/*
- * Copyright (c) 2000-2004 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
#include <mach_assert.h>
-#if defined(__GNUC__)
-
#include <kern/assert.h>
#include <kern/kern_types.h>
+#include <kern/queue.h>
#include <kern/processor.h>
+#include <kern/pms.h>
#include <pexpert/pexpert.h>
+#include <mach/i386/thread_status.h>
+#include <mach/i386/vm_param.h>
+#include <i386/locks.h>
+#include <i386/rtclock_protos.h>
+#include <i386/pmCPU.h>
+#include <i386/cpu_topology.h>
+#include <i386/seg.h>
+
+#if CONFIG_VMX
+#include <i386/vmx/vmx_cpu.h>
+#endif
+#if MONOTONIC
+#include <machine/monotonic.h>
+#endif /* MONOTONIC */
+
+#include <machine/pal_routines.h>
/*
* Data structures referenced (anonymously) from per-cpu data:
*/
-struct cpu_core;
struct cpu_cons_buffer;
-struct mp_desc_table;
-
+struct cpu_desc_table;
+struct mca_state;
+struct prngContext;
/*
* Data structures embedded in per-cpu data:
*/
typedef struct rtclock_timer {
- uint64_t deadline;
- boolean_t is_set;
- boolean_t has_expired;
+ mpqueue_head_t queue;
+ uint64_t deadline;
+ uint64_t when_set;
+ boolean_t has_expired;
} rtclock_timer_t;
typedef struct {
- uint64_t rnt_tsc; /* timestamp */
- uint64_t rnt_nanos; /* nanoseconds */
- uint32_t rnt_scale; /* tsc -> nanosec multiplier */
- uint32_t rnt_shift; /* tsc -> nanosec shift/div */
- uint64_t rnt_step_tsc; /* tsc when scale applied */
- uint64_t rnt_step_nanos; /* ns when scale applied */
-} rtc_nanotime_t;
+ /* The 'u' suffixed fields store the double-mapped descriptor addresses */
+ struct x86_64_tss *cdi_ktssu;
+ struct x86_64_tss *cdi_ktssb;
+ x86_64_desc_register_t cdi_gdtu;
+ x86_64_desc_register_t cdi_gdtb;
+ x86_64_desc_register_t cdi_idtu;
+ x86_64_desc_register_t cdi_idtb;
+ struct fake_descriptor *cdi_ldtu;
+ struct fake_descriptor *cdi_ldtb;
+ vm_offset_t cdi_sstku;
+ vm_offset_t cdi_sstkb;
+} cpu_desc_index_t;
+
+typedef enum {
+ TASK_MAP_32BIT, /* 32-bit user, compatibility mode */
+ TASK_MAP_64BIT, /* 64-bit user thread, shared space */
+} task_map_t;
+
+/*
+ * This structure is used on entry into the (uber-)kernel on syscall from
+ * a 64-bit user. It contains the address of the machine state save area
+ * for the current thread and a temporary place to save the user's rsp
+ * before loading this address into rsp.
+ */
typedef struct {
- struct i386_tss *cdi_ktss;
-#if MACH_KDB
- struct i386_tss *cdi_dbtss;
-#endif /* MACH_KDB */
- struct fake_descriptor *cdi_gdt;
- struct fake_descriptor *cdi_idt;
- struct fake_descriptor *cdi_ldt;
-} cpu_desc_index_t;
+ addr64_t cu_isf; /* thread->pcb->iss.isf */
+ uint64_t cu_tmp; /* temporary scratch */
+ addr64_t cu_user_gs_base;
+} cpu_uber_t;
+typedef uint16_t pcid_t;
+typedef uint8_t pcid_ref_t;
+
+#define CPU_RTIME_BINS (12)
+#define CPU_ITIME_BINS (CPU_RTIME_BINS)
+
+#define MAXPLFRAMES (16)
+typedef struct {
+ boolean_t pltype;
+ int plevel;
+ uint64_t plbt[MAXPLFRAMES];
+} plrecord_t;
/*
* Per-cpu data.
* cpu_datap(cpu_number) macro which uses the cpu_data_ptr[] array of per-cpu
* pointers.
