]> git.saurik.com Git - apple/xnu.git/blobdiff - osfmk/i386/machine_routines.c
xnu-2422.100.13.tar.gz
[apple/xnu.git] / osfmk / i386 / machine_routines.c
index fa5002a29f33162f6b7b76440331053624df123a..06c57561c6401af357db22da96236f2a68d89799 100644 (file)
@@ -1,49 +1,86 @@
 /*
 /*
- * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
  *
  *
- * @APPLE_LICENSE_HEADER_START@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
  * 
  * 
- * The contents of this file constitute Original Code as defined in and
- * are subject to the Apple Public Source License Version 1.1 (the
- * "License").  You may not use this file except in compliance with the
- * License.  Please obtain a copy of the License at
- * http://www.apple.com/publicsource and read it before using this file.
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
  * 
  * 
- * This Original Code and all software distributed under the License are
- * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ * 
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
  * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
  * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
  * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
  * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT.  Please see the
- * License for the specific language governing rights and limitations
- * under the License.
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
  * 
  * 
- * @APPLE_LICENSE_HEADER_END@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
  */
  */
+
 #include <i386/machine_routines.h>
 #include <i386/io_map_entries.h>
 #include <i386/cpuid.h>
 #include <i386/fpu.h>
 #include <i386/machine_routines.h>
 #include <i386/io_map_entries.h>
 #include <i386/cpuid.h>
 #include <i386/fpu.h>
+#include <mach/processor.h>
 #include <kern/processor.h>
 #include <kern/machine.h>
 #include <kern/cpu_data.h>
 #include <kern/cpu_number.h>
 #include <kern/thread.h>
 #include <kern/processor.h>
 #include <kern/machine.h>
 #include <kern/cpu_data.h>
 #include <kern/cpu_number.h>
 #include <kern/thread.h>
-#include <i386/cpu_data.h>
+#include <kern/thread_call.h>
 #include <i386/machine_cpu.h>
 #include <i386/machine_cpu.h>
-#include <i386/mp.h>
+#include <i386/lapic.h>
+#include <i386/lock.h>
 #include <i386/mp_events.h>
 #include <i386/mp_events.h>
+#include <i386/pmCPU.h>
+#include <i386/trap.h>
+#include <i386/tsc.h>
 #include <i386/cpu_threads.h>
 #include <i386/cpu_threads.h>
+#include <i386/proc_reg.h>
+#include <mach/vm_param.h>
 #include <i386/pmap.h>
 #include <i386/pmap.h>
+#include <i386/pmap_internal.h>
 #include <i386/misc_protos.h>
 #include <i386/misc_protos.h>
-#include <mach/vm_param.h>
+#include <kern/timer_queue.h>
+#if KPC
+#include <kern/kpc.h>
+#endif
 
 
-#define MIN(a,b) ((a)<(b)? (a) : (b))
+#if DEBUG
+#define DBG(x...)      kprintf("DBG: " x)
+#else
+#define DBG(x...)
+#endif
 
 
-extern void    initialize_screen(Boot_Video *, unsigned int);
 extern void    wakeup(void *);
 
 static int max_cpus_initialized = 0;
 
 extern void    wakeup(void *);
 
 static int max_cpus_initialized = 0;
 
+unsigned int   LockTimeOut;
+unsigned int   LockTimeOutTSC;
+unsigned int   MutexSpin;
+uint64_t       LastDebuggerEntryAllowance;
+uint64_t       delay_spin_threshold;
+
+extern uint64_t panic_restart_timeout;
+
+boolean_t virtualized = FALSE;
+
+decl_simple_lock_data(static,  ml_timer_evaluation_slock);
+uint32_t ml_timer_eager_evaluations;
+uint64_t ml_timer_eager_evaluation_max;
+static boolean_t ml_timer_evaluation_in_progress = FALSE;
+
+
 #define MAX_CPUS_SET    0x1
 #define MAX_CPUS_WAIT   0x2
 
 #define MAX_CPUS_SET    0x1
 #define MAX_CPUS_WAIT   0x2
 
@@ -54,7 +91,7 @@ vm_offset_t ml_io_map(
        vm_offset_t phys_addr, 
        vm_size_t size)
 {
        vm_offset_t phys_addr, 
        vm_size_t size)
 {
-       return(io_map(phys_addr,size));
+       return(io_map(phys_addr,size,VM_WIMG_IO));
 }
 
