.
- */
+ default:
+ {
+ /*
+ * if (mem->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q)
+ * NOTE: vm_page_queues_remove does not deal with removing pages from the pageout queue...
+ * the caller is responsible for determing if the page is on that queue, and if so, must
+ * either first remove it (it needs both the page queues lock and the object lock to do
+ * this via vm_pageout_steal_laundry), or avoid the call to vm_page_queues_remove
+ *
+ * we also don't expect to encounter VM_PAGE_ON_FREE_Q, VM_PAGE_ON_FREE_LOCAL_Q, VM_PAGE_ON_FREE_LOPAGE_Q
+ * or any of the undefined states
+ */
+ panic("vm_page_queues_remove - bad page q_state (%p, %d)\n", mem, mem->vmp_q_state);
+ break;
+ }
+ }
+ VM_PAGE_ZERO_PAGEQ_ENTRY(mem);
+ mem->vmp_q_state = VM_PAGE_NOT_ON_Q;
- if ((vm_page_free_wanted > 0) &&
- (vm_page_free_count >= vm_page_free_reserved)) {
- vm_page_free_wanted--;
- thread_wakeup_one((event_t) &vm_page_free_count);
+#if CONFIG_BACKGROUND_QUEUE
+ if (remove_from_backgroundq == TRUE) {
+ vm_page_remove_from_backgroundq(mem);
+ }
+#endif
+ if (was_pageable) {
+ if (m_object->internal) {
+ vm_page_pageable_internal_count--;
+ } else {
+ vm_page_pageable_external_count--;
+ }
}
+}
- mutex_unlock(&vm_page_queue_free_lock);
+void
+vm_page_remove_internal(vm_page_t page)
+{
+ vm_object_t __object = VM_PAGE_OBJECT(page);
+ if (page == __object->memq_hint) {
+ vm_page_t __new_hint;
+ vm_page_queue_entry_t __qe;
+ __qe = (vm_page_queue_entry_t)vm_page_queue_next(&page->vmp_listq);
+ if (vm_page_queue_end(&__object->memq, __qe)) {
+ __qe = (vm_page_queue_entry_t)vm_page_queue_prev(&page->vmp_listq);
+ if (vm_page_queue_end(&__object->memq, __qe)) {
+ __qe = NULL;
+ }
+ }
+ __new_hint = (vm_page_t)((uintptr_t) __qe);
+ __object->memq_hint = __new_hint;
+ }
+ vm_page_queue_remove(&__object->memq, page, vmp_listq);
+#if CONFIG_SECLUDED_MEMORY
+ if (__object->eligible_for_secluded) {
+ vm_page_secluded.eligible_for_secluded--;
+ }
+#endif /* CONFIG_SECLUDED_MEMORY */
}
-#define VM_PAGEOUT_DEADLOCK_TIMEOUT 3
+void
+vm_page_enqueue_inactive(vm_page_t mem, boolean_t first)
+{
+ vm_object_t m_object;
-/*
- * vm_page_wait:
- *
- * Wait for a page to become available.
- * If there are plenty of free pages, then we don't sleep.
- *
- * Returns:
- * TRUE: There may be another page, try again
- * FALSE: We were interrupted out of our wait, don't try again
- */
+ m_object = VM_PAGE_OBJECT(mem);
-boolean_t
-vm_page_wait(
- int interruptible )
-{
- /*
- * We can't use vm_page_free_reserved to make this
- * determination. Consider: some thread might
- * need to allocate two pages. The first allocation
- * succeeds, the second fails. After the first page is freed,
- * a call to vm_page_wait must really block.
- */
- uint64_t abstime;
- kern_return_t wait_result;
- kern_return_t kr;
- int need_wakeup = 0;
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+ assert(!mem->vmp_fictitious);
+ assert(!mem->vmp_laundry);
+ assert(mem->vmp_q_state == VM_PAGE_NOT_ON_Q);
+ vm_page_check_pageable_safe(mem);
- mutex_lock(&vm_page_queue_free_lock);
- if (vm_page_free_count < vm_page_free_target) {
- if (vm_page_free_wanted++ == 0)
- need_wakeup = 1;
- wait_result = assert_wait((event_t)&vm_page_free_count,
- interruptible);
- mutex_unlock(&vm_page_queue_free_lock);
- counter(c_vm_page_wait_block++);
-
- if (need_wakeup)
- thread_wakeup((event_t)&vm_page_free_wanted);
-
- if (wait_result == THREAD_WAITING) {
- clock_interval_to_absolutetime_interval(
- VM_PAGEOUT_DEADLOCK_TIMEOUT,
- NSEC_PER_SEC, &abstime);
- clock_absolutetime_interval_to_deadline(
- abstime, &abstime);
- thread_set_timer_deadline(abstime);
- wait_result = thread_block(THREAD_CONTINUE_NULL);
-
- if(wait_result == THREAD_TIMED_OUT) {
- kr = vm_pageout_emergency_availability_request();
- return TRUE;
- } else {
- thread_cancel_timer();
- }
+ if (m_object->internal) {
+ mem->vmp_q_state = VM_PAGE_ON_INACTIVE_INTERNAL_Q;
+
+ if (first == TRUE) {
+ vm_page_queue_enter_first(&vm_page_queue_anonymous, mem, vmp_pageq);
+ } else {
+ vm_page_queue_enter(&vm_page_queue_anonymous, mem, vmp_pageq);
}
- return(wait_result == THREAD_AWAKENED);
+ vm_page_anonymous_count++;
+ vm_page_pageable_internal_count++;
} else {
- mutex_unlock(&vm_page_queue_free_lock);
- return TRUE;
+ mem->vmp_q_state = VM_PAGE_ON_INACTIVE_EXTERNAL_Q;
+
+ if (first == TRUE) {
+ vm_page_queue_enter_first(&vm_page_queue_inactive, mem, vmp_pageq);
+ } else {
+ vm_page_queue_enter(&vm_page_queue_inactive, mem, vmp_pageq);
+ }
+
+ vm_page_pageable_external_count++;
}
-}
+ vm_page_inactive_count++;
+ token_new_pagecount++;
-/*
- * vm_page_alloc:
- *
- * Allocate and return a memory cell associated
- * with this VM object/offset pair.
- *
- * Object must be locked.
- */
+#if CONFIG_BACKGROUND_QUEUE
+ if (mem->vmp_in_background) {
+ vm_page_add_to_backgroundq(mem, FALSE);
+ }
+#endif
+}
-vm_page_t
-vm_page_alloc(
- vm_object_t object,
- vm_object_offset_t offset)
+void
+vm_page_enqueue_active(vm_page_t mem, boolean_t first)
{
- register vm_page_t mem;
+ vm_object_t m_object;
- mem = vm_page_grab();
- if (mem == VM_PAGE_NULL)
- return VM_PAGE_NULL;
+ m_object = VM_PAGE_OBJECT(mem);
- vm_page_insert(mem, object, offset);
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+ assert(!mem->vmp_fictitious);
+ assert(!mem->vmp_laundry);
+ assert(mem->vmp_q_state == VM_PAGE_NOT_ON_Q);
+ vm_page_check_pageable_safe(mem);
- return(mem);
-}
+ mem->vmp_q_state = VM_PAGE_ON_ACTIVE_Q;
+ if (first == TRUE) {
+ vm_page_queue_enter_first(&vm_page_queue_active, mem, vmp_pageq);
+ } else {
+ vm_page_queue_enter(&vm_page_queue_active, mem, vmp_pageq);
+ }
+ vm_page_active_count++;
-counter(unsigned int c_laundry_pages_freed = 0;)
+ if (m_object->internal) {
+ vm_page_pageable_internal_count++;
+ } else {
+ vm_page_pageable_external_count++;
+ }
+
+#if CONFIG_BACKGROUND_QUEUE
+ if (mem->vmp_in_background) {
+ vm_page_add_to_backgroundq(mem, FALSE);
+ }
+#endif
+ vm_page_balance_inactive(3);
+}
-int vm_pagein_cluster_unused = 0;
-boolean_t vm_page_free_verify = FALSE;
/*
- * vm_page_free:
- *
- * Returns the given page to the free list,
- * disassociating it with any VM object.