*/
+typedef struct {
+ pcid_t cpu_pcid_free_hint;
+#define PMAP_PCID_MAX_PCID (0x800)
+ pcid_ref_t cpu_pcid_refcounts[PMAP_PCID_MAX_PCID];
+ pmap_t cpu_pcid_last_pmap_dispatched[PMAP_PCID_MAX_PCID];
+} pcid_cdata_t;
+
typedef struct cpu_data
{
+ struct pal_cpu_data cpu_pal_data; /* PAL-specific data */
+#define cpu_pd cpu_pal_data /* convenience alias */
struct cpu_data *cpu_this; /* pointer to myself */
thread_t cpu_active_thread;
- thread_t cpu_active_kloaded;
- vm_offset_t cpu_active_stack;
- vm_offset_t cpu_kernel_stack;
+ thread_t cpu_nthread;
+ volatile int cpu_preemption_level;
+ int cpu_number; /* Logical CPU */
+ void *cpu_int_state; /* interrupt state */
+ vm_offset_t cpu_active_stack; /* kernel stack base */
+ vm_offset_t cpu_kernel_stack; /* kernel stack top */
vm_offset_t cpu_int_stack_top;
- int cpu_preemption_level;
- int cpu_simple_lock_count;
int cpu_interrupt_level;
- int cpu_number; /* Logical CPU */
- int cpu_phys_number; /* Physical CPU */
- cpu_id_t cpu_id; /* Platform Expert */
- int cpu_signals; /* IPI events */
- int cpu_mcount_off; /* mcount recursion */
+ volatile int cpu_signals; /* IPI events */
+ volatile int cpu_prior_signals; /* Last set of events,
+ * debugging
+ */
ast_t cpu_pending_ast;
- int cpu_type;
- int cpu_subtype;
- int cpu_threadtype;
- int cpu_running;
- struct cpu_core *cpu_core; /* cpu's parent core */
- uint64_t cpu_rtc_tick_deadline;
- uint64_t cpu_rtc_intr_deadline;
- rtclock_timer_t cpu_rtc_timer;
- rtc_nanotime_t cpu_rtc_nanotime;
- void *cpu_console_buf;
+ volatile int cpu_running;
+#if !MONOTONIC
+ boolean_t cpu_fixed_pmcs_enabled;
+#endif /* !MONOTONIC */
+ rtclock_timer_t rtclock_timer;
+ uint64_t quantum_timer_deadline;
+ volatile addr64_t cpu_active_cr3 __attribute((aligned(64)));
+ union {
+ volatile uint32_t cpu_tlb_invalid;
+ struct {
+ volatile uint16_t cpu_tlb_invalid_local;
+ volatile uint16_t cpu_tlb_invalid_global;
+ };
+ };
+ volatile task_map_t cpu_task_map;
+ volatile addr64_t cpu_task_cr3;
+ addr64_t cpu_kernel_cr3;
+ volatile addr64_t cpu_ucr3;
+ boolean_t cpu_pagezero_mapped;
+ cpu_uber_t cpu_uber;
+/* Double-mapped per-CPU exception stack address */
+ uintptr_t cd_estack;
+ int cpu_xstate;
+/* Address of shadowed, partially mirrored CPU data structures located
+ * in the double mapped PML4
+ */
+ void *cd_shadow;
struct processor *cpu_processor;
+#if NCOPY_WINDOWS > 0
struct cpu_pmap *cpu_pmap;
- struct mp_desc_table *cpu_desc_tablep;
+#endif
+ struct real_descriptor *cpu_ldtp;
+ struct cpu_desc_table *cpu_desc_tablep;
cpu_desc_index_t cpu_desc_index;
- boolean_t cpu_iflag;
-#ifdef MACH_KDB
- /* XXX Untested: */
- int cpu_db_pass_thru;
- vm_offset_t cpu_db_stacks;
- struct i386_saved_state *cpu_kdb_saved_state;
- spl_t cpu_kdb_saved_ipl;
- int cpu_kdb_is_slave;
- int cpu_kdb_active;
-#endif /* MACH_KDB */
- int cpu_hibernate;
+ int cpu_ldt;
+#if NCOPY_WINDOWS > 0
+ vm_offset_t cpu_copywindow_base;
+ uint64_t *cpu_copywindow_pdp;
+
+ vm_offset_t cpu_physwindow_base;
+ uint64_t *cpu_physwindow_ptep;
+#endif
+
+#define HWINTCNT_SIZE 256
+ uint32_t cpu_hwIntCnt[HWINTCNT_SIZE]; /* Interrupt counts */
+ uint64_t cpu_hwIntpexits[HWINTCNT_SIZE];
+ uint64_t cpu_dr7; /* debug control register */
+ uint64_t cpu_int_event_time; /* intr entry/exit time */
+ pal_rtc_nanotime_t *cpu_nanotime; /* Nanotime info */
+#if KPC
+ /* double-buffered performance counter data */