 /* boot memory allocation */
 }
 
 /* boot memory allocation */
@@ -64,11 +101,23 @@ vm_offset_t ml_static_malloc(
        return((vm_offset_t)NULL);
 }
 
        return((vm_offset_t)NULL);
 }
 
+
+void ml_get_bouncepool_info(vm_offset_t *phys_addr, vm_size_t *size)
+{
+        *phys_addr = 0;
+       *size      = 0;
+}
+
+
 vm_offset_t
 ml_static_ptovirt(
        vm_offset_t paddr)
 {
 vm_offset_t
 ml_static_ptovirt(
        vm_offset_t paddr)
 {
-    return (vm_offset_t)((unsigned) paddr | LINEAR_KERNEL_ADDRESS);
+#if defined(__x86_64__)
+       return (vm_offset_t)(((unsigned long) paddr) | VM_MIN_KERNEL_ADDRESS);
+#else
+       return (vm_offset_t)((paddr) | LINEAR_KERNEL_ADDRESS);
+#endif
 } 
 
 
 } 
 
 
@@ -81,30 +130,117 @@ ml_static_mfree(
        vm_offset_t vaddr,
        vm_size_t size)
 {
        vm_offset_t vaddr,
        vm_size_t size)
 {
-       vm_offset_t vaddr_cur;
+       addr64_t vaddr_cur;
        ppnum_t ppn;
        ppnum_t ppn;
-
-       if (vaddr < VM_MIN_KERNEL_ADDRESS) return;
+       uint32_t freed_pages = 0;
+       assert(vaddr >= VM_MIN_KERNEL_ADDRESS);
 
        assert((vaddr & (PAGE_SIZE-1)) == 0); /* must be page aligned */
 
        for (vaddr_cur = vaddr;
 
        assert((vaddr & (PAGE_SIZE-1)) == 0); /* must be page aligned */
 
        for (vaddr_cur = vaddr;
-            vaddr_cur < round_page_32(vaddr+size);
+            vaddr_cur < round_page_64(vaddr+size);
             vaddr_cur += PAGE_SIZE) {
             vaddr_cur += PAGE_SIZE) {
-               ppn = pmap_find_phys(kernel_pmap, (addr64_t)vaddr_cur);
+               ppn = pmap_find_phys(kernel_pmap, vaddr_cur);
                if (ppn != (vm_offset_t)NULL) {
                if (ppn != (vm_offset_t)NULL) {
-                       pmap_remove(kernel_pmap, (addr64_t)vaddr_cur, (addr64_t)(vaddr_cur+PAGE_SIZE));
-                       vm_page_create(ppn,(ppn+1));
-                       vm_page_wire_count--;
+                       kernel_pmap->stats.resident_count++;
+                       if (kernel_pmap->stats.resident_count >
+                           kernel_pmap->stats.resident_max) {
+                               kernel_pmap->stats.resident_max =
+                                       kernel_pmap->stats.resident_count;
+                       }
+                       pmap_remove(kernel_pmap, vaddr_cur, vaddr_cur+PAGE_SIZE);
+                       assert(pmap_valid_page(ppn));
+
+                       if (IS_MANAGED_PAGE(ppn)) {
+                               vm_page_create(ppn,(ppn+1));
+                               vm_page_wire_count--;
+                               freed_pages++;
+                       }
                }
        }
                }
        }
+#if    DEBUG   
+       kprintf("ml_static_mfree: Released 0x%x pages at VA %p, size:0x%llx, last ppn: 0x%x\n", freed_pages, (void *)vaddr, (uint64_t)size, ppn);
+#endif
 }
 
