/*
- * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
+ * Copyright (c) 2000-2015 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
#include <sys/filedesc.h>
#include <sys/stat.h>
#include <sys/buf.h>
+#include <sys/buf_internal.h>
#include <sys/proc.h>
#include <sys/kauth.h>
#include <sys/vnode.h>
#include <kern/kalloc.h>
#include <sys/disk.h>
#include <sys/sysctl.h>
+#include <sys/fsctl.h>
+#include <sys/mount_internal.h>
+#include <sys/file_internal.h>
#include <miscfs/specfs/specdev.h>
MAXHFSFILESIZE = 0x7FFFFFFF /* this needs to go in the mount structure */
};
-/* from bsd/vfs/vfs_cluster.c */
-extern int is_file_clean(vnode_t vp, off_t filesize);
/* from bsd/hfs/hfs_vfsops.c */
-extern int hfs_vfs_vget(struct mount *mp, ino64_t ino, struct vnode **vpp, vfs_context_t context);
+extern int hfs_vfs_vget (struct mount *mp, ino64_t ino, struct vnode **vpp, vfs_context_t context);
-static int hfs_clonelink(struct vnode *, int, kauth_cred_t, struct proc *);
static int hfs_clonefile(struct vnode *, int, int, int);
static int hfs_clonesysfile(struct vnode *, int, int, int, kauth_cred_t, struct proc *);
+static int hfs_minorupdate(struct vnode *vp);
+static int do_hfs_truncate(struct vnode *vp, off_t length, int flags, int skip, vfs_context_t context);
+
+/* from bsd/hfs/hfs_vnops.c */
+extern decmpfs_cnode* hfs_lazy_init_decmpfs_cnode (struct cnode *cp);
-int flush_cache_on_write = 0;
-SYSCTL_INT (_kern, OID_AUTO, flush_cache_on_write, CTLFLAG_RW, &flush_cache_on_write, 0, "always flush the drive cache on writes to uncached files");
+int flush_cache_on_write = 0;
+SYSCTL_INT (_kern, OID_AUTO, flush_cache_on_write, CTLFLAG_RW | CTLFLAG_LOCKED, &flush_cache_on_write, 0, "always flush the drive cache on writes to uncached files");
+
/*
* Read data from a file.
*/
int
hfs_vnop_read(struct vnop_read_args *ap)
{
+ /*
+ struct vnop_read_args {
+ struct vnodeop_desc *a_desc;
+ vnode_t a_vp;
+ struct uio *a_uio;
+ int a_ioflag;
+ vfs_context_t a_context;
+ };
+ */
+
uio_t uio = ap->a_uio;
struct vnode *vp = ap->a_vp;
struct cnode *cp;
off_t start_resid = uio_resid(uio);
off_t offset = uio_offset(uio);
int retval = 0;
-
+ int took_truncate_lock = 0;
+ int io_throttle = 0;
+ int throttled_count = 0;
/* Preflight checks */
if (!vnode_isreg(vp)) {
if (offset < 0)
return (EINVAL); /* cant read from a negative offset */
+ if ((ap->a_ioflag & (IO_SKIP_ENCRYPTION|IO_SYSCALL_DISPATCH)) ==
+ (IO_SKIP_ENCRYPTION|IO_SYSCALL_DISPATCH)) {
+ /* Don't allow unencrypted io request from user space */
+ return EPERM;
+ }
+
+
+
+#if HFS_COMPRESSION
+ if (VNODE_IS_RSRC(vp)) {
+ if (hfs_hides_rsrc(ap->a_context, VTOC(vp), 1)) { /* 1 == don't take the cnode lock */
+ return 0;
+ }
+ /* otherwise read the resource fork normally */
+ } else {
+ int compressed = hfs_file_is_compressed(VTOC(vp), 1); /* 1 == don't take the cnode lock */
+ if (compressed) {
+ retval = decmpfs_read_compressed(ap, &compressed, VTOCMP(vp));
+ if (compressed) {
+ if (retval == 0) {
+ /* successful read, update the access time */
+ VTOC(vp)->c_touch_acctime = TRUE;
+
+ /* compressed files are not hot file candidates */
+ if (VTOHFS(vp)->hfc_stage == HFC_RECORDING) {
+ VTOF(vp)->ff_bytesread = 0;
+ }
+ }
+ return retval;
+ }
+ /* otherwise the file was converted back to a regular file while we were reading it */
+ retval = 0;
+ } else if ((VTOC(vp)->c_bsdflags & UF_COMPRESSED)) {
+ int error;
+
+ error = check_for_dataless_file(vp, NAMESPACE_HANDLER_READ_OP);
+ if (error) {
+ return error;
+ }
+
+ }
+ }
+#endif /* HFS_COMPRESSION */
+
cp = VTOC(vp);
fp = VTOF(vp);
hfsmp = VTOHFS(vp);
+#if CONFIG_PROTECT
+ if ((retval = cp_handle_vnop (vp, CP_READ_ACCESS, ap->a_ioflag)) != 0) {
+ goto exit;
+ }
+#endif
+
+ /*
+ * If this read request originated from a syscall (as opposed to
+ * an in-kernel page fault or something), then set it up for
+ * throttle checks
+ */
+ if (ap->a_ioflag & IO_SYSCALL_DISPATCH) {
+ io_throttle = IO_RETURN_ON_THROTTLE;
+ }
+
+read_again:
+
/* Protect against a size change. */
- hfs_lock_truncate(cp, 0);
+ hfs_lock_truncate(cp, HFS_SHARED_LOCK, HFS_LOCK_DEFAULT);
+ took_truncate_lock = 1;
filesize = fp->ff_size;
filebytes = (off_t)fp->ff_blocks * (off_t)hfsmp->blockSize;
+
+ /*
+ * Check the file size. Note that per POSIX spec, we return 0 at
+ * file EOF, so attempting a read at an offset that is too big
+ * should just return 0 on HFS+. Since the return value was initialized
+ * to 0 above, we just jump to exit. HFS Standard has its own behavior.
+ */
if (offset > filesize) {
if ((hfsmp->hfs_flags & HFS_STANDARD) &&
(offset > (off_t)MAXHFSFILESIZE)) {
goto exit;
}
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 12)) | DBG_FUNC_START,
+ KERNEL_DEBUG(HFSDBG_READ | DBG_FUNC_START,
(int)uio_offset(uio), uio_resid(uio), (int)filesize, (int)filebytes, 0);
- retval = cluster_read(vp, uio, filesize, ap->a_ioflag);
+ retval = cluster_read(vp, uio, filesize, ap->a_ioflag |io_throttle);
cp->c_touch_acctime = TRUE;
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 12)) | DBG_FUNC_END,
+ KERNEL_DEBUG(HFSDBG_READ | DBG_FUNC_END,
(int)uio_offset(uio), uio_resid(uio), (int)filesize, (int)filebytes, 0);
/*
/* When ff_bytesread exceeds 32-bits, update it behind the cnode lock. */
if ((fp->ff_bytesread + bytesread) > 0x00000000ffffffff) {
- hfs_lock(cp, HFS_FORCE_LOCK);
+ hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
took_cnode_lock = 1;
}
/*
hfs_unlock(cp);
}
exit:
- hfs_unlock_truncate(cp, 0);
+ if (took_truncate_lock) {
+ hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
+ }
+ if (retval == EAGAIN) {
+ throttle_lowpri_io(1);
+ throttled_count++;
+
+ retval = 0;
+ goto read_again;
+ }
+ if (throttled_count) {
+ throttle_info_reset_window((uthread_t)get_bsdthread_info(current_thread()));
+ }
return (retval);
}
off_t actualBytesAdded;
off_t filebytes;
off_t offset;
- size_t resid;
+ ssize_t resid;
int eflags;
int ioflag = ap->a_ioflag;
int retval = 0;
int lockflags;
int cnode_locked = 0;
int partialwrite = 0;
- int exclusive_lock = 0;
+ int do_snapshot = 1;
+ time_t orig_ctime=VTOC(vp)->c_ctime;
+ int took_truncate_lock = 0;
+ int io_return_on_throttle = 0;
+ int throttled_count = 0;
+ struct rl_entry *invalid_range;
+
+#if HFS_COMPRESSION
+ if ( hfs_file_is_compressed(VTOC(vp), 1) ) { /* 1 == don't take the cnode lock */
+ int state = decmpfs_cnode_get_vnode_state(VTOCMP(vp));
+ switch(state) {
+ case FILE_IS_COMPRESSED:
+ return EACCES;
+ case FILE_IS_CONVERTING:
+ /* if FILE_IS_CONVERTING, we allow writes but do not
+ bother with snapshots or else we will deadlock.
+ */
+ do_snapshot = 0;
+ break;
+ default:
+ printf("invalid state %d for compressed file\n", state);
+ /* fall through */
+ }
+ } else if ((VTOC(vp)->c_bsdflags & UF_COMPRESSED)) {
+ int error;
+
+ error = check_for_dataless_file(vp, NAMESPACE_HANDLER_WRITE_OP);
+ if (error != 0) {
+ return error;
+ }
+ }
+
+ if (do_snapshot) {
+ check_for_tracked_file(vp, orig_ctime, NAMESPACE_HANDLER_WRITE_OP, uio);
+ }
+
+#endif
+
+ if ((ioflag & (IO_SKIP_ENCRYPTION|IO_SYSCALL_DISPATCH)) ==
+ (IO_SKIP_ENCRYPTION|IO_SYSCALL_DISPATCH)) {
+ /* Don't allow unencrypted io request from user space */
+ return EPERM;
+ }
+
- // LP64todo - fix this! uio_resid may be 64-bit value
resid = uio_resid(uio);
offset = uio_offset(uio);
- if (ioflag & IO_APPEND) {
- exclusive_lock = 1;
- }
-
if (offset < 0)
return (EINVAL);
if (resid == 0)
fp = VTOF(vp);
hfsmp = VTOHFS(vp);
+#if CONFIG_PROTECT
+ if ((retval = cp_handle_vnop (vp, CP_WRITE_ACCESS, 0)) != 0) {
+ goto exit;
+ }
+#endif
+
eflags = kEFDeferMask; /* defer file block allocations */
-#ifdef HFS_SPARSE_DEV
+#if HFS_SPARSE_DEV
/*
* When the underlying device is sparse and space
* is low (< 8MB), stop doing delayed allocations
}
#endif /* HFS_SPARSE_DEV */
+ if ((ioflag & (IO_SINGLE_WRITER | IO_SYSCALL_DISPATCH)) ==
+ (IO_SINGLE_WRITER | IO_SYSCALL_DISPATCH)) {
+ io_return_on_throttle = IO_RETURN_ON_THROTTLE;
+ }
+
again:
- /* Protect against a size change. */
- hfs_lock_truncate(cp, exclusive_lock);
+ /*
+ * Protect against a size change.
+ *
+ * Note: If took_truncate_lock is true, then we previously got the lock shared
+ * but needed to upgrade to exclusive. So try getting it exclusive from the
+ * start.
+ */
+ if (ioflag & IO_APPEND || took_truncate_lock) {
+ hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
+ }
+ else {
+ hfs_lock_truncate(cp, HFS_SHARED_LOCK, HFS_LOCK_DEFAULT);
+ }
+ took_truncate_lock = 1;
+ /* Update UIO */
if (ioflag & IO_APPEND) {
uio_setoffset(uio, fp->ff_size);
offset = fp->ff_size;
}
- if ((cp->c_flags & APPEND) && offset != fp->ff_size) {
+ if ((cp->c_bsdflags & APPEND) && offset != fp->ff_size) {
retval = EPERM;
goto exit;
}
writelimit = offset + resid;
filebytes = (off_t)fp->ff_blocks * (off_t)hfsmp->blockSize;
- /* If the truncate lock is shared, and if we either have virtual
- * blocks or will need to extend the file, upgrade the truncate
- * to exclusive lock. If upgrade fails, we lose the lock and
- * have to get exclusive lock again
+ /*
+ * We may need an exclusive truncate lock for several reasons, all
+ * of which are because we may be writing to a (portion of a) block
+ * for the first time, and we need to make sure no readers see the
+ * prior, uninitialized contents of the block. The cases are:
+ *
+ * 1. We have unallocated (delayed allocation) blocks. We may be
+ * allocating new blocks to the file and writing to them.
+ * (A more precise check would be whether the range we're writing
+ * to contains delayed allocation blocks.)
+ * 2. We need to extend the file. The bytes between the old EOF
+ * and the new EOF are not yet initialized. This is important
+ * even if we're not allocating new blocks to the file. If the
+ * old EOF and new EOF are in the same block, we still need to
+ * protect that range of bytes until they are written for the
+ * first time.
+ * 3. The write overlaps some invalid ranges (delayed zero fill; that
+ * part of the file has been allocated, but not yet written).
+ *
+ * If we had a shared lock with the above cases, we need to try to upgrade
+ * to an exclusive lock. If the upgrade fails, we will lose the shared
+ * lock, and will need to take the truncate lock again; the took_truncate_lock
+ * flag will still be set, causing us to try for an exclusive lock next time.
+ *
+ * NOTE: Testing for #3 (delayed zero fill) needs to be done while the cnode
+ * lock is held, since it protects the range lists.
*/
- if ((exclusive_lock == 0) &&
- ((fp->ff_unallocblocks != 0) || (writelimit > filebytes))) {
- exclusive_lock = 1;
- /* Lock upgrade failed and we lost our shared lock, try again */
+ if ((cp->c_truncatelockowner == HFS_SHARED_OWNER) &&
+ ((fp->ff_unallocblocks != 0) ||
+ (writelimit > origFileSize))) {
if (lck_rw_lock_shared_to_exclusive(&cp->c_truncatelock) == FALSE) {
+ /*
+ * Lock upgrade failed and we lost our shared lock, try again.
+ * Note: we do not set took_truncate_lock=0 here. Leaving it
+ * set to 1 will cause us to try to get the lock exclusive.
+ */
goto again;
}
+ else {
+ /* Store the owner in the c_truncatelockowner field if we successfully upgrade */
+ cp->c_truncatelockowner = current_thread();
+ }
}
- if ( (retval = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK))) {
+ if ( (retval = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT))) {
goto exit;
}
cnode_locked = 1;
- if (!exclusive_lock) {
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 0)) | DBG_FUNC_START,
- (int)offset, uio_resid(uio), (int)fp->ff_size,
- (int)filebytes, 0);
+ /*
+ * Now that we have the cnode lock, see if there are delayed zero fill ranges
+ * overlapping our write. If so, we need the truncate lock exclusive (see above).
+ */
+ if ((cp->c_truncatelockowner == HFS_SHARED_OWNER) &&
+ (rl_scan(&fp->ff_invalidranges, offset, writelimit-1, &invalid_range) != RL_NOOVERLAP)) {
+ /*
+ * When testing, it appeared that calling lck_rw_lock_shared_to_exclusive() causes
+ * a deadlock, rather than simply returning failure. (That is, it apparently does
+ * not behave like a "try_lock"). Since this condition is rare, just drop the
+ * cnode lock and try again. Since took_truncate_lock is set, we will
+ * automatically take the truncate lock exclusive.
+ */
+ hfs_unlock(cp);
+ cnode_locked = 0;
+ hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
+ goto again;
}
+
+ KERNEL_DEBUG(HFSDBG_WRITE | DBG_FUNC_START,
+ (int)offset, uio_resid(uio), (int)fp->ff_size,
+ (int)filebytes, 0);
/* Check if we do not need to extend the file */
if (writelimit <= filebytes) {
if (retval != E_NONE)
break;
filebytes = (off_t)fp->ff_blocks * (off_t)hfsmp->blockSize;
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 0)) | DBG_FUNC_NONE,
+ KERNEL_DEBUG(HFSDBG_WRITE | DBG_FUNC_NONE,
(int)offset, uio_resid(uio), (int)fp->ff_size, (int)filebytes, 0);
}
(void) hfs_update(vp, TRUE);
off_t inval_end;
off_t io_start;
int lflag;
- struct rl_entry *invalid_range;
if (writelimit > fp->ff_size)
filesize = writelimit;
fp->ff_size, inval_start,
zero_off, (off_t)0,
lflag | IO_HEADZEROFILL | IO_NOZERODIRTY);
- hfs_lock(cp, HFS_FORCE_LOCK);
+ hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
cnode_locked = 1;
if (retval) goto ioerr_exit;
offset = uio_offset(uio);
hfs_unlock(cp);
cnode_locked = 0;
+
+ /*
+ * We need to tell UBC the fork's new size BEFORE calling
+ * cluster_write, in case any of the new pages need to be
+ * paged out before cluster_write completes (which does happen
+ * in embedded systems due to extreme memory pressure).
+ * Similarly, we need to tell hfs_vnop_pageout what the new EOF
+ * will be, so that it can pass that on to cluster_pageout, and
+ * allow those pageouts.
+ *
+ * We don't update ff_size yet since we don't want pageins to
+ * be able to see uninitialized data between the old and new
+ * EOF, until cluster_write has completed and initialized that
+ * part of the file.
+ *
+ * The vnode pager relies on the file size last given to UBC via
+ * ubc_setsize. hfs_vnop_pageout relies on fp->ff_new_size or
+ * ff_size (whichever is larger). NOTE: ff_new_size is always
+ * zero, unless we are extending the file via write.
+ */
+ if (filesize > fp->ff_size) {
+ fp->ff_new_size = filesize;
+ ubc_setsize(vp, filesize);
+ }
retval = cluster_write(vp, uio, fp->ff_size, filesize, zero_off,
- tail_off, lflag | IO_NOZERODIRTY);
+ tail_off, lflag | IO_NOZERODIRTY | io_return_on_throttle);
if (retval) {
+ fp->ff_new_size = 0; /* no longer extending; use ff_size */
+
+ if (retval == EAGAIN) {
+ /*
+ * EAGAIN indicates that we still have I/O to do, but
+ * that we now need to be throttled
+ */
+ if (resid != uio_resid(uio)) {
+ /*
+ * did manage to do some I/O before returning EAGAIN
+ */
+ resid = uio_resid(uio);
+ offset = uio_offset(uio);
+
+ cp->c_touch_chgtime = TRUE;
+ cp->c_touch_modtime = TRUE;
+ hfs_incr_gencount(cp);
+ }
+ if (filesize > fp->ff_size) {
+ /*
+ * we called ubc_setsize before the call to
+ * cluster_write... since we only partially
+ * completed the I/O, we need to
+ * re-adjust our idea of the filesize based
+ * on our interim EOF
+ */
+ ubc_setsize(vp, offset);
+
+ fp->ff_size = offset;
+ }
+ goto exit;
+ }
+ if (filesize > origFileSize) {
+ ubc_setsize(vp, origFileSize);
+ }
goto ioerr_exit;
}
- offset = uio_offset(uio);
- if (offset > fp->ff_size) {
- fp->ff_size = offset;
-
- ubc_setsize(vp, fp->ff_size); /* XXX check errors */
+
+ if (filesize > origFileSize) {
+ fp->ff_size = filesize;
+
/* Files that are changing size are not hot file candidates. */
- if (hfsmp->hfc_stage == HFC_RECORDING)
+ if (hfsmp->hfc_stage == HFC_RECORDING) {
fp->ff_bytesread = 0;
+ }
}
- if (resid > uio_resid(uio)) {
- cp->c_touch_chgtime = TRUE;
- cp->c_touch_modtime = TRUE;
- }
+ fp->ff_new_size = 0; /* ff_size now has the correct size */
}
if (partialwrite) {
uio_setresid(uio, (uio_resid(uio) + bytesToAdd));
VNOP_IOCTL(hfsmp->hfs_devvp, DKIOCSYNCHRONIZECACHE, NULL, FWRITE, NULL);
}
}
- HFS_KNOTE(vp, NOTE_WRITE);
ioerr_exit:
- /*
- * If we successfully wrote any data, and we are not the superuser
- * we clear the setuid and setgid bits as a precaution against
- * tampering.