+ uint64_t *cpu_kpc_buf[2];
+ /* PMC shadow and reload value buffers */
+ uint64_t *cpu_kpc_shadow;
+ uint64_t *cpu_kpc_reload;
+#endif
+#if MONOTONIC
+ struct mt_cpu cpu_monotonic;
+#endif /* MONOTONIC */
+ uint32_t cpu_pmap_pcid_enabled;
+ pcid_t cpu_active_pcid;
+ pcid_t cpu_last_pcid;
+ pcid_t cpu_kernel_pcid;
+ volatile pcid_ref_t *cpu_pmap_pcid_coherentp;
+ volatile pcid_ref_t *cpu_pmap_pcid_coherentp_kernel;
+ pcid_cdata_t *cpu_pcid_data;
+#ifdef PCID_STATS
+ uint64_t cpu_pmap_pcid_flushes;
+ uint64_t cpu_pmap_pcid_preserves;
+#endif
+ uint64_t cpu_aperf;
+ uint64_t cpu_mperf;
+ uint64_t cpu_c3res;
+ uint64_t cpu_c6res;
+ uint64_t cpu_c7res;
+ uint64_t cpu_itime_total;
+ uint64_t cpu_rtime_total;
+ uint64_t cpu_ixtime;
+ uint64_t cpu_idle_exits;
+ uint64_t cpu_rtimes[CPU_RTIME_BINS];
+ uint64_t cpu_itimes[CPU_ITIME_BINS];
+#if !MONOTONIC
+ uint64_t cpu_cur_insns;
+ uint64_t cpu_cur_ucc;
+ uint64_t cpu_cur_urc;
+#endif /* !MONOTONIC */
+ uint64_t cpu_gpmcs[4];
+ uint64_t cpu_max_observed_int_latency;
+ int cpu_max_observed_int_latency_vector;
+ volatile boolean_t cpu_NMI_acknowledged;
+ uint64_t debugger_entry_time;
+ uint64_t debugger_ipi_time;
+ /* A separate nested interrupt stack flag, to account
+ * for non-nested interrupts arriving while on the interrupt stack
+ * Currently only occurs when AICPM enables interrupts on the
+ * interrupt stack during processor offlining.
+ */
+ uint32_t cpu_nested_istack;
+ uint32_t cpu_nested_istack_events;
+ x86_saved_state64_t *cpu_fatal_trap_state;
+ x86_saved_state64_t *cpu_post_fatal_trap_state;
+#if CONFIG_VMX
+ vmx_cpu_t cpu_vmx; /* wonderful world of virtualization */
+#endif
+#if CONFIG_MCA
+ struct mca_state *cpu_mca_state; /* State at MC fault */
+#endif
+ int cpu_type;
+ int cpu_subtype;
+ int cpu_threadtype;
+ boolean_t cpu_iflag;
+ boolean_t cpu_boot_complete;
+ int cpu_hibernate;
+#define MAX_PREEMPTION_RECORDS (8)
+#if DEVELOPMENT || DEBUG
+ int cpu_plri;
+ plrecord_t plrecords[MAX_PREEMPTION_RECORDS];
+#endif
+ void *cpu_console_buf;
+ struct x86_lcpu lcpu;
+ int cpu_phys_number; /* Physical CPU */
+ cpu_id_t cpu_id; /* Platform Expert */
+#if DEBUG
+ uint64_t cpu_entry_cr3;
+ uint64_t cpu_exit_cr3;
+ uint64_t cpu_pcid_last_cr3;
+#endif
+ boolean_t cpu_rendezvous_in_progress;
} cpu_data_t;
extern cpu_data_t *cpu_data_ptr[];
-extern cpu_data_t cpu_data_master;
/* Macro to generate inline bodies to retrieve per-cpu data fields. */
+#if defined(__clang__)
+#define GS_RELATIVE volatile __attribute__((address_space(256)))
+#ifndef offsetof
+#define offsetof(TYPE,MEMBER) __builtin_offsetof(TYPE,MEMBER)
+#endif
+
+#define CPU_DATA_GET(member,type) \
+ cpu_data_t GS_RELATIVE *cpu_data = \
+ (cpu_data_t GS_RELATIVE *)0UL; \
+ type ret; \
+ ret = cpu_data->member; \
+ return ret;
+
+#define CPU_DATA_GET_INDEX(member,index,type) \
+ cpu_data_t GS_RELATIVE *cpu_data = \
+ (cpu_data_t GS_RELATIVE *)0UL; \
+ type ret; \
+ ret = cpu_data->member[index]; \
+ return ret;
+
+#define CPU_DATA_SET(member,value) \
+ cpu_data_t GS_RELATIVE *cpu_data = \
+ (cpu_data_t GS_RELATIVE *)0UL; \
+ cpu_data->member = value;
+
+#define CPU_DATA_XCHG(member,value,type) \
+ cpu_data_t GS_RELATIVE *cpu_data = \
+ (cpu_data_t GS_RELATIVE *)0UL; \
+ type ret; \
+ ret = cpu_data->member; \
+ cpu_data->member = value; \
+ return ret;
+
+#else /* !defined(__clang__) */
+