 }
 
+
 /* virtual to physical on wired pages */
 vm_offset_t ml_vtophys(
        vm_offset_t vaddr)
 {
 /* virtual to physical on wired pages */
 vm_offset_t ml_vtophys(
        vm_offset_t vaddr)
 {
-       return  kvtophys(vaddr);
+       return  (vm_offset_t)kvtophys(vaddr);
+}
+
+/*
+ *     Routine:        ml_nofault_copy
+ *     Function:       Perform a physical mode copy if the source and
+ *                     destination have valid translations in the kernel pmap.
+ *                     If translations are present, they are assumed to
+ *                     be wired; i.e. no attempt is made to guarantee that the
+ *                     translations obtained remained valid for
+ *                     the duration of the copy process.
+ */
+
+vm_size_t ml_nofault_copy(
+       vm_offset_t virtsrc, vm_offset_t virtdst, vm_size_t size)
+{
+       addr64_t cur_phys_dst, cur_phys_src;
+       uint32_t count, nbytes = 0;
+
+       while (size > 0) {
+               if (!(cur_phys_src = kvtophys(virtsrc)))
+                       break;
+               if (!(cur_phys_dst = kvtophys(virtdst)))
+                       break;
+               if (!pmap_valid_page(i386_btop(cur_phys_dst)) || !pmap_valid_page(i386_btop(cur_phys_src)))
+                       break;
+               count = (uint32_t)(PAGE_SIZE - (cur_phys_src & PAGE_MASK));
+               if (count > (PAGE_SIZE - (cur_phys_dst & PAGE_MASK)))
+                       count = (uint32_t)(PAGE_SIZE - (cur_phys_dst & PAGE_MASK));
+               if (count > size)
+                       count = (uint32_t)size;
+
+               bcopy_phys(cur_phys_src, cur_phys_dst, count);
+
+               nbytes += count;
+               virtsrc += count;
+               virtdst += count;
+               size -= count;
+       }
+
+       return nbytes;
+}
+
+/*
+ *     Routine:        ml_validate_nofault
+ *     Function: Validate that ths address range has a valid translations
+ *                     in the kernel pmap.  If translations are present, they are
+ *                     assumed to be wired; i.e. no attempt is made to guarantee
+ *                     that the translation persist after the check.
+ *  Returns: TRUE if the range is mapped and will not cause a fault,
+ *                     FALSE otherwise.
+ */
+
+boolean_t ml_validate_nofault(
+       vm_offset_t virtsrc, vm_size_t size)
+{
+       addr64_t cur_phys_src;
+       uint32_t count;
+
+       while (size > 0) {
+               if (!(cur_phys_src = kvtophys(virtsrc)))
+                       return FALSE;
+               if (!pmap_valid_page(i386_btop(cur_phys_src)))
+                       return FALSE;
+               count = (uint32_t)(PAGE_SIZE - (cur_phys_src & PAGE_MASK));
+               if (count > size)
+                       count = (uint32_t)size;
+
+               virtsrc += count;
+               size -= count;
+       }
+
+       return TRUE;
 }
 
 /* Interrupt handling */
 }
 
 /* Interrupt handling */
@@ -115,28 +251,40 @@ void ml_init_interrupt(void)
        (void) ml_set_interrupts_enabled(TRUE);
 }
 
        (void) ml_set_interrupts_enabled(TRUE);
 }
 
+
 /* Get Interrupts Enabled */
 boolean_t ml_get_interrupts_enabled(void)
 {
   unsigned long flags;
 
 /* Get Interrupts Enabled */
 boolean_t ml_get_interrupts_enabled(void)
 {
   unsigned long flags;
 
-  __asm__ volatile("pushf; popl        %0" :  "=r" (flags));
+  __asm__ volatile("pushf; pop %0" :  "=r" (flags));
   return (flags & EFL_IF) != 0;
 }
 
 /* Set Interrupts Enabled */
 boolean_t ml_set_interrupts_enabled(boolean_t enable)
 {
   return (flags & EFL_IF) != 0;
 }
 
 /* Set Interrupts Enabled */
 boolean_t ml_set_interrupts_enabled(boolean_t enable)
 {
-  unsigned long flags;
+       unsigned long flags;
+       boolean_t istate;
+       
+       __asm__ volatile("pushf; pop    %0" :  "=r" (flags));
 
 
-  __asm__ volatile("pushf; popl        %0" :  "=r" (flags));
+       assert(get_interrupt_level() ? (enable == FALSE) : TRUE);
 
 
- if (enable)
-       __asm__ volatile("sti");
-  else
-       __asm__ volatile("cli");
+       istate = ((flags & EFL_IF) != 0);
 
 
-  return (flags & EFL_IF) != 0;
+       if (enable) {
+               __asm__ volatile("sti;nop");
+
+               if ((get_preemption_level() == 0) && (*ast_pending() & AST_URGENT))
+                       __asm__ volatile ("int $0xff");
+       }
+       else {
+               if (istate)
+                       __asm__ volatile("cli");
+       }
+
+       return istate;
 }
 