- */
- if (cp->c_mode & (S_ISUID | S_ISGID)) {
- cred = vfs_context_ucred(ap->a_context);
- if (resid > uio_resid(uio) && cred && suser(cred, NULL)) {
- if (!cnode_locked) {
- hfs_lock(cp, HFS_FORCE_LOCK);
- cnode_locked = 1;
+ if (resid > uio_resid(uio)) {
+ if (!cnode_locked) {
+ hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
+ cnode_locked = 1;
+ }
+
+ cp->c_touch_chgtime = TRUE;
+ cp->c_touch_modtime = TRUE;
+ hfs_incr_gencount(cp);
+
+ /*
+ * If we successfully wrote any data, and we are not the superuser
+ * we clear the setuid and setgid bits as a precaution against
+ * tampering.
+ */
+ if (cp->c_mode & (S_ISUID | S_ISGID)) {
+ cred = vfs_context_ucred(ap->a_context);
+ if (cred && suser(cred, NULL)) {
+ cp->c_mode &= ~(S_ISUID | S_ISGID);
}
- cp->c_mode &= ~(S_ISUID | S_ISGID);
}
}
if (retval) {
if (ioflag & IO_UNIT) {
- if (!cnode_locked) {
- hfs_lock(cp, HFS_FORCE_LOCK);
- cnode_locked = 1;
- }
(void)hfs_truncate(vp, origFileSize, ioflag & IO_SYNC,
0, ap->a_context);
- // LP64todo - fix this! resid needs to by user_ssize_t
uio_setoffset(uio, (uio_offset(uio) - (resid - uio_resid(uio))));
uio_setresid(uio, resid);
filebytes = (off_t)fp->ff_blocks * (off_t)hfsmp->blockSize;
}
- } else if ((ioflag & IO_SYNC) && (resid > uio_resid(uio))) {
- if (!cnode_locked) {
- hfs_lock(cp, HFS_FORCE_LOCK);
- cnode_locked = 1;
- }
+ } else if ((ioflag & IO_SYNC) && (resid > uio_resid(uio)))
retval = hfs_update(vp, TRUE);
- }
+
/* Updating vcbWrCnt doesn't need to be atomic. */
hfsmp->vcbWrCnt++;
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 0)) | DBG_FUNC_END,
+ KERNEL_DEBUG(HFSDBG_WRITE | DBG_FUNC_END,
(int)uio_offset(uio), uio_resid(uio), (int)fp->ff_size, (int)filebytes, 0);
exit:
if (cnode_locked)
hfs_unlock(cp);
- hfs_unlock_truncate(cp, exclusive_lock);
+
+ if (took_truncate_lock) {
+ hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
+ }
+ if (retval == EAGAIN) {
+ throttle_lowpri_io(1);
+ throttled_count++;
+
+ retval = 0;
+ goto again;
+ }
+ if (throttled_count) {
+ throttle_info_reset_window((uthread_t)get_bsdthread_info(current_thread()));
+ }
return (retval);
}
int *file_ids; /* IN: array of file ids */
gid_t *groups; /* IN: array of groups */
short *access; /* OUT: access info for each file (0 for 'has access') */
+} __attribute__((unavailable)); // this structure is for reference purposes only
+
+struct user32_access_t {
+ uid_t uid; /* IN: effective user id */
+ short flags; /* IN: access requested (i.e. R_OK) */
+ short num_groups; /* IN: number of groups user belongs to */
+ int num_files; /* IN: number of files to process */
+ user32_addr_t file_ids; /* IN: array of file ids */
+ user32_addr_t groups; /* IN: array of groups */
+ user32_addr_t access; /* OUT: access info for each file (0 for 'has access') */
};
-struct user_access_t {
+struct user64_access_t {
uid_t uid; /* IN: effective user id */
short flags; /* IN: access requested (i.e. R_OK) */
short num_groups; /* IN: number of groups user belongs to */
int num_files; /* IN: number of files to process */
- user_addr_t file_ids; /* IN: array of file ids */
- user_addr_t groups; /* IN: array of groups */
- user_addr_t access; /* OUT: access info for each file (0 for 'has access') */
+ user64_addr_t file_ids; /* IN: array of file ids */
+ user64_addr_t groups; /* IN: array of groups */
+ user64_addr_t access; /* OUT: access info for each file (0 for 'has access') */
};
short *access; /* OUT: access info for each file (0 for 'has access') */
uint32_t num_parents; /* future use */
cnid_t *parents; /* future use */
+} __attribute__((unavailable)); // this structure is for reference purposes only
+
+struct user32_ext_access_t {
+ uint32_t flags; /* IN: access requested (i.e. R_OK) */
+ uint32_t num_files; /* IN: number of files to process */
+ uint32_t map_size; /* IN: size of the bit map */
+ user32_addr_t file_ids; /* IN: Array of file ids */
+ user32_addr_t bitmap; /* OUT: hash-bitmap of interesting directory ids */
+ user32_addr_t access; /* OUT: access info for each file (0 for 'has access') */
+ uint32_t num_parents; /* future use */
+ user32_addr_t parents; /* future use */
};
-struct ext_user_access_t {
+struct user64_ext_access_t {
uint32_t flags; /* IN: access requested (i.e. R_OK) */
uint32_t num_files; /* IN: number of files to process */
uint32_t map_size; /* IN: size of the bit map */
- user_addr_t file_ids; /* IN: array of file ids */
- user_addr_t bitmap; /* IN: array of groups */
- user_addr_t access; /* OUT: access info for each file (0 for 'has access') */
+ user64_addr_t file_ids; /* IN: array of file ids */
+ user64_addr_t bitmap; /* IN: array of groups */
+ user64_addr_t access; /* OUT: access info for each file (0 for 'has access') */
uint32_t num_parents;/* future use */
- user_addr_t parents;/* future use */
+ user64_addr_t parents;/* future use */
};
}
if (cache->numcached > NUM_CACHE_ENTRIES) {
- /*printf("EGAD! numcached is %d... cut our losses and trim to %d\n",
- cache->numcached, NUM_CACHE_ENTRIES);*/
cache->numcached = NUM_CACHE_ENTRIES;
}
/* if the cache is full, do a replace rather than an insert */
if (cache->numcached >= NUM_CACHE_ENTRIES) {
- //printf("cache is full (%d). replace at index %d\n", cache->numcached, index);
cache->numcached = NUM_CACHE_ENTRIES-1;
if (index > cache->numcached) {
- // printf("index %d pinned to %d\n", index, cache->numcached);
index = cache->numcached;
}
}
};
static int
-snoop_callback(const struct cat_desc *descp, const struct cat_attr *attrp, void * arg)
+snoop_callback(const cnode_t *cp, void *arg)
{
- struct cinfo *cip = (struct cinfo *)arg;
+ struct cinfo *cip = arg;
- cip->uid = attrp->ca_uid;
- cip->gid = attrp->ca_gid;
- cip->mode = attrp->ca_mode;
- cip->parentcnid = descp->cd_parentcnid;
- cip->recflags = attrp->ca_recflags;
+ cip->uid = cp->c_uid;
+ cip->gid = cp->c_gid;
+ cip->mode = cp->c_mode;
+ cip->parentcnid = cp->c_parentcnid;
+ cip->recflags = cp->c_attr.ca_recflags;
return (0);
}
* isn't incore, then go to the catalog.
*/
static int
-do_attr_lookup(struct hfsmount *hfsmp, struct access_cache *cache, dev_t dev, cnid_t cnid,
+do_attr_lookup(struct hfsmount *hfsmp, struct access_cache *cache, cnid_t cnid,
struct cnode *skip_cp, CatalogKey *keyp, struct cat_attr *cnattrp)
{
int error = 0;
/* if this id matches the one the fsctl was called with, skip the lookup */
if (cnid == skip_cp->c_cnid) {
- cnattrp->ca_uid = skip_cp->c_uid;
- cnattrp->ca_gid = skip_cp->c_gid;
- cnattrp->ca_mode = skip_cp->c_mode;
- keyp->hfsPlus.parentID = skip_cp->c_parentcnid;
+ cnattrp->ca_uid = skip_cp->c_uid;
+ cnattrp->ca_gid = skip_cp->c_gid;
+ cnattrp->ca_mode = skip_cp->c_mode;
+ cnattrp->ca_recflags = skip_cp->c_attr.ca_recflags;
+ keyp->hfsPlus.parentID = skip_cp->c_parentcnid;
} else {
- struct cinfo c_info;
-
- /* otherwise, check the cnode hash incase the file/dir is incore */
- if (hfs_chash_snoop(dev, cnid, snoop_callback, &c_info) == 0) {
- cnattrp->ca_uid = c_info.uid;
- cnattrp->ca_gid = c_info.gid;
- cnattrp->ca_mode = c_info.mode;
- cnattrp->ca_recflags = c_info.recflags;
- keyp->hfsPlus.parentID = c_info.parentcnid;
- } else {
- int lockflags;
-
- lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
-
- /* lookup this cnid in the catalog */
- error = cat_getkeyplusattr(hfsmp, cnid, keyp, cnattrp);
+ struct cinfo c_info;
+
+ /* otherwise, check the cnode hash incase the file/dir is incore */
+ error = hfs_chash_snoop(hfsmp, cnid, 0, snoop_callback, &c_info);
+
+ if (error == EACCES) {
+ // File is deleted
+ return ENOENT;
+ } else if (!error) {
+ cnattrp->ca_uid = c_info.uid;
+ cnattrp->ca_gid = c_info.gid;
+ cnattrp->ca_mode = c_info.mode;
+ cnattrp->ca_recflags = c_info.recflags;
+ keyp->hfsPlus.parentID = c_info.parentcnid;
+ } else {
+ int lockflags;
+
+ if (throttle_io_will_be_throttled(-1, HFSTOVFS(hfsmp)))
+ throttle_lowpri_io(1);
+
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
+
+ /* lookup this cnid in the catalog */
+ error = cat_getkeyplusattr(hfsmp, cnid, keyp, cnattrp);
- hfs_systemfile_unlock(hfsmp, lockflags);
+ hfs_systemfile_unlock(hfsmp, lockflags);
- cache->lookups++;
- }
+ cache->lookups++;
+ }
}
return (error);
*/
static int
do_access_check(struct hfsmount *hfsmp, int *err, struct access_cache *cache, HFSCatalogNodeID nodeID,
- struct cnode *skip_cp, struct proc *theProcPtr, kauth_cred_t myp_ucred, dev_t dev,
+ struct cnode *skip_cp, struct proc *theProcPtr, kauth_cred_t myp_ucred,
struct vfs_context *my_context,
char *bitmap,
uint32_t map_size,
/* do the lookup (checks the cnode hash, then the catalog) */
- myErr = do_attr_lookup(hfsmp, cache, dev, thisNodeID, skip_cp, &catkey, &cnattr);
+ myErr = do_attr_lookup(hfsmp, cache, thisNodeID, skip_cp, &catkey, &cnattr);
if (myErr) {
goto ExitThisRoutine; /* no access */
}
struct vnode *vp;
/* get the vnode for this cnid */
- myErr = hfs_vget(hfsmp, thisNodeID, &vp, 0);
+ myErr = hfs_vget(hfsmp, thisNodeID, &vp, 0, 0);
if ( myErr ) {
myResult = 0;
goto ExitThisRoutine;
}
} else {
unsigned int flags;
-
- myPerms = DerivePermissionSummary(cnattr.ca_uid, cnattr.ca_gid,
- cnattr.ca_mode, hfsmp->hfs_mp,
- myp_ucred, theProcPtr);
+ int mode = cnattr.ca_mode & S_IFMT;
+ myPerms = DerivePermissionSummary(cnattr.ca_uid, cnattr.ca_gid, cnattr.ca_mode, hfsmp->hfs_mp,myp_ucred, theProcPtr);
- if (cnattr.ca_mode & S_IFDIR) {
- flags = R_OK | X_OK;
- } else {
- flags = R_OK;
- }
- if ( (myPerms & flags) != flags) {
- myResult = 0;
- myErr = EACCES;
- goto ExitThisRoutine; /* no access */
- }
+ if (mode == S_IFDIR) {
+ flags = R_OK | X_OK;
+ } else {
+ flags = R_OK;
+ }
+ if ( (myPerms & flags) != flags) {
+ myResult = 0;
+ myErr = EACCES;
+ goto ExitThisRoutine; /* no access */
+ }
/* up the hierarchy we go */
thisNodeID = catkey.hfsPlus.parentID;
boolean_t is64bit;
/*
- * NOTE: on entry, the vnode is locked. Incase this vnode
+ * NOTE: on entry, the vnode has an io_ref. In case this vnode
* happens to be in our list of file_ids, we'll note it
* avoid calling hfs_chashget_nowait() on that id as that
* will cause a "locking against myself" panic.
*/
Boolean check_leaf = true;
- struct ext_user_access_t *user_access_structp;
- struct ext_user_access_t tmp_user_access;
+ struct user64_ext_access_t *user_access_structp;
+ struct user64_ext_access_t tmp_user_access;
struct access_cache cache;
- int error = 0;
+ int error = 0, prev_parent_check_ok=1;
unsigned int i;
- dev_t dev = VTOC(vp)->c_dev;
-
short flags;
unsigned int num_files = 0;
int map_size = 0;
}
if (is64bit) {
- if (arg_size != sizeof(struct ext_user_access_t)) {
+ if (arg_size != sizeof(struct user64_ext_access_t)) {
error = EINVAL;
goto err_exit_bulk_access;
}
- user_access_structp = (struct ext_user_access_t *)ap->a_data;
+ user_access_structp = (struct user64_ext_access_t *)ap->a_data;
- } else if (arg_size == sizeof(struct access_t)) {
- struct access_t *accessp = (struct access_t *)ap->a_data;
+ } else if (arg_size == sizeof(struct user32_access_t)) {
+ struct user32_access_t *accessp = (struct user32_access_t *)ap->a_data;
// convert an old style bulk-access struct to the new style
tmp_user_access.flags = accessp->flags;
tmp_user_access.num_parents = 0;
user_access_structp = &tmp_user_access;
- } else if (arg_size == sizeof(struct ext_access_t)) {
- struct ext_access_t *accessp = (struct ext_access_t *)ap->a_data;
+ } else if (arg_size == sizeof(struct user32_ext_access_t)) {
+ struct user32_ext_access_t *accessp = (struct user32_ext_access_t *)ap->a_data;
// up-cast from a 32-bit version of the struct
tmp_user_access.flags = accessp->flags;
if (check_leaf) {
/* do the lookup (checks the cnode hash, then the catalog) */
- error = do_attr_lookup(hfsmp, &cache, dev, cnid, skip_cp, &catkey, &cnattr);
+ error = do_attr_lookup(hfsmp, &cache, cnid, skip_cp, &catkey, &cnattr);
if (error) {
access[i] = (short) error;
continue;
if (parents) {
// Check if the leaf matches one of the parent scopes
leaf_index = cache_binSearch(parents, num_parents-1, cnid, NULL);
+ if (leaf_index >= 0 && parents[leaf_index] == cnid)
+ prev_parent_check_ok = 0;
+ else if (leaf_index >= 0)
+ prev_parent_check_ok = 1;
}
// if the thing has acl's, do the full permission check
struct vnode *cvp;
int myErr = 0;
/* get the vnode for this cnid */
- myErr = hfs_vget(hfsmp, cnid, &cvp, 0);
+ myErr = hfs_vget(hfsmp, cnid, &cvp, 0, 0);
if ( myErr ) {
access[i] = myErr;
continue;
}
/* if the last guy had the same parent and had access, we're done */
- if (i > 0 && catkey.hfsPlus.parentID == prevParent_cnid && access[i-1] == 0) {
+ if (i > 0 && catkey.hfsPlus.parentID == prevParent_cnid && access[i-1] == 0 && prev_parent_check_ok) {
cache.cachehits++;
access[i] = 0;
continue;
}
-
+
myaccess = do_access_check(hfsmp, &error, &cache, catkey.hfsPlus.parentID,
- skip_cp, p, cred, dev, context,bitmap, map_size, parents, num_parents);
+ skip_cp, p, cred, context,bitmap, map_size, parents, num_parents);
if (myaccess || (error == ESRCH && leaf_index != -1)) {
access[i] = 0; // have access.. no errors to report
err_exit_bulk_access:
- //printf("on exit (err %d), numfiles/numcached/cachehits/lookups is %d/%d/%d/%d\n", error, num_files, cache.numcached, cache.cachehits, cache.lookups);
-
if (file_ids)
kfree(file_ids, sizeof(int) * num_files);
if (parents)
/* end "bulk-access" support */
-/*
- * Callback for use with freeze ioctl.
- */
-static int
-hfs_freezewrite_callback(struct vnode *vp, __unused void *cargs)
-{
- vnode_waitforwrites(vp, 0, 0, 0, "hfs freeze");
-
- return 0;
-}
-
/*
* Control filesystem operating characteristics.