- *
- * Object and page queues must be locked prior to entry.
+ * Pages from special kernel objects shouldn't
+ * be placed on pageable queues.
*/
void
-vm_page_free(
- register vm_page_t mem)
+vm_page_check_pageable_safe(vm_page_t page)
{
- vm_object_t object = mem->object;
-
- assert(!mem->free);
- assert(!mem->cleaning);
- assert(!mem->pageout);
- assert(!vm_page_free_verify || pmap_verify_free(mem->phys_addr));
+ vm_object_t page_object;
- if (mem->tabled)
- vm_page_remove(mem); /* clears tabled, object, offset */
- VM_PAGE_QUEUES_REMOVE(mem); /* clears active or inactive */
+ page_object = VM_PAGE_OBJECT(page);
- if (mem->clustered) {
- mem->clustered = FALSE;
- vm_pagein_cluster_unused++;
+ if (page_object == kernel_object) {
+ panic("vm_page_check_pageable_safe: trying to add page" \
+ "from kernel object (%p) to pageable queue", kernel_object);
}
- if (mem->wire_count) {
- if (!mem->private && !mem->fictitious)
- vm_page_wire_count--;
- mem->wire_count = 0;
- assert(!mem->gobbled);
- } else if (mem->gobbled) {
- if (!mem->private && !mem->fictitious)
- vm_page_wire_count--;
- vm_page_gobble_count--;
+ if (page_object == compressor_object) {
+ panic("vm_page_check_pageable_safe: trying to add page" \
+ "from compressor object (%p) to pageable queue", compressor_object);
}
- mem->gobbled = FALSE;
- if (mem->laundry) {
- extern int vm_page_laundry_min;
- vm_page_laundry_count--;
- mem->laundry = FALSE; /* laundry is now clear */
- counter(++c_laundry_pages_freed);
- if (vm_page_laundry_count < vm_page_laundry_min) {
- vm_page_laundry_min = 0;
- thread_wakeup((event_t) &vm_page_laundry_count);
- }
+ if (page_object == vm_submap_object) {
+ panic("vm_page_check_pageable_safe: trying to add page" \
+ "from submap object (%p) to pageable queue", vm_submap_object);
}
+}
- mem->discard_request = FALSE;
+/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
+* wired page diagnose
+* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
- PAGE_WAKEUP(mem); /* clears wanted */
+#include <libkern/OSKextLibPrivate.h>
- if (mem->absent)
- vm_object_absent_release(object);
+#define KA_SIZE(namelen, subtotalscount) \
+ (sizeof(struct vm_allocation_site) + (namelen) + 1 + ((subtotalscount) * sizeof(struct vm_allocation_total)))
- /* Some of these may be unnecessary */
- mem->page_lock = 0;
- mem->unlock_request = 0;
- mem->busy = TRUE;
- mem->absent = FALSE;
- mem->error = FALSE;
- mem->dirty = FALSE;
- mem->precious = FALSE;
- mem->reference = FALSE;
+#define KA_NAME(alloc) \
+ ((char *)(&(alloc)->subtotals[(alloc->subtotalscount)]))
- mem->page_error = KERN_SUCCESS;
+#define KA_NAME_LEN(alloc) \
+ (VM_TAG_NAME_LEN_MAX & (alloc->flags >> VM_TAG_NAME_LEN_SHIFT))
- if (mem->private) {
- mem->private = FALSE;
- mem->fictitious = TRUE;
- mem->phys_addr = vm_page_fictitious_addr;
+vm_tag_t
+vm_tag_bt(void)
+{
+ uintptr_t* frameptr;
+ uintptr_t* frameptr_next;
+ uintptr_t retaddr;
+ uintptr_t kstackb, kstackt;
+ const vm_allocation_site_t * site;
+ thread_t cthread;
+ kern_allocation_name_t name;
+
+ cthread = current_thread();
+ if (__improbable(cthread == NULL)) {
+ return VM_KERN_MEMORY_OSFMK;
}
- if (mem->fictitious) {
- vm_page_release_fictitious(mem);
- } else {
- /* depends on the queues lock */
- if(mem->zero_fill) {
- vm_zf_count-=1;
- mem->zero_fill = FALSE;
+
+ if ((name = thread_get_kernel_state(cthread)->allocation_name)) {
+ if (!name->tag) {
+ vm_tag_alloc(name);
}
- vm_page_init(mem, mem->phys_addr);
- vm_page_release(mem);
+ return name->tag;
}
-}
-/*
- * vm_page_wire:
- *
- * Mark this page as wired down by yet
- * another map, removing it from paging queues
- * as necessary.
- *
- * The page's object and the page queues must be locked.
- */
-void
-vm_page_wire(
- register vm_page_t mem)
-{
+ kstackb = cthread->kernel_stack;
+ kstackt = kstackb + kernel_stack_size;
-// dbgLog(current_act(), mem->offset, mem->object, 1); /* (TEST/DEBUG) */
+ /* Load stack frame pointer (EBP on x86) into frameptr */
+ frameptr = __builtin_frame_address(0);
+ site = NULL;
+ while (frameptr != NULL) {
+ /* Verify thread stack bounds */
+ if (((uintptr_t)(frameptr + 2) > kstackt) || ((uintptr_t)frameptr < kstackb)) {
+ break;
+ }
- VM_PAGE_CHECK(mem);
+ /* Next frame pointer is pointed to by the previous one */
+ frameptr_next = (uintptr_t*) *frameptr;
- if (mem->wire_count == 0) {
- VM_PAGE_QUEUES_REMOVE(mem);
- if (!mem->private && !mem->fictitious && !mem->gobbled)
- vm_page_wire_count++;
- if (mem->gobbled)
- vm_page_gobble_count--;
- mem->gobbled = FALSE;
- if(mem->zero_fill) {
- /* depends on the queues lock */
- vm_zf_count-=1;
- mem->zero_fill = FALSE;
+ /* Pull return address from one spot above the frame pointer */
+ retaddr = *(frameptr + 1);
+
+
+ if (((retaddr < vm_kernel_builtinkmod_text_end) && (retaddr >= vm_kernel_builtinkmod_text))
+ || (retaddr < vm_kernel_stext) || (retaddr > vm_kernel_top)) {
+ site = OSKextGetAllocationSiteForCaller(retaddr);
+ break;
}
+ frameptr = frameptr_next;
}
- assert(!mem->gobbled);
- mem->wire_count++;
+
+ return site ? site->tag : VM_KERN_MEMORY_NONE;
}
-/*
- * vm_page_gobble:
- *
- * Mark this page as consumed by the vm/ipc/xmm subsystems.
- *
- * Called only for freshly vm_page_grab()ed pages - w/ nothing locked.
- */
+static uint64_t free_tag_bits[VM_MAX_TAG_VALUE / 64];
+
void
-vm_page_gobble(
- register vm_page_t mem)
+vm_tag_alloc_locked(vm_allocation_site_t * site, vm_allocation_site_t ** releasesiteP)
{
- vm_page_lock_queues();
- VM_PAGE_CHECK(mem);
+ vm_tag_t tag;
+ uint64_t avail;
+ uint32_t idx;
+ vm_allocation_site_t * prev;
- assert(!mem->gobbled);
- assert(mem->wire_count == 0);
+ if (site->tag) {
+ return;
+ }
- if (!mem->gobbled && mem->wire_count == 0) {
- if (!mem->private && !mem->fictitious)
- vm_page_wire_count++;
- }
- vm_page_gobble_count++;
- mem->gobbled = TRUE;
- vm_page_unlock_queues();
-}
+ idx = 0;
+ while (TRUE) {
+ avail = free_tag_bits[idx];
+ if (avail) {
+ tag = __builtin_clzll(avail);
+ avail &= ~(1ULL << (63 - tag));
+ free_tag_bits[idx] = avail;
+ tag += (idx << 6);
+ break;
+ }
+ idx++;
+ if (idx >= ARRAY_COUNT(free_tag_bits)) {
+ for (idx = 0; idx < ARRAY_COUNT(vm_allocation_sites); idx++) {
+ prev = vm_allocation_sites[idx];
+ if (!prev) {
+ continue;
+ }
+ if (!KA_NAME_LEN(prev)) {
+ continue;
+ }
+ if (!prev->tag) {
+ continue;
+ }
+ if (prev->total) {
+ continue;
+ }
+ if (1 != prev->refcount) {
+ continue;
+ }
-/*
- * vm_page_unwire:
- *
- * Release one wiring of this page, potentially
- * enabling it to be paged again.