 /* Check if running at interrupt context */
 }
 
 /* Check if running at interrupt context */
@@ -145,6 +293,15 @@ boolean_t ml_at_interrupt_context(void)
        return get_interrupt_level() != 0;
 }
 
        return get_interrupt_level() != 0;
 }
 
+void ml_get_power_state(boolean_t *icp, boolean_t *pidlep) {
+       *icp = (get_interrupt_level() != 0);
+       /* These will be technically inaccurate for interrupts that occur
+        * successively within a single "idle exit" event, but shouldn't
+        * matter statistically.
+        */
+       *pidlep = (current_cpu_datap()->lcpu.package->num_idle == topoParms.nLThreadsPerPackage);
+}
+
 /* Generate a fake interrupt */
 void ml_cause_interrupt(void)
 {
 /* Generate a fake interrupt */
 void ml_cause_interrupt(void)
 {
@@ -153,12 +310,9 @@ void ml_cause_interrupt(void)
 
 void ml_thread_policy(
        thread_t thread,
 
 void ml_thread_policy(
        thread_t thread,
-       unsigned policy_id,
+__unused       unsigned policy_id,
        unsigned policy_info)
 {
        unsigned policy_info)
 {
-       if (policy_id == MACHINE_GROUP)
-               thread_bind(thread, master_processor);
-
        if (policy_info & MACHINE_NETWORK_WORKLOOP) {
                spl_t           s = splsched();
 
        if (policy_info & MACHINE_NETWORK_WORKLOOP) {
                spl_t           s = splsched();
 
@@ -188,54 +342,22 @@ void ml_install_interrupt_handler(
 
        (void) ml_set_interrupts_enabled(current_state);
 
 
        (void) ml_set_interrupts_enabled(current_state);
 
-       initialize_screen(0, kPEAcquireScreen);
+       initialize_screen(NULL, kPEAcquireScreen);
 }
 
 }
 
-static void
-cpu_idle(void)
-{
-       __asm__ volatile("sti; hlt": : :"memory");
-}
-void (*cpu_idle_handler)(void) = cpu_idle;
-
-void
-machine_idle(void)
-{
-       cpu_core_t      *my_core = cpu_core();
-       int             others_active;
-
-       /*
-        * We halt this cpu thread
-        * unless kernel param idlehalt is false and no other thread
-        * in the same core is active - if so, don't halt so that this
-        * core doesn't go into a low-power mode.
-        */
-       others_active = !atomic_decl_and_test(
-                               (long *) &my_core->active_threads, 1);
-       if (idlehalt || others_active) {
-               DBGLOG(cpu_handle, cpu_number(), MP_IDLE);
-               cpu_idle_handler();
-               DBGLOG(cpu_handle, cpu_number(), MP_UNIDLE);
-       } else {
-               __asm__ volatile("sti");
-       }
-       atomic_incl((long *) &my_core->active_threads, 1);
-}
 
 void
 machine_signal_idle(
         processor_t processor)
 {
 
 void
 machine_signal_idle(
         processor_t processor)
 {
-       cpu_interrupt(PROCESSOR_DATA(processor, slot_num));
+       cpu_interrupt(processor->cpu_id);
 }
 
 }
 
-kern_return_t
-ml_processor_register(
-       cpu_id_t        cpu_id,
-       uint32_t        lapic_id,
-       processor_t     *processor_out,
-       ipi_handler_t   *ipi_handler,
-       boolean_t       boot_cpu)
+static kern_return_t
+register_cpu(
+        uint32_t        lapic_id,
+       processor_t     *processor_out,
+       boolean_t       boot_cpu )
 {
        int             target_cpu;
        cpu_data_t      *this_cpu_datap;
 {
        int             target_cpu;
        cpu_data_t      *this_cpu_datap;
@@ -250,36 +372,132 @@ ml_processor_register(
 
        lapic_cpu_map(lapic_id, target_cpu);
 
 
        lapic_cpu_map(lapic_id, target_cpu);
 