+#ifndef offsetof
#define offsetof(TYPE,MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
+#endif /* offsetof */
#define CPU_DATA_GET(member,type) \
type ret; \
- __asm__ volatile ("movl %%gs:%P1,%0" \
+ __asm__ volatile ("mov %%gs:%P1,%0" \
: "=r" (ret) \
: "i" (offsetof(cpu_data_t,member))); \
return ret;
+#define CPU_DATA_GET_INDEX(member,index,type) \
+ type ret; \
+ __asm__ volatile ("mov %%gs:(%1),%0" \
+ : "=r" (ret) \
+ : "r" (offsetof(cpu_data_t,member[index]))); \
+ return ret;
+
+#define CPU_DATA_SET(member,value) \
+ __asm__ volatile ("mov %0,%%gs:%P1" \
+ : \
+ : "r" (value), "i" (offsetof(cpu_data_t,member)));
+
+#define CPU_DATA_XCHG(member,value,type) \
+ type ret; \
+ __asm__ volatile ("xchg %0,%%gs:%P1" \
+ : "=r" (ret) \
+ : "i" (offsetof(cpu_data_t,member)), "0" (value)); \
+ return ret;
+
+#endif /* !defined(__clang__) */
+
/*
* Everyone within the osfmk part of the kernel can use the fast
* inline versions of these routines. Everyone outside, must call
* the real thing,
*/
+
+
+/*
+ * The "volatile" flavor of current_thread() is intended for use by
+ * scheduler code which may need to update the thread pointer in the
+ * course of a context switch. Any call to current_thread() made
+ * prior to the thread pointer update should be safe to optimize away
+ * as it should be consistent with that thread's state to the extent
+ * the compiler can reason about it. Likewise, the context switch
+ * path will eventually result in an arbitrary branch to the new
+ * thread's pc, about which the compiler won't be able to reason.
+ * Thus any compile-time optimization of current_thread() calls made
+ * within the new thread should be safely encapsulated in its
+ * register/stack state. The volatile form therefore exists to cover
+ * the window between the thread pointer update and the branch to
+ * the new pc.
+ */
static inline thread_t
+get_active_thread_volatile(void)
+{
+ CPU_DATA_GET(cpu_active_thread,thread_t)
+}
+
+static inline __pure2 thread_t
get_active_thread(void)
{
CPU_DATA_GET(cpu_active_thread,thread_t)
}
+
#define current_thread_fast() get_active_thread()
+#define current_thread_volatile() get_active_thread_volatile()
#define current_thread() current_thread_fast()
+#define cpu_mode_is64bit() TRUE
+
static inline int
get_preemption_level(void)
{
CPU_DATA_GET(cpu_preemption_level,int)
}
static inline int
-get_simple_lock_count(void)
-{
- CPU_DATA_GET(cpu_simple_lock_count,int)
-}
-static inline int
get_interrupt_level(void)
{
CPU_DATA_GET(cpu_interrupt_level,int)
{
CPU_DATA_GET(cpu_phys_number,int)
}
-static inline struct
-cpu_core * get_cpu_core(void)
-{
- CPU_DATA_GET(cpu_core,struct cpu_core *)
+
+static inline cpu_data_t *
+current_cpu_datap(void) {
+ CPU_DATA_GET(cpu_this, cpu_data_t *);
+}
+
+/*
+ * Facility to diagnose preemption-level imbalances, which are otherwise
+ * challenging to debug. On each operation that enables or disables preemption,
+ * we record a backtrace into a per-CPU ring buffer, along with the current
+ * preemption level and operation type. Thus, if an imbalance is observed,
+ * one can examine these per-CPU records to determine which codepath failed
+ * to re-enable preemption, enabled premption without a corresponding
+ * disablement etc. The backtracer determines which stack is currently active,
+ * and uses that to perform bounds checks on unterminated stacks.