*/
int
hfs_vnop_ioctl( struct vnop_ioctl_args /* {
vnode_t a_vp;
- int a_command;
+ long a_command;
caddr_t a_data;
int a_fflag;
vfs_context_t a_context;
proc_t p = vfs_context_proc(context);
struct vfsstatfs *vfsp;
boolean_t is64bit;
+ off_t jnl_start, jnl_size;
+ struct hfs_journal_info *jip;
+#if HFS_COMPRESSION
+ int compressed = 0;
+ off_t uncompressed_size = -1;
+ int decmpfs_error = 0;
+
+ if (ap->a_command == F_RDADVISE) {
+ /* we need to inspect the decmpfs state of the file as early as possible */
+ compressed = hfs_file_is_compressed(VTOC(vp), 0);
+ if (compressed) {
+ if (VNODE_IS_RSRC(vp)) {
+ /* if this is the resource fork, treat it as if it were empty */
+ uncompressed_size = 0;
+ } else {
+ decmpfs_error = hfs_uncompressed_size_of_compressed_file(NULL, vp, 0, &uncompressed_size, 0);
+ if (decmpfs_error != 0) {
+ /* failed to get the uncompressed size, we'll check for this later */
+ uncompressed_size = -1;
+ }
+ }
+ }
+ }
+#endif /* HFS_COMPRESSION */
is64bit = proc_is64bit(p);
+#if CONFIG_PROTECT
+ {
+ int error = 0;
+ if ((error = cp_handle_vnop(vp, CP_WRITE_ACCESS, 0)) != 0) {
+ return error;
+ }
+ }
+#endif /* CONFIG_PROTECT */
+
switch (ap->a_command) {
case HFS_GETPATH:
int outlen;
char *bufptr;
int error;
+ int flags = 0;
/* Caller must be owner of file system. */
vfsp = vfs_statfs(HFSTOVFS(hfsmp));
}
bufptr = (char *)ap->a_data;
cnid = strtoul(bufptr, NULL, 10);
+ if (ap->a_fflag & HFS_GETPATH_VOLUME_RELATIVE) {
+ flags |= BUILDPATH_VOLUME_RELATIVE;
+ }
- /* We need to call hfs_vfs_vget to leverage the code that will fix the
- * origin list for us if needed, as opposed to calling hfs_vget, since
- * we will need it for the subsequent build_path call.
+ /* We need to call hfs_vfs_vget to leverage the code that will
+ * fix the origin list for us if needed, as opposed to calling
+ * hfs_vget, since we will need the parent for build_path call.
*/
+
if ((error = hfs_vfs_vget(HFSTOVFS(hfsmp), cnid, &file_vp, context))) {
return (error);
}
- error = build_path(file_vp, bufptr, sizeof(pathname_t), &outlen, 0, context);
+ error = build_path(file_vp, bufptr, sizeof(pathname_t), &outlen, flags, context);
vnode_put(file_vp);
return (error);
}
+ case HFS_TRANSFER_DOCUMENT_ID:
+ {
+ struct cnode *cp = NULL;
+ int error;
+ u_int32_t to_fd = *(u_int32_t *)ap->a_data;
+ struct fileproc *to_fp;
+ struct vnode *to_vp;
+ struct cnode *to_cp;
+
+ cp = VTOC(vp);
+
+ if ((error = fp_getfvp(p, to_fd, &to_fp, &to_vp)) != 0) {
+ //printf("could not get the vnode for fd %d (err %d)\n", to_fd, error);
+ return error;
+ }
+ if ( (error = vnode_getwithref(to_vp)) ) {
+ file_drop(to_fd);
+ return error;
+ }
+
+ if (VTOHFS(to_vp) != hfsmp) {
+ error = EXDEV;
+ goto transfer_cleanup;
+ }
+
+ int need_unlock = 1;
+ to_cp = VTOC(to_vp);
+ error = hfs_lockpair(cp, to_cp, HFS_EXCLUSIVE_LOCK);
+ if (error != 0) {
+ //printf("could not lock the pair of cnodes (error %d)\n", error);
+ goto transfer_cleanup;
+ }
+
+ if (!(cp->c_bsdflags & UF_TRACKED)) {
+ error = EINVAL;
+ } else if (to_cp->c_bsdflags & UF_TRACKED) {
+ //
+ // if the destination is already tracked, return an error
+ // as otherwise it's a silent deletion of the target's
+ // document-id
+ //
+ error = EEXIST;
+ } else if (S_ISDIR(cp->c_attr.ca_mode) || S_ISREG(cp->c_attr.ca_mode) || S_ISLNK(cp->c_attr.ca_mode)) {
+ //
+ // we can use the FndrExtendedFileInfo because the doc-id is the first
+ // thing in both it and the ExtendedDirInfo struct which is fixed in
+ // format and can not change layout
+ //
+ struct FndrExtendedFileInfo *f_extinfo = (struct FndrExtendedFileInfo *)((u_int8_t*)cp->c_finderinfo + 16);
+ struct FndrExtendedFileInfo *to_extinfo = (struct FndrExtendedFileInfo *)((u_int8_t*)to_cp->c_finderinfo + 16);
+
+ if (f_extinfo->document_id == 0) {
+ uint32_t new_id;
+
+ hfs_unlockpair(cp, to_cp); // have to unlock to be able to get a new-id
+
+ if ((error = hfs_generate_document_id(hfsmp, &new_id)) == 0) {
+ //
+ // re-lock the pair now that we have the document-id
+ //
+ hfs_lockpair(cp, to_cp, HFS_EXCLUSIVE_LOCK);
+ f_extinfo->document_id = new_id;
+ } else {
+ goto transfer_cleanup;
+ }
+ }
+
+ to_extinfo->document_id = f_extinfo->document_id;
+ f_extinfo->document_id = 0;
+ //printf("TRANSFERRING: doc-id %d from ino %d to ino %d\n", to_extinfo->document_id, cp->c_fileid, to_cp->c_fileid);
+
+ // make sure the destination is also UF_TRACKED
+ to_cp->c_bsdflags |= UF_TRACKED;
+ cp->c_bsdflags &= ~UF_TRACKED;
+
+ // mark the cnodes dirty
+ cp->c_flag |= C_MODIFIED | C_FORCEUPDATE;
+ to_cp->c_flag |= C_MODIFIED | C_FORCEUPDATE;
+
+ int lockflags;
+ if ((error = hfs_start_transaction(hfsmp)) == 0) {
+
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_EXCLUSIVE_LOCK);
+
+ (void) cat_update(hfsmp, &cp->c_desc, &cp->c_attr, NULL, NULL);
+ (void) cat_update(hfsmp, &to_cp->c_desc, &to_cp->c_attr, NULL, NULL);
+
+ hfs_systemfile_unlock (hfsmp, lockflags);
+ (void) hfs_end_transaction(hfsmp);
+ }
+
+#if CONFIG_FSE
+ add_fsevent(FSE_DOCID_CHANGED, context,
+ FSE_ARG_DEV, hfsmp->hfs_raw_dev,
+ FSE_ARG_INO, (ino64_t)cp->c_fileid, // src inode #
+ FSE_ARG_INO, (ino64_t)to_cp->c_fileid, // dst inode #
+ FSE_ARG_INT32, to_extinfo->document_id,
+ FSE_ARG_DONE);
+
+ hfs_unlockpair(cp, to_cp); // unlock this so we can send the fsevents
+ need_unlock = 0;
+
+ if (need_fsevent(FSE_STAT_CHANGED, vp)) {
+ add_fsevent(FSE_STAT_CHANGED, context, FSE_ARG_VNODE, vp, FSE_ARG_DONE);
+ }
+ if (need_fsevent(FSE_STAT_CHANGED, to_vp)) {
+ add_fsevent(FSE_STAT_CHANGED, context, FSE_ARG_VNODE, to_vp, FSE_ARG_DONE);
+ }
+#else
+ hfs_unlockpair(cp, to_cp); // unlock this so we can send the fsevents
+ need_unlock = 0;
+#endif
+ }
+
+ if (need_unlock) {
+ hfs_unlockpair(cp, to_cp);
+ }
+
+ transfer_cleanup:
+ vnode_put(to_vp);
+ file_drop(to_fd);
+
+ return error;
+ }
+
+
+
case HFS_PREV_LINK:
case HFS_NEXT_LINK:
{
if (linkfileid < kHFSFirstUserCatalogNodeID) {
return (EINVAL);
}
- if ((error = hfs_lookuplink(hfsmp, linkfileid, &prevlinkid, &nextlinkid))) {
+ if ((error = hfs_lookup_siblinglinks(hfsmp, linkfileid, &prevlinkid, &nextlinkid))) {
return (error);
}
if (ap->a_command == HFS_NEXT_LINK) {
if (!vnode_isvroot(vp)) {
return (EINVAL);
}
+ /* file system must not be mounted read-only */
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return (EROFS);
+ }
+
return hfs_resize_progress(hfsmp, (u_int32_t *)ap->a_data);
}
if (!vnode_isvroot(vp)) {
return (EINVAL);
}
+
+ /* filesystem must not be mounted read only */
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return (EROFS);
+ }
newsize = *(u_int64_t *)ap->a_data;
cursize = (u_int64_t)hfsmp->totalBlocks * (u_int64_t)hfsmp->blockSize;
if (!vnode_isvroot(vp)) {
return (EINVAL);
}
- HFS_MOUNT_LOCK(hfsmp, TRUE);
+ hfs_lock_mount(hfsmp);
location = *(u_int32_t *)ap->a_data;
if ((location >= hfsmp->allocLimit) &&
(location != HFS_NO_UPDATE_NEXT_ALLOCATION)) {
* after metadata zone and set flag in mount structure to indicate
* that nextAllocation should not be updated again.
*/
- HFS_UPDATE_NEXT_ALLOCATION(hfsmp, hfsmp->hfs_metazone_end + 1);
+ if (hfsmp->hfs_metazone_end != 0) {
+ HFS_UPDATE_NEXT_ALLOCATION(hfsmp, hfsmp->hfs_metazone_end + 1);
+ }
hfsmp->hfs_flags |= HFS_SKIP_UPDATE_NEXT_ALLOCATION;
} else {
hfsmp->hfs_flags &= ~HFS_SKIP_UPDATE_NEXT_ALLOCATION;
}
MarkVCBDirty(hfsmp);
fail_change_next_allocation:
- HFS_MOUNT_UNLOCK(hfsmp, TRUE);
+ hfs_unlock_mount(hfsmp);
return (error);
}
-#ifdef HFS_SPARSE_DEV
+#if HFS_SPARSE_DEV
case HFS_SETBACKINGSTOREINFO: {
struct vnode * bsfs_rootvp;
struct vnode * di_vp;
struct hfs_backingstoreinfo *bsdata;
int error = 0;
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return (EROFS);
+ }
if (hfsmp->hfs_flags & HFS_HAS_SPARSE_DEVICE) {
return (EALREADY);
}
vnode_ref(bsfs_rootvp);
vnode_put(bsfs_rootvp);
+ hfs_lock_mount(hfsmp);
hfsmp->hfs_backingfs_rootvp = bsfs_rootvp;
hfsmp->hfs_flags |= HFS_HAS_SPARSE_DEVICE;
- hfsmp->hfs_sparsebandblks = bsdata->bandsize / HFSTOVCB(hfsmp)->blockSize;
- hfsmp->hfs_sparsebandblks *= 4;
+ hfsmp->hfs_sparsebandblks = bsdata->bandsize / hfsmp->blockSize * 4;
+ hfs_unlock_mount(hfsmp);
- vfs_markdependency(hfsmp->hfs_mp);
+ /* We check the MNTK_VIRTUALDEV bit instead of marking the dependent process */
+
+ /*
+ * If the sparse image is on a sparse image file (as opposed to a sparse
+ * bundle), then we may need to limit the free space to the maximum size
+ * of a file on that volume. So we query (using pathconf), and if we get
+ * a meaningful result, we cache the number of blocks for later use in
+ * hfs_freeblks().
+ */
+ hfsmp->hfs_backingfs_maxblocks = 0;
+ if (vnode_vtype(di_vp) == VREG) {
+ int terr;
+ int hostbits;
+ terr = vn_pathconf(di_vp, _PC_FILESIZEBITS, &hostbits, context);
+ if (terr == 0 && hostbits != 0 && hostbits < 64) {
+ u_int64_t hostfilesizemax = ((u_int64_t)1) << hostbits;
+
+ hfsmp->hfs_backingfs_maxblocks = hostfilesizemax / hfsmp->blockSize;
+ }
+ }
+
+ /* The free extent cache is managed differently for sparse devices.
+ * There is a window between which the volume is mounted and the
+ * device is marked as sparse, so the free extent cache for this
+ * volume is currently initialized as normal volume (sorted by block
+ * count). Reset the cache so that it will be rebuilt again
+ * for sparse device (sorted by start block).
+ */
+ ResetVCBFreeExtCache(hfsmp);
(void)vnode_put(di_vp);
file_drop(bsdata->backingfd);
kauth_cred_getuid(cred) != vfsp->f_owner) {
return (EACCES); /* must be owner of file system */
}
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return (EROFS);
+ }
+
if ((hfsmp->hfs_flags & HFS_HAS_SPARSE_DEVICE) &&
hfsmp->hfs_backingfs_rootvp) {
+ hfs_lock_mount(hfsmp);
hfsmp->hfs_flags &= ~HFS_HAS_SPARSE_DEVICE;
tmpvp = hfsmp->hfs_backingfs_rootvp;
hfsmp->hfs_backingfs_rootvp = NULLVP;
hfsmp->hfs_sparsebandblks = 0;
+ hfs_unlock_mount(hfsmp);
+
vnode_rele(tmpvp);
}
return (0);
}
#endif /* HFS_SPARSE_DEV */
- case F_FREEZE_FS: {
- struct mount *mp;
-
- if (!is_suser())
- return (EACCES);
-
- mp = vnode_mount(vp);
- hfsmp = VFSTOHFS(mp);
-
- if (!(hfsmp->jnl))
- return (ENOTSUP);
+ /* Change the next CNID stored in the VH */
+ case HFS_CHANGE_NEXTCNID: {
+ int error = 0; /* Assume success */
+ u_int32_t fileid;
+ int wraparound = 0;
+ int lockflags = 0;
- lck_rw_lock_exclusive(&hfsmp->hfs_insync);
-
- // flush things before we get started to try and prevent
- // dirty data from being paged out while we're frozen.
- // note: can't do this after taking the lock as it will
- // deadlock against ourselves.
- vnode_iterate(mp, 0, hfs_freezewrite_callback, NULL);
- hfs_global_exclusive_lock_acquire(hfsmp);
- journal_flush(hfsmp->jnl);
-
- // don't need to iterate on all vnodes, we just need to
- // wait for writes to the system files and the device vnode
- if (HFSTOVCB(hfsmp)->extentsRefNum)
- vnode_waitforwrites(HFSTOVCB(hfsmp)->extentsRefNum, 0, 0, 0, "hfs freeze");
- if (HFSTOVCB(hfsmp)->catalogRefNum)
- vnode_waitforwrites(HFSTOVCB(hfsmp)->catalogRefNum, 0, 0, 0, "hfs freeze");
- if (HFSTOVCB(hfsmp)->allocationsRefNum)
- vnode_waitforwrites(HFSTOVCB(hfsmp)->allocationsRefNum, 0, 0, 0, "hfs freeze");
- if (hfsmp->hfs_attribute_vp)
- vnode_waitforwrites(hfsmp->hfs_attribute_vp, 0, 0, 0, "hfs freeze");
- vnode_waitforwrites(hfsmp->hfs_devvp, 0, 0, 0, "hfs freeze");
-
- hfsmp->hfs_freezing_proc = current_proc();
+ if (vnode_vfsisrdonly(vp)) {
+ return (EROFS);
+ }
+ vfsp = vfs_statfs(HFSTOVFS(hfsmp));
+ if (suser(cred, NULL) &&
+ kauth_cred_getuid(cred) != vfsp->f_owner) {
+ return (EACCES); /* must be owner of file system */
+ }
+
+ fileid = *(u_int32_t *)ap->a_data;
- return (0);
+ /* Must have catalog lock excl. to advance the CNID pointer */
+ lockflags = hfs_systemfile_lock (hfsmp, SFL_CATALOG , HFS_EXCLUSIVE_LOCK);
+
+ hfs_lock_mount(hfsmp);
+
+ /* If it is less than the current next CNID, force the wraparound bit to be set */
+ if (fileid < hfsmp->vcbNxtCNID) {
+ wraparound=1;
+ }
+
+ /* Return previous value. */
+ *(u_int32_t *)ap->a_data = hfsmp->vcbNxtCNID;
+
+ hfsmp->vcbNxtCNID = fileid;
+
+ if (wraparound) {
+ hfsmp->vcbAtrb |= kHFSCatalogNodeIDsReusedMask;
+ }
+
+ MarkVCBDirty(hfsmp);
+ hfs_unlock_mount(hfsmp);
+ hfs_systemfile_unlock (hfsmp, lockflags);
+
+ return (error);
}
+
+ case F_FREEZE_FS: {
+ struct mount *mp;
+
+ mp = vnode_mount(vp);
+ hfsmp = VFSTOHFS(mp);
- case F_THAW_FS: {
- if (!is_suser())
+ if (!(hfsmp->jnl))
+ return (ENOTSUP);
+
+ vfsp = vfs_statfs(mp);
+
+ if (kauth_cred_getuid(cred) != vfsp->f_owner &&
+ !kauth_cred_issuser(cred))
return (EACCES);
- // if we're not the one who froze the fs then we
- // can't thaw it.
- if (hfsmp->hfs_freezing_proc != current_proc()) {
- return EPERM;
- }
+ return hfs_freeze(hfsmp);
+ }
- // NOTE: if you add code here, also go check the
- // code that "thaws" the fs in hfs_vnop_close()
- //
- hfsmp->hfs_freezing_proc = NULL;
- hfs_global_exclusive_lock_release(hfsmp);
- lck_rw_unlock_exclusive(&hfsmp->hfs_insync);
+ case F_THAW_FS: {
+ vfsp = vfs_statfs(vnode_mount(vp));
+ if (kauth_cred_getuid(cred) != vfsp->f_owner &&
+ !kauth_cred_issuser(cred))
+ return (EACCES);
- return (0);
+ return hfs_thaw(hfsmp, current_proc());
}
case HFS_BULKACCESS_FSCTL: {
}
if (is64bit) {
- size = sizeof(struct user_access_t);
+ size = sizeof(struct user64_access_t);
} else {
- size = sizeof(struct access_t);
+ size = sizeof(struct user32_access_t);
}
return do_bulk_access_check(hfsmp, vp, ap, size, context);
}
if (is64bit) {
- size = sizeof(struct ext_user_access_t);
+ size = sizeof(struct user64_ext_access_t);
} else {
- size = sizeof(struct ext_access_t);
+ size = sizeof(struct user32_ext_access_t);
}
return do_bulk_access_check(hfsmp, vp, ap, size, context);
}
- case HFS_SETACLSTATE: {
+ case HFS_SET_XATTREXTENTS_STATE: {
int state;
if (ap->a_data == NULL) {
return (EINVAL);
}
- vfsp = vfs_statfs(HFSTOVFS(hfsmp));
state = *(int *)ap->a_data;
+
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return (EROFS);
+ }
- // super-user can enable or disable acl's on a volume.
- // the volume owner can only enable acl's
- if (!is_suser() && (state == 0 || kauth_cred_getuid(cred) != vfsp->f_owner)) {
+ /* Super-user can enable or disable extent-based extended
+ * attribute support on a volume
+ * Note: Starting Mac OS X 10.7, extent-based extended attributes
+ * are enabled by default, so any change will be transient only
+ * till the volume is remounted.