-       this_cpu_datap->cpu_id = cpu_id;
+       /* The cpu_id is not known at registration phase. Just do
+        * lapic_id for now 
+        */
        this_cpu_datap->cpu_phys_number = lapic_id;
 
        this_cpu_datap->cpu_console_buf = console_cpu_alloc(boot_cpu);
        if (this_cpu_datap->cpu_console_buf == NULL)
                goto failed;
 
        this_cpu_datap->cpu_phys_number = lapic_id;
 
        this_cpu_datap->cpu_console_buf = console_cpu_alloc(boot_cpu);
        if (this_cpu_datap->cpu_console_buf == NULL)
                goto failed;
 
+       this_cpu_datap->cpu_chud = chudxnu_cpu_alloc(boot_cpu);
+       if (this_cpu_datap->cpu_chud == NULL)
+               goto failed;
+
+#if KPC
+       this_cpu_datap->cpu_kpc_buf[0] = kpc_counterbuf_alloc();
+       if(this_cpu_datap->cpu_kpc_buf[0] == NULL )
+               goto failed;
+       this_cpu_datap->cpu_kpc_buf[1] = kpc_counterbuf_alloc();
+       if(this_cpu_datap->cpu_kpc_buf[1] == NULL )
+               goto failed;
+
+       this_cpu_datap->cpu_kpc_shadow = kpc_counterbuf_alloc();
+       if(this_cpu_datap->cpu_kpc_shadow == NULL )
+               goto failed;
+
+       this_cpu_datap->cpu_kpc_reload = kpc_counterbuf_alloc();
+       if(this_cpu_datap->cpu_kpc_reload == NULL )
+               goto failed;
+#endif
+
        if (!boot_cpu) {
        if (!boot_cpu) {
+               cpu_thread_alloc(this_cpu_datap->cpu_number);
+               if (this_cpu_datap->lcpu.core == NULL)
+                       goto failed;
+
+#if NCOPY_WINDOWS > 0
                this_cpu_datap->cpu_pmap = pmap_cpu_alloc(boot_cpu);
                if (this_cpu_datap->cpu_pmap == NULL)
                        goto failed;
                this_cpu_datap->cpu_pmap = pmap_cpu_alloc(boot_cpu);
                if (this_cpu_datap->cpu_pmap == NULL)
                        goto failed;
+#endif
 
                this_cpu_datap->cpu_processor = cpu_processor_alloc(boot_cpu);
                if (this_cpu_datap->cpu_processor == NULL)
                        goto failed;
 
                this_cpu_datap->cpu_processor = cpu_processor_alloc(boot_cpu);
                if (this_cpu_datap->cpu_processor == NULL)
                        goto failed;
-               processor_init(this_cpu_datap->cpu_processor, target_cpu);
+               /*
+                * processor_init() deferred to topology start
+                * because "slot numbers" a.k.a. logical processor numbers
+                * are not yet finalized.
+                */
        }
 
        *processor_out = this_cpu_datap->cpu_processor;
        }
 
        *processor_out = this_cpu_datap->cpu_processor;
-       *ipi_handler = NULL;
 
        return KERN_SUCCESS;
 
 failed:
        cpu_processor_free(this_cpu_datap->cpu_processor);
 
        return KERN_SUCCESS;
 
 failed:
        cpu_processor_free(this_cpu_datap->cpu_processor);
+#if NCOPY_WINDOWS > 0
        pmap_cpu_free(this_cpu_datap->cpu_pmap);
        pmap_cpu_free(this_cpu_datap->cpu_pmap);
+#endif
+       chudxnu_cpu_free(this_cpu_datap->cpu_chud);
        console_cpu_free(this_cpu_datap->cpu_console_buf);
        console_cpu_free(this_cpu_datap->cpu_console_buf);
+#if KPC
+       kpc_counterbuf_free(this_cpu_datap->cpu_kpc_buf[0]);
+       kpc_counterbuf_free(this_cpu_datap->cpu_kpc_buf[1]);
+       kpc_counterbuf_free(this_cpu_datap->cpu_kpc_shadow);
+       kpc_counterbuf_free(this_cpu_datap->cpu_kpc_reload);
+#endif
+
        return KERN_FAILURE;
 }
 