- *
- * The page's object and the page queues must be locked.
- */
-void
-vm_page_unwire(
- register vm_page_t mem)
-{
+ assert(idx == prev->tag);
+ tag = idx;
+ prev->tag = VM_KERN_MEMORY_NONE;
+ *releasesiteP = prev;
+ break;
+ }
+ if (idx >= ARRAY_COUNT(vm_allocation_sites)) {
+ tag = VM_KERN_MEMORY_ANY;
+ }
+ break;
+ }
+ }
+ site->tag = tag;
-// dbgLog(current_act(), mem->offset, mem->object, 0); /* (TEST/DEBUG) */
+ OSAddAtomic16(1, &site->refcount);
- VM_PAGE_CHECK(mem);
- assert(mem->wire_count > 0);
+ if (VM_KERN_MEMORY_ANY != tag) {
+ vm_allocation_sites[tag] = site;
+ }
- if (--mem->wire_count == 0) {
- assert(!mem->private && !mem->fictitious);
- vm_page_wire_count--;
- queue_enter(&vm_page_queue_active, mem, vm_page_t, pageq);
- vm_page_active_count++;
- mem->active = TRUE;
- mem->reference = TRUE;
+ if (tag > vm_allocation_tag_highest) {
+ vm_allocation_tag_highest = tag;
}
}
-/*
- * vm_page_deactivate:
- *
- * Returns the given page to the inactive list,
- * indicating that no physical maps have access
- * to this page. [Used by the physical mapping system.]
- *
- * The page queues must be locked.
- */
-void
-vm_page_deactivate(
- register vm_page_t m)
+static void
+vm_tag_free_locked(vm_tag_t tag)
{
- VM_PAGE_CHECK(m);
+ uint64_t avail;
+ uint32_t idx;
+ uint64_t bit;
-// dbgLog(m->phys_addr, vm_page_free_count, vm_page_wire_count, 6); /* (TEST/DEBUG) */
+ if (VM_KERN_MEMORY_ANY == tag) {
+ return;
+ }
- /*
- * This page is no longer very interesting. If it was
- * interesting (active or inactive/referenced), then we
- * clear the reference bit and (re)enter it in the
- * inactive queue. Note wired pages should not have
- * their reference bit cleared.
- */
- if (m->gobbled) { /* can this happen? */
- assert(m->wire_count == 0);
- if (!m->private && !m->fictitious)
- vm_page_wire_count--;
- vm_page_gobble_count--;
- m->gobbled = FALSE;
+ idx = (tag >> 6);
+ avail = free_tag_bits[idx];
+ tag &= 63;
+ bit = (1ULL << (63 - tag));
+ assert(!(avail & bit));
+ free_tag_bits[idx] = (avail | bit);
+}
+
+static void
+vm_tag_init(void)
+{
+ vm_tag_t tag;
+ for (tag = VM_KERN_MEMORY_FIRST_DYNAMIC; tag < VM_KERN_MEMORY_ANY; tag++) {
+ vm_tag_free_locked(tag);
}
- if (m->private || (m->wire_count != 0))
- return;
- if (m->active || (m->inactive && m->reference)) {
- if (!m->fictitious && !m->absent)
- pmap_clear_reference(m->phys_addr);
- m->reference = FALSE;
- VM_PAGE_QUEUES_REMOVE(m);
- }
- if (m->wire_count == 0 && !m->inactive) {
- m->page_ticket = vm_page_ticket;
- vm_page_ticket_roll++;
-
- if(vm_page_ticket_roll == VM_PAGE_TICKETS_IN_ROLL) {
- vm_page_ticket_roll = 0;
- if(vm_page_ticket == VM_PAGE_TICKET_ROLL_IDS)
- vm_page_ticket= 0;
- else
- vm_page_ticket++;
- }
-
- if(m->zero_fill) {
- queue_enter(&vm_page_queue_zf, m, vm_page_t, pageq);
- } else {
- queue_enter(&vm_page_queue_inactive,
- m, vm_page_t, pageq);
- }
- m->inactive = TRUE;
- if (!m->fictitious)
- vm_page_inactive_count++;
+ for (tag = VM_KERN_MEMORY_ANY + 1; tag < VM_MAX_TAG_VALUE; tag++) {
+ vm_tag_free_locked(tag);
}
}
-/*
- * vm_page_activate:
- *
- * Put the specified page on the active list (if appropriate).
- *
- * The page queues must be locked.
- */
-
-void
-vm_page_activate(
- register vm_page_t m)
+vm_tag_t
+vm_tag_alloc(vm_allocation_site_t * site)
{
- VM_PAGE_CHECK(m);
+ vm_tag_t tag;
+ vm_allocation_site_t * releasesite;
- if (m->gobbled) {
- assert(m->wire_count == 0);
- if (!m->private && !m->fictitious)
- vm_page_wire_count--;
- vm_page_gobble_count--;
- m->gobbled = FALSE;
+ if (VM_TAG_BT & site->flags) {
+ tag = vm_tag_bt();
+ if (VM_KERN_MEMORY_NONE != tag) {
+ return tag;
+ }
}
- if (m->private)
- return;
- if (m->inactive) {
- if (m->zero_fill) {
- queue_remove(&vm_page_queue_zf, m, vm_page_t, pageq);
- } else {
- queue_remove(&vm_page_queue_inactive,
- m, vm_page_t, pageq);
+ if (!site->tag) {
+ releasesite = NULL;
+ lck_spin_lock(&vm_allocation_sites_lock);
+ vm_tag_alloc_locked(site, &releasesite);
+ lck_spin_unlock(&vm_allocation_sites_lock);
+ if (releasesite) {
+ kern_allocation_name_release(releasesite);
}
- if (!m->fictitious)
- vm_page_inactive_count--;
- m->inactive = FALSE;
}
- if (m->wire_count == 0) {
- if (m->active)
- panic("vm_page_activate: already active");
- queue_enter(&vm_page_queue_active, m, vm_page_t, pageq);
- m->active = TRUE;
- m->reference = TRUE;
- if (!m->fictitious)
- vm_page_active_count++;
- }
+ return site->tag;
}
-/*
- * vm_page_part_zero_fill:
- *
- * Zero-fill a part of the page.
- */
void
-vm_page_part_zero_fill(
- vm_page_t m,
- vm_offset_t m_pa,
- vm_size_t len)
+vm_tag_update_size(vm_tag_t tag, int64_t delta)
{
- vm_page_t tmp;
+ vm_allocation_site_t * allocation;
+ uint64_t prior;
- VM_PAGE_CHECK(m);
-#ifdef PMAP_ZERO_PART_PAGE_IMPLEMENTED
- pmap_zero_part_page(m->phys_addr, m_pa, len);
-#else
- while (1) {
- tmp = vm_page_grab();
- if (tmp == VM_PAGE_NULL) {
- vm_page_wait(THREAD_UNINT);
- continue;
- }
- break;
- }
- vm_page_zero_fill(tmp);
- if(m_pa != 0) {
- vm_page_part_copy(m, 0, tmp, 0, m_pa);
+ assert(VM_KERN_MEMORY_NONE != tag);
+ assert(tag < VM_MAX_TAG_VALUE);
+
+ allocation = vm_allocation_sites[tag];
+ assert(allocation);
+
+ if (delta < 0) {
+ assertf(allocation->total >= ((uint64_t)-delta), "tag %d, site %p", tag, allocation);
}
- if((m_pa + len) < PAGE_SIZE) {
- vm_page_part_copy(m, m_pa + len, tmp,
- m_pa + len, PAGE_SIZE - (m_pa + len));
+ prior = OSAddAtomic64(delta, &allocation->total);
+
+#if DEBUG || DEVELOPMENT
+
+ uint64_t new, peak;
+ new = prior + delta;
+ do{
+ peak = allocation->peak;
+ if (new <= peak) {
+ break;
+ }
+ }while (!OSCompareAndSwap64(peak, new, &allocation->peak));
+
+#endif /* DEBUG || DEVELOPMENT */
+
+ if (tag < VM_KERN_MEMORY_FIRST_DYNAMIC) {
+ return;
}
- vm_page_copy(tmp,m);
- vm_page_lock_queues();
- vm_page_free(tmp);
- vm_page_unlock_queues();
-#endif
+ if (!prior && !allocation->tag) {
+ vm_tag_alloc(allocation);
+ }
}
-/*
- * vm_page_zero_fill:
- *
- * Zero-fill the specified page.