+ * To enable, sysctl -w machdep.pltrace=1 on DEVELOPMENT or DEBUG kernels (DRK '15)
+ * The bounds check currently doesn't account for non-default thread stack sizes.
+ */
+#if DEVELOPMENT || DEBUG
+static inline void pltrace_bt(uint64_t *rets, int maxframes, uint64_t stacklo, uint64_t stackhi) {
+ uint64_t *cfp = (uint64_t *) __builtin_frame_address(0);
+ int plbtf;
+
+ assert(stacklo !=0 && stackhi !=0);
+
+ for (plbtf = 0; plbtf < maxframes; plbtf++) {
+ if (((uint64_t)cfp == 0) || (((uint64_t)cfp < stacklo) || ((uint64_t)cfp > stackhi))) {
+ rets[plbtf] = 0;
+ continue;
+ }
+ rets[plbtf] = *(cfp + 1);
+ cfp = (uint64_t *) (*cfp);
+ }
+}
+
+
+extern uint32_t low_intstack[]; /* bottom */
+extern uint32_t low_eintstack[]; /* top */
+extern char mp_slave_stack[PAGE_SIZE];
+
+static inline void pltrace_internal(boolean_t enable) {
+ cpu_data_t *cdata = current_cpu_datap();
+ int cpli = cdata->cpu_preemption_level;
+ int cplrecord = cdata->cpu_plri;
+ uint64_t kstackb, kstackt, *plbts;
+
+ assert(cpli >= 0);
+
+ cdata->plrecords[cplrecord].pltype = enable;
+ cdata->plrecords[cplrecord].plevel = cpli;
+
+ plbts = &cdata->plrecords[cplrecord].plbt[0];
+
+ cplrecord++;
+
+ if (cplrecord >= MAX_PREEMPTION_RECORDS) {
+ cplrecord = 0;
+ }
+
+ cdata->cpu_plri = cplrecord;
+ /* Obtain the 'current' program counter, initial backtrace
+ * element. This will also indicate if we were unable to
+ * trace further up the stack for some reason
+ */
+ __asm__ volatile("leaq 1f(%%rip), %%rax; mov %%rax, %0\n1:"
+ : "=m" (plbts[0])
+ :
+ : "rax");
+
+
+ thread_t cplthread = cdata->cpu_active_thread;
+ if (cplthread) {
+ uintptr_t csp;
+ __asm__ __volatile__ ("movq %%rsp, %0": "=r" (csp):);
+ /* Determine which stack we're on to populate stack bounds.
+ * We don't need to trace across stack boundaries for this
+ * routine.