+ */
+ if (!kauth_cred_issuser(kauth_cred_get())) {
return (EPERM);
}
if (state == 0 || state == 1)
- return hfs_set_volxattr(hfsmp, HFS_SETACLSTATE, state);
+ return hfs_set_volxattr(hfsmp, HFS_SET_XATTREXTENTS_STATE, state);
else
return (EINVAL);
}
- case HFS_SET_XATTREXTENTS_STATE: {
- int state;
+ case F_SETSTATICCONTENT: {
+ int error;
+ int enable_static = 0;
+ struct cnode *cp = NULL;
+ /*
+ * lock the cnode, decorate the cnode flag, and bail out.
+ * VFS should have already authenticated the caller for us.
+ */
+
+ if (ap->a_data) {
+ /*
+ * Note that even though ap->a_data is of type caddr_t,
+ * the fcntl layer at the syscall handler will pass in NULL
+ * or 1 depending on what the argument supplied to the fcntl
+ * was. So it is in fact correct to check the ap->a_data
+ * argument for zero or non-zero value when deciding whether or not
+ * to enable the static bit in the cnode.
+ */
+ enable_static = 1;
+ }
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return EROFS;
+ }
+ cp = VTOC(vp);
+
+ error = hfs_lock (cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
+ if (error == 0) {
+ if (enable_static) {
+ cp->c_flag |= C_SSD_STATIC;
+ }
+ else {
+ cp->c_flag &= ~C_SSD_STATIC;
+ }
+ hfs_unlock (cp);
+ }
+ return error;
+ }
+
+ case F_SET_GREEDY_MODE: {
+ int error;
+ int enable_greedy_mode = 0;
+ struct cnode *cp = NULL;
+ /*
+ * lock the cnode, decorate the cnode flag, and bail out.
+ * VFS should have already authenticated the caller for us.
+ */
+
+ if (ap->a_data) {
+ /*
+ * Note that even though ap->a_data is of type caddr_t,
+ * the fcntl layer at the syscall handler will pass in NULL
+ * or 1 depending on what the argument supplied to the fcntl
+ * was. So it is in fact correct to check the ap->a_data
+ * argument for zero or non-zero value when deciding whether or not
+ * to enable the greedy mode bit in the cnode.
+ */
+ enable_greedy_mode = 1;
+ }
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return EROFS;
+ }
+ cp = VTOC(vp);
+
+ error = hfs_lock (cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
+ if (error == 0) {
+ if (enable_greedy_mode) {
+ cp->c_flag |= C_SSD_GREEDY_MODE;
+ }
+ else {
+ cp->c_flag &= ~C_SSD_GREEDY_MODE;
+ }
+ hfs_unlock (cp);
+ }
+ return error;
+ }
+
+ case F_SETIOTYPE: {
+ int error;
+ uint32_t iotypeflag = 0;
+
+ struct cnode *cp = NULL;
+ /*
+ * lock the cnode, decorate the cnode flag, and bail out.
+ * VFS should have already authenticated the caller for us.
+ */
if (ap->a_data == NULL) {
- return (EINVAL);
+ return EINVAL;
}
- state = *(int *)ap->a_data;
+ /*
+ * Note that even though ap->a_data is of type caddr_t, we
+ * can only use 32 bits of flag values.
+ */
+ iotypeflag = (uint32_t) ap->a_data;
+ switch (iotypeflag) {
+ case F_IOTYPE_ISOCHRONOUS:
+ break;
+ default:
+ return EINVAL;
+ }
- /* Super-user can enable or disable extent-based extended
- * attribute support on a volume
+
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return EROFS;
+ }
+ cp = VTOC(vp);
+
+ error = hfs_lock (cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
+ if (error == 0) {
+ switch (iotypeflag) {
+ case F_IOTYPE_ISOCHRONOUS:
+ cp->c_flag |= C_IO_ISOCHRONOUS;
+ break;
+ default:
+ break;
+ }
+ hfs_unlock (cp);
+ }
+ return error;
+ }
+
+ case F_MAKECOMPRESSED: {
+ int error = 0;
+ uint32_t gen_counter;
+ struct cnode *cp = NULL;
+ int reset_decmp = 0;
+
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return EROFS;
+ }
+
+ /*
+ * acquire & lock the cnode.
+ * VFS should have already authenticated the caller for us.
*/
- if (!is_suser()) {
- return (EPERM);
+
+ if (ap->a_data) {
+ /*
+ * Cast the pointer into a uint32_t so we can extract the
+ * supplied generation counter.
+ */
+ gen_counter = *((uint32_t*)ap->a_data);
}
- if (state == 0 || state == 1)
- return hfs_set_volxattr(hfsmp, HFS_SET_XATTREXTENTS_STATE, state);
- else
- return (EINVAL);
+ else {
+ return EINVAL;
+ }
+
+#if HFS_COMPRESSION
+ cp = VTOC(vp);
+ /* Grab truncate lock first; we may truncate the file */
+ hfs_lock_truncate (cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
+
+ error = hfs_lock (cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
+ if (error) {
+ hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
+ return error;
+ }
+
+ /* Are there any other usecounts/FDs? */
+ if (vnode_isinuse(vp, 1)) {
+ hfs_unlock(cp);
+ hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
+ return EBUSY;
+ }
+
+ /* now we have the cnode locked down; Validate arguments */
+ if (cp->c_attr.ca_flags & (UF_IMMUTABLE | UF_COMPRESSED)) {
+ /* EINVAL if you are trying to manipulate an IMMUTABLE file */
+ hfs_unlock(cp);
+ hfs_unlock_truncate (cp, HFS_LOCK_DEFAULT);
+ return EINVAL;
+ }
+
+ if ((hfs_get_gencount (cp)) == gen_counter) {
+ /*
+ * OK, the gen_counter matched. Go for it:
+ * Toggle state bits, truncate file, and suppress mtime update
+ */
+ reset_decmp = 1;
+ cp->c_bsdflags |= UF_COMPRESSED;
+
+ error = hfs_truncate(vp, 0, IO_NDELAY, HFS_TRUNCATE_SKIPTIMES,
+ ap->a_context);
+ }
+ else {
+ error = ESTALE;
+ }
+
+ /* Unlock cnode before executing decmpfs ; they may need to get an EA */
+ hfs_unlock(cp);
+
+ /*
+ * Reset the decmp state while still holding the truncate lock. We need to
+ * serialize here against a listxattr on this node which may occur at any
+ * time.
+ *
+ * Even if '0/skiplock' is passed in 2nd argument to hfs_file_is_compressed,
+ * that will still potentially require getting the com.apple.decmpfs EA. If the
+ * EA is required, then we can't hold the cnode lock, because the getxattr call is
+ * generic(through VFS), and can't pass along any info telling it that we're already
+ * holding it (the lock). If we don't serialize, then we risk listxattr stopping
+ * and trying to fill in the hfs_file_is_compressed info during the callback
+ * operation, which will result in deadlock against the b-tree node.
+ *
+ * So, to serialize against listxattr (which will grab buf_t meta references on
+ * the b-tree blocks), we hold the truncate lock as we're manipulating the
+ * decmpfs payload.
+ */
+ if ((reset_decmp) && (error == 0)) {
+ decmpfs_cnode *dp = VTOCMP (vp);
+ if (dp != NULL) {
+ decmpfs_cnode_set_vnode_state(dp, FILE_TYPE_UNKNOWN, 0);
+ }
+
+ /* Initialize the decmpfs node as needed */
+ (void) hfs_file_is_compressed (cp, 0); /* ok to take lock */
+ }
+
+ hfs_unlock_truncate (cp, HFS_LOCK_DEFAULT);
+
+#endif
+ return error;
+ }
+
+ case F_SETBACKINGSTORE: {
+
+ int error = 0;
+
+ /*
+ * See comment in F_SETSTATICCONTENT re: using
+ * a null check for a_data
+ */
+ if (ap->a_data) {
+ error = hfs_set_backingstore (vp, 1);
+ }
+ else {
+ error = hfs_set_backingstore (vp, 0);
+ }
+
+ return error;
+ }
+
+ case F_GETPATH_MTMINFO: {
+ int error = 0;
+
+ int *data = (int*) ap->a_data;
+
+ /* Ask if this is a backingstore vnode */
+ error = hfs_is_backingstore (vp, data);
+
+ return error;
}
case F_FULLFSYNC: {
int error;
-
- error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK);
+
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return (EROFS);
+ }
+ error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
if (error == 0) {
error = hfs_fsync(vp, MNT_WAIT, TRUE, p);
hfs_unlock(VTOC(vp));
if (!vnode_isreg(vp))
return EINVAL;
- error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK);
+ error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
if (error == 0) {
cp = VTOC(vp);
/*
fp = VTOF(vp);
/* Protect against a size change. */
- hfs_lock_truncate(VTOC(vp), TRUE);
-
+ hfs_lock_truncate(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
+
+#if HFS_COMPRESSION
+ if (compressed && (uncompressed_size == -1)) {
+ /* fetching the uncompressed size failed above, so return the error */
+ error = decmpfs_error;
+ } else if ((compressed && (ra->ra_offset >= uncompressed_size)) ||
+ (!compressed && (ra->ra_offset >= fp->ff_size))) {
+ error = EFBIG;
+ }
+#else /* HFS_COMPRESSION */
if (ra->ra_offset >= fp->ff_size) {
error = EFBIG;
- } else {
+ }
+#endif /* HFS_COMPRESSION */
+ else {
error = advisory_read(vp, fp->ff_size, ra->ra_offset, ra->ra_count);
}
- hfs_unlock_truncate(VTOC(vp), TRUE);
+ hfs_unlock_truncate(VTOC(vp), HFS_LOCK_DEFAULT);
return (error);
}
- case F_READBOOTSTRAP:
- case F_WRITEBOOTSTRAP:
- {
- struct vnode *devvp = NULL;
- user_fbootstraptransfer_t *user_bootstrapp;
- int devBlockSize;
- int error;
- uio_t auio;
- daddr64_t blockNumber;
- u_long blockOffset;
- u_long xfersize;
- struct buf *bp;
- user_fbootstraptransfer_t user_bootstrap;
-
- if (!vnode_isvroot(vp))
- return (EINVAL);
- /* LP64 - when caller is a 64 bit process then we are passed a pointer
- * to a user_fbootstraptransfer_t else we get a pointer to a
- * fbootstraptransfer_t which we munge into a user_fbootstraptransfer_t
- */
- if (is64bit) {
- user_bootstrapp = (user_fbootstraptransfer_t *)ap->a_data;
- }
- else {
- fbootstraptransfer_t *bootstrapp = (fbootstraptransfer_t *)ap->a_data;
- user_bootstrapp = &user_bootstrap;
- user_bootstrap.fbt_offset = bootstrapp->fbt_offset;
- user_bootstrap.fbt_length = bootstrapp->fbt_length;
- user_bootstrap.fbt_buffer = CAST_USER_ADDR_T(bootstrapp->fbt_buffer);
- }
- if (user_bootstrapp->fbt_offset + user_bootstrapp->fbt_length > 1024)
- return EINVAL;
-
- devvp = VTOHFS(vp)->hfs_devvp;
- auio = uio_create(1, user_bootstrapp->fbt_offset,
- is64bit ? UIO_USERSPACE64 : UIO_USERSPACE32,
- (ap->a_command == F_WRITEBOOTSTRAP) ? UIO_WRITE : UIO_READ);
- uio_addiov(auio, user_bootstrapp->fbt_buffer, user_bootstrapp->fbt_length);
-
- devBlockSize = vfs_devblocksize(vnode_mount(vp));
-
- while (uio_resid(auio) > 0) {
- blockNumber = uio_offset(auio) / devBlockSize;
- error = (int)buf_bread(devvp, blockNumber, devBlockSize, cred, &bp);
- if (error) {
- if (bp) buf_brelse(bp);
- uio_free(auio);
- return error;
- };
-
- blockOffset = uio_offset(auio) % devBlockSize;
- xfersize = devBlockSize - blockOffset;
- error = uiomove((caddr_t)buf_dataptr(bp) + blockOffset, (int)xfersize, auio);
- if (error) {
- buf_brelse(bp);
- uio_free(auio);
- return error;
- };
- if (uio_rw(auio) == UIO_WRITE) {
- error = VNOP_BWRITE(bp);
- if (error) {
- uio_free(auio);
- return error;
- }
- } else {
- buf_brelse(bp);
- };
- };
- uio_free(auio);
- };
- return 0;
-
case _IOC(IOC_OUT,'h', 4, 0): /* Create date in local time */
{
if (is64bit) {
*(user_time_t *)(ap->a_data) = (user_time_t) (to_bsd_time(VTOVCB(vp)->localCreateDate));
}
else {
- *(time_t *)(ap->a_data) = to_bsd_time(VTOVCB(vp)->localCreateDate);
+ *(user32_time_t *)(ap->a_data) = (user32_time_t) (to_bsd_time(VTOVCB(vp)->localCreateDate));
}
return 0;
}
- case HFS_GET_MOUNT_TIME:
- return copyout(&hfsmp->hfs_mount_time, CAST_USER_ADDR_T(ap->a_data), sizeof(hfsmp->hfs_mount_time));
+ case SPOTLIGHT_FSCTL_GET_MOUNT_TIME:
+ *(uint32_t *)ap->a_data = hfsmp->hfs_mount_time;
break;
- case HFS_GET_LAST_MTIME:
- return copyout(&hfsmp->hfs_last_mounted_mtime, CAST_USER_ADDR_T(ap->a_data), sizeof(hfsmp->hfs_last_mounted_mtime));
+ case SPOTLIGHT_FSCTL_GET_LAST_MTIME:
+ *(uint32_t *)ap->a_data = hfsmp->hfs_last_mounted_mtime;
+ break;
+
+ case HFS_FSCTL_GET_VERY_LOW_DISK:
+ *(uint32_t*)ap->a_data = hfsmp->hfs_freespace_notify_dangerlimit;
+ break;
+
+ case HFS_FSCTL_SET_VERY_LOW_DISK:
+ if (*(uint32_t *)ap->a_data >= hfsmp->hfs_freespace_notify_warninglimit) {
+ return EINVAL;
+ }
+
+ hfsmp->hfs_freespace_notify_dangerlimit = *(uint32_t *)ap->a_data;
+ break;
+
+ case HFS_FSCTL_GET_LOW_DISK:
+ *(uint32_t*)ap->a_data = hfsmp->hfs_freespace_notify_warninglimit;
+ break;
+
+ case HFS_FSCTL_SET_LOW_DISK:
+ if ( *(uint32_t *)ap->a_data >= hfsmp->hfs_freespace_notify_desiredlevel
+ || *(uint32_t *)ap->a_data <= hfsmp->hfs_freespace_notify_dangerlimit) {
+
+ return EINVAL;
+ }
+
+ hfsmp->hfs_freespace_notify_warninglimit = *(uint32_t *)ap->a_data;
+ break;
+
+ case HFS_FSCTL_GET_DESIRED_DISK:
+ *(uint32_t*)ap->a_data = hfsmp->hfs_freespace_notify_desiredlevel;
+ break;
+
+ case HFS_FSCTL_SET_DESIRED_DISK:
+ if (*(uint32_t *)ap->a_data <= hfsmp->hfs_freespace_notify_warninglimit) {
+ return EINVAL;
+ }
+
+ hfsmp->hfs_freespace_notify_desiredlevel = *(uint32_t *)ap->a_data;
+ break;
+
+ case HFS_VOLUME_STATUS:
+ *(uint32_t *)ap->a_data = hfsmp->hfs_notification_conditions;
break;
case HFS_SET_BOOT_INFO:
return(EINVAL);
if (!kauth_cred_issuser(cred) && (kauth_cred_getuid(cred) != vfs_statfs(HFSTOVFS(hfsmp))->f_owner))
return(EACCES); /* must be superuser or owner of filesystem */
- HFS_MOUNT_LOCK(hfsmp, TRUE);
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return (EROFS);
+ }
+ hfs_lock_mount (hfsmp);
bcopy(ap->a_data, &hfsmp->vcbFndrInfo, sizeof(hfsmp->vcbFndrInfo));
- HFS_MOUNT_UNLOCK(hfsmp, TRUE);
+ hfs_unlock_mount (hfsmp);
(void) hfs_flushvolumeheader(hfsmp, MNT_WAIT, 0);
break;
case HFS_GET_BOOT_INFO:
if (!vnode_isvroot(vp))
return(EINVAL);
- HFS_MOUNT_LOCK(hfsmp, TRUE);
+ hfs_lock_mount (hfsmp);
bcopy(&hfsmp->vcbFndrInfo, ap->a_data, sizeof(hfsmp->vcbFndrInfo));
- HFS_MOUNT_UNLOCK(hfsmp, TRUE);
+ hfs_unlock_mount(hfsmp);
break;
case HFS_MARK_BOOT_CORRUPT:
* kHFSVolumeInconsistentBit in the volume header. This will
* force fsck_hfs on next mount.
*/
- if (!is_suser()) {
- return EACCES;
+ if (!kauth_cred_issuser(kauth_cred_get())) {
+ return EACCES;
+ }
+
+ /* Allowed only on the root vnode of the boot volume */
+ if (!(vfs_flags(HFSTOVFS(hfsmp)) & MNT_ROOTFS) ||
+ !vnode_isvroot(vp)) {
+ return EINVAL;
+ }
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return (EROFS);
+ }
+ printf ("hfs_vnop_ioctl: Marking the boot volume corrupt.\n");
+ hfs_mark_inconsistent(hfsmp, HFS_FSCK_FORCED);
+ break;
+
+ case HFS_FSCTL_GET_JOURNAL_INFO:
+ jip = (struct hfs_journal_info*)ap->a_data;
+
+ if (vp == NULLVP)
+ return EINVAL;
+
+ if (hfsmp->jnl == NULL) {
+ jnl_start = 0;
+ jnl_size = 0;
+ } else {
+ jnl_start = (off_t)(hfsmp->jnl_start * HFSTOVCB(hfsmp)->blockSize) + (off_t)HFSTOVCB(hfsmp)->hfsPlusIOPosOffset;
+ jnl_size = (off_t)hfsmp->jnl_size;
+ }
+
+ jip->jstart = jnl_start;
+ jip->jsize = jnl_size;
+ break;
+
+ case HFS_SET_ALWAYS_ZEROFILL: {
+ struct cnode *cp = VTOC(vp);
+
+ if (*(int *)ap->a_data) {
+ cp->c_flag |= C_ALWAYS_ZEROFILL;
+ } else {
+ cp->c_flag &= ~C_ALWAYS_ZEROFILL;
+ }
+ break;
+ }
+
+ case HFS_DISABLE_METAZONE: {
+ /* Only root can disable metadata zone */
+ if (!kauth_cred_issuser(kauth_cred_get())) {
+ return EACCES;
+ }
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return (EROFS);
+ }
+
+ /* Disable metadata zone now */
+ (void) hfs_metadatazone_init(hfsmp, true);
+ printf ("hfs: Disabling metadata zone on %s\n", hfsmp->vcbVN);
+ break;
+ }
+
+
+ case HFS_FSINFO_METADATA_BLOCKS: {
+ int error;
+ struct hfsinfo_metadata *hinfo;
+
+ hinfo = (struct hfsinfo_metadata *)ap->a_data;
+
+ /* Get information about number of metadata blocks */
+ error = hfs_getinfo_metadata_blocks(hfsmp, hinfo);
+ if (error) {
+ return error;
+ }
+
+ break;
+ }
+
+ case HFS_GET_FSINFO: {
+ hfs_fsinfo *fsinfo = (hfs_fsinfo *)ap->a_data;
+
+ /* Only root is allowed to get fsinfo */
+ if (!kauth_cred_issuser(kauth_cred_get())) {
+ return EACCES;
+ }
+
+ /*
+ * Make sure that the caller's version number matches with
+ * the kernel's version number. This will make sure that
+ * if the structures being read/written into are changed
+ * by the kernel, the caller will not read incorrect data.