- */
void
-vm_page_zero_fill(
- vm_page_t m)
+kern_allocation_update_size(kern_allocation_name_t allocation, int64_t delta)
{
- XPR(XPR_VM_PAGE,
- "vm_page_zero_fill, object 0x%X offset 0x%X page 0x%X\n",
- (integer_t)m->object, (integer_t)m->offset, (integer_t)m, 0,0);
+ uint64_t prior;
+
+ if (delta < 0) {
+ assertf(allocation->total >= ((uint64_t)-delta), "name %p", allocation);
+ }
+ prior = OSAddAtomic64(delta, &allocation->total);
+
+#if DEBUG || DEVELOPMENT
- VM_PAGE_CHECK(m);
+ uint64_t new, peak;
+ new = prior + delta;
+ do{
+ peak = allocation->peak;
+ if (new <= peak) {
+ break;
+ }
+ }while (!OSCompareAndSwap64(peak, new, &allocation->peak));
+
+#endif /* DEBUG || DEVELOPMENT */
- pmap_zero_page(m->phys_addr);
+ if (!prior && !allocation->tag) {
+ vm_tag_alloc(allocation);
+ }
}
-/*
- * vm_page_part_copy:
- *
- * copy part of one page to another
- */
+#if VM_MAX_TAG_ZONES
void
-vm_page_part_copy(
- vm_page_t src_m,
- vm_offset_t src_pa,
- vm_page_t dst_m,
- vm_offset_t dst_pa,
- vm_size_t len)
+vm_allocation_zones_init(void)
{
- VM_PAGE_CHECK(src_m);
- VM_PAGE_CHECK(dst_m);
-
- pmap_copy_part_page(src_m->phys_addr, src_pa,
- dst_m->phys_addr, dst_pa, len);
+ kern_return_t ret;
+ vm_offset_t addr;
+ vm_size_t size;
+
+ size = VM_MAX_TAG_VALUE * sizeof(vm_allocation_zone_total_t * *)
+ + 2 * VM_MAX_TAG_ZONES * sizeof(vm_allocation_zone_total_t);
+
+ ret = kernel_memory_allocate(kernel_map,
+ &addr, round_page(size), 0,
+ KMA_ZERO, VM_KERN_MEMORY_DIAG);
+ assert(KERN_SUCCESS == ret);
+
+ vm_allocation_zone_totals = (vm_allocation_zone_total_t **) addr;
+ addr += VM_MAX_TAG_VALUE * sizeof(vm_allocation_zone_total_t * *);
+
+ // prepopulate VM_KERN_MEMORY_DIAG & VM_KERN_MEMORY_KALLOC so allocations
+ // in vm_tag_update_zone_size() won't recurse
+ vm_allocation_zone_totals[VM_KERN_MEMORY_DIAG] = (vm_allocation_zone_total_t *) addr;
+ addr += VM_MAX_TAG_ZONES * sizeof(vm_allocation_zone_total_t);
+ vm_allocation_zone_totals[VM_KERN_MEMORY_KALLOC] = (vm_allocation_zone_total_t *) addr;
}
-/*
- * vm_page_copy:
- *
- * Copy one page to another
- */
-
void
-vm_page_copy(
- vm_page_t src_m,
- vm_page_t dest_m)
+vm_tag_will_update_zone(vm_tag_t tag, uint32_t zidx)
{
- XPR(XPR_VM_PAGE,
- "vm_page_copy, object 0x%X offset 0x%X to object 0x%X offset 0x%X\n",
- (integer_t)src_m->object, src_m->offset,
- (integer_t)dest_m->object, dest_m->offset,
- 0);
+ vm_allocation_zone_total_t * zone;
- VM_PAGE_CHECK(src_m);
- VM_PAGE_CHECK(dest_m);
+ assert(VM_KERN_MEMORY_NONE != tag);
+ assert(tag < VM_MAX_TAG_VALUE);
- pmap_copy_page(src_m->phys_addr, dest_m->phys_addr);
-}
+ if (zidx >= VM_MAX_TAG_ZONES) {
+ return;
+ }
-/*
- * Currently, this is a primitive allocator that grabs
- * free pages from the system, sorts them by physical
- * address, then searches for a region large enough to
- * satisfy the user's request.
- *
- * Additional levels of effort:
- * + steal clean active/inactive pages
- * + force pageouts of dirty pages
- * + maintain a map of available physical
- * memory
- */
+ zone = vm_allocation_zone_totals[tag];
+ if (!zone) {
+ zone = kalloc_tag(VM_MAX_TAG_ZONES * sizeof(*zone), VM_KERN_MEMORY_DIAG);
+ if (!zone) {
+ return;
+ }
+ bzero(zone, VM_MAX_TAG_ZONES * sizeof(*zone));
+ if (!OSCompareAndSwapPtr(NULL, zone, &vm_allocation_zone_totals[tag])) {
+ kfree(zone, VM_MAX_TAG_ZONES * sizeof(*zone));
+ }
+ }
+}
-#define SET_NEXT_PAGE(m,n) ((m)->pageq.next = (struct queue_entry *) (n))
+void
+vm_tag_update_zone_size(vm_tag_t tag, uint32_t zidx, int64_t delta, int64_t dwaste)
+{
+ vm_allocation_zone_total_t * zone;
+ uint32_t new;
-#if MACH_ASSERT
-int vm_page_verify_contiguous(
- vm_page_t pages,
- unsigned int npages);
-#endif /* MACH_ASSERT */
+ assert(VM_KERN_MEMORY_NONE != tag);
+ assert(tag < VM_MAX_TAG_VALUE);
-cpm_counter(unsigned int vpfls_pages_handled = 0;)
-cpm_counter(unsigned int vpfls_head_insertions = 0;)
-cpm_counter(unsigned int vpfls_tail_insertions = 0;)
-cpm_counter(unsigned int vpfls_general_insertions = 0;)
-cpm_counter(unsigned int vpfc_failed = 0;)
-cpm_counter(unsigned int vpfc_satisfied = 0;)
+ if (zidx >= VM_MAX_TAG_ZONES) {
+ return;
+ }
-/*
- * Sort free list by ascending physical address,
- * using a not-particularly-bright sort algorithm.
- * Caller holds vm_page_queue_free_lock.
- */
-static void
-vm_page_free_list_sort(void)
-{
- vm_page_t sort_list;
- vm_page_t sort_list_end;
- vm_page_t m, m1, *prev, next_m;
- vm_offset_t addr;
-#if MACH_ASSERT
- unsigned int npages;
- int old_free_count;
-#endif /* MACH_ASSERT */
+ zone = vm_allocation_zone_totals[tag];
+ assert(zone);
+ zone += zidx;
-#if MACH_ASSERT
- /*
- * Verify pages in the free list..