        return KERN_FAILURE;
 }
 
+
+kern_return_t
+ml_processor_register(
+        cpu_id_t        cpu_id,
+        uint32_t        lapic_id,
+        processor_t     *processor_out,
+        boolean_t       boot_cpu,
+       boolean_t       start )
+{
+    static boolean_t done_topo_sort = FALSE;
+    static uint32_t num_registered = 0;
+
+    /* Register all CPUs first, and track max */
+    if( start == FALSE )
+    {
+       num_registered++;
+
+       DBG( "registering CPU lapic id %d\n", lapic_id );
+
+       return register_cpu( lapic_id, processor_out, boot_cpu );
+    }
+
+    /* Sort by topology before we start anything */
+    if( !done_topo_sort )
+    {
+       DBG( "about to start CPUs. %d registered\n", num_registered );
+
+       cpu_topology_sort( num_registered );
+       done_topo_sort = TRUE;
+    }
+
+    /* Assign the cpu ID */
+    uint32_t cpunum = -1;
+    cpu_data_t *this_cpu_datap = NULL;
+
+    /* find cpu num and pointer */
+    cpunum = ml_get_cpuid( lapic_id );
+
+    if( cpunum == 0xFFFFFFFF ) /* never heard of it? */
+       panic( "trying to start invalid/unregistered CPU %d\n", lapic_id );
+
+    this_cpu_datap = cpu_datap(cpunum);
+
+    /* fix the CPU id */
+    this_cpu_datap->cpu_id = cpu_id;
+
+    /* output arg */
+    *processor_out = this_cpu_datap->cpu_processor;
+
+    /* OK, try and start this CPU */
+    return cpu_topology_start_cpu( cpunum );
+}
+
+
 void
 ml_cpu_get_info(ml_cpu_info_t *cpu_infop)
 {
 void
 ml_cpu_get_info(ml_cpu_info_t *cpu_infop)
 {
@@ -290,11 +508,22 @@ ml_cpu_get_info(ml_cpu_info_t *cpu_infop)
                return;
  
        /*
                return;
  
        /*
-        * Are we supporting XMM/SSE/SSE2?
+        * Are we supporting MMX/SSE/SSE2/SSE3?
         * As distinct from whether the cpu has these capabilities.
         */
         * As distinct from whether the cpu has these capabilities.
         */
-       os_supports_sse = get_cr4() & CR4_XMM;
-       if ((cpuid_features() & CPUID_FEATURE_SSE2) && os_supports_sse)
+       os_supports_sse = !!(get_cr4() & CR4_OSXMM);
+
+       if (ml_fpu_avx_enabled())
+               cpu_infop->vector_unit = 9;
+       else if ((cpuid_features() & CPUID_FEATURE_SSE4_2) && os_supports_sse)
+               cpu_infop->vector_unit = 8;
+       else if ((cpuid_features() & CPUID_FEATURE_SSE4_1) && os_supports_sse)
+               cpu_infop->vector_unit = 7;
+       else if ((cpuid_features() & CPUID_FEATURE_SSSE3) && os_supports_sse)
+               cpu_infop->vector_unit = 6;
+       else if ((cpuid_features() & CPUID_FEATURE_SSE3) && os_supports_sse)
+               cpu_infop->vector_unit = 5;
+       else if ((cpuid_features() & CPUID_FEATURE_SSE2) && os_supports_sse)
                cpu_infop->vector_unit = 4;
        else if ((cpuid_features() & CPUID_FEATURE_SSE) && os_supports_sse)
                cpu_infop->vector_unit = 3;
                cpu_infop->vector_unit = 4;
        else if ((cpuid_features() & CPUID_FEATURE_SSE) && os_supports_sse)
                cpu_infop->vector_unit = 3;
@@ -319,8 +548,8 @@ ml_cpu_get_info(ml_cpu_info_t *cpu_infop)
         }
 