+ *
+ * The first three fields --- request_type, version and
+ * flags are same for all the hfs_fsinfo structures, so
+ * we can access the version number by assuming any
+ * structure for now.
+ */
+ if (fsinfo->header.version != HFS_FSINFO_VERSION) {
+ return ENOTSUP;
+ }
+
+ /* Make sure that the current file system is not marked inconsistent */
+ if (hfsmp->vcbAtrb & kHFSVolumeInconsistentMask) {
+ return EIO;
+ }
+
+ return hfs_get_fsinfo(hfsmp, ap->a_data);
+ }
+
+ case HFS_CS_FREESPACE_TRIM: {
+ int error = 0;
+ int lockflags = 0;
+
+ /* Only root allowed */
+ if (!kauth_cred_issuser(kauth_cred_get())) {
+ return EACCES;
+ }
+
+ /*
+ * This core functionality is similar to hfs_scan_blocks().
+ * The main difference is that hfs_scan_blocks() is called
+ * as part of mount where we are assured that the journal is
+ * empty to start with. This fcntl() can be called on a
+ * mounted volume, therefore it has to flush the content of
+ * the journal as well as ensure the state of summary table.
+ *
+ * This fcntl scans over the entire allocation bitmap,
+ * creates list of all the free blocks, and issues TRIM
+ * down to the underlying device. This can take long time
+ * as it can generate up to 512MB of read I/O.
+ */
+
+ if ((hfsmp->hfs_flags & HFS_SUMMARY_TABLE) == 0) {
+ error = hfs_init_summary(hfsmp);
+ if (error) {
+ printf("hfs: fsctl() could not initialize summary table for %s\n", hfsmp->vcbVN);
+ return error;
+ }
+ }
+
+ /*
+ * The journal maintains list of recently deallocated blocks to
+ * issue DKIOCUNMAPs when the corresponding journal transaction is
+ * flushed to the disk. To avoid any race conditions, we only
+ * want one active trim list and only one thread issuing DKIOCUNMAPs.
+ * Therefore we make sure that the journal trim list is sync'ed,
+ * empty, and not modifiable for the duration of our scan.
+ *
+ * Take the journal lock before flushing the journal to the disk.
+ * We will keep on holding the journal lock till we don't get the
+ * bitmap lock to make sure that no new journal transactions can
+ * start. This will make sure that the journal trim list is not
+ * modified after the journal flush and before getting bitmap lock.
+ * We can release the journal lock after we acquire the bitmap
+ * lock as it will prevent any further block deallocations.
+ */
+ hfs_journal_lock(hfsmp);
+
+ /* Flush the journal and wait for all I/Os to finish up */
+ error = hfs_journal_flush(hfsmp, TRUE);
+ if (error) {
+ hfs_journal_unlock(hfsmp);
+ return error;
+ }
+
+ /* Take bitmap lock to ensure it is not being modified */
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
+
+ /* Release the journal lock */
+ hfs_journal_unlock(hfsmp);
+
+ /*
+ * ScanUnmapBlocks reads the bitmap in large block size
+ * (up to 1MB) unlike the runtime which reads the bitmap
+ * in the 4K block size. This can cause buf_t collisions
+ * and potential data corruption. To avoid this, we
+ * invalidate all the existing buffers associated with
+ * the bitmap vnode before scanning it.
+ *
+ * Note: ScanUnmapBlock() cleans up all the buffers
+ * after itself, so there won't be any large buffers left
+ * for us to clean up after it returns.
+ */
+ error = buf_invalidateblks(hfsmp->hfs_allocation_vp, 0, 0, 0);
+ if (error) {
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ return error;
}
-
- /* Allowed only on the root vnode of the boot volume */
- if (!(vfs_flags(HFSTOVFS(hfsmp)) & MNT_ROOTFS) ||
- !vnode_isvroot(vp)) {
- return EINVAL;
+
+ /* Traverse bitmap and issue DKIOCUNMAPs */
+ error = ScanUnmapBlocks(hfsmp);
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ if (error) {
+ return error;
}
- printf ("hfs_vnop_ioctl: Marking the boot volume corrupt.\n");
- hfs_mark_volume_inconsistent(hfsmp);
break;
+ }
default:
return (ENOTTY);
}
- /* Should never get here */
return 0;
}
int started_tr = 0;
int tooklock = 0;
+#if HFS_COMPRESSION
+ if (VNODE_IS_RSRC(vp)) {
+ /* allow blockmaps to the resource fork */
+ } else {
+ if ( hfs_file_is_compressed(VTOC(vp), 1) ) { /* 1 == don't take the cnode lock */
+ int state = decmpfs_cnode_get_vnode_state(VTOCMP(vp));
+ switch(state) {
+ case FILE_IS_COMPRESSED:
+ return ENOTSUP;
+ case FILE_IS_CONVERTING:
+ /* if FILE_IS_CONVERTING, we allow blockmap */
+ break;
+ default:
+ printf("invalid state %d for compressed file\n", state);
+ /* fall through */
+ }
+ }
+ }
+#endif /* HFS_COMPRESSION */
+
/* Do not allow blockmap operation on a directory */
if (vnode_isdir(vp)) {
return (ENOTSUP);
if ( !vnode_issystem(vp) && !vnode_islnk(vp) && !vnode_isswap(vp)) {
if (VTOC(vp)->c_lockowner != current_thread()) {
- hfs_lock(VTOC(vp), HFS_FORCE_LOCK);
+ hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
tooklock = 1;
}
}
cp->c_blocks += loanedBlocks;
fp->ff_blocks += loanedBlocks;
- HFS_MOUNT_LOCK(hfsmp, TRUE);
+ hfs_lock_mount (hfsmp);
hfsmp->loanedBlocks += loanedBlocks;
- HFS_MOUNT_UNLOCK(hfsmp, TRUE);
+ hfs_unlock_mount (hfsmp);
hfs_systemfile_unlock(hfsmp, lockflags);
cp->c_flag |= C_MODIFIED;
}
/* Validate if the start offset is within logical file size */
- if (ap->a_foffset > fp->ff_size) {
- goto exit;
+ if (ap->a_foffset >= fp->ff_size) {
+ goto exit;
}
- /* Searching file extents has failed for read operation, therefore
- * search rangelist for any uncommitted holes in the file.
+ /*
+ * At this point, we have encountered a failure during
+ * MapFileBlockC that resulted in ERANGE, and we are not servicing
+ * a write, and there are borrowed blocks.
+ *
+ * However, the cluster layer will not call blockmap for
+ * blocks that are borrowed and in-cache. We have to assume that
+ * because we observed ERANGE being emitted from MapFileBlockC, this
+ * extent range is not valid on-disk. So we treat this as a
+ * mapping that needs to be zero-filled prior to reading.
+ *
+ * Note that under certain circumstances (such as non-contiguous
+ * userland VM mappings in the calling process), cluster_io
+ * may be forced to split a large I/O driven by hfs_vnop_write
+ * into multiple sub-I/Os that necessitate a RMW cycle. If this is
+ * the case here, then we have already removed the invalid range list
+ * mapping prior to getting to this blockmap call, so we should not
+ * search the invalid rangelist for this byte range.
*/
- overlaptype = rl_scan(&fp->ff_invalidranges, ap->a_foffset,
- ap->a_foffset + (off_t)(ap->a_size - 1),
- &invalid_range);
- switch(overlaptype) {
- case RL_OVERLAPISCONTAINED:
- /* start_offset <= rl_start, end_offset >= rl_end */
- if (ap->a_foffset != invalid_range->rl_start) {
- break;
- }
- case RL_MATCHINGOVERLAP:
- /* start_offset = rl_start, end_offset = rl_end */
- case RL_OVERLAPCONTAINSRANGE:
- /* start_offset >= rl_start, end_offset <= rl_end */
- case RL_OVERLAPSTARTSBEFORE:
- /* start_offset > rl_start, end_offset >= rl_start */
- if ((off_t)fp->ff_size > (invalid_range->rl_end + 1)) {
- bytesContAvail = (invalid_range->rl_end + 1) - ap->a_foffset;
- } else {
- bytesContAvail = fp->ff_size - ap->a_foffset;
- }
- if (bytesContAvail > ap->a_size) {
- bytesContAvail = ap->a_size;
- }
- *ap->a_bpn = (daddr64_t)-1;
- retval = 0;
- break;
- case RL_OVERLAPENDSAFTER:
- /* start_offset < rl_start, end_offset < rl_end */
- case RL_NOOVERLAP:
- break;
+
+ bytesContAvail = fp->ff_size - ap->a_foffset;
+ /*
+ * Clip the contiguous available bytes to, at most, the allowable
+ * maximum or the amount requested.
+ */
+
+ if (bytesContAvail > ap->a_size) {
+ bytesContAvail = ap->a_size;
}
+
+ *ap->a_bpn = (daddr64_t) -1;
+ retval = 0;
+
goto exit;
}
* end of this range and the file's EOF):
*/
if (((off_t)fp->ff_size > (invalid_range->rl_end + 1)) &&
- (invalid_range->rl_end + 1 - ap->a_foffset < bytesContAvail)) {
+ ((size_t)(invalid_range->rl_end + 1 - ap->a_foffset) < bytesContAvail)) {
bytesContAvail = invalid_range->rl_end + 1 - ap->a_foffset;
}
break;
/* There's actually no valid information to be had starting here: */
*ap->a_bpn = (daddr64_t)-1;
if (((off_t)fp->ff_size > (invalid_range->rl_end + 1)) &&
- (invalid_range->rl_end + 1 - ap->a_foffset < bytesContAvail)) {
+ ((size_t)(invalid_range->rl_end + 1 - ap->a_foffset) < bytesContAvail)) {
bytesContAvail = invalid_range->rl_end + 1 - ap->a_foffset;
}
} else {
return (MacToVFSError(retval));
}
-
/*
* prepare and issue the I/O
* buf_strategy knows how to deal
{
buf_t bp = ap->a_bp;
vnode_t vp = buf_vnode(bp);
+ int error = 0;
+
+ /* Mark buffer as containing static data if cnode flag set */
+ if (VTOC(vp)->c_flag & C_SSD_STATIC) {
+ buf_markstatic(bp);
+ }
+
+ /* Mark buffer as containing static data if cnode flag set */
+ if (VTOC(vp)->c_flag & C_SSD_GREEDY_MODE) {
+ bufattr_markgreedymode(&bp->b_attr);
+ }
- return (buf_strategy(VTOHFS(vp)->hfs_devvp, ap));
+ /* mark buffer as containing burst mode data if cnode flag set */
+ if (VTOC(vp)->c_flag & C_IO_ISOCHRONOUS) {
+ bufattr_markisochronous(&bp->b_attr);
+ }
+
+#if CONFIG_PROTECT
+ cnode_t *cp = NULL;
+
+ if ((!bufattr_rawencrypted(&bp->b_attr)) &&
+ ((cp = cp_get_protected_cnode(vp)) != NULL)) {
+ /*
+ * We rely upon the truncate lock to protect the
+ * CP cache key from getting tossed prior to our IO finishing here.
+ * Nearly all cluster io calls to manipulate file payload from HFS
+ * take the truncate lock before calling into the cluster
+ * layer to ensure the file size does not change, or that they
+ * have exclusive right to change the EOF of the file.
+ * That same guarantee protects us here since the code that
+ * deals with CP lock events must now take the truncate lock
+ * before doing anything.
+ *
+ * There is 1 exception here:
+ * 1) One exception should be the VM swapfile IO, because HFS will
+ * funnel the VNOP_PAGEOUT directly into a cluster_pageout call for the
+ * swapfile code only without holding the truncate lock. This is because
+ * individual swapfiles are maintained at fixed-length sizes by the VM code.
+ * In non-swapfile IO we use PAGEOUT_V2 semantics which allow us to
+ * create our own UPL and thus take the truncate lock before calling
+ * into the cluster layer. In that case, however, we are not concerned
+ * with the CP blob being wiped out in the middle of the IO
+ * because there isn't anything to toss; the VM swapfile key stays
+ * in-core as long as the file is open.
+ */
+
+
+ /*
+ * Last chance: If this data protected I/O does not have unwrapped keys
+ * present, then try to get them. We already know that it should, by this point.
+ */
+ if (cp->c_cpentry->cp_flags & (CP_KEY_FLUSHED | CP_NEEDS_KEYS)) {
+ int io_op = ( (buf_flags(bp) & B_READ) ? CP_READ_ACCESS : CP_WRITE_ACCESS);
+ if ((error = cp_handle_vnop(vp, io_op, 0)) != 0) {
+ /*
+ * We have to be careful here. By this point in the I/O path, VM or the cluster
+ * engine has prepared a buf_t with the proper file offsets and all the rest,
+ * so simply erroring out will result in us leaking this particular buf_t.
+ * We need to properly decorate the buf_t just as buf_strategy would so as
+ * to make it appear that the I/O errored out with the particular error code.
+ */
+ buf_seterror (bp, error);
+ buf_biodone(bp);
+ return error;
+ }
+ }
+
+ /*
+ *NB:
+ * For filesystem resize, we may not have access to the underlying
+ * file's cache key for whatever reason (device may be locked). However,
+ * we do not need it since we are going to use the temporary HFS-wide resize key
+ * which is generated once we start relocating file content. If this file's I/O
+ * should be done using the resize key, it will have been supplied already, so
+ * do not attach the file's cp blob to the buffer.
+ */
+ if ((cp->c_cpentry->cp_flags & CP_RELOCATION_INFLIGHT) == 0) {
+ buf_setcpaddr(bp, cp->c_cpentry);
+ }
+ }
+#endif /* CONFIG_PROTECT */
+
+ error = buf_strategy(VTOHFS(vp)->hfs_devvp, ap);
+
+ return error;
}
+static int
+hfs_minorupdate(struct vnode *vp) {
+ struct cnode *cp = VTOC(vp);
+ cp->c_flag &= ~C_MODIFIED;
+ cp->c_touch_acctime = 0;
+ cp->c_touch_chgtime = 0;
+ cp->c_touch_modtime = 0;
+
+ return 0;
+}
-static int
-do_hfs_truncate(struct vnode *vp, off_t length, int flags, vfs_context_t context)
+int
+do_hfs_truncate(struct vnode *vp, off_t length, int flags, int truncateflags, vfs_context_t context)
{
register struct cnode *cp = VTOC(vp);
struct filefork *fp = VTOF(vp);
- struct proc *p = vfs_context_proc(context);;
kauth_cred_t cred = vfs_context_ucred(context);
int retval;
off_t bytesToAdd;
off_t actualBytesAdded;
off_t filebytes;
- u_long fileblocks;
+ u_int32_t fileblocks;
int blksize;
struct hfsmount *hfsmp;
int lockflags;
+ int skipupdate = (truncateflags & HFS_TRUNCATE_SKIPUPDATE);
+ int suppress_times = (truncateflags & HFS_TRUNCATE_SKIPTIMES);
blksize = VTOVCB(vp)->blockSize;
fileblocks = fp->ff_blocks;
filebytes = (off_t)fileblocks * (off_t)blksize;
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 7)) | DBG_FUNC_START,
+ KERNEL_DEBUG(HFSDBG_TRUNCATE | DBG_FUNC_START,
(int)length, (int)fp->ff_size, (int)filebytes, 0, 0);
if (length < 0)
*/
if (length > filebytes) {
int eflags;
- u_long blockHint = 0;
+ u_int32_t blockHint = 0;
/* All or nothing and don't round up to clumpsize. */
eflags = kEFAllMask | kEFNoClumpMask;
- if (cred && suser(cred, NULL) != 0)
+ if (cred && (suser(cred, NULL) != 0)) {
eflags |= kEFReserveMask; /* keep a reserve */
+ }
/*
* Allocate Journal and Quota files in metadata zone.
lockflags |= SFL_EXTENTS;
lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK);
+ /*
+ * Keep growing the file as long as the current EOF is
+ * less than the desired value.
+ */
while ((length > filebytes) && (retval == E_NONE)) {
bytesToAdd = length - filebytes;
retval = MacToVFSError(ExtendFileC(VTOVCB(vp),
hfs_systemfile_unlock(hfsmp, lockflags);
if (hfsmp->jnl) {
- (void) hfs_update(vp, TRUE);
- (void) hfs_volupdate(hfsmp, VOL_UPDATE, 0);
+ if (skipupdate) {
+ (void) hfs_minorupdate(vp);
+ }
+ else {
+ (void) hfs_update(vp, TRUE);
+ (void) hfs_volupdate(hfsmp, VOL_UPDATE, 0);
+ }
}
hfs_end_transaction(hfsmp);
if (retval)
goto Err_Exit;
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 7)) | DBG_FUNC_NONE,
+ KERNEL_DEBUG(HFSDBG_TRUNCATE | DBG_FUNC_NONE,
(int)length, (int)fp->ff_size, (int)filebytes, 0, 0);
}
- if (!(flags & IO_NOZEROFILL)) {
+ if (ISSET(flags, IO_NOZEROFILL)) {
+ // An optimisation for the hibernation file
+ if (vnode_isswap(vp))
+ rl_remove_all(&fp->ff_invalidranges);
+ } else {
if (UBCINFOEXISTS(vp) && (vnode_issystem(vp) == 0) && retval == E_NONE) {
struct rl_entry *invalid_range;
off_t zero_limit;
retval = cluster_write(vp, (struct uio *) 0, fp->ff_size, zero_limit,
fp->ff_size, (off_t)0,
(flags & IO_SYNC) | IO_HEADZEROFILL | IO_NOZERODIRTY);
- hfs_lock(cp, HFS_FORCE_LOCK);
+ hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
if (retval) goto Err_Exit;
/* Merely invalidate the remaining area, if necessary: */
panic("hfs_truncate: invoked on non-UBC object?!");
};
}
- cp->c_touch_modtime = TRUE;
+ if (suppress_times == 0) {
+ cp->c_touch_modtime = TRUE;
+ }
fp->ff_size = length;
} else { /* Shorten the size of the file */
- if ((off_t)fp->ff_size > length) {
+ // An optimisation for the hibernation file
+ if (ISSET(flags, IO_NOZEROFILL) && vnode_isswap(vp)) {
+ rl_remove_all(&fp->ff_invalidranges);
+ } else if ((off_t)fp->ff_size > length) {
/* Any space previously marked as invalid is now irrelevant: */
rl_remove(length, fp->ff_size - 1, &fp->ff_invalidranges);
}
u_int32_t finalblks;
u_int32_t loanedBlocks;
- HFS_MOUNT_LOCK(hfsmp, TRUE);
-
+ hfs_lock_mount(hfsmp);
loanedBlocks = fp->ff_unallocblocks;
cp->c_blocks -= loanedBlocks;
fp->ff_blocks -= loanedBlocks;
cp->c_blocks += loanedBlocks;
fp->ff_blocks += loanedBlocks;
}
- HFS_MOUNT_UNLOCK(hfsmp, TRUE);
+ hfs_unlock_mount (hfsmp);
}
- /*
- * For a TBE process the deallocation of the file blocks is
- * delayed until the file is closed. And hfs_close calls
- * truncate with the IO_NDELAY flag set. So when IO_NDELAY
- * isn't set, we make sure this isn't a TBE process.