- */
- npages = 0;
- for (m = vm_page_queue_free; m != VM_PAGE_NULL; m = NEXT_PAGE(m))
- ++npages;
- if (npages != vm_page_free_count)
- panic("vm_sort_free_list: prelim: npages %d free_count %d",
- npages, vm_page_free_count);
- old_free_count = vm_page_free_count;
-#endif /* MACH_ASSERT */
-
- sort_list = sort_list_end = vm_page_queue_free;
- m = NEXT_PAGE(vm_page_queue_free);
- SET_NEXT_PAGE(vm_page_queue_free, VM_PAGE_NULL);
- cpm_counter(vpfls_pages_handled = 0);
- while (m != VM_PAGE_NULL) {
- cpm_counter(++vpfls_pages_handled);
- next_m = NEXT_PAGE(m);
- if (m->phys_addr < sort_list->phys_addr) {
- cpm_counter(++vpfls_head_insertions);
- SET_NEXT_PAGE(m, sort_list);
- sort_list = m;
- } else if (m->phys_addr > sort_list_end->phys_addr) {
- cpm_counter(++vpfls_tail_insertions);
- SET_NEXT_PAGE(sort_list_end, m);
- SET_NEXT_PAGE(m, VM_PAGE_NULL);
- sort_list_end = m;
- } else {
- cpm_counter(++vpfls_general_insertions);
- /* general sorted list insertion */
- prev = &sort_list;
- for (m1=sort_list; m1!=VM_PAGE_NULL; m1=NEXT_PAGE(m1)) {
- if (m1->phys_addr > m->phys_addr) {
- if (*prev != m1)
- panic("vm_sort_free_list: ugh");
- SET_NEXT_PAGE(m, *prev);
- *prev = m;
- break;
- }
- prev = (vm_page_t *) &m1->pageq.next;
- }
+ /* the zone is locked */
+ if (delta < 0) {
+ assertf(zone->total >= ((uint64_t)-delta), "zidx %d, tag %d, %p", zidx, tag, zone);
+ zone->total += delta;
+ } else {
+ zone->total += delta;
+ if (zone->total > zone->peak) {
+ zone->peak = zone->total;
}
- m = next_m;
- }
-
-#if MACH_ASSERT
- /*
- * Verify that pages are sorted into ascending order.
- */
- for (m = sort_list, npages = 0; m != VM_PAGE_NULL; m = NEXT_PAGE(m)) {
- if (m != sort_list &&
- m->phys_addr <= addr) {
- printf("m 0x%x addr 0x%x\n", m, addr);
- panic("vm_sort_free_list");
+ if (dwaste) {
+ new = zone->waste;
+ if (zone->wastediv < 65536) {
+ zone->wastediv++;
+ } else {
+ new -= (new >> 16);
+ }
+ __assert_only bool ov = os_add_overflow(new, dwaste, &new);
+ assert(!ov);
+ zone->waste = new;
}
- addr = m->phys_addr;
- ++npages;
}
- if (old_free_count != vm_page_free_count)
- panic("vm_sort_free_list: old_free %d free_count %d",
- old_free_count, vm_page_free_count);
- if (npages != vm_page_free_count)
- panic("vm_sort_free_list: npages %d free_count %d",
- npages, vm_page_free_count);
-#endif /* MACH_ASSERT */
-
- vm_page_queue_free = sort_list;
}
+#endif /* VM_MAX_TAG_ZONES */
-#if MACH_ASSERT
-/*
- * Check that the list of pages is ordered by
- * ascending physical address and has no holes.
- */
-int
-vm_page_verify_contiguous(
- vm_page_t pages,
- unsigned int npages)
+void
+kern_allocation_update_subtotal(kern_allocation_name_t allocation, uint32_t subtag, int64_t delta)
{
- register vm_page_t m;
- unsigned int page_count;
- vm_offset_t prev_addr;
-
- prev_addr = pages->phys_addr;
- page_count = 1;
- for (m = NEXT_PAGE(pages); m != VM_PAGE_NULL; m = NEXT_PAGE(m)) {
- if (m->phys_addr != prev_addr + page_size) {
- printf("m 0x%x prev_addr 0x%x, current addr 0x%x\n",
- m, prev_addr, m->phys_addr);
- printf("pages 0x%x page_count %d\n", pages, page_count);
- panic("vm_page_verify_contiguous: not contiguous!");
+ kern_allocation_name_t other;
+ struct vm_allocation_total * total;
+ uint32_t subidx;
+
+ subidx = 0;
+ assert(VM_KERN_MEMORY_NONE != subtag);
+ for (; subidx < allocation->subtotalscount; subidx++) {
+ if (VM_KERN_MEMORY_NONE == allocation->subtotals[subidx].tag) {
+ allocation->subtotals[subidx].tag = subtag;
+ break;
+ }
+ if (subtag == allocation->subtotals[subidx].tag) {
+ break;
}
- prev_addr = m->phys_addr;
- ++page_count;
}
- if (page_count != npages) {
- printf("pages 0x%x actual count 0x%x but requested 0x%x\n",
- pages, page_count, npages);
- panic("vm_page_verify_contiguous: count error");
+ assert(subidx < allocation->subtotalscount);
+ if (subidx >= allocation->subtotalscount) {
+ return;
+ }
+
+ total = &allocation->subtotals[subidx];
+ other = vm_allocation_sites[subtag];
+ assert(other);
+
+ if (delta < 0) {
+ assertf(total->total >= ((uint64_t)-delta), "name %p", allocation);
+ OSAddAtomic64(delta, &total->total);
+ assertf(other->mapped >= ((uint64_t)-delta), "other %p", other);
+ OSAddAtomic64(delta, &other->mapped);
+ } else {
+ OSAddAtomic64(delta, &other->mapped);
+ OSAddAtomic64(delta, &total->total);
}
- return 1;
}
-#endif /* MACH_ASSERT */
+const char *
+kern_allocation_get_name(kern_allocation_name_t allocation)
+{
+ return KA_NAME(allocation);
+}
-/*
- * Find a region large enough to contain at least npages
- * of contiguous physical memory.
- *
- * Requirements:
- * - Called while holding vm_page_queue_free_lock.
- * - Doesn't respect vm_page_free_reserved; caller
- * must not ask for more pages than are legal to grab.
- *
- * Returns a pointer to a list of gobbled pages or VM_PAGE_NULL.
- *
- */
-static vm_page_t
-vm_page_find_contiguous(
- int npages)
+kern_allocation_name_t
+kern_allocation_name_allocate(const char * name, uint32_t subtotalscount)
{
- vm_page_t m, *contig_prev, *prev_ptr;
- vm_offset_t prev_addr;
- unsigned int contig_npages;
- vm_page_t list;
+ uint32_t namelen;
- if (npages < 1)
- return VM_PAGE_NULL;
+ namelen = (uint32_t) strnlen(name, MACH_MEMORY_INFO_NAME_MAX_LEN - 1);
- prev_addr = vm_page_queue_free->phys_addr - (page_size + 1);
- prev_ptr = &vm_page_queue_free;
- for (m = vm_page_queue_free; m != VM_PAGE_NULL; m = NEXT_PAGE(m)) {
+ kern_allocation_name_t allocation;
+ allocation = kalloc(KA_SIZE(namelen, subtotalscount));
+ bzero(allocation, KA_SIZE(namelen, subtotalscount));
- if (m->phys_addr != prev_addr + page_size) {
- /*
- * Whoops! Pages aren't contiguous. Start over.
- */
- contig_npages = 0;
- contig_prev = prev_ptr;
- }
+ allocation->refcount = 1;
+ allocation->subtotalscount = subtotalscount;
+ allocation->flags = (namelen << VM_TAG_NAME_LEN_SHIFT);
+ strlcpy(KA_NAME(allocation), name, namelen + 1);
- if (++contig_npages == npages) {
- /*
- * Chop these pages out of the free list.
- * Mark them all as gobbled.
- */
- list = *contig_prev;
- *contig_prev = NEXT_PAGE(m);
- SET_NEXT_PAGE(m, VM_PAGE_NULL);
- for (m = list; m != VM_PAGE_NULL; m = NEXT_PAGE(m)) {
- assert(m->free);
- assert(!m->wanted);
- m->free = FALSE;
- m->no_isync = TRUE;
- m->gobbled = TRUE;
- }
- vm_page_free_count -= npages;
- if (vm_page_free_count < vm_page_free_count_minimum)
- vm_page_free_count_minimum = vm_page_free_count;
- vm_page_wire_count += npages;
- vm_page_gobble_count += npages;
- cpm_counter(++vpfc_satisfied);
- assert(vm_page_verify_contiguous(list, contig_npages));
- return list;
- }
+ return allocation;
+}
- assert(contig_npages < npages);
- prev_ptr = (vm_page_t *) &m->pageq.next;
- prev_addr = m->phys_addr;
+void
+kern_allocation_name_release(kern_allocation_name_t allocation)
+{
+ assert(allocation->refcount > 0);
+ if (1 == OSAddAtomic16(-1, &allocation->refcount)) {
+ kfree(allocation, KA_SIZE(KA_NAME_LEN(allocation), allocation->subtotalscount));
}
- cpm_counter(++vpfc_failed);
- return VM_PAGE_NULL;
}
-/*
- * Allocate a list of contiguous, wired pages.