         if (cpuid_infop->cache_size[L3U] > 0) {
         }
 
         if (cpuid_infop->cache_size[L3U] > 0) {
-            cpu_infop->l2_settings = 1;
-            cpu_infop->l2_cache_size = cpuid_infop->cache_size[L3U];
+            cpu_infop->l3_settings = 1;
+            cpu_infop->l3_cache_size = cpuid_infop->cache_size[L3U];
         } else {
             cpu_infop->l3_settings = 0;
             cpu_infop->l3_cache_size = 0xFFFFFFFF;
         } else {
             cpu_infop->l3_settings = 0;
             cpu_infop->l3_cache_size = 0xFFFFFFFF;
@@ -336,12 +565,12 @@ ml_init_max_cpus(unsigned long max_cpus)
         if (max_cpus_initialized != MAX_CPUS_SET) {
                 if (max_cpus > 0 && max_cpus <= MAX_CPUS) {
                        /*
         if (max_cpus_initialized != MAX_CPUS_SET) {
                 if (max_cpus > 0 && max_cpus <= MAX_CPUS) {
                        /*
-                        * Note: max_cpus is the number of enable processors
+                        * Note: max_cpus is the number of enabled processors
                         * that ACPI found; max_ncpus is the maximum number
                         * that the kernel supports or that the "cpus="
                         * boot-arg has set. Here we take int minimum.
                         */
                         * that ACPI found; max_ncpus is the maximum number
                         * that the kernel supports or that the "cpus="
                         * boot-arg has set. Here we take int minimum.
                         */
-                        machine_info.max_cpus = MIN(max_cpus, max_ncpus);
+                        machine_info.max_cpus = (integer_t)MIN(max_cpus, max_ncpus);
                }
                 if (max_cpus_initialized == MAX_CPUS_WAIT)
                         wakeup((event_t)&max_cpus_initialized);
                }
                 if (max_cpus_initialized == MAX_CPUS_WAIT)
                         wakeup((event_t)&max_cpus_initialized);
@@ -366,46 +595,80 @@ ml_get_max_cpus(void)
 }
 
 /*
 }
 
 /*
- * This is called from the machine-independent routine cpu_up()
- * to perform machine-dependent info updates. Defer to cpu_thread_init().
+ *     Routine:        ml_init_lock_timeout
+ *     Function:
  */
 void
  */
 void
-ml_cpu_up(void)
+ml_init_lock_timeout(void)
 {
 {
-       return;
+       uint64_t        abstime;
+       uint32_t        mtxspin;
+       uint64_t        default_timeout_ns = NSEC_PER_SEC>>2;
+       uint32_t        slto;
+       uint32_t        prt;
+
+       if (PE_parse_boot_argn("slto_us", &slto, sizeof (slto)))
+               default_timeout_ns = slto * NSEC_PER_USEC;
+
+       /* LockTimeOut is absolutetime, LockTimeOutTSC is in TSC ticks */
+       nanoseconds_to_absolutetime(default_timeout_ns, &abstime);
+       LockTimeOut = (uint32_t) abstime;
+       LockTimeOutTSC = (uint32_t) tmrCvt(abstime, tscFCvtn2t);
+
+       if (PE_parse_boot_argn("mtxspin", &mtxspin, sizeof (mtxspin))) {
+               if (mtxspin > USEC_PER_SEC>>4)
+                       mtxspin =  USEC_PER_SEC>>4;
+               nanoseconds_to_absolutetime(mtxspin*NSEC_PER_USEC, &abstime);
+       } else {
+               nanoseconds_to_absolutetime(10*NSEC_PER_USEC, &abstime);
+       }
+       MutexSpin = (unsigned int)abstime;
+
+       nanoseconds_to_absolutetime(4ULL * NSEC_PER_SEC, &LastDebuggerEntryAllowance);
+       if (PE_parse_boot_argn("panic_restart_timeout", &prt, sizeof (prt)))
+               nanoseconds_to_absolutetime(prt * NSEC_PER_SEC, &panic_restart_timeout);
+       virtualized = ((cpuid_features() & CPUID_FEATURE_VMM) != 0);
+       interrupt_latency_tracker_setup();
+       simple_lock_init(&ml_timer_evaluation_slock, 0);
 }
 
 /*
 }
 
 /*
- * This is called from the machine-independent routine cpu_down()
- * to perform machine-dependent info updates.
+ * Threshold above which we should attempt to block
+ * instead of spinning for clock_delay_until().
  */
  */
+
 void
 void
-ml_cpu_down(void)
+ml_init_delay_spin_threshold(int threshold_us)
 {
 {
-       return;
+       nanoseconds_to_absolutetime(threshold_us * NSEC_PER_USEC, &delay_spin_threshold);
 }
 
 }
 
-/* Stubs for pc tracing mechanism */
-
-int *pc_trace_buf;
-int pc_trace_cnt = 0;
-
-int
-set_be_bit(void)
+boolean_t
+ml_delay_should_spin(uint64_t interval)
 {
 {
-  return(0);
+       return (interval < delay_spin_threshold) ? TRUE : FALSE;
 }
 