- */
- if ((flags & IO_NDELAY) || (proc_tbe(p) == 0)) {
#if QUOTA
- off_t savedbytes = ((off_t)fp->ff_blocks * (off_t)blksize);
+ off_t savedbytes = ((off_t)fp->ff_blocks * (off_t)blksize);
#endif /* QUOTA */
- if (hfs_start_transaction(hfsmp) != 0) {
- retval = EINVAL;
- goto Err_Exit;
- }
+ if (hfs_start_transaction(hfsmp) != 0) {
+ retval = EINVAL;
+ goto Err_Exit;
+ }
- if (fp->ff_unallocblocks == 0) {
- /* Protect extents b-tree and allocation bitmap */
- lockflags = SFL_BITMAP;
- if (overflow_extents(fp))
- lockflags |= SFL_EXTENTS;
- lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK);
+ if (fp->ff_unallocblocks == 0) {
+ /* Protect extents b-tree and allocation bitmap */
+ lockflags = SFL_BITMAP;
+ if (overflow_extents(fp))
+ lockflags |= SFL_EXTENTS;
+ lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK);
- retval = MacToVFSError(TruncateFileC(VTOVCB(vp),
- (FCB*)fp, length, false));
+ retval = MacToVFSError(TruncateFileC(VTOVCB(vp), (FCB*)fp, length, 0,
+ FORK_IS_RSRC (fp), FTOC(fp)->c_fileid, false));
- hfs_systemfile_unlock(hfsmp, lockflags);
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ }
+ if (hfsmp->jnl) {
+ if (retval == 0) {
+ fp->ff_size = length;
}
- if (hfsmp->jnl) {
- if (retval == 0) {
- fp->ff_size = length;
- }
+ if (skipupdate) {
+ (void) hfs_minorupdate(vp);
+ }
+ else {
(void) hfs_update(vp, TRUE);
(void) hfs_volupdate(hfsmp, VOL_UPDATE, 0);
}
+ }
+ hfs_end_transaction(hfsmp);
- hfs_end_transaction(hfsmp);
-
- filebytes = (off_t)fp->ff_blocks * (off_t)blksize;
- if (retval)
- goto Err_Exit;
+ filebytes = (off_t)fp->ff_blocks * (off_t)blksize;
+ if (retval)
+ goto Err_Exit;
#if QUOTA
- /* These are bytesreleased */
- (void) hfs_chkdq(cp, (int64_t)-(savedbytes - filebytes), NOCRED, 0);
+ /* These are bytesreleased */
+ (void) hfs_chkdq(cp, (int64_t)-(savedbytes - filebytes), NOCRED, 0);
#endif /* QUOTA */
- }
- /* Only set update flag if the logical length changes */
- if ((off_t)fp->ff_size != length)
+
+ /*
+ * Only set update flag if the logical length changes & we aren't
+ * suppressing modtime updates.
+ */
+ if (((off_t)fp->ff_size != length) && (suppress_times == 0)) {
cp->c_touch_modtime = TRUE;
+ }
fp->ff_size = length;
}
- cp->c_touch_chgtime = TRUE; /* status changed */
- cp->c_touch_modtime = TRUE; /* file data was modified */
- retval = hfs_update(vp, MNT_WAIT);
+ if (cp->c_mode & (S_ISUID | S_ISGID)) {
+ if (!vfs_context_issuser(context)) {
+ cp->c_mode &= ~(S_ISUID | S_ISGID);
+ skipupdate = 0;
+ }
+ }
+ if (skipupdate) {
+ retval = hfs_minorupdate(vp);
+ }
+ else {
+ cp->c_touch_chgtime = TRUE; /* status changed */
+ if (suppress_times == 0) {
+ cp->c_touch_modtime = TRUE; /* file data was modified */
+
+ /*
+ * If we are not suppressing the modtime update, then
+ * update the gen count as well.
+ */
+ if (S_ISREG(cp->c_attr.ca_mode) || S_ISLNK (cp->c_attr.ca_mode)) {
+ hfs_incr_gencount(cp);
+ }
+ }
+
+ retval = hfs_update(vp, MNT_WAIT);
+ }
if (retval) {
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 7)) | DBG_FUNC_NONE,
+ KERNEL_DEBUG(HFSDBG_TRUNCATE | DBG_FUNC_NONE,
-1, -1, -1, retval, 0);
}
Err_Exit:
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 7)) | DBG_FUNC_END,
+ KERNEL_DEBUG(HFSDBG_TRUNCATE | DBG_FUNC_END,
(int)length, (int)fp->ff_size, (int)filebytes, retval, 0);
return (retval);
}
+/*
+ * Preparation which must be done prior to deleting the catalog record
+ * of a file or directory. In order to make the on-disk as safe as possible,
+ * we remove the catalog entry before releasing the bitmap blocks and the
+ * overflow extent records. However, some work must be done prior to deleting
+ * the catalog record.
+ *
+ * When calling this function, the cnode must exist both in memory and on-disk.
+ * If there are both resource fork and data fork vnodes, this function should
+ * be called on both.
+ */
+
+int
+hfs_prepare_release_storage (struct hfsmount *hfsmp, struct vnode *vp) {
+
+ struct filefork *fp = VTOF(vp);
+ struct cnode *cp = VTOC(vp);
+#if QUOTA
+ int retval = 0;
+#endif /* QUOTA */
+
+ /* Cannot truncate an HFS directory! */
+ if (vnode_isdir(vp)) {
+ return (EISDIR);
+ }
+
+ /*
+ * See the comment below in hfs_truncate for why we need to call
+ * setsize here. Essentially we want to avoid pending IO if we
+ * already know that the blocks are going to be released here.
+ * This function is only called when totally removing all storage for a file, so
+ * we can take a shortcut and immediately setsize (0);
+ */
+ ubc_setsize(vp, 0);
+
+ /* This should only happen with a corrupt filesystem */
+ if ((off_t)fp->ff_size < 0)
+ return (EINVAL);
+
+ /*
+ * We cannot just check if fp->ff_size == length (as an optimization)
+ * since there may be extra physical blocks that also need truncation.
+ */
+#if QUOTA
+ if ((retval = hfs_getinoquota(cp))) {
+ return(retval);
+ }
+#endif /* QUOTA */
+
+ /* Wipe out any invalid ranges which have yet to be backed by disk */
+ rl_remove(0, fp->ff_size - 1, &fp->ff_invalidranges);
+
+ /*
+ * Account for any unmapped blocks. Since we're deleting the
+ * entire file, we don't have to worry about just shrinking
+ * to a smaller number of borrowed blocks.
+ */
+ if (fp->ff_unallocblocks > 0) {
+ u_int32_t loanedBlocks;
+
+ hfs_lock_mount (hfsmp);
+ loanedBlocks = fp->ff_unallocblocks;
+ cp->c_blocks -= loanedBlocks;
+ fp->ff_blocks -= loanedBlocks;
+ fp->ff_unallocblocks = 0;
+
+ hfsmp->loanedBlocks -= loanedBlocks;
+
+ hfs_unlock_mount (hfsmp);
+ }
+
+ return 0;
+}
+
+
+/*
+ * Special wrapper around calling TruncateFileC. This function is useable
+ * even when the catalog record does not exist any longer, making it ideal
+ * for use when deleting a file. The simplification here is that we know
+ * that we are releasing all blocks.
+ *
+ * Note that this function may be called when there is no vnode backing
+ * the file fork in question. We may call this from hfs_vnop_inactive
+ * to clear out resource fork data (and may not want to clear out the data
+ * fork yet). As a result, we pointer-check both sets of inputs before
+ * doing anything with them.
+ *
+ * The caller is responsible for saving off a copy of the filefork(s)
+ * embedded within the cnode prior to calling this function. The pointers
+ * supplied as arguments must be valid even if the cnode is no longer valid.
+ */
+
+int
+hfs_release_storage (struct hfsmount *hfsmp, struct filefork *datafork,
+ struct filefork *rsrcfork, u_int32_t fileid) {
+
+ off_t filebytes;
+ u_int32_t fileblocks;
+ int blksize = 0;
+ int error = 0;
+ int lockflags;
+
+ blksize = hfsmp->blockSize;
+
+ /* Data Fork */
+ if (datafork) {
+ datafork->ff_size = 0;
+
+ fileblocks = datafork->ff_blocks;
+ filebytes = (off_t)fileblocks * (off_t)blksize;
+
+ /* We killed invalid ranges and loaned blocks before we removed the catalog entry */
+
+ while (filebytes > 0) {
+ if (filebytes > HFS_BIGFILE_SIZE) {
+ filebytes -= HFS_BIGFILE_SIZE;
+ } else {
+ filebytes = 0;
+ }
+
+ /* Start a transaction, and wipe out as many blocks as we can in this iteration */
+ if (hfs_start_transaction(hfsmp) != 0) {
+ error = EINVAL;
+ break;
+ }
+
+ if (datafork->ff_unallocblocks == 0) {
+ /* Protect extents b-tree and allocation bitmap */
+ lockflags = SFL_BITMAP;
+ if (overflow_extents(datafork))
+ lockflags |= SFL_EXTENTS;
+ lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK);
+
+ error = MacToVFSError(TruncateFileC(HFSTOVCB(hfsmp), datafork, filebytes, 1, 0, fileid, false));
+
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ }
+ (void) hfs_volupdate(hfsmp, VOL_UPDATE, 0);
+
+ /* Finish the transaction and start over if necessary */
+ hfs_end_transaction(hfsmp);
+
+ if (error) {
+ break;
+ }
+ }
+ }
+
+ /* Resource fork */
+ if (error == 0 && rsrcfork) {
+ rsrcfork->ff_size = 0;
+
+ fileblocks = rsrcfork->ff_blocks;
+ filebytes = (off_t)fileblocks * (off_t)blksize;
+
+ /* We killed invalid ranges and loaned blocks before we removed the catalog entry */
+
+ while (filebytes > 0) {
+ if (filebytes > HFS_BIGFILE_SIZE) {
+ filebytes -= HFS_BIGFILE_SIZE;
+ } else {
+ filebytes = 0;
+ }
+
+ /* Start a transaction, and wipe out as many blocks as we can in this iteration */
+ if (hfs_start_transaction(hfsmp) != 0) {
+ error = EINVAL;
+ break;
+ }
+
+ if (rsrcfork->ff_unallocblocks == 0) {
+ /* Protect extents b-tree and allocation bitmap */
+ lockflags = SFL_BITMAP;
+ if (overflow_extents(rsrcfork))
+ lockflags |= SFL_EXTENTS;
+ lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK);
+
+ error = MacToVFSError(TruncateFileC(HFSTOVCB(hfsmp), rsrcfork, filebytes, 1, 1, fileid, false));
+
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ }
+ (void) hfs_volupdate(hfsmp, VOL_UPDATE, 0);
+
+ /* Finish the transaction and start over if necessary */
+ hfs_end_transaction(hfsmp);
+
+ if (error) {
+ break;
+ }
+ }
+ }
+
+ return error;
+}
+
+errno_t hfs_ubc_setsize(vnode_t vp, off_t len, bool have_cnode_lock)
+{
+ errno_t error;
+
+ /*
+ * Call ubc_setsize to give the VM subsystem a chance to do
+ * whatever it needs to with existing pages before we delete
+ * blocks. Note that symlinks don't use the UBC so we'll
+ * get back ENOENT in that case.
+ */
+ if (have_cnode_lock) {
+ error = ubc_setsize_ex(vp, len, UBC_SETSIZE_NO_FS_REENTRY);
+ if (error == EAGAIN) {
+ cnode_t *cp = VTOC(vp);
+
+ if (cp->c_truncatelockowner != current_thread()) {
+#if DEVELOPMENT || DEBUG
+ panic("hfs: hfs_ubc_setsize called without exclusive truncate lock!");
+#else
+ printf("hfs: hfs_ubc_setsize called without exclusive truncate lock!\n");
+#endif
+ }
+
+ hfs_unlock(cp);
+ error = ubc_setsize_ex(vp, len, 0);
+ hfs_lock_always(cp, HFS_EXCLUSIVE_LOCK);
+ }
+ } else
+ error = ubc_setsize_ex(vp, len, 0);
+ return error == ENOENT ? 0 : error;
+}
/*
* Truncate a cnode to at most length size, freeing (or adding) the
* disk blocks.
*/
-__private_extern__
int
-hfs_truncate(struct vnode *vp, off_t length, int flags, int skipsetsize,
- vfs_context_t context)
+hfs_truncate(struct vnode *vp, off_t length, int flags,
+ int truncateflags, vfs_context_t context)
{
- struct filefork *fp = VTOF(vp);
+ struct filefork *fp = VTOF(vp);
off_t filebytes;
- u_long fileblocks;
- int blksize, error = 0;
+ u_int32_t fileblocks;
+ int blksize;
+ errno_t error = 0;
struct cnode *cp = VTOC(vp);
/* Cannot truncate an HFS directory! */
return (EISDIR);
}
/* A swap file cannot change size. */
- if (vnode_isswap(vp) && (length != 0)) {
+ if (vnode_isswap(vp) && length && !ISSET(flags, IO_NOAUTH)) {
return (EPERM);
}
fileblocks = fp->ff_blocks;
filebytes = (off_t)fileblocks * (off_t)blksize;
- //
- // Have to do this here so that we don't wind up with
- // i/o pending for blocks that are about to be released
- // if we truncate the file.
- //
- // If skipsetsize is set, then the caller is responsible
- // for the ubc_setsize.
- //
- if (!skipsetsize)
- ubc_setsize(vp, length);
+ bool caller_has_cnode_lock = (cp->c_lockowner == current_thread());
+
+ error = hfs_ubc_setsize(vp, length, caller_has_cnode_lock);
+ if (error)
+ return error;
+
+ if (!caller_has_cnode_lock) {
+ error = hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
+ if (error)
+ return error;
+ }
// have to loop truncating or growing files that are
// really big because otherwise transactions can get
if (length < filebytes) {
while (filebytes > length) {
- if ((filebytes - length) > HFS_BIGFILE_SIZE && overflow_extents(fp)) {
+ if ((filebytes - length) > HFS_BIGFILE_SIZE) {
filebytes -= HFS_BIGFILE_SIZE;
} else {
filebytes = length;
}
cp->c_flag |= C_FORCEUPDATE;
- error = do_hfs_truncate(vp, filebytes, flags, context);
+ error = do_hfs_truncate(vp, filebytes, flags, truncateflags, context);
if (error)
break;
}
} else if (length > filebytes) {
while (filebytes < length) {
- if ((length - filebytes) > HFS_BIGFILE_SIZE && overflow_extents(fp)) {
+ if ((length - filebytes) > HFS_BIGFILE_SIZE) {
filebytes += HFS_BIGFILE_SIZE;
} else {
filebytes = length;
}
cp->c_flag |= C_FORCEUPDATE;
- error = do_hfs_truncate(vp, filebytes, flags, context);
+ error = do_hfs_truncate(vp, filebytes, flags, truncateflags, context);
if (error)
break;
}
} else /* Same logical size */ {
- error = do_hfs_truncate(vp, length, flags, context);
+ error = do_hfs_truncate(vp, length, flags, truncateflags, context);
}
/* Files that are changing size are not hot file candidates. */
if (VTOHFS(vp)->hfc_stage == HFC_RECORDING) {
fp->ff_bytesread = 0;
}
- return (error);
-}
+ if (!caller_has_cnode_lock)
+ hfs_unlock(cp);
+
+ // Make sure UBC's size matches up (in case we didn't completely succeed)
+ errno_t err2 = hfs_ubc_setsize(vp, fp->ff_size, caller_has_cnode_lock);
+ if (!error)
+ error = err2;
+ return error;
+}
/*
off_t moreBytesRequested;
off_t actualBytesAdded;
off_t filebytes;
- u_long fileblocks;
+ u_int32_t fileblocks;
int retval, retval2;
u_int32_t blockHint;
u_int32_t extendFlags; /* For call to ExtendFileC */
struct hfsmount *hfsmp;
kauth_cred_t cred = vfs_context_ucred(ap->a_context);
int lockflags;
+ time_t orig_ctime;
*(ap->a_bytesallocated) = 0;
cp = VTOC(vp);
- hfs_lock_truncate(cp, TRUE);
+ orig_ctime = VTOC(vp)->c_ctime;
+
+ check_for_tracked_file(vp, orig_ctime, ap->a_length == 0 ? NAMESPACE_HANDLER_TRUNCATE_OP|NAMESPACE_HANDLER_DELETE_OP : NAMESPACE_HANDLER_TRUNCATE_OP, NULL);
- if ((retval = hfs_lock(cp, HFS_EXCLUSIVE_LOCK))) {
+ hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
+
+ if ((retval = hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT))) {
goto Err_Exit;
}
extendFlags |= kEFAllMask;
if (cred && suser(cred, NULL) != 0)
extendFlags |= kEFReserveMask;
+ if (hfs_virtualmetafile(cp))
+ extendFlags |= kEFMetadataMask;
retval = E_NONE;
blockHint = 0;
* Allocate Journal and Quota files in metadata zone.
*/
if (hfs_virtualmetafile(cp)) {
- extendFlags |= kEFMetadataMask;
blockHint = hfsmp->hfs_metazone_start;
} else if ((blockHint >= hfsmp->hfs_metazone_start) &&
(blockHint <= hfsmp->hfs_metazone_end)) {
/* Protect extents b-tree and allocation bitmap */
lockflags = SFL_BITMAP;
if (overflow_extents(fp))
- lockflags |= SFL_EXTENTS;
+ lockflags |= SFL_EXTENTS;
lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK);
if (moreBytesRequested >= HFS_BIGFILE_SIZE) {
- bytesRequested = HFS_BIGFILE_SIZE;
+ bytesRequested = HFS_BIGFILE_SIZE;
} else {
- bytesRequested = moreBytesRequested;
+ bytesRequested = moreBytesRequested;
+ }
+
+ if (extendFlags & kEFContigMask) {
+ // if we're on a sparse device, this will force it to do a
+ // full scan to find the space needed.