- */
-kern_return_t
-cpm_allocate(
- vm_size_t size,
- vm_page_t *list,
- boolean_t wire)
+vm_tag_t
+kern_allocation_name_get_vm_tag(kern_allocation_name_t allocation)
{
- register vm_page_t m;
- vm_page_t *first_contig;
- vm_page_t free_list, pages;
- unsigned int npages, n1pages;
- int vm_pages_available;
+ return vm_tag_alloc(allocation);
+}
- if (size % page_size != 0)
- return KERN_INVALID_ARGUMENT;
+#if !VM_TAG_ACTIVE_UPDATE
+static void
+vm_page_count_object(mach_memory_info_t * info, unsigned int __unused num_info, vm_object_t object)
+{
+ if (!object->wired_page_count) {
+ return;
+ }
+ if (object != kernel_object) {
+ assert(object->wire_tag < num_info);
+ info[object->wire_tag].size += ptoa_64(object->wired_page_count);
+ }
+}
- vm_page_lock_queues();
- mutex_lock(&vm_page_queue_free_lock);
+typedef void (*vm_page_iterate_proc)(mach_memory_info_t * info,
+ unsigned int num_info, vm_object_t object);
- /*
- * Should also take active and inactive pages
- * into account... One day...
- */
- vm_pages_available = vm_page_free_count - vm_page_free_reserved;
+static void
+vm_page_iterate_purgeable_objects(mach_memory_info_t * info, unsigned int num_info,
+ vm_page_iterate_proc proc, purgeable_q_t queue,
+ int group)
+{
+ vm_object_t object;
+
+ for (object = (vm_object_t) queue_first(&queue->objq[group]);
+ !queue_end(&queue->objq[group], (queue_entry_t) object);
+ object = (vm_object_t) queue_next(&object->objq)) {
+ proc(info, num_info, object);
+ }
+}
- if (size > vm_pages_available * page_size) {
- mutex_unlock(&vm_page_queue_free_lock);
- return KERN_RESOURCE_SHORTAGE;
+static void
+vm_page_iterate_objects(mach_memory_info_t * info, unsigned int num_info,
+ vm_page_iterate_proc proc)
+{
+ vm_object_t object;
+
+ lck_spin_lock_grp(&vm_objects_wired_lock, &vm_page_lck_grp_bucket);
+ queue_iterate(&vm_objects_wired,
+ object,
+ vm_object_t,
+ wired_objq)
+ {
+ proc(info, num_info, object);
}
+ lck_spin_unlock(&vm_objects_wired_lock);
+}
+#endif /* ! VM_TAG_ACTIVE_UPDATE */
- vm_page_free_list_sort();
+static uint64_t
+process_account(mach_memory_info_t * info, unsigned int num_info, uint64_t zones_collectable_bytes, boolean_t iterated)
+{
+ size_t namelen;
+ unsigned int idx, count, nextinfo;
+ vm_allocation_site_t * site;
+ lck_spin_lock(&vm_allocation_sites_lock);
+
+ for (idx = 0; idx <= vm_allocation_tag_highest; idx++) {
+ site = vm_allocation_sites[idx];
+ if (!site) {
+ continue;
+ }
+ info[idx].mapped = site->mapped;
+ info[idx].tag = site->tag;
+ if (!iterated) {
+ info[idx].size = site->total;
+#if DEBUG || DEVELOPMENT
+ info[idx].peak = site->peak;
+#endif /* DEBUG || DEVELOPMENT */
+ } else {
+ if (!site->subtotalscount && (site->total != info[idx].size)) {
+ printf("tag mismatch[%d] 0x%qx, iter 0x%qx\n", idx, site->total, info[idx].size);
+ info[idx].size = site->total;
+ }
+ }
+ info[idx].flags |= VM_KERN_SITE_WIRED;
+ if (idx < VM_KERN_MEMORY_FIRST_DYNAMIC) {
+ info[idx].site = idx;
+ info[idx].flags |= VM_KERN_SITE_TAG;
+ if (VM_KERN_MEMORY_ZONE == idx) {
+ info[idx].flags |= VM_KERN_SITE_HIDE;
+ info[idx].flags &= ~VM_KERN_SITE_WIRED;
+ info[idx].collectable_bytes = zones_collectable_bytes;
+ }
+ } else if ((namelen = (VM_TAG_NAME_LEN_MAX & (site->flags >> VM_TAG_NAME_LEN_SHIFT)))) {
+ info[idx].site = 0;
+ info[idx].flags |= VM_KERN_SITE_NAMED;
+ if (namelen > sizeof(info[idx].name)) {
+ namelen = sizeof(info[idx].name);
+ }
+ strncpy(&info[idx].name[0], KA_NAME(site), namelen);
+ } else if (VM_TAG_KMOD & site->flags) {
+ info[idx].site = OSKextGetKmodIDForSite(site, NULL, 0);
+ info[idx].flags |= VM_KERN_SITE_KMOD;
+ } else {
+ info[idx].site = VM_KERNEL_UNSLIDE(site);
+ info[idx].flags |= VM_KERN_SITE_KERNEL;
+ }
+ }
- npages = size / page_size;
+ nextinfo = (vm_allocation_tag_highest + 1);
+ count = nextinfo;
+ if (count >= num_info) {
+ count = num_info;
+ }
- /*
- * Obtain a pointer to a subset of the free
- * list large enough to satisfy the request;
- * the region will be physically contiguous.
- */
- pages = vm_page_find_contiguous(npages);
- if (pages == VM_PAGE_NULL) {
- mutex_unlock(&vm_page_queue_free_lock);
- vm_page_unlock_queues();
- return KERN_NO_SPACE;
+ for (idx = 0; idx < count; idx++) {
+ site = vm_allocation_sites[idx];
+ if (!site) {
+ continue;
+ }
+#if VM_MAX_TAG_ZONES
+ vm_allocation_zone_total_t * zone;
+ unsigned int zidx;
+ vm_size_t elem_size;
+
+ if (vm_allocation_zone_totals
+ && (zone = vm_allocation_zone_totals[idx])
+ && (nextinfo < num_info)) {
+ for (zidx = 0; zidx < VM_MAX_TAG_ZONES; zidx++) {
+ if (!zone[zidx].peak) {
+ continue;
+ }
+ info[nextinfo] = info[idx];
+ info[nextinfo].zone = zone_index_from_tag_index(zidx, &elem_size);
+ info[nextinfo].flags &= ~VM_KERN_SITE_WIRED;
+ info[nextinfo].flags |= VM_KERN_SITE_ZONE;
+ info[nextinfo].size = zone[zidx].total;
+ info[nextinfo].peak = zone[zidx].peak;
+ info[nextinfo].mapped = 0;
+ if (zone[zidx].wastediv) {
+ info[nextinfo].collectable_bytes = ((zone[zidx].waste * zone[zidx].total / elem_size) / zone[zidx].wastediv);
+ }
+ nextinfo++;
+ }
+ }
+#endif /* VM_MAX_TAG_ZONES */
+ if (site->subtotalscount) {
+ uint64_t mapped, mapcost, take;
+ uint32_t sub;
+ vm_tag_t alloctag;
+
+ info[idx].size = site->total;
+ mapped = info[idx].size;
+ info[idx].mapped = mapped;
+ mapcost = 0;
+ for (sub = 0; sub < site->subtotalscount; sub++) {
+ alloctag = site->subtotals[sub].tag;
+ assert(alloctag < num_info);
+ if (info[alloctag].name[0]) {
+ continue;
+ }
+ take = site->subtotals[sub].total;
+ if (take > info[alloctag].size) {
+ take = info[alloctag].size;
+ }
+ if (take > mapped) {
+ take = mapped;
+ }
+ info[alloctag].mapped -= take;
+ info[alloctag].size -= take;
+ mapped -= take;
+ mapcost += take;
+ }
+ info[idx].size = mapcost;
+ }
}
+ lck_spin_unlock(&vm_allocation_sites_lock);
- mutex_unlock(&vm_page_queue_free_lock);
+ return 0;
+}
- /*
- * Walk the returned list, wiring the pages.