 }
 
-int
-clr_be_bit(void)
+/*
+ * This is called from the machine-independent layer
+ * to perform machine-dependent info updates. Defer to cpu_thread_init().
+ */
+void
+ml_cpu_up(void)
 {
 {
-  return(0);
+       return;
 }
 
 }
 
-int
-be_tracing(void)
+/*
+ * This is called from the machine-independent layer
+ * to perform machine-dependent info updates.
+ */
+void
+ml_cpu_down(void)
 {
 {
-  return(0);
+       i386_deactivate_cpu();
+
+       return;
 }
 
 /*
 }
 
 /*
@@ -426,3 +689,109 @@ current_thread(void)
 {
   return(current_thread_fast());
 }
 {
   return(current_thread_fast());
 }
+
+
+boolean_t ml_is64bit(void) {
+
+        return (cpu_mode_is64bit());
+}
+
+
+boolean_t ml_thread_is64bit(thread_t thread) {
+  
+        return (thread_is_64bit(thread));
+}
+
+
+boolean_t ml_state_is64bit(void *saved_state) {
+
+       return is_saved_state64(saved_state);
+}
+
+void ml_cpu_set_ldt(int selector)
+{
+       /*
+        * Avoid loading the LDT
+        * if we're setting the KERNEL LDT and it's already set.
+        */
+       if (selector == KERNEL_LDT &&
+           current_cpu_datap()->cpu_ldt == KERNEL_LDT)
+               return;
+
+       lldt(selector);
+       current_cpu_datap()->cpu_ldt = selector;
+}
+
+void ml_fp_setvalid(boolean_t value)
+{
+        fp_setvalid(value);
+}
+
+uint64_t ml_cpu_int_event_time(void)
+{
+       return current_cpu_datap()->cpu_int_event_time;
+}
+
+vm_offset_t ml_stack_remaining(void)
+{
+       uintptr_t local = (uintptr_t) &local;
+
+       if (ml_at_interrupt_context() != 0) {
+           return (local - (current_cpu_datap()->cpu_int_stack_top - INTSTACK_SIZE));
+       } else {
+           return (local - current_thread()->kernel_stack);
+       }
+}
+
+void
+kernel_preempt_check(void)
+{
+       boolean_t       intr;
+       unsigned long flags;
+
+       assert(get_preemption_level() == 0);
+
+       __asm__ volatile("pushf; pop    %0" :  "=r" (flags));
+
+       intr = ((flags & EFL_IF) != 0);
+
+       if ((*ast_pending() & AST_URGENT) && intr == TRUE) {
+               /*
+                * can handle interrupts and preemptions 
+                * at this point
+                */
+
+               /*
+                * now cause the PRE-EMPTION trap
+                */
+               __asm__ volatile ("int %0" :: "N" (T_PREEMPT));
+       }
+}
+
+boolean_t machine_timeout_suspended(void) {
+       return (virtualized || pmap_tlb_flush_timeout || spinlock_timed_out || panic_active() || mp_recent_debugger_activity());
+}
+
+/* Eagerly evaluate all pending timer and thread callouts
+ */
+void ml_timer_evaluate(void) {
+       KERNEL_DEBUG_CONSTANT(DECR_TIMER_RESCAN|DBG_FUNC_START, 0, 0, 0, 0, 0);
+
+       uint64_t te_end, te_start = mach_absolute_time();
+       simple_lock(&ml_timer_evaluation_slock);
+       ml_timer_evaluation_in_progress = TRUE;
+       thread_call_delayed_timer_rescan_all();
+       mp_cpus_call(CPUMASK_ALL, ASYNC, timer_queue_expire_rescan, NULL);
+       ml_timer_evaluation_in_progress = FALSE;
+       ml_timer_eager_evaluations++;
+       te_end = mach_absolute_time();
+       ml_timer_eager_evaluation_max = MAX(ml_timer_eager_evaluation_max, (te_end - te_start));
+       simple_unlock(&ml_timer_evaluation_slock);
+
+       KERNEL_DEBUG_CONSTANT(DECR_TIMER_RESCAN|DBG_FUNC_END, 0, 0, 0, 0, 0);
+}
+
+boolean_t
+ml_timer_forced_evaluation(void) {
+       return ml_timer_evaluation_in_progress;
+}