+ */
+ kstackb = cdata->cpu_active_stack;
+ kstackt = kstackb + KERNEL_STACK_SIZE;
+ if (csp < kstackb || csp > kstackt) {
+ kstackt = cdata->cpu_kernel_stack;
+ kstackb = kstackb - KERNEL_STACK_SIZE;
+ if (csp < kstackb || csp > kstackt) {
+ kstackt = cdata->cpu_int_stack_top;
+ kstackb = kstackt - INTSTACK_SIZE;
+ if (csp < kstackb || csp > kstackt) {
+ kstackt = (uintptr_t)low_eintstack;
+ kstackb = (uintptr_t)low_eintstack - INTSTACK_SIZE;
+ if (csp < kstackb || csp > kstackt) {
+ kstackb = (uintptr_t) mp_slave_stack;
+ kstackt = (uintptr_t) mp_slave_stack + PAGE_SIZE;
+ }
+ }
+ }
+ }
+
+ if (kstackb) {
+ pltrace_bt(&plbts[1], MAXPLFRAMES - 1, kstackb, kstackt);
+ }
+ }
+}
+
+extern int plctrace_enabled;
+#endif /* DEVELOPMENT || DEBUG */
+
+static inline void pltrace(boolean_t plenable) {
+#if DEVELOPMENT || DEBUG
+ if (__improbable(plctrace_enabled != 0)) {
+ pltrace_internal(plenable);
+ }
+#else
+ (void)plenable;
+#endif
}
static inline void
-disable_preemption(void)
-{
+disable_preemption_internal(void) {
+ assert(get_preemption_level() >= 0);
+
+#if defined(__clang__)
+ cpu_data_t GS_RELATIVE *cpu_data = (cpu_data_t GS_RELATIVE *)0UL;
+ cpu_data->cpu_preemption_level++;
+#else
__asm__ volatile ("incl %%gs:%P0"
- :
- : "i" (offsetof(cpu_data_t, cpu_preemption_level)));
+ :
+ : "i" (offsetof(cpu_data_t, cpu_preemption_level)));
+#endif
+ pltrace(FALSE);
}
static inline void
-enable_preemption(void)
-{
+enable_preemption_internal(void) {
assert(get_preemption_level() > 0);
-
+ pltrace(TRUE);
+#if defined(__clang__)
+ cpu_data_t GS_RELATIVE *cpu_data = (cpu_data_t GS_RELATIVE *)0UL;
+ if (0 == --cpu_data->cpu_preemption_level)
+ kernel_preempt_check();
+#else
__asm__ volatile ("decl %%gs:%P0 \n\t"
"jne 1f \n\t"
"call _kernel_preempt_check \n\t"
: /* no outputs */
: "i" (offsetof(cpu_data_t, cpu_preemption_level))
: "eax", "ecx", "edx", "cc", "memory");
+#endif
}
static inline void
{
assert(get_preemption_level() > 0);
+ pltrace(TRUE);
+#if defined(__clang__)
+ cpu_data_t GS_RELATIVE *cpu_data = (cpu_data_t GS_RELATIVE *)0UL;
+ cpu_data->cpu_preemption_level--;
+#else
__asm__ volatile ("decl %%gs:%P0"
: /* no outputs */
: "i" (offsetof(cpu_data_t, cpu_preemption_level))
: "cc", "memory");
+#endif
+}
+
+static inline void
+_enable_preemption_no_check(void) {
+ enable_preemption_no_check();
}
static inline void
mp_disable_preemption(void)
{
- disable_preemption();
+ disable_preemption_internal();
}
static inline void
-mp_enable_preemption(void)
+_mp_disable_preemption(void)
{
- enable_preemption();
+ disable_preemption_internal();
}
static inline void
-mp_enable_preemption_no_check(void)
+mp_enable_preemption(void)
{
+ enable_preemption_internal();
+}
+
+static inline void
+_mp_enable_preemption(void) {
+ enable_preemption_internal();
+}
+
+static inline void
+mp_enable_preemption_no_check(void) {
enable_preemption_no_check();
}
-static inline cpu_data_t *
-current_cpu_datap(void)
-{
- CPU_DATA_GET(cpu_this, cpu_data_t *);
+static inline void
+_mp_enable_preemption_no_check(void) {
+ enable_preemption_no_check();
}
+#ifdef XNU_KERNEL_PRIVATE
+#define disable_preemption() disable_preemption_internal()
+#define enable_preemption() enable_preemption_internal()
+#define MACHINE_PREEMPTION_MACROS (1)
+#endif
+
static inline cpu_data_t *
-cpu_datap(int cpu)
-{
- assert(cpu_data_ptr[cpu]);
+cpu_datap(int cpu) {
return cpu_data_ptr[cpu];
}
-extern cpu_data_t *cpu_data_alloc(boolean_t is_boot_cpu);
+static inline int
+cpu_is_running(int cpu) {
+ return ((cpu_datap(cpu) != NULL) && (cpu_datap(cpu)->cpu_running));
+}
-#else /* !defined(__GNUC__) */
+#ifdef MACH_KERNEL_PRIVATE
+static inline cpu_data_t *
+cpu_shadowp(int cpu) {
+ return cpu_data_ptr[cpu]->cd_shadow;
+}
-#endif /* defined(__GNUC__) */
+#endif
+extern cpu_data_t *cpu_data_alloc(boolean_t is_boot_cpu);
+extern void cpu_data_realloc(void);
#endif /* I386_CPU_DATA */