- */
- if (wire == TRUE)
- for (m = pages; m != VM_PAGE_NULL; m = NEXT_PAGE(m)) {
- /*
- * Essentially inlined vm_page_wire.
- */
- assert(!m->active);
- assert(!m->inactive);
- assert(!m->private);
- assert(!m->fictitious);
- assert(m->wire_count == 0);
- assert(m->gobbled);
- m->gobbled = FALSE;
- m->wire_count++;
- --vm_page_gobble_count;
+uint32_t
+vm_page_diagnose_estimate(void)
+{
+ vm_allocation_site_t * site;
+ uint32_t count;
+ uint32_t idx;
+
+ lck_spin_lock(&vm_allocation_sites_lock);
+ for (count = idx = 0; idx < VM_MAX_TAG_VALUE; idx++) {
+ site = vm_allocation_sites[idx];
+ if (!site) {
+ continue;
}
- vm_page_unlock_queues();
+ count++;
+#if VM_MAX_TAG_ZONES
+ if (vm_allocation_zone_totals) {
+ vm_allocation_zone_total_t * zone;
+ zone = vm_allocation_zone_totals[idx];
+ if (!zone) {
+ continue;
+ }
+ for (uint32_t zidx = 0; zidx < VM_MAX_TAG_ZONES; zidx++) {
+ if (zone[zidx].peak) {
+ count++;
+ }
+ }
+ }
+#endif
+ }
+ lck_spin_unlock(&vm_allocation_sites_lock);
- /*
- * The CPM pages should now be available and
- * ordered by ascending physical address.
- */
- assert(vm_page_verify_contiguous(pages, npages));
+ /* some slop for new tags created */
+ count += 8;
+ count += VM_KERN_COUNTER_COUNT;
- *list = pages;
- return KERN_SUCCESS;
+ return count;
}
-#include <mach_vm_debug.h>
-#if MACH_VM_DEBUG
+kern_return_t
+vm_page_diagnose(mach_memory_info_t * info, unsigned int num_info, uint64_t zones_collectable_bytes)
+{
+ uint64_t wired_size;
+ uint64_t wired_managed_size;
+ uint64_t wired_reserved_size;
+ uint64_t booter_size;
+ boolean_t iterate;
+ mach_memory_info_t * counts;
-#include <mach_debug/hash_info.h>
-#include <vm/vm_debug.h>
+ bzero(info, num_info * sizeof(mach_memory_info_t));
-/*
- * Routine: vm_page_info
- * Purpose:
- * Return information about the global VP table.
- * Fills the buffer with as much information as possible
- * and returns the desired size of the buffer.
- * Conditions:
- * Nothing locked. The caller should provide
- * possibly-pageable memory.
- */
+ if (!vm_page_wire_count_initial) {
+ return KERN_ABORTED;
+ }
-unsigned int
-vm_page_info(
- hash_info_bucket_t *info,
- unsigned int count)
-{
- int i;
+#if CONFIG_EMBEDDED
+ wired_size = ptoa_64(vm_page_wire_count);
+ wired_reserved_size = ptoa_64(vm_page_wire_count_initial - vm_page_stolen_count);
+#else
+ wired_size = ptoa_64(vm_page_wire_count + vm_lopage_free_count + vm_page_throttled_count);
+ wired_reserved_size = ptoa_64(vm_page_wire_count_initial - vm_page_stolen_count + vm_page_throttled_count);
+#endif
+ wired_managed_size = ptoa_64(vm_page_wire_count - vm_page_wire_count_initial);
+
+ booter_size = ml_get_booter_memory_size();
+ wired_size += booter_size;
+
+ assert(num_info >= VM_KERN_COUNTER_COUNT);
+ num_info -= VM_KERN_COUNTER_COUNT;
+ counts = &info[num_info];
+
+#define SET_COUNT(xcount, xsize, xflags) \
+ counts[xcount].tag = VM_MAX_TAG_VALUE + xcount; \
+ counts[xcount].site = (xcount); \
+ counts[xcount].size = (xsize); \
+ counts[xcount].mapped = (xsize); \
+ counts[xcount].flags = VM_KERN_SITE_COUNTER | xflags;
+
+ SET_COUNT(VM_KERN_COUNT_MANAGED, ptoa_64(vm_page_pages), 0);
+ SET_COUNT(VM_KERN_COUNT_WIRED, wired_size, 0);
+ SET_COUNT(VM_KERN_COUNT_WIRED_MANAGED, wired_managed_size, 0);
+ SET_COUNT(VM_KERN_COUNT_RESERVED, wired_reserved_size, VM_KERN_SITE_WIRED);
+ SET_COUNT(VM_KERN_COUNT_STOLEN, ptoa_64(vm_page_stolen_count), VM_KERN_SITE_WIRED);
+ SET_COUNT(VM_KERN_COUNT_LOPAGE, ptoa_64(vm_lopage_free_count), VM_KERN_SITE_WIRED);
+ SET_COUNT(VM_KERN_COUNT_WIRED_BOOT, ptoa_64(vm_page_wire_count_on_boot), 0);
+ SET_COUNT(VM_KERN_COUNT_BOOT_STOLEN, booter_size, VM_KERN_SITE_WIRED);
+
+#define SET_MAP(xcount, xsize, xfree, xlargest) \
+ counts[xcount].site = (xcount); \
+ counts[xcount].size = (xsize); \
+ counts[xcount].mapped = (xsize); \
+ counts[xcount].free = (xfree); \
+ counts[xcount].largest = (xlargest); \
+ counts[xcount].flags = VM_KERN_SITE_COUNTER;
+
+ vm_map_size_t map_size, map_free, map_largest;
+
+ vm_map_sizes(kernel_map, &map_size, &map_free, &map_largest);
+ SET_MAP(VM_KERN_COUNT_MAP_KERNEL, map_size, map_free, map_largest);
+
+ vm_map_sizes(zone_map, &map_size, &map_free, &map_largest);
+ SET_MAP(VM_KERN_COUNT_MAP_ZONE, map_size, map_free, map_largest);
+
+ vm_map_sizes(kalloc_map, &map_size, &map_free, &map_largest);
+ SET_MAP(VM_KERN_COUNT_MAP_KALLOC, map_size, map_free, map_largest);
+
+ iterate = !VM_TAG_ACTIVE_UPDATE;
+ if (iterate) {
+ enum { kMaxKernelDepth = 1 };
+ vm_map_t maps[kMaxKernelDepth];
+ vm_map_entry_t entries[kMaxKernelDepth];
+ vm_map_t map;
+ vm_map_entry_t entry;
+ vm_object_offset_t offset;
+ vm_page_t page;
+ int stackIdx, count;
+
+#if !VM_TAG_ACTIVE_UPDATE
+ vm_page_iterate_objects(info, num_info, &vm_page_count_object);
+#endif /* ! VM_TAG_ACTIVE_UPDATE */
+
+ map = kernel_map;
+ stackIdx = 0;
+ while (map) {
+ vm_map_lock(map);
+ for (entry = map->hdr.links.next; map; entry = entry->links.next) {
+ if (entry->is_sub_map) {
+ assert(stackIdx < kMaxKernelDepth);
+ maps[stackIdx] = map;
+ entries[stackIdx] = entry;
+ stackIdx++;
+ map = VME_SUBMAP(entry);
+ entry = NULL;
+ break;
+ }
+ if (VME_OBJECT(entry) == kernel_object) {
+ count = 0;
+ vm_object_lock(VME_OBJECT(entry));
+ for (offset = entry->links.start; offset < entry->links.end; offset += page_size) {
+ page = vm_page_lookup(VME_OBJECT(entry), offset);
+ if (page && VM_PAGE_WIRED(page)) {
+ count++;
+ }
+ }
+ vm_object_unlock(VME_OBJECT(entry));
+
+ if (count) {
+ assert(VME_ALIAS(entry) != VM_KERN_MEMORY_NONE);
+ assert(VME_ALIAS(entry) < num_info);