+ hfsmp->hfs_flags &= ~HFS_DID_CONTIG_SCAN;
}
retval = MacToVFSError(ExtendFileC(vcb,
} else { /* Shorten the size of the file */
- if (fp->ff_size > length) {
- /*
- * Any buffers that are past the truncation point need to be
- * invalidated (to maintain buffer cache consistency).
- */
- }
+ /*
+ * N.B. At present, this code is never called. If and when we
+ * do start using it, it looks like there might be slightly
+ * strange semantics with the file size: it's possible for the
+ * file size to *increase* e.g. if current file size is 5,
+ * length is 1024 and filebytes is 4096, the file size will
+ * end up being 1024 bytes. This isn't necessarily a problem
+ * but it's not consistent with the code above which doesn't
+ * change the file size.
+ */
retval = hfs_truncate(vp, length, 0, 0, ap->a_context);
filebytes = (off_t)fp->ff_blocks * (off_t)vcb->blockSize;
if (fp->ff_size > filebytes) {
fp->ff_size = filebytes;
- hfs_unlock(cp);
- ubc_setsize(vp, fp->ff_size);
- hfs_lock(cp, HFS_FORCE_LOCK);
+ hfs_ubc_setsize(vp, fp->ff_size, true);
}
}
if (retval == 0)
retval = retval2;
Err_Exit:
- hfs_unlock_truncate(cp, TRUE);
+ hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
hfs_unlock(cp);
return (retval);
}
};
*/
{
- vnode_t vp = ap->a_vp;
- int error;
+ vnode_t vp;
+ struct cnode *cp;
+ struct filefork *fp;
+ int error = 0;
+ upl_t upl;
+ upl_page_info_t *pl;
+ off_t f_offset;
+ off_t page_needed_f_offset;
+ int offset;
+ int isize;
+ int upl_size;
+ int pg_index;
+ boolean_t truncate_lock_held = FALSE;
+ boolean_t file_converted = FALSE;
+ kern_return_t kret;
+
+ vp = ap->a_vp;
+ cp = VTOC(vp);
+ fp = VTOF(vp);
+
+#if CONFIG_PROTECT
+ if ((error = cp_handle_vnop(vp, CP_READ_ACCESS | CP_WRITE_ACCESS, 0)) != 0) {
+ /*
+ * If we errored here, then this means that one of two things occurred:
+ * 1. there was a problem with the decryption of the key.
+ * 2. the device is locked and we are not allowed to access this particular file.
+ *
+ * Either way, this means that we need to shut down this upl now. As long as
+ * the pl pointer is NULL (meaning that we're supposed to create the UPL ourselves)
+ * then we create a upl and immediately abort it.
+ */
+ if (ap->a_pl == NULL) {
+ /* create the upl */
+ ubc_create_upl (vp, ap->a_f_offset, ap->a_size, &upl, &pl,
+ UPL_UBC_PAGEIN | UPL_RET_ONLY_ABSENT);
+ /* mark the range as needed so it doesn't immediately get discarded upon abort */
+ ubc_upl_range_needed (upl, ap->a_pl_offset / PAGE_SIZE, 1);
+
+ /* Abort the range */
+ ubc_upl_abort_range (upl, 0, ap->a_size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR);
+ }
+
+
+ return error;
+ }
+#endif /* CONFIG_PROTECT */
+
+ if (ap->a_pl != NULL) {
+ /*
+ * this can only happen for swap files now that
+ * we're asking for V2 paging behavior...
+ * so don't need to worry about decompression, or
+ * keeping track of blocks read or taking the truncate lock
+ */
+ error = cluster_pagein(vp, ap->a_pl, ap->a_pl_offset, ap->a_f_offset,
+ ap->a_size, (off_t)fp->ff_size, ap->a_flags);
+ goto pagein_done;
+ }
+
+ page_needed_f_offset = ap->a_f_offset + ap->a_pl_offset;
- error = cluster_pagein(vp, ap->a_pl, ap->a_pl_offset, ap->a_f_offset,
- ap->a_size, (off_t)VTOF(vp)->ff_size, ap->a_flags);
+retry_pagein:
/*
- * Keep track of blocks read.
+ * take truncate lock (shared/recursive) to guard against
+ * zero-fill thru fsync interfering, but only for v2
+ *
+ * the HFS_RECURSE_TRUNCLOCK arg indicates that we want the
+ * lock shared and we are allowed to recurse 1 level if this thread already
+ * owns the lock exclusively... this can legally occur
+ * if we are doing a shrinking ftruncate against a file
+ * that is mapped private, and the pages being truncated
+ * do not currently exist in the cache... in that case
+ * we will have to page-in the missing pages in order
+ * to provide them to the private mapping... we must
+ * also call hfs_unlock_truncate with a postive been_recursed
+ * arg to indicate that if we have recursed, there is no need to drop
+ * the lock. Allowing this simple recursion is necessary
+ * in order to avoid a certain deadlock... since the ftruncate
+ * already holds the truncate lock exclusively, if we try
+ * to acquire it shared to protect the pagein path, we will
+ * hang this thread
+ *
+ * NOTE: The if () block below is a workaround in order to prevent a
+ * VM deadlock. See rdar://7853471.
+ *
+ * If we are in a forced unmount, then launchd will still have the
+ * dyld_shared_cache file mapped as it is trying to reboot. If we
+ * take the truncate lock here to service a page fault, then our
+ * thread could deadlock with the forced-unmount. The forced unmount
+ * thread will try to reclaim the dyld_shared_cache vnode, but since it's
+ * marked C_DELETED, it will call ubc_setsize(0). As a result, the unmount
+ * thread will think it needs to copy all of the data out of the file
+ * and into a VM copy object. If we hold the cnode lock here, then that
+ * VM operation will not be able to proceed, because we'll set a busy page
+ * before attempting to grab the lock. Note that this isn't as simple as "don't
+ * call ubc_setsize" because doing that would just shift the problem to the
+ * ubc_msync done before the vnode is reclaimed.
+ *
+ * So, if a forced unmount on this volume is in flight AND the cnode is
+ * marked C_DELETED, then just go ahead and do the page in without taking
+ * the lock (thus suspending pagein_v2 semantics temporarily). Since it's on a file
+ * that is not going to be available on the next mount, this seems like a
+ * OK solution from a correctness point of view, even though it is hacky.
*/
- if (!vnode_isswap(vp) && VTOHFS(vp)->hfc_stage == HFC_RECORDING && error == 0) {
- struct cnode *cp;
- struct filefork *fp;
- int bytesread;
- int took_cnode_lock = 0;
-
- cp = VTOC(vp);
- fp = VTOF(vp);
+ if (vfs_isforce(vp->v_mount)) {
+ if (cp->c_flag & C_DELETED) {
+ /* If we don't get it, then just go ahead and operate without the lock */
+ truncate_lock_held = hfs_try_trunclock(cp, HFS_SHARED_LOCK, HFS_LOCK_SKIP_IF_EXCLUSIVE);
+ }
+ }
+ else {
+ hfs_lock_truncate(cp, HFS_SHARED_LOCK, HFS_LOCK_SKIP_IF_EXCLUSIVE);
+ truncate_lock_held = TRUE;
+ }
- if (ap->a_f_offset == 0 && fp->ff_size < PAGE_SIZE)
- bytesread = fp->ff_size;
- else
- bytesread = ap->a_size;
+ kret = ubc_create_upl(vp, ap->a_f_offset, ap->a_size, &upl, &pl, UPL_UBC_PAGEIN | UPL_RET_ONLY_ABSENT);
- /* When ff_bytesread exceeds 32-bits, update it behind the cnode lock. */
- if ((fp->ff_bytesread + bytesread) > 0x00000000ffffffff && cp->c_lockowner != current_thread()) {
- hfs_lock(cp, HFS_FORCE_LOCK);
- took_cnode_lock = 1;
+ if ((kret != KERN_SUCCESS) || (upl == (upl_t) NULL)) {
+ error = EINVAL;
+ goto pagein_done;
+ }
+ ubc_upl_range_needed(upl, ap->a_pl_offset / PAGE_SIZE, 1);
+
+ upl_size = isize = ap->a_size;
+
+ /*
+ * Scan from the back to find the last page in the UPL, so that we
+ * aren't looking at a UPL that may have already been freed by the
+ * preceding aborts/completions.
+ */
+ for (pg_index = ((isize) / PAGE_SIZE); pg_index > 0;) {
+ if (upl_page_present(pl, --pg_index))
+ break;
+ if (pg_index == 0) {
+ /*
+ * no absent pages were found in the range specified
+ * just abort the UPL to get rid of it and then we're done
+ */
+ ubc_upl_abort_range(upl, 0, isize, UPL_ABORT_FREE_ON_EMPTY);
+ goto pagein_done;
}
- /*
- * If this file hasn't been seen since the start of
- * the current sampling period then start over.
+ }
+ /*
+ * initialize the offset variables before we touch the UPL.
+ * f_offset is the position into the file, in bytes
+ * offset is the position into the UPL, in bytes
+ * pg_index is the pg# of the UPL we're operating on
+ * isize is the offset into the UPL of the last page that is present.
+ */
+ isize = ((pg_index + 1) * PAGE_SIZE);
+ pg_index = 0;
+ offset = 0;
+ f_offset = ap->a_f_offset;
+
+ while (isize) {
+ int xsize;
+ int num_of_pages;
+
+ if ( !upl_page_present(pl, pg_index)) {
+ /*
+ * we asked for RET_ONLY_ABSENT, so it's possible
+ * to get back empty slots in the UPL.
+ * just skip over them
+ */
+ f_offset += PAGE_SIZE;
+ offset += PAGE_SIZE;
+ isize -= PAGE_SIZE;
+ pg_index++;
+
+ continue;
+ }
+ /*
+ * We know that we have at least one absent page.
+ * Now checking to see how many in a row we have
*/
- if (cp->c_atime < VTOHFS(vp)->hfc_timebase) {
- struct timeval tv;
+ num_of_pages = 1;
+ xsize = isize - PAGE_SIZE;
- fp->ff_bytesread = bytesread;
- microtime(&tv);
- cp->c_atime = tv.tv_sec;
+ while (xsize) {
+ if ( !upl_page_present(pl, pg_index + num_of_pages))
+ break;
+ num_of_pages++;
+ xsize -= PAGE_SIZE;
+ }
+ xsize = num_of_pages * PAGE_SIZE;
+
+#if HFS_COMPRESSION
+ if (VNODE_IS_RSRC(vp)) {
+ /* allow pageins of the resource fork */
} else {
- fp->ff_bytesread += bytesread;
+ int compressed = hfs_file_is_compressed(VTOC(vp), 1); /* 1 == don't take the cnode lock */
+
+ if (compressed) {
+
+ if (truncate_lock_held) {
+ /*
+ * can't hold the truncate lock when calling into the decmpfs layer
+ * since it calls back into this layer... even though we're only
+ * holding the lock in shared mode, and the re-entrant path only
+ * takes the lock shared, we can deadlock if some other thread
+ * tries to grab the lock exclusively in between.
+ */
+ hfs_unlock_truncate(cp, HFS_LOCK_SKIP_IF_EXCLUSIVE);
+ truncate_lock_held = FALSE;
+ }
+ ap->a_pl = upl;
+ ap->a_pl_offset = offset;
+ ap->a_f_offset = f_offset;
+ ap->a_size = xsize;
+
+ error = decmpfs_pagein_compressed(ap, &compressed, VTOCMP(vp));
+ /*
+ * note that decpfs_pagein_compressed can change the state of
+ * 'compressed'... it will set it to 0 if the file is no longer
+ * compressed once the compression lock is successfully taken
+ * i.e. we would block on that lock while the file is being inflated
+ */
+ if (compressed) {
+ if (error == 0) {
+ /* successful page-in, update the access time */
+ VTOC(vp)->c_touch_acctime = TRUE;
+
+ /* compressed files are not hot file candidates */
+ if (VTOHFS(vp)->hfc_stage == HFC_RECORDING) {
+ fp->ff_bytesread = 0;
+ }
+ } else if (error == EAGAIN) {
+ /*
+ * EAGAIN indicates someone else already holds the compression lock...
+ * to avoid deadlocking, we'll abort this range of pages with an
+ * indication that the pagein needs to be redriven
+ */
+ ubc_upl_abort_range(upl, (upl_offset_t) offset, xsize, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_RESTART);
+ } else if (error == ENOSPC) {
+
+ if (upl_size == PAGE_SIZE)
+ panic("decmpfs_pagein_compressed: couldn't ubc_upl_map a single page\n");
+
+ ubc_upl_abort_range(upl, (upl_offset_t) offset, isize, UPL_ABORT_FREE_ON_EMPTY);
+
+ ap->a_size = PAGE_SIZE;
+ ap->a_pl = NULL;
+ ap->a_pl_offset = 0;
+ ap->a_f_offset = page_needed_f_offset;
+
+ goto retry_pagein;
+ }
+ goto pagein_next_range;
+ }
+ else {
+ /*
+ * Set file_converted only if the file became decompressed while we were
+ * paging in. If it were still compressed, we would re-start the loop using the goto
+ * in the above block. This avoid us overloading truncate_lock_held as our retry_pagein
+ * condition below, since we could have avoided taking the truncate lock to prevent
+ * a deadlock in the force unmount case.
+ */
+ file_converted = TRUE;
+ }
+ }
+ if (file_converted == TRUE) {
+ /*
+ * the file was converted back to a regular file after we first saw it as compressed
+ * we need to abort the upl, retake the truncate lock, recreate the UPL and start over
+ * reset a_size so that we consider what remains of the original request
+ * and null out a_upl and a_pl_offset.
+ *
+ * We should only be able to get into this block if the decmpfs_pagein_compressed
+ * successfully decompressed the range in question for this file.
+ */
+ ubc_upl_abort_range(upl, (upl_offset_t) offset, isize, UPL_ABORT_FREE_ON_EMPTY);
+
+ ap->a_size = isize;
+ ap->a_pl = NULL;
+ ap->a_pl_offset = 0;
+
+ /* Reset file_converted back to false so that we don't infinite-loop. */
+ file_converted = FALSE;
+ goto retry_pagein;
+ }
}
- cp->c_touch_acctime = TRUE;
- if (took_cnode_lock)
- hfs_unlock(cp);
+#endif
+ error = cluster_pagein(vp, upl, offset, f_offset, xsize, (off_t)fp->ff_size, ap->a_flags);
+
+ /*
+ * Keep track of blocks read.
+ */
+ if ( !vnode_isswap(vp) && VTOHFS(vp)->hfc_stage == HFC_RECORDING && error == 0) {
+ int bytesread;
+ int took_cnode_lock = 0;
+
+ if (ap->a_f_offset == 0 && fp->ff_size < PAGE_SIZE)
+ bytesread = fp->ff_size;
+ else
+ bytesread = xsize;
+
+ /* When ff_bytesread exceeds 32-bits, update it behind the cnode lock. */
+ if ((fp->ff_bytesread + bytesread) > 0x00000000ffffffff && cp->c_lockowner != current_thread()) {
+ hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
+ took_cnode_lock = 1;
+ }
+ /*
+ * If this file hasn't been seen since the start of
+ * the current sampling period then start over.
+ */
+ if (cp->c_atime < VTOHFS(vp)->hfc_timebase) {
+ struct timeval tv;
+
+ fp->ff_bytesread = bytesread;
+ microtime(&tv);
+ cp->c_atime = tv.tv_sec;
+ } else {
+ fp->ff_bytesread += bytesread;
+ }
+ cp->c_touch_acctime = TRUE;
+ if (took_cnode_lock)
+ hfs_unlock(cp);
+ }
+pagein_next_range:
+ f_offset += xsize;
+ offset += xsize;
+ isize -= xsize;
+ pg_index += num_of_pages;
+
+ error = 0;
+ }
+
+pagein_done:
+ if (truncate_lock_held == TRUE) {
+ /* Note 1 is passed to hfs_unlock_truncate in been_recursed argument */
+ hfs_unlock_truncate(cp, HFS_LOCK_SKIP_IF_EXCLUSIVE);
}
+
return (error);
}
vnode_t vp = ap->a_vp;
struct cnode *cp;
struct filefork *fp;
- int retval;
+ int retval = 0;
off_t filesize;
+ upl_t upl;
+ upl_page_info_t* pl;
+ vm_offset_t a_pl_offset;
+ int a_flags;
+ int is_pageoutv2 = 0;
+ kern_return_t kret;
cp = VTOC(vp);
fp = VTOF(vp);
- if (vnode_isswap(vp)) {
- filesize = fp->ff_size;
- } else {
- off_t end_of_range;
- int tooklock = 0;
+ /*
+ * Figure out where the file ends, for pageout purposes. If
+ * ff_new_size > ff_size, then we're in the middle of extending the
+ * file via a write, so it is safe (and necessary) that we be able
+ * to pageout up to that point.
+ */
+ filesize = fp->ff_size;
+ if (fp->ff_new_size > filesize)
+ filesize = fp->ff_new_size;
+
+ a_flags = ap->a_flags;
+ a_pl_offset = ap->a_pl_offset;
+
+ /*
+ * we can tell if we're getting the new or old behavior from the UPL
+ */
+ if ((upl = ap->a_pl) == NULL) {
+ int request_flags;
+
+ is_pageoutv2 = 1;
+ /*
+ * we're in control of any UPL we commit
+ * make sure someone hasn't accidentally passed in UPL_NOCOMMIT
+ */
+ a_flags &= ~UPL_NOCOMMIT;
+ a_pl_offset = 0;
+
+ /*
+ * For V2 semantics, we want to take the cnode truncate lock
+ * shared to guard against the file size changing via zero-filling.
+ *
+ * However, we have to be careful because we may be invoked
+ * via the ubc_msync path to write out dirty mmap'd pages
+ * in response to a lock event on a content-protected
+ * filesystem (e.g. to write out class A files).
+ * As a result, we want to take the truncate lock 'SHARED' with
+ * the mini-recursion locktype so that we don't deadlock/panic
+ * because we may be already holding the truncate lock exclusive to force any other
+ * IOs to have blocked behind us.