+ info[VME_ALIAS(entry)].size += ptoa_64(count);
+ }
+ }
+ while (map && (entry == vm_map_last_entry(map))) {
+ vm_map_unlock(map);
+ if (!stackIdx) {
+ map = NULL;
+ } else {
+ --stackIdx;
+ map = maps[stackIdx];
+ entry = entries[stackIdx];
+ }
+ }
+ }
+ }
+ }
- if (vm_page_bucket_count < count)
- count = vm_page_bucket_count;
+ process_account(info, num_info, zones_collectable_bytes, iterate);
- for (i = 0; i < count; i++) {
- vm_page_bucket_t *bucket = &vm_page_buckets[i];
- unsigned int bucket_count = 0;
- vm_page_t m;
+ return KERN_SUCCESS;
+}
- simple_lock(&vm_page_bucket_lock);
- for (m = bucket->pages; m != VM_PAGE_NULL; m = m->next)
- bucket_count++;
- simple_unlock(&vm_page_bucket_lock);
+#if DEBUG || DEVELOPMENT
- /* don't touch pageable memory while holding locks */
- info[i].hib_count = bucket_count;
+kern_return_t
+vm_kern_allocation_info(uintptr_t addr, vm_size_t * size, vm_tag_t * tag, vm_size_t * zone_size)
+{
+ kern_return_t ret;
+ vm_size_t zsize;
+ vm_map_t map;
+ vm_map_entry_t entry;
+
+ zsize = zone_element_info((void *) addr, tag);
+ if (zsize) {
+ *zone_size = *size = zsize;
+ return KERN_SUCCESS;
}
- return vm_page_bucket_count;
+ *zone_size = 0;
+ ret = KERN_INVALID_ADDRESS;
+ for (map = kernel_map; map;) {
+ vm_map_lock(map);
+ if (!vm_map_lookup_entry(map, addr, &entry)) {
+ break;
+ }
+ if (entry->is_sub_map) {
+ if (map != kernel_map) {
+ break;
+ }
+ map = VME_SUBMAP(entry);
+ continue;
+ }
+ if (entry->vme_start != addr) {
+ break;
+ }
+ *tag = VME_ALIAS(entry);
+ *size = (entry->vme_end - addr);
+ ret = KERN_SUCCESS;
+ break;
+ }
+ if (map != kernel_map) {
+ vm_map_unlock(map);
+ }
+ vm_map_unlock(kernel_map);
+
+ return ret;
}
-#endif /* MACH_VM_DEBUG */
-#include <mach_kdb.h>
-#if MACH_KDB
+#endif /* DEBUG || DEVELOPMENT */
+
+uint32_t
+vm_tag_get_kext(vm_tag_t tag, char * name, vm_size_t namelen)
+{
+ vm_allocation_site_t * site;
+ uint32_t kmodId;
+
+ kmodId = 0;
+ lck_spin_lock(&vm_allocation_sites_lock);
+ if ((site = vm_allocation_sites[tag])) {
+ if (VM_TAG_KMOD & site->flags) {
+ kmodId = OSKextGetKmodIDForSite(site, name, namelen);
+ }
+ }
+ lck_spin_unlock(&vm_allocation_sites_lock);
+
+ return kmodId;
+}
-#include <ddb/db_output.h>
-#include <vm/vm_print.h>
-#define printf kdbprintf
+#if CONFIG_SECLUDED_MEMORY
/*
- * Routine: vm_page_print [exported]
+ * Note that there's no locking around other accesses to vm_page_secluded_target.
+ * That should be OK, since these are the only place where it can be changed after
+ * initialization. Other users (like vm_pageout) may see the wrong value briefly,
+ * but will eventually get the correct value. This brief mismatch is OK as pageout
+ * and page freeing will auto-adjust the vm_page_secluded_count to match the target
+ * over time.
*/
-void
-vm_page_print(
- vm_page_t p)
-{
- extern db_indent;
+unsigned int vm_page_secluded_suppress_cnt = 0;
+unsigned int vm_page_secluded_save_target;
- iprintf("page 0x%x\n", p);
- db_indent += 2;
+lck_grp_attr_t secluded_suppress_slock_grp_attr;
+lck_grp_t secluded_suppress_slock_grp;
+lck_attr_t secluded_suppress_slock_attr;
+lck_spin_t secluded_suppress_slock;
- iprintf("object=0x%x", p->object);
- printf(", offset=0x%x", p->offset);
- printf(", wire_count=%d", p->wire_count);
-
- iprintf("%sinactive, %sactive, %sgobbled, %slaundry, %sfree, %sref, %sdiscard\n",
- (p->inactive ? "" : "!"),
- (p->active ? "" : "!"),
- (p->gobbled ? "" : "!"),
- (p->laundry ? "" : "!"),
- (p->free ? "" : "!"),
- (p->reference ? "" : "!"),
- (p->discard_request ? "" : "!"));
- iprintf("%sbusy, %swanted, %stabled, %sfictitious, %sprivate, %sprecious\n",
- (p->busy ? "" : "!"),
- (p->wanted ? "" : "!"),
- (p->tabled ? "" : "!"),
- (p->fictitious ? "" : "!"),
- (p->private ? "" : "!"),
- (p->precious ? "" : "!"));
- iprintf("%sabsent, %serror, %sdirty, %scleaning, %spageout, %sclustered\n",
- (p->absent ? "" : "!"),
- (p->error ? "" : "!"),
- (p->dirty ? "" : "!"),
- (p->cleaning ? "" : "!"),
- (p->pageout ? "" : "!"),
- (p->clustered ? "" : "!"));
- iprintf("%slock_supplied, %soverwriting, %srestart, %sunusual\n",
- (p->lock_supplied ? "" : "!"),
- (p->overwriting ? "" : "!"),
- (p->restart ? "" : "!"),
- (p->unusual ? "" : "!"));
+void
+secluded_suppression_init(void)
+{
+ lck_grp_attr_setdefault(&secluded_suppress_slock_grp_attr);
+ lck_grp_init(&secluded_suppress_slock_grp,
+ "secluded_suppress_slock", &secluded_suppress_slock_grp_attr);
+ lck_attr_setdefault(&secluded_suppress_slock_attr);
+ lck_spin_init(&secluded_suppress_slock,
+ &secluded_suppress_slock_grp, &secluded_suppress_slock_attr);
+}
- iprintf("phys_addr=0x%x", p->phys_addr);
- printf(", page_error=0x%x", p->page_error);
- printf(", page_lock=0x%x", p->page_lock);
- printf(", unlock_request=%d\n", p->unlock_request);
+void
+start_secluded_suppression(task_t task)
+{
+ if (task->task_suppressed_secluded) {
+ return;
+ }
+ lck_spin_lock(&secluded_suppress_slock);
+ if (!task->task_suppressed_secluded && vm_page_secluded_suppress_cnt++ == 0) {
+ task->task_suppressed_secluded = TRUE;
+ vm_page_secluded_save_target = vm_page_secluded_target;
+ vm_page_secluded_target = 0;
+ }
+ lck_spin_unlock(&secluded_suppress_slock);
+}
- db_indent -= 2;
+void
+stop_secluded_suppression(task_t task)
+{
+ lck_spin_lock(&secluded_suppress_slock);
+ if (task->task_suppressed_secluded && --vm_page_secluded_suppress_cnt == 0) {
+ task->task_suppressed_secluded = FALSE;
+ vm_page_secluded_target = vm_page_secluded_save_target;
+ }
+ lck_spin_unlock(&secluded_suppress_slock);
}
-#endif /* MACH_KDB */
+
+#endif /* CONFIG_SECLUDED_MEMORY */