+ */
+ hfs_lock_truncate(cp, HFS_SHARED_LOCK, HFS_LOCK_SKIP_IF_EXCLUSIVE);
+
+ if (a_flags & UPL_MSYNC) {
+ request_flags = UPL_UBC_MSYNC | UPL_RET_ONLY_DIRTY;
+ }
+ else {
+ request_flags = UPL_UBC_PAGEOUT | UPL_RET_ONLY_DIRTY;
+ }
+
+ kret = ubc_create_upl(vp, ap->a_f_offset, ap->a_size, &upl, &pl, request_flags);
+
+ if ((kret != KERN_SUCCESS) || (upl == (upl_t) NULL)) {
+ retval = EINVAL;
+ goto pageout_done;
+ }
+ }
+ /*
+ * from this point forward upl points at the UPL we're working with
+ * it was either passed in or we succesfully created it
+ */
- if (cp->c_lockowner != current_thread()) {
- if ( (retval = hfs_lock(cp, HFS_EXCLUSIVE_LOCK))) {
- if (!(ap->a_flags & UPL_NOCOMMIT)) {
- ubc_upl_abort_range(ap->a_pl,
- ap->a_pl_offset,
- ap->a_size,
- UPL_ABORT_FREE_ON_EMPTY);
+ /*
+ * Now that HFS is opting into VFC_VFSVNOP_PAGEOUTV2, we may need to operate on our own
+ * UPL instead of relying on the UPL passed into us. We go ahead and do that here,
+ * scanning for dirty ranges. We'll issue our own N cluster_pageout calls, for
+ * N dirty ranges in the UPL. Note that this is almost a direct copy of the
+ * logic in vnode_pageout except that we need to do it after grabbing the truncate
+ * lock in HFS so that we don't lock invert ourselves.
+ *
+ * Note that we can still get into this function on behalf of the default pager with
+ * non-V2 behavior (swapfiles). However in that case, we did not grab locks above
+ * since fsync and other writing threads will grab the locks, then mark the
+ * relevant pages as busy. But the pageout codepath marks the pages as busy,
+ * and THEN would attempt to grab the truncate lock, which would result in deadlock. So
+ * we do not try to grab anything for the pre-V2 case, which should only be accessed
+ * by the paging/VM system.
+ */
+
+ if (is_pageoutv2) {
+ off_t f_offset;
+ int offset;
+ int isize;
+ int pg_index;
+ int error;
+ int error_ret = 0;
+
+ isize = ap->a_size;
+ f_offset = ap->a_f_offset;
+
+ /*
+ * Scan from the back to find the last page in the UPL, so that we
+ * aren't looking at a UPL that may have already been freed by the
+ * preceding aborts/completions.
+ */
+ for (pg_index = ((isize) / PAGE_SIZE); pg_index > 0;) {
+ if (upl_page_present(pl, --pg_index))
+ break;
+ if (pg_index == 0) {
+ ubc_upl_abort_range(upl, 0, isize, UPL_ABORT_FREE_ON_EMPTY);
+ goto pageout_done;
}
- return (retval);
- }
- tooklock = 1;
}
+
+ /*
+ * initialize the offset variables before we touch the UPL.
+ * a_f_offset is the position into the file, in bytes
+ * offset is the position into the UPL, in bytes
+ * pg_index is the pg# of the UPL we're operating on.
+ * isize is the offset into the UPL of the last non-clean page.
+ */
+ isize = ((pg_index + 1) * PAGE_SIZE);
+
+ offset = 0;
+ pg_index = 0;
+
+ while (isize) {
+ int xsize;
+ int num_of_pages;
+
+ if ( !upl_page_present(pl, pg_index)) {
+ /*
+ * we asked for RET_ONLY_DIRTY, so it's possible
+ * to get back empty slots in the UPL.
+ * just skip over them
+ */
+ f_offset += PAGE_SIZE;
+ offset += PAGE_SIZE;
+ isize -= PAGE_SIZE;
+ pg_index++;
+
+ continue;
+ }
+ if ( !upl_dirty_page(pl, pg_index)) {
+ panic ("hfs_vnop_pageout: unforeseen clean page @ index %d for UPL %p\n", pg_index, upl);
+ }
+
+ /*
+ * We know that we have at least one dirty page.
+ * Now checking to see how many in a row we have
+ */
+ num_of_pages = 1;
+ xsize = isize - PAGE_SIZE;
+
+ while (xsize) {
+ if ( !upl_dirty_page(pl, pg_index + num_of_pages))
+ break;
+ num_of_pages++;
+ xsize -= PAGE_SIZE;
+ }
+ xsize = num_of_pages * PAGE_SIZE;
+
+ if (!vnode_isswap(vp)) {
+ off_t end_of_range;
+ int tooklock;
+
+ tooklock = 0;
+
+ if (cp->c_lockowner != current_thread()) {
+ if ((retval = hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT))) {
+ /*
+ * we're in the v2 path, so we are the
+ * owner of the UPL... we may have already
+ * processed some of the UPL, so abort it
+ * from the current working offset to the
+ * end of the UPL
+ */
+ ubc_upl_abort_range(upl,
+ offset,
+ ap->a_size - offset,
+ UPL_ABORT_FREE_ON_EMPTY);
+ goto pageout_done;
+ }
+ tooklock = 1;
+ }
+ end_of_range = f_offset + xsize - 1;
- filesize = fp->ff_size;
- end_of_range = ap->a_f_offset + ap->a_size - 1;
-
- if (end_of_range >= filesize) {
- end_of_range = (off_t)(filesize - 1);
+ if (end_of_range >= filesize) {
+ end_of_range = (off_t)(filesize - 1);
+ }
+ if (f_offset < filesize) {
+ rl_remove(f_offset, end_of_range, &fp->ff_invalidranges);
+ cp->c_flag |= C_MODIFIED; /* leof is dirty */
+ }
+ if (tooklock) {
+ hfs_unlock(cp);
+ }
+ }
+ if ((error = cluster_pageout(vp, upl, offset, f_offset,
+ xsize, filesize, a_flags))) {
+ if (error_ret == 0)
+ error_ret = error;
+ }
+ f_offset += xsize;
+ offset += xsize;
+ isize -= xsize;
+ pg_index += num_of_pages;
}
- if (ap->a_f_offset < filesize) {
- rl_remove(ap->a_f_offset, end_of_range, &fp->ff_invalidranges);
- cp->c_flag |= C_MODIFIED; /* leof is dirty */
+ /* capture errnos bubbled out of cluster_pageout if they occurred */
+ if (error_ret != 0) {
+ retval = error_ret;
}
+ } /* end block for v2 pageout behavior */
+ else {
+ if (!vnode_isswap(vp)) {
+ off_t end_of_range;
+ int tooklock = 0;
+
+ if (cp->c_lockowner != current_thread()) {
+ if ((retval = hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT))) {
+ if (!(a_flags & UPL_NOCOMMIT)) {
+ ubc_upl_abort_range(upl,
+ a_pl_offset,
+ ap->a_size,
+ UPL_ABORT_FREE_ON_EMPTY);
+ }
+ goto pageout_done;
+ }
+ tooklock = 1;
+ }
+ end_of_range = ap->a_f_offset + ap->a_size - 1;
+
+ if (end_of_range >= filesize) {
+ end_of_range = (off_t)(filesize - 1);
+ }
+ if (ap->a_f_offset < filesize) {
+ rl_remove(ap->a_f_offset, end_of_range, &fp->ff_invalidranges);
+ cp->c_flag |= C_MODIFIED; /* leof is dirty */
+ }
- if (tooklock) {
- hfs_unlock(cp);
+ if (tooklock) {
+ hfs_unlock(cp);
+ }
}
+ /*
+ * just call cluster_pageout for old pre-v2 behavior
+ */
+ retval = cluster_pageout(vp, upl, a_pl_offset, ap->a_f_offset,
+ ap->a_size, filesize, a_flags);
}
- retval = cluster_pageout(vp, ap->a_pl, ap->a_pl_offset, ap->a_f_offset,
- ap->a_size, filesize, ap->a_flags);
-
/*
- * If data was written, and setuid or setgid bits are set and
- * this process is not the superuser then clear the setuid and
- * setgid bits as a precaution against tampering.
+ * If data was written, update the modification time of the file
+ * but only if it's mapped writable; we will have touched the
+ * modifcation time for direct writes.
*/
- if ((retval == 0) &&
- (cp->c_mode & (S_ISUID | S_ISGID)) &&
- (vfs_context_suser(ap->a_context) != 0)) {
- hfs_lock(cp, HFS_FORCE_LOCK);
- cp->c_mode &= ~(S_ISUID | S_ISGID);
- cp->c_touch_chgtime = TRUE;
+ if (retval == 0 && (ubc_is_mapped_writable(vp)
+ || ISSET(cp->c_flag, C_MIGHT_BE_DIRTY_FROM_MAPPING))) {
+ hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
+
+ // Check again with lock
+ bool mapped_writable = ubc_is_mapped_writable(vp);
+ if (mapped_writable
+ || ISSET(cp->c_flag, C_MIGHT_BE_DIRTY_FROM_MAPPING)) {
+ cp->c_touch_modtime = TRUE;
+ cp->c_touch_chgtime = TRUE;
+
+ /*
+ * We only need to increment the generation counter if
+ * it's currently mapped writable because we incremented
+ * the counter in hfs_vnop_mnomap.
+ */
+ if (mapped_writable)
+ hfs_incr_gencount(VTOC(vp));
+
+ /*
+ * If setuid or setgid bits are set and this process is
+ * not the superuser then clear the setuid and setgid bits
+ * as a precaution against tampering.
+ */
+ if ((cp->c_mode & (S_ISUID | S_ISGID)) &&
+ (vfs_context_suser(ap->a_context) != 0)) {
+ cp->c_mode &= ~(S_ISUID | S_ISGID);
+ }
+ }
+
hfs_unlock(cp);
}
+
+pageout_done:
+ if (is_pageoutv2) {
+ /*
+ * Release the truncate lock. Note that because
+ * we may have taken the lock recursively by
+ * being invoked via ubc_msync due to lockdown,
+ * we should release it recursively, too.
+ */
+ hfs_unlock_truncate(cp, HFS_LOCK_SKIP_IF_EXCLUSIVE);
+ }
return (retval);
}
*
* During step 3 page-ins to the file get suspended.
*/
-__private_extern__
int
hfs_relocate(struct vnode *vp, u_int32_t blockHint, kauth_cred_t cred,
struct proc *p)
enum vtype vnodetype;
vnodetype = vnode_vtype(vp);
- if (vnodetype != VREG && vnodetype != VLNK) {
+ if (vnodetype != VREG) {
+ /* Not allowed to move symlinks. */
return (EPERM);
}
fp = VTOF(vp);
if (fp->ff_unallocblocks)
return (EINVAL);
+
+#if CONFIG_PROTECT
+ /*
+ * <rdar://problem/9118426>
+ * Disable HFS file relocation on content-protected filesystems
+ */
+ if (cp_fs_protected (hfsmp->hfs_mp)) {
+ return EINVAL;
+ }
+#endif
+ /* If it's an SSD, also disable HFS relocation */
+ if (hfsmp->hfs_flags & HFS_SSD) {
+ return EINVAL;
+ }
+
+
blksize = hfsmp->blockSize;
if (blockHint == 0)
blockHint = hfsmp->nextAllocation;
- if ((fp->ff_size > 0x7fffffff) ||
- ((fp->ff_size > blksize) && vnodetype == VLNK)) {
+ if (fp->ff_size > 0x7fffffff) {
return (EFBIG);
}
if (!vnode_issystem(vp) && (vnodetype != VLNK)) {
hfs_unlock(cp);
- hfs_lock_truncate(cp, TRUE);
+ hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
/* Force lock since callers expects lock to be held. */
- if ((retval = hfs_lock(cp, HFS_FORCE_LOCK))) {
- hfs_unlock_truncate(cp, TRUE);
+ if ((retval = hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS))) {
+ hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
return (retval);
}
/* No need to continue if file was removed. */
if (cp->c_flag & C_NOEXISTS) {
- hfs_unlock_truncate(cp, TRUE);
+ hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
return (ENOENT);
}
took_trunc_lock = 1;
if (hfs_start_transaction(hfsmp) != 0) {
if (took_trunc_lock)
- hfs_unlock_truncate(cp, TRUE);
+ hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
return (EINVAL);
}
started_tr = 1;
nextallocsave = hfsmp->nextAllocation;
retval = ExtendFileC(hfsmp, (FCB*)fp, growsize, blockHint, eflags, &newbytes);
if (eflags & kEFMetadataMask) {
- HFS_MOUNT_LOCK(hfsmp, TRUE);
+ hfs_lock_mount(hfsmp);
HFS_UPDATE_NEXT_ALLOCATION(hfsmp, nextallocsave);
MarkVCBDirty(hfsmp);
- HFS_MOUNT_UNLOCK(hfsmp, TRUE);
+ hfs_unlock_mount(hfsmp);
}
retval = MacToVFSError(retval);
retval = ENOSPC;
goto restore;
} else if (fp->ff_blocks < (headblks + datablks)) {
- printf("hfs_relocate: allocation failed");
+ printf("hfs_relocate: allocation failed id=%u, vol=%s\n", cp->c_cnid, hfsmp->vcbVN);
retval = ENOSPC;
goto restore;
}
retval = ENOSPC;
goto restore;
} else if ((eflags & kEFMetadataMask) &&
- ((((u_int64_t)sector_b * hfsmp->hfs_phys_block_size) / blksize) >
+ ((((u_int64_t)sector_b * hfsmp->hfs_logical_block_size) / blksize) >
hfsmp->hfs_metazone_end)) {
+#if 0
const char * filestr;
char emptystr = '\0';
} else {
filestr = &emptystr;
}
- printf("hfs_relocate: %s didn't move into MDZ (%d blks)\n", filestr, fp->ff_blocks);
+#endif
retval = ENOSPC;
goto restore;
}
*/
if (vnodetype == VLNK)
- retval = hfs_clonelink(vp, blksize, cred, p);
+ retval = EPERM;
else if (vnode_issystem(vp))
retval = hfs_clonesysfile(vp, headblks, datablks, blksize, cred, p);
else
goto restore;
out:
if (took_trunc_lock)
- hfs_unlock_truncate(cp, TRUE);
+ hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
if (lockflags) {
hfs_systemfile_unlock(hfsmp, lockflags);
restore:
if (fp->ff_blocks == headblks) {
if (took_trunc_lock)
- hfs_unlock_truncate(cp, TRUE);
+ hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
goto exit;
}
/*
lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK);
}
- (void) TruncateFileC(hfsmp, (FCB*)fp, fp->ff_size, false);
+ (void) TruncateFileC(hfsmp, (FCB*)fp, fp->ff_size, 0, FORK_IS_RSRC(fp),
+ FTOC(fp)->c_fileid, false);
hfs_systemfile_unlock(hfsmp, lockflags);
lockflags = 0;
if (took_trunc_lock)
- hfs_unlock_truncate(cp, TRUE);
+ hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
goto exit;
}
-/*
- * Clone a symlink.
- *
- */
-static int
-hfs_clonelink(struct vnode *vp, int blksize, kauth_cred_t cred, __unused struct proc *p)
-{
- struct buf *head_bp = NULL;
- struct buf *tail_bp = NULL;
- int error;
-
-
- error = (int)buf_meta_bread(vp, (daddr64_t)0, blksize, cred, &head_bp);
- if (error)
- goto out;
-
- tail_bp = buf_getblk(vp, (daddr64_t)1, blksize, 0, 0, BLK_META);
- if (tail_bp == NULL) {
- error = EIO;
- goto out;
- }
- bcopy((char *)buf_dataptr(head_bp), (char *)buf_dataptr(tail_bp), blksize);
- error = (int)buf_bwrite(tail_bp);
-out:
- if (head_bp) {
- buf_markinvalid(head_bp);
- buf_brelse(head_bp);
- }
- (void) buf_invalidateblks(vp, BUF_WRITE_DATA, 0, 0);
-
- return (error);
-}
-
/*
* Clone a file's data within the file.
*
hfs_clonefile(struct vnode *vp, int blkstart, int blkcnt, int blksize)
{
caddr_t bufp;
- size_t writebase;
size_t bufsize;
size_t copysize;
size_t iosize;
- off_t filesize;
size_t offset;
+ off_t writebase;
uio_t auio;
int error = 0;
- filesize = VTOF(vp)->ff_blocks * blksize; /* virtual file size */
writebase = blkstart * blksize;
copysize = blkcnt * blksize;
iosize = bufsize = MIN(copysize, 128 * 1024);
offset = 0;
+ hfs_unlock(VTOC(vp));
+
+#if CONFIG_PROTECT
+ if ((error = cp_handle_vnop(vp, CP_WRITE_ACCESS, 0)) != 0) {
+ hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
+ return (error);
+ }
+#endif /* CONFIG_PROTECT */
+
if (kmem_alloc(kernel_map, (vm_offset_t *)&bufp, bufsize)) {
+ hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
return (ENOMEM);
- }
- hfs_unlock(VTOC(vp));
+ }
- auio = uio_create(1, 0, UIO_SYSSPACE32, UIO_READ);
+ auio = uio_create(1, 0, UIO_SYSSPACE, UIO_READ);
while (offset < copysize) {
iosize = MIN(copysize - offset, iosize);
- uio_reset(auio, offset, UIO_SYSSPACE32, UIO_READ);
+ uio_reset(auio, offset, UIO_SYSSPACE, UIO_READ);
uio_addiov(auio, (uintptr_t)bufp, iosize);
error = cluster_read(vp, auio, copysize, IO_NOCACHE);
break;
}
if (uio_resid(auio) != 0) {
- printf("clonedata: cluster_read: uio_resid = %lld\n", uio_resid(auio));
+ printf("hfs_clonefile: cluster_read: uio_resid = %lld\n", (int64_t)uio_resid(auio));
error = EIO;
break;
}
- uio_reset(auio, writebase + offset, UIO_SYSSPACE32, UIO_WRITE);
+ uio_reset(auio, writebase + offset, UIO_SYSSPACE, UIO_WRITE);
uio_addiov(auio, (uintptr_t)bufp, iosize);
- error = cluster_write(vp, auio, filesize + offset,
- filesize + offset + iosize,
+ error = cluster_write(vp, auio, writebase + offset,
+ writebase + offset + iosize,
uio_offset(auio), 0, IO_NOCACHE | IO_SYNC);
if (error) {
printf("hfs_clonefile: cluster_write failed - %d\n", error);
}
uio_free(auio);
- /*
- * No need to call ubc_sync_range or hfs_invalbuf
- * since the file was copied using IO_NOCACHE.
- */
-
+ if ((blksize & PAGE_MASK)) {
+ /*
+ * since the copy may not have started on a PAGE
+ * boundary (or may not have ended on one), we
+ * may have pages left in the cache since NOCACHE
+ * will let partially written pages linger...
+ * lets just flush the entire range to make sure
+ * we don't have any pages left that are beyond
+ * (or intersect) the real LEOF of this file
+ */
+ ubc_msync(vp, writebase, writebase + offset, NULL, UBC_INVALIDATE | UBC_PUSHDIRTY);
+ } else {
+ /*
+ * No need to call ubc_msync or hfs_invalbuf
+ * since the file was copied using IO_NOCACHE and
+ * the copy was done starting and ending on a page
+ * boundary in the file.
+ */
+ }
kmem_free(kernel_map, (vm_offset_t)bufp, bufsize);
- hfs_lock(VTOC(vp), HFS_FORCE_LOCK);
+ hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
return (error);
}